ω_1 -compactness in Type I manifolds

Sina Greenwood*and Peter Nyikos[†]

November 19, 2003

Abstract

In this paper we establish that any well-pruned ω_1 -tree, T, admits an ω_1 -compact Type I manifold if T does not contain an uncountable antichain. If T does contain an uncountable antichain, it has been shown that whether or not T admits an ω_1 -compact manifold is undecidable in ZFC.

AMS classification: Primary 54D99; 57N15; Secondary 03E65; 05C05. Keywords: Type I manifold; Υ -tree; ω_1 -compact.

1 Introduction

In [G] the question of whether or not an arbitrary tree admits a Type I manifold was examined. First, an arbitrary tree admits a Type I manifold if and only if it is an ω_1 -tree and well-pruned. It was found that under the axiom \diamondsuit , any well-pruned ω_1 -tree admits an ω_1 -compact manifold, whereas under the axiom (*), if a well-pruned tree T admits an ω_1 -compact manifold, then T does not contain an uncountable antichain. It was also shown, in ZFC, that any wellpruned ω_1 -tree which did not contain an uncountable antichain or a Souslin subtree admits an ω_1 -compact manifold. We now show that it does not matter whether T contains a Souslin subtree.

A tree, $\langle T, \leq \rangle$, which we will denote simply as T, is a partially ordered set such that for each $t \in T$ the set of predecessors of t, $\{s \in T : s < t\}$, is well-ordered. We will assume throughout that T has a single least element called the *root* of T.

Definition 1.1. Let T be a tree.

- (a) If $t \in T$, $\hat{t} = \{s \in T : s < t\}$.
- (b) For each ordinal α , the α -th level of T, or $T(\alpha)$, is the set $\{t \in T(\alpha) : \hat{t} \text{ has order type } \alpha\}$.

 $^{^*}$ University of Auckland, Private Bag 92019, Auckland, New Zealand. Funded by: New Zealand Science and Technology Foundation

 $^{^\}dagger \mathrm{University}$ of South Carolina, Columbia, SC 29208, USA

- (c) T_{α} is the subtree $\bigcup_{\beta < \alpha} T(\beta)$.
- (d) If $t \in T(\alpha)$ for some ordinal α , $t^+ = \{s \in T(\alpha + 1) : s > t\}$.
- (e) The *height* of T is the least ordinal α such that $T(\alpha) = \emptyset$.

An ω_1 -tree T has height ω_1 and each level $T(\alpha)$ is countable.

A space X is of Type I if it is the union of an ω_1 -sequence $\Sigma = \{U_\alpha : \alpha < \omega_1\}$ of open subspaces such that $\overline{U_\alpha} \subset U_\beta$ whenever $\alpha < \beta$, and such that $\overline{U_\alpha}$ is Lindelöf for all α . If in addition $U_\alpha = \bigcup_{\beta < \alpha} U_\beta$ for any limit ordinal α , then Σ is a *canonical sequence* for X.

We will assume from now on that M is a nonmetrisable manifold. Given any canonical sequence Σ for a manifold M, it is possible to relate Σ to an ω_1 -tree. Nyikos [N] defines such a tree, $\Upsilon(\Sigma)$, as follows:

Definition 1.2. Let M be a Type I manifold, and let $\Sigma = \langle U_{\alpha} : \alpha < \omega_1 \rangle$ be canonical for M. The *tree of non-metrisable-component boundaries associated with* Σ , denoted $\Upsilon(\Sigma)$, is the collection of all sets of the form ∂C such that C is a nonmetrisable component of $M \setminus \overline{U_{\alpha}}$ for some α , with the following order: if $\tau, \sigma \in \Upsilon(\Sigma)$, then $\tau < \sigma$ iff σ is a subset of a component whose boundary is τ .

We usually denote this tree by just Υ if Σ is clear, and refer to it as an Υ -tree. We say that a tree *admits a manifold with property P*, if there exists a Type I manifold with property *P*, and with an Υ -tree isomorphic to *T*.

2 ω_1 -compactness

Definition 2.1. A space is ω_1 -compact if it does not contain an uncountable closed discrete subset.

Theorem 2.2. If T is a well-pruned ω_1 -tree which does not contain an uncountable antichain, then there exists an ω_1 -compact Type I manifold whose Υ -tree is T.

Proof. We will use induction to construct a manifold M by defining an open Lindelöf subset U_{α} for each $\alpha \in \omega_1$, so that $\bigcup_{\alpha \in \omega_1} U_{\alpha}$ is the underlying set for M, and $\Sigma = \langle U_{\alpha} : \alpha \in \omega_1 \rangle$ is a canonical sequence.

Let $U_0 = (-1, 1) \times (-1, 0)$ with the usual topology.

We will use the following notation:

• For each $t \in T$ let I_t be a copy of $(-1, 1) \times [0, 1)$ with the usual topology, and denote the point in I_t corresponding to $\langle x, y \rangle$ by $I_t \langle x, y \rangle$. (For each α the underlying set for U_{α} is $\cup \{I_s : s < t, t \in T(\alpha)\} \cup U_0$, and $(-1, 1) \times \{0\}$ will be the boundary component in $\Upsilon(\Sigma)$ corresponding to t.)

• For each $\alpha \in \omega_1$ and $t \in T(\alpha)$, if α is a successor ordinal define $i_t : I_t \to (-1,1) \times [\alpha, \alpha + 1)$ by $i_t(I_t\langle x, y \rangle) = \langle x, \alpha + y \rangle$. If α is a limit ordinal define $j_t : I_t \to (-1,1) \times [1,2)$ by $j_t(I_t\langle x, y \rangle) = \langle x, 1 + y \rangle$.

• For each $t \in T$ let $B_t = (\bigcup \{I_s : s \leq t\} \cup U_0)$. In each case B_t will be associated with an embedding $h_t : B_t \to (-1, 1) \times (-1, \alpha + 1)$, where $t \in T(\alpha)$,

and will therefore have a coordinate system determined by this embedding. We will denote $h_t^{-1}(\langle x, y \rangle)$ by $\langle x, y \rangle_t$.

- For each $t \in T$ let $\{t^n : n < |t^+|\}$ denote the successors of t.
- For each successor ordinal α , pick a homeomorphism

$$f_{\alpha}: (-1,1) \times (-1,\alpha+1) \to (-1,1) \times (-1,\alpha),$$

satisfying the following properties:

- (i) $f_{\alpha}((-1,1) \times (\alpha, \alpha+1)) = A$, where $A = \left\{ \langle x, \alpha - 1 + y \rangle : (-1 < x < 0) \land \left(\frac{1}{2}(x^2 + 1) < y < \frac{1}{2}\left(\sqrt[+]{|x|} + 1\right)\right) \right\};$
- (ii) $f_{\alpha}((-1,1) \times (\{\alpha\}) = \partial A$, where

$$\partial A = \left\{ \langle x, \alpha - 1 + y \rangle : (-1 < x < 0) \land \left(\frac{1}{2} (x^2 + 1) = y \right) \lor \left(y = \frac{1}{2} \left(\sqrt[4]{|x|} + 1 \right) \right) \right\};$$

- (iii) $f_{\alpha}((-1,1) \times (\alpha 1, \alpha) = (-1,1) \times (\alpha 1, \alpha) \smallsetminus (A \cup \partial A);$
- (iv) $\forall x \leq 0, f_{\alpha}(\{x\} \times (\alpha 1, \alpha)) = \{x\} \times (\alpha 1, \alpha 1 + \frac{1}{2}(x^2 + 1));$
- (v) $\forall x > 0, f_{\alpha}(\{x\} \times (\alpha 1, \alpha)) \subset (-x, x) \times (\alpha 1, \alpha);$ and
- (vi) $f_{\alpha} \upharpoonright (-1, 1) \times (0, \alpha 1]$ is the identity.

Denote the root of T by r and define $h_r: B_r \to (-1,1) \times (-1,1)$ to be the identity on U_0 and let $h_r(I_r\langle x, y \rangle) = \langle x, y \rangle$ for each $I_r\langle x, y \rangle$.

Suppose α is a successor ordinal, U_{α} has been defined and for each $t \in T(\alpha - 1)$, h_t has been defined. Define $h_{t^0} : B_{t^0} \to (0, 1) \times (0, \alpha + 1)$ by letting $h_{t^0} \upharpoonright B_t = h_t$ and $h_{t^0} \upharpoonright I_{t^0} = i_{t^0}$. If t has more than one successor, we will now define for each n > 0 a function

$$\varphi_{t^n}: \left(B_t \cup \bigcup_{m \le n} I_{t^m}\right) \to (-1, 1) \times (-1, \alpha + 1)$$

and h_{t^n} is then $\varphi_{t^n} \upharpoonright B_{t^n}$.

Let $\varphi_{t^0} = h_{t^0}$. If φ_{t^n} has been defined, let $\varphi_{t^{n+1}} \upharpoonright \left(B_t \cup \bigcup_{m \leq n} I_{t^m}\right) = f_\alpha \circ \varphi_{t^n}$ and $\varphi_{t^{n+1}} \upharpoonright I_{t^{n+1}} = i_{t^{n+1}}$.

Topologise $U_{\alpha+1}$ so that each φ_{t^n} is a homeomorphism. Note that this is well defined and consistent with the topology on B_t . Let $U_{\alpha+1} = \bigcup_{n < |t^+|} B_{t^n}$ have the direct limit topology.

If α is a limit ordinal, let $U_{\alpha} = \bigcup_{\beta < \alpha} U_{\beta}$ with the direct limit topology. It remains to define $U_{\alpha+1}$.

Consider the equivalence classes: $[t] = \{s \in T(\alpha) : \hat{s} = \hat{t}\}$. For each equivalence class pick a member $t = t^0$ and denote the other members t^1, t^2 etc. Pick a homeomorphism

$$g_{\alpha}: (-1,1) \times (-1,\alpha+1) \to (-1,1) \times (-1,2)$$

which preserves the first coordinate of each point, preserves horizontal lines, and such that $g_{\alpha}((-1,1) \times (-1,\alpha]) = (-1,1) \times (-1,1]$, and define $e_{[t]} : \bigcup_{s < t} B_s \to (-1,\alpha)$ by

$$e_{[t]}(I_s\langle x, y\rangle) = h_s(I_s\langle x, y\rangle)$$

For each equivalence class [t], define $h_t : B_t \to (0,1) \times (0,\alpha+1)$ by letting $h_t \upharpoonright \bigcup_{s < t} B_s = e_{[t]}$ and $h_t \upharpoonright I_t = i_t$.

If |[t]| > 1 we define for each n > 0 a function

$$\psi_{t^n} : \left(\cup_{s < t} B_s \right) \cup \left(\cup_{m \le n} I_{t^m} \right) \to \left(-1, 1 \right) \times \left(-1, 2 \right)$$

and h_{t^n} will be $(g_{\alpha}^{-1} \circ \psi_{t^n}) \upharpoonright B_{t^n}$. Let $\psi_t = g_{\alpha} \circ h_t$ and if ψ_{t^n} has been defined let

$$\psi_{t^{n+1}} \upharpoonright \bigcup_{s < t} B_s \cup (\bigcup_{m \le n} I_{t^m}) = f_1 \circ \psi_{t^n}$$

and $\psi_{t^{n+1}}|I_{t^{n+1}} = j_{t^{n+1}}$. Topologise $U_{\alpha+1}$ so that each ψ_{t^n} is a homeomorphism. For each $\alpha \in \omega_1, U_{\alpha}$ is Lindelöf since $T(\alpha)$ is countable and for each $t \in T(\alpha)$,

 $B_t \setminus I_t$ is homeomorphic to $(-1, 1) \times (-1, \alpha)$. U_α is connected since $U_0 \subset B_t \setminus I_t$. Clearly M is a manifold with $\Upsilon(\Sigma) = T$.

We now show that M is ω_1 -compact. For any $p \in M$, if $s = \min\{t \in T; p \in B_s\}$, let $p = \langle p(x), p(y) \rangle_s$. Then for every t > s, if $p = \langle x', y' \rangle_t$, $|x'| \leq |p(x)|$ by properties (iv) and (v) of f_{α} . Suppose X is an uncountable discrete set, then there exist $a, b \in (-1, 1)$ such that $Y = \{p \in X : a < p(x) < b\}$ is uncountable.

In the order inherited from T, Y is a tree in which every antichain is countable because it is an antichain of T. Since Y is uncountable, it is an ω_1 -tree. Hence there exists $\alpha < \omega_1$ and $t \in T(\alpha)$ such that $B_t \cap Y$ is infinite, and since $h_t^{-1}((a, b) \times (1, \alpha + 1))$ has countably compact closure, $B_t \cap Y$ has a limit in M. Thus M does not contain an uncountable closed discrete set.

If T contains a Souslin subtree but is not Souslin, then T has at most countably many uncountable paths which cease to branch at some level α say. The manifold constucted in the proof above ensures that for each path $P, P \smallsetminus T_{\alpha+1}$ is ω_1 -compact, as well as the Souslin subtree.

 \diamond implies that any well-puned ω_1 -tree, T, admits an ω_1 -compact manifold. \diamond is needed for the case when T contains an uncountable antichain. We will consider one case in which \clubsuit is adequate to obtain an ω_1 -compact manifold from a tree with an uncountable antichain.

Let \clubsuit_2 denote the following axiom: there is a family $\{\lambda_{\alpha} : \alpha < \omega_1\}$ of countable limit ordinals, and a family $\{A_{\alpha} : \alpha < \omega_1\}$ such that:

- 1. both $dom(A_{\alpha})$ and $ran(A_{\alpha})$ are cofinal subsets of λ_{α} , of order type ω ; and,
- 2. if X is a subset of $\omega_1 \times \omega_1$ that meets each subset of the form $[\alpha, \omega_1) \times [\alpha, \omega_1)$, then there exists α such that $A_{\alpha} \subset X$.

We will call such a family $\{A_{\alpha} : \alpha < \omega_1\}$, a \clubsuit_2 -sequence.

Theorem 2.3. \clubsuit implies \clubsuit_2 .

We use the following formulation of \clubsuit : there exists a family

$$\{L_{\gamma}: \gamma < \omega_1, \gamma \text{ is a limit ordinal}\}$$

such that each L_{γ} is a cofinal subset of γ of order type ω , and such that if X is an uncountable subset of ω_1 , then there exists γ such that $L_{\gamma} \subset X$.

We will make use of the lemma below, [D, Theorem 4.3].

Lemma 2.4. If

$$\{L_{\gamma}: \gamma < \omega_1, \ \gamma \text{ is a limit ordinal}\}$$

witnesses \clubsuit , and X is an uncountable subset of ω_1 , then $S = \{\gamma : L_{\gamma} \subset X\}$ is stationary.

Proof of Theorem 2.3. Let $\varphi: \omega_1 \to \omega_1 \times \omega_1$ be a bijection, and let

$$C = \{\gamma \in \omega_1 : \varphi([0,\gamma)) = [0,\gamma) \times [0,\gamma)\}.$$

A standard leapfrog argument shows C is a club. Let C' be the derived set of Cand for each $\gamma \in C'$ let $B_{\gamma} = \varphi(L_{\gamma})$. Since L_{γ} is cofinal in γ of order type ω , at most finitely many members of B_{γ} can be in $[0, \alpha) \times [0, \alpha)$ for any $\alpha < \gamma$; hence at least one projection of B_{γ} is unbounded in $[0, \gamma)$. Let $\{\lambda_{\alpha} : \alpha < \omega_1\}$ list in order all members of C' such that both projections are unbounded ω -sequences in λ_{α} . Let $A_{\alpha} = B_{\lambda_{\alpha}}$ for all α .

Claim. $\mathcal{A} = \{A_{\alpha} : \alpha < \omega_1\}$ witnesses \clubsuit_2 .

Proof of Claim. Suppose X meets every set of the form $[\alpha, \omega_1) \times [\alpha, \omega_1)$. Let $Y = \{(\beta_\alpha, \delta_\alpha) : \alpha \in \omega_1\}$ be a subset of X such that

$$\alpha \le \min\{\beta_{\alpha}, \delta_{\alpha}\} \le \max\{\beta_{\alpha}, \delta_{\alpha}\} < \min\{\beta_{\varepsilon}, \delta_{\varepsilon}\}$$

whenever $\alpha < \varepsilon$.

Since $\varphi^{-1}(Y)$ is uncountable, there is a stationary set S such that $L_{\sigma} \subset \varphi^{-1}(Y)$ for all $\sigma \in S$. Let $\gamma \in C' \cap S$. Then $B_{\gamma} \subset Y$, and at least one projection of B_{γ} is unbounded in γ . This forces both $dom(B_{\gamma})$ and $ran(B_{\gamma})$ to be ω -sequences with supremum γ . So $B_{\gamma} \in \mathcal{A}$ and $B_{\gamma} \subset X$, as desired. \Box

The following example demonstrates that the full strength of \Diamond in Theorem [G, Theorem 5.4], need not be necessary.

Example 2.5. Assume \clubsuit . There exists an ω_1 -compact Type I manifold M, such that if Σ is any canonical sequence for M, $\Upsilon(\Sigma)$ contains an uncountable antichain.

We will define a Type I manifold M with the underlying set:

$$\{\langle \alpha, \beta \rangle \in \mathbb{L}^+ \times \mathbb{L}^+ : \alpha, \beta \neq 0\} \setminus \{\langle \alpha, \beta \rangle : \alpha \in [1, \omega_1), \beta \in \omega_1\}.$$

Let \mathcal{T} be the topology on M as a subspace of $\mathbb{L}^+ \times \mathbb{L}^+$ with the usual topology. For each $\alpha < \omega_1$ let $U_\alpha = (0, \alpha)^2 \cap M$. We will define a topology on each U_α such that $\partial U_\alpha = \{\alpha\} \times [(0, \alpha) \cap M] \cup (0, 1) \times \{\alpha\}, U_\alpha \approx \mathbb{R}^2$, and $\langle U_\alpha : \alpha \in \omega_1 \rangle$ is canonical.

Let $M \setminus \bigcup_{\alpha < \omega_1} \partial U_{\alpha}$ have the topology inherited from \mathcal{T} . Note that $U_0 = \emptyset$, and U_1 has the usual topology, and hence $U_1 \approx \mathbb{R}^2$.

Suppose α is a successor ordinal, the topology on U_{α} has been defined, and $U_{\alpha} \approx \mathbb{R}^2$. Then let $U_{\alpha+1}$ be the connected sum of $(0, \alpha - \frac{1}{2}]^2 \cap M$, and $U_{\alpha+1} \smallsetminus (0, \alpha - \frac{1}{2})^2$ with the topology inherited from \mathcal{T} .

If α is a limit, U_{β} has been defined for each $\beta < \alpha$, and $U_{\beta} \approx \mathbb{R}^2$ for each β , let $U_{\alpha} = \bigcup_{\beta < \alpha} U_{\beta}$ with the direct limit topology. Since each $U_{\beta} \approx \mathbb{R}^2$, $U_{\alpha} \approx \mathbb{R}^2$ [B].

To complete the construction it remains to define the topology on $U_{\alpha+1}$ when α is a limit. We need only define a neighbourhood base for each $x \in \partial U_{\alpha}$.

Let $\mathcal{A} = \{A_{\alpha} : \alpha \in L\}$ be a \clubsuit_2 -sequence. Choose a function $\phi_{\alpha} : U_{\alpha+1} \to U_{\alpha+1}$ such that:

- (a) $\phi_{\alpha}|U_{\alpha}$ is an embedding;
- (b) ϕ_{α} is the identity on the sets $\{(0,1) \times \{\beta\} : \beta \leq \alpha+1\}$ and $(0,\frac{1}{4}) \times (0,\alpha+1]$;
- (c) for each $\langle x,y\rangle\in U_{\alpha+1}, \ \phi_{\alpha}(\langle x,y\rangle)=\langle x',y\rangle$ for some $x'\leq x$;
- (d) if $\beta \in \text{dom}A_{\alpha}$, $A_{\alpha} \in \mathcal{A}$, then $\phi_{\alpha}(\{1\} \times (\beta, \beta + 1))$ and $\phi_{\alpha}(\{\alpha\} \times (\beta, \beta + 1))$ are circular arcs in $(0, 1) \times (\beta, \beta + 1)$, such that $\phi_{\alpha}(\langle 1, \beta + \frac{1}{2} \rangle) = \langle \frac{1}{2}, \beta + \frac{1}{2} \rangle$, $\phi_{\alpha}(\langle \alpha, \beta + \frac{1}{2} \rangle) = \langle \frac{3}{4}, \beta + \frac{1}{2} \rangle$, $\phi_{\alpha}(\{\alpha + 1\}, (\beta, \beta + 1)) = (\{2\} \times (\beta, \beta + 1))$, $\lim_{x \to 0} \phi_{\alpha}(\langle \alpha, \beta + x \rangle) = \langle 1, \beta \rangle$, and $\lim_{x \to 1} \phi_{\alpha}(\langle \alpha, \beta + x \rangle) = \langle 1, \beta + 1 \rangle$.

Such a function ϕ_{α} exists since dom A_{α} is countable. Topologise $U_{\alpha+1}$ so that ϕ_{α} is an embedding. Clearly $U_{\alpha+1} \approx \mathbb{R}^2$.

This completes the construction.

M is a manifold, since if $x \in M$ then $x \in U_{\alpha}$ for some α , and since $U_{\alpha} \approx \mathbb{R}^2$, x has a Euclidean neighbourhood.

Clearly M is Type I and $\Sigma = \langle U_{\alpha} : \alpha \in \omega_1 \rangle$ is a canonical sequence for M.

 $\Upsilon(\Sigma)$ contains an uncountable antichain. $\Upsilon(\Sigma)$ consists of a path P, which may be thought of as the main trunk of $\Upsilon(\Sigma)$, with a path emanating from Pat each successor level. These paths do not themselves branch. By choosing a member of $\Upsilon(\Sigma)$ from each of the paths off P, we may obtain an uncountable antichain.

We now establish that M is ω_1 -compact. Suppose Z is a closed uncountable discrete subset of M. Then $Z \not\subset U_{\alpha}$ for any α . We consider 3 cases.

1. $Z \cap (0,1) \times \mathbb{L}^+$ is uncountable.

For some $a, b \in (0, 1)$, the set $Z' = \{\langle x, y \rangle \in Z : a < x < b\}$ is uncountable. If $a \in (0, \frac{1}{4})$, then Z' must have a limit point on $[a, \frac{1}{4}] \times \{\alpha\}$ for some limit ordinal α . If not, Z' must have a limit point on $[\frac{1}{4}, b] \times \{\alpha\}$ for some limit ordinal α .

2. $X \cap ((0, \omega_1) \times (\beta, \beta + 1))$ is uncountable for some $\beta \in \omega_1$.

For some $a, b \in (0, 1)$, the set $Z' = \{\langle x, y \rangle \in X : \beta + a < y < \beta + b\}$ is uncountable. This set has a limit point on $\{\alpha\} \times [\beta + a, \beta + b]$ for some limit ordinal α .

3. $Z \cap (0, 1) \times \mathbb{L}^+$ is countable, and for each $\beta \in \omega_1, X \cap ((0, \omega_1) \times (\beta, \beta + 1))$ is countable. Hence $B = \{\beta : Z \cap ([1, \omega_1) \times (\beta, \beta + 1)) \neq \emptyset\}$ is uncountable. For each $\beta \in B$, pick one point $\langle x_\beta, y_\beta \rangle \in Z \cap ((0, \omega_1) \times (\beta, \beta + 1))$. Let $Z' = \{\langle x_\beta, y_\beta \rangle : \beta \in B\}$. Then for some $a, b \in (0, 1), Y = \{\langle x_\beta, y_\beta \rangle \in Z' : \beta + a < y_\beta < \beta + b\}$ is uncountable. Let $B' = \{\beta : \langle x_\beta, y_\beta \rangle \in Y\}$. Note that for each $\alpha \in \omega_1$, if $\beta \in \text{dom}A_\alpha$ and $x \in (0, 1)$, then the first coordinate of $\phi_\alpha(\langle \alpha, \beta + x \rangle)$ is a fixed value, call it $x(\phi_\alpha)$, since each point in $\phi_\alpha(\{\alpha\} \times (\beta, \beta + 1))$ lies on a circular arc through $\langle \frac{3}{4}, \beta + \frac{1}{2} \rangle, \langle 1, \beta \rangle$ and $\langle 1, \beta + 1 \rangle$. Now let $\lambda^\beta = \min\{\alpha : \langle x_\beta, y_\beta \rangle \in U_\alpha\}$ for each $\beta \in B'$, and observe that $\sup\{\lambda^\beta : \beta \in B'\} = \omega_1$. Let $A = \{\langle \beta, \lambda^\beta \rangle : \beta \in B'\}$. Choose α such that $A_\alpha \in \mathcal{A}$ and $A_\alpha \subset \mathcal{A}$. Since for each $\beta \in dom(\mathcal{A}_\alpha), \langle x_\beta, y_\beta \rangle \in ((0, \omega_1) \times (\beta, \beta + 1)) \cap U_\alpha, 1 < x_\beta < \alpha_\beta < \alpha$ and $\beta + a < y_\beta < \beta + b$, if the first coordinate of $\phi_\alpha(\langle x_\beta, y_\beta \rangle)$ is x, then $\frac{1}{2} < x < \max\{a(\phi_\alpha), b(\phi_\alpha)\}$ and hence Z has a limit point on $[\frac{1}{2}, m] \times \{\alpha\}$, where $m = \max\{a(\phi_\alpha), b(\phi_\alpha)\}$.

References

- [B] M. Brown The Monotone Union of Open n-cells in an Open n-cell, Proc. Amer. Math. Soc., Vol. 12, 812-814, 1961.
- [D] Keith J. Devlin Variations on ◊, J. Symbloic Logic, Vol. 44, no. 1, 51-58, 1979.
- [G] Sina Greenwood Constructing Type I nonmetrisable manifolds with given Υ-trees, Topology and its Applications, 123, 2002, 91-101.
- [N] Peter Nyikos The Theory of Nonmetrizable Manifolds, in Handbook of Set-theoretic Topology, K. Kunen and Jerry Vaughan, Eds, 1984, 633-684.