ω_{1}-compactness in Type I manifolds

Sina Greenwood*and Peter Nyikos ${ }^{\dagger}$

November 19, 2003

Abstract

In this paper we establish that any well-pruned ω_{1}-tree, T, admits an ω_{1}-compact Type I manifold if T does not contain an uncountable antichain. If T does contain an uncountable antichain, it has been shown that whether or not T admits an ω_{1}-compact manifold is undecidable in ZFC.

AMS classification: Primary 54D99; 57N15; Secondary 03E65; 05 C 05. Keywords: Type I manifold; Υ-tree; ω_{1}-compact

1 Introduction

In [G] the question of whether or not an arbitrary tree admits a Type I manifold was examined. First, an arbitrary tree admits a Type I manifold if and only if it is an ω_{1}-tree and well-pruned. It was found that under the axiom \diamond, any well-pruned ω_{1}-tree admits an ω_{1}-compact manifold, whereas under the axiom $(*)$, if a well-pruned tree T admits an ω_{1}-compact manifold, then T does not contain an uncountable antichain. It was also shown, in ZFC, that any wellpruned ω_{1}-tree which did not contain an uncountable antichain or a Souslin subtree admits an ω_{1}-compact manifold. We now show that it does not matter whether T contains a Souslin subtree.

A tree, $\langle T, \leq\rangle$, which we will denote simply as T, is a partially ordered set such that for each $t \in T$ the set of predecessors of $t,\{s \in T: s<t\}$, is wellordered. We will assume throughout that T has a single least element called the root of T.

Definition 1.1. Let T be a tree.
(a) If $t \in T, \hat{t}=\{s \in T: s<t\}$.
(b) For each ordinal α, the α-th level of T, or $T(\alpha)$, is the set $\{t \in T(\alpha)$: \hat{t} has order type $\alpha\}$.

[^0](c) T_{α} is the subtree $\bigcup_{\beta<\alpha} T(\beta)$.
(d) If $t \in T(\alpha)$ for some ordinal $\alpha, t^{+}=\{s \in T(\alpha+1): s>t\}$.
(e) The height of T is the least ordinal α such that $T(\alpha)=\varnothing$.

An ω_{1}-tree T has height ω_{1} and each level $T(\alpha)$ is countable.
A space X is of Type I if it is the union of an ω_{1}-sequence $\Sigma=\left\{U_{\alpha}: \alpha<\omega_{1}\right\}$ of open subspaces such that $\overline{U_{\alpha}} \subset U_{\beta}$ whenever $\alpha<\beta$, and such that $\overline{U_{\alpha}}$ is Lindelöf for all α. If in addition $U_{\alpha}=\bigcup_{\beta<\alpha} U_{\beta}$ for any limit ordinal α, then Σ is a canonical sequence for X.

We will assume from now on that M is a nonmetrisable manifold. Given any canonical sequence Σ for a manifold M, it is possible to relate Σ to an ω_{1}-tree. Nyikos [N] defines such a tree, $\Upsilon(\Sigma)$, as follows:

Definition 1.2. Let M be a Type I manifold, and let $\Sigma=\left\langle U_{\alpha}: \alpha<\omega_{1}\right\rangle$ be canonical for M. The tree of non-metrisable-component boundaries associated with Σ, denoted $\Upsilon(\Sigma)$, is the collection of all sets of the form ∂C such that C is a nonmetrisable component of $M \backslash \overline{U_{\alpha}}$ for some α, with the following order: if $\tau, \sigma \in \Upsilon(\Sigma)$, then $\tau<\sigma$ iff σ is a subset of a component whose boundary is τ.

We usually denote this tree by just Υ if Σ is clear, and refer to it as an Υ-tree. We say that a tree admits a manifold with property P, if there exists a Type I manifold with property P, and with an Υ-tree isomorphic to T.

$2 \omega_{1}$-compactness

Definition 2.1. A space is ω_{1}-compact if it does not contain an uncountable closed discrete subset.

Theorem 2.2. If T is a well-pruned ω_{1}-tree which does not contain an uncountable antichain, then there exists an ω_{1}-compact Type I manifold whose Υ-tree is T.

Proof. We will use induction to construct a manifold M by defining an open Lindelöf subset U_{α} for each $\alpha \in \omega_{1}$, so that $\bigcup_{\alpha \in \omega_{1}} U_{\alpha}$ is the underlying set for M, and $\Sigma=\left\langle U_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a canonical sequence.

Let $U_{0}=(-1,1) \times(-1,0)$ with the usual topology.
We will use the following notation:

- For each $t \in T$ let I_{t} be a copy of $(-1,1) \times[0,1)$ with the usual topology, and denote the point in I_{t} corresponding to $\langle x, y\rangle$ by $I_{t}\langle x, y\rangle$. (For each α the underlying set for U_{α} is $\cup\left\{I_{s}: s<t, t \in T(\alpha)\right\} \cup U_{0}$, and $(-1,1) \times\{0\}$ will be the boundary component in $\Upsilon(\Sigma)$ corresponding to t.)
- For each $\alpha \in \omega_{1}$ and $t \in T(\alpha)$, if α is a successor ordinal define $i_{t}: I_{t} \rightarrow$ $(-1,1) \times[\alpha, \alpha+1)$ by $i_{t}\left(I_{t}\langle x, y\rangle\right)=\langle x, \alpha+y\rangle$. If α is a limit ordinal define $j_{t}: I_{t} \rightarrow(-1,1) \times[1,2)$ by $j_{t}\left(I_{t}\langle x, y\rangle\right)=\langle x, 1+y\rangle$.
- For each $t \in T$ let $B_{t}=\left(\bigcup\left\{I_{s}: s \leq t\right\} \cup U_{0}\right)$. In each case B_{t} will be associated with an embedding $h_{t}: B_{t} \rightarrow(-1,1) \times(-1, \alpha+1)$, where $t \in T(\alpha)$,
and will therefore have a coordinate system determined by this embedding. We will denote $h_{t}^{-1}(\langle x, y\rangle)$ by $\langle x, y\rangle_{t}$.
- For each $t \in T$ let $\left\{t^{n}: n<\left|t^{+}\right|\right\}$denote the successors of t.
- For each successor ordinal α, pick a homeomorphism

$$
f_{\alpha}:(-1,1) \times(-1, \alpha+1) \rightarrow(-1,1) \times(-1, \alpha),
$$

satisfying the following properties:
(i) $f_{\alpha}((-1,1) \times(\alpha, \alpha+1))=A$, where

$$
A=\left\{\langle x, \alpha-1+y\rangle:(-1<x<0) \wedge\left(\frac{1}{2}\left(x^{2}+1\right)<y<\frac{1}{2}(\sqrt[+]{|x|}+1)\right)\right\}
$$

(ii) $f_{\alpha}((-1,1) \times(\{\alpha\})=\partial A$, where

$$
\partial A=\left\{\langle x, \alpha-1+y\rangle:(-1<x<0) \wedge\left(\frac{1}{2}\left(x^{2}+1\right)=y\right) \vee\left(y=\frac{1}{2}(\sqrt[+]{|x|}+1)\right)\right\}
$$

(iii) $f_{\alpha}((-1,1) \times(\alpha-1, \alpha)=(-1,1) \times(\alpha-1, \alpha) \backslash(A \cup \partial A)$;
(iv) $\forall x \leq 0, f_{\alpha}(\{x\} \times(\alpha-1, \alpha))=\{x\} \times\left(\alpha-1, \alpha-1+\frac{1}{2}\left(x^{2}+1\right)\right)$;
(v) $\forall x>0, f_{\alpha}(\{x\} \times(\alpha-1, \alpha)) \subset(-x, x) \times(\alpha-1, \alpha)$; and
(vi) $f_{\alpha} \upharpoonright(-1,1) \times(0, \alpha-1]$ is the identity.

Denote the root of T by r and define $h_{r}: B_{r} \rightarrow(-1,1) \times(-1,1)$ to be the identity on U_{0} and let $h_{r}\left(I_{r}\langle x, y\rangle\right)=\langle x, y\rangle$ for each $I_{r}\langle x, y\rangle$.

Suppose α is a successor ordinal, U_{α} has been defined and for each $t \in$ $T(\alpha-1), h_{t}$ has been defined. Define $h_{t^{0}}: B_{t^{0}} \rightarrow(0,1) \times(0, \alpha+1)$ by letting $h_{t^{0}} \upharpoonright B_{t}=h_{t}$ and $h_{t^{0}} \upharpoonright I_{t^{0}}=i_{t^{0}}$. If t has more than one successor, we will now define for each $n>0$ a function

$$
\varphi_{t^{n}}:\left(B_{t} \cup \bigcup_{m \leq n} I_{t^{m}}\right) \rightarrow(-1,1) \times(-1, \alpha+1)
$$

and $h_{t^{n}}$ is then $\varphi_{t^{n}} \upharpoonright B_{t^{n}}$.
Let $\varphi_{t^{0}}=h_{t^{0}}$. If $\varphi_{t^{n}}$ has been defined, let $\varphi_{t^{n+1}} \upharpoonright\left(B_{t} \cup \bigcup_{m \leq n} I_{t^{m}}\right)=$ $f_{\alpha} \circ \varphi_{t^{n}}$ and $\varphi_{t^{n+1}} \upharpoonright I_{t^{n+1}}=i_{t^{n+1}}$.

Topologise $U_{\alpha+1}$ so that each $\varphi_{t^{n}}$ is a homeomorphism. Note that this is well defined and consistent with the topology on B_{t}. Let $U_{\alpha+1}=\bigcup_{n<\left|t^{+}\right|} B_{t^{n}}$ have the direct limit topology.

If α is a limit ordinal, let $U_{\alpha}=\cup_{\beta<\alpha} U_{\beta}$ with the direct limit topology. It remains to define $U_{\alpha+1}$.

Consider the equivalence classes: $[t]=\{s \in T(\alpha): \hat{s}=\hat{t}\}$. For each equivalence class pick a member $t=t^{0}$ and denote the other members t^{1}, t^{2} etc. Pick a homeomorphism

$$
g_{\alpha}:(-1,1) \times(-1, \alpha+1) \rightarrow(-1,1) \times(-1,2)
$$

which preserves the first coordinate of each point, preserves horizontal lines, and such that $g_{\alpha}((-1,1) \times(-1, \alpha])=(-1,1) \times(-1,1]$, and define $e_{[t]}: \bigcup_{s<t} B_{s} \rightarrow$ $(-1, \alpha)$ by

$$
e_{[t]}\left(I_{s}\langle x, y\rangle\right)=h_{s}\left(I_{s}\langle x, y\rangle\right) .
$$

For each equivalence class $[t]$, define $h_{t}: B_{t} \rightarrow(0,1) \times(0, \alpha+1)$ by letting $h_{t} \upharpoonright \bigcup_{s<t} B_{s}=e_{[t]}$ and $h_{t} \upharpoonright I_{t}=i_{t}$.

If $|[t]|>1$ we define for each $n>0$ a function

$$
\psi_{t^{n}}:\left(\cup_{s<t} B_{s}\right) \cup\left(\cup_{m \leq n} I_{t^{m}}\right) \rightarrow(-1,1) \times(-1,2)
$$

and $h_{t^{n}}$ will be $\left(g_{\alpha}^{-1} \circ \psi_{t^{n}}\right) \upharpoonright B_{t^{n}}$. Let $\psi_{t}=g_{\alpha} \circ h_{t}$ and if $\psi_{t^{n}}$ has been defined let

$$
\psi_{t^{n+1}} \upharpoonright \cup_{s<t} B_{s} \cup\left(\cup_{m \leq n} I_{t^{m}}\right)=f_{1} \circ \psi_{t^{n}}
$$

and $\psi_{t^{n+1}} \mid I_{t^{n+1}}=j_{t^{n+1}}$. Topologise $U_{\alpha+1}$ so that each $\psi_{t^{n}}$ is a homeomorphism.
For each $\alpha \in \omega_{1}, U_{\alpha}$ is Lindelöf since $T(\alpha)$ is countable and for each $t \in T(\alpha)$, $B_{t} \backslash I_{t}$ is homeomorphic to $(-1,1) \times(-1, \alpha) . U_{\alpha}$ is connected since $U_{0} \subset B_{t} \backslash I_{t}$.

Clearly M is a manifold with $\Upsilon(\Sigma)=T$.
We now show that M is ω_{1}-compact. For any $p \in M$, if $s=\min \{t \in T ; p \in$ $\left.B_{s}\right\}$, let $p=\langle p(x), p(y)\rangle_{s}$. Then for every $t>s$, if $p=\left\langle x^{\prime}, y^{\prime}\right\rangle_{t},\left|x^{\prime}\right| \leq|p(x)|$ by properties (iv) and (v) of f_{α}. Suppose X is an uncountable discrete set, then there exist $a, b \in(-1,1)$ such that $Y=\{p \in X: a<p(x)<b\}$ is uncountable.

In the order inherited from T, Y is a tree in which every antichain is countable because it is an antichain of T. Since Y is uncountable, it is an ω_{1}-tree. Hence there exists $\alpha<\omega_{1}$ and $t \in T(\alpha)$ such that $B_{t} \cap Y$ is infinite, and since $h_{t}^{-1}((a, b) \times(1, \alpha+1))$ has countably compact closure, $B_{t} \cap Y$ has a limit in M. Thus M does not contain an uncountable closed discrete set.

If T contains a Souslin subtree but is not Souslin, then T has at most countably many uncountable paths which cease to branch at some level α say. The manifold constucted in the proof above ensures that for each path $P, P \backslash T_{\alpha+1}$ is ω_{1}-compact, as well as the Souslin subtree.
\diamond implies that any well-puned ω_{1}-tree, T, admits an ω_{1}-compact manifold. \diamond is needed for the case when T contains an uncountable antichain. We will consider one case in which $\boldsymbol{\&}$ is adequate to obtain an ω_{1}-compact manifold from a tree with an uncountable antichain.

Let \boldsymbol{Q}_{2} denote the following axiom: there is a family $\left\{\lambda_{\alpha}: \alpha<\omega_{1}\right\}$ of countable limit ordinals, and a family $\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$ such that:

1. both $\operatorname{dom}\left(A_{\alpha}\right)$ and $\operatorname{ran}\left(A_{\alpha}\right)$ are cofinal subsets of λ_{α}, of order type ω; and,
2. if X is a subset of $\omega_{1} \times \omega_{1}$ that meets each subset of the form $\left[\alpha, \omega_{1}\right) \times$ $\left[\alpha, \omega_{1}\right)$, then there exists α such that $A_{\alpha} \subset X$.

We will call such a family $\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$, a $\boldsymbol{\&}_{2}$-sequence.
Theorem 2.3. \& implies $\boldsymbol{\AA}_{2}$.

We use the following formulation of $\boldsymbol{\boldsymbol { \phi }}$: there exists a family

$$
\left\{L_{\gamma}: \gamma<\omega_{1}, \gamma \text { is a limit ordinal }\right\}
$$

such that each L_{γ} is a cofinal subset of γ of order type ω, and such that if X is an uncountable subset of ω_{1}, then there exists γ such that $L_{\gamma} \subset X$.

We will make use of the lemma below, [D, Theorem 4.3].
Lemma 2.4. If

$$
\left\{L_{\gamma}: \gamma<\omega_{1}, \gamma \text { is a limit ordinal }\right\}
$$

witnesses $\boldsymbol{\&}$, and X is an uncountable subset of ω_{1}, then $S=\left\{\gamma: L_{\gamma} \subset X\right\}$ is stationary.

Proof of Theorem 2.3. Let $\varphi: \omega_{1} \rightarrow \omega_{1} \times \omega_{1}$ be a bijection, and let

$$
C=\left\{\gamma \in \omega_{1}: \varphi([0, \gamma))=[0, \gamma) \times[0, \gamma)\right\} .
$$

A standard leapfrog argument shows C is a club. Let C^{\prime} be the derived set of C and for each $\gamma \in C^{\prime}$ let $B_{\gamma}=\varphi\left(L_{\gamma}\right)$. Since L_{γ} is cofinal in γ of order type ω, at most finitely many members of B_{γ} can be in $[0, \alpha) \times[0, \alpha)$ for any $\alpha<\gamma$; hence at least one projection of B_{γ} is unbounded in $[0, \gamma)$. Let $\left\{\lambda_{\alpha}: \alpha<\omega_{1}\right\}$ list in order all members of C^{\prime} such that both projections are unbounded ω-sequences in λ_{α}. Let $A_{\alpha}=B_{\lambda_{\alpha}}$ for all α.
Claim. $\mathcal{A}=\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$ witnesses $\boldsymbol{\phi}_{2}$.
Proof of Claim. Suppose X meets every set of the form $\left[\alpha, \omega_{1}\right) \times\left[\alpha, \omega_{1}\right)$. Let $Y=\left\{\left(\beta_{\alpha}, \delta_{\alpha}\right): \alpha \in \omega_{1}\right\}$ be a subset of X such that

$$
\alpha \leq \min \left\{\beta_{\alpha}, \delta_{\alpha}\right\} \leq \max \left\{\beta_{\alpha}, \delta_{\alpha}\right\}<\min \left\{\beta_{\varepsilon}, \delta_{\varepsilon}\right\}
$$

whenever $\alpha<\varepsilon$.
Since $\varphi^{-1}(Y)$ is uncountable, there is a stationary set S such that $L_{\sigma} \subset$ $\varphi^{-1}(Y)$ for all $\sigma \in S$. Let $\gamma \in C^{\prime} \cap S$. Then $B_{\gamma} \subset Y$, and at least one projection of B_{γ} is unbounded in γ. This forces both $\operatorname{dom}\left(B_{\gamma}\right)$ and $\operatorname{ran}\left(B_{\gamma}\right)$ to be ω-sequences with supremum γ. So $B_{\gamma} \in \mathcal{A}$ and $B_{\gamma} \subset X$, as desired.

The following example demonstrates that the full strength of \diamond in Theorem [G, Theorem 5.4], need not be necessary.

Example 2.5. Assume \&. There exists an ω_{1}-compact Type I manifold M, such that if Σ is any canonical sequence for $M, \Upsilon(\Sigma)$ contains an uncountable antichain.

We will define a Type I manifold M with the underlying set:

$$
\left\{\langle\alpha, \beta\rangle \in \mathbb{L}^{+} \times \mathbb{L}^{+}: \alpha, \beta \neq 0\right\} \backslash\left\{\langle\alpha, \beta\rangle: \alpha \in\left[1, \omega_{1}\right), \beta \in \omega_{1}\right\} .
$$

Let \mathcal{T} be the topology on M as a subspace of $\mathbb{L}^{+} \times \mathbb{L}^{+}$with the usual topology. For each $\alpha<\omega_{1}$ let $U_{\alpha}=(0, \alpha)^{2} \cap M$. We will define a topology on each U_{α} such that $\partial U_{\alpha}=\{\alpha\} \times[(0, \alpha) \cap M] \cup(0,1) \times\{\alpha\}, U_{\alpha} \approx \mathbb{R}^{2}$, and $\left\langle U_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is canonical.

Let $M \backslash \bigcup_{\alpha<\omega_{1}} \partial U_{\alpha}$ have the topology inherited from \mathcal{T}. Note that $U_{0}=\varnothing$, and U_{1} has the usual topology, and hence $U_{1} \approx \mathbb{R}^{2}$.

Suppose α is a successor ordinal, the topology on U_{α} has been defined, and $U_{\alpha} \approx \mathbb{R}^{2}$. Then let $U_{\alpha+1}$ be the connected sum of $\left(0, \alpha-\frac{1}{2}\right]^{2} \cap M$, and $U_{\alpha+1} \backslash\left(0, \alpha-\frac{1}{2}\right)^{2}$ with the topology inherited from \mathcal{T}.

If α is a limit, U_{β} has been defined for each $\beta<\alpha$, and $U_{\beta} \approx \mathbb{R}^{2}$ for each β, let $U_{\alpha}=\cup_{\beta<\alpha} U_{\beta}$ with the direct limit topology. Since each $U_{\beta} \approx \mathbb{R}^{2}, U_{\alpha} \approx \mathbb{R}^{2}$ [B].

To complete the construction it remains to define the topology on $U_{\alpha+1}$ when α is a limit. We need only define a neighbourhood base for each $x \in \partial U_{\alpha}$.

Let $\mathcal{A}=\left\{A_{\alpha}: \alpha \in L\right\}$ be a $\boldsymbol{\phi}_{2}$-sequence. Choose a function $\phi_{\alpha}: U_{\alpha+1} \rightarrow$ $U_{\alpha+1}$ such that:
(a) $\phi_{\alpha} \mid U_{\alpha}$ is an embedding;
(b) ϕ_{α} is the identity on the sets $\{(0,1) \times\{\beta\}: \beta \leq \alpha+1\}$ and $\left(0, \frac{1}{4}\right) \times(0, \alpha+1]$;
(c) for each $\langle x, y\rangle \in U_{\alpha+1}, \phi_{\alpha}(\langle x, y\rangle)=\left\langle x^{\prime}, y\right\rangle$ for some $x^{\prime} \leq x$;
(d) if $\beta \in \operatorname{dom} A_{\alpha}, A_{\alpha} \in \mathcal{A}$, then $\phi_{\alpha}(\{1\} \times(\beta, \beta+1))$ and $\phi_{\alpha}(\{\alpha\} \times(\beta, \beta+$ 1)) are circular arcs in $(0,1) \times(\beta, \beta+1)$, such that $\phi_{\alpha}\left(\left\langle 1, \beta+\frac{1}{2}\right\rangle\right)=$ $\left\langle\frac{1}{2}, \beta+\frac{1}{2}\right\rangle, \phi_{\alpha}\left(\left\langle\alpha, \beta+\frac{1}{2}\right\rangle\right)=\left\langle\frac{3}{4}, \beta+\frac{1}{2}\right\rangle, \phi_{\alpha}(\{\alpha+1\},(\beta, \beta+1))=(\{2\} \times$ $(\beta, \beta+1)), \lim _{x \rightarrow 0} \phi_{\alpha}(\langle\alpha, \beta+x\rangle)=\langle 1, \beta\rangle$, and $\lim _{x \rightarrow 1} \phi_{\alpha}(\langle\alpha, \beta+x\rangle)=$ $\langle 1, \beta+1\rangle$.

Such a function ϕ_{α} exists since $\operatorname{dom} A_{\alpha}$ is countable. Topologise $U_{\alpha+1}$ so that ϕ_{α} is an embedding. Clearly $U_{\alpha+1} \approx \mathbb{R}^{2}$.

This completes the construction.
M is a manifold, since if $x \in M$ then $x \in U_{\alpha}$ for some α, and since $U_{\alpha} \approx \mathbb{R}^{2}$, x has a Euclidean neighbourhood.

Clearly M is Type I and $\Sigma=\left\langle U_{\alpha}: \alpha \in \omega_{1}\right\rangle$ is a canonical sequence for M.
$\Upsilon(\Sigma)$ contains an uncountable antichain. $\Upsilon(\Sigma)$ consists of a path P, which may be thought of as the main trunk of $\Upsilon(\Sigma)$, with a path emanating from P at each successor level. These paths do not themselves branch. By choosing a member of $\Upsilon(\Sigma)$ from each of the paths off P, we may obtain an uncountable antichain.

We now establish that M is ω_{1}-compact. Suppose Z is a closed uncountable discrete subset of M. Then $Z \not \subset U_{\alpha}$ for any α. We consider 3 cases.

1. $Z \cap(0,1) \times \mathbb{L}^{+}$is uncountable.

For some $a, b \in(0,1)$, the set $Z^{\prime}=\{\langle x, y\rangle \in Z: a<x<b\}$ is uncountable. If $a \in\left(0, \frac{1}{4}\right)$, then Z^{\prime} must have a limit point on $\left[a, \frac{1}{4}\right] \times\{\alpha\}$ for some limit ordinal α. If not, Z^{\prime} must have a limit point on $\left[\frac{1}{4}, b\right] \times\{\alpha\}$ for some limit ordinal α.
2. $X \cap\left(\left(0, \omega_{1}\right) \times(\beta, \beta+1)\right)$ is uncountable for some $\beta \in \omega_{1}$.

For some $a, b \in(0,1)$, the set $Z^{\prime}=\{\langle x, y\rangle \in X: \beta+a<y<\beta+b\}$ is uncountable. This set has a limit point on $\{\alpha\} \times[\beta+a, \beta+b]$ for some limit ordinal α.
3. $Z \cap(0,1) \times \mathbb{L}^{+}$is countable, and for each $\beta \in \omega_{1}, X \cap\left(\left(0, \omega_{1}\right) \times(\beta, \beta+1)\right)$ is countable. Hence $B=\left\{\beta: Z \cap\left(\left[1, \omega_{1}\right) \times(\beta, \beta+1)\right) \neq \varnothing\right\}$ is uncountable. For each $\beta \in B$, pick one point $\left\langle x_{\beta}, y_{\beta}\right\rangle \in Z \cap\left(\left(0, \omega_{1}\right) \times(\beta, \beta+1)\right)$. Let $Z^{\prime}=\left\{\left\langle x_{\beta}, y_{\beta}\right\rangle: \beta \in B\right\}$. Then for some $a, b \in(0,1), Y=\left\{\left\langle x_{\beta}, y_{\beta}\right\rangle \in\right.$ $\left.Z^{\prime}: \beta+a<y_{\beta}<\beta+b\right\}$ is uncountable. Let $B^{\prime}=\left\{\beta:\left\langle x_{\beta}, y_{\beta}\right\rangle \in Y\right\}$. Note that for each $\alpha \in \omega_{1}$, if $\beta \in \operatorname{dom} A_{\alpha}$ and $x \in(0,1)$, then the first coordinate of $\phi_{\alpha}(\langle\alpha, \beta+x\rangle)$ is a fixed value, call it $x\left(\phi_{\alpha}\right)$, since each point in $\phi_{\alpha}(\{\alpha\} \times(\beta, \beta+1))$ lies on a circular arc through $\left\langle\frac{3}{4}, \beta+\frac{1}{2}\right\rangle,\langle 1, \beta\rangle$ and $\langle 1, \beta+1\rangle$. Now let $\lambda^{\beta}=\min \left\{\alpha:\left\langle x_{\beta}, y_{\beta}\right\rangle \in U_{\alpha}\right\}$ for each $\beta \in B^{\prime}$, and observe that $\sup \left\{\lambda^{\beta}: \beta \in B^{\prime}\right\}=\omega_{1}$. Let $A=\left\{\left\langle\beta, \lambda^{\beta}\right\rangle: \beta \in B^{\prime}\right\}$. Choose α such that $A_{\alpha} \in \mathcal{A}$ and $A_{\alpha} \subset A$. Since for each $\beta \in \operatorname{dom}\left(A_{\alpha}\right),\left\langle x_{\beta}, y_{\beta}\right\rangle \in$ $\left(\left(0, \omega_{1}\right) \times(\beta, \beta+1)\right) \cap U_{\alpha}, 1<x_{\beta}<\alpha_{\beta}<\alpha$ and $\beta+a<y_{\beta}<\beta+b$, if the first coordinate of $\phi_{\alpha}\left(\left\langle x_{\beta}, y_{\beta}\right\rangle\right)$ is x, then $\frac{1}{2}<x<\max \left\{a\left(\phi_{\alpha}\right), b\left(\phi_{\alpha}\right)\right\}$ and hence Z has a limit point on $\left[\frac{1}{2}, m\right] \times\{\alpha\}$, where $m=\max \left\{a\left(\phi_{\alpha}\right), b\left(\phi_{\alpha}\right)\right\}$.

References

[B] M. Brown The Monotone Union of Open n-cells in an Open n-cell, Proc. Amer. Math. Soc., Vol. 12, 812-814, 1961.
[D] Keith J. Devlin Variations on \diamond, J. Symbloic Logic, Vol. 44, no. 1, 51-58, 1979.
[G] Sina Greenwood Constructing Type I nonmetrisable manifolds with given Υ-trees, Topology and its Applications, 123, 2002, 91-101.
[N] Peter Nyikos The Theory of Nonmetrizable Manifolds, in Handbook of Set-theoretic Topology, K. Kunen and Jerry Vaughan, Eds, 1984, 633-684.

[^0]: *University of Auckland, Private Bag 92019, Auckland, New Zealand. Funded by: New Zealand Science and Technology Foundation
 ${ }^{\dagger}$ University of South Carolina, Columbia, SC 29208, USA

