Some useful information:
The Jacobian in spherical coordinates is $\rho^{2} \sin \phi$
$D=\left(f_{x x}\right)\left(f_{y y}\right)-\left(f_{x y}\right)^{2}$
The following does not directly apply to any problem on the test, but it might give a hint on some problems.

$$
d z=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y
$$

Length of curve traced when $a \leq t \leq b: \int_{a}^{b}($ speed at $t) d t$
$\frac{d y}{d x}=-\frac{F_{x}}{F_{y}}$
$\kappa(t)=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}=\frac{\left\|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|^{3}}$
$\int u d v=u v-\int v d u$

