Correction to "Complete normality and metrization theory of manifolds" Peter Nyikos

The claim in this article [1] that the combination of SSA + PFA⁺ is shown in [2, p. 660] to be consistent, modulo large cardinals, is incorrect. Moreover, Paul Larson has shown that the SSA is even incompatible with MA(ω_1), and it is not known whether the weaker Axiom S is compatible with the PFA.

Fortunately, the topological results in [1] are all consistent. In fact, the PFA is already enough to imply every statement derived from the combination of SSA + PFA^+ in the article, and it can also be shown that the large cardinal strength of PFA is not needed. The key to these new discoveries is the following ZFC theorem of [3]:

2.3. Theorem. Let X be a space which is either hereditarily normal (abbreviated T_5) or hereditarily strongly cwH, for which there are a continuous $\pi : X \to \omega_1$ and a stationary subset S of ω_1 such that the fiber $\pi^{\leftarrow} \{\sigma\}$ is countably compact for all $\sigma \in S$. Then X cannot contain an infinite family of disjoint closed countably compact subspaces with uncountable π -images.

This can be combined with the results of [1] in the following way.

1. In [1, Lemma 2.5] $MA(\omega_1)$ is used to show that if M is a hereditarily cwH nonmetrizable manifold, then M is of Type I. That is, M is the union of a strictly ascending ω_1 -sequence of open subspaces $M_{\alpha}(\alpha \in \omega_1)$ such that M_{α} has Lindelöf closure contained in all M_{β} such that $\beta > \alpha$.

2. In [1, Lemma 2.6] it is shown how M_{α} can be chosen so that $M_{\alpha} = \bigcup \{M_{\xi} : \xi < \alpha\}$ whenever α is a limit ordinal, and so that each point of $B_{\alpha} = \overline{M_{\alpha}} \setminus M_{\alpha}$ is contained in a compact, connected, infinite subset K_{α} of B_{α} so long as dim(X) > 1. [Actually, compactness of K_{α} is not needed for the new proof.]

3. The following is implicit in the proof of Lemma 2.7 in [1]:

Lemma A. If CC_{22} holds and M is a locally compact space in which every countable subset has Lindelöf closure, and S is a stationary subset of ω_1 and $\{x_{\alpha} : \alpha \in S\}$ is a subset of M, then there is a stationary subset E of S such that either:

- (1) $\{x_{\alpha} : \alpha \in E\}$ is a closed discrete subspace of M, or
- (2) every countable subset of $\{x_{\alpha} : \alpha \in E\}$ has compact closure in M.

This is used in the proof of [1, Theorem 2.7], along with the axiom (which follows from the PFA, see [4, Corollary 6.6]) that every 1st countable perfect preimage of ω_1 contains a copy of ω_1 . These axioms are used there to produce a copy W of ω_1 in any hereditarily cwH nonmetrizable Type I manifold M. For any such copy $W = \{p_{\alpha} : \alpha \in \omega_1\}$ the following set is a club: $C_W = \{\alpha : p_{\alpha} \in B_{\alpha}\}$. Again using CC_{22} , a stationary subset S_1 of C_W is produced along with points $\{q_{\alpha} : \alpha \in S_1\}$, such that such that $F_1 = c\ell\{q_{\alpha} : \alpha \in S_1\}$ is disjoint from W and countably compact and hence closed in M, and such that both p_{α} and q_{α} are contained in a connected subset K_{α} of B_{α} for all $\alpha \in S_1$. 4. Also in the proof of [1, Theorem 2.7], assuming also the normality of M, a continuous real-valued function f from M to [0, 1] is constructed which is 0 on W and 1 on F_1 . Since K_{α} is connected and meets both W and F_1 whenever $\alpha \in S_1$, this function f takes on all intermediate values on K_{α} .

In [1] it was shown that CC_{22} follows from PFA⁺, but it can be derived just from the PFA, as explained in [3]. Also in [1], PFA⁺ was mis-stated. Correct statements can be found in [2] and [5].

Now comes the new proof of the main theorem of [1], with altered set-theoretic hypothesis:

Main Theorem. [PFA] Every T_5 , hereditarily cwH manifold of dimension greater than 1 is metrizable.

From each $K_{\alpha}(\alpha \in S_1)$ pick a point x_{α} so that $f(x_{\alpha})$ is different from all $f(x_{\beta})$, $\beta < \alpha$. Use the fact that M is cwH and the Pressing-Down Lemma to eliminate alternative (1) of Lemma A as in the proof of Theorem 2.7 of [1]. Alternative (2) then gives a stationary subset S of S_1 such that every countable subset of $\{x_{\alpha} : \alpha \in S\}$ has compact closure in M. In particular, the closure X of $\{x_{\alpha} : \alpha \in S\}$ in M is countably compact and so is $X \cap B_{\alpha}$ for all $\alpha \in \omega_1$.

Claim. The map $\pi: X \to \omega_1$ which takes $X \cap B_{\alpha}$ to α is continuous.

Once the claim is proven, we get a contradiction to Theorem 2.3 above as follows. The image under f of $\{x_{\alpha} : \alpha \in S\}$ is an uncountable subset of [0, 1], hence it has **c**-many condensation points. For each condensation point p and each countable ordinal α_0 , there is a strictly ascending sequence of ordinals $\langle \alpha_n : n \in \omega \rangle$ and points $x_{\alpha_n} \in K_{\alpha_n}$ for n > 0 such that $|p - f(x_{\alpha_n})| < \frac{1}{n}$.

Let $\alpha = \sup\{\alpha_n : n \in \omega\}$. Since X is countably compact, there is a point of $X \cap B_{\alpha}$ which is sent to p by f. Thus the sets $X \cap f^{-1}\{p\}$ are a family of \mathfrak{c} -many disjoint closed countably compact sets with uncountable π -range.

 \vdash Proof of Claim. If C is any closed subset of ω_1 , then $Y_C = \bigcup \{B_\gamma : \gamma \in C\}$ is closed in M because $M \setminus Y_C$ falls apart into the open sets $M_\gamma \setminus \overline{M_\delta}$ where δ and γ are successive members of C. We then get a natural map $\pi^* : Y_C \to \omega_1$ taking each B_γ to γ . This map is continuous because the preimage of each closed set is closed. If C is the closure of S in ω_1 , then the map π of the Claim is the restriction of π^* to X. \dashv

The foregoing proof allows us to slightly weaken the hypotheses on M in the main theorem: it is enough for M to be normal and hereditarily strongly cwH. [Recall that a space is termed *strongly cwH* if every closed discrete subspace D expands to a discrete collection of open sets U_d such that $U_d \cap D = \{d\}$ for all $d \in D$.] This is a weakening of hypotheses because every normal, cwH space is strongly cwH. It is an open problem whether normality can be dropped from this weakening. In [3] it is proven that it can be dropped under PFA + Axiom F, but it is not known whether this combination of axioms is consistent, even modulo large cardinals.

REFERENCES

[1] P. Nyikos, "Complete normality and metrization theory of manifolds," Top. Appl. 123 (1) (2002) 181–192.

[2] S. Shelah, *Proper and Improper Forcing*, Perspectives in Mathematical Logic, Springer-Verlag, 1998.

[3] P. Nyikos, "Applications of some strong set-theoretic axioms to locally compact T_5 and hereditarily scwH spaces," Fund. Math. (2003).

[4] A. Dow, "Set theory in topology," in: *Recent Progress in General Topology*, M. Hušek and J. van Mill, eds., Elsevier, 1992, 167–197.