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Abstract. The general question, “When is the product of Fréchet spaces Fréchet?”
really depends on the questions of when a product of α4 Fréchet spaces (also known as

strongly Fréchet or countably bisequential spaces) is α4, and when it is Fréchet. Two
subclasses of the class of strongly Fréchet spaces shed much light on these questions.
These are the class of α3 Fréchet spaces and its subclass of ℵ0-bisequential spaces.

The latter is closed under countable products, the former not even under finite prod-
ucts. A number of fundamental results and open problems are recalled, some further
highlighting the difference between being α3 and Fréchet and being ℵ0-bisequential.

This paper is a slightly updated note for the first of two lectures presented by
the author in his Workshop on Sequential Convergence at the ten-day Advances
in Set-Theoretic Topology conference in Erice. Erice is a remarkable mountaintop
town with a medieval feel to it, overlooking the northwestern tip of Sicily, and the
author is grateful for the invitation to this unique conference.

Recall that a space is called Fréchet (or: Fréchet-Urysohn) if, whenever a
point p is in the closure of a subset A, there is a sequence in A converging to p.

In this paper, “space” will mean “Hausdorff space,” although much of what we
say holds for topological spaces in general.

This paper revolves around the following general problem, to which Tsugunori
Nogura has made many basic contributions.

General Problem. When is the product of Fréchet spaces Fréchet?

1. Fundamental problems and theorems

The following space is very relevant to this general problem.
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Example 1. The Fréchet fan, here denoted Fω, is the quotient of the space
ω × (ω + 1) obtained by identifying all the nonisolated points to a single point p.
Then the image of each copy {n} × ω converges on p, and a subset has p in the
closure if, and only if, it meets one of these images in an infinite set. A useful
feature of Fω is that it is homeomorphic to every subspace that contains p and
meets infinitely many of these images in an infinite set.

Remark. In many papers, Fω is denoted Sω, but that symbol has also been used
for a certain non-Fréchet sequential space.

It is easy to see that Fω is Fréchet, yet its product with any nondiscrete Fréchet
space fails to be Fréchet [M]! So we need some extra properties to get anywhere
with the General Problem. Perhaps the most widely researched ones are the αi-
properties.

Definition 1. Let i ∈ {1, 1.5, 2, 3, 4}. A point p in a space X is an αi-point if for
each family {σi : i ∈ ω} of sequences with disjoint ranges converging to p, there is
a sequence σ → p such that:

α1: ran(σi) ⊂
∗ ran(σ) for all i; [A ⊂∗ B means A \ B is finite.]

α1.5: ran(σi) ⊂
∗ ran(σ) for infinitely many i;

α2: ran(σi) ∩ ran(σ) is infinite (equivalently, nonempty) for all i;

α3: ran(σi) ∩ ran(σ) is infinite for infinitely many i;

α4: ran(σi) ∩ ran(σ) is nonempty for infinitely many i.

A space is an αi-space if every point is an αi-point.

First countable spaces and the one-point compactifications of discrete spaces are
easy examples of α1 Fréchet spaces.

Lemma 1. [Sw] [Ta] A space [resp. regular space] is α4 if, and only if, it does not
contain a copy [resp. a closed copy] of Fω.

Corollary 1. If a product of two nondiscrete Fréchet spaces is Fréchet, then both
are α4.

Theorem 1. [N2] The product of countably many αi-spaces is αi for i ∈ {1, 2, 3}.

In contrast, the general problem of when the product of α4 spaces is α4 is almost
as intractable as the General Problem of this lecture. Example 2 below features a
pair of compact Fréchet counterexamples which involve the following concepts:

Definition 2. An AD family on ω is a collection of infinite subsets of ω such
that the intersection of any two is finite. An AD family is called MAD if it is an
infinite maximal AD family. Maximality of A means that every infinite subset of ω
meets some member of A in an infinite set.

[Some authors omit the first and/or second “infinite,” making the names true
acronyms, but the usage adopted here saves space later on.]
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Given an AD family A on ω, the space Ψ(A) is the locally compact space whose
underlying set is the union of ω with a set of added points pA (A ∈ A) and where
points of ω are isolated, while a neighborhood of pA is any subset of Ψ(A) which
contains pA and all but finitely many points of A. Let Ψ∗(A) denote the one-point
compactification of Ψ(A).

Example 2. Simon [S1] showed that there is a MAD family M on ω which is the
union of two subcollections A0 and A1 neither of which traces a MAD family on any
subset of ω. As a result, both Ψ∗(Ai) are Fréchet but their product is not Fréchet.

Nogura [N2] deleted denumerably many members of M and showed that the
resulting Ψ∗(A′

i) do not have α4 (nor Fréchet) product.

Remarkably enough, the following question was not fully answered until this year.

Question 1. Is there a ZFC example of a pair of α4 Fréchet spaces, neither of
which is α3, whose product is Fréchet?

A CH example was provided back in 1987 by Nogura [N3]; see Example 4 below.
The ZFC answer by Petr Simon [who was apparently unaware of Nogura’s CH
solution], appears in [S3] and takes the form of a single space with the property
that all of its finite powers are Fréchet (and hence also α4, see Corollary 1).

Turning now to positive results, Arhangel’skĭı showed:

Theorem 2. [A] If X is an α3 Fréchet space, then X × Y is Fréchet for every
regular countably compact Fréchet space.

Problem 1. Is the converse true? No if CH: Nogura [N3].

We will return to this problem later. Here is an immediate consequence of Corol-
lary 1 and Theorem 2:

Corollary 2. Every regular, countably compact Fréchet space is α4.

Theorem 3. [N2] If Y is a countably compact regular space and X ×Y is Fréchet,
then X × Y is also α4.

Nogura also showed:

Theorem 4. [N2] The class of countably compact regular αi Fréchet spaces is
countably productive for i ∈ {1, 2, 3}.

Another countably productive class of α3 Fréchet spaces is the class of ℵ0-
bisequential spaces.
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Definition 3. A space X is bisequential if, whenever U is an ultrafilter converging
to p ∈ X, there is a countable filterbase F ⊂ U which also converges to p.

A space X is ℵ0-bisequential if every countable subset of X is bisequential and,
for some (equivalently, every) compactitification bX of X, if x ∈ X and x ∈ clbXC
and

C ⊂
⋃

{clbXB : B ⊂ X, |B| ≤ ℵ0}

then there exists a countable subset D of C such that x ∈ clbXD.

In particular, a compact space is ℵ0-bisequential iff it is Fréchet and every count-
able subset is bisequential. Also [A] a separable space is ℵ0-bisequential iff it is
bisequential.

Theorem 5. [A] The class of ℵ0-bisequential spaces is closed under countable prod-
ucts, and the product of an ℵ0-bisequential space and an α4 Fréchet space is both
α4 and Fréchet.

The resemblance between Theorem 5 on the one hand, and Theorems 2 and 4
on the other hand may not be completely accidental:

Problem 2. Is every compact [resp. countably compact regular] α3 Fréchet space
ℵ0-bisequential?

I am even unaware of any consistent counterexamples, although Example 5 below
holds out hope (see Problem 4 at the end). The class of ℵ0-bisequential spaces
is hereditary, so a Yes answer to Problem 2 would give a proper containment. A
negative answer to Problem 2 would give an affirmative one to the following problem,
in view of Theorem 4:

Problem 1+. Is there a ZFC example of a space X that has Fréchet product with
every regular countably compact Fréchet space, but is not ℵ0-bisequential?

In [JM], Jordan and Mynard characterized those Fréchet spaces whose product
with every α4 Fréchet space is Fréchet. Naturally enough, they called these spaces
productively Fréchet. By Theorem 5, ℵ0-bisequential spaces are productively
Fréchet. Is it consistent that the converse holds? To put it another way:

Problem 3. Is there a ZFC example of a space that is productively Fréchet, but is
(a) not α3? (b) not ℵ0-bisequential?

Example 5 below is a consistent example for part (a). A ZFC example for Prob-
lem 3(b) would also be one for Problem 1+, by Corollary 2.

Theorem 6. [JM] If X is productively Fréchet, then X × Y is also α4 for every
α4 Fréchet space Y .

Theorems 3, 5, and 6 suggest the following question, already asked by Nogura in
[N2].
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Question 2. If the product of two nondiscrete spaces is Fréchet, must it also be
α4? [By Corollary 1, the factors themselves are α4.]

This turns out to be ZFC-independent. On the one hand, Petr Simon showed
[S2] that CH implies that the answer is negative; on the other hand, Todorčević
showed [T] that the answer is affirmative under the Open Coloring Axiom (OCA).

Nogura also asked the “dual” to Question 2 in [N2]:

Question 3. If the product of two Fréchet spaces is α4, must it be Fréchet?

Fifteen years later, a ZFC counterexample was found by Costantini and Simon
[CS]. Earlier, Costantini constructed an example assuming MA [C].

2. Applications of N
∗ and examples

Many counterexamples in the theory of Fréchet spaces are denumerable sets with
a single nonisolated point. After all, if a space X fails to be Fréchet or αi, there
is a subspace of this form where the property also fails. We adopt the notation
X = N ∪ {∞X} (or N ∪ {∞}) for these spaces.

The topology of the Stone-Čech remainder N
∗ sheds a great deal of light on these

spaces. Recall that if A ⊂ N, then the remainder A∗ = cℓβNA \A is a clopen subset
of N

∗, and every clopen subset of N
∗ is of this form. If F is the neighborhood filter

of ∞ then the closed subset F∗ =
⋂
{F ∗ : F ∈ F} of ω∗ determines F and vice

versa. Thus we also use the notation N ∪ {F∗} for N ∪ {∞}. This is motivated by
the fact that N∪{∞} is the quotient space of N∪F∗ obtained by identifying F∗ to
a single point.

Here are some key facts about this relationship.

Fact 1. If A,B ⊂ N, then A∗ ⊂ B∗ iff A ⊂∗ B, where A ⊂∗ B means A \ B is
finite. Hence A∗ ∩ B∗ = ∅ if and only if A ∩ B is finite.

Fact 2. A sequence σ in N converges to ∞ iff σ∗ ⊂ F∗. [I use σ∗ as shorthand for
(ranσ)∗.] Also, σ clusters at ∞ iff σ∗ meets F∗.

A consequence is Malyhin’s 1972 observation:

Fact 3. N ∪ {F∗} is Fréchet iff F∗ is regular closed.

Fact 4. N∪ {F∗} is a copy of Fω iff F∗ is the closure of a non-clopen cozero set of
N

∗.

Fact 5. [N2] The subspace ∆ ∪ {(∞X ,∞Y )} of the product of X = N ∪ F∗ and
Y = N ∪ G∗ is homeomorphic to N ∪ {F∗ ∩ G∗}. [Here ∆ denotes {(n, n) : n ∈ N}.]

Now, the intersection of two regular closed sets does not have to be regular closed;
so Fact 5 has been used to concoct many pairs of Fréchet spaces whose product is
not Fréchet. One of the first was:
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Example 3. [O] An (ω1, ω1)-gap in N is a pair (A,B) of ω1-sequences of subsets
of N such that

(1) Aη ⊂∗ Aξ and Bη ⊂∗ Bξ whenever η < ξ and

(2) Aα ∩ Bβ is finite for all α, β < ω1 and

(3) if Aα ⊂∗ A for all α then A ∩ Bβ is infinite for some (equivalently, cofinally
many) β.

Now, if A is a ⊂∗-ascending ω1-sequence of subsets of N, then A∗ =
⋃
{A∗

α : α ∈
ω1} is what I call a ω1-oval: a union of a chain of clopen subsets of N of cofinality
ω1. And if (A,B) is an (ω1, ω1)-gap, then A∗ and B∗ are disjoint open sets whose
closures meet. Indeed, every ultrafilter extending the (proper) filterbase

S = {L \ M : ∀α ∈ ω1(Aα ⊂∗ L ∧ |Bα ∩ M | < ω)}

is in cℓN∗A
∗ ∩ cℓN∗B

∗. (Conversely, if (A,B) is a pair of ⊂∗-ascending ω1-sequences
of subsets of N such that A∗ and B∗ are disjoint open sets whose closures meet, then
(A,B) must also satisfy conitions (2) and (3) above, and hence is an (ω1, ω1)-gap.)

On the other hand, the closures of A∗ and B∗ (which are regular closed by
definition) meet only on their boundaries, hence their intersection is not regular
closed — in fact, it is nowhere dense. So by Fact 5, the product of the Fréchet
spaces X = N ∪ {cℓN∗A

∗} and Y = N ∪ {cℓN∗B
∗} is not Fréchet.

Nevertheless, both X and Y are α2, simply because both F∗ and G∗ are the
closures of ω1-ovals. Indeed, if σn converges to ∞X for each n, then σ∗

n meets A∗

and hence some A∗
αn

; so if β = supn(αn) and σ lists Aβ then the range of each σn

has an infinite intersection with the range of σ.

I like to call the following example “Nogura’s Lakes of Wada,” after the 1917 ex-
ample of Kunizo Yoneyama, attributed to his teacher Takeo Wada, of three regions
(“lakes”) in the plane which share a common boundary.

Example 4. Nogura [N2], using CH, designed a pair of disjoint ω1-ovals U and V
in N

∗ whose closures meet as in Example 3, with the additional properties that

(4) N
∗ \ (U ∪ V ) is the closure of a cozero set C and

(5) Fr(U) = Fr(V ) = Fr(C) [Fr stands for frontier, or boundary].

It follows that U ∪ C = U ∪ C and V ∪ C = V ∪ C. Thus U ∪ C ∩ V ∪ C = C
and so N∪{C} is a copy of Fω. Hence, by Lemma 1 and Fact 5, if X = N∪{U ∪ C}
and Y = N ∪ {V ∪ C} then X × Y is not α4.

On the other hand, (5) guarantees [N2] [N3] that X and Y are both α4, and
both are Fréchet by Fact 2. By Theorem 1, they cannot both be α3, and Nogura
showed [N3, in effect] that neither is α3. Nogura did not know whether X × Y is
Fréchet but he did show that X ×K is Fréchet for every countably compact regular
Fréchet space K [N3]. Thus if Z is one of Petr Simon’s factor spaces in Example 2,
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then X ×Z is Fréchet but neither factor is α3. This shows that CH gives consistent
negative answers to Question 1 and Problem 1, and accounts for the “ZFC” in
Problem 1+. Here is a more perspicaceous variation on Problem 1:

Problem 1′. Characterize those Fréchet spaces X whose product with every regular
countably compact (or compact) Fréchet space is Fréchet. α3 is sufficient for X, by
Theorem 2; is it consistent that it is necessary?

If we weaken “regular countably compact” to “α4” then α3 is no longer sufficient
for X. Example 3 even gave an α2 Fréchet space that is not productively Fréchet.
On the other hand, the following example shows that even here, it is consistent that
α3 is not necessary either.

Notation. If f and g are functions from ω to ω, we write f <∗ g to mean that the
graph of g is eventually above the graph of f ; in other words, f(n) < g(n) for all
but finitely many n ∈ ω.

Example 5. Let 〈fα : α < b〉 be a <∗-unbounded, <∗-well-ordered family of
increasing functions from ω to ω. Let X = Ψ(ω × ω,A) where now ω × ω is the
dense set of isolated points and Aα is the graph of fα and A = {Aα : α < b}.

Then X + ∞, the one-point compactification of X, is Fréchet [Ny], and in fact,
productively Fréchet [JM]. But it is consistent that it not be α3. The columns
converge to the extra point ∞, and if we list all subsets of ω×ω that meet infinitely
many columns in an infinite set as {Sα : α < c}, then the axiom b = c lets us define
fα so that its graph meets Sα in an infinite set. Thus no sequence with range Sα

can converge to ∞, because {∞} ∪ (X \ Aα) is a neighborhood of ∞ missing an
infinite subset of Sα. Hence if b = c then X can be constructed so as not to be α3.

A similar argument works in the following setting. In any model V [G] constructed
by iterated ccc forcing, Cohen reals are added at limit stages. So if such a forcing
is of cofinality bV [G], we can look at the final model, and define fα by induction at
limit α so that its graph is not only eventually above the graph of every fβ such
that β < α, but also has infinite intersection with every set in V [Gβ ] that meets
infinitely many columns in an infinite set. Since every countable subset of ω × ω in
V [G] occurs in some initial model, the same argument as with b = c shows that X
is not α3.

In contrast, Michael Hrušak has shown that it is consistent for Example 5 to be
bisequential no matter how the family of fαs is defined. We also have:

Theorem 7. There is a ZFC version of Example 5 that is bisequential.

Proof. We do the construction so that X \ {∞} has a coarser separable metrizable
topology. There are standard arguments that this implies X is bisequential, but we
will give a direct proof of bisequentiality below.
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Make fα(n) be squarefree and have exactly n+1 prime divisors, and have fα(n)
divide fα(n + 1) for all α and n, with the quotient being a bigger prime than any
that divide fα(n).

This works! Let Pk be the partition of ω × ω in which the first member is all
points whose 2nd coordinate is 0 or 1, whose second member is all points whose
2nd coordinate has fewer than k prime divisors (counting repetitions), and whose
j + 2nd member is those (x, y) such that y has the jth prime as its kth smallest
prime divisor (again counting repetitions). Note that the graph of every fα is almost
contained in exactly one member of each partition. Also, if α 6= β then there is
k such that fα and fβ (or, more precisely, their graphs Aα and Aβ) are almost
contained in different members of Pk.

Now if we let Q be the collection of all partitions of ω × ω into finitely many
pieces, all but one of which is a singleton, then Q ∪ {Pk : κ ∈ ω} is a countable
subbase for a separated uniformity on ω×ω which extends to a countable subbase R

for a uniformity on X \ {∞} in the natural way: by the arguments in the preceding
paragraph, the closures of the members of each partition are disjoint, and their
union covers X \ {∞}. This gives the coarser metrizable uniformity mentioned
above, but we will not need this information below.

Let U be an ultrafilter on X. If U is fixed on some point x then letting {{x}} = F
in the definition of “bisequential” obviously works for U . Otherwise, U “lives” on
X \ {∞} and contains every cofinite subset of X.

Next assume ω × ω /∈ U ; in other words, U is a free ultrafilter which “lives” on
the set M = {Aα : α ∈ b} and thus converges to ∞. Let us associate to every
ϕ ∈ <ω2 a subset Mϕ of M in such a way that:

(1) M∅ = M and, for every n ∈ ω, {Mϕ : ϕ ∈ n2} is a (faithfully indexed)
partition of M ;

(2) If ψ extends ϕ then Mψ ⊂ Mϕ;
(3) ∀f ∈ n2 |

⋂
n∈ω Mf↾n| ≤ 1.

(Clearly, such an association does exist for every set M of cardinality no greater
than c.) Then, since U is an ultrafilter, there is a unique g ∈ n2 such that for every
n ∈ ω, Mg↾n is the unique element of {Mϕ : ϕ ∈ n2 which belongs to U .

Notice that, by (3), the set L =
⋂

n∈ω Mg↾n contains at most one element; and,
since U is free, M \ L ∈ U . It follows that {Mg↾n \ L : n ∈ ω} is a countable
filterbase included in U which converges to ∞. Specifically, if V = {∞} ∪ (M \ F )
is a neighborhood of ∞ in M ∪ {∞}, then F is finite and so Mg↾n \ L ⊂ F for
sufficiently large n.

Finally, if ω × ω ∈ U , then either each Pk contains exactly one member that
belongs to U , or else there exists n such that U contains the complement of each
member of Pn. In either case, there is a descending ω-sequence of members of U
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such that there is at most one fα whose graph is not almost disjoint from all but
finitely many members of the sequence. If there is no such fα, the filter whose base
is the descending sequence and all cofinite members thereof converges to ∞. If there
is one, the ultrafilter either includes the graph of fα, in which case it converges to
pfα

and so does the trace of the descending sequence on the graph of fα, or else we
can subtract off the graph and proceed as in the case where there is none. ¤

Problem 4. Is it consistent for there to be a version of Example 5 that is α3

without being bisequential (equivalently, ℵ0-bisequential)?

Acknowledgement. The author wishes to thank the referee for many helpful
suggestions, particularly for making the proof of Theorem 7 more detailed.
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Math. Univ. Carolinae 21, no. 4 (1980) 749–753.



10 PETER J. NYIKOS

[S2] , “A hedgehog in a product,” Acta Univ. Carolin. Math. Phys. 39, no.
1-2, (1998) 147–153.
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