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e-13 Generalized Metric Spaceslll: Linearly
Stratifiable Spaces and Analogous Classes of
Spaces

This article is concerned with generalizations of concepts obvious definitions. The key theorem that a space is strat-
like stratifiability and metrizability to arbitrary infinite car- ifiable iff it is semistratifiable and monotone normal gener-
dinalities, in a way that uses linear orders in key places. This alizes easily to arbitrarg,,. Condition (4) is unnecessary in
has resulted in theories which are remarkably faithful gen- the casev,, = w butitis needed to make the theories of strat-
eralizations of the theories of stratifiable, metrizable, etc. ifiable and semistratifiable spaces generalize to higher car-
spaces. For metrizable spaces, the generalization is to thelinals. Similar additions make it possible to generalize two
class of Tychonoff) spaces admitting separated uniformi- characterizations of (semi-)stratifiable spaces and to make
ties with totally ordered bases; this class is usually referred them coincide. One is a pair of Heath—Hodel style character-
to as the class ab,-metrizable spaces of arbitrary cardi- izationsin P7] and [17] with their addition of condition (b),
nality w,,, but the term “linearly uniformizable spaces” will ~Which is unnecessary in casg, = »: A Ti-space(X, )
be mOSﬂy used here, under the convention that “Spaces”is stratifiable Oove,, if, and Only if, there exists a famlly
refers toHausdorff spaces. The class of linearly stratifi- {gp: B < w,} of functions with domairnX and ranger such
able spaces is a simultaneous generalization of linearly uni-the following hold:
formizable spaces and of stratifiable spaces, and most of theg) y ¢ gp(x) forall B < wy;
theory of stratifiable spaces carries over, including the basic b) if g <y < w,, thengg(x) D g, (x) for all x;
covering and separation propertiespaf acompactness and (c) if, for every B < w,, x € gp(xp), then the net(xs:
monotone normality. There are generalizations, along the B < w,) coverges tor; and
same lines, ob -spaces and semistratifiable spaces, as well (d) for every F c X, if y € ct(Ulgp: x € F}) for all
as classes in between the linearly uniformizable spaces and g < wy, theny € cl(F).
linearly stratifiable spaces, generalizihfy spaces and Na-
gata spaces. Other generalizations, such as the aneasit
metrizable spaces (quasi-metrics are defined like metrics
but without symmetry of the distance function), are less well
developed in the literature, and will only be touched on here.
The usual definition of linear stratifiability is based on the
definition of stratifiable spaces that says they are monotoni-
cally perfectly normal, so to speak; this definition is the case
wy, = w of the definition ofw,, -stratifiable spaces, whesg,
is an infinite cardinal number. A spac&, ) is said to be
stratifiable over w,, if it is a T1 space for which there is a
mapsS:w, x T — 7, called anw,-stratification which sat-
isfies the following conditions.

If condition (d) is omitted, we get a condition equivalent to
being semistratifiable oves, .

In [27] there is also a definition of a linearly cushioned
pair-base that generalizes that obacushioned pair-base
used in definingMs spaces; moreover, the proof that the
M3 concept coincides with stratifiability generalizes #7]
to this more general setting. A collectidn of pairs P =
(P1, P2) of subsets of a spadgX, r) is said to be gair-
base if the members of each pair are open and, for each
point x of X and each neighbourhodd of x, there is a
pair (P1, P2) € P such thatr € P andP, C U. A collection
C of subsets of a spac¥ is linearly closure-preserving
with respect to < if < is a linear order orC such that

(1) c£(S(B,U)) C U forall B <w, andallU €. U{clC: C €'} = cL(|JC") for any subcollection of”  C
(2) UIS(B.U): B<wu}=Uforall U er. which has an upper bound w.r£. A collection of pairs
(3) fUcCw, thenS(ﬁ, U)C S(,B, W) for all ,3 <wy. P = (P, Pz) is ||nea.r|y cushioned with respect to a lin-
(4) If y < B <y, thenS(y,U) C S(B,U) forall U e . earorders if ct(U{Py: P = (P1, P2) € P'}) C U(P2: P =

(P1, Po) € P’} for every subsef’ of P which has an up-
X is calledw,-stratifiable if w, is the least cardinal for per bound with respect tg. Hence in particularC is lin-
which X is stratifiable over,,. A space idinearly strati- early closure-preserving w.r& if {(C,C): C € C} is lin-
fiableif it is w, -stratifiable for some infinite,,, andstrat- early cushioned with respect £0. A regular spac« is said
ifiable if it is w-stratifiable. Anw-stratification is called a  to be M; over w, (respectivelyMs over w,) (respectively
gtratification. If condition (1) is omitted, we get the def- M3 over w,,) if X has a linearly closure-preserving base (re-
inition of an w,-semistratification. The termssemistrat- spectively a linearly closure-preserviggasi-base) (respec-
ifiable over w,, w,-semistratifiable, linearly semistrat- tively a linearly cushioned pair-base) with a cofinal set of
ifiable, semistratifiable, and semistratification have the order typew,,. X islinearly M; ifitis M; overw, for some
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infinite cardinak,, . An w,-M; space is defined analogously
to anw,, -stratifiable space.

are alsow,-stratifiable, as are box products of fewer than
w,, of them. Both of these results are generalized by the fact

Clearly, these concepts are numbered in order of increas-that if w,, is regular, then the,-box product ofw,, or fewer

ing generality. More general yet is the concept of having a
linearly closure-preserving network of cofinality,, con-
sisting of closed sets. lio, = w this gives us the famil-
iar class ofo-spaces. Harrisl[l], generalizing the Nagata—
Siwiec theorem fotv,, = w, showed that these spaces have
a network that is the union &f w,, discrete collections. The
converse is true if the space ds,-additive, meaning that
the union of strictly fewer tham,, closed sets is closed:
this implies that the union of fewer than, discrete col-
lections is discrete, hence every union@f discrete col-
lections is linearly closure-preserving with respect to a lin-
ear order of cofinality ¢iv,). The Heath—Hodel theorem
that every stratifiable space iscaspace [3] generalizes

to the theorem that every,, -stratifiable space has a net-
work which is the union oK w, discrete collections, and
a linearly closure-preserving network7q. The theorem that
o-spaces are semistratifiable generalizes to the theorem th
a space with a linearly closure-preserving network is lin-
early semistratifiablel[1]. In fact, having a linearly closure-
preserving network of cofinality, consisting of closed sets
is equivalent to having a Heath—Hodel functigisatisfying
(@), (b), and (c) above along with the following condition
(e): if y € gg(x) thengg(y) C gg(x). For (c) it is possi-
ble to substitute the stronger+¢: if, for every 8 < w,,

x € gg(yp) and yg € gg(xp), then the netlxg: B < wy)
converges tor [11]. Another generalization, that aflas-

tic spaces, relaxes the linear order requirement to that of a
preorder, but otherwise keeps the pair-base definition of lin-
early M3 with the formal restriction that the pair-base is a

function; that is, each subset of the space appears as the fir{
element in at most one pair. M. Jeanne Harris showed that,

this restriction is a mere formality inll] and [L2]: every

space with a linearly cushioned pair-base has one which is a

function.

wy,-Stratifiable spaces s, -stratifiable: thev, -box product
is defined like the box product except that one restricts fewer
thanw,,-many coordinates3]. (The restriction on agreement
in w, is important:w + 1 and the one-point Lindeldfiza-
tion of a discrete space of cardinality constitute a pair of
spaces, one stratifiable and the otherstratifiable, whose
product is not linearly stratifiable — it is not even hereditar-
ily normal.) If a spaceX is dominated by a collection of
closed subsets, each of which is stratifiable ewgrthenXx
is stratifiable ovew,. If X andY are stratifiable ovew,
and A is a closed subset of and f: A — Y is continu-
ous, thenX Ur Y (the adjunction space) is stratifiable over
wy [27].

The celebrated Gruenhage—Junnila theorem thadzall
spaces aréf, has been generalized within the classwgf
additive spaces (also known a#,,, -spaces); that is, spaces

3 which the intersection of strictly fewer thas), open sets

is open. The theorem is that evePy,, space which isv,, -
M3 is alsow,,-M>. The problem of whether th&,,, con-
dition can be dropped is still open. The notorious problem
of whether all three classes are the same also generalizes to
linearly M; spaces; in fact, it is open for all infinite cardi-
nalitiesw,,, even forP,,, -spaces. Moreover, where uncount-
ablew,, are concerned, we even have a fourth class, the class
of spacesMg overw,, to add to this coincidence problem.
Spaces that ar®fp overw,, are defined like spacedg; over
w,, but with “open” replaced by “clopen”. That is, a space is
Mo over w,, if it is a regular space with a linearly closure-
reserving basB of clopen sets, where the linear order/®n
as cofinalityw,,. As might be expectedinearly Mp” and
w,-Mqo" are defined analogously to the same concepts for
higher subscripts.

A big advantage of linearlyMp-spaces over the more

Linearly stratifiable spaces enjoy many of the nice prop- general linearlyM;-spaces is that they are easily seen to

erties of the subclass of stratifiable spaces; for example, the
aremonotonically normal and (hereditarilyparacompact.
There is a subtle hole in the proof of the latter fact 2@][
and R7], which is repaired by Harris’s theorem. It is also
possible to show, more simply, that every open cover in a

>):Je hereditary; their perfect images are lineady [11],

but not necessarily linearlyfp, at least not when the do-
main is simply Mo: the closed unit interval is a nobf
perfect image of the Cantor set, which is cleaMyp, as
is any strongly zero-dimensional metrizable space. The

linearly stratifiable space has an open refinement which is Strongly zero-dimensional spaces can be characterized as

linearly cushioned in it8]. This refinement condition is

those Tychonoff spaces in which disjoint zero sets can be

equivalent to paracompactness, and “linearly cushioned” canPut into disjoint clopen sets5[ 16.17, [E, 6.2.4] or those

be weakened to “elastic’2f]. Linearly stratifiable spaces

which have totally disconnected Storzeeh compactifi-

have most of the nice preservation properties possessed bgations [E, 6.2.12]. Allw,-Mo-spaces are strongly zero-
stratifiable spaces. For example, the class is closed under th&limensional, even in the casg, = w [14]. Also, every Ty-
taking of subspaces and closed images, and finite unions ofchonoff space which is &-space [that is, a P, -space] is
closed subspaces. This also applies to the class of linearlystrongly zero-dimensional; indeed, every zero set is clopen

Mj-spaces. The best known of the (much weaker) known
preservation properties @ff; spaces also carries over: ff
is a closed irreducible continuous map from a spacnat
is M1 overw,, onto a spac& such that for every € 7,
Ly is wy-compact, thert is linearly My [11]. Finite
products of spaces that agg, -stratifiable over the sams,,

in such spaces since it is@s-set. Remarkably enough, it
is not known whether every strongly zero-dimensiangt
stratifiable space i&,-Mo, whatever the value ab,,; nor
whether everyw,, -stratifiable space (or every space strat-
ifiable overw,) is strongly zero-dimensional when,, is
uncountable. Since stratifiability ovey, is preserved on
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collapsing a closed set to a point, the latter problem is equiv- exists a totally ordered neighbourhood baseXlfis -
alent to whether alb,, -stratifiable spaces (or all spaces strat- Nagata over an uncountable regutay, then X a P, -

ifiable overw,,) arezero-dimensional, i.e., have a base con-
sisting sets that are both open and closed.

Various well-known equivalences of tti,- M1 problem
also carry over, some with the additionaf -additivity. Two
generalizations by HarrisLl] of a well-known theorem of
Heath and Junnilall] account for several of them, includ-

space and hence is strongly zero-dimensional. As is well
known, a spac& satisfies dinaX) = 0 iff X is normal and
strongly zero-dimensional, and is ultraparacompact iff

it is paracompact and strongly zero-dimensional. Since lin-
early stratifiable spaces are paracompact and hence normal,
the w, -Nagata spaces have both of these other properties if

ing the problems of whether every closed subspace, or everyw, is uncountable. (And so too, of course, do all linearly

closed image of anv; space isMj;. One generalization
says that every linearlyf>-space is the image of a linearly
M;-space under a retraction. The other says thaj ifs reg-
ular, and if theP,,, -spaceX is stratifiable overw,,, thenX

Mo spaces and all linearly stratifiable P-spaces.) This gives
the theory of these kinds of linearly Nagata a different flavor
from that of Nagata spaces (the countable egse- ).

An easy example of a space that\y over a regular car-

is the image of a linearly/; space under a closed retraction dinalw, and iso-Mo at the same time is obtained by isolat-
with w,,-compact fibers. Some quite general classes of lin- INg all butthe last point oi,, + 1, taking the product of the

early stratifiable spaces are lineaM. For instance, it
is a regular cardinal and is anw,,-stratifiable P, -space
in which every closed subset d&f has a linearly closure-
preserving neighbourhood base of open sets in whijclis
cofinal, thenX is linearly M; [11]. The condition thatX is

wy,-stratifiable can be formally relaxed to the condition that
X is paracompact and has a network which is the union o

< w,, discrete collections1[l]. This generalizes an old re-
sult [2] for the casev, = w, while the following generalizes
one of Ito [L6]: if X is a P, -space that i3/3 overw,, and

every point ofX has a closure-preserving open base, then
every closed subset of has a closure-preserving base of

open sets11] (and henceX is linearly M1).

An important class of linearly stratifiable spaces might be

calledlinearly Nagata: these are the,-Nagata spaces as
wy, varies over all infinite regular cardinals. Thg -Nagata
spaces can be simply characterized as dhestratifiable

spaces in which each point has a totally ordered neighbour-

hood base. Of necessity, this base will have cofinaljtyif

the point is nonisolated. By the foregoing theorems, and the

elementary fact that every,-Nagata space is &,,-spa-
ce, it follows every linearly Nagata space is lineam.
There are other characterizations«gf-Nagata spaces, in-

resulting space witly + 1, and removing every nonisolated
point excepf{w, w, ). The set of all open sets containing this
point is a closure-preserving clopen base for the point, and
the isolated points can be grouped either horizontally or ver-
tically, with initial segments being clopen in either case. This
is also an example a space thadds overw,, butis not lin-

f early Nagata. The converse problem, whethepgrNagata

space is necessarity, - Mo if w, is regular uncountable, is
unsolved.

Linearly uniformizable spaces have a long history, due to
the fact that they can be characterized by distance functions
that satisfy the usual definition of a metric, except that the
distances are not necessarily real numbers, but rather take on
their values in an ordered Abelian group (often the additive
group of an ordered field). Hausdorf,[p. 289 introduced
the use of such distance functions to general topology, and it
was shown that a space is linearly uniformizable iff it admits
such a generalized metric. Important examples of such gen-
eralized metrics are valuations, which play an important role
in algebraic number theorgf]. Many well-known metriza-
tion theorems have generalizations that say when a space is
linearly uniformizable: The Urysohn Metrization Theorem
[23]; the Nagata—Smirnov Theorer29q]; Frink’'s Metriza-
tion Theorem, Bing’'s Metrization Theorem, Nagata's Gen-

cluding one based on the Nagata general metrization the-grgjized Metrization Theorem (the one on which the defi-

orem [LO: an w,-Nagata space is & space with a sys-
tem (U, &) whereil and& are collections of function&/g
and Sg (B < w,), each with domainX, and such that (1)
for eachx € X, {Ug(x): B < w,} is a base for the neigh-
bourhoods ofx, and so is{Sg(x): B < w,}; (2) for every
x,y e X, Sg(x) N Sg(y) # ¥ implies thatx € Ug(y); and
() If B <y < wy, thenSg(x) D S, (x) for all x. As usual,
(3) is superfluous itv, = w, and we simply have the class
of Nagata spaces then. Another characterizatio@7] dis-
penses wittl, requires that eacliz(x) be open, and sub-
stitutes for (2) the condition that i/ is a neighbourhood
of x, there exist$8 < w, such thatSg(x) N Sg(y) # ¥ im-
plies thaty € U. Clearly, any subspace of an,-Nagata
space isv, -Nagata, and ang,,-box product ofw, -Nagata
spaces over the same, is againw,-Nagata. The closed
continuous imageX of an w,-Nagata space is likewise an
wy,-Nagata space provided that, for each pairt X, there

nition of a Nagata space is based) and several ott@r [
The Morita—Hanai—Stone Theorem generalizes to the theo-
rem that a closed map from @, -metrizable space to an-
other space hag,-metrizable image iff the boundary of
each point-inverse i®,,-compact P0].

Linearly uniformizable spaces with bases of uncount-
able cofinality (in other wordsy,,-metrizable, nonmetriz-
able spaces) are both linearly Nagata and lineafly In
a uniform space, the intersection of every descending se-
guence of entourgages with no last element is an equiva-
lence relation. Hence, any uniform space with a linearly or-
dered base of uncountable cofinality has a (linearly ordered)
base of equivalence relations; these partition the space into
clopen sets. Well-ordering the members of the partitions,
with members of coarser partitions preceding the members
of the finer partitions, gives a linearly closure-preserving
base of clopen sets — the lineamlyy property. Bases like
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these are well suited for showing thaf,-box product of
wy-Mmany w,-metrizable spaces s, -metrizable and that

a space isv,-metrizable for uncountable regular, iff it
embeds in av,-box product ofw,-many discrete spaces.
Monotone normality and ultraparacompactness of linearly
uniformizable nonmetrizable spaces follow easily from the
fact that the base given by these partitions is a tree by re-
verse inclusion. For ultraparacompactness, thainimal
members of a tree bagwhich can be put in some member
of the open covel/ constitute a partition into clopen sets
refining/. For a pointx and an open sdt/ containingx,

one can leU, be any membeB whatsoever of3 that satis-
fiesx € B C U, and then the Borges definition of monotone
normality follows from the fact that i/, meetsV,, then
eitherU, C V, or V, C Uy. Indeed, every tree base for a
space is dase of rank 1, which means that any two mem-
bers are either disjoint or related ky. Spaces with rank 1
bases are calledbn-Archimedean spaces, and actually co-
incide with spaces with tree basé$]. The natural common

characterizations of the Cantor set (the only totally discon-
nected, compact, dense-in-itself metrizable space) and the ir-
rationals (the only zero-dimensionabwhere locally com-

pact, completely metrizable, separable space) only general-

ize for weakly compact cardinals asttongly inaccessible
cardinals, respectively9], and one must substitute spheri-
cal completeness for ordinary completeness.

In principle, almost every “generalized metric” prop-
erty can be effectively generalized with judicious uses of
total orderings. Sometimes, as with metrizable and non-
Archimedeanly metrizable spaces, two or more distinct
classes coalesce for uncountable regular One such ex-
ample is that of quasi-metrizable andn-Archimedeanly
guasi-metrizable spaces 72]. The argument in 2] can
be easily modified to show that the uncountable analogues
of y-spaces also coincide with those of quasi-metrizable
spaces.
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