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e-13 Generalized Metric Spaces III: Linearly
Stratifiable Spaces and Analogous Classes of
Spaces

This article is concerned with generalizations of concepts
like stratifiability and metrizability to arbitrary infinite car-
dinalities, in a way that uses linear orders in key places. This
has resulted in theories which are remarkably faithful gen-
eralizations of the theories of stratifiable, metrizable, etc.
spaces. For metrizable spaces, the generalization is to the
class of (Tychonoff ) spaces admitting separated uniformi-
ties with totally ordered bases; this class is usually referred
to as the class ofωµ-metrizable spaces of arbitrary cardi-
nality ωµ, but the term “linearly uniformizable spaces” will
be mostly used here, under the convention that “spaces”
refers toHausdorff spaces. The class of linearly stratifi-
able spaces is a simultaneous generalization of linearly uni-
formizable spaces and of stratifiable spaces, and most of the
theory of stratifiable spaces carries over, including the basic
covering and separation properties ofparacompactness and
monotone normality. There are generalizations, along the
same lines, ofσ -spaces and semistratifiable spaces, as well
as classes in between the linearly uniformizable spaces and
linearly stratifiable spaces, generalizingM1 spaces and Na-
gata spaces. Other generalizations, such as the one ofquasi-
metrizable spaces (quasi-metrics are defined like metrics
but without symmetry of the distance function), are less well
developed in the literature, and will only be touched on here.

The usual definition of linear stratifiability is based on the
definition of stratifiable spaces that says they are monotoni-
cally perfectly normal, so to speak; this definition is the case
ωµ = ω of the definition ofωµ-stratifiable spaces, whereωµ
is an infinite cardinal number. A space(X, τ) is said to be
stratifiable over ωµ if it is a T1 space for which there is a
mapS :ωµ × τ → τ , called anωµ-stratification which sat-
isfies the following conditions.

(1) c
(S(β,U))⊂U for all β < ωµ and allU ∈ τ .
(2)

⋃{S(β,U): β < ωµ} =U for all U ∈ τ .
(3) If U ⊂W , thenS(β,U)⊂ S(β,W) for all β < ωµ.
(4) If γ < β < ωµ, thenS(γ,U)⊂ S(β,U) for all U ∈ τ .

X is calledωµ-stratifiable if ωµ is the least cardinal for
whichX is stratifiable overωµ. A space islinearly strati-
fiable if it is ωµ-stratifiable for some infiniteωµ, andstrat-
ifiable if it is ω-stratifiable. Anω-stratification is called a
stratification. If condition (1) is omitted, we get the def-
inition of an ωµ-semistratification. The termssemistrat-
ifiable over ωµ, ωµ-semistratifiable, linearly semistrat-
ifiable, semistratifiable, and semistratification have the

obvious definitions. The key theorem that a space is strat-
ifiable iff it is semistratifiable and monotone normal gener-
alizes easily to arbitraryωµ. Condition (4) is unnecessary in
the caseωµ = ω but it is needed to make the theories of strat-
ifiable and semistratifiable spaces generalize to higher car-
dinals. Similar additions make it possible to generalize two
characterizations of (semi-)stratifiable spaces and to make
them coincide. One is a pair of Heath–Hodel style character-
izations in [27] and [17] with their addition of condition (b),
which is unnecessary in caseωµ = ω: A T1-space(X, τ)
is stratifiable overωµ if, and only if, there exists a family
{gβ : β < ωµ} of functions with domainX and rangeτ such
the following hold:

(a) x ∈ gβ(x) for all β < ωµ;
(b) if β < γ < ωµ, thengβ(x)⊃ gγ (x) for all x;
(c) if, for every β < ωµ, x ∈ gβ(xβ), then the net〈xβ :

β < ωµ〉 coverges tox; and
(d) for every F ⊂ X, if y ∈ c
(

⋃{gβ : x ∈ F }) for all
β < ωµ, theny ∈ c
(F ).

If condition (d) is omitted, we get a condition equivalent to
being semistratifiable overωµ.

In [27] there is also a definition of a linearly cushioned
pair-base that generalizes that of aσ -cushioned pair-base
used in definingM3 spaces; moreover, the proof that the
M3 concept coincides with stratifiability generalizes in [27]
to this more general setting. A collectionP of pairsP =
(P1,P2) of subsets of a space(X, τ) is said to be apair-
base if the members of each pair are open and, for each
point x of X and each neighbourhoodU of x, there is a
pair (P1,P2) ∈ P such thatx ∈ P1 andP2 ⊂ U . A collection
C of subsets of a spaceX is linearly closure-preserving
with respect to � if � is a linear order onC such that⋃{c
C: C ∈ C ′} = c
(

⋃
C ′) for any subcollection ofC ′ ⊂ C

which has an upper bound w.r.t.�. A collection of pairs
P = (P1,P2) is linearly cushioned with respect to a lin-
ear order� if c
(

⋃{P1: P = (P1,P2) ∈P ′})⊂ ⋃{P2: P =
(P1,P2) ∈ P ′} for every subsetP ′ of P which has an up-
per bound with respect to�. Hence in particular,C is lin-
early closure-preserving w.r.t.� if {(C,C): C ∈ C} is lin-
early cushioned with respect to�. A regular spaceX is said
to beM1 over ωµ (respectivelyM2 over ωµ) (respectively
M3 over ωµ) if X has a linearly closure-preserving base (re-
spectively a linearly closure-preservingquasi-base) (respec-
tively a linearly cushioned pair-base) with a cofinal set of
order typeωµ.X is linearly Mi if it is Mi overωµ for some
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infinite cardinalωµ. Anωµ-Mi space is defined analogously
to anωµ-stratifiable space.

Clearly, these concepts are numbered in order of increas-
ing generality. More general yet is the concept of having a
linearly closure-preserving network of cofinalityωµ, con-
sisting of closed sets. Ifωµ = ω this gives us the famil-
iar class ofσ -spaces. Harris [11], generalizing the Nagata–
Siwiec theorem forωµ = ω, showed that these spaces have
a network that is the union of� ωµ discrete collections. The
converse is true if the space isωµ-additive, meaning that
the union of strictly fewer thanωµ closed sets is closed:
this implies that the union of fewer thanωµ discrete col-
lections is discrete, hence every union ofωµ discrete col-
lections is linearly closure-preserving with respect to a lin-
ear order of cofinality cf(ωµ). The Heath–Hodel theorem
that every stratifiable space is aσ -space [13] generalizes
to the theorem that everyωµ-stratifiable space has a net-
work which is the union of� ωµ discrete collections, and
a linearly closure-preserving network [27]. The theorem that
σ -spaces are semistratifiable generalizes to the theorem that
a space with a linearly closure-preserving network is lin-
early semistratifiable [11]. In fact, having a linearly closure-
preserving network of cofinalityωµ consisting of closed sets
is equivalent to having a Heath–Hodel functiong satisfying
(a), (b), and (c) above along with the following condition
(e): if y ∈ gβ(x) then gβ(y) ⊂ gβ(x). For (c) it is possi-
ble to substitute the stronger (c+): if, for every β < ωµ,
x ∈ gβ(yβ) and yβ ∈ gβ(xβ), then the net〈xβ : β < ωµ〉
converges tox [11]. Another generalization, that ofelas-
tic spaces, relaxes the linear order requirement to that of a
preorder, but otherwise keeps the pair-base definition of lin-
earlyM3 with the formal restriction that the pair-base is a
function; that is, each subset of the space appears as the first
element in at most one pair. M. Jeanne Harris showed that
this restriction is a mere formality in [11] and [12]: every
space with a linearly cushioned pair-base has one which is a
function.

Linearly stratifiable spaces enjoy many of the nice prop-
erties of the subclass of stratifiable spaces; for example, they
aremonotonically normal and (hereditarily)paracompact.
There is a subtle hole in the proof of the latter fact in [26]
and [27], which is repaired by Harris’s theorem. It is also
possible to show, more simply, that every open cover in a
linearly stratifiable space has an open refinement which is
linearly cushioned in it [28]. This refinement condition is
equivalent to paracompactness, and “linearly cushioned” can
be weakened to “elastic” [26]. Linearly stratifiable spaces
have most of the nice preservation properties possessed by
stratifiable spaces. For example, the class is closed under the
taking of subspaces and closed images, and finite unions of
closed subspaces. This also applies to the class of linearly
M2-spaces. The best known of the (much weaker) known
preservation properties ofM1 spaces also carries over: iff
is a closed irreducible continuous map from a spaceX that
is M1 overωµ, onto a spaceY such that for everyy ∈ Y ,
f−1(y) is ωµ-compact, thenY is linearlyM1 [11]. Finite
products of spaces that areωµ-stratifiable over the sameωµ

are alsoωµ-stratifiable, as are box products of fewer than
ωµ of them. Both of these results are generalized by the fact
that ifωµ is regular, then theωµ-box product ofωµ or fewer
ωµ-stratifiable spaces isωµ-stratifiable: theωµ-box product
is defined like the box product except that one restricts fewer
thanωµ-many coordinates [3]. (The restriction on agreement
in ωµ is important:ω + 1 and the one-point Lindelöfiza-
tion of a discrete space of cardinalityω1 constitute a pair of
spaces, one stratifiable and the otherω1-stratifiable, whose
product is not linearly stratifiable – it is not even hereditar-
ily normal.) If a spaceX is dominated by a collection of
closed subsets, each of which is stratifiable overωµ, thenX
is stratifiable overωµ. If X andY are stratifiable overωµ
andA is a closed subset ofX andf :A → Y is continu-
ous, thenX ∪f Y (the adjunction space) is stratifiable over
ωµ [27].

The celebrated Gruenhage–Junnila theorem that allM3

spaces areM2 has been generalized within the class ofωµ-
additive spaces (also known asPωµ -spaces); that is, spaces
in which the intersection of strictly fewer thanωµ open sets
is open. The theorem is that everyPωµ space which isωµ-
M3 is alsoωµ-M2. The problem of whether thePωµ con-
dition can be dropped is still open. The notorious problem
of whether all three classes are the same also generalizes to
linearly Mi spaces; in fact, it is open for all infinite cardi-
nalitiesωµ, even forPωµ -spaces. Moreover, where uncount-
ableωµ are concerned, we even have a fourth class, the class
of spacesM0 overωµ, to add to this coincidence problem.
Spaces that areM0 overωµ are defined like spacesM1 over
ωµ but with “open” replaced by “clopen”. That is, a space is
M0 over ωµ if it is a regular space with a linearly closure-
preserving baseB of clopen sets, where the linear order onB
has cofinalityωµ. As might be expected,linearly M0” and
“ωµ-M0” are defined analogously to the same concepts for
higher subscripts.

A big advantage of linearlyM0-spaces over the more
general linearlyM1-spaces is that they are easily seen to
be hereditary; their perfect images are linearlyM1 [11],
but not necessarily linearlyM0, at least not when the do-
main is simplyM0: the closed unit interval is a non-M0

perfect image of the Cantor set, which is clearlyM0, as
is any strongly zero-dimensional metrizable space. The
strongly zero-dimensional spaces can be characterized as
those Tychonoff spaces in which disjoint zero sets can be
put into disjoint clopen sets [6, 16.17], [E, 6.2.4] or those
which have totally disconnected Stone–Čech compactifi-
cations [E, 6.2.12]. Allωµ-M0-spaces are strongly zero-
dimensional, even in the caseωµ = ω [14]. Also, every Ty-
chonoff space which is aP -space [that is, aPω1-space] is
strongly zero-dimensional; indeed, every zero set is clopen
in such spaces since it is aGδ-set. Remarkably enough, it
is not known whether every strongly zero-dimensionalωµ-
stratifiable space isωµ-M0, whatever the value ofωµ; nor
whether everyωµ-stratifiable space (or every space strat-
ifiable overωµ) is strongly zero-dimensional whenωµ is
uncountable. Since stratifiability overωµ is preserved on
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collapsing a closed set to a point, the latter problem is equiv-
alent to whether allωµ-stratifiable spaces (or all spaces strat-
ifiable overωµ) arezero-dimensional, i.e., have a base con-
sisting sets that are both open and closed.

Various well-known equivalences of theM2-M1 problem
also carry over, some with the addition ofωµ-additivity. Two
generalizations by Harris [11] of a well-known theorem of
Heath and Junnila [14] account for several of them, includ-
ing the problems of whether every closed subspace, or every
closed image of anM1 space isM1. One generalization
says that every linearlyM2-space is the image of a linearly
M1-space under a retraction. The other says that ifωµ is reg-
ular, and if thePωµ -spaceX is stratifiable overωµ, thenX
is the image of a linearlyM1 space under a closed retraction
with ωµ-compact fibers. Some quite general classes of lin-
early stratifiable spaces are linearlyM1. For instance, ifωµ
is a regular cardinal andX is anωµ-stratifiablePωµ -space
in which every closed subset ofX has a linearly closure-
preserving neighbourhood base of open sets in whichωµ is
cofinal, thenX is linearlyM1 [11]. The condition thatX is
ωµ-stratifiable can be formally relaxed to the condition that
X is paracompact and has a network which is the union of
� ωµ discrete collections [11]. This generalizes an old re-
sult [2] for the caseωµ = ω, while the following generalizes
one of Ito [16]: if X is aPωµ -space that isM3 overωµ, and
every point ofX has a closure-preserving open base, then
every closed subset ofX has a closure-preserving base of
open sets [11] (and henceX is linearlyM1).

An important class of linearly stratifiable spaces might be
called linearly Nagata: these are theωµ-Nagata spaces as
ωµ varies over all infinite regular cardinals. Theωµ-Nagata
spaces can be simply characterized as theωµ-stratifiable
spaces in which each point has a totally ordered neighbour-
hood base. Of necessity, this base will have cofinalityωµ if
the point is nonisolated. By the foregoing theorems, and the
elementary fact that everyωµ-Nagata space is aPωµ -spa-
ce, it follows every linearly Nagata space is linearlyM1.
There are other characterizations ofωµ-Nagata spaces, in-
cluding one based on the Nagata general metrization the-
orem [10]: an ωµ-Nagata space is aT1 space with a sys-
tem 〈U,S〉 whereU andS are collections of functionsUβ
andSβ (β < ωµ), each with domainX, and such that (1)
for eachx ∈ X, {Uβ(x): β < ωµ} is a base for the neigh-
bourhoods ofx, and so is{Sβ(x): β < ωµ}; (2) for every
x, y ∈ X, Sβ(x) ∩ Sβ(y) �= ∅ implies thatx ∈ Uβ(y); and
(3) If β < γ < ωµ, thenSβ(x)⊃ Sγ (x) for all x. As usual,
(3) is superfluous ifωµ = ω, and we simply have the class
of Nagata spaces then. Another characterization [27] dis-
penses withU, requires that eachSβ(x) be open, and sub-
stitutes for (2) the condition that ifU is a neighbourhood
of x, there existsβ < ωµ such thatSβ(x) ∩ Sβ(y) �= ∅ im-
plies thaty ∈ U . Clearly, any subspace of anωµ-Nagata
space isωµ-Nagata, and anyωµ-box product ofωµ-Nagata
spaces over the sameωµ is againωµ-Nagata. The closed
continuous imageX of anωµ-Nagata space is likewise an
ωµ-Nagata space provided that, for each pointx ∈ X, there

exists a totally ordered neighbourhood base. IfX is ωµ-
Nagata over an uncountable regularωµ, then X a Pωµ -
space and hence is strongly zero-dimensional. As is well
known, a spaceX satisfies dim(X) = 0 iff X is normal and
strongly zero-dimensional, andX is ultraparacompact iff
it is paracompact and strongly zero-dimensional. Since lin-
early stratifiable spaces are paracompact and hence normal,
theωµ-Nagata spaces have both of these other properties if
ωµ is uncountable. (And so too, of course, do all linearly
M0 spaces and all linearly stratifiable P-spaces.) This gives
the theory of these kinds of linearly Nagata a different flavor
from that of Nagata spaces (the countable caseωµ = ω).

An easy example of a space that isM0 over a regular car-
dinalωµ and isω-M0 at the same time is obtained by isolat-
ing all but the last point ofωµ + 1, taking the product of the
resulting space withω+ 1, and removing every nonisolated
point except〈ω,ωµ〉. The set of all open sets containing this
point is a closure-preserving clopen base for the point, and
the isolated points can be grouped either horizontally or ver-
tically, with initial segments being clopen in either case. This
is also an example a space that isM0 overωµ but is not lin-
early Nagata. The converse problem, whether anωµ-Nagata
space is necessarilyωµ-M0 if ωµ is regular uncountable, is
unsolved.

Linearly uniformizable spaces have a long history, due to
the fact that they can be characterized by distance functions
that satisfy the usual definition of a metric, except that the
distances are not necessarily real numbers, but rather take on
their values in an ordered Abelian group (often the additive
group of an ordered field). Hausdorff [8, p. 285] introduced
the use of such distance functions to general topology, and it
was shown that a space is linearly uniformizable iff it admits
such a generalized metric. Important examples of such gen-
eralized metrics are valuations, which play an important role
in algebraic number theory [24]. Many well-known metriza-
tion theorems have generalizations that say when a space is
linearly uniformizable: The Urysohn Metrization Theorem
[23]; the Nagata–Smirnov Theorem [29]; Frink’s Metriza-
tion Theorem, Bing’s Metrization Theorem, Nagata’s Gen-
eralized Metrization Theorem (the one on which the defi-
nition of a Nagata space is based) and several other [20].
The Morita–Hanai–Stone Theorem generalizes to the theo-
rem that a closed map from aωµ-metrizable space to an-
other space hasωµ-metrizable image iff the boundary of
each point-inverse isωµ-compact [20].

Linearly uniformizable spaces with bases of uncount-
able cofinality (in other words,ωµ-metrizable, nonmetriz-
able spaces) are both linearly Nagata and linearlyM0. In
a uniform space, the intersection of every descending se-
quence of entourgages with no last element is an equiva-
lence relation. Hence, any uniform space with a linearly or-
dered base of uncountable cofinality has a (linearly ordered)
base of equivalence relations; these partition the space into
clopen sets. Well-ordering the members of the partitions,
with members of coarser partitions preceding the members
of the finer partitions, gives a linearly closure-preserving
base of clopen sets – the linearlyM0 property. Bases like
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these are well suited for showing thatωµ-box product of
ωµ-manyωµ-metrizable spaces isωµ-metrizable and that
a space isωµ-metrizable for uncountable regularωµ iff it
embeds in aωµ-box product ofωµ-many discrete spaces.
Monotone normality and ultraparacompactness of linearly
uniformizable nonmetrizable spaces follow easily from the
fact that the base given by these partitions is a tree by re-
verse inclusion. For ultraparacompactness, the⊃-minimal
members of a tree baseB which can be put in some member
of the open coverU constitute a partition into clopen sets
refiningU . For a pointx and an open setU containingx,
one can letUx be any memberB whatsoever ofB that satis-
fiesx ∈ B ⊂U , and then the Borges definition of monotone
normality follows from the fact that ifUx meetsVy , then
eitherUx ⊂ Vy or Vy ⊂ Ux . Indeed, every tree base for a
space is abase of rank 1, which means that any two mem-
bers are either disjoint or related by⊂. Spaces with rank 1
bases are callednon-Archimedean spaces, and actually co-
incide with spaces with tree bases [19]. The natural common
generalization of non-Archimedean and metrizable spaces is
that ofproto-metrizable spaces. These are the spaces with
rank 1 pair-bases [7]; P is a pair-base of rank 1 if when-
ever 〈P1,P2〉 and 〈P ′

1,P
′
2 are inP andP1 ∩ P ′

1 �= ∅, then
eitherP1 ⊂ P ′

2 or P ′
1 ⊂ P2. These spaces share many of the

nice properties common to metrizable and non-Archimedean
spaces, including paracompactness and monotone normality.

Non-Archimedean spaces are suborderable but not all or-
derable – the Michael line is a standard example [15, 21]
of a non-orderable non-Archimedean space. There even
exist examples of non-orderableωµ-metrizable spaces for
all uncountable cofinalityωµ. This is in contrast to the
case of strongly zero-dimensional metrizable spaces (the
cofinality= ω case), all of which are linearly orderable. In
fact, a space is metrizable and strongly zero-dimensional
iff it is metrizable, linearly orderable, and totally discon-
nected [9]. Another characterization is that these are the
spaces that can be given a compatiblenon-Archimedean
metric, one that satisfies thestrong triangle inequal-
ity: given any three pointsx, y, z, one hasd(x, z) �
max{d(x, y), d(x, z)} [5]. If ωµ is uncountable regular, then
every ωµ-metrizable space can be given a distance func-
tion satisfying this property, with values an ordered Abelian
group.

There are a few aspects of the theory of metrizable spaces
that do not carry over to linearly uniformizable spaces with-
out modification. One is that, for aωµ-metric space to be
ωµ-compact (meaning: every open cover has a subcover of
cardinality< ωµ) it is not enough for it to be complete
and totally bounded. For completeness one must substitute
the stronger concept of supercompleteness [1]; the two con-
cepts coincide for metric spaces. Sometimes one must use
extra qualities of the cardinalω to have a really satisfac-
tory extension of some classical result. For example, the el-
ementary fact thatω2 with the product topology is compact
only generalizes toweakly compact cardinals ωµ in place
of ω when theωµ-box product topology is used. Classical

characterizations of the Cantor set (the only totally discon-
nected, compact, dense-in-itself metrizable space) and the ir-
rationals (the only zero-dimensional,nowhere locally com-
pact, completely metrizable, separable space) only general-
ize for weakly compact cardinals andstrongly inaccessible
cardinals, respectively [19], and one must substitute spheri-
cal completeness for ordinary completeness.

In principle, almost every “generalized metric” prop-
erty can be effectively generalized with judicious uses of
total orderings. Sometimes, as with metrizable and non-
Archimedeanly metrizable spaces, two or more distinct
classes coalesce for uncountable regularωµ. One such ex-
ample is that of quasi-metrizable andnon-Archimedeanly
quasi-metrizable spaces [22]. The argument in [22] can
be easily modified to show that the uncountable analogues
of γ -spaces also coincide with those of quasi-metrizable
spaces.
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