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Abstract. We explore the relation between two general kinds of separation

properties. The first kind, which includes the classical separation properties

of regularity and normality, has to do with expanding two disjoint closed sets,

or dense subsets of each, to disjoint open sets. The second kind has to do

with expanding discrete collections of points, or full-cardinality subcollections

thereof, to disjoint or discrete collections of open sets. The properties of being

collectionwise Hausdorff (cwH), of being strongly cwH, and of being wD(ℵ1),
fall into the second category. We study the effect on other separation proper-
ties if these properties are assumed to hold hereditarily. In the case of scat-
tered spaces, we show that (a) the hereditarily cwH ones are α-normal and
(b) a regular one is hereditarily strongly cwH iff it is hereditarily cwH and
hereditarily β-normal. Examples are given in ZFC of (1) hereditarily strongly
cwH spaces which fail to be regular, including one that also fails to be α-

normal; (2) hereditarily strongly cwH regular spaces which fail to be normal
and even, in one case, to be β-normal; (3) hereditarily cwH spaces which fail

to be α-normal. We characterize those regular spaces X such that X × (ω +1)
is hereditarily strongly cwH and, as a corollary, obtain a consistent example
of a locally compact, first countable, hereditarily strongly cwH, non-normal
space. The ZFC-independence of several statements involving the hereditar-

ily wD(ℵ1) property is established. In particular, several purely topological
statements involving this property are shown to be equivalent to b = ω1.

1. Introduction

A Hausdorff space is called strongly collectionwise Hausdorff (strongly cwH for
short) if every closed discrete subspace can be expanded to a discrete collection of
open sets [Definition 2.1]. This property received a fair amount of attention in the
1970’s and early 1980’s, but it is only recently that papers have appeared which
give some idea of the strength of assuming that a space satisfies it hereditarily, at
least in some models of set theory. A remarkable illustration of that strength is the
following theorem of the late Zoltán Balogh [B].

Theorem 1.1. Assume MA(ω1) and Axiom R. Let X be a locally compact, hered-
itarily strongly ω1-cwH space. Then either X is (hereditarily) paracompact or X
contains a perfect preimage of ω1.

Using another theorem of Balogh, the first author [Ny3, discussion following
Corollary 2.8] showed how one can replace “perfect preimage of ω1” with “copy of
ω1” if one replaces MA(ω1) with the Proper Forcing Axiom (PFA). The Balogh
theorem in question is:
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Theorem 1.2. [D] The PFA implies every countably compact, first countable space
is either compact or contains a copy of ω1.

The axioms used in Theorem 1.1 are consistent if it is consistent that there is a
supercompact cardinal.

Questions 1.3. Can large cardinals be eliminated from Theorem 1.1? what if
“strongly ω1-cwH” is replaced by “strongly cwH”?

Since ω1 itself is locally compact and hereditarily strongly cwH but not para-
compact, one cannot eliminate the second alternative in Theorem 1.1. However,
the following theorem, which will appear in a forthcoming paper, suggests that one
might still be able to go far without it:

Theorem 1.4. The PFA implies every locally compact, locally connected, heredi-
tarily normal, hereditarily strongly cwH space is (hereditarily) collectionwise normal
and (hereditarily) countably paracompact.

In this paper, “space” will always mean “Hausdorff space,” so there is no ambi-
guity about the words “regular” and “normal”. The following theorem from [Ny4]
is related to Theorem 1.4:

Theorem 1.5. The PFA implies every normal, hereditarily strongly cwH manifold
of dimension > 1 is metrizable.

We do not know whether “locally connected” and/or “hereditarily normal” can
be eliminated from the hypothesis of Theorem 1.4, nor whether “normal” can be
eliminated from Theorem 1.5. Also we do not know whether “hereditarily strongly
cwH” can be eliminated from Theorem 1.4, with or without “locally connected.”
The following two problems are also open.

Question 1.6. Is it consistent that every locally compact, hereditarily strongly cwH
space is (hereditarily) normal?

Question 1.7. Is it consistent that every first countable, hereditarily strongly cwH
space is (hereditarily) normal?

With such grandiose possibilities up in the air, we decided to get a better picture
of what can and cannot be done with the property of being hereditarily strongly
cwH. This paper gives several examples and theorems, some consistent and some
using just ZFC, which we hope will give readers a clearer picture. We also dis-
cuss some weakenings of normality, especially pseudonormality, α-normality and
β-normality [Definitions 4.3 and 2.3], and some weakenings of the strongly cwH
property, especially wD(ℵ0) and wD(ℵ1) [Definition 2.2].

One of our main results (see Section 4) is a characterization of when X×(ω+1) is
hereditarily strongly cwH, enabling us to find a consistent example of a hereditarily
strongly cwH locally compact, first countable, non-normal space. This explains why
Question 1.6 and Question 1.7 ask only for consistency.

In a talk at a 2002 conference in honor of Balogh, the first author noted that
Question 1.6 was unsolved even if “locally compact” is weakened to “regular.”
Example 3.1, defined using only the usual ZFC axioms, answers this variation on
Question 1.6 in the negative. It is also a nice illustration of how the strongly cwH
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property relates to the concept of being β-normal, introduced by Arhangel’skĭı.
Section 2 gives some conditions under which these two concepts are equivalent.

If “normal” is weakened to “pseudonormal” in Question 1.6, the answer is Yes,
even if “strongly cwH” is weakened to “wD(ℵ1)” as shown by one of us in an
earlier paper [JNS, 3.9 and 3.10]. In Section 5 we will give several consistency and
independence results that strengthen this one.

In contrast, if “normal” is weakened to “β-normal” in Questions 1.6 and 1.7, the
resulting problems are still open. If “normal” is further weakened to “α-normal,”
we get questions for which we do not even have consistency results:

Question 1.8. Is every locally compact, hereditarily strongly cwH space (heredi-
tarily) α-normal?

Question 1.9. Is every first countable, hereditarily strongly cwH space (hereditar-
ily) α-normal?

In fact, these questions remain wide open if “strongly” is dropped! Even the
following problem is not completely solved:

Question 1.10. Is there a regular, hereditarily strongly cwH space that is not
(hereditarily) α-normal?

There does exist an example under a very general axiom (see Section 7), but still
none is known from ZFC alone.

Question 1.7 is partly inspired by the theorem that every first countable, strongly
ω-cwH space is regular: see the comment at the beginning of Section 3. This
theorem also motivates:

Questions 1.11. Is it consistent that every sequential, hereditarily strongly cwH
space is regular? What if the space is Fréchet-Urysohn?

In Section 6 we will give a consistent example of a hereditarily strongly cwH
nonregular space that is not even Fréchet-Urysohn, but we know of no ZFC coun-
terexample to either part of Question 1.11.

2. Connections with β-normality and some ZFC examples of
hereditarily strongly cwH spaces

Definition 2.1. Given a subset D of a set X, an expansion of D is a family
{Ud : d ∈ D} of subsets of X such that Ud ∩ D = {d} for all d ∈ D. Given an
infinite cardinal κ, a space X is [strongly] κ-collectionwise Hausdorff if every closed
discrete subspace of cardinality ≤ κ has an expansion to a disjoint [resp. discrete]
collection of open sets. X is [strongly] collectionwise Hausdorff if it is [strongly]
κ-collectionwise Hausdorff for all κ.

We use the abbreviation “cwH” for “collectionwise Hausdorff”. As with nor-
mality and many related properties, one need only check open subspaces to see
whether a space is hereditarily [strongly] κ-cwH. Indeed, if D is a discrete subspace
of a space X and W = (X \D)∪D, then W is an open set, and if D ⊂ S ⊂ X and
D is closed in S, then S ⊂ W and we can take the trace on S of the appropriate
open expansion in W . This sufficiency of open subspaces for hereditariness also
holds true for the properties in our next two definitions.
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Definition 2.2. Let κ be a cardinal number. A space X is weakly κ-collectionwise
Hausdorff [resp˙satisfies property wD(κ)] if every closed discrete subspace D of
cardinality κ has a subset D0 of cardinality κ which can be expanded to a disjoint
[resp. discrete] collection of open sets Ud such that Ud ∩ D0 = {d} for all d ∈ D0.

These are obvious weakenings of the properties of being κ-cwH and strongly κ-
cwH, respectively. Up to now, strongly ω-cwH spaces have been called “spaces with
Property D,” a designation introduced by R.L. Moore, while wD(ℵ0) spaces have
been called “spaces with Property wD.” The following concepts were introduced by
Arhangel’skĭı:

Definition 2.3. A space X is α-normal [resp. β-normal] if for any two disjoint
closed subsets A and B of X there exist open subsets U and V of X such that
A ∩ U is dense in A and B ∩ V is dense in B and U ∩ V = ∅ [resp.U ∩ V = ∅].

For our first theorem, recall that a space is called scattered if every subspace has
an isolated point in its relative topology; equivalently (because an isolated point of
an open subspace is isolated in the whole space) every subspace has a dense set of
isolated points in its relative topology. Another characterization is highly revealing
of the structure of these spaces. One defines the ξth Cantor-Bendixson level Xξ of
any space X by induction as follows: X0 is the set of isolated points of X; if Xη has
been defined for all η < ξ then Xξ is the set of isolated points of X \

⋃
η<ξ{Xη}.

A space is scattered iff it is the union of all its Cantor-Bendixson levels. It is
immediate from this characterization that every point in a scattered space has a
neighborhood in which it is the unique point of highest Cantor-Bendixson level—a
level which is the same in the neighborhood as it is in the whole space.

Yet another characterization will play a role in Sections 5 and 6: a space is
scattered if, and only if, it is “right-separated”: that is, there is a well-ordering of
the space such that every initial segment is open.

Theorem 2.4. Every scattered hereditarily cwH space is (hereditarily) α-normal.

Proof. Let F1 and F2 be disjoint closed subsets of the scattered hereditarily
cwH space X. Let D1 and D2 be the (dense) set of relatively isolated points of
F1 and F2, respectively. Then D1 and D2 are closed discrete in the open subspace
U = [X \ (D1 ∪ D2)] ∪ D1 ∪ D2. Let V be an expansion of D1 ∪ D2 to a family of
disjoint open subsets of U and let V1 and V2 be the unions of the ones expanding
the points of D1 and D2 respectively. Then Vi ∩ Fi is dense in Fi and V1 ∩ V2 = ∅,
as desired. �

The next theorem is a natural variation on Theorem 2.4, inasmuch as scattered
spaces can also be characterized by all closed subspaces having dense discrete sub-
sets:

Theorem 2.5. If X is regular, and every closed subspace of X has a dense subspace
which is the union of countably many discrete [resp. closed discrete] subspaces and
X is hereditarily strongly cwH [resp. stongly cwH] then X is α-normal.

Proof. Let Fi(i = 1, 2) be disjoint closed subsets of the strongly cwH space
X. Let Di be dense in Fi and be the countable union of discrete subspaces. If
X is hereditarily strongly cwH, or if Di is the countable union of closed discrete
subspaces, then Di can be covered by countably many open subspaces, each of



HEREDITARILY STRONGLY CWH AND WD(ℵ1) VIS-A-VIS OTHER SEPARATION AXIOMS5

whose closures miss D3−i. (See Lemma 2.6 below.) The standard proof that every
regular Lindelöf space is normal can now be mimicked to put D1 and D2 into
disjoint open sets. �

The hypotheses of Theorem 2.5 are satisfied by every regular strongly cwH σ-
space (in particular, every strongly cwH Moore space and every strongly cwH strat-
ifiable space) and every regular hereditarily strongly cwH quasi-developable space.
The latter spaces are characterized by having bases which are the union of count-
ably many open collections, such that each point x of the space has a local base
taken from those collections for which x is in exactly one member of the collection
[G, proof of Theorem 8.5]. Let Un is one of these collections, cut down if necessary
so that each U ∈ Un has at least one point p such that ord(p,Un) = 1. If Pn is a
set which meets each member of Un in such a point p, then Pn is discrete and

⋃
Pn

is dense.

Our next theorem establishes an interesting connection between the properties of
hereditary β-normality and the hereditary strong cwH property. A general lemma
and corollary pave the way.

Lemma 2.6. A regular space is strongly cwH ⇐⇒ it is cwH and any two disjoint
closed sets, one of which is discrete, can be put into disjoint open sets.

Proof. Suppose X is regular and strongly cwH, and let F and D be disjoint
closed sets, with D discrete. Let {Ud : d ∈ D} be a discrete open expansion of D.
For each d ∈ D let Vd ⊂ Ud be an open neighborhood of d whose closure misses F .
Let W =

⋃
{Vd : d ∈ D}; then X \ W and W are as desired.

The converse is proven just like the familiar theorem that every normal, cwH
space is strongly cwH: if D is closed discrete and {Ud : d ∈ D} is a disjoint open
expansion of D, let V be an open set containing D whose closure is in

⋃
{Ud : d ∈

D}; then {Ud ∩ V : d ∈ D} is a discrete open expansion of D. �

Corollary 2.7. Every cwH β-normal space is strongly cwH.

Proof. Clearly, every Hausdorff β-normal space is regular. Let A and B be
disjoint closed sets, with A discrete. With U and V as in Definition 2.3, we must
have A ⊂ U ; so U and the complement of U are disjoint open sets containing A
and B respectively. Now use Lemma 2.6. �

Theorem 2.8. Let X be a regular scattered space. The following are equivalent.

(1) X is hereditarily strongly cwH.
(2) X is hereditarily cwH and hereditarily β-normal.
(3) Every open subspace of X is cwH and β-normal.

Proof. The equivalence of (2) and (3) is well known, cf. the discussion preceding
Definition 2.3; and (2) ⇒ (1) is immediate from Corollary 2.7, so it only remains to
prove (1) ⇒ (3). We use the easy fact [AL] that a space is β-normal iff for every A
closed in X and every open U ⊃ A, there is an open V ⊂ X such that A ∩ V = A
and V ⊂ U .

Let W be open in X, let A be closed in W , and let U be open in W and hence
in X. Let D be the set of isolated points in the relative topology of A. Then D is
closed discrete in the X-open set (W \A)∪D. Expand D to a discrete-in-(W \A)∪D
collection V of open sets whose individual closures are in [(W \ A) ∪ D] ∩ U . Let
V =

⋃
V. Then V ∩ A = A and V ⊂ U , as desired. �
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In Section 7 we give a ZFC example (Example 7.5) that shows “scattered” cannot
be omitted from Theorem 2.8. The following ZFC example shows that “regular”
cannot be omitted either:

Example 2.9. A scattered hereditarily strongly cwH space that is not regular (and
hence not β-normal).

Define a topology on X = [0, ω1] as follows. Let the points of [0, ω1) have the
ordinal topology as a basis. A local basis of ω1 consist of all sets of the type

OC = {ω1} ∪ {α + 1 : α ∈ C}

where C ⊂ ω1 is closed and unbounded. E. Murtinová [Mu1] showed X is a
Hausdorff α-normal space that is not regular: A club subset C of [0, ω1) cannot be
separated from ω1 by disjoint open sets. One can easily show that X is hereditarily
strongly cwH and scattered since [0, ω1) is hereditarily strongly cwH and scattered.
This shows that X is hereditarily α-normal by Lemma 2.4.

Regularity is also needed for the forward implication in Lemma 2.6. Indeed, if X
is a strongly cwH non-regular space and p and C are a point and a closed subset of
X which cannot be put into disjoint open sets, then the second condition in Lemma
2.6 breaks down for D = {d} and F = C. In Example 2.9, this is the case with
{d} = {ω1}, and any club subset of ω1 will do for C.

In [Mu2], Murtinova gave a countable example of a scattered non-regular α-
normal space, denoted Y . Although it is a bit more complicated than Example 2.9,
it is easy to see from the description in [Mu2] that Y is obtained by adding one
point ∞ to a countable scattered regular space whose set of nonisolated points is
denoted X, such that if D is a discrete subspace of X, then D and ∞ can be put
into disjoint open sets. From this and regularity of Y \ {∞} it readily follows that
Y is hereditarily strongly cwH.

The next two examples are not scattered, but they have other nice qualities. In
particular, Example 2.11 shows why “scattered” cannot be left out of Theorem 2.4
nor “regular” out of Theorem 2.5, and why “regular” appears also in Question 1.10.

Example 2.10. A hereditarily separable, hereditarily Lindelöf, hereditarily α-normal,
hereditarily strongly cwH Baire space that is α-normal but not regular.

Let X have the plane R2 as its underlying set, with all points except the origin
having their usual base of neighborhoods. A local base at 0 = 〈0, 0〉 consists of
all intersections of Euclidean balls with complements of sets of the form

⋃
B ∪

(0,+∞) × {0}, where B is a family of closed balls centered on points of (0,+∞)
whose union meets [0, 1/n)×{0} in a set whose one-dimensional measure is o(1/n):
that is,

(∗) µ(
⋃

B ∩ [0,
1

n
) × {0}) · n → 0 as n → ∞.

Let τ denote the resulting topology and E denote the Euclidean topology on R2.
Then C = (0,+∞)×{0} is τ -closed, but C and 0 clearly cannot be put into disjoint
τ -open sets. On the other hand, if D is a τ -discrete subspace of X, relatively τ -
closed in an open subspace U of X, then D can be expanded to a relatively discrete
collection of open subsets of U . This is clear if 0 /∈ U or if 0 /∈ c`E(D) since the
Euclidean plane, being metrizable, is hereditarily strongly cwH.
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So suppose 0 is in the Euclidean closure of D and 0 ∈ U . It is enough to consider
the case when 0 /∈ D. Then there is an open Euclidean ball B(0, ε) and a family
B of closed balls centered on points of (0, ε] × {0} and satisfying (∗), such that
D ∩B(0, ε) ⊂

⋃
B ∪ [ (0, ε)×{0}]. We can expand each member of B slightly while

still conforming to (∗). Moreover, each discrete subspace of X is countable, so we
can put closed balls of positive radius around each point of D ∩ [(0, ε) × {0}] and
still conform to (∗). We can then expand D to a relatively E-discrete collection
U = {Ud : d ∈ D} of E-open subsets of X \{0}, while staying inside the new family
of closed balls. This way U will be τ -discrete in X. The argument for X being
hereditarily α-normal is similar, using the fact that every countable subspace of R

is of measure 0.

We are indebted to Alan Dow for the suggestion of modifying the above construc-
tion by using a remote point. It gives a space with all the properties of Example
2.10 except α-normality, and accounts for the “regular” in Question 1.10.

Example 2.11. A hereditarily separable, hereditarily Lindelöf, hereditarily strongly
cwH Baire space that is neither α-normal nor regular.

Let p be a remote point of βR+ \ R+ in the closure of the open unit interval.
That is, p is not in the closure of any nowehere dense subset of (0, 1). Let (X, τ)
be as in Example 2.10, except that this time B is any family of closed balls, each
centered on points of (0,+∞) × {0} as before, such that {x ∈ R : (x, 0) ∈

⋃
B}

does not have p in its closure.

As in Example 2.10, (X, τ) is clearly not regular. It is also not α-normal, because
any dense subset of the x-axis will have a projection to R with p in its closure, but
the x-axis minus the origin does not have the origin in its closure.

To show (X, τ) is hereditarily strongly cwH, again let D be a relatively τ -closed
discrete subset of some open set U containing 0. As before, let B be a family
of closed balls centered on points of (0, ε] × {0} such that D ∩ B(0, ε) ⊂

⋃
B ∪

[ (0, ε) × {0}], but this time with p outside the closure of {x ∈ R : (x, 0) ∈
⋃
B}.

Let U be the trace on (0,+∞) of an open neighborhood of p whose closure misses
{x ∈ R : (x, 0) ∈

⋃
B}. The complement of this closure is a union of open intervals;

for each such open interval (a, b) contained in B(0, ε), let B(a, b) be the closed ball
in R2 of diameter b − a that meets the x-axis in [a, b]. Let B′ be the set of all
B(a, b). Each member of B is in the E-interior of some B(a, b), so we can expand
D ∩

⋃
B′ to a τ -discrete family of open balls inside

⋃
B′. Since the rest of D is

nowhere dense in the relative topology of the x-axis, its projection to R does not
have p in its closure, and so we can define closed balls of positive radius centered
on each of its points without the union of the balls projecting to a set with p in its
closure, and finish the argument as in Example 2.10.

By taking the subspace of doubly rational points in Example 2.10 and Example
2.11, we get countable spaces that have all the properties of these examples except
for being Baire. None of these four examples is sequential, however. Let A be
positive half of the parabola y = x2 (or, in the countable case, its set of rational
points). Then A clearly has the origin in its τ -closure, yet A is τ -sequentially closed:
every τ -convergent sequence is E-convergent, so we need only check those sequences
in A that E-converge to the origin. We can embed an infinite subsequence of each
such sequence in a family C of closed balls that conforms to the recipe in Example
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2.10, and if we split this sequence of balls into two infinite subsequences, at most
one can have a projection with p in its closure.

Murtinova’s countable example Y in [Mu2] is not sequential either. It is clear
from her description that X × {0} is sequentially closed but has ∞ in its closure.

3. Some regular non-normal examples

In contrast to the foregoing examples, we have the theorem that every first
countable, strongly ω-cwH space is regular. In fact, we can even weaken “strongly
ω-cwH” to “wD(ℵ0)”: see [V], where “wD(ℵ0)” is referred to simply as “wD”.

The following example shows that first countability cannot be omitted from
Question 1.7 even if regularity is added:

Example 3.1. A regular scattered hereditarily strongly cwH (hence hereditarily
β-normal) space that is not normal.

Let S = {α < ω2 : cf(α) = ω1}, and consider the set

X = {(α, β) : β ≤ α ≤ ω2 and (α, β) 6= (ω2, ω2)}.

Partition X into
A = {(α, α) : α < ω2}
B = {(ω2, β) : β < ω2}
I = {(α, β) : β < α < ω2}

Topologize X as follows
(i) Let each (α, β) ∈ I be isolated.
(ii) an open basis of (α, α) ∈ A consist of all sets of the type

{(γ, γ) : α0 < γ ≤ α} ∪
⋃

{{γ} × Cγ : α0 < γ ≤ α and γ ∈ S},

where α0 < α and every Cγ is a closed unbounded (club) subset of γ.
(iii) an open basis of (ω2, β) ∈ B consist of all the sets

{(α, γ) : β0 < γ ≤ β and αγ < α ≤ ω2},

where β0 < β and β ≤ αγ < ω2 for each γ.
Below is a summary of known results of X.

(1) All basic open sets defined above are closed, and hence, X is a Tychonov
space.

(2) X is β-normal [Mu1] but not normal. The closed sets A and B cannot be
separated by disjoint open sets.

(3) A ∼= B ∼= ω2 which is hereditarily strongly cwH.

We will now show that X is hereditarily strongly cwH. Let Y be a subspace of
X, and let D ⊂ Y be a closed discrete subset of Y . Without loss of generality, we
may assume D ⊂ A ∪ B. Consider the following subsets

• DA = D ∩ A
• DB = D ∩ B
• NA = {α ∈ S : (α, α) ∈ D ∩ A}
• NB = {α ∈ ω2 : (ω2, α) ∈ D ∩ B}

Notice that DA and DB are relatively discrete subspaces of X. Since the closed
sets clX(DA) and clX(DB) are disjoint, there are disjoint open sets OA and OB

such that DA ⊂ OA, DB ⊂ OB , and clX(OA)∩ clX(OB) = ∅ by the β-normality of
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X. Since A and B are closed, we can choose OA and OB such that A∩clX(OB) = ∅
and B ∩ clX(OA) = ∅.

Since ω2 is hereditarily strongly cwH, for each α ∈ NA, there is a α0 ∈ ω2 such
that

(i) NA ∩ (α0, α] = {α},
(ii) {(α0, α] : α ∈ NA} is a pairwise disjoint family of open sets in ω2, and
(iii) {(γ, γ) : α0 < γ ≤ α} ⊂ OA

For each γ ∈ (α0, α] ∩ S, choose a club subset Cγ of γ such that {γ} × Cγ ⊂ OA.
For every α ∈ DA, set

Uα = ({(γ, γ) ∈ Y : γ ∈ (α0, α]} ∪
⋃

{({γ} × Cγ) ∩ Y : γ ∈ (α0, α] ∩ S}).

For each β ∈ NB , there is a β0 ∈ ω2 such that

(iv) NB ∩ (β0, β] = {β},
(v) {(β0, β] : β ∈ NB} is a pairwise disjoint family of open sets in ω2, and
(vi) {(ω2, γ) : β0 < γ ≤ β} ⊂ OB .

For each γ ∈ (β0, β], chose αγ such that {(α, γ) : αγ < α ≤ ω2} ⊂ OB . For each
β ∈ NB , set

Vβ = ({(α, γ) ∈ Y : β0 < γ ≤ β and αγ < α ≤ ω2}).

It remains to show that

U = {Uα : α ∈ NA} ∪ {Vβ : β ∈ NB}

is a discrete collection of open sets. Clearly, U is pairwise disjoint.
Let y ∈ Y \

⋃
U . If y ∈ I, then y is isolated and {y} ∩ (

⋃
U) = ∅. If y ∈ A,

then y = (α, α) for some α ∈ ω2. Then there is α0 < α such that {(γ, γ) :

α0 < γ ≤ α} ⊂ Y \
⋃
{Uα : α ∈ NA} since DA is closed. Since A ∩ OB = ∅, one

can find an open neighborhood of y which misses
⋃

U . Similarly, if y ∈ B, then
y = (ω2, β) for some β ∈ ω2. Then there is a β0 < β such that {(ω2, γ) : β0 < γ ≤

β} ⊂ Y \
⋃
{Vβ : β ∈ NB} since DB is closed. Since B ∩ OA = ∅, one can find an

open neighborhood of y which misses
⋃
U . Therefore, Y is strongly cwH and X is

hereditarily strongly cwH. �

In [W], M. Wage described a machine that takes any normal, noncollectionwise
normal space X and produces a nonnormal space X∗. We will show that if X
is hereditarily strongly cwH in addition to the properties above, then X∗ will be
hereditarily strongly cwH and nonnormal.

We begin by describing Wage’s machine. Suppose that X is a normal space that
is not cwN. Let {Hα : α < κ} be a discrete collection of closed sets which witnesses
the non-cwN of X. Let H = ∪{Hα : α < λ} and C = X − H. Let

X∗ = (X × {0, 1}) ∪ (C × {(α, β) : α, β < λ and α 6= β}).

If A ⊂ X and δ ∈ {0, 1}∪{(α, β) : α, β < λ and α 6= β}, define Aδ = (A×{δ})∩X∗.
Isolate the points of X∗ − (H0 ∪ H1). (That is, let both {p} and {p}c be open

in X∗ if p is not in H0 ∪ H1.) For each open set U ⊂ X and α < λ such that U is
contained in Hα ∪ C, define the following basic open subsets of X∗:

∪{U(α,β) : α 6= β < λ} ∪ U0 and ∪ {U(β,α) : α 6= β < λ} ∪ U1.
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Note that if U is open in X and U ⊂ Hα ∪ C, then the two open subsets of X∗

derived from U above are disjoint. Give X∗ the topology generated by the base
described above.

M. Wage showed that X∗ is T1 and regular but not normal. (The closed subsets
H0 and H1 cannot be separated.) For A ⊂ X∗, define π(A) = {x ∈ X : {x}×{δ} ∈
A for some δ}.

Theorem 3.2. If X is hereditary strongly cwH, then X∗ is hereditary strongly
cwH.

Proof. It suffices to show that each open subset of X∗ is strongly cwH. Let O be
an open set of X∗, and let D be a relatively discrete subset of O. Without loss of
generality, assume D ⊂ H0 ∪ H1. Note that π(O0) and π(O1) are open subsets of
X and π(D0) is a closed discrete subset of π(O0) ∪ π(O1). Since X is hereditarily
strongly cwH, let U0 be a family of open sets of X such that

(a) for every U ∈ U0, U ⊂ π(O0)
(b) U0 is a discrete open expansion of π(D0) in π(O0) ∪ π(O1), and
(c) for every U ∈ U0, clX(U) ⊂ Hα ∪ C for some α < λ,

Note that for each x ∈ π(D0), there exists a unique αx < λ such that x ∈ Hαx and
there exists a unique Ux ∈ U0 such that x ∈ Ux. For x ∈ π(D0), define

Bx = (∪{(Ux)(αx,β) : β < λ and β 6= αx} ∪ (Ux)0) ∩ O

and let
B0 = {Bx : x ∈ π(D0)}.

claim: B0 is discrete in O.
Let y ∈ O. We will consider three cases: (1) y ∈ X∗ − (H0 ∪ H1), (2) y ∈ H0, and
(3) y ∈ H1.
case (1): Since B0 is pairwise disjoint and y is isolated, y meets B0 in at most one
set.
case (2): Since U0 is discrete in π(O0), there is an open subset V of π(O0) such

that V meets at most one member of U0. Let α′ be the unique ordinal such that
π(y) ∈ Hα′

. Then

Bπ(y) = (∪{(V )(α′,β) : β < λ and β 6= α′} ∪ V0) ∩ O

meets at most one member of B0.
case (3): There exists a unique α < λ such that π(y) ∈ Hα. Let V be an open set

of X such that V meets U0 in at most one member. Suppose that U ∩ V 6= ∅ for
some U ∈ U0. If clX(U) 6⊂ Hα ∪ C, then one can find an open set W ⊂ X such
that U ∩ W = ∅ by part (c). Let

BW = (∪{W(β,α) : β < λ and β 6= α} ∪ V1) ∩ O.

Then BW ∩ (∪B0) = ∅. If clX(U) ⊂ Hα ∪ (X\H), define

BV = (∪{V(β,α) : β < λ and β 6= α} ∪ V1) ∩ O.

Then BU ∩ BV = ∅ and BV ∩ (∪B0) = ∅.

Note that (3) shows that D1 ∩ (∪B0) = ∅. Similarly, expand π(D1) to a discrete
open collection B1 with ∪B1 ⊂ O\∪B0. Then B0 ∪ B1 is a discrete expansion of D
in O. �

Example 3.3. Another regular hereditary strongly cwH space that is not normal.
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Proof. Fleissner’s George is hereditarily normal and hereditarily cwH but is not
cwN. Hence it is hereditarily strongly cwH. Inputting George into M. Wage’s ma-
chine above produces a hereditarily strongly cwH non-normal space. �

It is easy to see that Wage’s machine produces a scattered space from a scattered
space. Since Fleissner’s George is scattered, Example 3.3 is scattered. By Theorem
2.8, Example 3.3 is another example of a β-normal non-normal space in ZFC.

4. Product theorems and a consistent non-normal example

The following theorem sets the stage for our first consistent counterexample. It
is a criterion reminiscent of Katětov’s theorem that X × (ω + 1) is hereditarily
normal iff X is perfectly normal, and also of Dowker’s criteria for when X × (ω +1)
is normal.

Theorem 4.1. If X is a regular space, the following are equivalent:

(1) X × (ω + 1) is hereditarily strongly cwH
(2) X is hereditarily strongly cwH, every discrete subspace of X is an Fσ, and

for each countable family {Dn : n ∈ ω} of discrete subspaces of X, there is
a choice of open sets Un ⊃ Dn such that

(F =)
∞⋂

n=0

c`X(
∞⋃

k=n

Dk) =
∞⋂

n=0

c`X(
∞⋃

k=n

Uk).

Proof. (1) ⇒ (2): Since X × {n} is clopen and homeomorphic to X for each
n ∈ ω, X must clearly be hereditarily strongly cwH.

If D is a discrete subspace of X, let Y = [X × (ω + 1)] \ [(D \ D) × {ω}]. Then
F0 = (D \ D) × ω and F1 = D × {ω} are disjoint closed sets in Y , the latter of
which is discrete. Using Lemma 2.6, let U and V be disjoint open subsets of Y
containing F0 and F1, respectively, and let Dn = {d ∈ D : 〈d, n〉 ∈ V }. Clearly,
D =

⋃∞

n=0 Dn. Also, Dn is closed in X for all n; indeed, any of its limit points

would have to be in D \ D, but (D \ D) × {n} ⊂ U .
If Dn and F are as in (2), let Y =

⋃
{Yα : α ≤ ω} where Yω = (X \ F ) × {ω}

and Yn = [X \ (Dn \ Dn)] × {n} for n ∈ ω. Then D =
⋃
{Dn × {n} : n ∈ ω} is

closed discrete in Y and is disjoint from the closed subset Yω of Y . Let U be an
open subset of Y containing D whose closure misses Yω. Then Un = U ∩ (X ×{n})
is as desired.

(2) ⇒ (1): Let Y be an open subspace of X × (ω + 1) and let D be closed discrete
in Y . It is enough to expand D to a disjoint family of open subsets of Y whose
union is relatively discrete in Y .

Let π be the restriction to Y of the projection of X × (ω + 1) onto X. Let
Dn = π→(D ∩ (X × {n})) and let Dω = π→(D ∩ (X × {ω})). Then each Dα is a
discrete subset of X, and D =

⋃
{Dn ×{n} : n ∈ ω}. Let F ⊂ X be as in (2); then

F ×{ω} is the derived set in X × (ω + 1) of D \ (X ×{ω}), and (F ×{ω})∩ Y = ∅
because D is relatively closed in Y . Expand each D∩(X×{n}) to a discrete family
of open sets contained in Un ×{n}. The union of these families has closure meeting
X × {ω} in F × {ω} and is thus discrete in Y .

It remains to expand Dω×{ω} to a discrete collection of open sets. First, expand
Dω to a disjoint family {Vd : d ∈ Dω} of open subsets of Xω = X \ (Dω \Dω) that
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is relatively discrete in Xω. Next we bring the fact that discrete sets are Fσ in X
into play. Let Dω be the ascending union of closed sets Dn

ω(n ∈ ω), and let

Cn = Dn
ω \ c`X(

∞⋃

k=n

Uk).

Then Dω is also the ascending union of the closed sets Cn.
In Y ⊂ X × (ω + 1), expand (Cn \ Cn−1) × ω to a family Gn of open sets of the

form

Gd = Y ∩ (Wd × (ω \ n))

such that Wd ⊂ Vd. Then G =
⋃

n∈ω Gn is a discrete family of open subsets of Y .
�

We will now use the criterion (2) to provide a consistent example of a locally
compact, locally countable (hence first countable) hereditarily strongly cwH space
which is not normal. The following lemma paves the way.

Lemma 4.2. If X is a locally countable, hereditarily normal space and Q is a
countable subset of X, then there is an open subset U of X containing Q such that
U \ Q is countable.

Proof. Let V be a countable open set containing Q, and let Y = (X \ Q) ∪ V .
Using normality of Y and the fact that c`Y Q ⊂ V , let U be an open subset of V
containing Q and satisfying c`Y U ⊂ V . Then c`XU = c`Y U ∪ c`XQ. �

We can clearly weaken “hereditarily normal” in Lemma 4.2 to “hereditarily
pseudonormal”:

Definition 4.3. A space is pseudonormal if every pair of disjoint closed sets, one
of which is countable, can be put into disjoint open sets.

Theorem 4.4. If X is a hereditarily pseudonormal, hereditarily separable, locally
countable space, then X × (ω + 1) is hereditarily strongly cwH.

Proof. X is hereditarily strongly cwH because it is hereditarily pseudonormal
and every discrete subspace is countable. Obviously, every discrete subspace of X
is an Fσ. Finally, suppose {Dn : n ∈ ω} is a family of discrete subspaces of X. For
each n ∈ ω, let Qn =

⋃∞

k=n Dk and let Vn be an open subset of X containing Qn

such that Vn \ Qn is countable, and such that Vn+1 ⊂ Vn for all n.

With F as in Theorem 2.1 (2), let A =
⋂
{Vn : n ∈ ω} and let A \ F = {an :

n ∈ ω}. [Clearly, A \ F is countable!] For each k ∈ ω pick m(k) ≥ k such that
ak /∈ Qm(k), pick an open nbhd Wk of ak whose closure misses Qm(k), and let
Un = Vn \

⋃
{Wk : m(k) ≤ n}. Then Un is as in (2). �

Example 4.5. [Assuming ♦] A hereditarily strongly cwH, locally compact, locally
countable, non-normal space.

The example is X × (ω + 1) where X is a locally compact, locally countable,
hereditarily separable, hereditarily normal Dowker space. Such a space X was
constructed in [Ny2] using the axiom ♦. It is immediate from Theorem 4.4 that
X × (ω +1) is hereditarily strongly cwH, but since X is Dowker, X × (ω +1) is not
normal.
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5. Some related independence results involving wD(ℵ1)

In Section 7, we will give a ZFC example (7.1) to show that “locally Lindelöf”
cannot be dropped from (1) in the following theorem.

Theorem 5.1. The following statements are ZFC-independent:

(1) Every regular, locally Lindelöf, hereditarily wD(ℵ1) space is pseudonormal.
(2) Every locally compact, hereditarily wD(ℵ1) space is pseudonormal.
(3) Every locally compact, locally countable, hereditarily wD(ℵ1) space is wD(ℵ0).

Moreover, (3) is equivalent to b > ω1.

Regularity is needed in Theorem 5.1 (1) since every second countable, non-
regular space (of which there are many easy examples) is vacuously (hereditarily)
wD(ℵ1), but is not even wD(ℵ0), thanks to the theorem mentioned at the beginning
of Section 3.

The first step in proving Theorem 5.1 is an easy known result which we prove
for the sake of self-containment:

Lemma 5.2. In a locally Lindelöf regular space, every point has an open Lindelöf
neighborhood.

Proof. Each point has a closed Lindelöf, hence normal neighborhood, so the
space is Tychonoff and has a base of cozero sets. A cozero subset of a Lindelöf
space is Lindelöf. �

The following two lemmas have the same proof as Lemma 3.1 and Lemma 3.9 in
[JNySz]:

Lemma 5.3. In a locally Lindelöf, hereditarily wD(ℵ1) space, the boundary of any
open Lindelöf subset has countable spread.

Lemma 5.4. Let X be a locally Lindelöf regular space such that every Lindelöf
subset has Lindelöf closure. Then any two disjoint closed subsets of X, one of
which is Lindelöf, can be put into disjoint open sets. Hence X is pseudonormal.

Proof of Theorem 5.1. To show the consistency of (1), use the well-known facts
that every regular space of countable spread is hereditarily Lindelöf iff there are no
S-spaces, and that the PFA implies there are no S-spaces [R]. By Lemma 5.3, the
former fact implies that in a locally Lindelöf regular space, every Lindelöf subset has
Lindelöf closure. Now use Lemma 5.4. This obviously establishes the consistency
of (2) and (3) as well, but note that the foregoing arguments can obviously be
modified to show that (2) holds in any model in which every locally compact space
of countable spread is hereditarily Lindelöf, and (3) holds in any model in which
there are no locally compact, locally countable S-spaces. Models of (2) thus include
any model of MA(ℵ1) and also the model used in the solution of Katětov’s problem
[LT]. There are also models of (3) in which 2ℵ0 < 2ℵ1 [ENyS].

To complete the proof of Theorem 5.1, it is enough to show the “Moreover” part.
We will do even better:

Theorem 5.5. The following statements are equivalent:

(1) b > ω1.
(2) Every locally hereditarily Lindelöf, first countable, regular, hereditarily weakly

ω1-cwH space is pseudonormal.
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(3) Every locally compact, locally countable, hereditarily wD(ℵ1) space is pseudonor-
mal.

(4) Every locally compact, locally countable, hereditarily wD(ℵ1) space is wD(ℵ0).

Remark 5.6. Of course, many other equivalent statements could be included in
Theorem 5.5, intermediate between (2) and (3) or between (3) and (4). In fact, the
only reason (3) was included was for easy comparison with the following remark.

Remark 5.7. In forthcoming papers, it will be shown that the following variations
on (2) and (3) are also ZFC-independent, though not equivalent to b > ω1:

(2′): Every first countable, hereditarily strongly ω-cwH space is pseudonormal.
(3′): Every locally compact, locally countable, hereditarily strongly cwH space is

pseudonormal.

Specifically, Alan Dow has shown that in Cohen’s original model, every first
countable, strongly ω-cwH (“Property D”) space is pseudonormal, solving a prob-
lem posed in [vDW], where a first countable, strongly ω-cwH space was constructed
under p = c. The first author has constructed a counterexample to (2′) under the
same set-theoretic axiom, and a counterexample to (3′) under CH.

Remark 5.8. Dow’s result does not generalize to higher cardinals. In [vD1] there
is a locally compact, locally countable space in which the nonisolated points form a
countably compact subspace; thus the space is clearly strongly cwH. On the other
hand, the space has a pair of disjoint closed subspaces of cardinality ω1 which
cannot be put into disjoint open sets. This space is not hereditarily cwH, however
(it is separable and has an uncountable discrete subspace), so it does not answer
Question 1.6.

Proof of Theorem 5.5. It is enough to show (1) implies (2) and (4) implies
(1), inasmuch as every locally compact, locally countable space is regular, first
countable, and locally Lindelöf, while every pseudonormal space is wD(ℵ0).

To show (1) implies (2) we use Theorem 3.7 of [Ny1]:

Theorem. Every regular, first countable space of Lindelöf number < b is pseudonor-
mal.

Let X be locally hereditarily Lindelöf, first countable, and regular. Given a
countable closed subset C of X, let U be an open Lindelöf neighborhood of C. It
is clearly enough to show that C and U \ U can be put into disjoint open sets.
First we show that U is of countable spread. If there were an uncountable discrete
subset of U , the hereditarily weakly ω1-cwH property would give us an uncountable
disjoint collection of open subsets of U and hence of U ; but any family of disjoint
open subsets of a hereditarily Lindelöf space is countable.

Next we show that U is of Lindelöf number ≤ ω1; this and the theorem just cited
will finish the proof that (1) implies (2).

Suppose U has Lindelöf number > ω1. By induction, let Vα be defined for each
α < ω2 so that each Vα is a relatively open subset of U and contains some point yα

not in any Vβ (β < α). Then Y = {yα : α < ω2} is a scattered subspace of U . But

each Cantor-Bendixson level of Y is countable because U is of countable spread.
And every point of Y is on some countable level because Y is locally hereditarily
Lindelöf. This contradiction completes the proof that (1) implies (2).
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We will show (4) implies (1) by contrapositive. One main ingredient is the
powerful result of Todorčević that b = ω1 implies there is a locally compact, locally
countable, hereditarily separable space of cardinality ω1. The other is the following
theorem:

Theorem 5.9. Every locally compact, locally countable space of cardinality b can
be embedded as a co-countable subspace in one that is separable and does not satisfy
wD(ℵ0).

Once this theorem is proven, one need only note that every hereditarily separable
space is vacuously wD(ℵ1) to complete the proof that (4) implies (1) and hence of
Theorems 5.1 and 5.5.

Proof of Theorem 5.9. Let X have underlying set b and be given a locally
compact, locally countable topology. This makes it scattered, so the topology can
be chosen so that [0, ξ) is open for all ξ ∈ b.

An elementary fact about b is that there is a <∗-well-ordered set {fα : α < b} of
increasing functions that is <∗-unbounded [vD2]. Another is that any such family
is <∗-unbounded on every infinite set; that is, if A is an infinite subset of ω then
{fα � A : α < b} is <∗-unbounded on A.

So let {fα : α < b} be as above. We define a locally compact, locally countable
topology on X ∪ [ω × (ω + 1)] by induction, giving ω × (ω + 1) its usual topology,
making ω × ω the set of isolated points and making ω × {ω} and X into disjoint
closed subsets of our space Z.

To specify the topology on a locally compact scattered space S, it is enough
to specify a neighbornet—a function V assigning to each x ∈ S a neighborhood
V (x)—such that each V (x) is compact and open, and x is the unique point of
maximal rank in V (x). If x is isolated, this constrains the choice V (x) = {x}.
Otherwise the collection of all sets of the form V (x) \ [V (x0) ∪ · · · ∪ V (xn)], with
xi ∈ V (x) for all i, is a base for the neighborhoods of x, inasmuch as its intersection
is {x}, and any filterbase of closed neighborhoods of a point p in a compact space
whose intersection is {p} is automatically a base for the neighborhoods of {p}.

So now let V be such a neighbornet for X. We will define a neighbornet U for
X ∪ (ω × ω) such that U(ξ) ∩ X = V (ξ) for all ξ ∈ ω1 = X. This will be done by
attaching the graph of fξ as a “whisker” to ξ and trimming the whiskers attached to
the points of V (ξ) \ {ξ} by clipping off finitely many points in ways to be specified
by induction. In this way the union of ξ with the graph of fξ will be a topological
copy of ω + 1.

If (i, j) ∈ ω × ω, let U(i, j) = {(i, j)}, so that (i, j) is isolated in X ∪ (ω × ω). If
n ∈ ω, let U(n) be the graph of fn, together with n. If ξ ∈ X \ ω, assume U has
been defined for all η < ξ so that (ω × ω) ∪ [0, ξ) is locally compact and all points
of U(η) ∩ (ω × ω) are in f↓

η , where f↓ stands for the set of all points on or below
the graph of f .

Next recall Theorem 3.7 of [Ny1] cited above. Since V (ξ) is countable and
compact, V (ξ) \ {ξ} is closed in [0, ξ) ∪ [ω × (ω + 1)] and there are disjoint clopen
sets U and W in [0, ξ)∪[ω×(ω+1)] containing V (ξ)\{ξ} and its complement. Trim

U if necessary so that it meets ω×ω in a subset of f ↓

ξ . Also, have it contain the graph

of fξ, and let U(ξ) = U ∪ {ξ}. This extends the neighbornet to [0, ξ]∪ [ω × (ω + 1)
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so that U(ξ) is the one-point compactification of U , and so that the induction
hypothesis for ξ + 1 is satisfied.

Clearly, the space Z is locally compact, locally countable, separable, and has X
as a co-countable subspace. To see that Z is not wD(ℵ0), we use the closed discrete
subspace ω × {ω}. Let

D = {(in, ω) : n ∈ ω},

with in < in+1 for all n. If Un is an open set containing (in, ω), there exists kn

such that every point above (in, kn) is in Un. Let f(j) = kn for the least integer
n such that j < in. Then f : ω → ω is a nondecreasing function, and is below
the graph of all but countably many fα in infinitely many places. Since fα is
increasing, this implies fα(in) > f(in) for infinitely many n, so that

⋃
{Un : n ∈ ω}

has uncountably many points of X in its closure. �

When X is hereditarily separable, the space constructed in proving Theorem
5.9 is scattered of height and cardinality ω1: it is scattered and each point is on a
countable level because it is locally compact and locally countable, and each level
is countable because of hereditary separability, while b = |X| is uncountable.

By making a careful choice of hereditarily separable X, we can use a quotient map
under a variety of set-theoretic hypotheses to produce a non-regular, hereditarily
strongly cwH, Fréchet-Urysohn space. In the next section we will use the hypothesis
“b = ω1 + ∃ an Ostaszewski space.” In a forthcoming paper, the restriction b = ω1

will be eliminated by using a different choice of Y .

6. A consistent construction using Ostaszewski spaces

Definition 6.1. An Ostaszewski space is a locally compact, locally countable,
countably compact uncountable space in which every open subset is either countable
or co-countable.

If we omit “countably compact” in the foregoing definition, we get the definition
of a sub-Ostaszewski space. All sub-Ostaszewski spaces are hereditarily separable
and scattered of height ω1.

Example 6.2. [Assume “b = ω1 + ∃ an Ostaszewski space”] A locally countable,
hereditarily separable, hereditarily strongly cwH space which is Fréchet-Urysohn but
not regular.

Let X be an Ostaszewski space, so that X can be used in the construction of Z in
the proof of Theorem 5.9. Let S be the quotient space of Z obtained by identifying
the points of ω × {ω} to a single point p. Clearly S is both locally countable and
hereditarily separable.

S is not regular: If U is a neighborhood of p, it includes all points of ω×ω above
the graph of some function; now argue as in the proof that Z is not wD(ℵ0).

S is Fréchet-Urysohn: Every point of S has a countable base of nbhds except for
p, which has a countable open neighborhood U = (ω×ω)∪{p}. This neighborhood
is homeomorphic to the well-known Fréchet-Urysohn fan S(ω), and it is easy to see
that a subset of S \ {p} has p in its closure if, and only if, it meets some column
{n} × ω in an infinite set. Any sequence listing the points of this set converges to
p.
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S is hereditarily strongly cwH: First note that S is Hausdorff, since every point
of X has a neighborhood below the graph of some fα, and p is outside its closure.

Let D be a discrete subspace of S; by hereditary separability, D is countable.

Case 1: D ∩ X has co-countable closure (in X, hence in S).
Then W = (S \ D) ∪ D is countable, and clearly regular, so we can expand

(D ∩ X) ∪ {p} to a collection U of open sets that is discrete in W , and then
U ∪ {{d} : d ∈ D ∩ω ×ω} is an expansion of D to a discrete collection of open sets
in W .

Case 2: D ∩ X has compact closure.
Then D ∩ X and p can be put into disjoint open countable sets U and V . Because

X ∪ (ω×ω) is regular, we can expand D∩X to a countable collection U of disjoint
open subsets of U , relatively discrete in W = [(S \ D) ∪ D] \ {p}, all of which are
below the graph of some fα. Then

U ∪ {V \
⋃

U} ∪ {{d} : d ∈ D ∩ ω × ω}

is an expansion of D to a discrete collection of open sets in (S \ D) ∪ D.

In both cases, we are done—see the comments preceding Definition 2.3. �

In a forthcoming paper, other examples of hereditarily strongly cwH, Fréchet-
Urysohn, nonregular spaces will be constructed assuming the Continuum Hypoth-
esis (CH). This complements Example 6.2 somewhat because there are models of
CH in which there are no Ostaszewski spaces [ER] and also Ostaszewski spaces in
models where CH fails. For instance, V.I. Malykhin showed long ago [Ma] that Os-
taszewski spaces cannot be destroyed by the usual method of adding Cohen reals,
while J. Tatch Moore showed recently [Mo] that adding uncountably many ran-
dom reals to any ground model in the usual way gives an Ostaszewski space. A
generalization of this latter fact can be found in [DHM].

7. Some ZFC examples based on the Tychonoff plank

In this section we present an assortment of variations on the Tychonoff plank
that help clarify relationships between the properties we have studied here. The
following example shows that “locally Lindelöf” cannot be dropped from Theorem
5.1(1).

Example 7.1. A regular, scattered, hereditarily wD(ℵ1) space which is not wD(ℵ0).

Let X be the space with underlying set ω1 + 1 in which all points except ω1 are
isolated, while a set containing ω1 is open iff its complement is nonstationary. Let
Z be the subspace of X × (ω + 1) obtained by removing the corner point (ω1, ω).
In Z, no infinite subset of the countable closed discrete subspace E = {ω1} × ω
can be expanded to a discrete collection of open sets. Hence Z is not wD(ℵ0). On
the other hand, if D is a closed discrete subset of Z of cardinality ℵ1, the non-
isolated points of D \ E are contained in ω1 × {ω}, and if there are uncountably
many of them, there is a nonstationary subset N of ω1 such that (N × {ω})∩D is
uncountable. Then (N × {ω}) ∩ D can easily be expanded to a discrete collection
of open sets. Since the non-isolated points of Y form a closed discrete subspace,
the wD(ℵ1) property is clearly inherited by all subspaces of Y .
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Alan Dow came up with the following modification of 7.1, included here with his
permission.

Example 7.2. A hereditarily wD(ℵ1), hereditarily strongly ω-cwH regular space
that is neither β-normal nor pseudonormal.

Use the same space for X as in 7.1, but instead of ω + 1 use Y = Q ∪ {y}
where y is a remote point of βQ \ Q. Let Z be the subspace of X × Y obtained
by removing the corner point (ω1, y). The argument that Z is hereditarily wD(ℵ1)
is essentially unchanged. Since y is not in the closure of any nowhere dense subset
of Y , the product of any discrete subspace of Q with X fails to have any point
of (X \ {ω1}) × {y} in its closure. On the other hand, if U is a neighborhood of
any dense subset of Q, its complement is nowhere dense, so U has y in its closure;
consequently, the subspaces (X \ {ω1}) × {y} and Q × {ω1} witness the failure of
β-normality as well as of pseudonormality.

In [vDW], a ZFC example, due to Eric van Douwen, was announced of a strongly
ω-cwH (“Property D”) regular space which is not pseudonormal, but van Douwen
does not seem to have ever published this example, so Example 7.2 may be the first
example of such a space in print.

Example 7.3. A pair of hereditarily cwH regular spaces that are not α-normal

Let Z be the product space (ω1 + 1) × (Q ∪ {y}) with the corner point (ω1, y)
removed, and let S be the space obtained from Z by isolating the points of ω1 ×Q.
Discrete subspaces of {ω1} × (Q ∪ {y}) expand to relatively discrete collections of
open sets just as they do in Example 7.2. From this, and from the fact that closed
discrete subspaces of both spaces are countable, it follows that both Z and S are
strongly cwH. If D is a discrete subspace of S contained in ω1×{y}, then there is a
nonstationary subset N of ω1 such that D ⊂ N ×{y} and so D can be expanded to
a disjoint collection of open sets. So any discrete subspace of S can be expanded to
a disjoint collection of open sets. As for Z, the discrete subspaces of ω1× (Q×{y})
omit a set of the form C × (Q × {y}) where C is club in ω1, so

If A is a dense subset of {ω1} × Q, and I is the set of successor ordinals in ω1,
then A and B = I ×{y} cannot be put into disjoint open sets in either S or Z, just
as in the proof that Example 7.2 is not β-normal.

Neither Z nor S is strongly cwH: no infinite subset of {ω1} × (Q ∪ {y}) can be
expanded to a discrete collection of open sets. There are ZFC examples of strongly
cwH, hereditarily cwH regular spaces that are not α-normal, but the problem (see
Question 1.10) of finding one that is hereditarily strongly cwH is still not completely
solved. In a forthcoming paper, however, one will be constructed under the following
very general axiom:

Axiom 7.4. There is an uncountable cardinal λ such that 2λ = λ+.

To negate this axiom requires one to assume the consistency of some very large
cardinals; some inkling of how large they have to be is provided towards the end of
[F].

On the other hand, it takes only a minor modification of the above examples to
produce:
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Example 7.5. A hereditarily strongly cwH regular space that is neither β-normal
nor pseudonormal.

This space S is coarser than Example 7.2 and finer than the spaces of Example
7.3. We use the same underlying set [(ω1+1)×(Q∪{y})]\{(ω1, y)} for S, refining the
product topology by letting the points of ω1 × Q be isolated, while neighborhoods
of any point of {ω1} × Q are of the form W × U , where U is open in Q while
W = C ∪{ω1} with C a club subset of ω1. Neighborhoods of points in ω1 ×{y} are
their usual product neighborhoods. Informally, S is Example 7.2 with the closed
discrete subspace (X \ {ω1}) × {y} replaced by ω1.

To show that S is neither pseudonormal nor β-normal, argue just as in Example
7.2. The following facts show S is hereditarily strongly cwH: (1) discrete subsets of
{ω1} × Q expand just as in Example 7.2; and (2) if D is a discrete subspace of ω1,
then D omits a club subset C of ω1, and so the limit points of D × (Q ∪ {y}) are
just the limit points of D × {y}.

Example 7.1 can be modified in the same way as Example 7.2 was modified to
Example 7.5. If Y is a subspace of the resulting space, then Y satisfies a strength-
ening of wD(ℵ1): given any closed discrete subspace D of Y such that |D| = A1,
there is a subspace D0 of D such that D \ D0 is countable, and such that D0 can
be expanded to a discrete collection of open subsets of Y . In fact, we can take D0

to be D \ ({ω1} × ω).

8. The flip side

This paper would not be complete without some mention of what happens when
“normal,” etc. are switched with “[strongly] cwH” in the questions we have posed.
On the one hand, it has long been known that V = L implies that every first
countable normal space, and every locally compact normal space is cwH, hence
strongly cwH. The arguments for these facts in [F] and [W2] readily generalize to
show:

Theorem 8.1. [Assume V = L] Every first countable α-normal space, and every
locally compact α-normal space is cwH.

Theorem 8.2. [Assume V = L] Every first countable β-normal space, and every
locally compact β-normal space is strongly cwH.

On the other hand, it has also long been known that MA(ω1) implies the existence
of a locally compact, locally countable, perfectly normal (hence hereditarily normal)
space which is not cwH. This is just the reverse of the situation with the directions
we explored in the earlier sections. As shown in Section 4, V = L implies the
existence of a locally compact, locally countable, hereditarily strongly cwH space
that is not normal, while strengthenings of MA(ω1) seem to give the best chance
of affirmative answers to Questions 1.6 and 1.7.

In other models of set theory, the contrast is not so pronounced. Adding enough
Cohen reals makes every first countable normal space and every locally compact
normal space (strongly) collectionwise Hausdorff; if we assume the consistency of
supercompact cardinals, we can even get collectionwise normality [F]. As alluded
to in Remark 5.7, adding ℵ2 Cohen reals to a model of V = L also makes every
first countable strongly ω-cwH space pseudonormal. However, if uncountably many
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Cohen reals are added to any model of set theory, the forcing extension satisfies
b = ω1 and thus gives us a locally compact, locally countable space that is wD(ℵ1)
but not wD(ℵ0).

Random reals do not change b, and the status of our questions is unknown in
models where random reals are added to a model of MA(ω1), where b > ω1; also
the status of the statements in Theorem 5.1 (1) and (2) is unknown. But the best
chance of going both ways—from normality-like properties to cwH-variations and
back—seems to be the family of forcings which includes the one used in solving
Katětov’s problem. In these iterated forcings, generic sets are added at initial
stages to all posets of a certain kind (e.g., ccc) that do not destroy a carefully
crafted Souslin tree, and the last step consists of forcing with the tree itself. In
some of these models, every first countable normal space is (strongly) cwH, there
are no locally compact S or L spaces, and many other consequences of V = L and
of MA(ω1) hold simultaneously.
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