
A note on Ck(irrationals)

The main result in this note was obtained in 2001. It is that Ck(P) does not have
a σ-closure-preserving base at the origin consisting of countable unions of the usual
basic open sets centered on the origin. A slightly different proof was subsequently
published by Gartside and Glyn [1] so this note will not be published unless it is
supplemented by new results.

Notation. In our context, X is a space homeomorphic to the space of irrational
numbers with the usual topology, while Ck(X) denotes the ring of continuous real-
valued functions on X, with the compact-open topology. If h ∈ Ck(X) and K is a
compact subset of X and ρ > 0, let

B(h,K, ρ) = {f ∈ X : |h(x) − f(x)| < ρ for all x ∈ K}.

As is well known, these sets form a base for Ck(X).
Given a real number r, we let r denote the constant function with domain X

and range {r}, and we let −→r denote the constant function with domain Ck(X) and
range {r}.

Let T denote the space of all nondecreasing functions from ω to itself, with the
product topology. As is well known, T is homeomorphic to ωω itself, and thus to
the space P of irrationals. The following two facts are well known, but the proofs
are so short that they are included here:

Theorem A. Ck(X) is a cosmic space; that is, it has a countable network.

Proof. Let B be a countable base for P, and for B ∈ B and rationals q < r, let
[B, (q, r)] = all f in Ck(P) with f(B) ⊂ (q, r), then the collection of all finite
intersections of such things is a network. ¤

Corollary. Ck(X) is hereditarily separable and hereditarily Lindelöf, and sequen-
tially separable.

Proof. A space is cosmic iff it is the continuous image of a separable metrizable
space. Sequential separability is an immediate consequence, while the other two
properties are easy consequences of having a countable network. ¤

This corollary allows us to write any open set of Ck(P) and hence of Cκ(T ) as
a countable union of basic open sets. Because of the corollary and the following
well-known theorem, the question of whether Ck(P) is M1 reduces to the question
of whether there can be a σ-closure-preserving base of open sets about the origin−→
0 .
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Theorem B. [cf. [2], proof of Lemma 24] If G is a topological group, and D is a
dense subset of G, and B is an open base at the identity, then {dB : d ∈ D,B ∈ B}
is a base for the topology on G. ¤

Theorem 1 below shows that if we have a base in Cκ(T ) at
−→
0 of open sets which

are the union of basic open sets as above, each of which is centered at
−→
0 , then the

base cannot be σ-closure-preserving.

Lemma 1. Given a base B at
−→
0 ∈ T of sets of the form

∞⋃

n=0

B(
−→
0 ,Kn, ρn),

and ρ > 0, there are a family {Bα : α < b} ⊂ B, and pα ∈ T , and {qα
n : n ∈ ω} ⊂ T ,

and 〈ρα
n : n ∈ ω〉 with supremum ρα ≤ ρ such that {pα : α < b} is <∗-increasing

and <∗-unbounded, and such that

B(
−→
0 , (qα

n)↓, ρα
n) ⊂ Bα ⊂ B(

−→
0 , p↓α, ρα)

for all n ∈ ω.

Proof. Choose the pα first, and make an initial choice of ρ′α. Since B is a base at−→
0 , we can assume that if B ∈ B, then all ρn associated with B as in the statment
of this lemma are less than ρ; and since each B(

−→
0 , p↓α, ρ′α) contains some member

of the base, we can choose Bα ∈ B to be contained in it. If

Bα =
∞⋃

n=0

B(
−→
0 ,Kα

n , ρα
n),

let ρα be the supremum of the ρα
n; clearly ρα ≤ ρ′α, and since each B(

−→
0 ,Kα

n , ρα
n) is

a subset of B(
−→
0 , p↓α, ρ′α), and ρα

n ≤ ρα, we have Kα
n ⊂ p↓α and so B(

−→
0 ,Kα

n , ρα
n) ⊂

B(
−→
0 , p↓α, ρα) for all n. Finally, it is clear that if qα

n majorizes the compact set Kn,
then B(

−→
0 , (qα

n)↓, ρα
n) ⊂ Bα for all n. ¤

Theorem 1. If B is a base at
−→
0 ∈ T of sets of the form

∞⋃

n=0

B(
−→
0 ,Kn, ρn),

then B is not σ-closure-preserving.

Proof. Let pα, Bα, etc. be as in Lemma 1. Taking a subfamily of b members if
necessary, we may assume {ρα : α < b} is both bounded in R and bounded away
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from 0. By the same kind of cutting-down-if-necessary argument, it is enough to
show that {Bα : α < b} is not closure-preserving.

Let qα = qα
0 for all α. Then pα(k) ≤ qα(k) for all k ∈ ω, because of the double

containment in the statement of Lemma 1.

Inductively define q ∈ T one coordinate at a time so that, for all n ∈ ω, there
are b-many qα extending q ¹ n. The associated pα’s are still <∗-unbounded, so that
after q has been defined, there will be an infinite set of integers k for which the
following set is unbounded in ω:

{pα(k) : qα ¹ k = q ¹ k}

Therefore, we can define a strictly increasing sequence of ordinals 〈αn〉n∈ω by in-
duction, along with a strictly increasing sequence of non-negative integers kn, so
that pα0(k0) > q(k0) and, if n > 0:

(1) qαn(j) = q(j) for all j ≤ kn−1;
(2) pαn(kn) > q(kn); and
(3) pαn(kn) > qαi(kn) for all i < n.

Notation: For σ ∈ iω, let U [σ] = {p ∈ T : p ¹ i = σ}

Let σn = pαn ¹ kn + 1. From (1) – (3) and the fact that pα ≤ qα it follows that
pαn(kn) > qαm(kn) for all m 6= n. From this follows item (b) below, and part (c)
follows similarly:

(a) pαn ∈ U [σn];
(b) U [σn] ∩ q↓αm

= ∅ for all m 6= n; and
(c) U [σn] ∩ U [σm] = ∅ for all m 6= n,

Another easy consequence of (1) and the definition of σn and the fact that pα ≤ qα

is that the boundary of
⋃

n∈ω U [σn] is a (compact) subset of q↓.

Remarkably enough, although the qα
n with n > 0 play no role in these definitions,

there is a subsequence of 〈Bαn : n ∈ ω〉 and a function h in the closure of the union of
the members of the subsequence, but not in the closures of the individual members.
These other qα

n come into play in defining h, via a concept of “dangerous for n wrt
j” introduced below. Once we find the desired subsequence, Theorem 4 follows.

By picking a subsequence if necessary, we may assume ραn → ρ > 0. The
remainder of the proof is covered by two main cases. Case 1 is where ραn ↑ ρ, while
Case 2 is where ραn ↘ ρ, where by rn ↑ r is meant that rn → r and rn < rn+1 for
all n, whereas by rn ↘ r is meant that rn → r and rn ≥ rn+1 for all n. Clearly
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every convergent sequence of reals has a subsequence falling under one of these two
descriptions.

Case 1. Let h = ρ. This is the easy case; h is in the uniform closure of the union
of the Bαn but is not even in the product-topology closure of the individual Bαn .
Indeed B(h, {pαn}, ρ−ραn) misses even B(

−→
0 , p↓αn

, ραn). On the other hand, if ε > 0,
pick N ∈ ω so that ρ− ραN

< ε, pick k so that ρ− ραN

k < ε, and let g(x) = ραN

k − δ

for all x ∈ T , where δ < ε − ρ + ραN

k . Then clearly g ∈ B(
−→
0 , (qαN

k )↓, ραN

k ), while
||h − g||∞ = ρ − ραN

k < ε, so a fortiori g ∈ B(h,K, ε) for all compact K.

Case 2. In this case we may find ourselves taking subsequences infinitely many
times, so to avoid too many multiple subscripts and a confusing tangle of “wolog”s,
we will index the sequences using a decreasing chain of subsets of ω. The final
outcome will be a subset Aω = {n(j) : j ∈ ω} of ω and a function h in the closure of⋃
{Bαn : n ∈ Aω} but not in the closure of any individual Bαn (n ∈ Aω). We define

h ¹ U [σn](n ∈ Aω) by induction, beginning with the assumption that ραn ↘ ρ (> 0).

Let n(0) = 0, let A0 = ω, let ε0 = ρα0 + 1, and let h(x) = ε0 for all x ∈ U [σ0].
Given n ∈ ω \ {0} and r ∈ R, call r dangerous for n wrt 0 if, for each compact
K ⊂ T , there exists k such that K∩Kαn

k ∩U [σ0] = ∅, and such that ραn

k ≥ r. From
(b) above, it follows that ραn

0 is dangerous for all n > 0 wrt 0, while it is clear that
no r > ραn is dangerous for any n > 0 wrt 0.

For each n > 0, let δ0
n = sup{r : r is dangerous for n wrt 0}. If 〈δ0

n〉 has a strictly
increasing (convergent) subsequence, 〈δ0

n : n ∈ A〉 ↑ δ0 (≤ ρ), let Aω = ω, and let
h(x) = δ0 whenever x /∈ U [σ0]. On the other hand, if there is no such subsequence,
then there is a monotone non-increasing subsequence 〈δ0

n : n ∈ A1〉 converging to
some δ0 (≤ ρ). In this case let n(1) = min(A1), let εn(1) = δ0

n(1) + 1/2, and let
h(x) = εn(1) for all x ∈ U [σn(1)]. Note that εn(1) is not dangerous for any n ∈ A1

wrt 0. Continue building h by induction as follows.

The general induction hypothesis at j ∈ ω \ {0} is that Ai and n(i) = min(Ai)
and h ¹ U [σn(i)] have been defined for all i ≤ j and that:

(∗) 〈δi
n : n ∈ Ai〉 ↘ δi for all i ≤ j, and if m < i < j then ρ ≥ δm ≥ δi > 0.

For each n ∈ A′
j(= Aj \ {min Aj}) and each r ∈ R, call r dangerous for n wrt j if

the following holds:

For each compact K there exists k such that K ∩ Kαn

k ∩
⋃

i≤j U [σn(i)] = ∅,
and such that ραn

k ≥ r.
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Again by (b), ραn
0 is dangerous for all n ∈ A′

j wrt j. It is also easy to see that
if r is dangerous for n wrt j, then r is dangerous for n wrt i for all i < j; and also
that the set of reals dangerous for n wrt j forms an initial segment of R.

Obviously, r is not dangerous for n wrt j iff there exists a compact subset K of
T such that for each k ∈ ω, either K ∩ Kαn

k ∩
⋃

i≤j U [σn(i)] 6= ∅, or ραn

k < r.

The purpose of this concept is to find a value for h(x) on U [σn] which will put
h outside the closure of Bαn , but which also makes it possible to continue defining
h on the rest of T so that it will be in the closure of the union of all the Bαm . If
r is dangerous for n wrt j, and if h ≤ r on K ∩ Kαn

k whenever this intersection is
nonempty, then h is in the closure of Bαn no matter how h is defined elsewhere.

For each n ∈ A′
j let δj

n = sup{r : r is dangerous for n wrt j}. If 〈δj
n : n ∈ A′

j〉
has a strictly increasing subsequence, 〈δj

n : n ∈ Aj+1〉, let its limit be δj(≤ δj−1);
let Aω = Aj+1 ∪ {n(i) : i ≤ j} and let h(x) = δj for all x /∈

⋃
i≤j U [σn(i)] Clearly, h

is continuous. For notational convenience, write εm = δj for all m > n(j),m ∈ Aω,
and have {n(j) : j ∈ ω} list Aω in its natural order. By definition of δj , εm is not
dangerous for n wrt j for any n ∈ Aj+1.

On the other hand, if 〈δj
n : n ∈ A′

j〉 has no strictly increasing subsequence, then
there is a monotone non-increasing subsequence 〈δj

n : n ∈ Aj〉 converging to some
δj(≤ δj−1). In this case let n(j + 1) = min(Aj), let εn(j+1) = δj

n(j+1) + 1/2j+1,
and continue the induction. It is clear from the definition of δj

n that εn(j+1) is not
dangerous for any n ∈ Aj+1 wrt j.

If the induction is forced to continue for infinitely many steps, let Aω = {n(i) :
i ∈ ω}. Then {εm : m ∈ Aω} is a monotone non-increasing sequence converging to
some δ ≤ ρ. We then define h on U [σn(j ] to equal εn(j) and let h equal δ everywhere
outside

⋃
{U [σm] : m ∈ Aω}. Then h is clearly continuous.

` If m ∈ Aω, then h is not in the closure of Bαm . This is clear in case m = 0, since
then B(h, {pα0}, 1) even misses B(

−→
0 , p↓α0

, ρα0). Otherwise, we have εm = εn(j+1)

for some j, and no r > δj
m is dangerous for m wrt j, so there is a compact set C

that meets every set of the form Kαm

k ∩
⋃

i≤j U [σn(i)] for which ραm

k > δj
m. Let

K = {pαm} ∪ C.

Suppose first that Aω = Aj+1 ∪ {n(i) : i ≤ j} for some j, and that m ∈ Aj+1, so
that εm = δj . Let ε = min{δj − δj

m, 1/2j}.
`` Claim. B(h,K, ε) does not meet Bαm =

⋃∞
k=0 B(

−→
0 ,Kαm

k , ραm

k ).

Proof of Claim. Fix k ∈ ω. If K ∩ Kαm

k ∩ U [σn(i)] = ∅ for all i ≤ j, and
f ∈ B(

−→
0 ,Kαm

k , ραm

k ), then f(pαm) < δj
m, whereas h(pαm) = δj .
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On the other hand, if K ∩ Kαm

k ∩
⋃

i≤` U [σn(i)] 6= ∅, let p ∈ K ∩ Kαm

k ∩ U [σn(i)]
for the least i ≤ j for which this is possible. If i = 0 then f(p) < ρα0 whereas
h(p) = ρα0 + 1. If i > 0, then, by minimality of i, and by the fact that any
r > δi−1

n(i) is not dangerous for m with respect to i − 1, we have f(p) < δi−1
n(i) for all

f ∈ B(
−→
0 ,Kαm

k , ραm

k ), whereas h(p) = δi−1
n(i) + 1/2i ≥ δi−1

n(i) + 1/2j . aa
If the induction continues to where Aj+2 is defined, then we let ε = 1/2j+2 and

follow the above argument, except that now h(pαm) = δj
m + 1/2j+1. a

` h is in the closure of
⋃
{Bαm : m ∈ Aω}. Given ε > 0 and a compact subset

K of T , choose j in ω as follows. If the induction stops at some stage j, pick ` > j

large enough so that δj
n(`) > δj − ε/2, while if the induction continues for infinitely

many steps, choose ` so that εn(`) − δ < ε/2. In the latter case, let m = n(`); then
δ`
n(`) − ε/2 is dangerous for m wrt ` − 1. Hence there exists k such that

Kαm

k ∩
⋃

i<`

U [σn(i)] ∩ K = ∅,

and such that ραm

k ≥ δ`−1
n(`) − ε/2. This enables us to choose g ∈ B(

−→
0 ,Kαm

k , ραm

k )∩
B(h,K, ε) as follows. Let g be any continuous function which agrees with h on
K ∩

⋃
i≤` U [σn(i)] and equals ραm

k on Kαm

k . Then g is as desired: if p ∈ K then g(p)
is within ε of h(p), etc.

The former case, where the induction stops at stage j < `, is similar: we have
that δj

n(`) − ε/2 is dangerous for m = n(`) wrt j, and now we look for a k so that

Kαm

k ∩
⋃

i≤j

U [σn(i)] ∩ K = ∅,

and such that ραm

k ≥ δj
n(`) − ε/2, etc. a ¤
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