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Abstract. The completion of a Souslin tree is shown to be a consistent example of a

Corson compact L-space when endowed with the coarse wedge topology. The example has
the further properties of being zero-dimensional and monotonically normal.

1. Introduction

In this paper, the coarse wedge topology on trees is used to construct what may be the
first consistent example of a Corson compact L-space that is monotonically normal. It is
considerably simpler and easier to (roughly!) visualize than the CH example of a Corson
compact L-space produced by Kunen [4] or the Corson compact L-space produced by
Kunen and van Mill under the hypothesis that 2ω1 with the product measure is the union
of a family ℵ1 nullsets, such that every nullset is contained in some member of the family
[5].

Corson compact L-spaces cannot be constructed in ZFC alone, because MAω1
implies

there are no compact L-spaces at all. This is one of the earliest applications of MAω1
to

set-theoretic topology, and one of the few that uses its topological characterization, viz.,
that a compact ccc space cannot be the union of ℵ1 nowhere dense sets [3], [9, 6.2], [10,
p. 16].

Recall that a Corson compact space is a compact Hausdorff space that can be embed-
ded in a Σ-product of real lines, viz., the subspace of a product space R

Γ (for some set
Γ) consisting of all points which differ from the zero element in only countably many
coordinates. Corson compact spaces play a role in functional analysis, especially through
their spaces of continuous functions, the Banach space 〈C(K), ‖ · ‖∞〉 and Cp(K), the
space of real-valued continuous functions with the relative product topology.
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Recall that a topological space is separable iff it has a countable dense subset, and
Lindelöf iff every open cover has a countable subcover. The following terminology is now
standard:

Definition 1.1. An L-space is a regular, hereditarily Lindelöf space which has a non-

separable subspace.

For about four decades, one of the best known unsolved problems of set-theoretic
topology was whether there is a ZFC example of an L-space. This was solved in an
unexpected manner by Justin Tatch Moore, who constructed one with the help of a deep
analysis of walks on ordinals [6]. The following problem, motivated by our main example,
may still be unsolved:

Problem 1.2. Is there a ZFC example of an L-space which embeds in a Σ-product of
real lines?

Definition 1.3. A space X is monotonically normal if there is a function U(E,F )
defined on pairs of disjoint closed sets 〈E,F 〉 such that: (1) U(E,F ) is an open set;
(2) E ⊂ U(E,F ) and U(E,F ) ∩ U(F,E) = ∅; and (3) if E ⊂ E′ and F ⊃ F ′, then
U(E,F ) ⊂ U(E′, F ′).

A neat feature of our main example is that it is being monotonically normal, and is
thus the continuous image of a compact orderable space [11] — and yet every linearly
orderable Corson compact space is metrizable [1]. One natural question is whether the
main example is actually the continuous image of a compact orderable L-space: such
spaces exist iff there is a Souslin tree/line. A much more general pair of contrasting
questions may be open:

Problem 1.4. Is the existence of a monotonically normal compact L-space equivalent

to the existence of a Souslin tree?

Problem 1.5. Is there a ZFC example of a monotonically normal L-space?

2. Trees and the coarse wedge topology

The purpose of this section is to make this paper as self-contained as reasonable,
and to show that trees with the coarse wedge topology have a property even stronger
than being monotonically normal. Readers with a good understanding of trees might try
omitting it on a first reading.

Definition 2.1. A tree is a partially ordered set in which the predecessors of any element
are well-ordered. [Given two elements x < y of a poset, we say x is a predecessor of y
and y is a successor of x.]
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Definition 2.2. If a tree has only one minimal member, it is said to be rooted and the
minimal member is called the root of the tree. A chain in a poset is a totally ordered
subset. An antichain in a tree is a set of pairwise incomparable elements. Maximal
members (if any) of a tree are called leaves, and maximal chains are called branches.

Definition 2.3. If T is a tree, then T (0) is its set of minimal members. Given an ordinal
α, if T (β) has been defined for all β < α, then T ↾ α =

⋃
{T (β) : β < α}, while T (α) is

the set of minimal members of T \T ↾ α. The set T (α) is called the α-th level of T . The
height or level of t ∈ T is the unique α for which t ∈ T (α), and it is denoted ℓ(t). The
height of T is the least α such that T (α) = ∅.

The following example illustrates some fine points of associating ordinals with trees
and their elements.

Example 2.4. The full ω-ary tree of height ω + 1 is the set T of all sequences of
nonnegative integers that are either finite or have domain ω, and in which the order is
end extension. Each chain of order type ω consists of finite sequences whose union is an
ω-sequence on level ω. Since this is the last nonempty level of the tree, the tree itself is
of height ω + 1. The subtree T ↾ ω is the full ω-ary tree of height ω.

Definition 2.5. A tree is chain-complete [resp. Dedekind complete] if every chain [resp.
chain that is bounded above] has a least upper bound. A tree is complete if it is rooted
and chain-complete.

Definition 2.6. For each t in a tree T we let Vt denote the wedge {s ∈ T : t ≤ s}. The
coarse wedge topology on a tree T is the one whose subbase is the set of all wedges Vt

and their complements, where t is either miminal or on a successor level.

Because of the way trees are structured, the nonempty finite intersections of members
of the subbase are “notched wedges” of the form

WF
t = Vt \

⋃
{Vs : s ∈ F} = Vt \ VF

where F is a finite set of successors of t.

If t is minimal or on a successor level, then a local base at t is formed by the sets WF
t

such that F is a finite set of immediate successors of t. If, on the other hand, t is on
a limit level, then a local base is formed by the WF

s such that s is on a successor level
below t.

It is easy to see that a tree is Hausdorff in the coarse wedge topology iff it is Dedekind
complete. In particular, if C is a chain that is bounded above but has no supremum,
then it converges to more than one point.

A corollary of the following theorem is that every complete tree is compact Hausdorff
in the coarse wedge topology.
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Theorem 2.7. [7, Corollary 3.5] A tree is compact Hausdorff in the coarse wedge topol-

ogy iff it is chain-complete and has only finitely many minimal elements.

Theorem 2.8. A complete tree is Corson compact in the coarse wedge topology iff every

chain is countable.

Proof. A necessary and sufficient condition for a compact space being Corson compact
is that it have a point-countable T0 separating cover by cozero sets—equivalently, open
Fσ-sets [1]. If the complete tree has an uncountable chain, then it has a copy of ω1 + 1,
which does not have a point-countable T0-separating open cover of any kind, thanks in
part to the Pressing-Down Lemma (Fodor’s Lemma).

Conversely, if every chain is countable, then the clopen sets of the form Vt clearly
form a T0-separating, point-countable cover, and T is compact Hausdorff by Theorem
2.7. �

Hausdorff trees with the coarse wedge topology have a property even stronger than
monotone normality; it is the property that results if “clopen” is substituted for “open”
in Definition 1.3:

Definition 2.9. A space X is monotonically ultranormal if there is a function U(E,F )
defined on pairs of disjoint closed sets 〈E,F 〉 such that: (1) U(E,F ) is a clopen set;
(2) E ⊂ U(E,F ) and U(E,F ) ∩ U(F,E) = ∅; and (3) if E ⊂ E′ and F ⊃ F ′, then
U(E,F ) ⊂ U(E′, F ′).

The property in the following theorem is named with the Borges criterion [see below]
for monotone normality in mind.

Theorem 2.10. [8, Theorem 2.2] Every Hausdorff space satisfying the following property

is monotonically ultranormal.

Property B+. To each pair 〈G, x〉 where G is an open set and x ∈ G, it is possible to

assign an open set Gx such that x ∈ Gx ⊂ G so that Gx ∩Hy 6= ∅ implies either x ∈ Hy

or y ∈ Gx.

The Borges criterion puts H for Hy and G for Gx in the part of Property B+ after
“implies.”

The question of whether every monotonically ultranormal Hausdorff space satisfies
Property B+ was posed in [8] and is still open.

Theorem 2.11. Every Hausdorff tree with the coarse wedge topology has Property B+.

Proof. For each point t and each open neighborhood G of t, there exists s ≤ t for which
there is a basic clopen set WF

s such that t ⊂ WF
s ⊂ G, and for which F ⊂ Vt. [If t is on

a successor level we can let s = t, while if t is on a limit level we first find some s′ < t

on a successor level and finite F ′ ⊂ Vs for which t ⊂ WF ′

s′ ; then let F = F ′ ∩ Vt and,
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using Dedekind completeness, choose s such that s′ ≤ s < t and all elements of F ′ \ F
are incomparable with s. Then WF

s is as desired.]

Now for each x ∈ F let x′ be the immediate successor of t below x and let F ∗ = {x′ :
x ∈ F}.

Claim. Letting Gt = WF∗

s for each t, G as above produces an assignment witnessing

Property B+.

Proof of Claim. The notched wedges WF
t clearly have the property that the intersection

of any two contains the minimum point of one of them. Let Gx ∩Hy 6= ∅. Assume that

the minimum point t of Gx is in Hy; in particular, t ≥ s. Let Hy = WF∗

s .

Case 1. y < t. Then Gx ⊂ Vt ⊂ Hy, because t is not in Vz′ for any z′ ∈ F ∗.

Case 2. y and t are incomparable. Then t > s, and we again have Gx ⊂ Vt ⊂ Hy.

Case 3. t ≤ y. Then if x and y are incomparable, we clearly have s < x ∈ Hy. This also
holds if x ≤ y. Finally, if x > y, we must have y ∈ Gx. �

Corollary 2.12. Every Hausdorff tree is monotonically normal in the coarse wedge

topology.

3. The main example

The following construction is utilized in the main example of this paper.

Example 3.1. For any tree T , we call a tree a completion of T if it is formed by adding
a supremum to each downwards closed chain that does not already have one. Formally,
we define the completion T̂ of T as follows. If T is not rooted, we let T̂ be the collection
of downwards closed chains (called “paths” by Todorčević), ordered by inclusion. If T is

rooted, we only put the nonempty paths in T̂ .

We identify each t ∈ T with the path Pt = {s ∈ T : s ≤ t}. Completeness of T̂ follows

from rootedness of T̂ and from the easy fact that the supremum of a chain C of T̂ is
the same as the supremum of C ∩ T . In particular, if C is a path in T̂ then C ∩ T is
downwards closed in T .

Todorčević called the set of characteristic functions of the paths of T the path space

of T when endowed with the topology inherited from the product topology on 2T . Gary
Gruenhage [2] showed that this topology is the coarse wedge topology of T̂ .

Recall that a Souslin tree is an uncountable tree in which every chain and antichain is
countable. Let us call a tree uniformly ω-ary if every nonmaximal point has denumerably
many immediate successors. [For instance, Example 2.4 is a uniformly ω-ary tree.]

As is well known, every Souslin tree has a subtree T in which every point has more
than one successor at every level above it. Thus every point of T has denumerably many
successors on the next limit level above it. And so, a uniformly ω-ary Souslin tree results
when we take the subtree S of all points on limit levels of T .
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Theorem 3.2. The completion Ŝ of a uniformly ω-ary Souslin tree S is an L-space in

the coarse wedge topology.

Proof. Since Ŝ ↾ α + 1 is closed for all α < ω1, Ŝ is not separable. In the proof that Ŝ
is hereditarily Lindelöf, uniform ω-arity plays a key role: if the tree were finitary, every
point on a successor level would be isolated.

We make use of the elementary fact that a space is hereditarily Lindelöf if (and only

if) every open subspace is Lindelöf. Let W be an open subspace of Ŝ, and let W0 be
the set of points t ∈ W such that Vt ⊂ W . If t ∈ W0 is on a limit level, there is also
s < t such that Vs is clopen and s ∈ W0: see the first paragraph in the proof of Theorem
2.11, and note that here, F = ∅. Let A = {a ∈ W0 : a is minimal in W0}. Then W0 is
the disjoint union of the clopen wedges Vα (a ∈ A), and A is countable by the Souslin
property.

If x ∈ W \W0, then there is a basic clopen subset of W of the form WF
t where F 6= ∅

and F ⊂ Vx: see the first paragraph in the proof of 2.11 again. There are no more than
|F | immediate successors of x below some element of F , and if s is one of the other
immediate successors of x, then Vs ⊂ Vx \VF , so s ∈ W0. But then s ∈ A also, since any
Vz containing Vs properly must also contain x, contradicting x ∈ W \W0. So W \W0 is
countable, and we have countably many basic clopen sets whose union is W . �

The following is now immediate from 2.8, 2.12, and 3.3.

Corollary 3.3. If there is a Souslin tree, there is a Corson compact, monotonically

normal L-space.
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