A CORSON COMPACT L-SPACE FROM A SOUSLIN TREE

Peter Nyikos

ABSTRACT. The completion of a Souslin tree is shown to be a consistent example of a Corson compact L-space when endowed with the coarse wedge topology. The example has the further properties of being zero-dimensional and monotonically normal.

1. Introduction

In this paper, the coarse wedge topology on trees is used to construct what may be the first consistent example of a Corson compact L-space that is monotonically normal. It is considerably simpler and easier to (roughly!) visualize than the CH example of a Corson compact L-space produced by Kunen [4] or the Corson compact L-space produced by Kunen and van Mill under the hypothesis that 2^{ω_1} with the product measure is the union of a family \aleph_1 nullsets, such that every nullset is contained in some member of the family [5].

Corson compact L-spaces cannot be constructed in ZFC alone, because MA_{ω_1} implies there are no compact L-spaces at all. This is one of the earliest applications of MA_{ω_1} to set-theoretic topology, and one of the few that uses its topological characterization, *viz.*, that a compact ccc space cannot be the union of \aleph_1 nowhere dense sets [3], [9, 6.2], [10, p. 16].

Recall that a *Corson compact space* is a compact Hausdorff space that can be embedded in a Σ -product of real lines, *viz.*, the subspace of a product space \mathbb{R}^{Γ} (for some set Γ) consisting of all points which differ from the zero element in only countably many coordinates. Corson compact spaces play a role in functional analysis, especially through their spaces of continuous functions, the Banach space $\langle C(K), \| \cdot \|_{\infty} \rangle$ and $C_p(K)$, the space of real-valued continuous functions with the relative product topology.

¹⁹⁹¹ Mathematics Subject Classification. (Updated to 2013.) Primary: 46A40, 54A25, 54D35, 54D80 Secondary: 54A35, 54B99.

Key words and phrases. Corson compact, Σ -product, L-space, tree, level, chain complete, Dedekind complete, chain completion, coarse wedge topology, Souslin tree, monotonically normal *Email address:* nyikos@math.sc.edu.

PETER NYIKOS

Recall that a topological space is *separable* iff it has a countable dense subset, and *Lindelöf* iff every open cover has a countable subcover. The following terminology is now standard:

Definition 1.1. An L-space is a regular, hereditarily Lindelöf space which has a nonseparable subspace.

For about four decades, one of the best known unsolved problems of set-theoretic topology was whether there is a ZFC example of an L-space. This was solved in an unexpected manner by Justin Tatch Moore, who constructed one with the help of a deep analysis of walks on ordinals [6]. The following problem, motivated by our main example, may still be unsolved:

Problem 1.2. Is there a ZFC example of an L-space which embeds in a Σ -product of real lines?

Definition 1.3. A space X is monotonically normal if there is a function U(E, F) defined on pairs of disjoint closed sets $\langle E, F \rangle$ such that: (1) U(E, F) is an open set; (2) $E \subset U(E, F)$ and $U(E, F) \cap U(F, E) = \emptyset$; and (3) if $E \subset E'$ and $F \supset F'$, then $U(E, F) \subset U(E', F')$.

A neat feature of our main example is that it is being monotonically normal, and is thus the continuous image of a compact orderable space [11] — and yet every linearly orderable Corson compact space is metrizable [1]. One natural question is whether the main example is actually the continuous image of a compact orderable L-space: such spaces exist iff there is a Souslin tree/line. A much more general pair of contrasting questions may be open:

Problem 1.4. Is the existence of a monotonically normal compact L-space equivalent to the existence of a Souslin tree?

Problem 1.5. Is there a ZFC example of a monotonically normal L-space?

2. Trees and the coarse wedge topology

The purpose of this section is to make this paper as self-contained as reasonable, and to show that trees with the coarse wedge topology have a property even stronger than being monotonically normal. Readers with a good understanding of trees might try omitting it on a first reading.

Definition 2.1. A *tree* is a partially ordered set in which the predecessors of any element are well-ordered. [Given two elements x < y of a poset, we say x is a *predecessor* of y and y is a *successor* of x.]

Definition 2.3. If T is a tree, then T(0) is its set of minimal members. Given an ordinal α , if $T(\beta)$ has been defined for all $\beta < \alpha$, then $T \upharpoonright \alpha = \bigcup \{T(\beta) : \beta < \alpha\}$, while $T(\alpha)$ is the set of minimal members of $T \setminus T \upharpoonright \alpha$. The set $T(\alpha)$ is called *the* α -*th level* of T. The *height* or *level* of $t \in T$ is the unique α for which $t \in T(\alpha)$, and it is denoted $\ell(t)$. The *height* of T is the least α such that $T(\alpha) = \emptyset$.

The following example illustrates some fine points of associating ordinals with trees and their elements.

Example 2.4. The full ω -ary tree of height $\omega + 1$ is the set T of all sequences of nonnegative integers that are either finite or have domain ω , and in which the order is end extension. Each chain of order type ω consists of finite sequences whose union is an ω -sequence on level ω . Since this is the last nonempty level of the tree, the tree itself is of height $\omega + 1$. The subtree $T \upharpoonright \omega$ is the full ω -ary tree of height ω .

Definition 2.5. A tree is *chain-complete* [resp. *Dedekind complete*] if every chain [*resp.* chain that is bounded above] has a least upper bound. A tree is *complete* if it is rooted and chain-complete.

Definition 2.6. For each t in a tree T we let V_t denote the wedge $\{s \in T : t \leq s\}$. The coarse wedge topology on a tree T is the one whose subbase is the set of all wedges V_t and their complements, where t is either minimal or on a successor level.

Because of the way trees are structured, the nonempty finite intersections of members of the subbase are "notched wedges" of the form

$$W_t^F = V_t \setminus \bigcup \{V_s : s \in F\} = V_t \setminus V_F$$

where F is a finite set of successors of t.

If t is minimal or on a successor level, then a local base at t is formed by the sets W_t^F such that F is a finite set of immediate successors of t. If, on the other hand, t is on a limit level, then a local base is formed by the W_s^F such that s is on a successor level below t.

It is easy to see that a tree is Hausdorff in the coarse wedge topology iff it is Dedekind complete. In particular, if C is a chain that is bounded above but has no supremum, then it converges to more than one point.

A corollary of the following theorem is that every complete tree is compact Hausdorff in the coarse wedge topology.

PETER NYIKOS

Theorem 2.7. [7, Corollary 3.5] A tree is compact Hausdorff in the coarse wedge topology iff it is chain-complete and has only finitely many minimal elements.

Theorem 2.8. A complete tree is Corson compact in the coarse wedge topology iff every chain is countable.

Proof. A necessary and sufficient condition for a compact space being Corson compact is that it have a point-countable T_0 separating cover by cozero sets—equivalently, open F_{σ} -sets [1]. If the complete tree has an uncountable chain, then it has a copy of $\omega_1 + 1$, which does not have a point-countable T_0 -separating open cover of any kind, thanks in part to the Pressing-Down Lemma (Fodor's Lemma).

Conversely, if every chain is countable, then the clopen sets of the form V_t clearly form a T_0 -separating, point-countable cover, and T is compact Hausdorff by Theorem 2.7. \Box

Hausdorff trees with the coarse wedge topology have a property even stronger than monotone normality; it is the property that results if "clopen" is substituted for "open" in Definition 1.3:

Definition 2.9. A space X is monotonically ultranormal if there is a function U(E, F) defined on pairs of disjoint closed sets $\langle E, F \rangle$ such that: (1) U(E, F) is a clopen set; (2) $E \subset U(E, F)$ and $U(E, F) \cap U(F, E) = \emptyset$; and (3) if $E \subset E'$ and $F \supset F'$, then $U(E, F) \subset U(E', F')$.

The property in the following theorem is named with the Borges criterion [see below] for monotone normality in mind.

Theorem 2.10. [8, Theorem 2.2] Every Hausdorff space satisfying the following property is monotonically ultranormal.

Property B+. To each pair $\langle G, x \rangle$ where G is an open set and $x \in G$, it is possible to assign an open set G_x such that $x \in G_x \subset G$ so that $G_x \cap H_y \neq \emptyset$ implies either $x \in H_y$ or $y \in G_x$.

The Borges criterion puts H for H_y and G for G_x in the part of Property B+ after "implies."

The question of whether every monotonically ultranormal Hausdorff space satisfies Property B+ was posed in [8] and is still open.

Theorem 2.11. Every Hausdorff tree with the coarse wedge topology has Property B+.

Proof. For each point t and each open neighborhood G of t, there exists $s \leq t$ for which there is a basic clopen set W_s^F such that $t \subset W_s^F \subset G$, and for which $F \subset V_t$. [If t is on a successor level we can let s = t, while if t is on a limit level we first find some s' < ton a successor level and finite $F' \subset V_s$ for which $t \subset W_{s'}^{F'}$; then let $F = F' \cap V_t$ and, using Dedekind completeness, choose s such that $s' \leq s < t$ and all elements of $F' \setminus F$ are incomparable with s. Then W_s^F is as desired.]

Now for each $x \in F$ let x' be the immediate successor of t below x and let $F^* = \{x' : x \in F\}$.

<u>Claim</u>. Letting $G_t = W_s^{F^*}$ for each t, G as above produces an assignment witnessing Property B+.

Proof of Claim. The notched wedges W_t^F clearly have the property that the intersection of any two contains the minimum point of one of them. Let $G_x \cap H_y \neq \emptyset$. Assume that the minimum point t of G_x is in H_y ; in particular, $t \ge s$. Let $H_y = W_s^{F^*}$.

Case 1. y < t. Then $G_x \subset V_t \subset H_y$, because t is not in $V_{z'}$ for any $z' \in F^*$.

Case 2. y and t are incomparable. Then t > s, and we again have $G_x \subset V_t \subset H_y$.

Case 3. $t \leq y$. Then if x and y are incomparable, we clearly have $s < x \in H_y$. This also holds if $x \leq y$. Finally, if x > y, we must have $y \in G_x$. \Box

Corollary 2.12. Every Hausdorff tree is monotonically normal in the coarse wedge topology.

3. The main example

The following construction is utilized in the main example of this paper.

Example 3.1. For any tree T, we call a tree *a completion* of T if it is formed by adding a supremum to each downwards closed chain that does not already have one. Formally, we define *the completion* \hat{T} of T as follows. If T is not rooted, we let \hat{T} be the collection of downwards closed chains (called "paths" by Todorčević), ordered by inclusion. If T is rooted, we only put the nonempty paths in \hat{T} .

We identify each $t \in T$ with the path $P_t = \{s \in T : s \leq t\}$. Completeness of \hat{T} follows from rootedness of \hat{T} and from the easy fact that the supremum of a chain C of \hat{T} is the same as the supremum of $C \cap T$. In particular, if C is a path in \hat{T} then $C \cap T$ is downwards closed in T.

Todorčević called the set of characteristic functions of the paths of T the path space of T when endowed with the topology inherited from the product topology on 2^T . Gary Gruenhage [2] showed that this topology is the coarse wedge topology of \hat{T} .

Recall that a *Souslin tree* is an uncountable tree in which every chain and antichain is countable. Let us call a tree *uniformly* ω -ary if every nonmaximal point has denumerably many immediate successors. [For instance, Example 2.4 is a uniformly ω -ary tree.]

As is well known, every Souslin tree has a subtree T in which every point has more than one successor at every level above it. Thus every point of T has denumerably many successors on the next limit level above it. And so, a uniformly ω -ary Souslin tree results when we take the subtree S of all points on limit levels of T.

PETER NYIKOS

Theorem 3.2. The completion \hat{S} of a uniformly ω -ary Souslin tree S is an L-space in the coarse wedge topology.

Proof. Since $\hat{S} \upharpoonright \alpha + 1$ is closed for all $\alpha < \omega_1$, \hat{S} is not separable. In the proof that \hat{S} is hereditarily Lindelöf, uniform ω -arity plays a key role: if the tree were finitary, every point on a successor level would be isolated.

We make use of the elementary fact that a space is hereditarily Lindelöf if (and only if) every open subspace is Lindelöf. Let W be an open subspace of \hat{S} , and let W_0 be the set of points $t \in W$ such that $V_t \subset W$. If $t \in W_0$ is on a limit level, there is also s < t such that V_s is clopen and $s \in W_0$: see the first paragraph in the proof of Theorem 2.11, and note that here, $F = \emptyset$. Let $A = \{a \in W_0 : a \text{ is minimal in } W_0\}$. Then W_0 is the disjoint union of the clopen wedges V_α ($a \in A$), and A is countable by the Souslin property.

If $x \in W \setminus W_0$, then there is a basic clopen subset of W of the form W_t^F where $F \neq \emptyset$ and $F \subset V_x$: see the first paragraph in the proof of 2.11 again. There are no more than |F| immediate successors of x below some element of F, and if s is one of the other immediate successors of x, then $V_s \subset V_x \setminus V_F$, so $s \in W_0$. But then $s \in A$ also, since any V_z containing V_s properly must also contain x, contradicting $x \in W \setminus W_0$. So $W \setminus W_0$ is countable, and we have countably many basic clopen sets whose union is W. \Box

The following is now immediate from 2.8, 2.12, and 3.3.

Corollary 3.3. If there is a Souslin tree, there is a Corson compact, monotonically normal L-space.

References

[1] V. A. Efimov and G.I. Čertanov, "Subspaces of Σ -products of intervals." (Russian. English summary) Comment. Math. Univ. Carolin. 19 (1978), no. 3, 569–593.

[2] G. Gruenhage, "On a Corson compact space of Todorčević," Fund. Math. 126 (1986), no. 3, 261–268.

[3] I. Juhász, "Martin's axiom solves Ponomarev's problem," Bull. Acad. Polon. Sci. Sér.
Sci. Math. Astron. Phys. 18 (1970) 71–74.

[4] K. Kunen, "A compact L-space under CH," Top. Appl. 12 (1981) no. 3, 283–287.

[5] K. Kunen and J. van Mill, "Measures on Corson compact spaces," Fund. Math. 147 (1995) 61–72.

[6] J. T. Moore, "A solution to the L space problem," J. Amer. Math. Soc. 19 (2006), no. 3, 717–736.

A CORSON COMPACT L-SPACE FROM A SOUSLIN TREE

[7] P. Nyikos, "Various topologies on trees," *Proceedings of the Tennessee Topology Conference*, P.R. Misra and M. Rajagopalan, eds., World Scientific Publishing Co., 1997, pp. 167–198.

Electronic ps and pdf copies are linked at http://arxiv.org/abs/math/0412554

[8] P. Nyikos, "Metrizability, monotone normality, and other strong properties in trees," Top. Appl. 98 (1999) 269–290.

[9] J. Roitman, "Basic S and L," *Handbook of Set-Theoretic Topology*, K. Kunen and J. Vaughan ed., North-Holland (1984) 295–326.

[10] M. E. Rudin, *Lectures on Set Theoretic Topology*, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, no. 23, Amer. Math. Soc., Providence, R.I., 1975.

[11] M.E. Rudin, "Nikiel's conjecture," Topology Appl. 116 (2001), no. 3, 305–331.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA SC 29208