Math 550 Worksheet 2
 Spring, 2008

You are free, in fact encouraged, to collaborate, and to bring questions about these to class.

1. Let $A=\left[\begin{array}{ccc}3 & 0 & -2 \\ 1 & -1 & 0 \\ 0 & 1 & 1\end{array}\right]$ and $T_{A}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by left multiplication by A on column vecors $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. Compute the vectors $\mathbf{a}=T_{A}(\hat{\mathbf{i}}), \mathbf{b}=T_{A}(\hat{\mathbf{j}})$, and $\mathbf{c}=T_{A}(\hat{\mathbf{k}})$. Compute, by any method, the volume of the parallelepiped D spanned by the vectors \mathbf{a}, \mathbf{b}, and \mathbf{c}. The unit cube $D^{*}=\{(x, y, z) \mid 0 \leq x, y, z \leq 1\}$ or $[0,1] \times[0,1] \times[0,1]$ is carried one-to-one and onto D by T_{A}. Compute all eight vertices of D and sketch it if you can (hint: the vertices of D^{*} are $(0,0,0)$ and the tips of vectors such as $\hat{\mathbf{i}}+\hat{\mathbf{k}}, \hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}$, etc.).
2. Rewrite the integral $\iint_{D} \sqrt{\frac{x+y}{x-2 y}} d A$ as an integral over a region D^{*} in the $u v$-plane, where D is the region enclosed by $y=x / 2$, the x-axis, and $x+y=1$. The new integral should be completely set up, so that it is clear how one would compute it; but do NOT compute it. Do, however, inspect your answer and see if you find anything troubling about it. Does this trouble actually appeasr in the original problem? Hint: make a diagram, decide on substitutions $u=, v=$, describe the region D^{*} in the $u v$-plane so that $(x, y)=T(u, v)$ and $D=T\left(D^{*}\right)$, and use the change of variables theorem. You don't actually need to find a formula for T at this point because of the following hint within the hint: you may find it useful to know that $\frac{\partial(x, y)}{\partial(u, v)}$ is actually the reciprocal of $\frac{\partial(u, v)}{\partial(x, y)}$. This in turn can be verified by solving for (x, y) in terms of (u, v), which amounts to finding a formula for T, and computing $\frac{\partial(x, y)}{\partial(u, v)}$ directly.
3. Compute $\frac{\partial(x, y, z)}{\partial(\rho, \varphi, \theta)}$. Explain why this determinant is already positive, when using conventional spherical coordinates.
