MATH 550	Bonus problem	Name:
Spring, 2006		

As I mentioned in class, any exchange of limits is problematic, and the exchange of a partial derivative with an integral (both of which are limits) is no exception. This problem, worth up to 10 points, illustrates the difficulty in exchanging a limit with an integral. It is due on April 13.

1. Let g(y,t) be defined as follows for $0 < y \le 1/2$ and $0 \le t \le 1$. Suggestion: make a sketch of z = g(y,t) for a selection of fixed values of y, giving z as a function of t.

$$g(y,t) = \begin{cases} \frac{2}{y^2}t & \text{for } 0 \le t \le y\\ \frac{4}{y} - \frac{2}{y^2}t & \text{for } y \le t \le 2y\\ 0 & \text{for } 2y \le t \le 1 \end{cases}$$

- \mathbf{a} .
- b.
- Compute, for fixed t, $\lim_{y\to 0} g(y,t)$. Compute $\int_0^1 \lim_{y\to 0} g(y,t) dt$. Compute, for fixed y, $\int_0^1 g(y,t) dt$, and then compute $\lim_{y\to 0} \int_0^1 g(y,t) dt$. Give an intuitive explanation for the discrepancy between these two limits. с. What sort of hypothesis on g(y,t) might prevent a discrepancy like this one?