\qquad
Spring, 2006
As I mentioned in class, any exchange of limits is problematic, and the exchange of a partial derivative with an integral (both of which are limits) is no exception. This problem, worth up to 10 points, illustrates the difficulty in exchanging a limit with an integral. It is due on April 13.

1. Let $g(y, t)$ be defined as follows for $0<y \leq 1 / 2$ and $0 \leq t \leq 1$. Suggestion: make a sketch of $z=g(y, t)$ for a selection of fixed values of y, giving z as a function of t.

$$
g(y, t)= \begin{cases}\frac{2}{y^{2}} t & \text { for } 0 \leq t \leq y \\ \frac{4}{y}-\frac{2}{y^{2}} t & \text { for } y \leq t \leq 2 y \\ 0 & \text { for } 2 y \leq t \leq 1\end{cases}
$$

a. Compute, for fixed $t, \lim _{y \rightarrow 0} g(y, t)$. Compute $\int_{0}^{1} \lim _{y \rightarrow 0} g(y, t) d t$.
b. Compute, for fixed $y, \int_{0}^{1} g(y, t) d t$, and then compute $\lim _{y \rightarrow 0} \int_{0}^{1} g(y, t) d t$.
c. Give an intuitive explanation for the discrepancy between these two limits. What sort of hypothesis on $g(y, t)$ might prevent a discrepancy like this one?

