\qquad
Spring, 2009

1. For which value(s) of h will $\mathbf{y}=\left[\begin{array}{c}-4 \\ 3 \\ h\end{array}\right]$ be in $\operatorname{span}\left(\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}\right)$ if

$$
\mathbf{v}_{1}=\left[\begin{array}{c}
1 \\
-1 \\
-2
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
5 \\
-4 \\
-7
\end{array}\right], \quad \text { and } \quad \mathbf{v}_{3}=\left[\begin{array}{c}
-3 \\
1 \\
0
\end{array}\right] ?
$$

Assuming that h has an appropriate value, express \mathbf{y} as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}.
2. In the problem above, can \mathbf{y} be expressed in more than one way as a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}. If so, do it; if not, explain why not.
3. (Bonus) What do the previous results tell us about the independence or dependence of the set $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$?

