MATH 544	${\rm Quiz}\ \#2$	Name:
Spring, 2009		
1. For which value(s) of	h will $\mathbf{y} = \begin{bmatrix} -4\\ 3\\ h \end{bmatrix}$ be	in $\operatorname{span}(\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\})$ if
$\mathbf{v}_1 = \Bigg[$	$\begin{bmatrix} 1\\ -1\\ -2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 5\\ -4\\ -7 \end{bmatrix},$	and $\mathbf{v}_3 = \begin{bmatrix} -3\\1\\0 \end{bmatrix}$?

Assuming that h has an appropriate value, express \mathbf{y} as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 .

2. In the problem above, can \mathbf{y} be expressed in more than one way as a linear combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 . If so, do it; if not, explain why not.

3. (Bonus) What do the previous results tell us about the independence or dependence of the set $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$?