MATH 544 Spring, 2009 Exam \#1 Name:

\qquad
Note! For full credit you must show sufficient work to support your answer. Use the space you need for parts a., b., etc., but label clearly which part of a problem you are doing where. In Part I (yellow paper) you may not use a calculator, and I expect to see a clear reckoning of the row reduction. In part II you may use a calculator for any arithmetic operations. There are 100 points. Good luck!
Part I.

1. (30 points) Let $A=\left[\begin{array}{cccc}1 & -1 & 3 & 0 \\ 0 & 2 & -8 & 2 \\ 1 & 0 & -1 & 1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
a. What condition(s) must be imposed on the entries of \mathbf{b} so that \mathbf{b} is in the span of the columns of A ? Give a vector in \mathbb{R}^{3} that is not in the span of the columns of A, or explain why this span is all of \mathbb{R}^{3}.
b. Find all solutions of $A \mathbf{x}=\mathbf{0}$.

Part II.

Name: \qquad
2. (20 points) We are given that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, $\mathbf{v}_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 1\end{array}\right], T\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}2 \\ 5\end{array}\right]$, and $T\left(\mathbf{v}_{2}\right)=\left[\begin{array}{c}-2 \\ 3\end{array}\right]$.
a. Compute $T\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right)$ and $T\left(-3 \mathbf{v}_{1}+\mathbf{v}_{2}\right)$.
b. Compute the matrix A for which $T=L_{A}$ (Hint: use part (a) together with computations of $\mathbf{v}_{1}+\mathbf{v}_{2}$ and $\left.-3 \mathbf{v}_{1}+\mathbf{v}_{2}\right)$.
3. (10 points) Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation, $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3} be vectors in \mathbb{R}^{n}, and assume that $\left\{T\left(\mathbf{v}_{1}\right), T\left(\mathbf{v}_{2}\right), T\left(\mathbf{v}_{3}\right)\right\}$ is an independent set in \mathbb{R}^{m}. Show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\}$ is an independent set in \mathbb{R}^{n}.
4. (30 points) Let $A=\left[\begin{array}{cccc}-2 & 4 & 10 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & -2 & 0 \\ -3 & 3 & 9 & 1\end{array}\right]$.
a. Compute the reduced row echelon form of A.
b. Is the set of columns of A independent? If so, explain; if not express one column as a linear combination of the others, and determine the largest set of columns that is independent.
c. $A \mathbf{x}=\left[\begin{array}{c}4 \\ -1 \\ 0 \\ 5\end{array}\right]$ has a solution \mathbf{v}, which you need not compute. Are there any other solutions? If not, explain; if so, describe them explicitly.
5. (10 points) Let $A=\left[\begin{array}{cc}-3 & 1 \\ 8 & 4\end{array}\right]$.
a. Find all solutions of the system $A \mathbf{x}=-4 \mathbf{x}$ for $\mathbf{x}=\left[\begin{array}{l}x \\ y\end{array}\right]$.
b. (Bonus) There is exactly one other value of c for which $A \mathbf{x}=c \mathbf{x}$ is consistent for some $\mathbf{x} \neq \mathbf{0}$. Determine this value of c.

