MATH 520 (Section 001) Prof. Miller / Meade University of South Carolina Spring 2012

Exam 2 March 15, 2012 Instructions:

- 1. There are a total of 4 problems on 2 pages. Check that your copy of the exam has all of the problems.
- 2. No electronic or other inanimate objects can be used during this exam. All questions have been designed with this in mind and should not involve unreasonable manual calculations.
- 3. Be sure you answer the questions that are asked.
- 4. You must show all of your work to receive full credit for a correct answer. Correct answers with no supporting work will be eligible for at most half-credit.
- 5. Your answers must be clearly labeled and written legibly on additional sheets of paper (that I will provide). Be sure each sheet contains your name and the work for each question is clearly labeled.
- 6. Check your work. If I see *clear evidence* that you checked your answer (when possible) <u>and</u> you *clearly indicate* that your answer is incorrect, you will be eligible for more points than if you had not checked your work.

Problem	Points	Score
1	22	
2	24	
3	30	
4	24	
Total	100	

1. (22 points) Transform the second-order equation $u'' + 0.25u' + 4u = 2\cos(3t)$ into a system of two first-order equations. (Recall that it is useful to set $x_1 = u$ and $x_2 = u'$.)

2. (24 points) Let
$$A = \begin{bmatrix} 1 & 1 \\ 4 & -2 \end{bmatrix}$$
 and consider the system $\mathbf{x}' = A\mathbf{x}$.

- (a) Find fundamental solutions.
- (b) Write the general solution to $\mathbf{x}' = A\mathbf{x}$.
- (c) Show that the solutions found in (a) are independent.
- (d) Sketch the phase portrait around the origin.
- 3. (30 points) Consider $\mathbf{x}' = A\mathbf{x}$ when $A = \begin{bmatrix} 5 & -1 \\ 3 & 1 \end{bmatrix}$. The eigenvalue-eigenvector pairs of A are 2, $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ and 4, $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$.
 - (a) Find the general solution of $\mathbf{x}' = A\mathbf{x}$.
 - (b) Find the coefficients that produces the solution that satisfies $\mathbf{x}(0) = \begin{vmatrix} 2 \\ -1 \end{vmatrix}$.
 - (c) Describe what happens to solutions as $t \to \infty$.
 - (d) Describe what happens to solutions as $t \to -\infty$.
 - (e) Sketch this trajectory in the phase plane. (Make use of the direction vector at $\begin{vmatrix} 2 \\ -1 \end{vmatrix}$.)

4. (24 points) Let
$$A = \begin{bmatrix} 2 & -5 \\ 1 & -2 \end{bmatrix}$$
. One eigenvalue-eigenvector pair is $\lambda = i$ and $\mathbf{v}_1 = \begin{bmatrix} 2+i \\ 1 \end{bmatrix}$.

- (a) Confirm (check) that $\lambda = i$ and $\mathbf{v}_1 = \begin{bmatrix} 2+i\\1 \end{bmatrix}$ is an eigenvalue-eigenvector pair for A.
- (b) What is the other eigenvalue-eigenvector pair for A? (no work needed)
- (c) Extract the real fundamental solutions of $\mathbf{x}' = A\mathbf{x}$ from the complex solution $\mathbf{v}_1 e^{\lambda t}$.
- (d) The vector $\begin{bmatrix} 5\\ 2-i \end{bmatrix}$ is another eigenvector for $\lambda = i$. Is it independent or dependent from \mathbf{v}_1 ? Explain.