## SCCC 411B Exam 2 Spring, 1997 Name:

Instructions. There are 100 points. Answer all questions. Be sure to supply adequate explanation for your answers.

1. (35 points) The Leslie matrix for a population of New Zealand sheep is given by the following data, where $F_{i}$ denotes the fecundity and $P_{i}$ the probability of survival to the next age class.

| age $(\mathrm{yr})$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $F_{i}$ | .0 | .04 | .39 | .47 | .48 | .55 | .54 | .50 | .47 | .46 | .43 | .42 |
| $P_{i}$ | .84 | .98 | .96 | .95 | .93 | .90 | .85 | .79 | .69 | .56 | .37 | .0 |

a. Write out the upper left $4 \times 4$ corner of the matrix $L$.
b. If the current population consists of 100 two year olds and 100 three year olds how many individuals will be in each age class one year from now?
c. The dominant eigenvalue for $L$ is $\lambda=1.18$, and the corresponding eigenvector is $[.24, .17, .14, .12, .10, .08, .06, .04, .03, .02, .01, .0]$. The dominant eigenvalue for $L^{T}$ is $\mu=1.18$, and the corresponding eigenvector is $[1.0,1.4,1.6,1.6,1.5,1.3,1.1,0.9,0.8,0.6,0.5,0.4]$. Over the long term does the population grow, decline, or remain stable? Why? In the long term what percent of the population is 7 years old or older? Which age class has the highest reproductive value? Is this the age class with the highest fecundity? If not, explain the apparent discrepancy.
d. Recall that the elasticity $e_{i j}$ times percent change in $L_{i j}$ gives percent change in $\lambda$. We have calculated that $e_{13}=0.037$ and $e_{18}=0.014$. Suppose the fecundity of the two year olds rises from .39 to .44 and the fecundity of the seven year olds drops from .50 to .40 . Which has a larger effect on $\lambda$ in terms of percent change? How do you account for this intuitively?
2. (20 points)
a. You are given the plot $N_{t+1}=F\left(N_{t}\right)$. Based on this graph, what is the steady state $\bar{N}$ ? If $N_{0}=5$, use the graph to compute $N_{4}$.
b. You are given the plots $N_{t+1}=G\left(N_{t}\right), N_{t+2}=G\left(N_{t+1}\right)=G\left(G\left(N_{t}\right)\right)$, and the line $N_{t+2}=N_{t}$. Interpret the points A, B, and C in terms of
stable or unstable equilibria and cycles. If $N_{0}=1.1$, what is the long term behavior of $N_{t}$ ?
3. (30 points) In this problem we investigate a host-parasitoid interaction in which the hosts have a possible refuge. Let $N_{t}$ denote the host population at time $t$ and $P_{t}$ the parasitoid population. In the absence of parasitoids the host population grows at a per capita rate $\lambda$. Each parasitized host yields $c$ parasitoids in the next generation. The probability of $k$ episodes of parasitoid attack on an unprotected host in one breeding cycle is $p(k)=e^{-a P_{t}}\left(a P_{t}\right)^{k} / k!$. The carrying capacity of the host population is $K$ and a fraction $b$ of this amount can hide in a protected refuge. All parameter values are positive.
a. How many of the host population can hide? What fraction of the total host population is this? What fraction of the host population does this leave exposed?
b. What is the probability that an exposed host escapes being parasitized (or, what fraction of the exposed host population escapes being parasitized)?
c. What fraction of $N_{t}$ is available for reproduction, either by hiding, or by being exposed but lucky?
d. Explain how the equations given below reflect our description of the model.

$$
\begin{aligned}
& N_{t+1}=\lambda N_{t}\left(\frac{b K}{N_{t}}+\left(1-\frac{b K}{N_{t}}\right) e^{-a P_{t}}\right) \\
& P_{t+1}=c N_{t}\left(1-\frac{b K}{N_{t}}\right)\left(1-e^{-a P_{t}}\right)
\end{aligned}
$$

e. There is a potential flaw in this model. What does it predict for very low host populations (for example, around $\frac{1}{2} b K$ )?
f. With the parameter values $a=0.2, b=0.1, c=1, K=100$, $\lambda=2.8$, we find that there is a steady state $\bar{N}=29.25, \bar{P}=18.81$; the corresponding Jacobian matrix has eigenvalues $0.08 \pm 0.49 i$. Describe the behavior of the system near the equilibrium. In what respect is this result a bit surprising? Upon reflection how do you account for this?
4. (15 points) Give brief definitions of the following terms. Illustrative pictures might also be appropriate.
a. non-linear difference equation
b. Lefkowitch matrix
c. memoryless random process

