\qquad
There are 100 points. For full credit you must show your work.

1. (6 points) Fill in the blank spaces in the folowing table.

n	a_{n}	Δa_{n}	$\Delta^{2} a_{n}$
0	-10		3
1	-9	3	
2		3	
3		3	

2. (10 points) In constructing a table of second differences of a sequence $\left\{a_{n}\right\}$ you find that they are all the same number, 3. Also you know that $a_{0}=1$. Which of the following is most likely to be the correct formula for a_{n}, and why? Show calculations, or argue by analogy, but give some reason for picking one over the rest. (a) $a_{n}=n^{3}+1$, (b) $a_{n}=3 n^{2}-n+1$, (c) $a_{n}=(3 / 2) n^{2}-(1 / 2) n+1$.
3. (14 points) Formulate a model in which the change in the amount of drug in the bloodstream Δa_{n} from one day to the next is proportional by a factor of -0.6 to a_{n}, the amount at the beginning of the day, plus a maintenance dose of
$60 \mathrm{mg} /$ day. Rewrite this equation, giving a_{n+1} in terms of a_{n} and constants. Compute the steady state amount of the drug in the bloodstream.
4. (25 points) Solve the difference equation $b_{n+1}=-0.2 b_{n}+24, b_{0}=25$. Describe the long term behavior of this solution; that is, what happens to b_{n} as $n \rightarrow \infty$. Does b_{n} increase, decrease, oscillate, tend towards or away from the equilibrium?
5. (25 points) Data sugget that a population follows the logistic model $P^{\prime}(t)=$ $(1 / 2) P(t)(1-(P(t) / 80))$.
a. Give a formula for the per capita growth rate in this model.
b. Does this model have any steady state(s) or equilibrium value(s)? Show graphically what happens over the long term if $P_{0}=20$ and if $P_{0}=100$. Discuss the stability/instability of the steady state(s).
c. If $P(t)$ is very close to 0 then $P^{\prime}(t)$ can be approximated by a simpler equation. Write this equation, and solve it, assuming $P_{0}=2$. What kind of growth is exhibited in this case?
6. (20 points) Compute the sum of each series; or state that no sum exists and explain why not.
a. $\quad \sum_{k=1}^{\infty}(4 / 3)(3 / 5)^{k}$
b. $\quad \sum_{k=1}^{\infty}(3 / 4)(5 / 3)^{k}$
c. $\quad \sum_{k=0}^{\infty}(7 / 4)(-3 / 4)^{k}$
