
Math 172 WS 4 Solving model equations Fall, 2011

From the purely mathematical point of view we are beginning to solve differential
equations. At first we will be successful in finding formulas (explicit solutions),
but eventually we will see that the real world is not so tidy, and we will have to
develop numerical, computational methods. Somewhere in between, and helpful
to both approaches, is to use intuitive graphical observations that come from the
differential equation or model equation itself. For discrete models equations (and
continuous ones made discrete by using Euler’s method), we can use the calculator.

In the next few problems we consider the discrete affine mode Qt+1 = aQt + b .
Typically a has the form 1 + r , but you have to read carefully how the model is
described.

1. A quantity Qt satisfies the affine discrete model equation Qt+1 = 0.4Qt − 48 .
a. Find the equilibrium value Q∗ (this is just doing the math, so don’t worry

if it seems unrealistic biologically). By replacing Qt by Pt = Qt − Q∗ ,
show that Pt+1 satisfies a much simpler model, namely Pt+1 = 0.40Pt ;
in fact you can solve this equation! Now reverse the process, replacing the
P ’s by Q ’s as appropriate to conclude that Qt = C(0.4)t + Q∗ .

b. Notice that if a = 0.4 = 1 + r , then r is what? If Q0 = −120 , what is
C ? What is the long term behavior of Qt (as t → ∞ )?

2. Check that Pt = C(1 + r)t + P ∗ does in fact satisfy the model equation
∆P = Pt+1 − Pt = rPt + m or Pt+1 = (1 + r)Pt + m , where P ∗ is the
equilibrium value and C is a constant.
a. Show that P ∗ = −m/r . How would you determine C ?
b. Taking the above for granted, what does all this boil down to if m = 0 ?
c. Explain why m and r should have opposite signs for P ∗ to make biological

sense.
d. To use this formula effectively we need to know how at = (1 + r)t behaves

as t → ∞ . This turns out to be more complicated that knowing how ert

behaves in the continuous case. Describe how (1 + r)t behaves as t → ∞

in each of these cases: r = 0.2 , r = −0.2 , r = −1.2 , r = −2.2 .

3. The amount of drug in the bloodstream (measured in mg) is given by
un = 0.6un−1 + 200 , where n is in days. Notice we have written this model in
“calculator-ready” language.
a. What term in this model represents the daily dose, and which term

represents the amount left from the day before?
b. Suppose this dosing pattern started at a time when there was 100 mg of the

drug in the bloodstream. Compute un in terms of n in this case. (Hint:
recall that the model un = aun−1 +b has solution of form un = Can +u∗ ,
where u∗ is the equilibrium value, and C can be determined by using a
specific un value.)

c. What happens to un in the long term as this dosing continues? Explain.



4. We are given a discrete model Pn+1 = (−0.9)Pn + 95 with P0 = 70 .
a. Find the explicit solution for Pn .
b. What happens to Pn as n → ∞ ? Does it increase, decrease, oscillate, tend

towards or away from the equilibrium? Conclude whether the equilibrium
is stable or not.

5. We are given a discrete model Sn+1 = (−1.3)Sn + 161 with S0 = 100 .
a. Find the explicit solution for Sn .
b. What happens to Sn as n → ∞ ? Does it increase, decrease, oscillate, tend

towards or away from the equilibrium? Conclude whether the equilibrium
is stable or not.

Next we consider the affine continuous mode, which is analogous to the discrete
version.

6. Later we will consider harvesting models (these are very important in fisheries,
for example). For now, let’s just do some math. Suppose dP

dt
= 0.018P − 3.6

and P (0) = 50 (the “initial condition”).
a. We know how to solve dP

dt
= P ′ = 0.018P alone and also how to solve

dP
dt

= −3.6 alone (right?), but try as we might there is no way to separate

the variables. A little trick works, however. Notice that dP
dt

= 0 when

P = 200 . This special value is written P ∗ (or sometimes P̂ ). If we
introduce a new variable U by the formula U = P − P ∗ = P − 200 , show
that dU

dt
= dP

dt
and U(0) = −150 . Turning the relationship around, we get

P = U + 200 . Use this along with the model equation for dP
dt

to compute
dU
dt

in terms of U . This is an equation that you can solve, so do it. We
are not interested in U , so rewrite your formula to get one for P in terms
of t and constants. (I wouldn’t ask you to do this on a test, so give it a
try, but if you cannot get it, go on to part (b).)

b. In the end you should end up with P (t) = Ce0.018t + P ∗ , where C can be
determined by using the initial condition. Graph the solution over time.

c. If we now have the initial condition P (0) = 300 , what do you now get for
C and for the graph? Is this equilibrium stable or unstable?

If you did part (a) of the previous problem, or even if you did not, the upshot

is that an affine continuous model dQ

dt
= Q′ = aQ + b has an explicit solution

Q(t) = Ceat + Q∗ , where Q∗ is the equilibrium value, and C can be determined
from the initial condition.

7. In a particular dessert habitat, a population of mice declines at a per capita

rate of 3% yr −1 , but is reinforced by the in-migration of mice from destroyed
nearby habitats at 24 mice/yr. Write a continuous model equation for this
situation, and solve it, assuming that the initial mouse population is 1,000.
What happens to the mouse population in the long term, and how do you
know?



8. An invasive water weed is growing continuously in a local lake at an intrinsic
rate of 3% a year. Lake management dredges up 60 tons of the weed each year.
If M(t) is the mass of the weed measured in tons, and t is measured in years,
write the model equation for M ′(t) . Determine if there is an equilibrium,
and if so, compute it. Compute the explicit solution if the invasion was first
detected when the weed mass was estimated to be 500 tons. Use your solution
to determine if the weed grows out of control, if it approaches the equilibrium
value, or if the harvesting eventually brings about elimination of the weed. In
the first case, determine when M(t) = 1500 ; in the third case determine when
the weed is completely eliminated.

9. Do problem 2.1 in Gotelli. Use the variable P for population.

10. Do problem 2.2 in Gotelli. It is very useful to make the graph of P ′ vs. P in
this case to find the maximum population net growth rate at a particular value
of P .

11. We can make use of problem 2.3 in Gotelli in the following way. Set
dN
dt

= g(N)N , with per capita growth rate g(N) = b′ − d′ as given in the
text. Combine terms and factor out -0.0005 (which is actually -1/2000);
you should get g(N) = (−1/2000)(N2

− 40N + 200) . The roots of this
polynomial are approximately c1 = 34 and c2 = 6 (you can use your
calculator to find them more exactly). So we actually get a factorization
g(N) = (−1/2000)(N − c1)(N − c2) , or g(N) = (1/2000)(N − c1)(c2 − N) .
Use this to analyze the original net growth rate dN

dt
= g(N)N by findiung

equilibrium values, and determining their stability. What kind of model is this?

For the next two problems we abandon hope of an explicit solution, and just try
to reason from the model equation itself, following the sign of the derivative as a
cue. This gives us “qualitative” information very quickly.

12. Squid are commercially important for human consumption, especially around
the Mediterranean and in SE Asia; they also play a large role in many marine
food chains. Suppose that a local squid population, measured in tons, is
controlled by the continuous dynamic model dS

dt
= 0.0007S(100 − S)(S − 10)

tons/year. It is easy to separate the variables of this model equation, but hard
to do the integration. Compute the equilibrium values for S . By carefully
selecting different initial values, determine whether each equilibrium value is
stable or unstable.

13. A fish population F (t) , measured in thousands, is controlled by the continuous
model dF

dt
= 0.0005F (120−F )(F−20) thousand fish/year. It is easy to separate

the variables of this model equation, but hard to do the integration. Find the
equilibrium values of F , and examine the long term behavior of F (t) subject
to various initial conditions for F (0) . Which are stable, which are unstable?
How would you describe the various values from a biological point of view?



These next few problems involve separation of variables to do the integration.

14. Find the solution of the model equation dP
dt

= g(t)P , where the per
capita growth rate (representing habitat quality over time) declines linearly:
g(t) = −

r
a
t + r . Take r = 0.014 and a = 28 . Assume that P (0) = 1000 .

Graph the solution.

15. If dS
dt

= 0.9 and S(0) = 23 , determine an explicit formula for S(t) . This one
is easy!

16. If dV
dt

= 0.9t2 and V (0) = 23 , determine an explicit formula for V (t) . This
one is just a bit harder.


