MATH 172 Fall, 2009 Exam #1

There are 120 points, which will be scaled down to a percentage (out of 100). For full credit you must show your work. All answers should be correctly rounded to 3 decimal places, or fewer if that is what is provided in the data.

1. (10 points) If $Q(n) = 5n - n^2$, compute ΔQ . 10 = Q(n+1) - Q(n) = 5(n+1) - (n+1) - (5n-n2) $=5n+5-n^2-2n-1-5n+n^2$ = -2n + 4

2. (10 points) Papua New Guinea currently has a population of 56.7 hundred thousand people. The net growth rate is 1.253 hundred thousand people per year. Compute the intrinsic or per capita growth rate r. Write a continuous model equation for this process. Give the explicit solution and use your result to predict the population a decade from now.

JE = rP

1.253 = r (56.7)

dr = 0.022P

P(t)= P(0)e0,000pt

P(10) = 56,7 e(0.0221)(10)

P(10) = 70.723 hences

3. (15 points) A population B(t) of bacteria is growing continuously over time so that the per capita rate of increase is 6% /day.

a. Write the continuous model equation that describes this situation.

b. If B(0) = 5 g, write the solution equation for this model equation. (We don't count bacteria, we weigh them.) This initial population of 5 g grows to what size in 3 weeks?

 $B(t) = B(0)e^{0.06t} = 5e^{0.06t}$

$$3 \text{ modes} = 21 \text{ days}$$
 $(0.06)(21)$
 $= 17.627g$

4. (20 points) A population R of rats kept in a lab depends on t . The experimenter is testing the effect of a poison in the food. Observation takes place at regular weekly intervals. At the start of the experiment ($t = 0$), the
population is 400. Week by week, the population shrinks by 9%.
b. Write the updating equation for this model. b. Write the updating equation for this model. b. Write the updating equation for this model.
Rt = Rt - 0.09Rt = 0.9/Rt
c. Write the explicit solution for this model, and use this to compute the population after 6 months (26 weeks).
R= (0.91) = (0.915 (400)
$R_{3c} = 34.446 (\text{or } 34 \text{ nata})$
d. At what time is the population $1/2$ of the original? $200 = (0.91)^{\frac{1}{2}}(400)$ $5 = (0.91) R$
en(=) = en((0.91)) = to lu(0.91)
10th t = ln(1/2) = 7.350 weeks mfall 1000
1:10
5. (10 points) Due to a parasite infecction that increases mortality and decreases reproduction, a host population is decreasing at a continuous rate of 4% yr ⁻¹ . Infected organisms move into the habitat at a rate 100/year. Write the continuous model equation to describe this process, and compute the equilibrium value, if there is one.
continuous model equation to describe this process, and compute the equilibrium
I the the host population. = 0.09
$\frac{dH}{dt} = \frac{1}{0.04H} + 100 decrease$
0H = -0.04H + 100 auchases
Equil when $\frac{3H}{3t} = 0$, $0 = -0.04H + 100$
XIII. Equal it
This with a state of H-2500, H=2500 Appears then It < 0 so Het) bereasen; if to stable. H<2500, thew It > 0 and HH; inverses.
appeals then UH < 0 SO HILL Decreaser: if
stable. H<2500, thew It > 0 and HH; inverses
o we will be the second of the

- (25 points) A drug is given in pill form (160 mg) once a day. We know that 80% of drug in the bloodstream is used up from one day to the next, but the remainder is reinforced by a maintenance dose of one pill a day. let A_t denote the amount of the drug in mg after t days. The initial dose, given late in the day, is one half pill (80 mg). \leftarrow $A_0 = 80$
 - Formulate a discrete model to describe this process over time. Compute A_1 and A_2 .

$$A_{t+1} = A_t - 0.8A_t + 160$$

 $= 0.2A_t + 160 (202 remains,)$
 $A_1 = (0.2)A_0 + 160 = 176 mg$
 $A_2 = (0.2)A_1 + 160 = 195.2$

- $A_{3} = (0.2) A_{1} + 160 = 19502$ What is the steady state (equilibrium) amount of the drug in the bloodstream? Usable for $A_{4+1} = A_{4}$ or $A_{500} = 3000$.
- $A_t = 0 2A_t + 160 \text{ or } 0.8A_t = 160 \text{ of } A_t = 200.$ c. In the calculator version of this model A_t is replaced by u(n).

 It has n Min = 0, u(n Min) = 0, and u(n) = 0.
- d. Compute $A_3=u_3$, $A_5=u_5$, $A_{10}=u_{10}$ by hand or by calculator or both. What is the long term trend?

d. (Bonus) Is the equilibrium value you found in part (b) stable or unstable? Explain verbally and / or graphically.

The equal appears to be stable because if we start with As < 200, then A -> 200 as t gets losger on the other other side me start with say, A = 240 (or any Ao > 200), How A - 200 Consing Lown from above. * as seen above ** done on calculator

- 7. (20 points) An algal population A(t), measured in tons, grows in some lakes and rivers that accumulate nutrients from agricultural runoff. It is governed by the continuous model $\frac{dA}{dt} = 0.0003A(200-A) = 0.06A(1-\frac{A}{200})$ tons/year. The initial population is A(0) = 50 tons. Since we are measuring in tons, it is reasonable that you may get decimal answers; round off to three decimal places.
 - a. Apply stepwise estimation using Euler's method to estimate the population after 12 years. Replember that $\Delta A \approx \frac{dA}{dt}(\Delta t)$. Use 3 steps, so each time step is $\Delta t = \frac{dA}{dt} =$

So A(12) ~ 79.829 Toxa

Estra: If you look at Alt) or At, yould see that it is positive as long as A < 200,

b. If we want to approximate A(12) again, but use $\Delta t = 1/4 = 0.25$ year So A(t) will (that is, 3 months), how many steps are required to get to 12 years? Confinul

$$0.25 = \Delta t = \frac{12}{N}$$

$$N = # Steps to inverse.$$

$$N = \frac{12}{0.35} = 48$$

Exam stats: 31 exams, mem = 61, median = 59, SD = ± 25, low = 10, high = 107.