MATH 122 Fall, 2000 Exam \#1 Name:
There are 100 points. For full credit you must show your work.

1. (33 points) EPA inspectors have taken a sample of murky lake water and placed it in a tube. They shine a light of known intensity at one end of the tube and place a light sensor at various depths down the tube. The depth D is measured in cm and the intensity I is measured as a fraction of full power; here are the results:

D	0	1	2	3	4
I	.912	.560	.344	.211	.130

a. What is the average rate of change of I from $D=1$ to $D=4$?
b. Demonstrate clearly that I can not be a linear function of D.
c. Assume that I is a discrete exponential function of D (due to different sediments at different depths). Give a formula for I as a function of D. You must use, in one way or another, all the values given in the table.
d. Predict the value of I for $D=3.5 \mathrm{~cm}$ to three decimal places.
2. (10 points) Using the graph of $r=f(p)$, given below, which variable is the dependent variable? \qquad ? Determine the average rate of change (to two decimal places) from $p=0$ to $p=3$ \qquad and from $p=4$ to $p=6$ \qquad . At which value of p is $f(p)$ the greatest? \qquad ?
3. (15 points) The amount of caffeine in a cup of coffee at time t is $A(t)=A_{0} e^{r t}$, where A_{0} is the initial amount. The half-life of caffeine in the body is about 4 hours. What is the "decay rate" r of the caffeine in the body? How long will it take for the level to fall by 75% of the original amount (hint: what per cent will remain)?
4. (8 points) The carrying capacity M is the maximum number of squirrels that can live on the Horseshoe successfully. The growth rate G of the population of squirrels on the Horseshoe is proportional to the product of the number of squirrels N and the difference between N and the carrying capacity M. Write the formula that gives G in terms of M and the present population N.
5. (12 points) Assume s is a linear function of t, with the following values.

s	10	6		0	-6	-7
t		-2	0	1	4	

a. Which is the independent variable?
b. The slope is $m=$ \qquad
c. Fill in the missing values, and find the formula for s as a function of t.
d. Write t as a linear function of s.
6. (15 points) A company that makes ceiling fans has fixed costs of $\$ 9000$ for a certain product line and variable costs of $\$ 50$ per fan. The company plans to sell these fans for $\$ 80$ each. Let q represent the number of fans. Give formulas for the cost function $C(q)$ and the revenue function $R(q)$. What is the break-even point in terms of number of fans?
7. (7 points) The table below gives the concentration $C(t)$ of carbon dioxide $\left(\mathrm{CO}_{2}\right)$ in parts per million (ppm) in the atmosphere since 1960. Determine and fill in an appropriate scale for t. Use your calculator's curve-fitting or regression package to find the best exponential fit for this data, and give the formula. Then use the formula or your graph to estimate the amount of CO_{2} in the atmosphere the year 2000 .

year	1960	1965	1970	1975	1980	1985
t						
$C(t)$	316.8	319.9	325.3	331.0	338.5	345.7

