MATH 122 Spring, 2004 Exam \#1 Name:

There are 100 points. For full credit you must show your work.

1. (15 points) Assuming L is a linear function of t, fill in the missing values in the table and find a formula for L as a function of t.

t		-1	0	1		4
L	10	6		2	0	-4

2. (15 points) There were 56,050 cars imported to the U.S. from Japan in 1966, and the number of Japanese imports grew at a discrete rate of 72% a year until 1972.
a. How many Japanese cars were imported in 1968 ?
b. Give a formula for the number of Japanese imports, $N(t)$, where t is measured in years since 1966. How many cars were imported in 1965 ?
3. (15 points) A company that makes overpriced retro style blenders has fixed costs of $\$ 16,800$ and variable costs of $\$ 45$ per machine. The company plans to sell the machines for $\$ 125$ each. Let q represent the number of blenders. Give formulas for the cost function $C(q)$ and the revenue function $R(q)$. What is the break-even point in terms of number of blenders?
4. (10 points) The graph of a certain function f is shown below.
a. This graph shows \qquad as a function of
b. Compute the average rate of change from $x=4$ to $x=9$, and illustrate the geometric meaning of this computation.
b. For which values of x is the graph concave up?
5. (15 points) When X-rays pass through a heavy concrete shield the intensity of the radiation R decreases exponentially; that is, $R=R_{0} e^{k x}$. The initial amount is R_{0}, the thickness of the concrete is x, and the "decay" rate is k. It takes 3 feet of concrete to remove 75% of the X-ray radiation (so 25% remains). a. Determine the decay rate k.
b. How thick a shield is required to reduce the radiation by 99% ?
6. (15 points) Determine if w is a discrete exponential function or a linear function of x. Explain! Your answer must show that you have used all the values given in the table below.

x	-2	-1	0	1	2	3
w		75	60	48	38.4	30.72

a. Write the formula for w as a function of x and fill in the value $w(-2)$.
b. Write w_{x} in terms of w_{x-1}.
7. (15 points) A demand curve is given by the equation $75 p+50 q=300$, where p is the selling price in dollars, q is the quantity demanded at that price. Determine the intercepts of this graph, sketch the graph, and give the real world meaning of the intercepts.

