
Chapter 5: Manipulating Expressions with Maple V

5.1 Using simplify , side relations, and assume 

Try It! (p. 120)

Find the simplest expression that is equivalent to

 + + −( )sin x 7 ( )sin x 5 ( )cos x ( )sin x 5 ( )cos x 2 ( )sin x 3 ( )cos x 3.

Solution

> restart;
Begin with
> EXPR := sin(x)^7  - sin(x)^5*cos(x) + sin(x)^5*cos(x)^2 - sin(x)^3*cos(x)^3;

 := EXPR + − −( )sin x 7 ( )sin x 5 ( )cos x 2 ( )sin x 5 ( )cos x ( )sin x 3 ( )cos x 3

As a first attempt, try the basic simplification:
> simplify( EXPR );

− + − + +( )sin x ( )cos x ( )sin x 2 ( )sin x ( )cos x 2 ( )sin x ( )cos x 3 ( )sin x ( )cos x 4

While this has reduced the order of the highest exponents, this does not appear 
to be any simpler than the original expression. (Note that the highest powers 
now occur on the cosine terms.)

Using the same approach as in Example 5-2 (p. 120), simplification with a 
preference towards sine terms yields:
> EXPRs := simplify( EXPR, { sin(x)^2 + cos(x)^2 = 1 }, [ cos(x), sin(x) ] );

 := EXPRs − +( )sin x 3 ( )cos x ( )sin x 5

This is much simpler! In fact, factor should be able to make further 
improvements:
> EXPRs := factor( EXPRs );

 := EXPRs ( )sin x 3 ( )− +( )cos x ( )sin x 2

Another approach to the problem is to first factor the expression. Unless 
special care is taken to ensure the factored form is not lost, this approach is 
not likely to be effective. (Try It!)
> 

Try It! (p. 122)

Repeat the simplification of the expression in Example 5-3 for each combination of 

two assumptions on x, y, and q. Explain your results.
Solution

> restart;
> EXPR := (x*y^4)^(3/(q+1)):
> EXPR = simplify( EXPR );

=( )x y4









3

+q 1
( )x3 y12









1

+q 1

> 
Original: all three assumptions
> assume( q>-1, y>0, x>0 );
> about( q, x, y );
Originally q, renamed q~:
  is assumed to be: RealRange(Open(-1),infinity)

Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),infinity)

Originally y, renamed y~:
  is assumed to be: RealRange(Open(0),infinity)

> EXPR = simplify( EXPR );

=( )x~ y~4









3

+q~ 1
x~









3

+q~ 1
y~









12

+q~ 1

> 

Case 1: No assumption on x
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> x := ’x’: y := ’y’: q := ’q’:
> assume( q>-1, y>0 );
> about( q, x, y );
Originally q, renamed q~:
  is assumed to be: RealRange(Open(-1),infinity)

x:
  nothing known about this object

Originally y, renamed y~:
  is assumed to be: RealRange(Open(0),infinity)

> EXPR = simplify( EXPR );

=( )x y~4









3

+q~ 1
y~









12

+q~ 1
( )x3









1

+q~ 1

> 

Case 2: No assumption on y
> x := ’x’: y := ’y’: q := ’q’:
> assume( q>-1, x>0 );
> about( q, x, y );
Originally q, renamed q~:
  is assumed to be: RealRange(Open(-1),infinity)

Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),infinity)

y:
  nothing known about this object

> EXPR = simplify( EXPR );

=( )x~ y4









3

+q~ 1
x~









3

+q~ 1
( )y12









1

+q~ 1

> 

Case 3: No assumption on q
> x := ’x’: y := ’y’: q := ’q’:
> assume( y>0, x>0 );
> about( q, x, y );
q:
  nothing known about this object

Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),infinity)

Originally y, renamed y~:
  is assumed to be: RealRange(Open(0),infinity)

> EXPR = simplify( EXPR );

=( )x~ y~4









3

+q 1
x~









3

+q 1
y~









12

+q 1

> 

The assumptions on x and y provide the information Maple needs to be sure the 

simplifications for those terms are appropriate. The assumption on q is not 
needed.
> 

5.2 Using normal 

Try It! (p. 124)

To further understand the different ways in which simplify and normal work, look 
at -- and explain -- the results of applying simplify and normal to the numerator 
and denominator of the trigonometric expression in the Example 5-4.

Solution

> restart;
The expression to be analyzed here is created as in Example 5-4 (p. 123).
> EXPR1 := (x^10-1)/(x^2-1):
> EXPR3 := subs( x=sin(theta), EXPR1 );
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The numerator and denominator are obtained with numer and denom, respectively.
> top := numer( EXPR3 );
> bottom := denom( EXPR3 );

 := top −( )sin θ 10 1

 := bottom −( )sin θ 2 1
> 
The application of simplify to the numerator and denominator yields
> simplify( top );
> simplify( bottom );

− + − + −5 ( )cos θ 2 10 ( )cos θ 4 10 ( )cos θ 6 5 ( )cos θ 8 ( )cos θ 10

− ( )cos θ 2

In these cases Maple has converted all powers of ( )sin θ  into appropriate 

expressions involving ( )cos θ . Since both numerator and denominator have a common 

factor of ( )cos θ 2, their ratio is only of degree 8 in ( )cos θ .
> simplify( EXPR3 );

− + − +5 10 ( )cos θ 2 10 ( )cos θ 4 5 ( )cos θ 6 ( )cos θ 8

> 
Since normal is intended for use with rational expressions, we do not expect to 
any changes when normal is applied separately to the numerator and denominator.
> normal( top );
> normal( bottom );

−( )sin θ 10 1

−( )sin θ 2 1
However, as discussed in Example 5-4, normal does detect the common factor in 
the rational expression.
> normal( EXPR3 );

+ + + +( )sin θ 8 ( )sin θ 6 ( )sin θ 4 ( )sin θ 2 1
In addition to the comments at the end of Example 5-4, the equivalence of the 
results from simplify and normal can be seen by applying simplify to the 
normalized expression.
> simplify( " );

− + − +5 10 ( )cos θ 2 10 ( )cos θ 4 5 ( )cos θ 6 ( )cos θ 8

> 

5.3 Using factor 

Try It! (p. 126)

Find the factorization of 
−x4 y4

−x3 y3
. Compare the results from factor with those from 

simplify and normal.

Solution

> restart;
The rational expression to be studied is
> EXPR := (x^4-y^4)/(x^3-y^3);

 := EXPR
−x4 y4

−x3 y3

When factor, simplify, and normal are applied to this expression we obtain
> factor( EXPR );
> simplify( EXPR );
> normal( EXPR );

( )+y x ( )+x2 y2

+ +x2 x y y2
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+ + +x3 y x2 y2 x y3

+ +x2 x y y2

+ + +x3 y x2 y2 x y3

+ +x2 x y y2

While each of the three commands operates differently, the only difference in 
the results is that the result from factor is factored while those from simplify 
and normal are expanded.
> 

5.4 Using expand and combine  

Try It! (p. 128)

To better understand how combine works, use op to extract the three terms from 
EXPRe, apply combine to each term, then reassemble the results. Is this the same 
as EXPR? Explain.

Solution

> restart;
The expression and its equivalent expanded form are obtained as in Example 5-8 
(p. 128).
> EXPR := cos( 2*theta + phi );
> EXPRe := expand( EXPR );

 := EXPR ( )cos +2 θ φ

 := EXPRe − −2 ( )cos φ ( )cos θ 2 ( )cos φ 2 ( )sin φ ( )sin θ ( )cos θ
The three terms in the expanded form of the expression can be isolated as 
follows:
> TERM1 := op( 1, EXPRe );
> TERM2 := op( 2, EXPRe );
> TERM3 := op( 3, EXPRe );

 := TERM1 2 ( )cos φ ( )cos θ 2

 := TERM2 − ( )cos φ
 := TERM3 −2 ( )sin φ ( )sin θ ( )cos θ

The application of combine to the first and third terms appears to create more 
complicated expressions
> TERM1c := combine( TERM1 );
> TERM2c := combine( TERM2 );
> TERM3c := combine( TERM3 );

 := TERM1c + +
1

2
( )cos − +2 θ φ

1

2
( )cos +2 θ φ ( )cos φ

 := TERM2c − ( )cos φ

 := TERM3c − +
1

2
( )cos − +2 θ φ

1

2
( )cos +2 θ φ

However, when the sum of the three terms is found, it is clear that the result 
is the same as the original expression.
> EXPRc := TERM1c + TERM2c + TERM3c;

 := EXPRc ( )cos +2 θ φ
> 

Try It! (p. 131)

Repeat the previous example when x is assumed to be positive. Find conditions on x 
that allow all three logarithm terms to be combined into a single logarithm.

Solution

> restart;
The expression of interest is
> EXPR := ln((x/(x^2-1))^(2*x+2)) + (x+1)*exp(x+2);
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 := EXPR +








ln











x

−x2 1

( )+2 x 2

( )+x 1 e( )+x 2

> 

The assumption that x is positive (and, hence, real) is made with the command
> assume( x>0 );
> about( x );
Originally x, renamed x~:
  is assumed to be: RealRange(Open(0),infinity)

> 

The extra information about x allows for additional simplifications of the 
expression.
> simplify( EXPR );

+ − − − − + +2 x~ ( )ln x~ 2 ( )ln x~ ( )ln ( )−x~ 1 2 2 ( )ln +x~ 1 x~ ( )ln ( )−x~ 1 2 2 x~ ( )ln +x~ 1 e( )+x~ 2 x~ e( )+x~ 2

> 
The factorization and expanded forms are, however, unchanged
> EXPRf1 := factor( EXPR );

 := EXPRf1 + +






ln









x~

( )−x~ 1 ( )+x~ 1

( )+2 x~ 2

e( )+x~ 2 x~ e( )+x~ 2

> EXPRe1 := expand( EXPRf1 );

EXPRe1 := 

− − + − − + +2 x~ ( )ln x~ 2 x~ ( )ln −x~ 1 2 x~ ( )ln +x~ 1 2 ( )ln x~ 2 ( )ln −x~ 1 2 ( )ln +x~ 1 ex~ e2 x~ ex~ e2

> EXPRf2 := factor( EXPRe1 );

 := EXPRf2 ( )+x~ 1 ( )− − + +2 ( )ln −x~ 1 2 ( )ln +x~ 1 2 ( )ln x~ ex~ e2

> 

The fact that x>0 enables Maple to combine two of the logarithmic terms
> EXPRc1 := combine( EXPRf2 );

 := EXPRc1 ( )+x~ 1








− + +2 ( )ln −x~ 1 e( )+x~ 2









ln

x~2

( )+x~ 1 2

> 
As before, the results of expand and factor are unaffected by the assumption.
> EXPRe2 := expand( EXPRf1, x+2 );

EXPRe2 := 

− − + − − + +2 x~ ( )ln x~ 2 x~ ( )ln −x~ 1 2 x~ ( )ln +x~ 1 2 ( )ln x~ 2 ( )ln −x~ 1 2 ( )ln +x~ 1 e( )+x~ 2 x~ e( )+x~ 2

> EXPRc2 := factor( EXPRe2 );

 := EXPRc2 ( )+x~ 1 ( )− − + +2 ( )ln −x~ 1 2 ( )ln +x~ 1 2 ( )ln x~ e( )+x~ 2

> 

For the final part of this exercise, let’s begin by removing the assumption on x
.
> x := ’x’:
> about( x );
x:
  nothing known about this object

> 
The phrase "all three logarithm terms" is referring to the logarithmic terms in 
EXPR2c, the last expression in Example 5-10. This expression can be extracted by 
cutting-and-pasting directly from EXPRc2.
> EXPRln := -2*ln(x)+2*ln(x-1)+2*ln(x+1);

 := EXPRln − + +2 ( )ln x 2 ( )ln −x 1 2 ( )ln +x 1

Note: alternate definition of EXPRln

Here is a way in which these terms can be isolated using Maple commands. 
> #select( has, EXPRe2, ln );
> #EXPRln := factor( " )/(x+1);
While select is almost self-explanatory, you should consult the on-line help 
for a full description.

> 
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Recall that Maple will not combine the logarithmic terms because the "standard" 
properties are not valid when the arguments are negative and/or complex.
> combine( EXPRln );

− + +2 ( )ln x 2 ( )ln −x 1 2 ( )ln +x 1
> 

The assumption that x>0 allows for the combination of two terms (since +x 1>0).
> assume( x>0 );
> combine( EXPRln );

+2 ( )ln −x~ 1








ln

( )+x~ 1 2

x~2

> 

To combine all three terms requires the assumption that x>1.
> assume( x>1 );
> combine( EXPRln );









ln

( )−x~ 1 2 ( )+x~ 1 2

x~2

Note: a less appealing solution

An alternate, and less informative, solution to this problem is to instruct 
Maple to apply the combination rules for logarithms without regard for their 
domain of application, i.e., using only pattern matching. This is done as 
follows (see ?combine[ln] for details)
> x := ’x’;

 := x x
> combine( EXPRln, ln, symbolic );









ln

( )−x 1 2 ( )+x 1 2

x2

> 

5.5 Using Types and Type Conversion

Try It! (p. 133)

The results in Example 5-12 show that three of the four possible combinations of 
true and false can be obtained when type and hastype are applied to the same 
arguments. Is it possible for type to return true and hastype to return false for the 
same arguments?

Solution

No. Since the full expression is a subexpression of itself (a set is a subset of 
itself) whenever hastype returns false, type will also return false.
> 

Try It! (p. 135)

Write a single Maple command that uses nested seq commands that carry out the 
15-type tests for each of the 4 expressions. Be sure the results are well 
organized and easy to read.

Solution

> restart;
The four expressions considered in Example 5-13 (p. 135) can be assembled in a 
list
> exprs := [ exp(3), 3*Pi/2, cos(Pi/2), ln(-Pi) ];

 := exprs






, , ,e3 3

2
π 0 ( )ln −π

Here is the list of 15 types for numeric expressions
> numtypes := [ numeric, positive, negative, nonneg,
>               integer, posint, negint, nonnegint, even, odd,
>               float, rational, fraction, constant, realcons ]:
> 
The 15 type tests for each of the 4 expressions can be obtained in one command 

Page 6



as follows:
> seq( print( E, [ seq( type( E, T ), T=numtypes ) ] ), E=exprs );

,e3 [ ], , , , , , , , , , , , , ,false false false false false false false false false false false false false true true

,
3

2
π [ ], , , , , , , , , , , , , ,false false false false false false false false false false false false false true true

,0 [ ], , , , , , , , , , , , , ,true false false true true false false true true false false true false true true

,( )ln −π [ ], , , , , , , , , , , , , ,false false false false false false false false false false false false false true false
> 

What If? (p. 144)

Suppose a wastewater treatment plant at a certain location along the stream. After 
the treatment water is mixed with the upstream water, we find that the water 

temperature just downstream (after mixing) is =T 26 ˚C, the =DO 6.9 mg/L, the =BODu 15.2 
mg/L, and the stream velocity is 20 km/day. The deoxygenation and reaeration rates 
are the same as the earlier upstream values. Plot the new DO sag curve and identify 

the critical time, tcrit, where the DO is at a minimum and find this minimum value. How 
far downstream from the treatment plant does this minimum occur? Are there any 
portions of the stream downstream from the treatment plant where fish cannot survive?

Solution

> restart;
Recall the basic definitions for this application:
> Deqn := DD = kd/(kr-kd)*BODu*(exp(-kd*t) - exp(-kr*t) )+ Do*exp(-kr*t);

 := Deqn =DD +
kd BODu ( )−e( )−kd t e( )−kr t

−kr kd
Do e( )−kr t

> DOconserv := DO + DD = DOsat;

 := DOconserv =+DO DD DOsat
> DOeqn := op( solve( DOconserv, { DO } ) );

 := DOeqn =DO − +DD DOsat
> DOeqn := subs( Deqn, DOeqn );

 := DOeqn =DO − − +
kd BODu ( )−e( )−kd t e( )−kr t

−kr kd
Do e( )−kr t DOsat

> 
The parameter values downstream from the site of the contamination are
> DOvals := [kd = 0.4, kr = 2.0, DOo = 6.9, T = 26, BODu = 15.2, Do = 1.2, DOsat = 

8.1];

 := DOvals [ ], , , , , ,=kd .4 =kr 2.0 =DOo 6.9 =T 26 =BODu 15.2 =Do 1.2 =DOsat 8.1

with DOsat and D0 computed from Table 5-1 and conservation of DO. The specific 
formula for the dissolved oxygen is
> DOeqn2 := subs( DOvals, DOeqn );

 := DOeqn2 =DO − + +3.800000000 e( )−.4 t 2.600000000 e( )−2.0 t 8.1
A clear picture of the minimum is obtained by plotting the DO sag curve on a short 
interval:
> plot( rhs(DOeqn2), t=0..1, title=‘DO sag curve (downstream)‘ );
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t
10.80.60.40.20

6.8

6.6

6.4

6.2

6

DO sag curve (downstream)

> 

The DO level is lowest after approximately tcrit=0.77 days (about 18 hours); the 

lowest DO level is approximately =DO 5.8 mg/L. (More accurate approximations can be 
obtained by ‘‘zooming in’’ on the minimum; the analytic solution to this problem 
can be found using the techniques in Chapter 6.) Since the stream is moving at 

=vstream 20 km/day, the most severe impact of the pollutant is felt approximately 

=tcrit vstream 15.4 km (a little more than 9 miles) downstream from the spill. At that time 
the DO level of 5.8 mg/L is still about 50% above the lower limit of 4mg/L for 
supporting fishlife -- this spill should not seriously affect the stream’s 
ecosystem.

Problems (pp. 146 -- 148)

Problem 1

How does Maple simplify z2 when z is complex? real? positive? negative? Explain 
all results. Since this expression involves only a single name, is there any 
difference between using the assume command and the assume= optional argument to 
simplify? (Be sure to look at the online help for any functions that you have not 
seen previously.)

Solution

> restart;
The expression to be studied is
> EXPR := sqrt( z^2 );

 := EXPR z2

It is reasonable to manually enter the assumption and result for each of the 
four types. However, more efficient solutions are available. For example, the 
solution based on the ideas used to answer the Try It! (p. 135) is to define a 
list containing the four types
> TYPES := [  positive, negative, real, complex ];

 := TYPES [ ], , ,positive negative real complex
and, then,
> seq( print( T, EXPR=simplify( EXPR, assume=T ) ), T=TYPES );

,positive =z2 z

,negative =z2 −z

,real =z2 ( )signum z z

,complex =z2 ( )csgn z z

The results when z is positive and when z is negative should be very familiar. 
The signum function returns the sign of its argument (+1 if positive and -1 if 

negative); thus, the case when z is real is a generalization of the first two 
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cases. The csgn function is a version of signum for complex-valued arguments; 
see the online help for a full explanation.
> 

When the assume command is used to supply information about z, we obtain:
> for T in TYPES do
>   assume( z, T );
>   about( z );
>   T, EXPR=simplify( EXPR );
> od;
Originally z, renamed z~:
  is assumed to be: RealRange(Open(0),infinity)

,positive =z~2 z~
Originally z, renamed z~:
  is assumed to be: RealRange(-infinity,Open(0))

,negative =z~2 −z~
Originally z, renamed z~:
  is assumed to be: real

,real =z~2 ( )signum z~ z~
Originally z, renamed z~:
  is assumed to be: complex

,complex =z~2 ( )csgn z~ z~
> 

Note

While these results are exactly the same, do not assume that this will always 
be true. When assume= is used, unexpected assumptions might be made about 
temporary variables used in the simplification.

Problem 2

Determine conditions on z so that ez = e









z

2
. 

Hint

n equivalent form of this question is: when is =−ez e









z

2
0 ?

Solution

> restart;
Following the hint, the difference between the two terms is
> EXPR := sqrt(exp(z)) - exp(z/2);

 := EXPR −ez e( )/1 2 z

As expected, this expression cannot be simplified without some assumptions.
> simplify( EXPR );

−ez e( )/1 2 z

> 

Basically, we need to determine when ez>0. While this is not true for complex 
numbers, it is certainly true for all real numbers.
> simplify( EXPR, assume=real );

0
To conclude,
> TERM := op( 1, EXPR ):
> TERM = simplify( TERM, assume=real );

=ez e( )/1 2 z

> 

Problem 3

Symbolic simplification should not be overused. To see some of the potential 

pitfalls, consider the expression ( )( )−2 p









1

p
 .

Page 9



(a)

Compute the value of this expression for p=-5, -4, -3, -2, -1, -2/3, -1/3, 0, 
1/2, 1, 5/4, 3/2, 7/4, 2, 3, 4, 5.

(b)

What does Maple simplify this expression to when p is complex? positive? 
negative? even? odd?

(c)

How does Maple simplify this expression when the symbolic option is used in 
simplify?

(d)

For what values of p are the answers in parts (b) and (c) consistent?
Solution

> restart;
The expression du jour is
> EXPR := ((-2)^p)^(1/p);

 := EXPR ( )( )-2 p









1

p

> 

(a) Observe that 
1

p
 is not defined when =p 0.

> subs( p=0, EXPR );
Error, division by zero

Omitting this value from the list of values, we are left with
> POWER := [ -5, -4, -3, -2, -1, -2/3, -1/3, 1/2, 1, 5/4, 3/2, 7/4, 2, 3, 4, 5 

]:
For each value, Maple (automatically) simplifies the expression to
> seq( print( ’p’=p, ’EXPR’=EXPR ), p=POWER );

,=p -5 =EXPR −( )-1 /4 5 32 /1 5

,=p -4 =EXPR 16 /1 4

,=p -3 =EXPR −( )-1 /2 3 8 /1 3

,=p -2 =EXPR 4

,=p -1 =EXPR -2

,=p
-2

3
=EXPR

1







−

1

2
( )-2 /1 3

/3 2

,=p
-1

3
=EXPR -2

,=p
1

2
=EXPR -2

,=p 1 =EXPR -2

,=p
5

4
=EXPR ( )−2 ( )-2 /1 4

/4 5

,=p
3

2
=EXPR ( )−2 -2

/2 3

,=p
7

4
=EXPR ( )−2 ( )-2 /3 4

/4 7

,=p 2 =EXPR 4

,=p 3 =EXPR ( )-8 /1 3

,=p 4 =EXPR 16 /1 4

Page 10



,=p 5 =EXPR ( )-32 /1 5

> 
(b) Using seq, as in Problem 1, we find
> TYPES := [ positive, negative, even, odd, complex ]:
> seq( print( T, EXPR=simplify( EXPR, assume=T ) ), T=TYPES );

,positive =( )( )-2 p









1

p
2 ( )( )-1 p









1

p

,negative =( )( )-2 p









1

p
2 ( )( )-1 p









1

p

,even =( )( )-2 p









1

p
2

,odd =( )( )-2 p









1

p
2 ( )-1









1

p

,complex =( )( )-2 p









1

p
( )( )-1 p 2p









1

p

The first two results illustrate that the sign of the power is not important. 

Note that the expression never simplifies to -2, and simplifies to 2 when p is 
an even integer.
> 
(c) The "symbolic" simplification of the expression should multiply the 
exponents and return -2.
> simplify( EXPR, symbolic );

-2
> 

(d) The results in (b) and (c) never completely agree. They come closest when p 

is an odd integer. In this case there are p roots of -1 - one of which is -1.
> 

Problem 4

Although it is a well-known fact from algebra that =−x2 2 ( )−x 2 ( )+x 2 , this result 
is not obtained from factor( x^2-2 );. The explanation for this can be seen in the 
fact that the factorizations returned by factor generally have integer 
coefficients. To include integer multiples of one or more specific nonintegers, 
called extensions to the field of integers, include these numbers as a set as the 
second argument to factor. For example, factor( x^2-2, { 2^(1/2) } ); returns the 

expected factorization for −x2 2. Irrational numbers that appear in the polynomial 
are automatically included in the set of extensions (see Example 5-7).

Find appropriate sets of extensions that yield the full factorization of

(a)

+ −x2 4 x 41
(b)

− − +x3 5 x2

2
5 x

3

2
Solution

> restart;
(a)
> EXPR := x^2 + 4*x - 41;

 := EXPR + −x2 4 x 41
> factor( EXPR );

+ −x2 4 x 41
Since the basic factorization does not work, we need to determine an appropriate 

field extension. The discriminant in the quadratic formula is −b2 4 a c= 180=6 5
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. This means 5 is an appropriate field extension.
> factor( EXPR, sqrt(5) );

−( )+ +x 2 3 5 ( )− − +x 2 3 5
> 
(b)
> EXPR := x^3 - 5/2*x^2 - 5*x + 3/2;

 := EXPR − − +x3 5

2
x2 5 x

3

2
> factor( EXPR );

1

2
( )+2 x 3 ( )− +x2 4 x 1

The factorization is only partially successful. The approach used in (a) can be 

applied to determine that 3 is an appropriate field extension.
> factor( EXPR, sqrt(3) );

−
1

2
( )− + +x 2 3 ( )− +x 2 3 ( )+2 x 3

Alternate determination of field extension

We could also ask Maple to explicitly find the roots of this polynomial.
> solve( EXPR=0, x );

, ,
-3

2
+2 3 −2 3

As before, this indicates that 3 is the field extension that is needed for 
this problem.

Note that this exercise illustrates an essential difference between factor 
and solve.

> 

Problem 5

(a)

Use the factorization of −xn 1 to obtain the roots of =xn 1 with as much accuracy 
as possible for each n=1, 2, 3, 4, 5, 6, 7, 8.

(b)

Use the complexplot command, from the plots package, to plot all solutions to −xn 1 
for n=1, 2, 3, 4, 5, 6, 7, 8.

(c)

Compare your results in part  (a) with the results obtained by using solve to 

find the solutions  to =xn 1.
Solution

> restart; with(plots):
To begin, let’s see what how far we can get using factor:
> EXPR := x^n - 1;

 := EXPR −xn 1
> for n from 1 to 8 do
>   EXPR.n := factor( EXPR );
> od;

 := EXPR1 −x 1

 := EXPR2 ( )−x 1 ( )+x 1

 := EXPR3 ( )−x 1 ( )+ +x2 x 1

 := EXPR4 ( )−x 1 ( )+x 1 ( )+x2 1

 := EXPR5 ( )−x 1 ( )+ + + +x4 x3 x2 x 1

 := EXPR6 ( )−x 1 ( )+x 1 ( )+ +x2 x 1 ( )− +x2 x 1
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 := EXPR7 ( )−x 1 ( )+ + + + + +x6 x5 x4 x3 x2 x 1

 := EXPR8 ( )−x 1 ( )+x 1 ( )+x2 1 ( )+x4 1
The first two expressions are completely factored. The solve command can help 
with the identification of appropriate field extensions.
> 

When =n 1 there is one root: =x 1.
> solve( EXPR1=0, x );

1
> R1 := [ " ];

 := R1 [ ]1
> P1 := complexplot( R1, style=POINT, axes=NONE,
>                    title=‘Solutions to x^1=1‘ ):
> 

When =n 2 the two roots are =x 1 and =x −1.
> solve( EXPR2=0, x );

,1 -1
> R2 := [ " ];

 := R2 [ ],1 -1
> P2 := complexplot( R2, style=POINT, axes=NONE,
>                    title=‘Solutions to x^2=1‘ ):
> 

When =n 3 the discriminant of the quadratic term is 3. Since two of the roots 
are complex, it is also necessary to include I in the set of field extensions. 
Note that this information can also be obtained from the output from solve.
> solve( EXPR3=0, x );

, ,1 − +
1

2

1

2
I 3 − −

1

2

1

2
I 3

> factor( EXPR3, { I, sqrt(3) } );

1

4
( )+ +2 x 1 I 3 ( )+ −2 x 1 I 3 ( )−x 1

> R3 := [ "" ];

 := R3






, ,1 − +

1

2

1

2
I 3 − −

1

2

1

2
I 3

> P3 := complexplot( R3, style=POINT, axes=NONE,
>                    title=‘Solutions to x^3=1‘ ):
> 

When =n 4 the only field extension that is needed is I.
> solve( EXPR4=0, x );

, , ,1 -1 I −I
> factor( EXPR4, I );

( )−x I ( )+x I ( )+x 1 ( )−x 1
> R4 := [ "" ];

 := R4 [ ], , ,1 -1 I −I
> P4 := complexplot( R4, style=POINT, axes=NONE,
>                    title=‘Solutions to x^4=1‘ ):
> 

When =n 5 the field extension is not so easy to specify. Maple will not accept 
the product of two square roots (as is displayed in the output from solve). 
Instead, either express the entire term as a single square root or specify each 
factor independently. While the results appear quite different, they are 
equivalent:
> solve( EXPR5=0, x );

1 − +
1

4
5

1

4

1

4
I 2 +5 5 − − +

1

4
5

1

4

1

4
I 2 −5 5 − − −

1

4
5

1

4

1

4
I 2 −5 5, , , ,
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− −
1

4
5

1

4

1

4
I 2 +5 5

> factor( EXPR5, { I, sqrt(5), sqrt(10+2*sqrt(5)) } );

1

1024
( )+ + + −8 x 2 2 5 %1 I 5 +10 2 5 ( )+ − +4 x 1 5 %1

( )+ + − +8 x 2 2 5 %1 I 5 +10 2 5 ( )+ − −4 x 1 5 %1 ( )−x 1

 := %1 I +10 2 5
> factor( EXPR5, { I, sqrt(5), sqrt(2), sqrt(5+sqrt(5)) } );

1

1024
( )+ − −4 x 1 5 %1 ( )+ − +1 4 x 5 %1 ( )+ − + +2 8 x %1 2 5 I 5 +5 5 2

( )+ + + −8 x 2 2 5 %1 I 5 +5 5 2 ( )−x 1

 := %1 I 2 +5 5
> R5 := [ """ ];

R5 1 − +
1

4
5

1

4

1

4
I 2 +5 5 − − +

1

4
5

1

4

1

4
I 2 −5 5 − − −

1

4
5

1

4

1

4
I 2 −5 5, , , ,



 := 

− −
1

4
5

1

4

1

4
I 2 +5 5





> P5 := complexplot( R5, style=POINT, axes=NONE,
>                    title=‘Solutions to x^5=1‘ ):
> 

When =n 6 the situation is much simpler -- a field extension is easily 
identified from the output from solve:
> solve( EXPR6=0, x );

, , , , ,1 -1 − +
1

2

1

2
I 3 − −

1

2

1

2
I 3 −

1

2

1

2
I 3 +

1

2

1

2
I 3

> factor( EXPR6, { I, sqrt(3) } );

1

16
( )+ +2 x 1 I 3 ( )− −2 x 1 I 3 ( )− +2 x 1 I 3 ( )+ −2 x 1 I 3 ( )+x 1 ( )−x 1

> R6 := [ "" ];

 := R6






, , , , ,1 -1 − +

1

2

1

2
I 3 − −

1

2

1

2
I 3 −

1

2

1

2
I 3 +

1

2

1

2
I 3

> P6 := complexplot( R6, style=POINT, axes=NONE,
>                    title=‘Solutions to x^6=1‘ ):
> 

When =n 7 the output from solve contains only complex trigonometric expressions. 
Unfortuately, these cannot be used as field extensions in factor; evalf can be 
used to obtain approximate numerical values for these roots. It is also possible 
to obtain an approximate factorization by specifying complex as the second 
argument to factor.
> solve( EXPR7=0, x );

1 +






cos

2

7
π I







sin

2

7
π − +







cos

3

7
π I







sin

3

7
π − +







cos

1

7
π I







sin

1

7
π − −







cos

1

7
π I







sin

1

7
π, , , , ,

− −






cos

3

7
π I







sin

3

7
π −







cos

2

7
π I







sin

2

7
π,

> evalf( " );

1. +.6234898018 .7818314825 I − +.2225209335 .9749279123 I − +.9009688678 .4338837393 I, , , ,

− −.9009688678 .4338837393 I − −.2225209335 .9749279123 I −.6234898018 .7818314825 I, ,
> factor( EXPR7, complex );

( )+ +x .9009688679 .4338837391 I ( )+ −x .9009688679 .4338837391 I ( )+ +x .2225209340 .9749279122 I

( )+ −x .2225209340 .9749279122 I ( )− +x .6234898019 .7818314825 I ( )− −x .6234898019 .7818314825 I
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( )−x 1.
> R7 := [ "" ];

R7 1. +.6234898018 .7818314825 I − +.2225209335 .9749279123 I − +.9009688678 .4338837393 I, , , ,[ := 

− −.9009688678 .4338837393 I − −.2225209335 .9749279123 I −.6234898018 .7818314825 I, , ]
> P7 := complexplot( R7, style=POINT, axes=NONE,
>                    title=‘Solutions to x^7=1‘ ):
> 

When =n 8, things are simpler:
> solve( EXPR8=0, x );

, , , , , , ,1 -1 I −I +
1

2
2

1

2
I 2 − −

1

2
2

1

2
I 2 −

1

2
2

1

2
I 2 − +

1

2
2

1

2
I 2

> factor( EXPR8, { I, sqrt(2) } );

1

16
( )+ +2 x 2 I 2 ( )+ −2 x 2 I 2 ( )− −2 x 2 I 2 ( )+x I ( )−x I ( )+x 1 ( )−x 1 ( )− +2 x 2 I 2

> R8 := [ "" ];

 := R8






, , , , , , ,1 -1 I −I +

1

2
2

1

2
I 2 − −

1

2
2

1

2
I 2 −

1

2
2

1

2
I 2 − +

1

2
2

1

2
I 2

> P8 := complexplot( R8, style=POINT, axes=NONE,
>                    title=‘Solutions to x^8=1‘ ):
> 
To conclude, let’s display the plots in a 2x4 array.
> display( array(1..2,1..4,[[P1,P2,P3,P4],[P5,P6,P7,P8]] ) );

Solutions to x^8=1Solutions to x^6=1 Solutions to x^7=1

Solutions to x^1=1 Solutions to x^2=1 Solutions to x^3=1 Solutions to x^4=1

Solutions to x^5=1

> 
An animation view of these roots is another way of viewing the plots of the 
roots.
> display( [ seq( P.i, i=1..8 ) ], insequence=true );

Note

The animated display is omitted from the hardcopy of the Instructor’s Guide.
> 

Problem 6

Find all values of the parameter a for which the functions =( )f x + +x2 a x 26 and 

=( )g x + − − −x4 6 x3 17 x2 78 x 56 have at least one common root.
Solution

> restart;
The two functions can be defined (as expressions) as follows:
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> f := x^2+a*x+26;

 := f + +x2 a x 26
> g := x^4+6*x^3-17*x^2-78*x-56;

 := g + − − −x4 6 x3 17 x2 78 x 56

The roots of ( )f x  and of ( )g x  are
> ROOTf := [ solve( f=0, x ) ];

 := ROOTf






,− +

1

2
a

1

2
−a2 104 − −

1

2
a

1

2
−a2 104

> ROOTg := [ solve( g=0, x ) ];

 := ROOTg [ ], , ,4 -7 -2 -1

As expected, the roots of ( )f x  depend on the parameter a.
> 
To determine when the polynomials have a common root it is necessary to consider 
each of the eight possible pairings of roots.
> for rg in ROOTg do
>   for rf in ROOTf do
>     R := solve( rf=rg, { a } );
>     if R<>NULL then print( rf, rg, R ) fi;
>   od;
> od;

, ,− −
1

2
a

1

2
−a2 104 4 { }=a

-21

2

, ,− −
1

2
a

1

2
−a2 104 -7 { }=a

75

7

, ,− +
1

2
a

1

2
−a2 104 -2 { }=a 15

, ,− +
1

2
a

1

2
−a2 104 -1 { }=a 27

> 
Only four of the pairings produce a solution. The corresponding list of 
parameter values is
> A := [ -21/2, 75/7, 15, 27 ];

 := A






, , ,

-21

2

75

7
15 27

To check that these values do work, look at the factorization of ( )f x  for these 

values of a.
> for a in A do
>   factor( f );
> od;

1

2
( )−x 4 ( )−2 x 13

1

7
( )+x 7 ( )+7 x 26

( )+x 13 ( )+x 2

( )+x 26 ( )+x 1

Good! Each of these functions does share a factor with ( )g x .
> 

Problem 7

The expression EXPRe1 in Example 5-10 is not a valid simplification of EXPR for 

all real and complex values of x. Find values of x that give different values when 

inserted into EXPR and EXPRe1. Find the general conditions on x that guarantee that 
the two expressions are equivalent.
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Solution

> restart;
The definitions of EXPR and EXPRe1 are copied from Example 5-10 (pp. 129 -- 
130).
> EXPR := ln((x/(x^2-1))^(2*x+2)) + (x+1)*exp(x+2);

 := EXPR +








ln











x

−x2 1

( )+2 x 2

( )+x 1 e( )+x 2

> EXPRf1 := factor( EXPR );

 := EXPRf1 + +






ln









x

( )−x 1 ( )+x 1

( )+2 x 2

e( )+x 2 x e( )+x 2

> EXPRe1 := expand( EXPRf1 );

 := EXPRe1 − − + − − + +2 x ( )ln x 2 x ( )ln −x 1 2 x ( )ln +x 1 2 ( )ln x 2 ( )ln −x 1 2 ( )ln +x 1 ex e2 x ex e2

> 
Thinking about this problem, and the information learned from the Try It! (p. 
131), we expect that there might be "problems" when the argument to one or more 
of the logarithms in EXPRe1 is negative. For example,
> evalf( subs( x=1/2, [ EXPR, EXPRf1, EXPRe1 ] ) );

[ ], ,+17.05734562 3.141592654 I +17.05734562 3.141592654 I −17.05734562 9.424777962 I
Here are some more examples:
> for x in [ -2, -3/2, -1/2, 1/2, 3/2, I ] do
>   x, evalf( [ EXPR, EXPRe1 ] );
> od;

,-2 [ ],-.1890697838 − +.1890697827 6.283185308 I

,
-3

2
[ ],− +1.006682192 3.141592654 I − +1.006682192 3.141592654 I

,
-1

2
[ ],1.835379427 1.835379427

,
1

2
[ ],+17.05734562 3.141592654 I −17.05734562 9.424777962 I

,
3

2
[ ],83.70023768 83.70023768

,I [ ],− +.470053971 11.96529865 I − +.470053972 5.682113346 I
Note that, in each case, the real parts are equal but that sometimes the 

imaginary parts differ (by a multiple of π). In general, the two expressions are 
equivalent for all x>1.
> x := ’x’:
> plot( [ EXPR, EXPRe1 ], x=1..3, style=[LINE,POINT],
>       title=‘Problem 7 (Chapter 5)‘ );
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x
32.521.51

500

400

300

200

100

Problem 7 (Chapter 5)

> 

Problem 8

The polynomial with roots -1, 2, 
3

2
, and 5 was found in Example 5-7. Find, also in 

expanded form, the polynomial with the same roots but with coefficients that sum 
to 1.

Solution

> restart;
Begin by recalling the definition of the polynomial in Example 5-7 (p. 127).
> POLY := (x+1)*(x-2)*(x-3/2)*(x-sqrt(5));

 := POLY ( )+x 1 ( )−x 2






−x

3

2
( )−x 5

> POLYe := expand( POLY );

 := POLYe − − + − + + −x4 x3 5
5

2
x3 5

2
x2 5

1

2
x2 1

2
x 5 3 x 3 5

> 
The coefficients of the polynomial can be obtained using the coeffs command
> COEFFS := [ coeffs( POLYe, x ) ];

 := COEFFS






, , , ,+

1

2
5 3 −3 5 − +

1

2

5

2
5 − −5

5

2
1

and the sum of the coefficients can be found be adding the elements of this list
> SUM := add( i, i=COEFFS );

 := SUM −1 5
or by converting the list into a "sum" (i.e., type ‘+‘)
> convert( COEFFS, ‘+‘ );

−1 5

Note: add vs. sum 

The add and sum commands appear similar, but are intended for quite different 
purposes. While add is designed for adding elements of a list, sum (and its 
inert form, Sum) is intended for use with definite and indefinite sums 
(including infinite series).

> 
The final polynomial is
> POLY1 := expand( POLYe/SUM );

 := POLY1 − − + − + + −
x4

−1 5

x3 5

−1 5

5

2

x3

−1 5

5

2

x2 5

−1 5

1

2

x2

−1 5

1

2

x 5

−1 5
3

x

−1 5
3

5

−1 5
> 
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To check this result observe that
> factor( POLY1 );

−
1

8
( )+1 5 ( )−2 x 3 ( )−x 5 ( )−x 2 ( )+x 1

> normal( convert( [ coeffs( POLY1, x ) ], ‘+‘ ) );

1
> 

Problem 9

Example 5-13 presents a number of questions that are worth pursuing. Foremost is 
the question about the logarithm of a negative number. One way to get more insight 

into this question is to look at a floating-point approximation to ( )ln −π . While 
this can be done using evalf, find a way to achieve the same result using convert.
Solution

> restart;
> EXPR := ln( -Pi );

 := EXPR ( )ln −π
From the list of numeric types encountered in Example 5-13 (p. 134), it seems 
reasonable to convert EXPR to type float.
> EXPR := convert( EXPR, float );

 := EXPR +1.144729886 3.141592654 I
> 

Problem 10

The values tested in Example 5-13 matched different combinations of the 15 types 
related to numeric objects. Is it possible to find one number that matches all 15 
types? If not, what is the highest number of matches that can be made with a 
single number?

Solution

> restart;
> numtypes := [ numeric, positive, negative, nonneg,
>               integer, posint, negint, nonnegint, even, odd,
>               float, rational, fraction, constant, realcons ]:
Since no number can be both positive and negative (or both even and odd) it’s 
not possible to match all 15 types with a single number.

If the value is negative, you lose positive, nonnegative, posint, and nonnegint; if the 
value is not an integer, you could gain float and rational, but would lose integer, posint, 
and nonnegint.

The largest number of matches is 10 -- for any positive integer.
> seq( type( 1, T ), T=numtypes );

, , , , , , , , , , , , , ,true true false true true true false true false true false true false true true
> NUMtrue := nops( select( has, ["], true ) );

 := NUMtrue 10
> 

Problem 11

(a)

It is well known that the sine of all integer multiples of π is zero: =( )sin n π 0 
for all integers n. Add assumptions to the name n so that Maple automatically 

simplifies ( )sin n π  to zero. What is the value of ( )cos n π  for any integer n?
(b)

Consider the expression 






sin

n π
2







cos

n π
2

. Use the combine command to simplify this 

expression. Now, add the assumption that n is an integer. How is this extra 
information reflected in the original and combined expressions? (Explain any 
differences in the results.)
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(c)

Another lesson related to assume is that assumptions should be imposed only 
after all other simplifications have been completed. For example, compare the 

results of applying combine to 






sin

n π
2







cos

n π
2

 with and without the assumption that 

n is an integer.
Solution

(a)
> restart;
> EXPR := [ sin( n*Pi ), cos( n*Pi ) ];

 := EXPR [ ],( )sin n π ( )cos n π
By default, no simplifications can be made to either of these expressions. 

However, when n is an integer:
> assume( n, integer );
> about( n );
Originally n, renamed n~:
  is assumed to be: integer

> EXPR;

[ ],0 ( )-1 n~

This is exactly what we expect.
> 
(b) and (c)
> restart;
> EXPR := sin(n*Pi/2) * cos(n*Pi/2);

 := EXPR






sin

1

2
n π







cos

1

2
n π

> EXPRc := combine( EXPR );

 := EXPRc
1

2
( )sin n π

> assume( n, integer );
> EXPRc;

0
Now, with the assumption still in place, attempt to repeat the combine step
> EXPR;







sin

1

2
n~ π







cos

1

2
n~ π

> EXPRc2 := combine( EXPR );

 := EXPRc2






sin

1

2
n~ π







cos

1

2
n~ π

This result suggests that some of the transformations used in combine are 
disabled when assumptions are used.
> 

Problem 12

Properties and types are closely related. One difference is that some properties 
can be specified in a convenient mathematical form: e.g., assume( z>0 );. Just as 
the type command is used to test types, the is command is used to test if a Maple 
object has a specific property (see the assume help worksheet). The value returned 
by is will be true (if the property follows from the previous assumptions), false (if 
the property is not always consistent with the assumptions), or, FAIL (if Maple was 
not able to determine whether the property is true or false).

(a)

Verify that, when Maple knows x>2, is( x^2+2*x+3 > 2 ); returns the value false 
and is( x^2+2*x+3 >= 2 ); returns the value true.

(b)

Determine appropriate properties to impose on z so that is( ln(z^2+1) > 0 ); 
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returns the value true. How can the assumptions on z be relaxed so that is( 
ln(z^2+1) >= 0 ); evaluates as true?

Solution

(a)

Correction

Note that the problem, as stated, is not correct. The correct problem should 

say "when Maple knows x>=-2".
> restart;
While it is not requested, let’s see the results of these commands without any 
assumptions.
> is( x^2+2*x+3 > 2 );

FAIL
> is( x^2+2*x+3 >= 2 );

FAIL
> 
Adding the (corrected) assumption, the results are as described.
> assume( x >= -2 );
> about( x );
Originally x, renamed x~:
  is assumed to be: RealRange(-2,infinity)

> is( x^2+2*x+3 > 2 );

false
> is( x^2+2*x+3 >= 2 );

true
> 
(b)
> restart;
> EXPR := ln( z^2+1 );

 := EXPR ( )ln +z2 1
Without assumptions, the sign of EXPR cannot be determined.
> is( EXPR>0 );

FAIL
Logarithms are positive when the argument exceeds 1. This suggests the 

assumption z>0.
> assume( z, positive );
> about( z );
Originally z, renamed z~:
  is assumed to be: RealRange(Open(0),infinity)

> is( EXPR>0 );

true
To check that this is the optimal assumption, note that:
> assume( z, nonneg );
> about( z );
Originally z, renamed z~:
  is assumed to be: RealRange(0,infinity)

> is( EXPR>0 );

false

Note: alternate syntax for is 

An equivalent form of this command is:
> is( EXPR, positive );

false
> 

> 

The current assumption (z>=0) is precisely the situation in which ( )ln +z2 1  >= 0:
> is( EXPR, nonneg );

true
> 
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Problem 13

(a)

Determine at what time 99.5% of BODu is attained in Figure 5-1.

(b)

Find the exact time at when the BOD reaches 99.5% of the ultimate BOD for 

general values of the reaction rate, kd, and the ultimate BOD, BODu. Explain how 
this time depends on both parameters.

(c)

Repeat b) for any threshold (not just 99.5% of BODu). That is, determine the 

time until a sample with reaction rate kd reaches p% of the ultimate BOD.

Solution 

> restart;
(a) This problem is a little vague. Assuming we are interested in the times when 
99.5% of the available BOD has been consumed, we need an expression for the 

amount of oxygen consumed through time t (in days) Based on the discussion on p. 
137, this would be
> EQN := BODu - BODu*exp(-kd*t);

 := EQN −BODu BODu e( )−kd t

The parameter values used to create Figure 5-1 (p. 138) are
> PARAM := [ BODu=323, kd=0.228 ];

 := PARAM [ ],=BODu 323 =kd .228
The time (in days) when 99.5% of the available oxygen has been consumed is
> solve( subs( PARAM, EQN = 0.995*BODu ), { t } );

{ }=t 23.23823406
This is consistent with the graph in Figure 5-1.
> 
(b) The analytic, i.e., no floating-point numbers, solution to this problem can 
be obtained if the floating-point constant 0.995 is replaced with the fraction 
995/1000.
> solve( EQN = 995/1000*BODu, { t } );

{ }=t
( )ln 200

kd
Thus, the time is inversely proportional to the reaction rate (which is 
consistent with the units!) and completely independent of the ultimate BOD. 
While this might seem surprising at first, it is a very common phenomenon in all 
applications of exponential decay.
> 

(c) The time when p% of the available BOD has been consumed is
> solve( EQN = p/100*BODu, { t } );















=t −







ln −1

1

100
p

kd
> 

Problem 14

(a)

Find, and plot, the linear function that best fits (in the least squares sense) 
the DO vs. temperature data in Table 5-1.

(b)

Find, and plot, the exponential function that best fits this data.

(c)

How do the two fits compare? Which looks to be the better fit? For each fit, 
compute the sum of the squares of the difference between the absolute error 
between the measured and predicted values. What does this say about the quality 
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of the two fits?

Solution

> restart; with(plots): with(stats):
Begin by collecting the data fromTable 5-1 (p. 136):
> SATdata := [[0, 14.6], [1., 14.2], [2., 13.9], [3., 13.5], [4., 13.1], [5., 

12.8], [6., 12.5], [7., 12.1], [8., 11.8], [9., 11.6], [10., 11.3], [11., 
11.], [12., 10.8], [13., 10.5], [14., 10.3], [15., 10.1], [16., 9.9], [17., 
9.7], [18., 9.5], [19., 9.3], [20., 9.1], [21., 8.9], [22., 8.7], [23., 8.6], 
[24., 8.4], [25., 8.3], [26., 8.1], [27., 8.], [28., 7.8], [29., 7.7], [30., 
7.6]]:

> 
(a) Recall that the least-squares fit to a set of data is obtained using the  
fit  command from the  stats  package. Before calling this command, the data 
needs to be separated into two separate lists: one for the temperatures and one 
for the DO readings. One way to convert the data to this form is:
> Tdata := [ seq( DATA[1], DATA=SATdata ) ];
> DOdata := [ seq( DATA[2], DATA=SATdata ) ];

Tdata 0 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26., , , , , , , , , , , , , , , , , , , , , , , , , , ,[ := 

27. 28. 29. 30., , , ]

DOdata 14.6 14.2 13.9 13.5 13.1 12.8 12.5 12.1 11.8 11.6 11.3 11. 10.8 10.5 10.3 10.1 9.9 9.7 9.5, , , , , , , , , , , , , , , , , , ,[ := 

9.3 9.1 8.9 8.7 8.6 8.4 8.3 8.1 8. 7.8 7.7 7.6, , , , , , , , , , , ]
The best linear fit is
> DOfit := fit[leastsquare[ [T,DO], DO=a*T+b, {a,b} ]]
>             ([ Tdata, DOdata ]);

 := DOfit =DO − +.2289516129 T 13.87620968
To see how good this fit is, plot the data and the best linear fit to the data
> Pdata := plot( SATdata, style=POINT, view=0..15 ):
> Pfit := plot( rhs(DOfit), T=0..30, color=BLUE ):
> display( [Pdata, Pfit], labels=[temperature,DO],
>          title=‘DO[sat] vs. temperature: data & linear fit‘ );

temperature
30252015105

DO

14

12

10

8

6

4

2

0

DO[sat] vs. temperature: data & linear fit

> 
(b) It would be nice if the exponential fit could be found as easily as the 
linear fit, but ...
> DOfit2 := fit[leastsquare[ [T,DO], DO=a*exp(b*T), {a,b} ]]
>              ([ Tdata, DOdata ]);

DOfit2 fitleastsquare

, ,[ ],T DO =DO a e
( )b T

{ },a b

0 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18., , , , , , , , , , , , , , , , , , ,[[( := 

19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30., , , , , , , , , , , ] 14.6 14.2 13.9 13.5 13.1 12.8 12.5 12.1 11.8 11.6 11.3, , , , , , , , , ,[,
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11. 10.8 10.5 10.3 10.1 9.9 9.7 9.5 9.3 9.1 8.9 8.7 8.6 8.4 8.3 8.1 8. 7.8 7.7 7.6, , , , , , , , , , , , , , , , , , , ] ] )
> 
The problem is that, in this form, the least squares problem is nonlinear (in 

the parameters a and b). The standard approach to this problem is to apply a 
transformation to the data that makes the problem linear in the parameters. In 
this case this is accomplished by looking for a linear fit to the (natural) 

logarithm of the DO data, i.e., ( )ln DO  = ( )ln a e( )b T  = ln(a)+b*T . To implement 
this, the logarithm of the DO data is needed:
> lnDOdata := map( ln, DOdata );

lnDOdata 2.681021529 2.653241965 2.631888840 2.602689685 2.572612230 2.549445171 2.525728644, , , , , , ,[ := 

2.493205453 2.468099531 2.451005098 2.424802726 2.397895273 2.379546134 2.351375257 2.332143895, , , , , , , ,

2.312535424 2.292534757 2.272125886 2.251291799 2.230014400 2.208274414 2.186051277 2.163323026, , , , , , , ,

2.151762203 2.128231706 2.116255515 2.091864062 2.079441542 2.054123734 2.041220329 2.028148247, , , , , , ,

]
> lnDOfit := fit[leastsquare[ [T,lnDO], lnDO=lna+b*T, {lna,b} ]]
>               ([ Tdata, lnDOdata ]);

 := lnDOfit =lnDO −2.653976605 .02183091391 T
> Plndata := plot( zip((x,y)->[x,y],Tdata,lnDOdata), style=POINT ):
> Plnfit := plot( rhs(lnDOfit), T=0..30, color=GREEN ):
> display( [Plndata, Plnfit], labels=[temperature,DO],
>          title=‘ln(DO[sat]) vs. temperature: log data & fit‘ );

temperature
302520151050

DO

2.6

2.5

2.4

2.3

2.2

2.1

2

ln(DO[sat]) vs. temperature: log data & fit

> 
The corresponding exponential function that fits the data is
> DOfit2 := DO = expand( exp( rhs( lnDOfit ) ) );

 := DOfit2 =DO 14.21043573 e( )−.02183091391 T

> 
To see how good this fit is, plot the data and the exponential fit to the data
> Pfit2 := plot( rhs(DOfit2), T=0..30, color=GREEN ):
> display( [Pdata, Pfit2], labels=[temperature,DO],
>          title=‘DO[sat] vs. temperature: data & exponential fit‘ );
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temperature
30252015105

DO

14

12

10

8

6

4

2

0

DO[sat] vs. temperature: data & exponential fit

> 
(c) Based on a visual inspection, the exponential fit found in (b) appears to be 
slightly better than the linear fit found in (a).
> display( [Pdata, Pfit, Pfit2], labels=[temperature,DO], title=‘DO[sat] vs. 

temperature: data, linear & exp fits‘ );

temperature
30252015105

DO

14

12

10

8

6

4

2

0

DO[sat] vs. temperature: data, linear & exp fits

> 
To compute the sum of the squares of the errors between the data and the linear 
function fitting the data requires the values of the linear function for each 
temperature in Tdata:
> DOlin := [ seq( rhs(DOfit), T=Tdata ) ];

DOlin 13.87620968 13.64725807 13.41830645 13.18935484 12.96040323 12.73145162 12.50250000, , , , , , ,[ := 

12.27354839 12.04459678 11.81564516 11.58669355 11.35774194 11.12879033 10.89983871 10.67088710, , , , , , , ,

10.44193549 10.21298387 9.984032261 9.755080648 9.526129035 9.297177422 9.068225809 8.839274196, , , , , , , ,

8.610322583 8.381370970 8.152419357 7.923467745 7.694516132 7.465564519 7.236612906 7.007661293, , , , , , ,

]
Then the sum of the square of the error at each point is
> add( (DOlin[i]-DOdata[i])^2, i=1..nops(DOlin) );

3.256758069
> 
Using the same steps for the exponential function,
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> DOexp := [ seq( rhs(DOfit2), T=Tdata ) ]:
> add( (DOexp[i]-DOdata[i])^2, i=1..nops(DOlin) );

.7243150106
These results confirm that the exponential function is a better fit for the DO 
data.
> 
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