Chapter 3: Engineering and Scientific Mnipul ations

3.1: Assignment ( :=) and Expressions

[B Try 1t! (p. 48)
[ Express, for a general radius, the volunme and surface area of a cone whose hei ght
is twice the radius.

Sol ution

L >restart;

[ The volune and surface area of a cone with height h and base radius r are given
L by

r>VvV:=1/3* Pi * r"2 * h;
1
V:=-nr’h
3
r>S:=PkP *r”"2+ P *r * sqrt(r”2+h"2);

S:i=mr’+mra/r’+h

C>
L Since the height is twice the radius, we make the assi gnment
r>h:=2%*r;

h:=2r
>
The volune and surface area are now seen to be
> vol une =V,

11T

2 3
vqume=§nr

> surface_area = S;

L surface area=Tir? +mr ﬁ«/ r2
Not e
[ 2

Note that Maple does not automatically sinplify «/rf This is because Mpl e
does not know that r is a positive quantity (it could be negative or conpl ex
val ued). As you read further in this nodule you will |earn several different
ways to deal with this type of situation. Here are two possibilities:
> sinplify( S, synbolic );

nr2+nr2ﬁ

>
> assume( r > 0 );
>simplify( S);

B nir~2 +mr~24/5

L C>

3.2: Expression Sequences, Lists and Sets

[B Try 1t! (p. 52)

Suppose you want to digitize an anal og voice signal, which ranges fromO nVolts to
50 nmvolts in such a manner as to use binary bits (0s or 1s). You decide that
quanti zing the anplitude level into 128 discrete and equal -width intervals over
the range of 0 to 50 mvolts will be sufficient. Use the seq conmand to generate a
list of the 128 levels that will be represented by these binary codes.

Sol ution

C>restart;

[The basic idea is sinply to divide the interval [ 0, 50 ] into 128 equal -si zed
subintervals; this requires 129 evenly spaced points fromthe interval [0, 50]:
> QUANT := [ seq( 50*(i/128), i=0..128) 1;

25 25 75 25 125 75 175 25 225 125 275 75 325 175 375 25 425 225 475 125 525 275

QUANT = D, o o o o ar ' an mran an ' o mr A ma ! o an An mn
64 326416 64 32 64 8 64 32 64 16 64 32 64 4 64 32 64 16 64 32
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C>

[

I N |

575 75 625 325 675 175 725 375 775 25 825 425 875 225 925 475 975 125 1025 525 1075 275 1125

575 1175 75 1225 625 1275 325 1325 675 1375 175 1425 725 1475 375 1525 775 1575 1625 825
32 64'4 6432 64 16° 6432 64' 8' 64'32 64 16 64 32 64 " 64 32
1675 425 1725 875 1775 225 1825 925 1875 475 1925 975 1975 125 2025 1025 2075 525 2125 1075
64'16' 64 32 64’ 8 64'32 64 16 64 32 64 4 64 32 64 16 64 32
2175 275 2225 1125 2275 575 2325 1175 2375 75 2425 1225 2475 625 2525 1275 2575 325 2625

64’ 8 64° 32 6416 64 32 642 64 32" 64°16° 64 32 64 8 64
1325 2675 675 2725 1375 2775 175 2825 1425 2875 725 2925 1475 2975 375 3025 1525 3075 775
32'64'16° 64" 32" 64 4 64" 32 64°16° 64 32 64 8 64 32’ 6416’
3125 1575 3175 E

L 64’ 32 64°

L O, if floating-point nunbers are preferred,

> QUANTf := [ seq( trunc( 50.*(i/128)*100 )/100., i=0..128 ) ];

QUANTT := [0, .3900000000, .7800000000, 1.170000000, 1.560000000, 1.950000000, 2.340000000,

2.730000000, 3.120000000, 3.510000000, 3.900000000, 4.290000000, 4.680000000, 5.070000000, 5.460000000,
5.850000000, 6.250000000, 6.640000000, 7.030000000, 7.420000000, 7.810000000, 8.200000000, 8.590000000,
8.980000000, 9.370000000, 9.760000000, 10.15000000, 10.54000000, 10.93000000, 11.32000000, 11.71000000,
12.10000000, 12.50000000, 12.89000000, 13.28000000, 13.67000000, 14.06000000, 14.45000000, 14.84000000,
15.23000000, 15.62000000, 16.01000000, 16.40000000, 16.79000000, 17.18000000, 17.57000000, 17.96000000,
18.35000000, 18.75000000, 19.14000000, 19.53000000, 19.92000000, 20.31000000, 20.70000000, 21.09000000,
21.48000000, 21.87000000, 22.26000000, 22.65000000, 23.04000000, 23.43000000, 23.82000000, 24.21000000,
24.60000000, 25.00000000, 25.39000000, 25.78000000, 26.17000000, 26.56000000, 26.95000000, 27.34000000,
27.73000000, 28.12000000, 28.51000000, 28.90000000, 29.29000000, 29.68000000, 30.07000000, 30.46000000,
30.85000000, 31.25000000, 31.64000000, 32.03000000, 32.42000000, 32.81000000, 33.20000000, 33.59000000,
33.98000000, 34.37000000, 34.76000000, 35.15000000, 35.54000000, 35.93000000, 36.32000000, 36.71000000,
37.10000000, 37.50000000, 37.89000000, 38.28000000, 38.67000000, 39.06000000, 39.45000000, 39.84000000,
40.23000000, 40.62000000, 41.01000000, 41.40000000, 41.79000000, 42.18000000, 42.57000000, 42.96000000,
43.35000000, 43.75000000, 44.14000000, 44.53000000, 44.92000000, 45.31000000, 45.70000000, 46.09000000,
46.48000000, 46.87000000, 47.26000000, 47.65000000, 48.04000000, 48.43000000, 48.82000000, 49.21000000,
49.60000000, 50.00000000]

An alternate nmethod of obtaining the floating-point solution is introduced |ater
in this chapter.

> QUANTf := eval f( QUANTf, 4 );

QUANTT :=[0, .3900, .7800, 1.170, 1.560, 1.950, 2.340, 2.730, 3.120, 3.510, 3.900, 4.290, 4.680, 5.070, 5.460,

>

5.850, 6.250, 6.640, 7.030, 7.420, 7.810, 8.200, 8.590, 8.980, 9.370, 9.760, 10.15, 10.54, 10.93, 11.32, 11.71,
12.10, 12.50, 12.89, 13.28, 13.67, 14.06, 14.45, 14.84, 15.23, 15.62, 16.01, 16.40, 16.79, 17.18, 17.57, 17.96,
18.35, 18.75, 19.14, 19.53, 19.92, 20.31, 20.70, 21.09, 21.48, 21.87, 22.26, 22.65, 23.04, 23.43, 23.82, 24.21,
24.60, 25.00, 25.39, 25.78, 26.17, 26.56, 26.95, 27.34, 27.73, 28.12, 28.51, 28.90, 29.29, 29.68, 30.07, 30.46,
30.85, 31.25, 31.64, 32.03, 32.42, 32.81, 33.20, 33.59, 33.98, 34.37, 34.76, 35.15, 35.54, 35.93, 36.32, 36.71,
37.10, 37.50, 37.89, 38.28, 38.67, 39.06, 39.45, 39.84, 40.23, 40.62, 41.01, 41.40, 41.79, 42.18, 42.57, 42.96,
43.35, 43.75, 44.14, 44.53, 44.92, 45.31, 45.70, 46.09, 46.48, 46.87, 47.26, 47.65, 48.04, 48.43, 48.82, 49.21,
49.60, 50.00]

The intervals are formed frompairs of consecutive elenents of the list:
> | NTERVALS : = [ seq( [QUANT[i], QUANT[i +1]], i=1..128 ) 1;
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1T

%) 25%% 25%% 75% 5 5%% 125@5@ 75%% 175% 75 25%% 225%
INTERVALS:= F0, — H B, —H B, — —HE = RES HES
64 2182 64 6 64 (064’ 320082 64 [0es’ 8 08" 64
25 125[] (125 275[] [275 75[][T5 325 7501 (175 375[1[B75 25[1[P5 425[1[#425 225
64'53%’&%%’176% %% 2 32’&%%’1 %@% 64’ 32
25 475[] (475 125[] (125 525[] [525 275[] [275 575(] (575 75[1[¥5 625[] (625 325[] [B25 675
32’53%’5% 16" 64 Oesa’ 32 32’5% 64’5%%%’5% 64’5% 32’5%
75 175[] (1175 725[] (725 375[] [B75 775[] (775 25[1[25 825[] [(B25 425[] (425 875[][B75 225
64’ 16 [ 16’5% 64’ 32 [ 32'52%%’5 %5% 64’72% 32’5% M'T%
25 9251 (P25 4750 [(U75 975[] (975 125[] (1125 1025[][]1025 525[][525 1075[] (1075 275
6’53%‘5% 2 640 M’?f%‘ﬂ%%’?% 2 64 %T%
5 11250 (1125 5750 (575 11750 (1175 75[1(75 1225 (1225 625 (525 1275 (1275 325
%‘HE?M 32% 64 64 ' 4 %%’H EHE% 2 64 M'TB%
25 13251 (1325 675[] (575 1375[] (1375 175[] (175 1425[] (1425 725[] (725 1475(] (1475 375
16’@%?@’ 32% f%‘?% 8 H%Hﬁiﬁ SZ’H%%’T’;%
75 1525[][1525 775[][J75 1575[] (1575 1625 5 825[1[B25 1675[1 1675 425
16'HE 64'32% 2 64 OHes > %5’ %Eﬁ %% 64’5%
25 1725[][1725 875[][B75 17750 [L775 22 1825[111825 925 87511875 475
16’EE 64'32% 64 [ 64'?%% %Eﬁ %% %%T%
75 19251 (1925 975[1 (975 1975[1 (1975 125[1(]125 2025[1[P025 10251 (1025 20751[POT5 525
16‘@% 64'32% 64 [ 64‘7%%&7 %EZM’ %Elsz %EZM 16%
25 2125[] [125 1075[1 (1075 2175[][P175 275[] (P75 2225[] (225 1125[] (11125 2275[][P275 575
%’64%:64'32fﬂ32’64f§64’?%% 64%% ’ %E E 64’ 16%
75 2325[1[325 1175[1 (11175 2375[1[2375 75[1[T5 2 425 1225[1[11225 2475[1[P475 625
16'MEZM'SZEﬂSZ'Mf 64’5% 2’ % ’ % %EZM 16%
25 2525[] (525 1275[] (11275 2575[[P575 3251 [B25 2625[] 3;625 1325[] [1325 2675[] (2675 675
16’64%?64’323?32’643 64’ 8 08" 64 (64’ 23%132 %%&4‘1@%
75 2725[][P725 13751 (1375 2775[][R775 175[] [L75 2825[][P825 1425[1[]1425 2875[][P875 725
%6‘64%?64'32??32’643%64’7?54'64?564’32 f%isz %EZM 16%
25 2925[] [P925 1475[] (1475 2975[][P975 3751 [B75 3025[] [B025 1525[] (1525 3075[][BO75 775
16’ MEﬂM':%ZfﬂBZ’Mf 64’ 8 08" 64 64’ 2?%32’64%%864 lGE
75 3125[] [B125 1575[] (1575 3175[][B175 _ [T
%’ 64 Eﬂm’ 2 003 e EEBM’SOEE
>
O, if you prefer the floating-point version,
> | NTERVALSf := [ seq( [QUANTf[i], QUANTf[i+1]], i=1..128 ) |:

INTERVALS :=[[0, .3900], [ .3900, .7800], [ .7800, 1.170], [ 1.170, 1.560], [ 1.560, 1.950], [ 1.950, 2.340],
[2.340, 2.730], [ 2.730, 3.120], [ 3.120, 3.510], [ 3.510, 3.900], [ 3.900, 4.290], [ 4.290, 4.680], [ 4.680, 5.070],
[5.070, 5.460], [ 5.460, 5.850], [ 5.850, 6.250], [ 6.250, 6.640], [ 6.640, 7.030], [ 7.030, 7.420], [ 7.420, 7.810],
[7.810, 8.200], [ 8.200, 8.590], [ 8.590, 8.980], [ 8.980, 9.370], [ 9.370, 9.760], [ 9.760, 10.15], [ 10.15, 10.54],
[10.54,10.93], [10.93, 11.32], [ 11.32, 11.71], [ 11.71, 12.10], [ 12.10, 12.50], [ 12.50, 12.89], [ 12.89, 13.28],
[13.28,13.67], [13.67, 14.06], [ 14.06, 14.45], [ 14.45, 14.84], [ 14.84, 15.23], [ 15.23, 15.62], [ 15.62, 16.01],
[16.01, 16.40], [ 16.40, 16.79], [ 16.79, 17.18], [ 17.18, 17.57], [ 17.57, 17.96], [ 17.96, 18.35], [ 18.35, 18.75],
[18.75, 19.14], [ 19.14, 19.53], [ 19.53, 19.92], [ 19.92, 20.31], [ 20.31, 20.70], [ 20.70, 21.09], [ 21.09, 21.48],
[21.48, 21.87],[21.87, 22.26], [ 22.26, 22.65], [ 22.65, 23.04], [ 23.04, 23.43], [ 23.43, 23.82], [ 23.82, 24.21],
[24.21, 24.60], [ 24.60, 25.00], [ 25.00, 25.39], [ 25.39, 25.78], [ 25.78, 26.17], [ 26.17, 26.56], [ 26.56, 26.95],
[26.95, 27.34], [ 27.34, 27.73], [ 27.73, 28.12], [ 28.12, 28.51], [ 28.51, 28.90], [ 28.90, 29.29], [ 29.29, 29.68],
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[29.68, 30.07], [ 30.07, 30.46], [ 30.46, 30.85], [ 30.85, 31.25], [ 31.25, 31.64], [ 31.64, 32.03], [ 32.03, 32.42],
[32.42, 32.81],[32.81, 33.20], [ 33.20, 33.59], [ 33.59, 33.98], [ 33.98, 34.37], [ 34.37, 34.76], [ 34.76, 35.15],
[35.15, 35.54], [ 35.54, 35.93], [ 35.93, 36.32], [ 36.32, 36.71], [ 36.71, 37.10], [ 37.10, 37.50], [ 37.50, 37.89],
[37.89, 38.28], [ 38.28, 38.67], [ 38.67, 39.06], [ 39.06, 39.45], [ 39.45, 39.84], [ 39.84, 40.23], [ 40.23, 40.62],
[40.62, 41.01], [41.01, 41.40], [ 41.40, 41.79], [ 41.79, 42.18], [ 42.18, 42.57], [ 42.57, 42.96], [ 42.96, 43.35],
[43.35, 43.75], [ 43.75, 44.14], [ 44.14, 44.53], [ 44.53, 44.92], [ 44.92, 45.31], [ 45.31, 45.70], [ 45.70, 46.09],
[46.00, 46.48], [ 46.48, 46.87], [ 46.87, 47.26], [ 47.26, 47.65], [ 47.65, 48.04], [ 48.04, 48.43], [ 48.43, 48.82],
[48.82, 49.21], [ 49.21, 49.60], [ 49.60, 50.00] ]

>

3.3: Creation and Di ssection of Equations

B Try 1t! (p. 53)
The equations found in Exanple 3-9 are not defined for certain conbinations of the
points (x0,y0) and (x1,yl). Use Maple to manipulate LINE into an equivalent form
that does not involve fractions.

Hi nt

[(The nuner at or and denom nator of a fraction can be accessed via the nuner and

| L denom functions. Use the on-line help to deternine howto use numer and denom)

Sol uti on

C>restart;

[Exarrple 3-9 introduced the following two equations for a line through two given

points:
> LINE := (y-y0)/(x-x0) = (yl-y0)/(x1-x0);
—_ 1_
LINE::y yO:y Y0
L x—x0 x1-x0
> LINEL := | hs(LINE)/rhs(LINE) = 1;
- x1-x0
(x=x0) (y1-y0)
>
An equi val ent equation which will not suffer from possible division by zero
errors is:

> LINE2 : = nuner(l hs(LINE1)) = denon(l hs(LINE1));
LINE3 :=(-y +Yy0) (x1 - x0) = (—x+x0) (y1-y0)

[l T

>

[Note that Maple sonetines re-orders ternms in an expression (e.g., -yty0in this
sol ution).

3.4: Solving Equations and Systenms of Equations

[B Try 1t! (p. 54)

The quadratic equation ax*+bx+c=0 has two solutions. Use solve to find these
solutions, and then verify that these solutions are consistent with the quadratic

fornul a. Wien a>0, b>0, and c<0 the discrinminant b’—4acis positive and | arger than

b Thus, there will be one positive root and one negative root. Assign the
positive root to the name POS and the negative root to the name NEG
Sol ution
C>restart;
L The general formof a quadratic equation is
r>EQN := a*x"2 + b*x + ¢ = 0;
EQN:=ax*+bx+c=0
>

The two roots of the quadratic are:
> ROOTS := solve( EQN, { x } );

I N |
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a 2 a

>
It is clear that these solutions are consistent with the standard quadratic
formula. The positive root is

r> PCS := op( ROOTS[1] );

— 2 _ h_ 2 _
L ROOTS::{X:;@} (bbb -sac
C

1—b+f{b2—4ac
POS::X_E

L a
L and the negative root is
r > NEG := op( ROOTS[2] );

—b—f{b2—4ac
NEG :=x=

1
2 a

Not e
The results of solve may be displayed in any order. If the two solutions are
{di splayed in the opposite order you will need to interchange the assignnents
to POS and NEG

L L L>

3.5: Substitution and Eval uation

[B Try 1t! (p. 57)

Det erm ne when the two roots of the quadratic equation differ by a constant A.

When are the roots equal (A=0)?
Sol ution

C>restart;
C W begin by repeating the definitions fromthe previous Try It! (p. 54).
r>EQN := a*x"2 + b*x + ¢ = 0;
EON:=ax’*+bx+c=0
r> ROOTS := solve( EQN, { x } );
1-b+4/b?’-4ac }—b—«/b2—4ac}

ROOTS:={x=-—""—"—"},{x=
t 2 a s 2 a

C The magni tude of the difference between the roots is
r>DFF :=sinmplify( rhs(op(ROOTS[1]))-rhs(op(ROOTS[2])) );

Jb?-4ac
a

[ and so the roots differ by A when the constants a, b, and c are chosen so that
> CONST := solve( DIFF = Delta, { a, b, ¢} );

DIFF :=

1-b?+A%a?
CONST:={b=b,a=za,c=-———}
L 4 a
C>
[ That is, for any values of the constants a and b, the third constant ¢ should be
b? - A% &2
chosen so that czT. In particular, with A=0this is seen to reduce to
a
b2
c=—-.
4a

L There is no reason to use Maple for this sinplification. But, if you insist
> subs( Delta=0, CONST );

1b?
{b=b,c=——,a=a}
4 a

Not e: conpl ex val ues

Note that DIFF is a conpl ex nunber when s/b’-4ac is negative. This is one
reason why many engi neering applications are nore interested in the nmagnitude
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Lof DI FF. (Another reason to consider \DIFF\ is that the order of the roots
returned by sol ve cannot be taken for granted.)

L >
> solve( abs(DIFF)=Delta, { a, b, ¢} );
1-b?+A%a? 1-b?+a%a?
{c==——————,a=a,b=b},{c=——————,a=a,b=b}
4 a 4 a
[Ooserve that while Mple appears to have found two solutions, they are the
sane -- and the sanme as was found previously.

Note: alternate syntax for sol ve
 The definition of D FF is unnecessarily conplicated. If the second argunent
in the solve command in the definition of ROOTS is changed from{ x }, to x,
L it would be possible to use
r > ROOTS : = solve( EQN, x );
1-b++/b?-4ac 1-b-4/b’-4ac
ROOTS::E a ,5 a

© > DIFF ;= sinplify( ROOTS[1]-ROOTS[2] );
b?-4ac
a

DIFF :=

C>

L Leo»
[B Try 1t! (p. 59)
[ Predict, and explain, the results produced by the follow ng two conmands.

C>TEST1 :=subs( { x =y, vy =x1}, [x,y] ):
L > TEST2 := subs( x=y, y=x, [X,y] ):
B Hint
| [ Consult the help worksheet for subs.
Solutions

> restart;

Two net hods of accessing the online help for subs can be found by follow ng the
hyperlink in this sentence or by executing the follow ng comrand

> ?subs

>

C
C
C
[The first exanple sinultaneously replaces x with y and y with x, i.e. x and y are
C

i nt er changed.
> TEST1 :=subs( { x =y, y =x1}, [x,y] );

TEST1:=[y, X]
>

The substitutions in TEST2 are applied in succession. Thus, the first step is
equi valent to

> TEST2a : = subs( x=y, [Xx,y] );
L TEST2a:=[y,V]
C foll owed by
> TEST2b := subs( y=x, TEST2a );
L TEST2b :=[X, X]
r > TEST2 := subs( x=y, y=x, [X,¥y] );
L TEST2 :=[x, X]
C>

B wWat 1f? (p.66)

Budget constraints require smaller engines with less thrust. Thus, |ess drag can be
accomodated. Find an explicit fornula that expresses the thrust in ternms of the
weight, Iift coefficient, and other paraneters (excluding the drag coefficient). Wat

happens to the thrust requirement as o decreases? What do you think can be done to
2
the airplane design to reduce the constant a in the expression CD:CDO+0(CL?
=
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C

[

1 T

L L L
= 3. 6:

Sol ution

> restart;
The explicit fornula for the thrust can be derived fromthe two bal ance | aws, the
definitions of lift and drag, and the Iift-to-drag equati on:

r > balancel :=Iift = weight;
baJancel::%pVZSCL:weight

> bal ance2 : = thrust = drag;
balance2:=thrust=%pVZSCD

> lift :=rho*v*2/2 * S * CL;

L1
I|ft:=§pv SCL
> drag := rho*Vr2/2 * S * CD

1 2
drag :=£pV SCD

\%

liftdrag := CD = CDO + al pha*CL"2;
liftdrag := CD = CDO + a CL?
>
The first step is to substitute the lift-to-drag equation into the bal ance

equation for thrust:
> subs( liftdrag, bal ance2 );

1 2 2
thrust=£pv S(CDO+a CL%)

Note that this is an explicit fornula for the thrust that does not depend on C.
However, it al so does not depend on the weight. To introduce the weight as a
variable in the formula for thrust, bal ancel nust be used. To ensure that the

substitution is successful, it is reconmended the solve this equation for one of
the variables in the |l eading coefficient for the thrust:
> subs( sol ve(bal ancel, {S}), " );

_ weight (CDO +a CL?)
- cL

thrust

O, inaslightly different form
> col lect(", {CL,weight});

thrust = %} CL +
Cl

CDO%\N_ "
el

] g
>

Fromthis fornula for the thrust it is easily seen that the thrust decreases as a
decreases. (In fact, the thrust is a linear function in the paraneter a.)

To decrease the value of a the airplane will need to have a | ower C, for any given

C.. This can be achieved by neking the plane nore aerodynamic.
>

Functi ons

[B Try 1t! (p. 67)

The first step towards defining functions in Maple is to realize that the conmand
g(x) := x"2; defines only the name g(x). Verify that the nane g(x); returns the

expression x4, but g(0);, g(y);, and g(2*x); all return uneval uated.

Sol ution

C>restart,;
L Here is the given definition.
(> g(x) := x"2;
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] g(x) =2

C>

L The results of the four comands are as follows:
[ > 9(x);

L X

> 9(0);

L 9(0)

[ > 9(y):

L a(y)

[ > 9(2*x);

L 9(2x)

L As expected, all results are returned uneval uated except g(Xx).
C>

[B Try 1t! (p. 69)
[Use the data fromthe Application 3 to create a function that can be used to

obtain the drag for any value of the coefficient of lift.

Solution

C>restart;

[The drag, the rel ationship between the coefficients of lift and drag, and the
other data (given and conputed) needed to solve this problemare

> drag : = gamma*del ta*Psl *M\2*b"2*C[ D]/ (2*AR) ;

1ydPsd M?b*C,
dragi=——"""—"—

2 AR

> drag := rho*Vv 2*S*CD 2;
1 2
drag::EpV SCD

r>1liftdrag : = CD = CDO+al pha*CL"2;
liftdrag := CD = CDO + o CL?
> PARAM : = eval f( [w = 500000, b = 200, AR = 10, M= 0.84, gammal = 1.4, p0 =
14.696*1272, delta . 2360, rho0 = 0.002377, sigma = 0.3106 ], 4 );
PARAM :=[w =500000., b =200., AR=10., M = .84, y1 = 1.4, p0 = 2116., 6 = .2360, p0 = .002377, ¢ = .3106]
r> VARS := [ weight=w, V=Mra, S=b”"2/ AR, rho=signma*rho0 ];

b2
VARS:= Eweight:w, V=Ma, S=Af p:GpOE

L R’
r > Vsound := subs( [ p=delta*p0, rho=signa*rho0], a=sqrt(p/rho*ganml) );
dpoyl
Vsound :=a= Py
L op0

r > coefL2 := CL = 0.5066;

COefL2 := CL = 5066
{ CDO = 0.01691523810, al pha = 0.04990476190 };

LDcoef := { CD0 =.01691523810, a =.04990476190}

r > LDcoef

C>
To express the drag as a function of C_ requires the substitution of the
lift-to-drag equation and the other paraneters into the expression for drag
L prior to creating a function fromthe resulting expression. Thus,

r > DRAG : = unappl y( subs( liftdrag, VARS, Vsound, PARAM LDcoef, drag ), CL );

DRAG := CL - 16688.69528 + 49236.39618 CL”

>

As an application of the use of this function, observe that the thrust
corresponding to level flight is, therefore,

> DRAG rhs(coeflL2));

T

29324.89928
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(p. 66).

[This result is consistent with the result obtained in Step 4 of the application
L C>

3.7: Exact vs. Approximte Arithmetic
[B Try 1t! (p. 70)
[Use subs to substitute the values in exact, default, three, and round3 into

x*-3x-1. How many digits of accuracy are obtained with each set of solutions?

Solution
L > restart;

The definition of R, and the different representations of the solution to the
[given pol ynom al, are introduced in Section 3.6.

r>EQN := a*x"2 + b*x + ¢ = 0:
> ROOTS := [ solve( EQ\, x ) ]:
> R := unapply( ROOTS, (a,b,c) );
" ) %—b+4/b2—4ac 1—b—4/b2—4acE
=(@anc) - VA
L ( ) a 2 a
r > exact := R(1,-3,-1);
1 31
exact::§+£«/13,£—idlsé
r> default := eval f ( exact );
L default :=[3.302775638, -.302775638]
r>three := eval f( exact, 3 );
L three:=[3.31, -.31]
> round3 := eval f( default, 3 );
L round3 :=[3.30, -.303]
C>
r To evaluate the accuracy of these results we will insert the different val ues
into the left-hand side of the equation. In theory, the results should all be
L zero.
r> EQN1 : = subs( a=1, b=-3, c=-1, | hs(EQN) );
L EQN1:=x*-3x-1
>
r> seq( sinmplify(EQ\N1), x=exact );
L 0,0
C Good! This confirms that these results are, in fact, exact.
>
r > seq( EQ\1, x=default );
6108 1108
This is typical of floating-point conputations performed with 10 significant
digits.
>
> seq( EQN1, x=three );
.0261, .0261

Approxi mating the exact roots using three-digit floating-point arithnetic
results in roots that are accurate to only one digit.
>

> seq( EQN1, x=round3 );

[l [l T

-.0100, .000809
Truncating the (10-digit) approximate roots to three digits produces noticeably
different results. One of the roots is accurate to one significant digit, the
other to three digits. In general, only one significant digit of accuracy should
be expect ed.
C>

Sumrary
|

Page 9



 The only solutions which exactly satisfy the equation are those in exact. The

floating-point solutions in default satisfy the equation to about 10¢® - one
part in a billion. The solutions in three and round3 are significantly |ess
accurate. Note also that while three and round3 are both conputed using three
significant digits, they use different data and result in significantly

di fferent approximations, i.e., floating-point arithnetic is not conmutative.
In general, it is preferable to begin floating-point operations with the nopst
| L accurate information avail able.
L L LC>
Probl ens (pp. 74 -- 76)
Probl em 1
(a)
t [ Use Maple's solve command to solve the system of equations .0000lu+v=1-u+v=0.
(b)

[Rewrite the systemwith integer coefficients; find the exact (i.e., rational)
| L solution to this system
Sol ution
C>restart
C (a) The floating-point systemand its solution are
r> SYS1l := { 10."(-5)*u+v=1, -u+v=0 };
SYS1 :={.00001000000000u +v =1, -u+v=0}
sol ve( SYS1, {u,v} );

SOL1 :={ v=.9999900001, u = .9999900001}

r> SOl :

>
(b) The rational system and solution are
> SYS2 = { u+1l07"5*v=10"5, -u+v=0 };
SYS :={ u+ 100000 v = 100000, -u + v =0}
> SOL2 :=solve( SYS2, { u, v} );

11T

100000 100000
yu=
100001 100001}

OL2:={v=

>

As a final test, convert the exact solution to floating-point nunbers:
> eval f (SOL2);

I N |

L L C>

Probl em 2

r To verify that the solutions found in Problem 1 are correct, use subs to
substitute the solutions back into both systens of equations. Further, substitute

the rational solution into the original systemand the floating-point solution
into the integer system

{ v=.9999900001, u =.9999900001}

Not e that some nunbers are integers and others are floating-point. There is a
di fference.

To illustrate, use the evalb conmand (see ?evalb) to see if Maple thinks the
L equations are satisfied. Explain the results.
Sol ution

L To check that the solutions are correct:

[> CHK11 : = subs( SO.L1, SYS1 );
CHK11 :={ 1.000000000 =1, 0= 0}

[> CHK22 : = subs( SOL2, SYS2 );
CHK22 :={ 0 =0, 100000 = 100000}

r>

C And, substituting the solutions into the other formof the system

(> CHK12 : = subs( SOL1, SYS2 );
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L CHK12 :={ 0 =0, 100000.0000 = 100000}
r > CHK21 := subs( SOL2, SYS1 );

CHK21 :={ 1.000000000 = 1, 0 = 0}

C>
 These results might give the appearance that both solutions satisfy either form
of the system Recall, however, that a nunber and its floating-point

representation are not equal. The easiest way to see this is to use the map
conmand (see ?map) to apply evalb to each equation in CHK11, CHK12, CHK21, and
CHK22.

r > map( eval b, CHK11l );

L {false, true}
r > map( eval b, CHK12 );
L {false, true}
r > map( eval b, CHK21 );
L { false, true}
r > map( eval b, CHK22 );
L {true}
" Note that the floating-point solution would ‘‘exactly’’ solve the systemif the
RHS of the first equation were a floating-point 1, i.e., replace 1 with 1 in
L SYS1.
L L L=
Probl em 3
r This problemillustrates some of the difficulties that can occur when subtracting

fl oati ng-poi nt numnbers.

Conpute the floating-point approximtion to the difference of N128721«/§,

N2=10681+/2, SUM=8721,/3 +10681/2, and DIFF=8721,/3 -10681+/2 using 2, 3, 4, .., 19,
20 significant digits.

To how many digits do N1 and N2 agree?

What are the values of SUM and DI FF, accurate to five significant digits? How many
floating-point digits are needed to conmpute SUM and DI FF to this accuracy?

A nore reliable way to conpute the difference is to note that PROD=DI FF*SUM i s an
integer when fully sinplified. (Wiy?) Thus, D FF = PROD/ SUM whi ch can be conputed
wi t hout any subtraction. How many floating-point digits are needed to obtain five
significant digits of accuracy in the value of D FF when it is computed by

di vi si on?

One noral of this exercise is that the accuracy of a floating-point calculation
may not be the sane as the number of significant digits used in a cal cul ation.
This is a general property of floating-point arithnmetic, not just Maple.

Correction

[ Del ete the phrase "the difference of" that inmediately precedes the definition
of N1

Sol uti on

L >restart;

L First, the definitions of the relevant quantities:
r> Nl := 8721*sqrt(3);

N1:=8721+/3

> N2 := 10681*sqrt(2);

N2:=10681+/2
> SUM:= N1 + N2,

SUM :=87214/3 + 10681 /2

(>DIFF:: N1 - N2;
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1 [l

DIFF := 8721+/3 - 10681 /2
>
The seq conmand sinplifies the conputation of the desired floating-point
appr oxi mati ons
> seq( evalf( N1, d ), d=2..20);

15000., 15100., 15100., 15106., 15105.2, 15105.22, 15105.215, 15105.2151, 15105.21510, 15105.215093,
15105.2150928, 15105.21509281, 15105.215092808, 15105.2150928082, 15105.21509280818,

15105.215092808179, 15105.2150928081788, 15105.21509280817888, 15105.215092808178877
> seq( evalf( N2, d ), d=2..20);

15000., 15100., 15100., 15105., 15105.2, 15105.22, 15105.215, 15105.2150, 15105.21506, 15105.215060,
15105.2150597, 15105.21505971, 15105.215059707, 15105.2150597071, 15105.21505970703,

15105.215059707029, 15105.2150597070282, 15105.21505970702822, 15105.215059707028216
> seq( evalf( SUM d ), d=2..20);

30000., 30200., 30200., 30211., 30210.4, 30210.44, 30210.430, 30210.4301, 30210.43016, 30210.430153,
30210.4301525, 30210.43015252, 30210.430152515, 30210.4301525153, 30210.43015251521,

30210.430152515208, 30210.4301525152070, 30210.43015251520710, 30210.430152515207093
> seq( evalf( DIFF, d ), d=2..20);

0,0,0,1.,0,0,0,.0001, .00004, .000033, .0000331, .00003310, .000033101, .0000331011, .00003310115,
.000033101150, .0000331011506, .00003310115066, .000033101150661

Not e: al ternate sol ution using for ... do ... od;

|

A solution that avoids seq and that presents all four values together on the
[same line can be obtained using Maple's repetition conmand (see Chapter 7).
r>for d from2 to 20 do
> evalf( [ NI, N2, SUM DFF ], d);
> od;

[ 15000., 15000., 30000., 0]
[ 15100., 15100., 30200., 0]
[ 15100., 15100., 30200., 0]
[15106., 15105., 30211., 1.]
[15105.2, 15105.2, 30210.4, 0]
[15105.22, 15105.22, 30210.44, 0]
[ 15105.215, 15105.215, 30210.430, 0]
[ 15105.2151, 15105.2150, 30210.4301, .0001]
[ 15105.21510, 15105.21506, 30210.43016, .00004]
[ 15105.215093, 15105.215060, 30210.430153, .000033]
[ 15105.2150928, 15105.2150597, 30210.4301525, .0000331]
[ 15105.21509281, 15105.21505971, 30210.43015252, .00003310]
[ 15105.215092808, 15105.215059707, 30210.430152515, .000033101]
[ 15105.2150928082, 15105.2150597071, 30210.4301525153, .0000331011]
[ 15105.21509280818, 15105.21505970703, 30210.43015251521, .00003310115]
[ 15105.215092808179, 15105.215059707029, 30210.430152515208, .000033101150]
[ 15105.2150928081788, 15105.2150597070282, 30210.4301525152070, .0000331011506]
[ 15105.21509280817888, 15105.21505970702822, 30210.43015251520710, .00003310115066]
[ 15105.215092808178877, 15105.215059707028216, 30210.430152515207093, .000033101150661]

er line.

>
[The correspondi ng command using seq is valid, but the output is not one |ist
p
L>seq( evalf( [ NI, N2, SUM DIFF ], d), d=2..20);

>
It is easily seen that N1 and N2 differ in the fifth digit to the right of the
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L decimal point; they are equal for ten significant digits.
C>
[ A close exam nation of the earlier results indicates that SUM=30210 and

DIFF =.000033101 to five significant digits. The value of SUMis obtained using 6
significant digits; the value of D FF requires 14 significant digits.

C>

r > PROD : = expand( SUWMFDIFF );

PROD =1

r > DIFF2 : = PROD/ SUM

1

8721+/3 +10681+/2

DIFF2 :=

r > seq( evalf( DIFF2, d ), d=2..20 );

.000033, .0000331, .00003311, .000033101, .0000331012, .00003310114, .000033101151, .0000331011507,
.00003310115065, .000033101150660, .0000331011506606, .00003310115066060, .000033101150660602,
.0000331011506606019, .00003310115066060202, .000033101150660602021, .0000331011506606020224,

.00003310115066060202227, .000033101150660602022281
In this way the value of DI FF, accurate to five significant digits, is obtained
using only five significant digits -- quite an inprovenment over the direct
L approach!
L L L=
Probl em 4
Use subs to verify that both solutions found in Exanple 3-11 are, in fact, points
of intersection of the two curves. In general, there are two solutions. Find
val ues of r for which there are no solutions and a single solution. Can there ever
be three points of intersection?

Solution

C>restart;

L Recall the definitions made in the solution to Exanple 3-11 (p. 54).
LINE :=x +y = 1.

CIRCLE := x"2 + y"2 = r"2:

SYS := { LINE, CIRCLE }:

VARS := { X, Yy }:

SOL : = solve( SYS, VARS ):

SCL := [ allvalues( SOL ) ];

11 11 11 11
Sell %y=*+*«/—l+2r2,xzf—* “1+2r%} {y=--24/-1+21% x="+7 —1+2r2}E
2 2 2 2 2 2 2 2
>

To verify that the first solution actually satisfies both equations, substitute
the solution back into the two equations.
> subs( SOL[1], SYS);

{1:l,%—g«/—1+2r2§+%+g4/—1+2r2§:r2}

Then, sinplify the expressions.
> simplify( " );

VVVYVVYV

{1=1,r*=r?}
It is now easily seen that this solution does, in fact, satisfy both equations.
>
A streanlined approach is denostrated for the second sol ution:
> sinmplify( subs( SCOL[2], SYS) );

11 m T

L {1=1,r*=r%

C >

 The system has exactly one sol ution when the radicand in SOL is zero, i.e., when
2r?=1:

r > solve( subs( r=sqrt(1/2), SYS ), VARS );
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1 1 1 1

:7')(:*7 :*‘X:7

ly=5x=h{y=5x=0}

r And, there is no (real-valued) solution when the radicand in SOL is negative,

L i.e., when 2r%1:
r > solve( subs( r=1/2, SYS ), VARS );
> allvalues( " );

1 1
{x=—£ RootOf(2_Z°-4 Z+3)+1, y=5RootOf(2_ZZ—4_Z+3)}

BRI ST S

L L C=>
[Bl Problem5

[Cal cul ate the speed of sound in air at sea level and at 35,000 feet (in ms and in

ft/sec) using the forrmulas provided in the text.

Solution
C>restart;
r W& begin with the speed of sound at sea level, taking care to convert inches to
feet in Pg . (Note that gamma is a protected name in Maple, in order to use
this nane in our calculations, we have to explicitly tell Maple to renpve its
protection of this nane with the unprotect conmand.)

r> P[SL] := 14.7*12"2;
i Py :=2116.8
r > rho[SL] := 0.002378;
L pgq :=.002378
[ > unprotect(ganm);
> gamma = 1.4,
L y:=14
C The speed of sound is thus found to be (in feet per second)
r>a[SL] := sqgrt( gamma*P[SL]/rho[SL] );

ag :=1116.343906

[The speed of sound at 35000 feet is conputed simlarly. The pressure and density
at this altitude are all that are needed
r > del ta[ 35000] := 0.2351;

Bago00 = 2351

1
\%

si gma[ 35000] := 0.3096;
| 035000 -= -3096
P[ 35000] := del ta[ 35000] *P[ SL];

1
\%

Pasooo = 497.65968
rho[ 35000] := signma[35000] *rho[ SL] ;
L Pas000 .= -0007362288
> a[35000] := sqgrt( ganmma*P[35000]/rho[35000] );
855000 = 972.8006333

[Thus, the speed of sound slows a little nore than 10% at an altitude of 35000
feet conpared to sea level. To be nore precise
r > (a[35000]-a[SL])/a[SL];

1
\

-.1285833800

entimeter per inch, and 0.01 neters per centineter.

>
To convert fromft/sec to mls, note that there are 12 inches per foot, 2.54
c
> ft2m:= 0.01 * 2.54 * 12;

ft2m := .3048
Thus there are 0.3048 nmft. (Use your conmon sense to check that this answer is
reasonabl e!)

[
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In ms, the speed of sound at sea level is
r> a[SL]*ft2m

L 340.2616225
[ and at 35000 ft it is
r > a[ 35000] *ft2m
L 296.5096330
L L C>
Probl em 6

r1t is clear that the weight of an airplane decreases as fuel is consuned.
Therefore, the lift required to maintain the cruising altitude will decrease as
fuel is consumed. This has not been taken into account in the application. Gven a

particul ar fuel consunption rate and starting weight, the distance, s a plane can

travel is given by:
%E%E%
VInE»
m CCD

r> s:=(V/ (TSFC*g))*(I1n(n{0]/m)*[L/D|;
TSFCg

where TSFC is the Thrust-Specific Fuel Consunption, gis the gravitational

S=

ft
accel eration (32.1740 72), m,is the initial mass, and mis the final mass.
sec

Assumi ng that TSFC=0.75 Ib/Ib-hr and that the maxi mum fuel capacity is 180,000 I Db,
determ ne the maxi mum range based on the lift and drag results required for |evel
flight at 35,000 feet. Determine the mini mum amount of fuel required for this
aircraft to fly across the United States (approxi mate distance of 3500 miles).

(The preceding forrmula was derived by Breguet. This derivation of this equation,

whi ch involves differential equations, will be explored in nore detail in Problem
L 13 in Chapter 6.)
Hint

My
{m:1.56. Watch the units; TSFC has hours, not seconds.)

Solution

L >restart;

[The information fromthe Application that is needed for this problem consists of
the definitions of Iift and drag

r>1ift :=rho*v2/2 * S * CL:

> drag := rho*V2/2 * S * CD:

> LandD : = [ L=lift, D=drag ];

1 2 1 2
LandD := :Epv SCL,D:EpV SCD

[ and a few paraneter values associated with |evel flight at 35,000 feet and Mach
0. 84
> paranB85 := V=Mra, M-0.84, a=972.8, CL=0.5066, CD=0.0297;

param35:=V=Ma, M = .84, a=972.8, CL = .5066, CD =.0297

>
[ The weight of the plane is the sumof the weight of the fuel, m, and the weight
| of the airplane (and passengers and/or cargo), m.

> paranfFUEL := nD = nE+nF, m = nE, nE = 500000- nF;

L paramFUEL := m0 = mE + mF, m= mE, mE = 500000 — mF

>

C The range of the plane is given by the fornula

> s:=(V/(TSFC*q))*(I n(n0/ m)*L/ D
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i

i " TsCgD

[Wnere the Thurst-Specific Fuel Consunption (with units converted as di scussed on
pp. 61 -- 62) is

> paranTSFC : = TSFC = 0. 75/ g/ secperhr, g=32.174, secperhr=60"2;

75
paramTSFC := TSFC =————, g = 32.174, secperhr = 3600
L g secperhr

[V\hen all of these values are substituted into the equation for the range of the
airplane, we obtain the range in terns of the fuel weight.
> RANCE : = subs( LandD, paranB5, paranFUEL, paranTSFC, s );

500000
RANGE := .6690411364 10° Inﬁsié
L 00000 — mF

[Note that this range has the units of feet - to convert to niles, divide by 5280

(feet per nmile).
> subs( nmF=180000, RANGE );
5
6690411364 10° In%%
5655.008148

E Thus, this airplane has a cruising range of approximately 5655 mles.

C>

[The m ni rum anount of fuel (in pounds) needed to fly across the United States
(3500 niles) is

[ > sol ve( RANGE=3500*5280, { nF } );

{ MF = 1206755532}

r> eval f( "/5280 ):

L L L=

[B Problem7
Express the thrust needed to keep an aircraft at cruising altitude in ternms of the
aircraft’s weight, aspect ratio, wi ng span, and Mach number when altitude is
35,000 feet and the lift-to-drag coefficients are (Cyy 0)=(0.0155, 0.0588). As an
aeronauti cal engineer, explain what changes in the aircraft’s wei ght, w ng span,
aspect ratio, and Mach nunber woul d decrease the thrust requirenent.

Solution

C>restart;

T The first step in obtaining the desired expression for the thrust is to recall

the two bal ance laws, the definitions of Iift and drag, and the lift-to-drag

relationship fromthe Application:

[> lift :=rho*vr2/2 * S * CL:

> drag := rho*vr2/2 * S * CD
r > balancel := I|ift=weight;
> bal ance2 : = thrust=drag;
1
balancel::EpVZSCszeight
1 2
balance2::thru$:£pv SCD
r> liftdrag := CD=CDO + al pha* CLA2;

liftdrag := CD = CDO + o CL?
r > T1 := subs( liftdrag, solve(balancel, {CL}), balance2 );

1
Tl::thrust:ZpVZS%Do+4

>
[The variables V, S, and rho all need to be replaced with equival ent expressions
in terns of the desired quantities (and known physical constants).

[l
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1 [

> param := V=Mra, S=b”"2/ AR, rho=delta*rho0;
b2
aram:=V=Ma,S=——,p=93p0
p AR p=op

> paranD := p0=14.696*1272, rho0=0.002377, gamml=1. 4,
paramO := p0 = 2116.224, p0 = .002377,y1 = 1.4
> paranB5 : = del ta=0.2315, sigm=0.3096, a=972.8;
param35 := & =.2315, 0 =.3096, a = 972.8
> T2 := subs( param paranD, paran85, T1 );
aweightzARZE

M2 b? E',DO+.00001475045404 s
M* b

T2 :=thrust = 260.3738143
AR

The derivation is conpleted by using the given values for the lift-to-drag
conversion (and converting the result into a function)
> paranlD : = CD0=0. 0155, al pha=0.0588;
paramLD := CDO = .0155, a = .0588
> T3 := subs( paranlD, T2 );
WeightzARZE

M? b* Emss +.8673266976 10° —— —,
M*b

T3 := thrust = 260.3738143
AR

> THRUST : = unapply( rhs(T3), (weight,AR b, M );
weightzARZE

M2 b? H0155 +.8673266976 10°° "
M* b

THRUST := (weight, AR b, M) — 260.3738143 s

>
For the airplane discussed in the Application, with the paraneter val ues given
in this problem the necessary thrust (in pounds) is
> THRUST( 500000, 10, 200, 0.84 );

31393.91691
The sinpl est observation is that as the airplane’'s weight increases, the thrust
i ncreases. The dependence on M b, and AR is nore subtle. Note that if we define

(Mb)®

AR
> THRUST( wei ght, (Mb)”2/onega, b, M);

, then the thrust depends only on w and the weight.

2
W

Do not be misled by the small coefficient. Since the weight is of the order of

10°, that termcan be quite large
> THRUST( 500000, (Mb)~2/onega, b, M);

weight?
260.3738143 w EO]_S5 + 8673266976 10°® QE

216831.6744
260.3738143 w %0155 + 7%

w

A plot is the sinplest way to understand the dependence of thrust on w:
> plot( THRUST( 500000, (Mb)~2/onega, b, M), onega=1000..10000 );
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C>
Wth the paraneters given for this airplane,

and at Mach 0.84, w=2822.4. Thus,
the thrust can be decreased by changing M, b, and AR so that w increases -

but
b2
does not exceed approxi mately 3740. O, recalling that AR=—,

| the condition as SM? <= 3700.
L C>

Probl em 8

we coul d state

Determ ne the range of an airplane at cruising altitude in terns of
wei ght (that is, no passengers and no fuel),
wi ng span, Mach nunber,

its "enpty"
m | es.

and in terns of the anmount of fuel,
aspect ratio, TSC, a, y, o, and o. G ve your answer

Det er mi ne whet her cruising 3,000 feet above or bel ow the 35, 000 foot
cruising altitude increases the aircraft’s range. Use 8;,,,=0. 2707, 845,,,=0. 2037,
Og000= 0. 3471, and 0g,,,=0. 2692.

Clarification

in

The "enmpty" wei ght should include the weight of the passengers (or other cargo).
If not,

then this wei ght would need to be another variable in the problem Al so,
in addition to the paranmeters listed in the probl em statenent,

the expression
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L Lfor the range will include universal constants (g, VY, pg, Pg) and CD0 .

Sol uti on

C

[

1 [

> restart,
Thi s probl em begins exactly like Problem 7. The original expression for the

range - innmiles - is
mO
Vin L
Ll

> s:=(V/ (TSFC*g) ) * (1 n(n0/ m) ) * L/ D/ 5280;
S=
5280 TSFCgD

>

To express the range in terns of the stated paraneters it is necessary to
collect various relationships between lift, drag, and the coefficients of lift
and drag:

> |ift :=rho*v2/2 * S * CL:

> drag := rho*V2/2 * S * CD

> paranlD := L=lift, D=drag;

1 2 1 2
paramLD:zL:EpV SCL,DzipV SCD
> paranlD2 := CD=CD0 + al pha*CL"2, CL=2*m rho/ V*2/S,

paramLD2:= CD =CDO+a CL% CL=2

pV2S
This informati on can be used to express the range as
> sl := subs( paranLD, paraniD2, s );
mO0
In%%m
1 m
sl:=
2640 a
VTSFCgp SLDO+4—
P’V S

>
The airplane’s weights are expressed in terns of the "enpty" and "full" weights

as in Problem 6.
> paramWV: = nO=nE+nF, n¥nE;
paramW := m0 = mE + mF, m=mE
O her relationshi ps between the physical and di mensionl ess paraneters are al so
needed:
> param := S=b"2/ AR, V=Mra, a = sqrt(gammal*p/rho), rho=signa*rho0, p=delta*p0;

b? ylp
param:=S=-",V=Ma,a= ——,p=0p0,p=3p0
p

> RANCE : = subs( paranmW/ param s1 );

mE + mF
In mE AR
1 mE
2640 50
M y1dp

TSFCgopObZH:DO+4
o p0

RANGE :=
o mE? AR? H

M*y1® & po® b*

>

To determ ne whether the range is greater at a cruising altitude of 32000 feet

or 38000 feet, the relative air pressure and density are required for each

al titude:

> paranB5 : = del ta=0.2315, signma=0.3096;
> paranB2 : = delta=0.2707, sigma=0.3471,
> paranB8 : = del ta=0.2037, sigma=0.2692;

param35 := & =.2315, 0 = .3096
param32 := 9 =.2707, 0 =.3471
param38 := & =.2037, ¢ = .2692
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C The correspondi ng ranges are:
> range35 : = subs( paranB85, RANCGE );
mE + mF

In EmE AR
mE

range35 :=.001414881602 5
y1 p0 ) a mE? AR?
M | —— TSFC g p0b” -CDO + 74.63765752 — 7 ..
PO M*y1” p0® b

r > range32 := subs( paranB2, RANGE );

ImE + mF
In EmE AR
mE

range32 := .001235732982

y1 p0o 5 a mE? AR?
M, [ —— TSFCgp0b” DO + 54.58627764 — ————
L PO M* y1* p0? b*
> range38 : = subs( paranB88, RANCE );
mE + mF
In mE AR
mE
range38 :=.001617569803 5
y1 p0 ) a mE? AR?
M [ —— TSFC g p0b” HCDO + 96.40019964 ———————
| p0 M4 y12 p02 b?

[V\hile these expressions for the ranges are quite conplicated, the ratio with the
range at 35000 feet can be used to answer this question
r > RATI O38 : = range38/range35;

o mE? AR?
M?y1® po? b*
o mE? AR?
M*y2? po? b*

CDO + 74.63765752

RATIO38 := 1.143254531
CDO + 96.40019964

r > RATI O32 : = range32/range35;

a mE2 AR?

M*y2? po? b*

a mE? AR?

M*y2? po? b*

The size of the rational expression that appears in the nunmerator and

denom nator of each ratio is critical to the analysis. Fortunately, nmpbst of the

paraneters involved in this expression are well-known for this problem
> paranD := p0=14.696* 1272, gammul=1.4, b=200, AR=10, M=0.84, nE=320000;

param0 := p0 = 2116.224, y1 = 1.4, b = 200, AR = 10, M = .84, mE = 320000
> subs( paranD, RATIO38 );

CDO + 74.63765752

RATIO32 := .8733826069
CDO + 54.58627764

CDO +.1093053672 a
CDO +.1411761781 a

1.143254531

> subs( paranD, RATI 32 );
CDO0 +.1093053672 a

CDO + .07994051957 a
VWil e the val ues of CD(J and a depend on the how the data is used, recall that

.8733826069

both of these paraneters are of the sane magnitude. Thus, since the rational
expressions in the ratios of the ranges are essentially 1, the range is

increased (by |l ess than 14% when the cruising altitude is 38000 feet and is
decreased (by less than 12% when the cruising altitude is 32000 feet. (This

a
answer begins to change as the ratio Ci exceeds about 10.)

Bo

L
[Bl Problem9
\
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 Fuzzy sets are used in an increasing nunber of engineering disciplines to nore
accurately nmimc the manner in which human bei ngs make deci sions. This genera
area of study is often referred to as fuzzy logic. For exanple, a fuzzy logic
deci sion-nmaking circuitry could be incorporated into the tim ng nmechani smof a
di shwasher to determine to what extent the dishes within are clean or dirty, or,
nore inportant, partially dirty. In this fashion, the dishwasher coul d be nmade to
operate nore efficiently if fuzzy logic can be used to shut off the di shwasher as
soon as the dishes are determ ned to be clean instead of sinply running for a
fixed amount of tine.

An exanpl e of a fuzzy set is "nunbers close to 10". A traditional "crisp" set
woul d, for exanple, give a value of 1 for all nunbers between 8 and 12 to indicate
full menberhsip in this set. Al nunbers outside this range would get a val ue 0,
to indicate nonnenbership. But this is not realistic, since the nunber 7.9 should
have greater nenbership status than the nunber 2.5. Suppose, instead, we use a

L fuzzy set and describe nunbers close to 10 by the nmenbership function

HX) =7

L 1+ (x-10)?

Note that x=10 has full menbership status, since u(10)=1, and all other values of x
have partial nenmbership status, with values close to 10 having a status closer to

full menbership. In fuzzy |ogic, nonmenbership in a fuzzy set A is deternined by
the nembership function for C=A, the conplerment of A that is, if p,is the
menmber ship function for A then the nmenbership function for Cis p.=1-p, (Note
that when A={10}, p(10)=1-p,(10)=0 so that the number 10 has nonmenbership in C
while all other values of x have partial nenbership in C.)

(a) Define and plot the nenmbership functions for A={10} and the conpl erent of A
(b) Define and plot the nenbership function for B={15}.

(c) Determine a nmenbership function for the union of A and B, that is, for the
nunbers close to 10 OR close to 15

B Hint
{ VWhat properties should this function have? Plot the menbership function for A

and for B on the sanme axis. How can these functions be conbined to create a
function with the necessary properties? See 2nex.)

[ (d) Determine a menmbership function for the intersection of A and B, that is, for
the nunmbers close to 10 AND close to 15
Hi nt
L Thi s menbership function never takes on the value 1 since no element has ful
[ nmenbership in both A and B.)
Correction

L [ The description of the set Cis correct, however, the definition should be C::;.

Sol ution

C>restart
Thi s problem can be sol ved using either functions or expressions. The
expressions are probably easier to use for plotting, but functions are
advant ageous for many other situations. Both versions are provided here; a nore
efficient inplenentation using functions is discussed in Chapter 6.

Sol ution 1: expressions

[ (a) The nenbership function for A={10} is represented by the expression
r>mu[A := 1/(1+(x-10)"2)

1

i M (x-10)?
r>plot( nu[A], x=0..30, title=" Menbership function for A={10}‘ )
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Membership function for A={ 10}

1+ A
fl
|
||
A
0.8 [
|
|
|
| |
0.6 [
| |
| |
s‘ ‘w
0.4 [
| \\
0.2
,’ \
// \\
0 é 1‘0 1‘5 2077 25 30
X
Cbserve that the menbership function is defined for all real nunbers, has

val ues between 0 and 1, and the value 1 occurs only for elements of the set

A i.e., x=10.
The menbership function for the conpl enent set woul d be
> mu[notA] :=1 - nu[A];
._1 #
Hhoua 1+ (x-10)?
> plot( [mu[A], mu[notA]], x=0..30, color=[red, blue], title=" Menbership

)

functions for A and conpl enent (A)

Membership functions for A and complement(A)

0,

[ (b) The menbership function for B={15} is
> mu[ B] 1/ (1+(x-15)"2);

_ 1
| Mo 1+ (x-15)
r>plot( [mu[A], mu[B]], x=0..30, color=[red,green], title=" Menbership
functions for A and B );
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Membership functions for A and B

|
/
/

/

\

)

10

X

X

20

9 and 11 and 14 and 16) should all
The sinplest function that satisfies these

25 30

[ (c) This menbership function should be 1 for both x=10 and x=15 and nunbers
equally close to 10 and to 15 (e.g.,
the same nenbership val ue.

properties is the maxi mum of the two nmenbership functions
> mu[ AorB] := max(nu[A], mu[B]);

> pl ot (

or

(d) Based on the discussion in (c),

functions for A and for
L and B".

B )

[mu[AorB]],

1

1

”‘AorB =

ML (x=10)%" 1+ (x~ 15)ZH

x=0..30, color=[cyan], title=" Menbership functions for

Membership functions for "A or B"

> nu[ AandB] := min(mu[A], mu[B]);

> pl ot ( nu[ AandB],

for

"A and B"'

)

0 5 10 15 20

X

1

1

25 30

it seens the mninum of the nenbership
B shoul d be an appropriate nmenbership function for

Maands == min@

x=0..30, 0..1,
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Membership function for "A and B"

1,,

0.8
0.6
0.4
0.2

/// \\\
0 E o 5T a0 25 30
X
[The fact that this function has a maxi mumat 12.5 seens appropriate -- this
i s the nunber that

is closest to being a menber of both A and B.
Sol ution 2: functions

C (a)
r> M[A :=x ->1/(1+(x-10)"2);
M 1
=X >
| A 1+ (x-10)2
r> Mu[notA] := 1-MI[A];
L Mpga = 1= My
r>plot( [ Mi[A](x), Mi[notA](x) ], x=0..30, title="Fuzzy nenbership in A and
in conplement (A" );
Fuzzy membership in A and in complement(A)
I A
|
0.8 ||
|
n
.
/‘/ \\‘\
0.3 //" \\
o /‘5 10 1;(5 RE 25 30
L (b)
r> MI[B] :=x -> 1/ (1+(x-15)"2);
M 1
=X
L ® 1+(x-15)?
[(c) and (d) Note the specific inclusion of the argunments in the function
definitions.
r> Mi[AorB] := x -> max(M[A] (x), Mu[B](x));
> Mu[ AandB] := x -> min(Mi[A] (x), Mu[B] (x));
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M pgrg := X — Max(MA(X), Mg(X))

L M panas := X —» MiN(M4(X), Mg(X))
r>plot([ Mu[AorB](x), Mi[AandB](x)], x=0..30, color=[cyan, nagenta],
title="Fuzzy nmenbership in "A or B'" and "A and B"* );

Fuzzy membershipin"A or B" and "A and B"

1+

0 5 10 15 20 25 30

[ A nmore explicit and sonewhat nore efficient nmeans of inplenenting the
menbership functions as functions will be discussed in Chapter 6.

. Lc»
Probl em 10

This is a continuation of the Try It! exercise first discussed at the end of
Section 3-2.

The exact division points for the 128 | evels are not convenient for human

anal ysis; the floating-point formof these levels are alnpst equally difficult to
use. Wiat is needed is a list of the levels with only a few deci nal places. Create
the list of levels with exactly two decinal digits of accuracy.

Sol ution
L >restart;

L Recall fromthe Try It! on p. 52 that the exact division |levels are
> QUANT := [ seq( 50%(i/128), i=0..128 ) |;
25 25 75 25 125 75 175 25 225 125 275 75 325 175 375 25 425 225 475 125 525 275

QUANT ;= p, =, 22 22 22 222 19 200 22 280 -9 210 2 20 2 2D 2 Im em I 2 22 22
64326416 64'32 64' 8 64' 32 64'16 64' 32 64’ 4' 64’ 32’ 64’ 16’ 64" 32

64'8 6432 64  16'64 3264 2 64'32' 64  16°64' 3264 8 64 32 64 16 64
575 1175 75 1225 625 1275 325 1325 675 1375 175 1425 725 1475 375 1525 775 1575 _ 1625 825
32 644 64'32 64'16 64'32 64' 8 64'32 64'16 6432 64> 64 32
1675 425 1725 875 1775 225 1825 925 1875 475 1925 975 1975 125 2025 1025 2075 525 2125 1075
64 16 64 32 64 8 64 32 64 16 64 32 64 4 64 32 64 16 64 32
2175 275 2225 1125 2275 575 2325 1175 2375 75 2425 1225 2475 625 2525 1275 2575 325 2625
64 8' 64 32  64'16° 64 32 64'2 64 3 64'16 64 32 64’ 8 64
1325 2675 675 2725 1375 2775 175 2825 1425 2875 725 2925 1475 2975 375 3025 1525 3075 775
2 64 16 64 32 64 4 64 32 64'16 64 32 64' 8 64 32 64 16
3125 1575 3175 E

L 64 32 64

[Si nce the largest value is 50, two decimal digits require the use of at |east 4
digits in the floating point calculations.

> QUANT2 := [ seq( eval f(Q4), QGQUANT ) ];
( QUANT2:=10, .3906, .7813, 1.172, 1.563, 1.953, 2.344, 2.734, 3.125, 3.516, 3.906, 4.297, 4.688, 5.078, 5.469,
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5.859, 6.250, 6.641, 7.031, 7.422, 7.813, 8.203, 8.594, 8.984, 9.375, 9.766, 10.16, 10.55, 10.94, 11.33, 11.72,
12.11, 12.50, 12.89, 13.28, 13.67, 14.06, 14.45, 14.84, 15.23, 15.63, 16.02, 16.41, 16.80, 17.19, 17.58, 17.97,
18.36, 18.75, 19.14, 19.53, 19.92, 20.31, 20.70, 21.09, 21.48, 21.88, 22.27, 22.66, 23.05, 23.44, 23.83, 24.22,
24.61, 25., 25.39, 25.78, 26.17, 26.56, 26.95, 27.34, 27.73, 28.13, 28.52, 28.91, 29.30, 29.69, 30.08, 30.47, 30.86,
31.25, 31.64, 32.03, 32.42, 32.81, 33.20, 33.59, 33.98, 34.38, 34.77, 35.16, 35.55, 35.94, 36.33, 36.72, 37.11,
37.50, 37.89, 38.28, 38.67, 39.06, 39.45, 39.84, 40.23, 40.63, 41.02, 41.41, 41.80, 42.19, 42.58, 42.97, 43.36,

43.75, 44.14, 44.53, 44.92, 45.31, 45.70, 46.09, 46.48, 46.88, 47.27, 47.66, 48.05, 48.44, 48.83, 49.22, 49.61, 50.]
 Notice that the nunbers | ess than 1 have four decimal places and those between 1
and 10 have three decinmal places; the problemasks for exactly two deci nal
digits of accuracy. One way to fulfill this request is to multiply each entry by
L 100, convert the result to an integer, then divide by 100. That is,

> QUANT3 := [ seq( eval f(trunc(100*Q/100,4), QGQUANT2 ) ];

QUANTS3:= [0, .3900, .7800, 1.170, 1.560, 1.950, 2.340, 2.730, 3.120, 3.510, 3.900, 4.290, 4.680, 5.070, 5.460,
5.850, 6.250, 6.640, 7.030, 7.420, 7.810, 8.200, 8.590, 8.980, 9.370, 9.760, 10.16, 10.55, 10.94, 11.33, 11.72,
12.11, 12.50, 12.89, 13.28, 13.67, 14.06, 14.45, 14.84, 15.23, 15.63, 16.02, 16.41, 16.80, 17.19, 17.58, 17.97,
18.36, 18.75, 19.14, 19.53, 19.92, 20.31, 20.70, 21.09, 21.48, 21.88, 22.27, 22.66, 23.05, 23.44, 23.83, 24.22,
24.61, 25., 25.39, 25.78, 26.17, 26.56, 26.95, 27.34, 27.73, 28.13, 28.52, 28.91, 29.30, 29.69, 30.08, 30.47, 30.86,
31.25, 31.64, 32.03, 32.42, 32.81, 33.20, 33.59, 33.98, 34.38, 34.77, 35.16, 35.55, 35.94, 36.33, 36.72, 37.11,
37.50, 37.89, 38.28, 38.67, 39.06, 39.45, 39.84, 40.23, 40.63, 41.02, 41.41, 41.80, 42.19, 42.58, 42.97, 43.36,

L 43.75, 44.14, 44.53, 44.92, 45.31, 45.70, 46.09, 46.48, 46.88, 47.27, 47.66, 48.05, 48.44, 48.83, 49.22, 49.61, 50.]
C An equival ent solution, working directly from QUANT, woul d be
> QUANT4 := [ seq( eval f(trunc(100.*Q/100.,4), Q=QUANT ) ];

QUANT4 :=[0, .3900, .7800, 1.170, 1.560, 1.950, 2.340, 2.730, 3.120, 3.510, 3.900, 4.290, 4.680, 5.070, 5.460,
5.850, 6.250, 6.640, 7.030, 7.420, 7.810, 8.200, 8.590, 8.980, 9.370, 9.760, 10.16, 10.55, 10.94, 11.33, 11.72,
12.11, 12.50, 12.89, 13.28, 13.67, 14.06, 14.45, 14.84, 15.23, 15.63, 16.02, 16.41, 16.80, 17.19, 17.58, 17.97,
18.36, 18.75, 19.14, 19.53, 19.92, 20.31, 20.70, 21.09, 21.48, 21.88, 22.27, 22.66, 23.05, 23.44, 23.83, 24.22,
24.61, 25.00, 25.39, 25.78, 26.17, 26.56, 26.95, 27.34, 27.73, 28.13, 28.52, 28.91, 29.30, 29.69, 30.08, 30.47,
30.86, 31.25, 31.64, 32.03, 32.42, 32.81, 33.20, 33.59, 33.98, 34.38, 34.77, 35.16, 35.55, 35.94, 36.33, 36.72,
37.11, 37.50, 37.89, 38.28, 38.67, 39.06, 39.45, 39.84, 40.23, 40.63, 41.02, 41.41, 41.80, 42.19, 42.58, 42.97,
43.36, 43.75, 44.14, 44.53, 44.92, 45.31, 45.70, 46.09, 46.48, 46.88, 47.27, 47.66, 48.05, 48.44, 48.83, 49.22,

49.61, 50.00]

I The observant reader should ask whether the reduced fl oating-point precision

used to conpute QUANT inpact the final result. A quick check of the elenents in

QUANT3 and QUANT4 shows that the results are in conpl ete agreenent

> seq( QUANT3[i]-QUANT4[i], i=1..nops(QUANT4) );

0,0,0,0,0000,0,00,0000000000000000000000000000000000,0,
0,000000000000000000000000000000000000000000,0,0,0,
0,0,0,0,0,000,0,0,0,0,0,000,0,0,0,0,0,000000,0,0,0,00000,0,0

Despite the agreement in this problem it is generally preferable to retain as

much accuracy as long as possible when working with floating-point data.

Not e, however, that if trunc is changed to round in QUANT4, then sonme of the
L first fewlevels are slightly different in the second decimal digit.
> QUANT5 := [ seq( eval f(round(100.*Q/100.,4), Q=QUANT ) ];

QUANTS := [0, .3900, .7800, 1.170, 1.560, 1.950, 2.340, 2.730, 3.130, 3.520, 3.910, 4.300, 4.690, 5.080, 5.470,
5.860, 6.250, 6.640, 7.030, 7.420, 7.810, 8.200, 8.590, 8.980, 9.380, 9.770, 10.16, 10.55, 10.94, 11.33, 11.72,
12.11, 12.50, 12.89, 13.28, 13.67, 14.06, 14.45, 14.84, 15.23, 15.63, 16.02, 16.41, 16.80, 17.19, 17.58, 17.97,
18.36, 18.75, 19.14, 19.53, 19.92, 20.31, 20.70, 21.09, 21.48, 21.88, 22.27, 22.66, 23.05, 23.44, 23.83, 24.22,
24.61, 25.00, 25.39, 25.78, 26.17, 26.56, 26.95, 27.34, 27.73, 28.13, 28.52, 28.91, 29.30, 29.69, 30.08, 30.47,
30.86, 31.25, 31.64, 32.03, 32.42, 32.81, 33.20, 33.59, 33.98, 34.38, 34.77, 35.16, 35.55, 35.94, 36.33, 36.72,
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37.11, 37.50, 37.89, 38.28, 38.67, 39.06, 39.45, 39.84, 40.23, 40.63, 41.02, 41.41, 41.80, 42.19, 42.58, 42.97,
43.36, 43.75, 44.14, 44.53, 44.92, 45.31, 45.70, 46.09, 46.48, 46.88, 47.27, 47.66, 48.05, 48.44, 48.83, 49.22,

L 49.61, 50.00]

> seq( QUANT5[i]-QUANT4[i], i=1..nops(QUANT4) );

0,0,0,0,0,0,0,0, .010, .010, .010, .010, .010, .010, .010, .010, 0, 0, 0, 0, 0, 0, 0, 0, .010, .010, 0, 0, 0, 0, 0, O, O, O,

0,0,000,0,0,0,0,0,0,0,00,0,0,0,0,0,0000,00,0,00000,000,000000,0,0,0,0,0,0,
0,0,0000,0,0,0,0,0000000,0000000000000000000000000,0,0,0,O0,
0,0,0
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