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E

 

lectrical engineers

use filters extensively in radios, telephones, televisions, computers,

power supplies, and many other practical devices. A specific example is

the low-pass filter used in the design of a direct current (DC) power supply.

An 

 

ideal low-pass filter

 

 is a device that completely transmits a signal

unattenuated at all frequencies below a certain cutoff frequency and

completely blocks those frequency components of the input signal above

this cutoff frequency. The application in this chapter uses 

 

complex phasors

 

(a common method used to describe a time-periodic quantity in terms of

a single complex number) and 

 

nodal analysis 

 

(a circuit analysis technique

described later in this chapter) to analyze an approximation to an ideal

low-pass filter. This technique is very general, and is a powerful tool for

circuit analysis. Maple’s ability to find complex-valued solutions to alge-

braic equations forms the foundation upon which the remainder of the

analysis can be completed. You will also learn Maple commands and

techniques for use with more sophisticated mathematics concepts,

including calculus and differential equations.

Low-Pass Electrical Filter
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aple can be used in many different branches of mathematics
including algebra, calculus, combinatorics, financial mathematics,
graph theory, linear algebra, logic, number theory, and optimiza-

tion. The first five chapters of this module showed you how to use Maple
to solve problems requiring mainly algebra and trigonometry. In this
chapter, you will see some of the ways Maple can be used to solve prob-
lems that involve complex analysis, calculus, and (briefly) differential
equations. The application in this chapter shows how an electrical engi-
neer uses nodal analysis to investigate some of the characteristics of a
low-pass electrical filter. Recall that the bandwidth application in Chapter 3
also involved the analysis of a filter. Even though there are similarities in
how engineers discuss both types of filters, the discussion in this chapter
is quite different from the one presented in Chapter 3.

Although you will learn many useful techniques for solving mathemati-
cal problems in this chapter, it is not comprehensive in its presentation of
Maple’s mathematical capabilities. Some of the examples and Try It! exer-
cises refer to problems encountered earlier in the module. For example,
the solution to the Streeter–Phelps equation that was provided in Chapter 5
will now be found and verified using Maple. References to the earlier dis-
cussions are provided; if you do not recall the details of a problem, please
take a few minutes to refresh your memory.

Several dozen packages contain collections of additional Maple com-
mands. The 

 

plots

 

 and 

 

student

 

 packages have been introduced previ-
ously. The 

 

student

 

 package will be used in the discussion of calculus
(Section 6-2) and the 

 

DEtools

 

 package will be used to produce plots relat-
ing to differential equations (Section 6-3). Other packages likely to be of
interest to many engineers include the 

 

linalg

 

 package for linear algebra,
the 

 

numtheory

 

 package for number theory, and the 

 

inttrans

 

 package for
integral transformation such as the Laplace and Fourier transform. The
full list of Maple packages can be found on the online help worksheet with
keyword 

 

index,package

 

.

 

6-1 COMPLEX NUMBERS

 

Maple functions and variables are, by default, assumed to be complex valued.
This may seem to be an unnecessary feature for most standard computa-
tions, but it is actually one of the underlying characteristics that gives Maple
its power and broad applicability. There are times, however, when this
increased functionality interferes with some seemingly simple operations.

Basic arithmetic operations (addition, subtraction, multiplication, and
division) are performed exactly as they would be for real-valued quanti-
ties. The only difference is the use of 

 

I

 

 to represent the square root of 

 

−

 

1,
that is, . For example, the sum and product of 

 

z 

 

= 

 

2 

 

+

 

 3

 

i

 

 and

 

w 

 

= 

 

6

 

 

 

− 

 

4

 

i

 

 can be computed using

 

> 

 

z

 

 

 

:=

 

 

 

2+3*I;

 

z

 

 := 2 

 

+

 

 3 

 

I

MINTRODUCTION

I= −1
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> 

 

w

 

 

 

:=

 

 

 

6-4*I;

 

w

 

 := 6 

 

−

 

 4 

 

I

 

> 

 

SUMzw

 

 

 

:=

 

 

 

z+w;

 

SUMzw

 

 := 8 

 

−

 

 

 

I

 

> 

 

QUOTzw

 

 

 

:=

 

 

 

z/w;

 

Common commands specifically designed for use with complex-valued
objects include 

 

abs

 

, 

 

conjugate

 

, 

 

Re

 

, and 

 

Im

 

. For expressions involving
symbolic names, the 

 

evalc

 

 command is used to force the evaluation of
complex-valued expressions in the standard form: 

 

x 

 

+

 

 

 

I y

 

.

 

Arithmetic of Complex Numbers

 

Let 

 

z

 

 denote a complex number with real part 

 

Rez

 

 and imaginary part 

 

Imz

 

.
Similarly, let 

 

w 

 

=

 

 

 

Rew

 

 

 

+

 

 

 

i

 

 

 

Imw

 

. Find, in standard form, the 

 

conjugate

 

 of 

 

z

 

,

 

z

 

, and the real and imaginary parts of the product 

 

zw

 

.

 

SOLUTION

 

The two complex numbers are

 

> 

 

z

 

 

 

:=

 

 

 

Rez

 

 

 

+

 

 

 

I*Imz;

 

z

 

 := 

 

Rez

 

 

 

+

 

 

 

I Imz

 

>

 

 w := Rew + I*Imw;

w := Rew + I Imw

The complex conjugate of z, z, simply changes the sign of the imaginary
part:

> zC := conjugate(z);

zC := Rez + I Imz

> zC := evalc( zC );

zC := Rez – I Imz

Note how evalc is used to reduce the expression into standard form.
The product of z and w is

> PRODzw := z * w;

PRODzw := (Rez + I Imz) (Rew + I Imw)

QUOTzw I :  = 1
2

EXAMPLE 6-1
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The real and imaginary parts of the product are

> REzw := Re( PRODzw );

REzw := ℜ ((Rez + I Imz) (Rew + I Imw))

> IMzw := Im( PRODzw );

IMzw := ℑ ((Rez + I Imz) (Rew + I Imw))

Or, in standard form,

> REzw = evalc( REzw );

ℜ ((Rez + I Imz) (Rew + I Imw)) = Rez Rew − Imz Imw

> IMzw =  evalc( IMzw );

ℑ ((Rez + I Imz) (Rew + I Imw)) = Rez Imw + Imz Rew

Of course, the same information can be obtained by directly converting
the product into standard form:

> PRODzw = evalc( PRODzw );

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

(Rez + I Imz) (Rew + I Imw) = Rez Rew − Imz Imw  + I (Rez Imw + Imz Rew)

Other operations work in a similar manner. One point that should be
emphasized is that it is important to use built-in Maple commands for
standard operations whenever possible. This is the point of the next Try It!
exercise.

The modulus, or magnitude, of a complex number is the square root of 
the product of the number and its conjugate. Compute the modulus of the 
complex numbers z and z w both from the definition and using Maple’s 
abs command. Explain and resolve any differences in the appearance of 
the results.

You may have noticed that expressions returned by evalc (in standard
form) are valid only when the real and imaginary parts of z and w (that is,
Rez, Imz, Rew, Imw) are real–valued. In fact, the fundamental assumption
made by evalc is that unassigned variables represent real-valued quantities.
For example, when neither a nor b is assigned a value, evalc( Re( a+I*b ) )
evaluates to a. Furthermore, evalc assumes that an unknown function of
a real variable is real–valued. For additional explanation and examples, see
the online help document for evalc.

Try It

!
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Complex-valued quantities arise in any number of situations. One of the
more common situations is when finding the roots of a polynomial. Recall
that the Fundamental Theorem of Algebra states that any polynomial of
degree n has exactly n roots. In addition to the quadratic formula, there
are explicit formulae for all roots of any polynomial whose degree does
not exceed four. Even though it has been proved that there is no general
formula in terms of radicals for the root of general polynomials of degree
higher than four, there are numerous special cases where Maple is still
able to find some or all of the roots.

Use Maple to find the formulae for the roots of a general quadratic, cubic, 
and quartic polynomial. Verify that Maple returns the appropriate number 
of roots. Note that the allvalues command can be used to force evaluation 
of results that involve RootOf.

Many mathematical functions have a natural extension to complex-valued
arguments. For example, the definition of the exponential of a complex
number is based on Euler’s formula: 

e(r + iθ) = er(cos(θ) + i sin(θ))

(In fact, many of the special functions, for example, exp, ln, sin, cos, tan,
actually arise more naturally in this setting.)

In most cases, the complex-valued extensions of the functions are of lit-
tle concern. However, one place where this cannot be ignored is when
working with fractional powers. Although most humans immediately
simplify (−1)1/3 to −1, Maple realizes that there are three possible values
to this expression. Maple does choose one of the three values, but—for
mathematical reasons beyond the scope of this module—it is not the real-
valued root. The surd command provides a means of obtaining a real-val-
ued output from odd roots of negative numbers:

> (-8)^(1/3) = evalc( (-8)^(1/3) );

> (-8)^(1/3) = surd( -8, 3 );

(−8)1/3  = −2

Plotting Fractional Powers

Plot the function y = xα for  on the interval

[−1,1].

Try It

!

−( ) = +8
1
2

8
1
2

8 3
1 3 1 3 1 3/ / /I

EXAMPLE 6-2

  
α = 1

2,  1
3,  2

3,  1
4,  2

4,  and 34
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SOLUTION

The preceding discussion suggests that the naive approach will not be
successful. The following plot confirms that each of these functions is, in
this form, real–valued only when x ≥ 0.

> FNS1 := [ x^(1/2), x^(1/3), x^(2/3), x^(1/4), x^(2/4), x^(3/4) ];

> plot( FNS1, x=-1..1, color=[RED,RED,BLUE,RED,BLUE,GREEN],
> symbol=CIRCLE, style=[POINT,LINE$5],
> title=`Six Fractional Powers` );

Note that each plot starts at x = 0, not x = −1, as requested. This is not a

surprise for the even roots since, for example, , which is not

real valued. Note also that the plots with  and  are identical.

To obtain the desired plot, each of the functions must be represented in
terms of surd:

> FNS2 := [ surd(x,2), surd(x,3), surd(x^2,3), surd(x,4),
surd(x^2,4), surd(x^3,4) ];

Note the steps taken to comply with the requirement that the second
argument to surd be an integer (see the online help for surd).

FNSI x x x x x x :  ,  ,  ,  ,  ,  / / / /= [ ]1 3 2 3 1 4 3 4

x
10.50-0.5-1

1

0.8

0.6

0.4

0.2

Six Fractional Powers

−( ) = − =1 1
1 2/

i

α = 1
2 α = 2

4

FNS2 x x x x x x :  surd , ,  surd , ,  surd , ,  surd , ,  surd , ,  surd ,= ( ) ( ) ( ) ( ) ( ) ( )[ ]2 3 3 4 4 42 2 3
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> plot( FNS2, x=-1..1, color=[RED,RED,BLUE,RED,BLUE,GREEN],
> symbol=CIRCLE, style=[POINT,LINE$5],
> title=`Six Fractional Powers -- using surd` );

From the second plot, you can see that using surd allowed three of the

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

plots to be extended to the negative real line.

Identify the three functions that were able to be extended to the negative 
real line in the final plot in Example 6-2.

Use convert and simplify (and, if necessary, assume) to verify that the 
surd-based representations are equivalent to the original power represen-

tation. (Pay particular attention to .)

To conclude this brief introduction to complex analysis, it should be men-
tioned that the plots package contains commands for creating 2D and 3D
plots of complex-valued functions: complexplot and complexplot3d.

x
10.5-0.5-1

1

0.5

0

-0.5

-1

Six Fractional Powers -- using surd

Try It

!

Try It

!
α = 2

4
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Complex–Valued Solutions of an Equation

Find, and plot, the ninth roots of −10.

SOLUTION

The ninth roots of −10 are the nine solutions to the ninth-degree polynomial

> EQ := x^9 = -10;

EQ := x9 = −10

> ROOTS := [ solve( EQ, x ) ];

It can be difficult to see any structure in the preceding representations
of the roots. A point plot of these numbers, in the complex plane, should
yield more information:

> plots[complexplot]( ROOTS, style=POINT, labels=['Re','Im'],
> axes=FRAMED, title=`Ninth roots of -10` );

EXAMPLE 6-3
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Note that there is only one real-valued root, and none of the roots are
purely complex. Moreover, the roots appear to be regularly spaced on the

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

circle centered at the origin with radius a little larger than 1.25.

NODAL ANALYSIS OF AN ELECTRICAL CIRCUIT

Electrical engineers have, as one of their tasks, the analysis and synthe-
sis of a variety of circuits. In this application, you will use Maple to con-
duct an analysis of a low-pass (LP) electrical filter. An ideal LP filter
transmits an input electrical signal to the output with no attenuation
and no phase shift. However, above some cutoff frequency, ωc , the elec-
trical signal is completely blocked and usually undergoes some phase
shift as well. The cutoff frequency can be controlled by the proper
choice of component values.

No practical filter behaves in such an ideal fashion, but this situation
can be approximated as closely as cost and need dictate. Your analysis
of a passive low-pass filter consisting of two inductors and one capaci-
tor will show that this filter exhibits resonant (sharp peak) behavior in
the vicinity of the cut-off frequency, which detracts from the ideal uni-
form behavior. Nevertheless, its rejection of frequencies beyond the
cutoff frequency is a factor of 100 higher than for a simpler (one induc-
tor or one capacitor) circuit. Stated in terms of decibels, this improve-
ment by a factor of 100 corresponds to 20 log10 (100) = 40 decibels
(dB). In practice, an LP filter would likely be constructed from resistors
(modeling loss of power) and active circuit elements such as opera-
tional amplifiers.

Fundamentals
The circuit diagram in Figure 6-1 shows a set of input terminals (the
input port) and a set of output terminals (the output port). The dashed
box encloses the portion of the circuit designated the low-pass filter.
The input port has a voltage signal vi(t) across its terminals, and the
output port similarly has output voltage vo(t). Attached to the output
terminals is an electrical load with resistance, R. There is an input AC
voltage source across the input terminals, with a 170-volt peak ampli-
tude, 120 ° phase shift, and oscillating at the radian frequency of ω radi-
ans/second (= 2π60 for AC voltages available from wall outlets in the
United States). That is, the input source is  .
(This represents a standard 120-volt rms AC voltage available from wall
outlets.)

Time-periodic (or steady-state sinusoidal) sources are so prevalent in
the analysis of electrical circuits (as well as other systems in engineer-
ing) that it is common to describe them in terms of the peak amplitude
and phase shift (in degrees), that is, as a phasor. For example, the pha-
sor representation of the input voltage is 170 ∠  120 °, in units of Volts

(note that  radians = 120°). Conversion between the phasor and time-

Application 6

v t ti ( ) cos= +( )170 2 3ω π

2 3π



 

164

 

MAPLE V FOR ENGINEERS

 

periodic representations is based on Euler’s formula, ,

where now  (as is standard engineering practice).
The ratio of the phasor voltage to the phasor current associated with

any element gives the impedance of that element. The impedance of a

capacitor is , where 

 

C

 

 is the capacitance (in Farads) of the

capacitor. The impedance of an inductor with inductance 

 

L

 

 (in Henries)

 

is  

 

Z

 

L

 

 

 

=

 

 

 

j

 

ω

 

L

 

. So, as is shown in Figure 6-2, if the phasor voltage across

the capacitor is 

 

V

 

C

 

, then a phasor current  flows through the

capacitor. Similarly, the phasor current flowing through the load

resistor is .

A 

 

node

 

 is a location where two or more circuit elements are con-
nected. In nodal analysis, each node in the circuit has an associated

 

node voltage

 

.  In addition to the common (reference) node at the bottom of
the circuit, the three nodes in the circuit shown in Figure 6-1 have volt-
ages of 

 

V

 

i

 

, 

 

V

 

C

 

, and 

 

V

 

o

 

. The node voltage 

 

V

 

i

 

 is known from the voltage
source, so only the voltages 

 

V

 

C

 

 and 

 

V

 

o

 

 need to be determined. This is
summarized in the 

 

impedance-phasor circuit diagram

 

 shown in Figure 6-2.

 

Figure 6-1
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Two equations are needed to determine the two unknown node
voltages at nodes 1 and 2. These equations are obtained by applying
Kirchhoff’s current law at each node. Kirchhoff’s current law is, basi-
cally, conservation of charge, that is, the sum of all currents leaving (or
entering) any node must be zero. The node to which the capacitor is
connected (node 1) has three paths of current: two through the two
inductors and one through the capacitor. The other node (node 2) has
two paths where current can flow: one through the load resistor and the
other through the output inductor. This yields the two nodal equations.
The unknown node voltages are found by simultaneously solving this
pair of equations.

1. Define the problem

Develop an expression for the ratio of the output and input voltages,
that is, the transfer voltage ratio, as a function of frequency ω (in radi-
ans per second) for the LP filter shown in Figure 6-2. The origin of the
name low-pass filter can be seen by examining a plot of this ratio. Make
a corrected Bode amplitude plot, that is, a plot of the magnitude of the

transfer voltage ratio (in decibels) as a function of  where

. When numerical values are needed, and are otherwise

unspecified, use L = 10H, C = 6 µF, and R = 1 kΩ.

2. Gather information

Kirchhoff’s current law (KCL) is the underlying principle on which this
application is developed. The first step in the analysis is, therefore, to
determine the two nodal equations in terms of general values of the
inductance, L, capacitance, C, and resistance, R.

The phasor current leaving node 1 through the input inductor is the
ratio of the voltage difference across its terminals, VC − Vi , to the

impedance, j ωL, of this element: . Similarly, the phasor currents

leaving node 1 through the capacitor and output inductor are 

and , respectively. Thus, applying KCL at the first node means

that the sum of all currents leaving node 1 is zero:

log ω
ω0( )

ω0
2 = 1

LC

V V
j L

C i−
ω

V
j
C

C

−
ω

V V
j L

C o−
ω

V V
j L

V
j
C

V V
j L

C i C C o− +
−

+ − =
ω

ω
ω

0
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The second node connects only two elements. The current phasor
leaving the output inductor is the negative of the current entering that

element: ; the current phasor through the resistor is . The

equation obtained from applying KCL at node 2 is

3. Generate and evaluate potential solutions

In order to be faithful to engineering notation, it is preferable to over-
ride Maple’s use of I to represent . The online help for I tells you
that I is simply an alias for . Then, following the hyperlink to the
help worksheet for alias, you quickly learn that the following com-
mand both removes the alias for I and adds a new alias for j.

> restart;
> alias( I=I, j = sqrt(-1) );

j

The equations representing KCL at the two nodes are

> EQ1 := (V[C]-V[i])/j/omega/L + V[C]/(-j/omega/C) +
> (V[C]-V[o])/j/omega/L = 0;

> EQ2 := (V[o]-V[C])/(j*omega*L) + V[o]/R = 0;

The voltage transfer ratio as a function of frequency (or, simply, the
frequency response) for this circuit is the ratio of the output and input

voltage phasors: . This expression is easily constructed once VC and

Vo are known.

> SOLN := solve( { EQ1, EQ2 }, { V[C], V[o] } );
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Although these solutions are complicated functions of frequency, it
is not difficult to see that these voltages respond linearly to a change in
the input voltage. The ratio of the output and input voltages is, there-
fore, independent of the input voltage, Vi :

> RESPONSE := subs( SOLN, V[o]/V[i] );

Note that the frequency response is, for most frequencies, a complex

number. If it is written in polar form,  = M e j θ, the magnitude M is

commonly called the gain, and θ is called the relative phase shift (relative
to the phase of the input source). The gain is found to be

> M := evalc( abs( RESPONSE ) );

which can be simplified, with normal (because of the rational functions
that appear in M) and collect (to show the structure relative to ω) to
the somewhat more manageable form

> M := map( collect, normal( M ), omega );

(The map command is needed to force the collection with respect to ω
in the numerator and denominator of this expression. Compare this
result with that obtained from collect( normal( M ), omega );.)

The phase angle is the argument of a complex-valued frequency
response function. Maple’s argument is used in the same manner as
abs, Re, and Im:

> theta := argument( RESPONSE );

The argument is, essentially, the arctangent of the ratio of the imagi-
nary and real parts of the expression. (Exceptions occur when the real
part is zero; furthermore, the signs of the real and imaginary parts
must be used to determine the correct quadrant for the argument; see
the online help for argument and invtrig for further details.)
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4. Refine and Implement a Solution

A useful tool in analyzing an electrical circuit is a plot of the corrected
Bode amplitude. That is, a plot of the amplitude gain, in dB,

MdB = 20log10(M), versus  where the natural (radian) frequency,

ω0, satisfies . Thus,

> omega0 := sqrt( 1/(L*C) );

> MdB := 20*log[10](M);

The formula for the amplitude gain can be simplified using the prop-
erties of logarithms. Before Maple will apply these properties, it is nec-
essary to tell Maple that all the variables are real valued:

> assume( R>0, L>0, C>0, omega>0 );
> MdB := simplify( MdB );

The corrected Bode amplitude plot can be constructed using the
semilogplot command from the plots package. Since the horizontal
axis should be normalized to the natural frequency, it is most conve-
nient to specify the curve in parametric form. The specific form that is
most appropriate for use with semilogplot is

> BODE := [ omega/omega0, MdB, omega=omega0/10 .. omega0*10]:

According to the help worksheet for semilogplot, this should plot

 against MdB as desired.

The plot will be created using the default set of parameter values for
the components of the filter:

> PARAM := [ L = 10, C = 6*10^(-6), R = 10^3 ];
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The corrected Bode amplitude plot corresponding to these parameter
values is

 

> 

 

with(

 

 

 

plots

 

 

 

):

 

> 

 

BODEp

 

 

 

:=

 

 

 

semilogplot(

 

 

 

subs(

 

 

 

PARAM,

 

 

 

BODE

 

 

 

),

 

 

 

axes=FRAMED,

 

> 

 

                      

 

labels=[`omega/omega0`,

 

 

 

`gain

 

 

 

(dB)`

 

 

 

],

 

> 

 

                      

 

title=`corrected

 

 

 

Bode

 

 

 

amplitude

 

 

 

plot`

 

 

 

):

 

> 

 

display(

 

 

 

BODEp

 

 

 

);

 

Observe that this curve is essentially linear when 

 

ω

 

 > 2

 

ω

 

0

 

. Since the

slope is approximately 

 

−

 

60, this circuit is said to exhibit a rolloff of 60 dB
per decade (factor of 10 in frequency) or 18  dB per octave (factor of 2
in frequency).

This corrected Bode amplitude plot can be easily approximated by zero

dB for low frequencies and by a linear function (in ) for high fre-

 

quencies. The corresponding 

 

uncorrected

 

 Bode amplitude plot consists of
these two straight lines. The frequency at which these lines intersect is
called the 

 

cutoff frequency

 

 (corner frequency and break frequency are
other names that appear in the literature). The cutoff frequency for this
low-pass filter is 

 

ω

 

c

 

 = 119 rad/sec, which corresponds to 

 

f

 

c

 

 

 

=

 

 19 Hz. So

you can see that this low-pass filter could be used, for example, as a
component of a DC power supply, since it would reject any surviving
AC signals at 

 

f

 

 = 60 Hz from household outlets and transmit only the
desired DC (

 

f

 

 = 

 

ω

 

 = 0) voltage signals that the power supply generates.

 

5.

 

Verify and Test the Solution

 

The significance of the natural frequency,  

 

ω

 

0

 

,  is uncovered by examin-

ing the gain and phase shift. Other special cases of interest are 

 

ω

 

 = 0
(DC signal), the 3 dB points (frequencies at which the magnitude of the

output voltage is reduced by a factor of  from the magnitude of the

omega/omega0
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input source), and the asymptotic behavior for large frequencies (see
Problem 9). The consideration of each of these special cases both adds
to our understanding of this problem and confirms the utility of the
general expressions obtained in Step 4.

Special Case 1: Direct Current (ω = 0) 

The frequency of a DC source is ω = 0 so the impedance is zero for each
inductor and is infinite for the capacitor. Thus, referring to Figure 6-2,
the low-pass filter is seen to simply transmit the input unchanged
through to the output port since the inductors become short-circuited
wires and the capacitor becomes an open-circuit at DC. Thus, this filter
should exhibit a gain of 1 and no phase shift.

Recall that the gain and phase shift are, in general, given by

> M;

> theta;

In this case it is clear that the gain is M = 1 and the phase shift is
θ = arctan(0) = 0. The same results are obtained by Maple:

> gain = simplify( subs( omega=0, M ) );

gain = 1

> phaseshift = simplify( subs( omega=0, theta ) );

phaseshift = 0

Special Case 2:  Natural Frequency (ω = ω0 ) 

The natural frequency of the circuit occurs when ω = ω0 . The  gain and
phase shift in this case are

> gain = simplify( subs( omega=omega0, M ) );

> phaseshift = simplify( subs( omega=omega0, theta ) );

Observe that though the gain of a low-pass filter at the natural fre-
quency depends on the specific values of the circuit parameters, the
phase shift is always −90 °.
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Special Case 3: 3-dB Frequencies

A 3-dB point (or frequency) of the circuit is any frequency at which the

magnitude of the output voltage is reduced by a factor of  from
the magnitude of the input voltage, that is, frequencies where

. Note that  = −3.01 dB, which explains why

the 3 dB  points represent those frequencies where the voltage amplitude

is decreased by a factor of .

Since power is proportional to voltage squared, the 3-dB points for
an LP filter also represent those frequencies where the transmitted
power is reduced by a factor of 2 from DC.

In light of the square root in the gain, it is advisable to work with the
square of this equation:

> EQ3dB := M^2 = 1/2;

You could simply ask Maple to solve this equation for ω, but this is
likely to return a total of six solutions. (Do you see why?) The number
of solutions can be cut in half simply by noting that the denominator is
an even function of ω. Let  µ = ω2 and then solve for µ. Each real and
positive root, µ, will lead to a 3-dB frequency, .

The change of variables leads to the equation

> EQ3dB2 := subs( omega=sqrt(mu), EQ3dB );

The solutions to this equation are

2
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> MU := [ solve( EQ3dB2, mu ) ];

At first glance it appears that this equation has one real root and two
complex-valued roots. However, the expressions are sufficiently compli-
cated that it is difficult to be certain about this. One test is to evaluate
the three roots using L = 10 H, C = 6 µF, and R = 1 kΩ:

> MU2 := sort( evalf( subs( PARAM, MU ) ) );

MU2 := [5701.533437, 12748.24941, 38216.88382]

Since there are, in fact, three positive values of µ that satisfy this
equation, there will be three separate 3-dB frequencies:

> FREQ3dB := map( sqrt, MU2 );

FREQ3dB := [75.50849910, 112.9081459, 195.4913907]

These results are consistent with the corrected Bode amplitude plot:
there are three points on this curve where the gain is −3 dB. Further
verification of these results requires conversion from frequency into

the normalized variable :

> CONVERT := omega -> evalf( subs( PARAM, log[10](omega/omega0) ) );

> map( CONVERT, FREQ3dB );

[−.2329285368, −.05819909883, .1802032616]
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A graphical verification of the 3-dB points is also possible:

> plots[display]( [ BODEp , plot(-3, color=GREEN) ],
>                 view=[-0.3..0.3, -10..5], xtickmarks=5,
>                 title=`3dB frequencies` );

This example should not be used to conclude that all LP filters have
more than one 3-dB point. Though a full analysis of 3-dB points is
beyond the scope of this discussion, note that the cutoff frequency is
very close to the mean of ω0 and the middle 3-dB point.

Suppose you need to design a low-pass filter whose cut-off frequency,  ωc,
is increased by a factor of 10. How would the value of L need to be
changed if the original values for R and C are used? How would C be cho-
sen if the original L and R values are used? How would R be chosen if the
original L and C are used? Find all physical solutions and verify each result
with an appropriate Bode plot.

Hint: The general equation that must be satisfied is

 

for an appropriate value of ω10.
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6-2 CALCULUS
Limits are the fundamental concept behind the two principal components
of calculus: the derivative and the integral. The corresponding Maple com-
mands are limit, diff, and int and their inert forms Limit, Diff, and
Int. This brief introduction discusses only these fundamental concepts;
the student package contains a large collection of additional calculus-based
tools, including integration by parts, line integrals, and triple integrals.

The limit of an expression f(x) as x approaches a, , is translated

to Maple as limit( f(x), x=a ); . An optional third argument can be used
to specify one-sided limits.

Limits

Use Maple to evaluate each of the following limits:

(a)

(b)

(c)

(d)

(e)

(f)

SOLUTION

Each limit can be directly translated into Maple. The only special consider-
ation is in (c), where the one-sided limit from the left is specified by
including left as the third argument of the limit command

> restart;

(a) > limit( (x^3+8)/(x+2), x=-2 );

12

(b) > limit( tan(theta/2), theta=Pi );

undefined

(c) > limit( tan(theta/2), theta=Pi, left );

∞

lim f
x a

x
→

( )

EXAMPLE 6-4
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x
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+
+2

3 8
2
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
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(d) > limit( sin(3*x^2-27)/(x^2-2*x^3+45), x=3 );

(e) > limit( sin(1/x), x=0 );

−1 .. 1

(f) > limit( (sin(y)-sin(x))/(y-x), y=x );

cos(x)

The results from parts (b) and (c) illustrate the way Maple responds to
limits that do not exist or are unbounded. The result in (e) should be inter-

preted to mean that the limit is not defined because the value of 

oscillates within the interval [−1,1] infinitely often near x = 0. The limit in
(f) is recognized as the definition of the derivative of sin(x); in light of this

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

observation, the result is exactly what you should expect.

The Limit command is the inert, or unevaluated, form of limit. Except
that the inert form of a function is not evaluated, it is identical to the reg-
ular form of the command. Two common usages of the inert form of a
command are to verify that the correct quantity has been entered and to
have more control over the evaluation of the expression. The value com-
mand forces evaluation of the inert form with the corresponding normal
version of the command (for example, replace Limit with limit and then
call value); the evalf command can be used if a purely numeric evalua-
tion is desired.

Euler’s constant, e

Euler’s constant, e, can be defined as . Use the inert form

of limit to evaluate this limit both symbolically and numerically using
20 significant digits.

SOLUTION

The definition of e, as an unevaluated limit, is

> eLIM := Limit( (1+1/n)^n, n=infinity );

eLIM := 

The normal evaluation of this inert expression is forced using the
value command.

> eLIM = value( eLIM );

 = e

−3
8

sin
1
x


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
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EXAMPLE 6-5
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The floating-point evaluation of the same limit, using 20 digits in the
computations, can be obtained using evalf:

> eLIM = evalf( eLIM, 20 );

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

 = 2.7182818284590452354

Note how the presentation of the limit and its value in Example 6-5 is 
more informative than the format used in Example 6-4. Redo each of the 
problems in Example 6-4 using a style similar to that introduced in
Example 6-5.

Asymptotes of a Rational Function

Find all asymptotes (vertical, horizontal, and oblique) for the function

. Create a plot that clearly shows all interesting features

of f.

SOLUTION

The function could be entered as a Maple expression or, using the arrow
operator, as a function. For a change of pace, and in preparation of later
examples in this chapter, the arrow operator will be used here:

> f := x -> (2*x^2-7*x+1)/(3-x);

 

The singularity in the denominator when x = 3 suggests the probable
existence of a vertical asymptote at x = 3. To confirm this, it is necessary
to check that at least one of the left and right one-sided limits is
unbounded at x = 3:

> limR := Limit( f(x), x=3, right ):
> limR = value( limR );

> limL := Limit( f(x), x=3, left ):
> limL = value( limL );

Thus, x = 3 is a vertical asymptote for f.

lim
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Since the degree of the numerator exceeds the degree of the denominator,
there are no horizontal asymptotes to this function. But there should be
an oblique asymptote. Long division is the usual technique used to manu-
ally compute an oblique asymptote. The Maple commands quo and rem
can be used to obtain this information. The oblique asymptote can be ob-
tained from the quotient of the numerator and denominator of f as follows:

> NN := numer( f(x) );
> DD := denom( f(x) );

NN := −2x2 + 7x − 1
DD := −3 + x

> obliq_asymp := quo( NN, DD, x, 'rest' );

obliq_asymp := −2x + 1

Observe how the optional fourth argument to quo is used to obtain
both the remainder and quotient simultaneously. Thus, an equivalent rep-
resentation of the function should be

> fEQUIV := obliq_asymp + rest/DD;

One way to check this result is to normalize the difference between the
two representations of the function:

> simplify( fEQUIV - f(x) );

0

Since this difference is zero, the two representations are equivalent.
All that remains is to verify that y = −2x + 1 is an oblique asymptote for f:
> obliqLIM1 := Limit( f(x)-obliq_asymp, x=infinity ):
> obliqLIM1 = value( obliqLIM1 );

> obliqLIM2 := Limit( f(x)-obliq_asymp, x=-infinity ):
> obliqLIM2 = value( obliqLIM1 );

Of course, these results can be seen by inspection from the fact that

. (Three alternative methods for finding the oblique

asymptote are presented in Problem 3 in this chapter.)
The last step is to create a plot of the function f. Since f is discontinu-

ous, you know that it is necessary to use the discont=true option and to
provide an appropriate vertical range:
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> plot( f(x), x=-10..10, -50..50, discont=true,
> title=`f(x) = ( 2*x^2 - 7*x + 1 )/( 3 - x )` );

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

The derivative of an expression, EXPR, with respect to the name X, is
obtained with the command diff( EXPR, X );. The inert form of diff is
Diff. A third differentiation command, which is used to compute deriva-
tives of functions (not expressions), is D.

Derivatives

Compute the derivative of  using both

diff and D. Use Diff to improve the appearance of the results.

SOLUTION

Since both diff and D are to be used, it will be necessary to implement
the function using the arrow operator:

> f := x -> sqrt(x) + sin(2*x) + exp(1/x) + (x^2+3*x)/(x+1);

x
105-5-10
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f(x) = ( 2*x^2 - 7*x + 1 )/( 3 - x )
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The unevaluated derivative is obtained using Diff with the expression
f(x); evaluation is forced using the value command.

> df := Diff( f(x), x );

> df = value( df );

To produce the same result using D, it is necessary to first compute the
function (not expression) that is the derivative of the function f.

> Df := D(f);

Since Df is a function, the value of this function is obtained by supply-
ing an argument. Thus, another way to present the derivative is

> df = Df(x);

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Note that Maple displays all derivatives using the standard notation for
partial derivatives. This is something that you need to accept; it cannot be
changed.

Second- and higher-order derivatives can be found by specifying addi-
tional arguments to diff or Diff. For example, the second and fifth deriv-
atives of EXPR with respect to X can be obtained with diff( EXPR, X, X )
and diff( EXPR, X $ 5 ), respectively. The corresponding second and
fifth derivative functions obtained with D would be D( D( f ) ) and, using
the repeated composition operator @@, ( D @@ 5 )( f ).

Compute the first three derivatives of the function using both 
diff and D. (See also Problem 4 in this chapter).

Note the close correspondence between Maple syntax and mathematical
notation and terminology. This connection is particularly strong for the
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integration commands, int and Int. Example 6-8 provides illustrations of
indefinite integrals. Proper and improper definite integrals are examined
in Example 6-9. Integrals of piecewise-defined functions are discussed in
Examples 6-10 and 6-11. The Strength and Toughness application from
Chapter 2 is revisited in Examples 6-10 and 6-11. Example 6-12, involving
numerical integration, illustrates the increased efficiency that can result
from the intelligent use of the inert form of a command.

A Trigonometric Integral

Evaluate the indefinite integral  for all real numbers b.

SOLUTION

The inert integration command is used here to, once again, improve the
clarity of the results.

> indefINT := Int( sin(x)*cos(b*x), x ):
> indefINT = value( indefINT );

Observe that Maple does not include the constant of integration. Thus,
it is your responsibility to include an appropriate constant of integration,
using a name selected by the user, whenever it is needed. This will be
illustrated in all subsequent examples.

Note that this result cannot be applied when b = 1 or b = −1. Since
cos(−x) = cos(x), cosine is an even function, and the results for the two spe-
cial cases should be the same. The indefinite integrals when b = 1 and
b = −1 are found to be

> indefINT1 := subs( b=1, indefINT ):
> indefINT1 = value( indefINT1 ) + C;

> indefINT2 := subs( b=-1, indefINT ):
> indefINT2 = value( indefINT2 ) + C;

The indefinite integrals when  b  = 1 are easily found using the substitution 
u = sin(x). The integrals could also be found by using the substitution 

v = cos(x) or by noting that . Compute the indefinite 

integral . Does this yield the same result as in Example 6-8? 

Are the results equivalent? Explain.

EXAMPLE 6-8

sin cosx bx dx( ) ( )∫

sin cos
cos cos

x bx dx
b x

b

b x

b
( ) ( ) = −

+( )( )
+

+
− +( )( )

− +∫ 1
2

1

1
1
2

1

1

sin cos sinx x dx x C( ) ( ) = ( ) +∫ 1
2

2

sin cos sinx x dx x C( ) ( ) = ( ) +∫ 1
2

2

Try It

!
sin cos

sin
x x

x( ) ( ) = ( )2

2

sin 2

2

x
dx

( )∫
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The only difference in Maple between an indefinite and definite integral is
the specification of the interval of integration. For example, the integral of a
function f(x) over the interval [a,b] would be entered as int( f(x), x = a .. b ).

Definite Integrals

Evaluate the definite integrals  and , where

. Note that the second integral is an improper integral.

SOLUTION

The function f is given by

> f := x -> (2*x^2-7*x+1)/(3-x);

The definite integral over the interval [−2, 2] can be evaluated as follows:

> fINT1 := Int( f(x), x=-2 .. 2 ):
> fINT1 = value( fINT1 );

Since f has a singularity at x = 3, the second integral is improper. Thus,

the integral converges if and only if  converges. Maple auto-

matically detects the singularity and evaluates the appropriate limit, when
possible, for improper integrals. Thus, as far as Maple is concerned, the
user does not have to change the way in which the integral is computed:

> fINT2 := Int( f(x), x=0 .. 3 ):
> fINT2 = value( fINT2 );

Thus, this integral diverges to −∞.
To better understand the steps that are involved in arriving at the value

of an improper integral, let α > 0 and consider the proper integral

> fINT2a := Int( f(x), x=0..3-alpha):
> fINT2a = value( fINT2a );

This is a very strange result. How did a nonzero imaginary term arise in
this problem? When limits are taken using this result, α will be positive;
what is ln(−α)? The answers to both questions are related, and will be dis-
cussed further in the next Try It! exercise. Nontheless, as α decreases to
zero, the value of these definite integrals diverges to −∞:

EXAMPLE 6-9

f x dx( )
−∫ 2

2
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3

f x
x x

x
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−
2 7 1
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2
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x x

x
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2 7 1
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2 x x
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−

⌠
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x dx

a

2 7 1

3

2

0

3
x x

x
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−

⌠
⌡
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> 

 

impINT

 

 

 

:=

 

 

 

Limit(

 

 

 

fINT2a,

 

 

 

alpha=0,

 

 

 

right

 

 

 

):

 

> 

 

fINT2

 

 

 

=

 

 

 

impINT;

 

> 

 

` `

 

 

 

=

 

 

 

value(

 

 

 

impINT

 

 

 

);

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

 

Repeat the evaluation of the proper integrals on the interval [ 0,  3 

 

− α

 

 ] 
after telling Maple that 

 

α

 

 is assumed to be positive. Does this change the 
value of these integrals? Does it change the convergence of the improper 

 

integral? What does this suggest about the value of 

 

ln(

 

−α

 

)

 

?

 

Toughness as Three Integrals

 

In Application 2 in Chapter 2, we saw that the toughness of a material is
defined as being the area under the stress–strain curve. In this applica-
tion, the area was found either geometrically or by an approximate
method (via the 

 

rightbox

 

 command). Since the area under a curve can
be expressed as a definite integral, the toughness can be found by inte-
grating the stress over all strains up to the fracture point. For the specific

material analyzed in Chapter 2, this means 
where the stress is 12000

 

ε

 

 for 0 

 

≤

 

 

 

ε

 

 

 

≤

 

 2.8%, 330 for 2.8% 

 

≤

 

 

 

ε

 

 

 

≤

 

 3.2%, and

 

−

 

210000

 

ε

 

2

 

 + 23000

 

ε − 

 

210 for 3.2% 

 

≤

 

 

 

ε

 

 

 

≤

 

 7.4%. Compute the toughness of the
material analyzed in Chapter 2.

 

SOLUTION

 

The three parts of the stress function are

 

> 

 

stress[1]

 

 

 

:=

 

 

 

12000*epsilon;

 

stress

 

1

 

 := 12000

 

ε

 

> 

 

stress[2]

 

 

 

:=

 

 

 

330;

 

stress

 

2

 

 := 330

 

>

 

 

 

stress[3]

 

 

 

:=

 

 

 

-210000*epsilon^2

 

 

 

+

 

 

 

23000*epsilon-210;

 

stress

 

3

 

 := 

 

−

 

210000

 

ε

 

2

 

 

 

+

 

 23000

 

ε

 

 

 

−

 

 210

The toughness of this material is found as the sum of three definite
integrals.
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3x x
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dx
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x
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− +
−

⌠
⌡

= − +
−

⌠
⌡

= −∞
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−

lim
α

α

Try It
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EXAMPLE 6-10

toughness d= ( )∫ σ ε ε
0

0 074.
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> toughness := Int( stress[1], epsilon=0..0.028 )
>            + Int( stress[2], epsilon=0.028..0.032 )
>            + Int( stress[3], epsilon=0.032..0.074 ):
> toughness = value( toughness );

To two significant digits, the toughness of this material is 22. Observe
that this is well within the range found at the end of Step 3 of the analysis

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

in Chapter 2.

The specification of the stress–strain curve in three separate parts is a
natural part of this problem. This did not impede the determination of the
toughness, but it does complicate the generation of a plot of the stress–
strain curve.

The piecewise command can be used to specify, in a single Maple object,
all the different pieces of the function. The arguments to piecewise come
in pairs of expressions where the first expression in each pair is Boolean
(evaluates to either true or false). For example, the piecewise definition
of the stress-strain curve is

> stressPW := piecewise( epsilon<0.028, stress[1],
>                        epsilon<0.032, stress[2],
>                        epsilon<0.074, stress[3] );

Note the convenient printed format—exactly what would be found in
any standard mathematical discussion.

If ε has a value, the value returned by piecewise is the expression cor-
responding to the first Boolean expression that evaluates to true. (See the
online help worksheet for piecewise for an explanation of the return
value when none of the Boolean expressions are true.) Do not despair.
This sounds more confusing than it is. To be sure you understand how
this works, consider the following examples:

> eval( subs( epsilon = 0, stressPW ) );

0

> eval( subs( epsilon = 0.01, stressPW ) );

120.00

> eval( subs( epsilon = 0.032, stressPW ) );

310.960000

12000 330 210000 23000 210 22 33008000
0
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028

032
2
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074

ε ε ε ε ε εd d d
.

.

.

.

.

.∫ ∫ ∫+ + − + − =
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.

.

.

=
<
<

− + − <







12000 028
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210000 23000 210 0742

ε ε
ε
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> eval( subs( epsilon = 0.10, stressPW ) );

0

The last result is zero because this is the default value returned from a
piecewise-defined function when none of the Boolean expressions evalu-
ates to true.

Use the piecewise definition of stress and strain to create a plot of the 
stress-strain curve for the material analyzed in Chapter 2.

Toughness as a Single Integral

Find the toughness of the material by the integration of the piecewise-
defined stress function.

SOLUTION

> toughnessPW := Int( stressPW, epsilon=0..0.074 ):
> toughnessPW = value( toughnessPW );

 

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

Note that this value is identical to the one obtained in Example 6-10.

The piecewise-defined stress function used in Example 6-11 is not quite 
correct. Note that although the stress is forced to be zero for strains after 
failure, no similar efforts have been made to prevent erroneous values for 
negative strains. Redefine the stress function so that this potential prob-
lem is avoided. Further, for the sake of simplifying evaluation, use the 
unapply command to make the stress a function of the strain. (See Chap-
ter 3, or a help worksheet, for information about the unapply command) 
Plot this function over the domain −0.01 < ε < 0.10.

To conclude this introduction to the use of Maple for calculus-based

manipulations, consider the evaluation of the definite integral .

This is an example of an integral that exists (it is the integral of a continu-
ous and bounded function on a finite interval) but cannot be written in
terms of elementary functions.

Try It

!

EXAMPLE 6-11
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
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⌡
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The first objective is to understand that the mathematical theory guarantees 
that the existence of this integral is independent of our ability to express 

the value in terms of elementary functions. First, plot y = e−x3
 on an 

appropriate interval and identify  as the area of a plane region. 

Then, use the plot to estimate the value of .

Once Maple determines that it is unable to evaluate an expression, the
expression is generally returned unevaluated. A floating-point approxima-
tion can be forced with the use of evalf.

Numerical Integration

(a) Verify that Maple is unable to evaluate the definite integral .

(b) Use the time command to compare the CPU time required to obtain a
numerical approximation to the integral using the two commands
evalf( int( exp(-x^3), x=0..1 ) ); and evalf( Int( exp(-x^3),
x=0..1 ) );.

SOLUTION

(a) Maple’s inability to evaluate the integral will be detected when value
attempts to evaluate the inert form of the integral.

> defINT := Int( exp( -x^3 ), x = 0 .. 1 ):
> defINT = value( defINT );

 = 

(b) The following segments of Maple code can be used to test the execu-
tion time for the two different expressions given in the problem
statement. Note that the restart commands are used to prevent any
residual information from the first evaluation from influencing the
execution speed of the second form.

> restart;
> tstart := time():
> area := evalf( int( exp( -x^3 ), x = 0 .. 1 ) ):
> tend := time():
> printf(`\n elapsed time: %6.3f seconds (area = %12.10f)\n `,
> tend-tstart, area );

elapsed time: 3.174 seconds (area = .8075111821)

Try It

!
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EXAMPLE 6-12
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> restart;
> tstart := time():
> area := evalf( Int( exp( -x^3 ), x = 0 .. 1 ) ):
> tend := time():
> printf( `\n elapsed time: %6.3f seconds (area = %12.10f)\n `,
> tend-tstart, area );

elapsed time: .731 seconds (area = .8075111821)

 Note that the values of the integrals are the same up to (at least) 10
decimal digits, but that the form that used Int was more than four times
as fast as the evaluation that used int. The difference in execution time is
a result of the fact that Maple attempted to evaluate the int command
before it realized that a numerical integration was necessary.

The appearance of the output has been improved with the use of the

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

printf command (see the online help for printf).

You should note that if the integral can be evaluated, then evalf( int( ... ) )
returns a floating-point approximation to the evaluated expression; no
numerical integration is performed. To ensure the numerical evaluation of
an integral, evalf( Int( ... ) ) should be used.

6-3 DIFFERENTIAL EQUATIONS
The applications in Chapters 3 and 5 have used differential equations to
model different aspects of an engineering problem. As these applications
illustrate, an ability to work with differential equations is essential for
many engineers. For these reasons, differential equations are the final
mathematical topic to be discussed in this chapter. Since knowledge of
differential equations is not typically a prerequisite for courses that
would use this module, this introduction will be brief. You are encouraged
to revisit this section of the text when you take a course in differential
equations.

A differential equation is an equation that includes the derivative of one or
more unknown functions. The typical objective is to solve the differential
equation—that is, to find the unknown functions that satisfy the differen-
tial equation (and any associated initial or boundary conditions). In many
cases, it is not possible to find the solution to a differential equation. In
these instances, the objective may be to use the differential equation to
provide a qualitative description of the solution.

In terms of Maple, the derivatives in a differential equation are entered
using diff, Diff, or D ; the dsolve command is used to find exact (sym-
bolic) and approximate (numeric) solutions to a differential equation; and
the DEtools package, in particular the DEplot command, provides a vari-
ety of options for obtaining graphical information about a solution to a
differential equation.

The water quality application in Chapter 5 is based on two differential
equations. The BOD and Streeter–Phelps equations are
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You are also provided with the solution to this system of equations,
with initial conditions L(0) = BODu and D(0)=D0:

 

Recall that D is Maple’s differentiation operator, so it cannot be used as
the name for the oxygen deficit; a simple modification that was used in
Chapter 5 is DD.

In Examples 6-13 and 6-14 you will see how dsolve can be used to
obtain the general and particular solution to a differential equation. Addi-
tional examples and information about the use of Maple to analyze differ-
ential equations can be found in the Maple’s online help.

General Solution to a Differential Equation

Use dsolve to find the general solution to the BOD equation; then find the
solution that satisfies the initial condition L(0)=BODu.

SOLUTION

The BOD differential equation is entered as

> BODeqn := diff( L(t), t ) = -kd * L(t);

The syntax for dsolve is very similar to the syntax for solve and
fsolve. The general solution of an equation can be found by specifying
the differential equation and unknown function as arguments to dsolve: 

> BODgen := dsolve( BODeqn, L(t) );

BODgen := L(t) = e(−kdt) _C1

It is not difficult to visually confirm that these functions are solutions
to the BOD differential equation for any value of the constant _C1. In
more complicated equations it might be more convenient to use Maple to
perform this check. One way to verify that a function satisfies a differen-
tial equation is to substitute the solution into the differential equation
with all terms moved to one side of the equation:

> CHECK := subs( BODgen, lhs(BODeqn) - rhs(BODeqn) );

then force full evalutation of the resulting expression

′( ) = − ( )
′( ) = ( ) − ( )
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> eval( CHECK );

0

Since the result is zero, or an expression that reduces to zero, the equa-
tion is satisfied and the function is a solution.

The particular function that also satisfies the initial condition,
L(0) = BODu, can be found by substituting the initial condition (and initial
time) into the equation for the general solution, then solving for the con-
stant(s). For example, for the BOD problem:

> BODic := L(0) = BODu;

BODic := L(0) = BODu

> BODinit := subs( t=0, BODic, BODgen );

BODinit := BODu = e0 _C1

> solve( BODinit, { _C1 } );

{_C1 = BODu}

Thus, the initial condition is satisfied if and only if _C1 = BODu, and the
only function that satisfies the BOD differential equation and the initial
condition is

> BODsoln := subs( ", BODgen );

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

BODsoln := L(t) = e(−kdt) BODu

A simpler means of obtaining the solution to an initial value problem is to
call dsolve with a first argument that is a set containing both the differ-
ential equation and the initial condition.

Particular Solution to a Differential Equation

Use the method just described to find the particular solution to the BOD
equation.

EXAMPLE 6-14
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SOLUTION

Using the assignments made in Example 6-13, the set containing the dif-
ferential equation and initial condition is

> BODivp := { BODeqn, BODic };

Then, the particular solution can be found with the single command

> dsolve( BODivp, L(t) );

L(t) = e(−kdt) BODu

■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■  ■

This solution is, by inspection, the same as the one found in Example 6-13.

Find the general and particular solutions to the Streeter–Phelps equation, 
with initial condition D(0) = D0. Hint: Begin by substituting the solution to 
the BOD equation into the Streeter–Phelps equation:

> DOcons := DO(t) + DD(t) = DOsat;

DOcons := DO(t) + DD(t) = DOsat

> DOeqn :=  diff( isolate( DOcons, DO(t) ), t );

> DOeqn := subs( SPeqn, DOeqn );

> DOeqn := subs( isolate( DOcons, DD(t) ), DOeqn );

BODivp
t

t kd t BODu :  L L ,L= ( ) = − ( ) ( ) =







∂
∂

0

Try It
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SUMMARY This chapter demonstrated how Maple can be used in problems that
involve complex numbers, calculus, and differential equations. The appli-
cation used nodal analysis to investigate a low-pass electrical filter,
including the determination of the circuit’s frequency response. Expres-
sions for the voltage transfer ratio amplitude and phase were calculated
and plotted. The calculus section focused on problems that involve limits,
derivatives, and integrals. Several ways that inert commands can be used
to improve both appearance and efficiency were introduced and demon-
strated. Some of the examples revisited applications introduced in earlier
chapters. In particular, the toughness of a material was computed by
direct integration after the stress-strain curve was defined as a piecewise-
defined function and the biochemical oxygen demand (BOD) and oxygen
deficit levels in the water quality application were obtained by solving the
BOD and Streeter–Phelps equations.
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Problems

1. (a) Find the eighth roots of 10. Use nops to verify that the correct 
number of roots have been found.

(b) Create separate lists containing the real-valued roots and the com-
plex-valued roots. Hint: The select and remove commands are 
recommended for creating subsets of lists or sets as requested in 
this problem. Further, a common method for testing if an object is 
complex valued is to use the Boolean function has to check if the 
object contains I. For example, has( f, I ); returns true if f con-
tains I and otherwise returns false.

2. The modulus and argument of a complex number can be used to spec-
ify a complex number in polar coordinates. This conversion can be 
accomplished using Maple’s polar command, whereas conversion 
from polar to standard form is obtained using evalc. (For additional 
details, see the help worksheet for polar.)

Let a be a positive number. Find the polar representations of the 
square, cube, and fourth roots of a. Without using solve, what are the 
fifth roots of a?

3. Let f be the function introduced in Example 6-6, that is, 

.

(a) Use asympt to find the asymptotic expansion of f.

(b) Use series to find the series expansion of f about both x = 0 and 
x = 3.

(c) Use convert,parfrac to find the partial fraction decomposition 
of f.

(d) Compare the results found in parts (a), (b), and (c). How hard is it 
to identify the oblique asymptote in each case? What other infor-
mation is contained in these results?

Consult the appropriate help worksheets for information about the 
syntax and interpretation of results from each of these commands.

4. Note that the function  is not defined at x = 0. (See also the 

Try It! exercise immediatedly following Example 6-7.)

(a) Plot f and its first three derivatives on the interval [−1, 1].

(b) Is it possible to define f(0) so that f is continuous at x = 0?

(c) Use part (b), and the definition of the derivative, to compute f′(0). 
Are any derivatives of f continuous at x = 0?

f x
x x

x
( ) = − +

−
2 7 1

3

2

f x x( ) =
−

e
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5. (a) Compute the definite integral of  and 

. Cross-check your results using a graph and 

interpreting the integral as a (signed) area.

(b) For what values of p does  converge?

6. Use the intparts command from the student package to evaluate—

step-by-step—the indefinite integrals (a)  and

b) . Does it matter which term in the integrand is chosen 

for “u”?

7. The integral  was found to be approximately 0.80751118 in 

Example 6-12. Another approach to this problem is to expand the inte-
grand in a power series (see Problem 3 in this chapter), then integrating 
the resulting polynomial.

(a) How many terms in the power series expansion of  , centered 
at x = 0,  are needed to approximate the value of this integral to 
five (5) decimal places?

(b) How many terms are needed when the power series is based at  
x = 1? at  x = 1/2?

Hints: The Maple command for computing power series is series (see 
also Problem 3 in this chapter). Use convert,polynom to convert the 
result returned by series to a polynomial before integrating.

8. Determine which of the following expressions satisfy the differential 

equation :

v1(t) = etsin(2t), v2(t) = e−tsin(t), v3(t) = e−t, v4(t) = cos(t).

9. (a) Another interesting frequency in the analysis of the low-pass filter 

is  . Find the gain and phase shift for this frequency.

(b) Determine the behavior of both the gain and phase shift as ω 
increases without bound.

(c) Show that MdB  ~ −60log10(ω) + 20(log10(ω′) + 2log10(ω0) ) for 

“large” frequencies. (In this context, high-frequency means

  >> 1  and   >> 1.)

(d) Use the result from part (c) to show that the cut-off frequency, ωc, 

satisfies  ωc
3 = ω′ ω0

2.

(Hint : Use a combination of limit, series, and/or asympt.)

10. a) Produce corrected Bode amplitude plots, and compute the cut-off 
frequencies when the load resistance is  R = 10Ω, R = 1kΩ, 
R = 500kΩ, R = 1MΩ, R = 10MΩ,and R = 100MΩ. How does changing 
the load resistance value affect the operation of the low-pass filter?  
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b) The corrected Bode phase plot is a plot of θ (in degrees) vs. 

. Create the corrected Bode phase plot for the original 

problem and for each of the resistances in part (a).

c) Present the plots in parts (a) and (b) as an animated sequence of 
plots with increasing values of resistance.

11. Suppose two identical low-pass filters are “cascaded.” Determine the 

frequency response function, , for this new composite component. 

Does this new component better approximate an “ideal” low-pass 
filter? (Hint: The output voltage from the first low-pass filter becomes 
the input voltage to the second low-pass filter.)

12. Note that the solution to the Streeter–Phelps equation is not defined 
when kd = kr. One possible way to define the solution when kd = kr is 

with limits. What function is defined by ? Verify that this 

function satisfies the Streeter–Phelps equation when kd = kr.

13. In Chapter 3, Problem 6, you were told that an airplane’s range (s), lift 
(L), drag (D), thrust-specific fuel consumption (TSFC), take-off mass 
(m0), and landing mass (m) satisfy the relationship

This relationship is obtained from Breguet’s equation 

 with initial condition m(0) = m0.

(a) Use Maple to find the particular solution to Breguet’s equation that 
satisfies the given initial condition.

(b) Note that Breguet’s equation gives the landing mass in terms of 
the other quantities. Use Maple to rewrite the solution to Breguet’s 
equation as s = F(m,m0,L,D,V,TSFC,g). Do you obtain the result 

stated above (and in Chapter 3)? (Explain any differences.)

(c) The specific form in which the relationship is given depends 
largely on the way in which it will be used. Give examples of situa-
tions in which each of the two forms of the relationship discussed 
in this problem might be used.
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