
Notes for the Maple
Computer Algebra System

GETTING STARTED WITH MAPLE

Using Maple with Linear Algebra and Its Applications

The Maple commands for most linear algebra operations, including the manipulation of vectors
and matrices, can be found in the linalg package that comes with Maple. The laylinalg
package contains Maple implementations of the special MATLAB commands presented in the
text, data for many problems in the text, and data for the Maple Projects. The current version
of the laylinalg package can be used in either Maple 7 or Maple 8 and can be downloaded
from http://www.laylinalgebra.com/.

To make the laylinalg package accessible within Maple it is necessary to expand the
downloaded archive and to instruct Maple where to find these files. First, unzip (or unstuff if
you are using a Macintosh computer) the archive containing the laylinalg package into a new
folder named laylinalg. When this has been successfully completed, the laylinalg folder
will contain three files: maple.hdb, maple.ind, and maple.lib. (The fourth file in the archive,
MapleReadMe.txt, contains a more detailed version of the information in this paragraph.) To
instruct Maple where to find the laylinalg package, the full pathname of this new directory
must be added to the list of directories in libname. For example, if the full pathname is
C:\\laylinalg then the command

> libname := "C:\\laylinalg", libname:
must be executed. To ensure these steps are performed every time you use Maple, this command
should be placed in a Maple initialization file. The MapleReadMe.txt file contains additional
information about Maple initialization files; see also the Maple help page produced by the
command ?mapleinit. If you experience any difficulties with this installation process, please
check with your instructor for specific instructions for your site.

To load a Maple “package” into a Maple session, use the with command. The command
> with( laylinalg );

loads the laylinalg package and displays all of the commands in the package. This particular
command also loads Maple’s own linalg package and modifies the display of Maple vectors so
they appear as n× 1 column matrices.1

Each Maple command must end with a semicolon or colon. The semicolon tells Maple to
display the result of the command; a colon suppresses the output. Maple is case-sensitive but
ignores all whitespaces (blanks) around numbers, names, keywords, and operators in com-

1To have vectors displayed horizontally, execute the command pvac := false;. The command pvac stands
for print vectors as columns.
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mands. For example, Maple will not recognize with( LayLinAlg ); but will understand
with(laylinalg);. The commands in these notes include extra spaces to increase readability.

Entering Matrices in Maple

There are many ways to create matrices in Maple. In general, a matrix is created with the
matrix command. The first two arguments of this command are the number of rows and
columns in the matrix, respectively. If there are only two arguments, then the elements of the
matrix are unassigned (see matrix A, below). The optional third argument is used to specify
the entries of the matrix. If the third argument is a list or vector, these quantities are used to
fill the matrix row-by-row from left-to-right (see matrices B and C). The third argument can
also be a Maple function of two variables. In this case each element of the matrix is assigned
value by evaluating the function with the corresponding row and column indices (see matrix
E). Diagonal matrices are easily defined using the diag command from the linalg package
(see matrix F ).

> A := matrix( 2, 3 );
A := array( 1 .. 2, 1 .. 3, [ ])

> evalm( A ); [
A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

]

> B := matrix( 2, 3, [1,2,3,4,5,6] );

B :=

[
1 2 3
4 5 6

]

> C := matrix( 2, 3, [1,2,3,4] );

C :=

[
1 2 3
4 C2,2 C2,3

]

> E := matrix( 2, 3, (i,j) -> 1/(i+j) );

E :=

[ 1
2

1
3

1
4

1
3

1
4

1
5

]

> F := diag( 1, 2, 3 );

F :=


1 0 0

0 2 0

0 0 3
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The entermatrix command, from the linalg package, provides a somewhat more user-
friendly interface for entering the entries of a matrix:

> G := matrix(2,3): # define the matrix G

> entermatrix(G);
enter element 1,1 > 1; # note that the semicolon is required

enter element 1,2 > 2;
enter element 1,3 > 3;
enter element 2,1 > 4;
enter element 2,2 > 5;
enter element 2,3 > 6;

A more graphical but seldom-used method for defining a matrix with between two and four
rows and two and four columns is to use the Matrix Palette. You are strongly advised to not
use the Matrix and Vector Palettes with the laylinalg package. The commands produced
by the Matrix and Vector Palettes create Maple objects with type Matrix and Vector. These
objects are designed for use with Maple’s LinearAlgebra package, not the type matrix and
vector objects used by the linalg and laylinalg packages.

Using Maple’s Online Help

These notes are intended to be self-contained. If, however, you are interested in additional
information, you should first consult Maple’s online help. The command help( laylinalg
); or, equivalently, ?laylinalg accesses the help worksheet with an overview the laylinalg
package. Help worksheets exist for all Maple commands, including all commands in the linalg
and laylinalg packages. For example, the command ?gauss accesses the help worksheet for
the gauss command in the laylinalg package.

The Help menu on the Maple user interface can also be used to search for help on a specific
keyword. A Full Text Search lists all help worksheets containing keywords that you specify.
A Topic Search interactively shows all help worksheets whose topic matches the search string.
For example, there is a long list of help topics that begin with the string la. When the search
string is expanded to lay the list of matching help topics reduces to all of the help worksheets
for the laylinalg package.



MP-4 Notes for Maple

STUDY GUIDE NOTES

At the beginning of each Maple session for this linear algebra course, enter the command:
> with( laylinalg );

Notice the use of a colon to suppress the output.

SECTION 1.1 Row Operations

The data for the exercises in this section are contained in the laylinalg package. The list of
exercises within chapter 1 section 1 for which Maple data is available is displayed by execut-
ing the command: c1s1();. If Maple simply repeats your input, it is likely that the with(
laylinalg ); command has not been executed.

The data for a specific problem, such as Exercise 13 in Section 1.1, can be loaded with the
command: c1s1( 13 ); or c1s1(13);. (The spaces around 13 are optional.) The output from
this command displays each assignment that Maple has made. In this section the data for each
exercise are stored in a matrix M. To see the current contents of the matrix M, execute the
command: evalm( M );.

Row operations on M can be performed using commands from either the laylinalg or the
linalg package. Table 1 summarize the commands for the three elementary row operations.

laylinalg Command Syntax Description
replace( M, r, m, s ); row r ← row r + m * row s

swap( M, r, s ); row r ↔ row s

scale( M, r, c ); row r ← c * row r of M

linalg Command Syntax Description
addrow( M, s, r, m ); row r ← row r + m * row s

swaprow( M, r, s ); row r ↔ row s

mulrow( M, r, c ); row r ← c * row r of M

Table 1: Comparison of elementary row operations in the laylinalg and linalg packages.

Notes:

• The syntax and functionality of the commands in the linalg and laylinalg packages
are almost identical. The names in the linalg package are used throughout Maple;
those used in laylinalg more closely match those used elsewhere in the textbook. The
laylinalg commands will be used throughout this appendix.

• The name of any matrix in your current Maple session can be inserted in place of M in
the commands above.
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• The letters r and s are positive integers corresponding to row numbers. The names m
and c are scalar expressions (often numbers, but sometimes symbolic expressions) that
you choose.

If you enter one of the row operation commands, say,
> swap( M, 1, 3 );

then the new matrix produced from M is not given a name. You can refer to this result using
%, the history operator. If, instead, you type

> M1 := swap( M, 1, 3 );
then the answer is stored in the matrix M1. If the next operation is

> M2 := replace( M1, 2, 5, 1 );
then the result after performing this row operation on M1 is placed in M2, and so on. Note the
use of := in assignments; the symbol = is used to create an equation.

One advantage of giving a new name to each new matrix is that you can easily go back a
step if you do not like what you just did to a matrix. If you type

> M := replace( M, 2, 5, 1 );
then the result is placed back in M and the “old” M is lost. Of course, the “reverse” operation

> M := replace( M, 2, -5, 1 );
will recreate the original matrix M.

Notes:
• For the problems in this section and the next, the multiple m needed in the replace or
addrow command will usually be a small integer or fraction that you can compute in your
head. The next two paragraphs describe how to use Maple in situations where m is not
easily computed mentally.

The entry in row r and column c of a Maple matrix M is denoted by M[r,c]. If the number
stored in M[r,c] is a floating-point number, that is, it is displayed with a decimal point,
then the number may be accurate to only about eight (8) digits. It is generally more
accurate — and simpler — to use M[r,c] instead of re-typing the displayed values in
computations.

• For instance, to use the entry M[s,c] to change M[r,c] to 0, enter the commands:
> m := -M[r,c] / M[s,c]; # mult of row s to add to row r

> M1 := replace( M, r, m, s ); # adds m * row s to row r

Or, you could use the single command:
> M1 := replace( M, r, -M[r,c]/M[s,c], s );

• The environment variable Digits controls the number of significant digits Maple uses in
floating-point computations. The default is 10. While this should be more than sufficient
for the problems in this text, you can change this by assigning a new value to Digits. In
general, you should expect a floating-point computation to be accurate to approximately
Digits-2 digits.
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SECTION 1.1 Symbolic Row Operations

A powerful feature of Maple is its ability to work with matrices and vectors that involve un-
specified parameters. For example, Exercise 25 in Section 1.1 can be solved using Maple and
the laylinalg package in the following steps

> c1s1( 25 );
> evalm( M ); # display the augmented matrix

> M1 := replace( M, 3, 2, 1 ); # add 2 × row 1 to row 3

> M2 := replace( M1, 3, 1, 2 ); # add row 2 to row 3

> M2[3,4] = 0; # eqn to make system consistent

Symbolic multipliers can be used in replace and scale, for example: replace( A, 3, a,
1 );, but all row numbers must be explicit integers.

SECTION 1.3 Constructing a Matrix

To see the exercises with data for Section 1.3, execute the command:
> c1s3( );

The data for Exercise 25, for example, consists of the matrix A, the right-hand side vector b,
and the columns of the matrix, a1, a2, a3. The corresponding Maple names, A, b, a1, a2, and
a3, can be assigned by executing the command:

> c1s1( 25 );
The command

> M := augment( a1, a2, a3, b );
creates a matrix with the given vectors as its columns. The same matrix could also be created
by

> M := augment( A, b );

Exercises 11–14, 24–28, and 31 can be solved using the laylinalg commands replace, swap,
and (occasionally) scale (or the similar linalg commands: addrow, swaprow, and mulrow),
described in the Maple Note for Section 1.1 on page MP-4.

SECTION 1.4 gauss and bgauss

To solve Ax = b, row reduce the augmented matrix
> M := augment( A, b );

The command
> x := vector( [5,3,-7] );

creates a column vector, x, with entries 5, 3, and -7. Matrix-vector multiplication is
> evalm( A &* x );
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The laylinalg package contains two commands, gauss and bgauss, that can be used
to speed up row reduction of a matrix. Use the command with( laylinalg ); to load the
laylinalg package. A ZIP file containing the laylinalg package can be downloaded from the
WWW.

To make row reduction of M = [ A b ] more efficient, the command gauss( M, r );
chooses the leading entry in row r of M as a pivot and uses row replacements to create zeros
in the pivot column below this pivot entry. The result can be assigned to a name, otherwise
the only way to access the result is with the history operator (%). In either case, the result is
displayed to the screen.

For the backward phase of row reduction, use bgauss( M, r ); which selects the leading
entry in row r of M as the pivot, and creates zeros in the column above the pivot. Use scale
to create leading 1’s in the pivot positions.

Note:

• Exercise 19 of this section can be solved using symbolic row operations as discussed in
the Maple Note for Section 1.1.

SECTION 1.5 Zero Matrices

The command vector( m, 0 ); creates the zero vector in Rm and matrix( m, n, 0 ); cre-
ates an m× n matrix of zeros. To solve an equation Ax = 0, use the command

> M := augment( A, vector( m, 0 ) );
to augment A with the column vector containing m zeros, then use gauss, swap, bgauss, and
scale to complete the row-reduction of M.

SECTION 1.6 Rational and Floating-Point Format

Chemical equation-balance problems are studied best using exact or symbolic arithmetic. This
is because the balance variables must be whole numbers (with no round-off allowed). When
the chemical equations have integer coefficients — as they do here — Maple will perform exact
computations. That is, when laylinalg row operations are applied to an integer- or rational-
valued matrix, the resulting matrix will have integer or rational entries. No floating-point
approximations will be used. Once you find a rational solution of a chemical equation-balance
problem, you can multiply the entries in the solution vector by a suitable integer to produce a
solution that involves only whole numbers.

Notes:

• To convert the entries of a Maple matrix, M, to floating-point numbers, use either evalf(
evalm(M) ); or map( convert, M, float );.

• The command map( convert, M, rational ); returns the matrix in which each entry
of the matrix is replaced with an approximately equal rational number.
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SECTION 1.10 Generating a Sequence

The data for Exercises 9–13 in Section 1.10 consists of the migration matrix, M, and the initial
population vector x0. The following set of commands generates the first ten (10) terms in the
sequence defined by xk+1 = Mxk:

> x||0 := evalm(x0); # display initial population

> for k from 0 to 9 do # execute loop 10 times

> x||(k+1) := evalm( M &* x||k ); # compute xk+1 from xk

> end do;
Note that the first command reassigns x0 to itself. This command can be omitted if you do not
wish to include the initial population in the output.

Numbers are entered in Maple without commas. Maple uses scientific notation for numbers
larger than 1,000,000 (106) or smaller than 10−6. In Maple, numbers in scientific notation can
be entered as 4.0 * 10^5 or 2.46 * 10^(-3). Note that the parentheses around a negative
exponent are required. When the mantissa is entered as a floating point number, the number
is displayed (and computed) with Digits digits. The default setting of Digits, 10, should be
more than sufficient for all computations in this text.

SECTION 2.1 Matrix Notation and Operations

Several methods for defining a matrix in Maple have been described previously in this appendix.
Refer to these discussions for information about creating your own matrices.

Recall that, in Maple, the (i, j)-entry of A is A[i,j]. One or more columns or rows of
A can be obtained with the col or row command. For example, col(A,3) is column 3 of A
and row(A,2) is row 2 of A. To extract the first two columns of A, use col(A,1..2). (The
expression a..b represents the integers from a to b.) Be aware that both row and col return a
sequence of one or more (column) vectors.

Multiple vectors can be assembled as the columns of a new matrix with augment, as described
in Section 1.4. For example, augment( col(A,1..2) );. To create a matrix from the rows of
an existing matrix, either take the transpose of the result from augment or use the stackmatrix
command.

The command submatrix( A, a..b, c..d ); returns a matrix whose entries come from
rows a through b and columns c through d of A. The number of rows in A is given by rowdim(A)
and the number of columns by coldim(A).

Maple uses + and - to denote matrix addition and subtraction, respectively. Multiplica-
tion of a matrix or vector by a scalar can be obtained with the commutative multiplication
operator *; the non-commutative operator &* must be used for matrix multiplication, including
matrix–vector products. If A is square and k is an integer, A^k denotes the kth power of A.
The evalm command is needed to force Maple to display the result of commands that produce
vectors or matrices.

The transpose of A is transpose(A). The outer product of u and v can be obtained with the
command evalm( u &* transpose(v) );. The command innerprod(u,v); gives the inner
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product of u and v, and this scalar is displayed without using evalm. (If the entries of u
and/or v are complex, then you probably want to use dotprod instead of innerprod; see also
the Maple Note for Section 6.1.)

Maple commands for the construction of many special matrices are given below:
> M := matrix( 5, 6, 0 ); # a 5× 6 matrix of zeros

> M := matrix( 3, 5, 1 ); # a 3× 5 matrix of ones

> M := diag( 3, 5, 7, 2, 4 ); # a 5× 5 diagonal matrix

> M := diag( 1$6 ); # the 6× 6 identity matrix

> M := randomint( 6, 4 ); # a 6× 4 matrix (-9 ≤ entries ≤ 9)

SECTION 2.2 The Identity Matrix and A−1

When A is 5 × 5, the command M := augment( A, diag( 1$5 ) ); creates the augmented
matrix [ A I ]. Use gauss, swap, bgauss, and scale to reduce the augmented matrix to
[ I A−1 ], if possible. See the Maple Note for Section 1.4 on page MP-6.

There are other Maple commands that row reduce matrices, invert matrices, and solve
systems Ax = b. They will be introduced later, after you have studied the concepts and
algorithms of this section.

SECTION 2.3 inverse, cond, and hilbert

Determining whether a matrix is invertible is not always a simple matter. A fast and fairly
reliable method is to use the command inverse( A );, which computes the inverse of A. The
error message Error, (in inverse) singular matrix is displayed if the matrix is singular.

In Exercises 41–44 of this section, the Maple command cond( A ); computes the condition
number of any matrix A using quantities called the singular values of A (discussed in Sec-
tion 7.4). To perform the experiment described in Exercise 42 you can use the following Maple
commands:

> x := randvector( 4 ); # random 4-d vector

> b := evalm( A &* x ); # compute exact RHS

> x1 := evalm( inverse(A) &* b ); # solution using A−1

> evalm( x - x1 ); # exact - computed

Because Maple uses exact arithmetic for integers, x and x1 should be the same. To force Maple
to use floating-point computations, replace the definition of b with b := evalf( evalm( A &*
x ) );.

For Exercise 45, the command hilbert( n ); produces the n×n Hilbert matrix. To obtain
the n× n Hilbert matrix with floating-point entries use evalf( hilbert( n ) );.
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SECTION 2.4 Partitioned Matrices
Partitioned matrices can be created in Maple with the blockmatrix command. For example,
if A, B, C, E, F, and G are matrices of appropriate sizes, then the command

> M := blockmatrix( 2, 3, [A,B,C, E,F,G] );
creates a larger matrix of the form

M =

[
A B C
E F G

]
.

Once M is formed, there is no record of the partition that was used to create M. For instance,
although B is the (1,2)-block used to create M, the value of M[1,2] is the same as the (1,2)-
entry of A. You should be aware, however, that if A[1,2] is an unevaluated name at the time
the blockmatrix command is executed and is subsequently assigned a value, this assignment to
A[1,2] changes all instances of A[1,2] in the current Maple session. In this case, an assignment
of a value to A[1,2] will also change the (1,2)-entry of M.

Other linalg commands that can be useful in the creation of new matrices from existing
matrices include: stackmatrix, augment, concat, delrows, delcols, diag, extend, minor,
and submatrix.

SECTION 2.5 LU Factorization and the linsolve Command
Row reduction of A using the command gauss will produce the intermediate matrices needed
for an LU factorization of A. You can try this on the matrix in Example 2, stored as Exercise 33
of this section in the laylinalg package. The matrices in (5) for Example 2 (page 145 of the
text) are produced by the commands:

> c2s5( 33 ); # load matrix A

> U = gauss(A,1); # U has 0’s below the first pivot

> U = guass(U,2); # now U has 0’s below pivots 1 and 2

> U = gauss(U,3); # the echelon form

You can copy the information from the screen onto your paper, and divide by the pivot entries
to produce L as in the text.

To construct a permuted LU factorization, use the Maple command
> U := gauss( U, r, v );

where r is the row index of the pivot and v is a row vector that lists the rows to be changed
by replacement operations. For example, if A has 5 rows and the first pivot is in row 4, use
U := gauss( A, 4, [1,2,3,5] );. If the next pivot is in row 2, use U := gauss( U, 2,
[1,3,5] );. To build the permuted matrix L, use full columns from A or the partially reduced
U, divided by the corresponding pivot. Then change entries to zero if they are in a row already
selected as a “pivot row”.

The Maple command U := LUdecomp( A, L=’L’, P=’P’ ); produces a permuted LU fac-
torization, A = PLU, for any matrix A.
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When A is invertible, the simplest way to solve Ax = b with Maple is to use the linsolve
command: x := linsolve(A,b);. The command x := inverse(A) &* b; is less efficient and
can be less accurate.

SECTION 2.8 rref

The Maple command rref(A); produces the reduced echelon form of the matrix A. From this
matrix you can write a basis for ColA or write the homogeneous equations that describe NulA.
(Do not forget that A is a coefficient matrix, not an augmented matrix.)

SECTION 2.9 rank

You can use rref( A ); to check the rank of a matrix A. For a matrix with floating-point
entries, roundoff error or an extremely small pivot can produce an incorrect echelon form. A
more reliable command for computing the rank of a matrix A is rank( A );.

SECTION 3.2 Computing Determinants
To compute detA, define U:=A; and then repeatedly use the commands U:=gauss(U,r); and
U:=swap(U,r,s); as needed to reduce A to an echelon form U (see the Maple Note for Sec-
tion 1.4 on page MP-6). Then, the determinant of A is given by the command

> detA := (-1)^k * mul( U[i,i], i=1..n );
where A is an n× n matrix and k is the number of row swaps made while reducing A to U.

The command det( A ); can be used to check your work, but the longer sequence of
commands is preferred — at this time — because it emphasizes the process of computing
determinants.

SECTION 4.1 Graphing Functions
The following command can be used to graph the function f in Exercise 37:

> plot( f, t=0..2*Pi );
In Maple’s plot command, the first argument is the function (or list of functions) to be plotted
and the second argument contains the name of the independent variable (here, t) and an interval
on which the plot is to be created. Note that Pi is Maple’s name for the constant π. Consult
Maple’s online help for the plot command and plots package for optional arguments and
additional examples.

SECTION 4.3 rref and genmatrix

The Maple command rref(A) produces the reduced row echelon form of the matrix A. From
this matrix you can write a basis for ColA or write the homogeneous equations that describe
NulA. (Do not forget that A is a coefficient matrix, not an augmented matrix.)
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For Exercises such as 37 and 38 the genmatrix command can be used to generate the co-
efficient matrix A from a list or set of linear equations involving a set of unknowns, say c[1],
c[2], . . . . For example, the coefficient matrix for Exercise 38 can be obtained by the following
commands:

> EQN := add( c[j] * cos(t)^j, j=0..6 ) = 0; # genl form of eqn

> eq[0] := eval( EQN, t=0 ); # eqn w/ t = 0
...
> eq[6] := eval( EQN, t=Pi ); # eqn w/ t = π

> A := genmatrix( [ eq[k] $ k=0..6 ], # coef matrix

> [ c[k] $ k=0..6 ] );

SECTION 4.4 linsolve

The Maple command linsolve( A, b ); produces the solution of Ax = b when A is invertible.
The linsolve command has additional capabilities that will be introduced later, after you have
the appropriate background.

SECTION 4.6 rref, rank and randomint

In this course, you can use either rref( A ); or rank( A ); to check the rank of a matrix A.
In practical work, particularly with floating-point matrices, you should use the more reliable
rank( A );.

The laylinalg command randomint( m, n ); creates an m×n matrix of random integers
between -9 and 9.

Note:

• In earlier editions the randomint command was called randint. The name change was
necessary because MATLAB now has a randint command in its Communications Tool-
box.

SECTION 4.7 Change-of-Coordinates Matrix
The laylinalg package includes data for Exercises 7–10 and 17–19. The Maple command rref
can be used to row reduce a matrix such as

[ c1 c2 b1 b2 ]

to the desired form. The command augment, introduced in the Maple Note for Section 1.3 on
page MP-6 can be used to create a matrix from a collection of column vectors.

SECTION 4.8 solve and polyroots

In Exercises 7–16 and 25–28, the coefficients of the polynomial in the auxiliary equation are
stored in a vector p. The coefficients are stored in descending order. For example, the polyno-
mial x2 + 6x + 9 would be represented with p := vector(3,[1,6,9]);.
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The polyroots command in the laylinalg package computes floating-point approxima-
tions to all (real and complex) roots of the polynomial whose coefficients are stored in the vector
p. The syntax is polyroots( p );.

Given the coefficient vector p the corresponding polynomial can be created with the follow-
ing commands:

> n := vectdim(p); # degree of polynomial

> P := add( p[k]*x^(n-k), k=1..n ); # polynomial w/ coefs p

The exact roots of the polynomial can now be found using
> solve( P=0, x );

Note, however, that it might not be possible to find all roots for a polynomial of degree 5 or
higher.

SECTION 4.9

The Maple box for Section 1.10 contains information that is useful for the Exercises in this
section.

SECTION 5.1 Finding Eigenvectors

The laylinalg package contains a command that will simplify your homework by automatically
producing a basis for an eigenspace when you know the eigenvalue. For example, if A is a 3× 3
matrix with eigenvalue λ = 7, then the command nulbasis( A-7*diag(1$3) ); returns a
matrix whose columns form a basis for the corresponding eigenspace. The command nulbasis(
C ); returns a matrix whose columns form a basis for NulC (the same basis you would get if
you started with rref(C); and computed the basis by hand).

Additional Maple commands for computing eigenvalues and eigenvectors will be discussed
later. You should use nulbasis now, to reinforce the basic concepts of this chapter.

For Exercises 37–40 use the eigenvalues command to obtain the eigenvalues of a matrix.
For example, the commands

> lambda := eigenvalues( A ); # eigenvalues of A

> nulbasis( A - lambda[2]*diag(1$5) ); # basis for e-space of λ2

compute a basis for the eigenspace corresponding to the second eigenvalue of a 5 × 5 matrix
A. To avoid typing or numerical errors, you are encouraged to avoid looking at the list of
eigenvalues and explicitly typing the eigenvalue in the argument of the nulbasis command. It
is much safer — and faster — to reference the eigenvalues as in the commands above.

SECTION 5.2 charpoly

The Maple command charpoly can be used to check your answers in Exercises 9–14. Note
that if A is n × n, charpoly(A,lambda) is det(λI − A). If n is even, this is the characteristic
polynomial of A. When n is odd, this is the negative of the characteristic polynomial of A (as
defined in the text).

For Exercises 28 and 29, create a 4×4 matrix with random integer entries with the command
randomint( 4 );. For Exercise 29, use gauss and perhaps swap to create the echelon form
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without row scaling. See also the Maple Note for Section 1.4 on page MP-6.
The following commands create the graph of the characteristic polynomial of the matrix A

in Exercise 30 for all values of the parameter a in a list a vals:
> p := charpoly( A, lambda ); # char poly in terms of parameter a

> P := [seq( p, a=a vals )]; # char poly for each value of a

> plot( P, lambda=0..3 ); # graph all char polys on same axes

SECTION 5.3 Diagonalization and eigenvalues

To practice the diagonalization procedure in this section, you should use the nulbasis command
to produce eigenvectors. For Exercises 33–36, the command ev := eigenvalues( A ); can
be used to provide the eigenvalues. See also the Maple Note for Section 5.1 on page MP-13.

SECTION 5.5 Diagonalization and eigenvectors

Once you become familiar with the diagonalization process described in the Maple Note for
Section 5.3, you can use other Maple commands to simplify the process of determining the
eigenvectors for a matrix.

The command eigenvectors(A); returns, for each eigenvalue of A, a list containing three
pieces of information: the eigenvalue, the (algebraic) multiplicity of the eigenvalue, and a basis
for the corresponding eigenspace. The data structure is a little complicated, but the following
sequence of commands illustrates how to find the matrices P and D such that AP = PD:

> EV := [ eigenvectors( A ) ]; # e-values and e-spaces

> lambda := seq( op(1,e)$op(2,e), e=EV ); # e-values (w/repetition)

> espace := seq( op(op(3,e)), e=EV ); # e-space basis

> DD := diag( lambda ); # diag e-value matrix

> P := augment( espace ); # e-vector matrix

Note that the matrix P may not be the same as the one you find by hand. A quick check that
your answer is correct is: iszero( A&*P - P&*DD );. The result will be true if the argument
is a zero matrix. When the matrices involve floating-point entries, Maple may return false
when one entry is very small (but not exactly zero). In any case, a visual inspection should be
performed on the difference AP− PD.

SECTION 5.5 Complex Eigenvalues, Re, and Im

If A is a 2 × 2 real matrix and if eigenvalues( A ); returns a pair of complex conjugate
eigenvalues, you can use the nulbasis command to find a complex eigenvector v corresponding
to one of these eigenvalues. Then, build a 2×2 real matrix P from the real and imaginary parts
of v and compute C = P−1AP. This can be done with the following commands:
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> V := nulbasis( A - lambda[1]*diag(1$2) ); # complex e-vector

> Vr := evalm( Re( V ) ); # real part

> Vi := evalm( Im( V ) ); # imaginary part

> P := augment( Vr, Vi );
> C := evalm( inverse(P) &* A &* P );

In general, the real and imaginary parts of a complex-valued vector v are obtained with the
commands evalm( Re(v) ); and evalm( Im(v) );, respectively.

SECTION 5.6 Plotting Discrete Trajectories

The following sequence of commands creates the sequence of vectors x, Ax, A2x, . . . , A15x for
a given initial vector x:

> x := vector( [1,0] ); # initial vector (change as needed)

> T := convert( x, list ): # initialize list of points

> for j from 1 to 15 do # change 15 to number of iterations

> x := evalm( A&*x ); # compute the “next” point

> T := T, convert( x, list ); # add new point to list

> end do;
These points can be plotted with the command

> plot( [T], style=POINT );
Omitting the second argument of the plot command will “connect the dots” between the points.
Other optional arguments can be used to further customize the plot. The display command
— in the plots package — can be used to combine multiple trajectories into a single plot. (Do
not forget to execute the command with(plots); to load the plots package.)

For Exercise 17, the following commands create a graph of the first component in each data
point in the list T constructed above

> T1 := [seq( [i-1,T[i,1]], i=1..nops([T]) )];
> plot( T1 );

To graph the sum of the first two components of each data point in T replace T1 with T2 defined
by

> T2 := [seq( [i-1,T[i,1]+T[i,2]], i=1..nops([T]) )];
Similarly, to plot the quotient of the first two components in each data point in T replace T1
with T2 defined by

> T3 := [seq( [i-1,T[i,1]/T[i,2]], i=1..nops([T]) )];

SECTION 5.7 Plotting Trajectories for Differential Equations

The following template of Maple commands can be used to create a plot of the direction field
and a solution curve for the 2× 2 system of differential equations in Example 1.
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> with( DEtools ); # load DEtools pkg

> A := matrix( 2, 2,
> [ [-1.5, 0.5], [1, -1] ] ); # enter coef matrix

> SYS := [ diff(y1(t),t) # DO NOT CHANGE

> = A[1,1]*y1(t) + A[1,2]*y2(t), # DO NOT CHANGE

> diff(y2(t),t) # DO NOT CHANGE

> = A[2,1]*y1(t) + A[2,2]*y2(t) ]; # DO NOT CHANGE

> IC := [ y1(0)=5, y2(0)=4 ]; # enter init cond

> RANGE := t = 0..10; # enter time interval

> WINDOW := y1 = -5..5, y2 = -4..4; # enter plot window

> DEplot( SYS, [y1(t),y2(t)], # DO NOT CHANGE

> RANGE, [IC], WINDOW ); # DO NOT CHANGE

To create plots for other systems, simply modify the coefficient matrix and the initial condition
then modify the time interval and window to create the desired plot.

Note:

• The with( DEtools ); command needs to be entered only once — anytime before the
first use of DEplot.

SECTION 5.8 Power Method and Inverse Power Method
A Maple implementation of the Power Method (page 363 of the text) assumes that A is an n×n
matrix with a strictly dominant eigenvalue and an initial vector x0:

> x := evalm( x0 ); # initial vector

> for k from 1 to 15 do # change 15 to number of iterations

> mu := norm( x ); # largest element in x

> x := evalm( A &* x/mu ); # next iterate in power method

> end do;
The value of µ should approach the dominant eigenvalue and the vector x should approach a
corresponding eigenvector.

One possible implementation of the Inverse Power Method is:
> I3 := diag(1$3); # 3× 3 identity matrix

> alpha := 3.3; # initial guess at e-value

> x := vector( [1,1,1] ); # initial guess at e-vector

> for k from 1 to 15 do # change bounds as needed

> y := linsolve( A-alpha*I3, x ); # solve (A− αI)yk = xk

> mu := norm( y ); # largest element in abs value

> nu := alpha + 1/mu; # updated approx to e-value

> x := evalm( y/mu ); # updated approx to e-vector

> end do;
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Notes:

• The initial value of α should be reasonably close to the desired eigenvalue and x is a
vector whose largest element (in absolute value) is 1.

• Recall that norm(x) returns the maximum of the absolute values of the entries in x.

SECTION 6.1 innerprod and norm

The Maple command innerprod(u,v) returns the inner product of two real-valued column
vectors u and v. The associated length of a vector v is norm(v,2). (See also the Maple Note
for Section 2.1 on page MP-8.)

SECTION 6.2 Orthogonality

In Exercises 1–9 and 17–22, a fast way to test the orthogonality of a set such as {u1,u2,u3} is
to create a matrix

> U := augment( u1, u2, u3 );
whose columns are the vectors from the set, and test whether

> evalm( transpose(U) &* U);
yields a diagonal matrix.

Notes:

• To understand how this works, see Theorem 6 on page 390.

• The orthog command could also be used, but this does not emphasize the essential
properties of orthogonality.

SECTION 6.3 Orthogonal Projections

The orthogonal projection of a vector onto a single vector was described in the Maple Note for
Section 6.2. The orthogonal projection onto the set spanned by an orthogonal set of vectors
is the sum of the one-dimensional projections. Another way to construct this projection is to
normalize the orthogonal vectors, place these orthonormal vectors in the columns of a matrix U,
and apply Theorem 10. For instance, if {y1,y2,y3} is an orthogonal set of nonzero vectors,
then the matrix U defined by the Maple command:

> U := augment( y1/norm(y1,2),
> y2/norm(y2,2),
> y3/norm(y3,2) );

has orthonormal columns. The orthogonal projection of y onto Span{y1,y2,y3} is obtained
with the command:

> evalm( U &* (transpose(U) &* y) );
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SECTION 6.4 The Gram-Schmidt Process, proj, and gs

If A has only two linearly independent columns, then the Gram-Schmidt process is:
> v1 := col(A,1);
> v2 := evalm( col(A,2)
> - innerprod(col(A,2),v1)/innerprod(v1,v1) * v1 );

If A has three columns, add the command:
> v3 := evalm( col(A,3)
> - innerprod(col(A,3),v1)/innerprod(v1,v1) * v1
> - innerprod(col(A,3),v2)/innerprod(v2,v2) * v2 );

The generalization to larger matrices should now be apparent.
Notice that Maple commands in the form

> evalm( innerprod(y,u)/innerprod(u,u) * u );
provide the orthogonal projection of a vector y onto a vector u. A simpler, but less illustrative,
alternative is to use the proj command from the laylinalg package. The syntax is:

> proj( y, convert(u,matrix) );
After you are familiar with the Gram-Schmidt process, use the command proj( x, V ); to
compute the projection of a vector x onto the subspace spanned by the columns of a matrix V.
For example:

> v2 := evalm( col(A,2) - proj( col(A,2), augment(v1) ) );
> v3 := evalm( col(A,3) - proj( col(A,3), augment(v1,v2) ) );

Although you should construct the QR decomposition of a matrix A using the approach in
the text, you can check your construction of the matrix Q with the command Q := gs(A);.
The gs command from the laylinalg package provides an even faster method of applying the
Gram-Schmidt process. The syntax is simply: gs(A);. After you are very familiar with the
Gram-Schmidt process the use of gs saves time.

SECTION 6.5 linsolve and leastsqrs

When A has linearly dependent columns, you can write the general description of all least-
squares solutions on paper after you row reduce the augmented matrix for the normal equations:

> rref( augment( transpose(A)&*A, transpose(A)&*b ) );
When A has linearly independent columns, a Maple command to solve the normal equations is:

> linsolve( transpose(A)&*A, transpose(A)&*b );
Other approaches to solving the normal equations include the use of rref as described above
and the explicit use of (AT A)−1. For Exercises 15 and 16, see the Numerical Note on page 415
in the text and use linsolve( R, transpose(Q)&*b ); to solve Rx = QTb.

When A is not square but has linearly independent columns, a common algorithm for solving
the overdetermined system Ax = b is to find Q and R and then solve Rx = QTb. You should use
the normal equations or the QR factorization. This will give you a solid conceptual background
for applying least-squares techniques later in your career.

For Exercise 26, the command A := stackmatrix( A1, A2 ); creates the (partitioned)
matrix whose top block is A1 and bottom block is A2. Of course, each block must have the
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same number of columns. (See also the Maple Note for Section 2.4 on page MP-10 for more
information on partitioned matrices.)

SECTION 6.6 Computing Regression Coefficients
Maple can be used to construct the design and observation vectors from a list of data points.
For example, for Exercise 1:

> c6s6( 1 ); # load data from laylinalg

> n := vectdim( x ); # number of data points

> X := augment( vector(n,1), x ); # design matrix

The least squares solution to Xβ = y as described in the Maple Note for Section 6.5.

SECTION 6.6 leastsqrs, Functions of Vectors, and map

Once you create the design matrix X and the observation vector y, your computation for least-
squares solutions here are the same as those described in the Maple Note for Section 6.5. Here,
A and b are replaced by X and y, respectively. The Maple command

> rref( augment( transpose(X)&*X, transpose(X)&*y ) );
leads to the general description of all least-squares solutions. When X has linearly independent
columns, the command

> linsolve( transpose(X)&*X, transpose(X)&*y );
creates the least-squares solution. In subsequent courses, you may choose simply to use
leastsqrs( X, y );, which also produces all least-squares solutions.

To construct the design matrix for an exercise in this section, you may need Maple’s map
command to apply a function to each element of a vector. If x is a vector and f is a Maple
function, then map( f, x ); is a vector the same size as x whose entries are the result of
applying f to the entries in x. For example, in Exercise 7 the x vector can be created as above
and the vector of the square of each element is x2 := map( u->u^2, x );. The design matrix
is now easily constructed with the use of augment. When f is a built-in Maple function, say
the exponential function exp, the syntax is somewhat simpler: map( exp, x );.

SECTION 6.7 int and Inner Products on C[0, 2π]
The Maple command to evaluate the definite integral

∫ b
a f dt is int( f, t=a..b );. To solve

Exercise 28, begin by creating a Maple procedure to compute the inner product of two functions
in C[0, 2π]:

> ip := (f,g) -> int(f*g,t=0..2*Pi);
The inner product procedure, ip, and the four functions p0, p1, p2, and p3 can be defined by
executing c6s7(28);. The Gram–Schmidt process described in the Maple Note for Section 6.4
on page MP-17 is applicable here. For example, the first two steps are:

> q0 := p0;
> q1 := p1 - ip(p1,q0)/ip(q0,q0) * q0;

Observe that the only difference between these commands and the ones introduced in Section 6.4
is that innerprod is replaced with the newly-defined inner product ip.
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SECTION 6.8 Graphing Functions
The plot command can be used to plot one or more functions. For example, the two plots in
Figure 3 for Example 4 on page 442 in the text can be created as follows:

> f := t; # define function f

> F3 := Pi - 2*sin(t) - sin(2*t)
> - 2/3*sin(3*t); # 3rd-order Fourier approx

> plot( [f,F3], t=0..2*Pi ); # Figure 3 (a)

> F4 := F3 - 2/4*sin(4*t); # 4th-order Fourier approx

> plot( [f,F4], t=0..2*Pi ); # Figure 3 (b)

The Maple Note for Section 4.1 on page MP-11 contains additional information about Maple’s
plot command.

SECTION 7.1 Orthogonal Diagonalization
Use the eigenvalues and nulbasis commands to find the eigenvalues and corresponding eigen-
vectors as in Section 5.3 on page MP-14. If you encounter a two-dimensional eigenspace, with
a basis {v1,v2}, use the command

> v2 := evalm( v2 - innerprod(v2,v1)/innerprod(v1,v1) * v1 );
or

> v2 := evalm( v2 - proj(v2,augment(v1)) );
to make the two eigenvectors orthogonal. See the Maple Note for Section 6.4 on page MP-17.
After you normalize the vectors and create P, check whether PT P = I to verify that P is indeed
an orthogonal matrix.

SECTION 7.4 The Singular Value Decomposition
The singular value decomposition of a matrix A is constructed from the orthogonal diagonal-
ization of AT A. The orthogonal diagonalization of a matrix is discussed in the Maple Note
for Section 7.1 on page MP-20. Note that the eigenvalues of AT A may not be sorted in de-
creasing order. You may need to reorder some of the information from the orthogonal diag-
onalization when creating the diagonal matrix D and matrix of right singular vectors V. For
example, if AT A is a 3 × 3 matrix and lambda is a list of the eigenvalues of AT A with, say,
lambda[3] > lambda[1] > lambda[2], then the command

> Sigma := diag( seq( sqrt(lambda[i]), i=[3,1,2] ) );
creates the diagonal matrix of singular values of A. Note that Σ must have the same dimensions
as A; the extend command can be used to add one or more rows or columns of zeros to the
diagonal matrix created above. For example,

> Sigma := extend( Sigma, 1, 0, 0 );
adds one row of zeros to the bottom of the diagonal matrix. The matrix V would then be
created by:

> V := augment( seq( col(P,i), i=[3,1,2] ) );
The matrix of left singular vectors, U, can be formed by normalizing the nonzero columns of the
product AV. If U is not square, the missing columns must be chosen to form an orthonormal
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basis for NulAT . (See Figure 4 on page 479 in the text.) The command
> GramSchmidt( nullspace( transpose(A) ), normalized );

produces this orthonormal basis. Thus, the square matrix U defined by
> U := augment( U, op(GramSchmidt( nullspace( transpose(A) ),
> normalized )) );

This construction helps you to think about the fundamental properties of the singular value
decomposition. There are two additional Maple commands that can be used to directly obtain
information about the singular values of a matrix. The singularvals command returns the
singular values of A as a list but does not provide any information about the singular vectors.
The Svd command computes floating-point approximations to the singular values and vectors
of a numeric matrix A. The command

> SV := evalf( Svd( A, U, V ) );
returns the singular values in the table SV. The matrices U and V contain the right and left
singular vectors, respectively. To create the diagonal matrix Σ from the table of singular values,
use the command:

> Sigma := diag( SV[i] $ i=1..vectdim(SV) );

SECTION 7.5 Computing Principal Components
The p-dimensional vector containing the mean of each row of a p×N matrix X can be created
with the command:

> Rmean := vector([ seq( add( x, x=convert(row(X,i),list) )
> / coldim(X), i=1..rowdim(X) ) ]);

The p×N matrix containing N copies of the row averages is obtained with:
> augment( Rmean $ coldim(X) );

Thus, to convert the data in X into mean-deviation form, use
> B := evalm( X - augment( Rmean $ coldim(X) ) );

The sample covariance matrix is produced by:
> S := evalm( B &* transpose(B) / (coldim(X)-1) );

The principal component analysis is completed by performing a singular value decomposition
on the matrix A = 1√

N−1
BT . (See the Numerical Note at the end of Section 7.5 of the text.)
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