
Maple and the Parachute Problem:

Modelling with an Impact

Douglas B. Meade�

Abstract

The \parachute problem" involves a �rst-order ODE in
which the coe�cient of air resistance is a piecewise-
de�ned function. This paper focuses on the use of
Maple's symbolic, numeric, and graphic tools to facil-
itate the analysis of this initial value problem. Of par-
ticular interest is a qualitative analysis of the solution.
The form of the problem most commonly found in text-
books is shown to be physically unrealistic. An im-
proved model is proposed and analyzed. The paper con-
cludes with the analysis of parameter sensitivity of the
model and the solution of an interesting control prob-
lem. The graphical analysis is based on two Maple pro-
cedures, motion and plot_motion, which are de�ned in
this paper.

Introduction

The \parachute problem" is based on a model for the
motion of a skydiver when the coe�cient of air resis-
tance changes between free-fall and �nal descent. The
author has previously shown that many of the problems
posed in textbooks are not physically realistic and has
proposed an improved | but not more complicated |
based on real-life information about skydiving[6]. While
the basic problems are not too sophisticated, manual
computation of the solution is prohibitive. As a result,
much of the analysis will be based on information ob-
tained directly from the di�erential equation. The pur-
pose of this paper is to illustrate some of the ways in
which Maple can be used to facilitate the analysis; see
[6] for a more mathematical perspective of the problem.

The Original Model

The \parachute problem" will be considered as a system
of two initial value problems for the position, x, and
(vertical) velocity, v, of a skydiver under the forces of
gravity and air resistance. When the force due to air re-
sistance is proportional to the velocity of the parachutist
the model is:

v0 = �g � k
m
v; v(0) = 0;

x0 = v; x(0) = x0
(1)

�Department of Mathematics, University of South Carolina,

Columbia, SC 29208, USA; E-mail: meade@math.sc.edu; WWW

URL: http://www.math.sc.edu/~meade/

Reference k1=m k2=m td x0

[1, p. 141, #20] 1/6 5/3 60sec n/a

[3] 4/15 4/3 x(14) = 0 1200ft

[4, p. 95, #10] 3/20 3/2 20sec 10,000ft

[5, p. 109, #20] 1/5 � 1:56 v(td) = v
�

2000m

[9, p. 112, Ex. 3] 1/5 7/5 60sec 4000m

Table 1: Coe�cients of air resistance, deployment crite-
ria, and jump height found in di�erent versions of PP.

where g is the gravitational constant, k is the coe�cient
of air resistance,m is the mass of the skydiver, and x0 is
the altitude at which the jump begins. The coe�cient
of air resistance is frequently modelled as a piecewise
constant function ([1], [3], [4], [5], [9]):

k(t) =

�
k1; t < td
k2; t � td

(2)

where td is the time when the parachute is deployed.1

Parameter values found in a variety of textbooks are
summarized in Table 1.
To prepare for the Maple analysis, the plots package

is needed:
> restart; with(plots):

The basic problem to be studied is
> SYS := { diff(v(t), t) = -g - k/m*v(t),
> diff(x(t), t) = v(t) };

SYS :=

�
@

@t
v(t) = �g �

k v(t)

m
;
@

@t
x(t) = v(t)

�
with initial conditions
> IC := { v(0) = 0, x(0) = x0 };

IC := f x(0) = x0 ; v(0) = 0 g

As the system of ODEs and initial conditions are both
sets, it will be useful to have a means to extract a speci�c
entry from either object.
> ic := (IVP,y0) -> op(select(has, IVP, y0)):
> ode := (IVP,y) ->
> op(select(has, IVP, diff(y(t),t))):

The position (height above ground level), velocity,
acceleration, and jerk (rate of change of acceleration)

1Note that td may be speci�ed implicitly, e.g., deployment oc-

curs when the velocity is 95% of the terminal free-fall velocity [5],

in which case the IVP may not be linear.

1

Parachute Problem

provide a good description of the motion of the sky-
diver. Given an initial value problem in terms of x and
v, the procedure motion uses dsolve,numeric to com-
pute the motion of the object at user-speci�ed times;
plot_motion uses the information computed by motion

to creates a single plot containing any combination of
the position, velocity, acceleration, and jerk.
> motion := proc(IVP:set(equation),
> TIMES:list(numeric), t)
> local POS, VEL, ACC, JERK, pts, acc, jerk,
> soln, T;
> options `Copyright 1996 by Douglas B. Meade`;
> soln:=dsolve(IVP, {x(t),v(t)}, type=numeric,
> output=listprocedure):
> POS:=subs(soln, x(t));
> VEL:=subs(soln, v(t));
> acc:=solve(ode(IVP,v), diff(v(t),t));
> ACC:=unapply(subs(v(t)='VEL(t)', acc), t);
> jerk:=diff(acc,t);
> JERK:=unapply(subs({v(t)='VEL(t)',
> 'diff(v(t),t)'='ACC(t)'},
> jerk), t);
> pts:=seq(
> evalf([T,POS(T),VEL(T),ACC(T),JERK(T)]),
> T=sort(TIMES)):
> RETURN([pts]);
> end:

> plot_motion :=
> proc(pts:list, scale:set(equation))
> local P, PLOTS, S, VARS;
> options `Copyright 1996 by Douglas B. Meade`;
> PLOTS := NULL;
> VARS := map(lhs,scale);
> if member(X,VARS) then
> S:=subs(scale,X);
> PLOTS:=PLOTS,
> plot([seq([P[1],P[2]/S], P=pts)],
> color = RED):
> fi;
> if member(V,VARS) then
> S:=subs(scale,V);
> PLOTS:=PLOTS,
> plot([seq([P[1],P[3]/S], P=pts)],
> color = BLUE):
> fi;
> if member(A,VARS) then
> S:=subs(scale,A);
> PLOTS:=PLOTS,
> plot([seq([P[1],P[4]/S], P=pts)],
> color = GREEN):
> fi;
> if member(J,VARS) then
> S:=subs(scale,J);
> PLOTS:=PLOTS,
> plot([seq([P[1],P[5]/S], P=pts)],
> color = CYAN):
> fi;
> RETURN(display({ PLOTS }));
> end:

Using Maple's Heaviside function to implement the
piecewise-constant air resistance (2),
> K[pw_const] := k1+(k2-k1)*Heaviside(t-td):

the motion of the skydiver is governed by the initial
value problem
> IVP := subs(k=K[pw_const], SYS) union IC:

The speci�c motion can be produced after specifying
values for each parameter. The values given in [9] are
> PARAM[ns] := k1=15, k2=105, td=60, x0=4000,
> m=75, g=981/100:

Lastly, the list of times is selected with a �ner resolution
near the time of deployment:
> snapshot[ns] := [$(0..58),
> i/10 $ i = 590 .. 649,
> 5*i $ i = 13 .. 60]:

An informative graph of the motion during the �rst �ve
minutes of the jump is obtained as follows:
> PTS[ns]:=motion(subs(PARAM[ns],IVP),
> snapshot[ns], t):
> scale[noJ] := { 'X'=1000, 'V'=10, 'A'=981/100 }:
> display(
> {
> plot_motion(PTS[ns], scale[noJ]),
> textplot([[120, 1.5, `x/1000`],
> [80, -1, `v/10`],
> [70, 5, `a/g`]])
> },
> title=`Motion for Nagle/Saff parameters`);

a/g

v/10

x/1000

-4

-2

0

2

4

6

0 50 100 150 200 250 300

Motion for Nagle/Saff parameters

This plot supplies good �rst approximations to a num-
ber of interesting characteristics of the jump. When the
ripcord is pulled at the end of the �rst minute, the sky-
diver is still 1300 m above ground level and descending
at an almost constant velocity of 49 m/s. Within 5
seconds from the time the parachute opens the motion
settles into an essentially steady descent at 7 m/s; the
total length of the jump is very close to 4 minutes.
More precise answers can be obtained from an explicit

solution to (1). The solution during the free-fall portion
of the jump is:
> SOL1 := dsolve(subs(k=k1,SYS) union IC,
> { x(t), v(t) }):
> V1 := subs(SOL1, v(t));
> X1 := subs(SOL1, x(t));

V1 := �
mg

k1
+
mg e

�
�

t k1
m

�
k1

X1 :=

�
�mg t k1 +m2 g + x0 k1

2
�m2 g e

�
�

tk1
m

��
�
k1

2

\Initial conditions" for the second stage of the jump are

2

Parachute Problem

chosen to ensure continuity of both x and v at the time
of deployment:
> IC2 := { v(td) = subs(t=td, V1),
> x(td) = subs(t=td, X1) };

IC2 :=

(
v(td) = �

mg

k1
+
mg e

�
�

td k1
m

�
k1

; x(td) =
�

�mg td k1 +m2 g + x0 k1 2
�m2 g e

�
�

td k1
m

� �
�
k1

2

)

When the chute is deployed, the motion is found to be
> SOL2 := dsolve(subs(k=k2,SYS) union IC2,
> { x(t), v(t) }):
> V2 := subs(SOL2, v(t));
> X2 := subs(SOL2, x(t));

V2 := �
mg

k2

+

mg

�
k1 � k2 + e

�
�

td k1
m

�
k2

�
e
�
�

tk2
m

�

e
�
�

td k2
m

�
k2 k1

X2 :=
�
�mg t k2 +m2 g + k2

�
�m2 g k1

+m2 g k1 e
�
�

td k1
m

�
+mg k1 2

td

� k2 mg td k1 +m2 g k2 + k2 x0 k1
2

� k2 m2 g e
�
�

td k1
m

���
k1

2
�m2 g�

k1 � k2 + e
�
�

td k1
m

�
k2

�
e
�
�

tk2
m

� .�
e
�
�

td k2
m

�

k1
���

k2
2

The complete solution, for all t > 0, can be written in
terms of the Heaviside function as
> V := V1 + (V2-V1)*Heaviside(t-td);
> X := X1 + (X2-X1)*Heaviside(t-td):

V := �
mg

k1
+
mg e

�
�

tk1
m

�
k1

+

0
@� mg

k2

+

mg

�
k1 � k2 + e

�
�

td k1
m

�
k2

�
e
�
�

tk2
m

�

e
�
�

td k2
m

�
k2 k1

+
mg

k1
�
mg e

�
�

t k1
m

�
k1

1
AHeaviside(t� td)

At deployment, the position and velocity are
> subs(t=60, PARAM[ns], [X, V]);
> evalf(");�

5209

4
�

981

4
e(�12);�

981

20
+

981

20
e(�12)

�

[1302:248493;�49:04969863]

In the same way, the time of impact is found to be2

> t_impact[ns]:=solve(subs(PARAM[ns],X2)=0, t);
> 't_impact[ns]' = evalf(t_impact[ns]);

t impactns :=

5

7
W

�
e(42 e

(�12)
�

331759
981) (�6 + 7 e(�12))

e(�84)

!

� 30 e(�12) +
1658795

6867

t impactns = 241:5601768

The corresponding position and velocity are
> subs(t=t_impact[ns], PARAM[ns], [X, V]):
> evalf(");

[:1 10�117;�7:007142857]

These results show good agreement with the graphical
solution; how does this motion compare with real-life?
Is the free-fall terminal velocity of 49 m/s (110 mph)
reasonable? Is a landing velocity of 7 m/s (15.6 mph)
survivable? According to [10], terminal free-fall velocity
is approximately 53.6 m/s (120 mph) and the impact
velocity should be comparable to a free-fall from a �ve
foot (1.52 m) high wall. The free-fall solution can be
used to determine the \maximum survivable" impact
velocity. When the parameter values are
> PARAM[five]:=x0=152/100, m=75, k1=15, g=981/100:

the corresponding motion is
> X5 := subs(PARAM[five], X1);
> V5 := subs(PARAM[five], V1);

X5 := �
981

20
t+

24677

100
�

981

4
e(� 1=5 t)

V5 := �
981

20
+

981

20
e(� 1=5 t)

The duration and impact velocity of this jump are
> T5 := fsolve(X5=0, t, 0..infinity);
> V_max := evalf(subs(t=T5, V5));

T5 := :5671998658

V max := �5:26023068

Thus, the 7 m/s landing velocity exceeds this threshold
by 33%. Similar non-physical conclusions are present in
each of the other problems summarized in Table 1.
The previous example illustrates the need for appro-

priate parameter values. But, the real problem is with
the speci�c form of the model. The Air Force Academy
Training Guide states [10, p. 22] that the \opening

2Note that W is the Lambert W function[2], i.e., the branch
of the function W de�ned by W (x)eW (x) = x that is analytic at

0.

3

Parachute Problem

shock" (j(td), where j = da
dt

is the jerk) is a \heavy
but smooth tug". The mathematical interpretation of
this is that the acceleration should be (at least) C1 for
t > 0. Explicit expressions for the acceleration and jerk
can be found directly from the equations of motion:
> A := subs(k=K[pw_const], rhs(ode(SYS,v)));
> J := subs('diff(v(t),t)'='a(t)', diff(A,t));

A := �g�

(k1 + (k2 � k1)Heaviside(t� td)) v(t)
�
m

J := �
(k2 � k1)Dirac(t� td) v(t)

m
�

(k1 + (k2 � k1)Heaviside(t� td)) a(t)
�
m

Thus, the acceleration and jerk do not possess the nec-
essary smoothness (unless k1 = k2, i.e., the parachute
does not open). Note that the jump in the jerk, i.e.,

[j(td)] := lim
t!t+

d

j(t)� lim
t!t�

d

j(t);

is not simply the coe�cient of the Heaviside function
since the jump in the acceleration must also be consid-
ered. The following procedure provides a simple means
to obtain the jump in any expression at a speci�ed time.
> jump := (f, pt) ->
> factor(limit(f, pt, right)
> - limit(f, pt, left)):

The two jumps are now found to be
> Ajump := jump(A, t=td);
> Jjump := jump(subs(a(t)=A,J), t=td);

Ajump :=
v(td) (�k2 + k1)

m

Jjump := �(�k2 + k1)

(k1 v(td) +mg + k2 v(td))
�
m2

Using the Nagle/Sa� parameter values, the jump in the
acceleration is consistent with the graphical solution:
> subs(v(td)=subs(t=td,V), PARAM[ns], Ajump/g):
> 'Ajump' = "*G, `` =evalf(",6)*G;

Ajump = (6� 6 e(�12))G;= 5:99996G

> subs(v(td)=subs(t=td,V), PARAM[ns], Jjump/g):
> 'Jjump' = " * `G/s`, `` = evalf(",6) * `G/s`;

Jjump =

�
48

5
e(�12)

�
42

5

�
G=s;= � 8:39994G=s

One way to overcome the de�ciencies in the original
model is to generalize the form of the coe�cient of air re-
sistance. The model proposed in [6] (see also [8]) adds a
transition layer to the coe�cient of air resistance during
which the air resistance will increase from the free-fall

value to the �nal descent value. That is,

k(t) =

8<
:

k1; t < td
kd; td � t < td + �

k2; t � td + �

(3)

where kd is the coe�cient of air resistance during de-
ployment and � is the length of time required for the
chute to be fully deployed. Or, in Maple,
> Kgen := k1 + (KD-k1)*Heaviside(t-td)
> + (k2-KD)*Heaviside(t-td-tau):

Note that choosing kd to be the linear interpolant re-
sults in an acceleration that is only continuous. One
choice of kd that makes the acceleration continuously
di�erentiable (on t > 0) is the interpolating cubic poly-
nomial whose derivative vanishes at t = td and t = td+� .
Maple de�nitions of these functions are obtained from
the following commands:.
> Kd[linear] := alpha*t+beta:
> Kd[cubic] := int(alpha*(t-td)*(td+tau-t), t)
> + beta:
> for nam in [linear, cubic] do
> BC := Kd[nam]=kk;
> solve({ subs(t=td, kk=k1, BC),
> subs(t=td+tau, kk=k2, BC) },
> { alpha, beta });
> DEPLOY := subs(", Kd[nam]);
> K[nam] := subs(KD=DEPLOY, Kgen);
> od:

The form of the coe�cient of air resistance is only half
of the story. It is also necessary to use realistic values
of the parameter. Values consistent with the Air Force
Academy Training Guide [10] are
> PARAM[af] := k1=2/11*75, k2=32/15*75, td=10,
> tau=3.2, x0=4000*0.3048, m=75,
> g=981/100:

With these constants, the coe�cients of air resistance
with the linear and cubic interpolants appear as
> plot(subs(PARAM[af], { K[linear], K[cubic] }),
> t=9..15, k=0..170,
> title=`Continuous resistance coefficients`);

0

20

40

60

80

100

120

140

160

k

9 10 11 12 13 14 15
t

Continuous resistance coefficients

Explicit solutions for the linear and cubic coe�cients
can be found by a three-step process similar to the one

4

Parachute Problem

used previously for the piecewise constant coe�cient.
This process, and the accompanying results, are omit-
ted due to the length and complexity of the solutions.
Instead, each motion is computed using motion and dis-
played using plot_motion. The quality of the plot de-
pends on the selection of an appropriate set of times.
Since the jump height is signi�cantly lower, the deploy-
ment and landing will occur earlier. The following set
of times produces a good picture of the motion.
> snapshot[af] := [$(0..8), i/10 $ i = 90 .. 149,
> 5*i $ i = 3 .. 40]:

To see the e�ect of the smoothness of k on the jumps,
the two motions are displayed using plot_motion:
> for nam in [linear, cubic] do
> IVP := subs(k=K[nam], SYS) union IC;
> PTS[nam] := motion(subs(PARAM[af],IVP),
> snapshot[af], t);
> print(display(
> {
> plot_motion(PTS[nam], scale[noJ]),
> textplot([[50, 1, `x/1000`],
> [25, -1, `v/10`],
> [20, 1.9, `a/g`]])
> },
> title=`Motion for `.nam.` coefficient`));
> od:

a/g

v/10

x/1000

-4

-3

-2

-1

0

1

2

0 50 100 150 200

Motion for linear coefficient

a/g

v/10

x/1000

-4

-3

-2

-1

0

1

2

0 50 100 150 200

Motion for cubic coefficient

On this scale the motions are strikingly similar: impact
occurs at �4.6 m/s after �196 s. This similarity is to be
expected during the free-fall, and even in the �nal de-
scent. Zooming in on the deployment stage of the jump,
and including the jerk in the plot, provides a better look
at the critical parts of the plots:
> scale[all] := { 'X'=1000, 'V'=10, 'A'=981/100,
> 'J'=981/100 }:
> for nam in [linear, cubic] do
> pts:=select(P->evalb(P[1]>=9 and P[1]<15),
> PTS[nam]);
> print(display(
> {
> plot_motion(pts, scale[all], heading),
> textplot([[14, 1.1, `x/1000`],
> [11, -3, `v/10`],
> [12.5, 1.6, `a/g`],
> [10.2, 2.2, `j/g`]])
> },
> title=`Motion for `.nam.
> ` coefficient (ZOOM)`));
> od:

j/g

a/g

v/10

x/1000

-4

-3

-2

-1

0

1

2

9 10 11 12 13 14 15

Motion for linear coefficient (ZOOM)

j/g

a/g

v/10

x/1000

-4

-3

-2

-1

0

1

2

9 10 11 12 13 14 15

Motion for cubic coefficient (ZOOM)

These plots illustrate several important qualitative
di�erences between the two motions. In particular, note
that while the acceleration is continuous for all t > 0
for both coe�cients, the jerk is continuous only for the
cubic interpolant. These issues are not solely of math-

5

Parachute Problem

ematical interest; these forces have a lot to say about
the enjoyment { even survivability { of the jump. Ad-
ditional analysis of these solutions can be found in [6].

Parameter Sensitivity

Speci�c parameter values must be selected for the pre-
ceding numerical and graphical analysis. However, these
values are known with only a limited amount of cer-
tainty. For example, landing velocity should be between
15 and 17 ft/s (4.6 and 5.2 m/s) and the gravitational
constant changes with altitude | particularly at alti-
tudes above 25,0000 [11]. How dependent is the solution
on each of the parameters?
One means of addressing this is to examine the rela-

tive rate of change of the position and/or velocity with
respect to each of the parameters of the problem. (Since
the only explicit solution available at this time is the
solution with piecewise constant air resistance, this so-
lution will be used to illustrate these ideas.) Since the
position necessarily decreases to zero the relative sensi-
tivities of the position can become unbounded. Thus,
the remainder of this discussion focuses solely on the
relative rates of change of the velocity with respect to
the parameters k1, k2, g, and m. These expressions are
easily computed from the explicit solution found earlier:
> Vrel := { seq(diff(V,p)/V*100,
> p=[k1, k2, g, m]) }:

While the jump lasts more than 4 minutes, the motion
is essentially uniform after the �rst 90 seconds. Plotting
the relative rates of change on this time interval yields:
> Vplot := plot(subs(PARAM[ns], Vrel),
> t=0..90):
> Vtext := textplot([[65, -5, 'k1'],
> [85, -2, 'k2'],
> [85, 9.8, 'g'],
> [85, 2, 'm']]):
> display({ Vplot, Vtext },
> title=`Relative (%) sensitivities`
> .` for velocity`);

m

g

k2

k1
-6

-4

-2

0

2

4

6

8

10

0 20 40 60 80
t

Relative (%) sensitivities for velocity

The general shape of these curves seem quite reasonable:
the solution is a multiple of g, so the corresponding rel-
ative sensitivity is simply 1=g � 10:2%. The remaining
curves show more temporal dependence, particularly be-
fore reaching either terminal velocity. The curves for
both m and k2 are asymptotic to the reciprocal of the
parameter value (1=m � 1:33% and 1=k2 � 0:95%).
The k1 curve approaches the corresponding asymptotic
value, 1=k1 � 6:7%, until the chute is deployed; after
deployment, the value of this parameter quickly decays,
as expected, to zero.

A Control Problem

Consider the question: What is the latest time the
parachute can be deployed while keeping the landing
velocity below 5.2 m/s (17 ft/s)? Assume that the C1

air resistance is used and that all parameters (except
deployment time) are taken from [10].
> PARAM[af2]:= k1 = 150/11, k2 = 160, tau = 32/10,
> x0 = 6096/5, m = 75, g = 981/100;
> IVP:=subs(k=K[cubic], PARAM[af2], SYS union IC):

PARAM af2 := k1 =
150

11
; k2 = 160; � =

16

5
;

x0 =
6096

5
;m = 75; g =

981

100

There are several ways in which this problem can be
solved; the approach used here is based on the numerical
solution obtained from motion. The key to the e�cient
solution of this problem is an intelligent search algo-
rithm. Mathematically, the problem can be posed as a
boundary value problem that can be solved using, e.g.,
a shooting method.3 This is beyond the scope of the
current discussion, so a hand search will be used.
To begin, note that the impact velocity for a jump ac-

cording to the Air Force guidelines produced an impact
velocity of 4.6 m/s. Thus, a lower bound is td = 10 s.
A crude upper bound is the length of a jump without
opening the chute (i.e., k � k1):
> XX := subs(PARAM[af2], X1):
> VV := subs(PARAM[af2], V1):
> TT := fsolve(XX=0, t, 0..infinity);

TT := 28:06315629

A binary search on the interval [10; 28] using motion

could �nd the optimal value of td to within 0.1 s in 8
iterations.
The fact that execution times for motion are approx-

imately linear in the number of elements in the second
argument make a binary search prohibitively slow. The
search will be more e�cient when the information in the
solution is used in a more intelligent manner to guide

3see [7] for a Maple implementation of the shooting method

6

Parachute Problem

the iteration towards the optimal deployment time. For
example, assuming the ripcord is pulled near terminal
free-fall velocity, the skydiver falls approximately the
same distance during the 3.2 seconds that it takes for
the parachute to deploy; likewise, the rate of descent
at the end of this period (� 6:5 m/s) is essentially in-
dependent of td. The same logic applies to the �nal
descent. How long does it take the speed to decrease
from 6.5 m/s to the maximum safe value, 5.2 m/s? The
resolution of the plots given earlier is not suitable for
the accurate determination of this information. More
accurate estimates can be obtained from plot_motion

with intelligent scale factors
> display({ plot_motion(PTS[cubic],
> { X=1000, V=-5.2 }),
> plot(1, 10..20, 0.8..1.2) });

0.8

0.9

1

1.1

1.2

10 12 14 16 18 20

Since td = 10 in this plot, it is seen that the velocity
reaches the threshold in just over 3.7 s after the ripcord
is pulled; the distance fallen in this period is approxi-
mately 90 m. This means that the largest value of td
which ensures the landing velocity is below 5.2 m/s can
be estimated by �nding the free-fall time that puts the
skydiver 90 m above the ground:
> fsolve(XX=90, t, 0..infinity);

26:38314907

The optimal value of td is expected to be less than
this estimate. This information is useful in the deter-
mination of the points at which the motion should be
computed.
> snapshot[af2] := [5*i$i=0..5,
> i/10 $ i = 260 .. 264,
> 27, i/10 $ i=290..302]:

The motion for td = 26:383 s can now be found:
> pts := motion(subs(td=26.383, IVP),
> snapshot[af2], t):

The analysis requires more detail than can be ob-
tained from the plot (besides, plots consume too much
space!). Instead, it su�ces to extract the information

for the times closest to t = td
> select(P->evalb(abs(P[1]-26.383)<0.1),
> evalf(pts,5));

[[26:300; 94:449;�53:503;�:082215; :014948];

[26:400; 89:098;�53:511;�:0718; 1:0477]

]

and the times when the velocity is closest to the thresh-
old
> select(P->evalb(abs(P[3]+5.2)<0.2),
> evalf(pts,5));

[[30:;�12:318;�5:3923; 1:6936;�3:6130]; [
30:100;�12:850;�5:2398; 1:3682;�2:9189
]; [
30:200;�13:367;�5:1166; 1:1054;�2:3581
]]

Each data point contains �ve quantities: time, position,
velocity, acceleration, and jerk. The velocity threshold
is not met until the skydiver is below ground level; thus,
as expected, this value for td is too large. To estimate
an appropriate adjustment to td the acceleration value
for t = 30:1 s can be used to extrapolate the velocity to
�nd that the threshold velocity was met about 0.0291 s
later and travelled another 0.1523 m. Thus, the rip-
cord should have been pulled when the parachute was
13.0015 m higher; the free-fall velocity at 26.3 s suggests
that deployment should have begun 0.243 s earlier. This
gives a second estimate of td = 26:140 s. The numer-
ical solution to this problem is obtained and analyzed
exactly as before:
> pts:=motion(subs(PARAM[af2], td=26.14, IVP),
> snapshot[af2], t):
> select(P->evalb(abs(P[1]-26.14)<0.1),
> evalf(pts,5));
> select(P->evalb(abs(P[3]+5.2)<0.2),
> evalf(pts,5));

[[26:100; 105:15;�53:486;�:085260; :015502];

[26:200; 99:799;�53:492; :0244; 3:5967]]

[[29:800; :48130;�5:3225; 1:5447;�3:2954]; [
29:900;�:043753;�5:1834; 1:2480;
�2:6623];

[30:;�:55628;�5:0710; 1:0082;�2:1509]]

Extrapolating from the information at t = 29:9 s, the
velocity threshold is crossed at t = 29:887 s with an
extrapolated position of x = 0:022 m = 2.2 cm < 100.
Thus, a jump with td = 26:14 s lands after

29.887 s with a landing velocity just below the 5.2 m/s
threshold.4 While it might be di�cult to time the

4Of course, it must be remembered that these results are ob-
tained by numerical integration of the equations of motion. Ad-

7

Parachute Problem

pulling of the ripcord this precisely and there is no time
to consider using the reserve chute in an emergency, this
does explain why some skydivers survive jumps when
their chutes deploy only seconds before impact. In other
words, it is almost never too late!

Conclusion

In this paper we have demonstrated the use of Maple
in the analysis of a common textbook version of the
parachute problem. Through a combination of graphic,
numeric, and symbolic methods, the analysis identi�ed
several non-physical features of the original model and,
subsequently, suggested the formulation of an improved
model. While explicit solutions can be found for the new
model, all analysis of the motions resulting from the im-
proved model was either numerical or graphical. Many
of the questions addressed in this paper | including
parameter sensitivity and solution of a control problem
| are not reasonable to attempt to solve using manual
techniques. Maple, with its combination of symbolic,
numeric, and graphic features, is the ideal software tool
to use on these problems. The complete worksheet (Re-
lease 3 and Release 4) fromwhich this article is produced
is available from the author's WWW home page.

Acknowledgment

Financial support for this project has been received from
NSF grants DMS-9404488 and OSR-9108722.

References

[1] M. L. Abell and J. P. Braselton, Modern Dif-

ferential Equations: Theory, Applications, Technol-

ogy, Harcourt Brace College Publishers, 1995.

[2] R. M. Corless, G. H. Gonnet, D. E. G. Hare,
and D. J. Jeffrey, Lambert's W function in

Maple, MapleTech, Issue 9, 1993, pp. 12{22.

[3] J. Drucker,Minimal time of descent, The College
Mathematics Journal, 26 (1995), pp. 232{235.

[4] C. H. Edwards, Jr. and D. E. Penney, Dif-
ferential Equations and Boundary Value Problems:

Computing and Modeling, Prentice Hall, 1996.

[5] E. J. Kostelich and D. Armbruster, Intro-

ductory Di�erential Equations: From Linearity to

Chaos, Addison{Wesley, 1996.

[6] D. B. Meade, ODE models for the parachute prob-

lem, SIAM Review, (submitted).

ditional tests should be conducted to ascertain the reliability and
accuracy of these results.

[7] D. B. Meade, B. S. Haran, and R. E. White,
The shooting technique for the solution of two-point

boundary value problems, MapleTech, vol. 3, no. 1,
1996, pp. 85{93.

[8] R. Melka and D. Farrior, Exploration of the

parachute problem with STELLA, Newsletter for
the Consortium for Ordinary Di�erential Equations
Experiments, Summer{Fall 1995, pp. 5{6.

[9] R. K. Nagle and E. B. Saff, Fundamentals of

Di�erential Equations, Fourth Edition, Addison{
Wesley, 1996.

[10] Student Handbook for Airmanship 490: Basic Free

Fall Parachuting, USAF Academy, May 1990.

[11] H. S. Zim, Parachutes, Harcourt, Brace and Com-
pany, 1942.

Biography

Douglas B. Meade

Douglas B. Meade received a Ph.D. in Mathemat-
ics from Carnegie Mellon University in 1989, then
spent two years as a Research Assistant Professor
in the Center of Applied Mathematics at Purdue
University. Since 1991 he has been an Assistant
Professor in the Department of Mathematics at
the University of South Carolina. Research interests
are presently directed towards numerical methods
for PDEs, in particular, wave propagation on un-
bounded domains and nonlinear reaction{di�usion
equations. Dr. Meade has been active in the de-
velopment of Maple resources for use in a variety
of undergraduate and graduate courses. A Maple
supplement to the Nagle/Sa� ODE text was com-
pleted in 1996; a Maple module for the Engineer's
Toolkit series, co-authored with Etan Bourko�, will
be published by Addison{Wesley in 1997.

8

