MATH 706 - Numerical Linear Algebra

Course Summary / Qualifying Exam Syllabus

Spring 2006

Professor Douglas Meade

- 1. Algorithms for Solving Linear Systems
 - a. Triangular Systems
 - b. Cholesky Decomposition (symmetric, positive definite)
 - c. Gaussian Elimination (LU decomposition, partial pivoting)
 - d. Operation counts
- 2. Floating-Point Computations
 - a. Norms and condition number
 - b. Propagation of roundoff errors
 - c. Backward stability
 - d. Convergence (relative / absolute)
 - e. Residual analysis
- 3. Least Squares Problems
 - a. Orthogonal matrices
 - b. Normal equations
 - c. Pseudo-inverse
 - d. QR Decomposition (rotators and reflectors)
 - e. Gram-Schmidt (and its variants)
- 4. Eigen Analysis
 - a. Power Method (and its variants: inverse, shifted, Rayleigh quotients)
 - b. Gershgorin Circle Theorem
 - c. Similarity transformations
 - d. Reduction to Hessenberg and tridiagonal forms (why not diagonal?)
 - e. QR algorithm (for eigenvalues)
 - f. Computing eigenvectors with QR algorithm
 - g. Subspace iteration
- 5. Singular Value Decomposition
 - a. Connection with Least Squares Problem
 - b. Computation using the QR algorithm
- 6. Iterative Methods for Linear Systems
 - a. Equivalence between linear systems and minimization problems
 - b. Classical iterative methods (Jacobi, Gauss-Seidel)
 - c. Descent methods (general and descent)
 - d. Preconditioners
 - e. Conjugate-gradient method