MATH 544 (Section 501) Prof. Meade University of South Carolina Spring 2010

Name:		Key	_
SS	# ((last 4 digits):	

Exam 1 19 February 2010

Instructions:

- 1. There are a total of 6 problems (not counting the Extra Credit problem) on 6 pages. Check that your copy of the exam has all of the problems.
- 2. No electronic or other inanimate objects can be used during this exam. All questions have been designed with this in mind and should not involve unreasonable manual calculations.
- 3. Be sure you answer the questions that are asked.
- 4. You must show all of your work to receive full credit for a correct answer. Correct answers with no supporting work will be eligible for at most half-credit.
- 5. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.
- 6. Check your work. If I see *clear evidence* that you checked your answer (when possible) <u>and</u> you *clearly indicate* that your answer is incorrect, you will be eligible for more points than if you had not checked your work.

Problem	Points	Score
1	18	
2	16	
3	20	
4	20	
5	16	
6	10	
Extra Credit	,10	
Total	100	

Good Luck!

- 1. (18 points) Identify each statement as either True or False. You do *not* have to justify your answer to receive credit for a correct answer, but some explanation might make you eligible for some partial credit for an incorrect answer.
 - (a) $-\mathbf{F}$ Any system of *n* linear equations in *n* variables has at most *n* solutions. An 00 ± 0^{-1} solves

 - (c) <u>F</u> If a system of linear has no free variables, then it has a single solution. The solution.
 - (d) $\overbrace{}$ If an augmented matrix $[A \mathbf{b}]$ is transformed into $[C \mathbf{d}]$ by elementary row operations, then the equations $A\mathbf{x} = \mathbf{b}$ and $C\mathbf{x} = \mathbf{d}$ have the same solution sets.
 - (e) $\frac{F}{Variables}$. The equation $A\mathbf{x} = \mathbf{0}$ has the trivial solution if and only if there are no free variables. The homogeneous equation <u>always</u> has the trivial sol's.
 - (f) $\overbrace{\mathbf{R}^m, \text{ then } A \text{ has } m \text{ pivot columns.}}^{\text{If } A \text{ is an } m \times n \text{ matrix and the equation } A\mathbf{x} = \mathbf{b} \text{ is consistent for every } \mathbf{b} \text{ in } (pivot in every row)$ 2 Hore or mrows
 - (g) \prod If an $n \times n$ matrix A has n pivot positions, then the reduced echelon form of A is the $n \times n$ identity matrix.
 - (h) \square If $\{u, v, w\}$ is linearly independent, then u, v, and w are not in \mathbb{R}^2 . (i) \square If $\{u, v, w\}$ is linearly independent, then u, v, and w are not in \mathbb{R}^2 . dependent.
 - (i) If u and v are in \mathbb{R}^m , then $-\mathbf{u}$ is in Span $\{\mathbf{u}, \mathbf{v}\}$. $-\vec{\mathbf{u}} = -1\vec{\mathbf{u}} + 0\vec{\mathbf{v}}$ Ba lin. could of $\vec{\mathbf{u}} \neq \vec{\mathbf{v}}$,
- 2. (16 points) Determine whether each of the following formulas is True or False for all scalars a and b and all $n \times n$ matrices A, B, and C.
 - (a) (A+B)C = AC + BC(b) $(A+B)(A-B) = A^2 - B^2$ (A+B)(A-B) = AA - AB + BA + BB $= A^2 - AB + BA + B^2$ (c) $(A+B)^T = A^T, \text{ then } B^T = -B$ $(A-A^T)^T = A^T - A^{T^T} = A^T - A = -(A-A^T)$ (d) $(AB)^T = A^TB^T$ (AB)^T = B^TA^T. (e) $(AB)^{-1} = B^{-1}A^{-1}$ (f) $(aA+bB)^T = aA^T + bB^T$ (g) $(aA+bB)^{-1} = aA^{-1} + bB^{-1}$ (h) $(AB) = BA \text{ and if } A \text{ is invertible, then } A^{-1}B = BA^{-1}.$ $AB = BA \text{ and if } A \text{ is invertible, then } A^{-1}B = BA^{-1}.$ $AB = BA \text{ and if } A \text{ is invertible, then } A^{-1}B = BA^{-1}.$

 $\mathbf{2}$

- 3x + 5y 2z = 173. (20 points) Consider the system of equations x5. + y3u3z
 - (a) Write the augmented matrix, then perform appropriate row operations to obtain the row echelon form.

$$\begin{bmatrix} 3 & 5 & -2 & 17 \\ 1 & 1 & 0 & 5 \\ 0 & 3 & -3 & p \end{bmatrix} \xrightarrow{(0-3)} \begin{bmatrix} 3 & 5 & -2 & 17 \\ 0 & 2 & -2 & 2 \\ 0 & 3 & -3 & p \end{bmatrix} \xrightarrow{\frac{1}{2}(2)} \begin{bmatrix} 3 & 5 & -2 & 17 \\ 0 & 1 & -1 & 1 \\ 0 & 3 & -3 & p \end{bmatrix}$$

$$\begin{bmatrix} 3 & 5 & -2 & 17 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & p^{-3} \end{bmatrix} \xrightarrow{(0-3)} \begin{bmatrix} 3 & 0 & 3 & 12 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & p^{-3} \end{bmatrix} \xrightarrow{\frac{1}{2}(0)} \begin{bmatrix} 10 & 1 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & p^{-3} \end{bmatrix}$$

$$you \text{ con onsular}$$

$$(b) \text{ new, but the not yet}$$

(b) For what (if any) value(s) of p are there

NOTE: For at least one of these categories the answer is "No values of p".

i. no solutions?

¢

1 al 100 tools

ii. a unique solution?

never.

iii. exactly two solutions

iv. infinitely-many solutions?

P=3. (c) For any value of p for which there are solutions, what is the solution set? When p = 3 the reduced echelon form is $\begin{bmatrix} 1 & 0 & 1 & 4 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ The solutions one: $x_1 = 4 - x_3$ $x_2 = 1 + x_3$ or $\overline{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 4 - x_3 \\ 1 + x_3 \\ x_3 \end{bmatrix}$ $x_3 = x_3$ $= \int \frac{4}{1} + x_3 \int \frac{-1}{1}$ 4. (20 points) Find the inverse of the matrix $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 2 & 3 & 3 \end{bmatrix}$. NOTE: All entries of the inverse are integers.

4

5. (16 points) Let
$$T: \mathbb{R}^2 \to \mathbb{R}^3$$
 be a linear transformation such that
 $T(x_1, x_2, x_3) = (x_1 - 2x_2, -x_1 + 3x_2, 3x_1 - 2x_2).$
(a) Show that $\begin{bmatrix} -1\\ 4\\ 9 \end{bmatrix}$ is in the image set of T .
(a) Show that $\begin{bmatrix} -1\\ 4\\ 9 \end{bmatrix}$ is in the image set of T .
To show $\overline{b} = \begin{bmatrix} -1\\ 4\\ 9 \end{bmatrix}$ is in the image set of T , we show there
 \overline{c} a solution to $\begin{bmatrix} 1 & -2\\ -1 & 3\\ 3 & -2 \end{bmatrix} \stackrel{?}{x} = \begin{bmatrix} -1\\ 9\\ -1 \end{bmatrix}.$
 $\begin{bmatrix} 1 & -2\\ -1 & 3\\ 3 & -2 \end{bmatrix} \stackrel{?}{(3-30)} + \stackrel{?}{(3-30)} \stackrel{?}{(3-30)$

(b) Explain why this T is not onto \mathbb{R}^3 .

T cannot be onto TR3 because there is not a protivie each of the Brows. (Infact, we could have known this before onswering (a).)

5

6. (10 points) Let A be a 3×3 matrix with the property that the linear transformation $\mathbf{x} \mapsto A\mathbf{x}$ maps \mathbf{R}^3 onto \mathbf{R}^3 . Explain why the transformation must be one-to-one.