MATH 300 (Section 001) Prof. Meade University of South Carolina Spring 2014

Exam 1 18 February 2014 Name: _____

Instructions:

- 1. There are a total of 9 problems on 6 pages. Check that your copy of the exam has all of the problems.
- 2. No electronic or other inanimate objects can be used during this exam. All questions have been designed with this in mind and should not involve unreasonable manual calculations.
- 3. Be sure you answer the questions that are asked.
- 4. To be eligible for full credit, explanations and justifications must be written in complete English sentences.

Problem	Points	Score
1	20	
2	8	
3	12	
4	8	
5	12	
6	12	
7	12	
8	8	
9	8	
Total	100	

Good Luck!

1. (20 points) Prepare a truth table for each of the following statements.

(a)
$$\sim (A \lor B)$$

(b)
$$(\sim A) \land (\sim B)$$

(c)
$$((\sim B) \land (A \Rightarrow B)) \Rightarrow \sim A$$

- (d) In general, how can you tell if two statements are logically equivalent?
- (e) Which, if any, of the above statements are logically equivalent?
- 2. (8 points) Prove that the following statement is false: If n is prime, then $n^2 + n + 7$ is prime. HINT: Find a counterexample.

- 3. (12 points) Write the indicated statement for each of the following propositions.
 - (a) The converse of "If n is an integer for which n^2 is odd, then n is odd."

(b) The contrapositive of "If r is a real number such that $r^2 = 2$, then r is not rational."

(c) The inverse of "If n > 1 is an integer for which $2^n - 1$ is prime, then n is prime".

4. (8 points) Suppose you know that

Proposition. If the right triangle RST with sides of lengths r and s and hypotenuse of length t satisfies $t = \sqrt{2rs}$, then the triangle RST is isosceles.

What would you have to show in order to use the above proposition to prove "If the right triangle ABC with side of lengths a and b and hypotenuse of length c has an area of $c^2/4$, then the triangle is isosceles."

- 5. (12 points) For each of the following statements, obtain a new statement in the backward process by using a definition to answer the key question. If necessary, rewrite the definitions so that there is no overlapping notation.
 - (a) The integer m > 1 is prime.

(b) triangle ABC is equilateral

(c) \sqrt{n} is rational (*n* is an integer)

- 6. (12 points) Use a definition to work forward one step from the hypothesis.
 - (a) If n is an integer greater than 1 for which $2^n 1$ is prime, then n is prime.

(b) If a, b, and c are integers for which $a \mid b$ and $b \mid c$, then $a \mid c$.

(c) If the quadrilateral ABCD is a parallelogram with one right angle, then ABCD is a rectangle.

7. (12 points) Consider the following statement:

If n is an odd integer, then $n^2 + 1$ is an even integer.

(a) Pose a key question.

(b) Then use a definition to answer the question abstractly.

(c) And, finally, use that same definition to apply the answer to the specific problem.

8. (8 points) Prove: Let a and b be integers. If $a \mid b$, then $a^2 \mid b^2$.

9. (8 points) Provide an analysis of the following proof.

If n is an integer greater than 2, a and b are the lengths of the legs of a right triangle, and c is the length of the hypotenuse, then $c^n > a^n + b^n$.

Proof. You have that $c^n = c^2 c^{n-2} = (a^2 + b^2)c^{n-2}$. Observing that $c^{n-2} > a^{n-2}$ and $c^{n-2} > b^{n-2}$, it follows that $c^n > a^2(a^{n-2}) + b^2(b^{n-2})$. Consequently, $c^n > a^n + b^n$.