Math 241
Prof. Meade

Exam 1
February 20, 2001

University of South Carolina
Spring 2001

Name: \qquad
SS \#: \qquad

Instructions:

1. There are a total of 7 problems on 8 pages. Check that your copy of the exam has all of the problems.
2. You must show all of your work to receive credit for a correct answer.
3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	15	
2	15	
3	15	
4	20	
5	8	
6	15	
7	100	
Total		

1. (15 points) Let $\mathbf{a}=2 \mathbf{i}-5 \mathbf{j}-\mathbf{k}, \mathbf{b}=3 \mathbf{i}-\mathbf{j}$, and $\mathbf{c}=\langle 1,0,-6\rangle$. Find each of the following:
(a) $\mathbf{a} \cdot \mathbf{c}$
(b) $\mathbf{b} \times \mathbf{c}$
(c) $\mathbf{c} \cdot \mathbf{c}-|\mathbf{c}|$
2. (15 points) Let C be the parametric curve $x=t, y=t^{2}, z=3$.
(a) Find all points on the curve with $y=4$.
(b) Find the tangent line to the curve at the point $(-1,1,3)$.
(c) Find the equation of the normal plane to the curve at the point $(-1,1,3)$.
(d) Find the speed of a particle that follows this curve.
(e) Find all points where the particle's speed is zero. Explain your answer.
3. (15 points)
(a) What is the direction of the line $x=-3+2 t, y=3, z=-1+2 t$?
(b) Find parametric equations for the line through $(6,1,-3)$ and $(-2,1,3)$.
(c) Find the center and radius of the sphere with equation $x^{2}+y^{2}+z^{2}+6 x-2 y+5=0$.
4. (20 points) Consider the curve $\mathbf{r}(t)=e^{t} \sin t \mathbf{i}+e^{t} \cos t \mathbf{j}+e^{t} \mathbf{k}, 1 \leq t \leq 5$. Find each of the following:
(a) $\mathbf{r}^{\prime}(\pi)$
(b) $\mathbf{T}(\pi)$
(c) $\mathbf{r}^{\prime \prime}(\pi)$
(d) the length of the curve
5. (8 points) Find all unit vectors that are perpendicular to both of the vectors $\mathbf{a}=3 \mathbf{i}-3 \mathbf{j}+\mathbf{k}$ and $\mathbf{b}=-\mathbf{i}-2 \mathbf{j}+4 \mathbf{k}$.
6. (15 points) Sketch the level curves of $f(x, y)=x^{2}+y^{2}$ for $k=-1,0,1,4,9$. Remember to label the curves and the axes.
7. (12 points) Let $f(x, y)=3 x^{2} y^{4}+7 \frac{x^{2}}{y^{3}}$. Find
(a) $\frac{\partial f}{\partial x}$
(b) $\frac{\partial^{2} f}{\partial x^{2}}$
(c) $f_{x y}$
