Math 241
Prof. Meade
University of South Carolina
Fall 2000

Exam 1
September 29, 2000

Name: \qquad
SS \#: \qquad

Instructions:

1. There are a total of 7 problems on 6 pages. Check that your copy of the exam has all of the problems.
2. You must show all of your work to receive credit for a correct answer.
3. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	15	
2	21	
3	12	
4	12	
5	20	
6	10	
7	10	
Total	100	

1. (15 points) Let $\mathbf{a}=2 \mathbf{i}-\mathbf{j}-\mathbf{k}, \mathbf{b}=3 \mathbf{i}-\mathbf{j}+2 \mathbf{k}$, and $\mathbf{c}=\mathbf{i}+2 \mathbf{j}-\mathbf{k}$. Find each of the following:
(a) $\mathbf{a} \cdot \mathbf{c}$
(b) $\mathbf{b} \times \mathbf{c}$
(c) $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$
2. (21 points)
(a) What is the direction of the line $x=3-2 t, y=t, z=-1$?
(b) Find parametric equations for the line through $(6,1,-3)$ and $(-2,2,-3)$.
(c) Find the center and radius of the sphere with equation $x^{2}+y^{2}+z^{2}-6 x+8 y-2 z=0$.
3. (12 points) Let $\mathbf{r}(t)=t \mathbf{i}+\frac{1}{2} t^{2} \mathbf{j}+\frac{1}{3} t^{3} \mathbf{k}$ for $-2 \leq t \leq 3$.
(a) Find a vector equation for the tangent line to this curve at $t=2$.
(b) Find an equation for the normal plane to this curve at $t=2$.
4. (12 points) Find the arclength of the curve $x=e^{t} \cos t, y=e^{t}, z=e^{t} \sin t$, for $1 \leq t \leq 5$.
5. (20 points) A particle is moving along a curve given by a vector-valued function $\mathbf{r}(t)$ for which $\mathbf{r}^{\prime}(1)=2 \mathbf{i}+4 \mathbf{j}-\mathbf{k}$ and $\frac{d \mathbf{T}(1)}{d t}=-4 \mathbf{i}+\mathbf{k}$. Find each of the following:
(a) $\mathbf{T}(1)$
(b) $\mathbf{N}(1)$
(c) $\kappa(1)$
(d) the unit binormal vector when $t=1$
6. (10 points) Show that if the speed of a moving particle is constant, then its velocity and acceleration vectors are orthogonal.
7. (10 points) Sketch the level curves of $f(x, y)=\left(x+y^{2}\right)^{2}$ for $k=-1,0,1,2,4$.
