>   

Maple Solutions to Selected Review Problems

prepared by

Douglas B. Meade

(meade@math.sc.edu)

25 August 2003

>   

1.

>    restart;

>   

>    f := sqrt(x);
g := exp(-3*x);

f := x^(1/2)

g := exp(-3*x)

>   

>    plot( [f,g], x=0..1 );

[Maple Plot]

>   

>    c := solve( f=g, x );

c := exp(-1/2*LambertW(6))^2

>    c := fsolve( f=g, x );

c := .2387341293

>   

(a) Area of R

>    A := Int( f-g, x=c..1 );

A := Int(x^(1/2)-exp(-3*x),x = .2387341293 .. 1)

>    A = value( A );

Int(x^(1/2)-exp(-3*x),x = .2387341293 .. 1) = .4426299245

>   

(b) Volume of solid formed when R is revolved around y=1

>    with( Student[Calculus1] );

[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...
[AntiderivativePlot, ApproximateInt, ArcLength, Asymptotes, Clear, CriticalPoints, DerivativePlot, ExtremePoints, FunctionAverage, FunctionChart, GetMessage, GetNumProblems, GetProblem, Hint, Inflectio...

>    VolumeOfRevolution( 1-g, 1-f, x=c..1, output=integral );

Int(Pi*((1-exp(-3*x))^2-(1-x^(1/2))^2),x = .2387341293 .. 1)

>    VolumeOfRevolution( 1-g, 1-f, x=c..1, output=plot, view=[0..1,-1..1,DEFAULT] );

[Maple Plot]

>    VolumeOfRevolution( 1-g, 1-f, x=c..1, output=value );

1.423558479

Note: The VolumeOfRevolution command is available through a friendly graphical user interface (GUI) via the WWW. Links are provided on the course website. (You can use the Maplet link if you have Maple 8 on the computer you are using; otherwise, assuming you have an Internet connection, use the MapleNet link.)

>   

>    V := Int( Pi*(1-g)^2 - Pi*(1-f)^2, x=c..1 );

V := Int(Pi*(1-exp(-3*x))^2-Pi*(1-x^(1/2))^2,x = .2387341293 .. 1)

>    V = value( V );

Int(Pi*(1-exp(-3*x))^2-Pi*(1-x^(1/2))^2,x = .2387341293 .. 1) = 1.423558479

>   

(b) Volume of solid with R as base and height = 5*base for all cross-sections.

>    plot3d( 5*(f-g), y=g..f, x=c..1, axes=boxed, shading=z );

[Maple Plot]

>   

>    V2 := Int( (f-g)*5*(f-g), x=c..1 );

V2 := Int(5*(x^(1/2)-exp(-3*x))^2,x = .2387341293 .. 1)

>    V2 = value( V2 );

Int(5*(x^(1/2)-exp(-3*x))^2,x = .2387341293 .. 1) = 1.554354405

>   

>   

2.

>    restart;

>    V := -(t+1)*sin(t^2/2);

V := -(t+1)*sin(1/2*t^2)

>    plot( V, t=0..3 );

[Maple Plot]

>   

(a) Find a(2).

>    A := diff( V, t );

A := -sin(1/2*t^2)-(t+1)*cos(1/2*t^2)*t

>    a(2) = eval( A,t=2 );

a(2) = -sin(2)-6*cos(2)

>    evalf( % );

a(2) = 1.587583592

At this time the velocity is negative and increasing. The speed is the absolute value of the velocity.  At t=2, the speed is positive, and decreasing.

>    plot( [V,abs(V)], t=0..3,
      style=[point,line],
      color=[red,blue],
      legend=["velocity","speed"] );

[Maple Plot]

>   

(b) Find times when particle changes direction

Direction change occurs when velocity changes sign. From graph, this occurs exactly once in [0,3], near t=2.5.

>    solve( V=0, t );

-1, 0, 0

>    fsolve( V=0, t );

-1.

>    fsolve( V=0, t=2..3 );

2.506628275

>   

(c) Find total distance travelled.

>    TotDist := Int( abs(V), t=0..3 );

TotDist := Int(abs((t+1)*sin(1/2*t^2)),t = 0 .. 3)

>    TotDist = value( TotDist );

Int(abs((t+1)*sin(1/2*t^2)),t = 0 .. 3) = int(abs((t+1)*sin(1/2*t^2)),t = 0 .. 3)

>    TotDist = evalf( TotDist );

Int(abs((t+1)*sin(1/2*t^2)),t = 0 .. 3) = 4.333818190

>   

(d) Find greatest distance from particle to origin during 0 <= t <= 3.

The position of the particle can be given as:

>    P := 1 + Int( V, t=0..T );

P := 1+Int(-(t+1)*sin(1/2*t^2),t = 0 .. T)

>    plot( P, T=0..3 );

[Maple Plot]

>   

The greatest distance from the origin occurs at the critical point near t=2.5. Note that this critical point for the position occurs at the same time that the particle changes direction

>    Tcrit := fsolve( V=0, t=2..3 );

Tcrit := 2.506628275

>    MaxSep := eval( P, T=Tcrit );

MaxSep := 1+Int(-(t+1)*sin(1/2*t^2),t = 0 .. 2.506628275)

>    evalf( MaxSep );

-2.265482800

Thus, the maximum separation from the origin is 2.265 (units).

6.

>    restart;

>    f := piecewise( x<=3, sqrt(x+1), x<5, 5-x );

f := PIECEWISE([(x+1)^(1/2), x <= 3],[5-x, x < 5])

>   

(a)

>    plot( f, x=0..5 );

[Maple Plot]

>   

(b)

>    AvgVal := 1/5 * Int( f, x=0..5 );

AvgVal := 1/5*Int(PIECEWISE([(x+1)^(1/2), x <= 3],[5-x, x < 5]),x = 0 .. 5)

>    AvgVal = value( AvgVal );

1/5*Int(PIECEWISE([(x+1)^(1/2), x <= 3],[5-x, x < 5]),x = 0 .. 5) = 4/3

>   

>    plot( [f, AvgVal], x=0..5 );

[Maple Plot]

>   

(c)

>    g := piecewise( x<=3, k*sqrt(x+1), x<=5, m*x+2 );

g := PIECEWISE([k*(x+1)^(1/2), x <= 3],[m*x+2, x <= 5])

>   

g differentiable at x=3 means that i) g is continuous at x=3 and ii) g' is continuous at x=3.

>    q1 := Limit( g, x=3, left ) = Limit( g, x=3, right );

q1 := Limit(PIECEWISE([k*(x+1)^(1/2), x <= 3],[m*x+2, x <= 5]),x = 3,left) = Limit(PIECEWISE([k*(x+1)^(1/2), x <= 3],[m*x+2, x <= 5]),x = 3,right)

>    eq1 := value( q1 );

eq1 := 2*k = 3*m+2

>   

>    Dg := diff( g, x );

Dg := PIECEWISE([1/2*k/(x+1)^(1/2), x < 3],[undefined, x = 3],[m, x < 5],[undefined, x = 5],[0, 5 < x])

>    q2 := Limit( Dg, x=3, left ) = Limit( Dg, x=3, right );

q2 := Limit(PIECEWISE([1/2*k/(x+1)^(1/2), x < 3],[undefined, x = 3],[m, x < 5],[undefined, x = 5],[0, 5 < x]),x = 3,left) = Limit(PIECEWISE([1/2*k/(x+1)^(1/2), x < 3],[undefined, x = 3],[m, x < 5],[und...

>    eq2 := value( q2 );

eq2 := 1/4*k = m

>   

>    solve( {eq1,eq2}, {k,m} );

{m = 2/5, k = 8/5}

>   

>    G := eval( g, {k=8/5,m=2/5} );

G := PIECEWISE([8/5*(x+1)^(1/2), x <= 3],[2/5*x+2, x <= 5])

>    plot( G, x=0..5 );

[Maple Plot]

>   

>   

>