MATH 141 (Section 11 & 12) Prof. Meade University of South Carolina Fall 2007

Exam 1 – Practice September 13, 2007

Name:	
SS #:	

Instructions:

- 1. There are a total of 8 problems on 6 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

	Problem	Points	Score
	1	15	
	2	16	
	3	16	
	4	12	
	5	9	
	6	12	
	7	8	
	8	12	
	Total	100	

Good Luck!

1. (15 points) Use the axes provided to sketch the graph of the function

2

2. (16 points) Use the graphs of the functions f and g in the figure below to answer the following questions.

- (a) Find f(3).
- (b) Find g(-1).
- (c) For what values of x is f(x) = g(x)?
- (d) For what values of x is f(x) < 4?

- 3. (16 points) Let $f(x) = -x^2$ and $g(x) = 1/\sqrt{x}$. (a) Find a formula for $f \circ g$.
 - (b) What is the domain of $f \circ g$?
 - (c) Find a formula for $g \circ f$.
 - (d) What is the domain of $g \circ f$?

- 4. (12 points) Determine if each of the following functions is even, odd, or neither.
 - (a) $x^2 \sin(x)$
 - (b) $\sin^2(x)$
 - (c) $x + x^2$
 - (d) $\sin(x)\tan(x)$

5. (9 points) Let $f(x) = \sin\left(\frac{1-2x}{x}\right)$ for $\frac{2}{4+\pi} \le x \le \frac{2}{4-\pi}$. Find a formula for $f^{-1}(x)$, or explain why the inverse does not exist.

- 6. (12 points)
 - (a) Find the exact numerical value for

$$\sin\left(\arcsin\left(\frac{4}{5}\right) + \arccos\left(\frac{4}{5}\right)\right)$$

(b) Express the following function as a rational function of x:

$$f(x) = 3\ln\left(e^{2x}(e^x)^3\right) + 2e^{\ln(x)}.$$

(c) Consider the parametric curve given by $x = 3 + 2\cos(t)$, $y = 2 + 4\sin(t)$ $(0 \le t \le 2\pi)$. Eliminate the parameter t and find y as a function of x.

HINT: Simplify your answer until it has no trigonometric functions.

- 7. (8 points) Sketch the graph of a function f with all of the following properties:
 - (a) the domain of f is [-2, 1]
 - (b) f(-2) = f(0) = f(1) = 0
 - (c) $\lim_{x \to -2^+} f(x) = 2$, $\lim_{x \to 0} f(x) = 0$, and $\lim_{x \to 1^-} f(x) = 1$.
 - (d) $\lim_{x \to -1}$ does not exist

- 8. (12 points) For the function F graphed below, find
 - (a) $\lim_{x \to 2} F(x)$
 - (b) $\lim_{x \to 2^{-}} F(x)$
 - (c) $\lim_{x \to 2^+} F(x)$
 - (d) F(2)

