Math 141 (Section 11 \& 12)
Prof. Meade

Exam 1 - Practice
September 13, 2007

Name: \qquad
SS \#:

Instructions:

1. There are a total of 8 problems on 6 pages. Check that your copy of the exam has all of the problems.
2. Calculators may not be used for any portion of this exam.
3. You must show all of your work to receive credit for a correct answer.
4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	15	
2	16	
3	16	
4	12	
5	9	
6	12	
7	12	
8	100	
Total		

1. (15 points) Use the axes provided to sketch the graph of the function

$$
f(x)= \begin{cases}-1 & x \leq-5 \\ \sqrt{25-x^{2}} & -5<x<5 \\ x-5 & x \geq 5\end{cases}
$$

2. (16 points) Use the graphs of the functions f and g in the figure below to answer the following questions.

(a) Find $f(3)$.
(b) Find $g(-1)$.
(c) For what values of x is $f(x)=g(x)$?
(d) For what values of x is $f(x)<4$?
3. (16 points) Let $f(x)=-x^{2}$ and $g(x)=1 / \sqrt{x}$.
(a) Find a formula for $f \circ g$.
(b) What is the domain of $f \circ g$?
(c) Find a formula for $g \circ f$.
(d) What is the domain of $g \circ f$?
4. (12 points) Determine if each of the following functions is even, odd, or neither.
(a) $x^{2} \sin (x)$
(b) $\sin ^{2}(x)$
(c) $x+x^{2}$
(d) $\sin (x) \tan (x)$
5. (9 points) Let $f(x)=\sin \left(\frac{1-2 x}{x}\right)$ for $\frac{2}{4+\pi} \leq x \leq \frac{2}{4-\pi}$. Find a formula for $f^{-1}(x)$, or explain why the inverse does not exist.
6. (12 points)
(a) Find the exact numerical value for

$$
\sin \left(\arcsin \left(\frac{4}{5}\right)+\arccos \left(\frac{4}{5}\right)\right)
$$

(b) Express the following function as a rational function of x :

$$
f(x)=3 \ln \left(e^{2 x}\left(e^{x}\right)^{3}\right)+2 e^{\ln (x)}
$$

(c) Consider the parametric curve given by $x=3+2 \cos (t)$, $y=2+4 \sin (t)(0 \leq t \leq 2 \pi)$. Eliminate the parameter t and find y as a function of x.

Hint: Simplify your answer until it has no trigonometric functions.
7. (8 points) Sketch the graph of a function f with all of the following properties:
(a) the domain of f is $[-2,1]$
(b) $f(-2)=f(0)=f(1)=0$
(c) $\lim _{x \rightarrow-2^{+}} f(x)=2, \lim _{x \rightarrow 0} f(x)=0$, and $\lim _{x \rightarrow 1^{-}} f(x)=1$.
(d) $\lim _{x \rightarrow-1}$ does not exist

8. (12 points) For the function F graphed below, find
(a) $\lim _{x \rightarrow 2} F(x)$
(b) $\lim _{x \rightarrow 2^{-}} F(x)$
(c) $\lim _{x \rightarrow 2^{+}} F(x)$
(d) $F(2)$

