MATH 141 (Section 1 & 2) Prof. Meade

University of South Carolina Fall 2004

Exam 2 – Practice October 6, 2004

Name: SS #:			
~~ // ·			

Instructions:

- 1. There are a total of 6 problems on 4 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.
- 5. This exam is a little longer than what I expect you to be able to complete in a one hour class. But, it is good practice when studying for the exam.

	Problem	Points	Score
	1	15	
	2	10	
	3	35	
	4	10	
	5	15	
	6	15	
	Total	100	

Study Hard! Ask Questions!!

1. (15 points) Evaluate the following limits. If a limit does not exist, explain why.

(a)
$$\lim_{x \to 0} \frac{2x + \sin x}{x}$$

(b)
$$\lim_{x \to 0} \frac{\tan(7x)}{\sin(3x)}$$

(c)
$$\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$

2. (10 points) A function f is said to have a *removable discontinuity* at x = c if $\lim_{x \to c} f(x)$ exists but f is not continuous at x = c, either because f(c) is not defined or because $f(c) \neq \lim_{x \to c} f(x)$.

Let
$$f(x) = \frac{x^2 - 1}{x - 1}$$
.

(a) Explain why f has a removable singularity at x = 1.

(b) Let F(x) = f(x) for all $x \ll 1$. How should F(1) be defined in order to make g continuous at x = 1?

- 3. (35 points) Find the requested derivative in each part.
 - (a) Find f'(x) when $f(x) = x^3 3x^2 + 4\sqrt{x}$
 - (b) Find $\frac{dy}{dx}$ when $y = x \cos(x^2)$
 - (c) Find y' when $y = \sqrt{t^2 + 4t + 3}$
 - (d) Find $r'(\theta)$ when $r(\theta) = \frac{\sin \theta}{\theta}$
 - (e) Find $\frac{d^2x}{dt^2}$ when $x = \tan(2t)$

4. (10 points) Find all values of x in the interval $[-2\pi, 2\pi]$ where the graph of $y = x + \cos x$ has a horizontal tangent line.

5. (15 points)

x	f(x)	g(x)	f'(x)	g'(x)
2	$\pi/3$	5	$\pi/2$	-2
3	0	-4	-3	3
5	$\pi/4$	2	$\pi/6$	2

Use the table of values shown above to find

(a)
$$F'(2)$$
 when $F(x) = f(g(x))$

(b) G'(2) when $G(x) = (g(x))^2$

(c)
$$H'(2)$$
 when $H(x) = \frac{g(x)}{\cos(f(x))}$

- 6. (15 points) The equation $\frac{1}{x} + \frac{1}{y} = y$ implicitly defines y as a function of x.
 - (a) Use implicit differentiation to find $\frac{dy}{dx}$.
 - (b) Find all points on the graph of this function with y = 2.
 - (c) For each point found in (b), find the equation of the tangent line to the curve.