Exam $1 - 1$	Prac	etice
September	15,	2004

Name:	
SS #:	

Instructions:

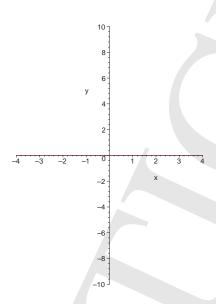
- 1. There are a total of 7 problems on 6 pages. Check that your copy of the exam has all of the problems.
- 2. Calculators may not be used for any portion of this exam.
- 3. You must show all of your work to receive credit for a correct answer.
- 4. Your answers must be written legibly in the space provided. You may use the back of a page for additional space; please indicate clearly when you do so.

Problem	Points	Score
1	15	
2	16	
3	16	
4	18	
5	8	
6	12	
7	15	
Total	100	

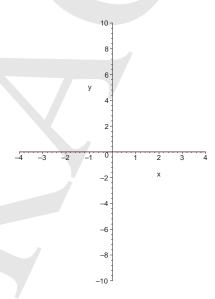
Good Luck!

- 1. (16 points) Short Answer. Fill in the blank with the word, equation, or short phrase that best completes each statement.
 - (a) The natural domain of $f(x) = \sqrt[3]{x^2 + 4x + 3}$ is
 - (b) The limit $\lim_{t\to 0} \frac{\sin t}{t}$ cannot be evaluated by substitution because ______; the value of $\lim_{t\to 0} \frac{\sin t}{t}$ is _____.
 - (c) If $\lim_{x\to\infty} f(x) = 6$, then the line _____ is a ____ asymptote of the graph of y = f(x).
 - (d) If $\lim_{x\to 6^+} f(x) =$ _____, then the line _____ is a vertical asymptote of the graph of y=f(x).
- 2. (16 points) Use the equation $y = 1 \sqrt{x}$ to answer the following questions.
 - (a) For what values of x is y = 4?
 - (b) For what values of x is y = 0?
 - (c) For what values of x is $y \ge -3$?
 - (d) Does y have a minimum value? A maximum value? If so, find it. If not, explain why not.

3. (15 points) Find the natural domain of each of the following functions.


(a)
$$f(x) = \frac{x^2 - 4}{x - 2}$$

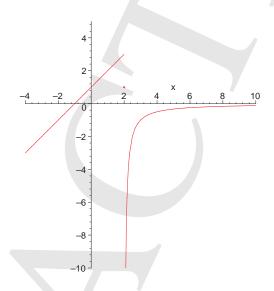
(b)
$$g(\theta) = \tan(\theta)$$


(c)
$$h(t) = \sqrt[4]{x^2 - 4}$$

4. (18 points) Sketch the graph of the following functions on the axes provided.

(a)
$$f(x) = \frac{1}{x^2 - 2x + 1}$$

(b)
$$f(x) = 3 + |x+1|$$



- 5. (8 points)
 - (a) Consider the parametric curve with $x = 16t^2 9$ and y = 3t + 4. Express this curve in the form of either y = f(x) or x = g(y).

(b) Find parametric equations for the portion of the circle $x^2 + y^2 = 1$ that lies in the second quadrant, oriented counterclockwise.

6. (12 points) For the function F graphed below, find

- (a) $\lim_{x\to 0} F(x)$
- (b) $\lim_{x\to 2} F(x)$
- (c) $\lim_{x \to 2^{-}} F(x)$
- (d) $\lim_{x \to 2^+} F(x)$
- (e) $\lim_{x \to \infty} F(x)$
- (f) $\lim_{x \to -\infty} F(x)$

7. (15 points) Find the limits.

- (a) $\lim_{x\to 0} \frac{3x+1}{2x-5}$
- (b) $\lim_{y \to 6^+} \frac{y+6}{y^2-36}$
- (c) $\lim_{x \to \infty} \frac{3x+1}{2x-5}$
- (d) $\lim_{u \to 1} \frac{u-1}{u^2+1}$
- (e) $\lim_{u \to -\infty} \frac{u-2}{u^2 + 2u + 1}$