MATH 141 (Section 1 & 2)
Prof. Meade

Exam 4
November 23, 2004

Instructions:

1. There are a total of 6 problems (including the Extra Credit problem) on 6 pages. Check that
your copy of the exam has all of the problems.

Name:
Sectioh 001 0. .

2. Calculators may not be used for any portion of this exam.

3. You must show all of your work to receive credit for a correct answer.

4. Your answers must be written legibly in the space provided. You may use the back of a page

for additional space; please indicate clearly when you do so.

Problem Points Score
1 20
2 16
3 10
4 9
5 25
6 20
Extra Credit 5
Total 100

Happy Thanksgiving!

University of South Carolina
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1. (20 points) Use the following graph of y = f/(x) to answer the following questions about the
unknown function f.

T :
g ;
4 P
/ s
7 g
I |
i
|
1
! i i

Hint: The numbers appearing in your answers must be taken from the following list:
-1.00, 0.00, 1.17, 4.00, 6.83, 10.00

(a) On what interval(s) is f increasing? f : (\(B >0 S;\y- O< XK= 4

(b) Give the z-coordinate(s) of all points where f has a relative maximum.
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(c) On what interval(s) is f concave down? :' &.ocreac_:f\\% fw i e K S

(d) Which of the following graphs is the graph of y = f(z)?  [Circle one: (i) (ii) (iv)]
(e) Which of the following graphs is the graph of y = f”(z)? [Circle one:(ii) (iii) (iv)]
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2. (16 points) Let s(t) = T be the position function of a particle moving along a coordinate

line, where s is in feet and ¢ is in seconds (¢ > 0).

T —200¢t
(a) Show that the general formula for the velocity is v(t) = ET12F
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(b) The general formula for the acceleration is a(t) = —“ﬁgfg(j_ 12)43)

of the particle. At what time does the particle attain its maximum speed?
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. Find the maximum speed
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(c Find the posi']c%'n of"the particle when it has its maximum speed.
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(d) Find the direction of motion when it has its maximum speed.
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3. (10 points) Find the absolute maximum and minimum values of f(z) = 22* — 32% — 12z on

the interval =2 <z < 1. Note: f(—2) = —4 and f(1) = -13.
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4. (9 points) Consider the problem:

A rectangular field is to be bounded by a fence on three sides and by a straight
stream on the fourth side. Find the dimensions of the field with maximum area
that can be enclosed with 1000 feet of fence.

Formulate the problem as a max/min problem on an appropriate interval.
Do not solve the problem!
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5. (25 points) Evaluate each of the following indefinite integrals.
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6. (20 points)

(a) Express the limit X L
[ Ry
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as a definite integral with a = 0 as the lower limit of integration and b = 7 as the upper
limit of integration. Do not evaluate the integral!

(b) Use the axes provided to sketch the region whose net signed area is represented by the
definite integral ¢
f 2 — 4 dz.
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Based on your sketch, do you expect this definite integral to have a positive or negative
value? Y Do not evaluate the integral!

(¢) Use properties of the definite integral and appropriate geometric formulas to evaluate
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Extra Credit (5 points)State Rolle’s Theorem.
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