

SELECTED EXAMPLES MARCH 4, 1998

GEORGE MCNULTY

Here is **gather**

Here is align

Here is **multline**

(10)
$$\int_{0}^{\infty} e^{x} dx = \infty$$
$$e^{i\pi} = -\frac{12345678}{12345678}$$
$$e^{2i\pi} = 1$$

 $\pi \approx 3.14159$

Here is \mathbf{split} inside \mathbf{gather}

(11)
$$\int_{0}^{\infty} e^{x} dx = \infty$$
$$e^{i\pi} = -\frac{12345678}{12345678}$$
$$e^{2i\pi} = \frac{123}{123}$$
(12)
$$\pi \approx 3.14159$$

The integral sign (\int) is obtained with \int .

Here is $gather^*$

$$\int_{0}^{\infty} e^{x} dx = \infty$$
$$e^{i\pi} = -1$$
$$e^{2i\pi} = 1$$
$$\pi \approx 3.14159$$

Here is **align***

$$\int_{0}^{\infty} e^{x} dx = \infty$$
$$e^{i\pi} = -1$$
$$e^{2i\pi} = 1$$
$$\pi \approx 3.14159$$

Here is **multline***

$$\int_{0}^{\infty} e^{x} dx = \infty$$
$$e^{i\pi} = -\frac{12345678}{12345678}$$
$$e^{2i\pi} = 1$$
$$\pi \approx 3.14159$$

Here is **split** inside **gather***

$$\int_{0}^{\infty} e^{x} dx = \infty$$
$$e^{i\pi} = -\frac{12345678}{12345678}$$
$$e^{2i\pi} = \frac{123}{123}$$
$$\pi \approx 3.14159$$

Here is **alignat**

(13)
$$\int_{0}^{\infty} e^{x} dx = \infty \qquad e^{i\pi} = -1$$

(14)
$$e^{2i\pi} = 1$$
 $\pi \approx 3.14159$

(15)
$$\int_0^\infty e^x \, dx = \infty e^{i\pi} = -1$$

(16)
$$e^{2i\pi} = 1 \quad \pi \approx 3.14159$$

Here is **xalignat**

(17)
$$\int_{0}^{\infty} e^{x} dx = \infty$$
 $e^{i\pi} = -1$
(18) $e^{2i\pi} = 1$ $\pi \approx 3.14159$

(
$$\pi$$
) $\int_0^\infty e^x dx = \infty$ $e^{i\pi} = -1$
 $e^{2i\pi} = 1$ $\pi \approx 3.14159$

1 + 1 = 2		a+b=c
1 + 2 = 3	and	a + c = d
3 = 1 + 2		3 = 1 + 2

x + y + some more stuff = something else Definition of a function by **cases**

$$f(x) = \begin{cases} 0 & \text{if Ralph is awake} \\ 1^{\text{does it matter}} & \text{if Ralph is asleep} \end{cases}$$

And, to conclude, some mathematical operators:

Is sin(x) the same as sin(x)? Is log x the same as log x?

Note the difference between $\lim_{n\to\infty}(1+1/n)^n=e$ and

$$\lim_{n \to \infty} (1 + 1/n)^n = e.$$