S E I R Model with Nonconstant Total Population and Vaccination

$$\dot{S} = \Lambda + (1 - \rho_c)\mu_0 N - \mu_1 S - \beta SI - \sum_{n=0}^{\infty} \rho_p S(nT^-)\delta(t - nT) \dot{E} = -\mu_1 E + \beta SI - \delta E \dot{I} = -\mu_1 I + \delta E - \gamma I - \epsilon I \dot{R} = \rho_c \mu_0 N - \mu_1 R + \gamma I + \sum_{n=0}^{\infty} \rho_p S(nT^-)\delta(t - nT) \dot{N} = \Lambda - (\mu_1 - \mu_0) N - \epsilon I$$
(1)

Analysis: No Vaccination

Theorem

Let $\rho_c = \rho_p = 0$. The reproduction number for (1) is

$$R_0 = \frac{\Lambda}{\mu_1 - \mu_0} \frac{\delta}{\mu_1 + \delta} \frac{\beta}{\mu_1 + \gamma + \epsilon}$$

- 1. If $R_0 > 1$, then the unique endemic equilibrium is globally stable and the infection-free equilibrium is unstable.
- 2. If $0 < R_0 \leq 1$, then the infection-free equilibrium is globally stable (and the endemic equilibrium is not physically realistic).

Analysis: Constant Vaccination

Theorem

- Let $\rho_c \in (0, 1]$ and $\rho_p = 0$. The reproduction number for (1) is $R_0(\rho_c) = (1 - \frac{\mu 0}{\mu 1}\rho_c)R_0$ where R_0 is the reproduction number with $\rho_c = 0$. Define $\rho_c^* = \frac{\mu_1}{\mu_0} \left(1 - \frac{1}{R_0}\right)$.
 - 1. If $0 < \rho_c < \rho_c^*$, then, since $R_0(\rho_c) > 1$, the unique endemic equilibrium is globally stable and the infection-free equilibrium is unstable.
 - 2. If $\rho_c \ge \rho_c^*$, then, since $0 < R_0(\rho_c) \le 1$, the infection-free equilibrium is globally stable (and the endemic equilibrium is not physically realistic).

Analysis: Pulse Vaccination

Conjecture

Let $\rho_c = 0$. For each $\rho_p \in (0, 1]$ and T > 0, there is a unique infection-free periodic equilibrium solution (with period T). This solution is locally asymptotically stable when the mean susceptible population over each period is below a threshold (that depends on R_0).