
S E I R Model with Nonconstant Total

Population and Vaccination

Ṡ = Λ + (1 − ρc)µ0N − µ1S − βSI

− ∑∞
n=0 ρpS(nT−)δ(t − nT )

Ė = − µ1E + βSI − δE

İ = − µ1I + δE − γI − εI

Ṙ = ρcµ0N − µ1R + γI

+
∑∞

n=0 ρpS(nT−)δ(t − nT )

Ṅ = Λ − (µ1 − µ0)N − εI

(1)
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Analysis: No Vaccination

Theorem

Let ρc = ρp = 0. The reproduction number for (1) is

R0 =
Λ

µ1 − µ0

δ

µ1 + δ

β

µ1 + γ + ε
.

1. If R0 > 1, then the unique endemic equilibrium is globally
stable and the infection-free equilibrium is unstable.

2. If 0 < R0 ≤ 1, then the infection-free equilibrium is globally
stable (and the endemic equilibrium is not physically realistic).
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Analysis: Constant Vaccination

Theorem

Let ρc ∈ (0, 1] and ρp = 0. The reproduction number for (1) is
R0(ρc) = (1 − µ0

µ1ρc)R0 where R0 is the reproduction number with

ρc = 0. Define ρ∗c = µ1
µ0

(
1 − 1

R0

)
.

1. If 0 < ρc < ρ∗c , then, since R0(ρc) > 1, the unique endemic
equilibrium is globally stable and the infection-free equilibrium
is unstable.

2. If ρc ≥ ρ∗c , then, since 0 < R0(ρc) ≤ 1, the infection-free
equilibrium is globally stable (and the endemic equilibrium is
not physically realistic).
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Analysis: Pulse Vaccination

Conjecture

Let ρc = 0. For each ρp ∈ (0, 1] and T > 0, there is a unique
infection-free periodic equilibrium solution (with period T ). This
solution is locally asymptotically stable when the mean susceptible
population over each period is below a threshold (that depends on
R0).
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