
Chapter 17

Plane and Solid Integrals

In Chapter 2 we introduced the derivative, one of the two main concepts in
calculus. Then in Chapter 15 we extended the idea to higher dimensions. In the
present chapter, we generalize the concept of the definite integral, introduced
in Chapter 6, to higher dimensions.

Take a moment to review the definite integral. Instead of using the notation
of Chapter 6, we will restate the definition in a notation that easily generalizes
to higher dimension.

We started with an interval [a, b], which we will call I, and a continuous
function f defined at each point P of I. Then we cut I into n short intervals
I1, I2, . . . , Iu, chose a point P1 in I1, P2 in I2, . . . , Pn in In. See Figure 17.0.1.
Denoting the length of Ii by Li, we formed the sum

Figure 17.0.1:

n∑
i=1

f(Pi)Li.

The limit of these sums as all the subintervals are chosen shorter and shorter
is the definite integral of f over interval I. We denoted it

∫ a
b
f(x) dx. We now

denote it
∫
I
f(P )dL. This notation tells us that we are integrating a function,

f , over an interval I. The dL reminds us that the integral is the limit of
approximations formed as the sum of products of the function value and the
length of an interval.

We will define integrals of functions over plane regions, such as square and
disks, over solid regions, such as tubes and balls, and over surfaces such as the
surface of a ball, in the same way. You can probably conjecture already what
the definition will be. These integrals are needed to compute total mass if we
know the density at each point, or total gravitational attraction, or center of
gravity, and so on.

It is one thing to define these higher-dimensional integrals. It is another to
calculate them. Most of our attention will be devoted to seeing how to compute
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1174 CHAPTER 17 PLANE AND SOLID INTEGRALS

them with the aid of so-called “iterated integrals,” which involve integrals over
intervals, the type defined in Chapter 6.
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§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS 1175

17.1 The Double Integral: Integrals Over Plane

Areas
We suggest you re-read the
introduction to this chapter
and the definition of the
definite integral

∫ b
a f(x) dx

before going on.

The goal of this section is to define the integral of a function defined in a
region of a plane. With only a slight tweaking of this definition, we will define
later in the chapter integrals over surfaces and solids.

Volume Approximated by Sums

Let R be a region in the xy plane, bounded by curves. For convenience, assume
R is convex (no dents), for example, an ellipse, a disk, a parallelogram, a
rectangle, or a square. We draw R in perspective in Figure 17.1.1(a). Imagine

(a) (b) (c)

Figure 17.1.1:

that there is a surface above R (perhaps an umbrella). The height of the
surface above point P on R is f(P ), as shown in Figure 17.1.1(b)

If you know f(P ) for every point P how would you estimate the volume,
V , of the solid under the surface and above R?

Just as we used rectangles to estimate the area of regions back in Sec-
tion 6.1, we will use cylinders to estimate the volume of a solid. Recall, from
Section 7.4, that the volume of a cylinder is the product of its height and the
area of its base.

Inspired by the approach in Section 6.1, we cut R into n small regions R1,
R2, . . . , Rn. Each Ri has area Ai. Choose points P1 in R1, P2 in R2, . . . , Pn
in Rn. Then we build a cylinder over each little region Ri. Its height will be
f(Pi). There will then be n cylinders. The total volume of these cylinders is

n∑
i=1

f(Pi)Ai. (17.1.1)

As we choose the regions R1, R2, . . . , Rn, smaller and smaller, the sum (17.1.1)
approaches the volume V , if f is a continuous function.

EXAMPLE 1 Estimate the volume of the solid under the saddle z = xy
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1176 CHAPTER 17 PLANE AND SOLID INTEGRALS

and above the rectangle R whose vertices are (1, 0), (2, 0), (2, 3), and (1, 3).SHERMAN: Changed left
edge from 0 to 1 so that

base and height are not the
same.

SOLUTION Figure 17.1.2(a) shows the solid region in question.

(a) (b) (c)

Figure 17.1.2:

The highest point is above (2, 3), where z = 6. So the solid fits in a box
whose height is 6 and whose base has area 4. So we know the volume is at
most 4 · 6 = 24.

To estimate the volume we cut the rectangular box into four 1 by 1 squares
and evaluate z = xy at, say, the center of the squares, as shown in Fig-
ure 17.1.2(b).

Then we form a cylinder for each square. The base is the square and the
height is determined by the value of xy at the center of the square. These are
shown in Figure 17.1.2(c). (The cylinder over rectangle boxes.)

Then the total volume is

3

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
5

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
9

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
15

4︸︷︷︸
height

· 1︸︷︷︸
area of base

= 8

(17.1.2)
This estimate is then 8 cubic units. We know this is an overestimate (Why?)
By cutting the base into smaller pieces and using more cylinders we could
make a more accurate estimate of the volume of the solid. �

Density

Before we consider a “total mass” problem we must define the concept of
“density.” Consider a piece of sheet metal, which we view as part of a plane.
It is homogeneous, “the same everywhere.” Let R be any region in it, of area
A and mass m. The quotient m/A is the same for all regions R, and is called
the “density.”

It may happen that the material, unlike sheet metal is not uniform. For
instance, a towel that was just used to dry dishes. As R varies, the quotient

October 22, 2010 Calculus



§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS 1177

m/A, or “average density in R,” also varies. Physicists define the density at
a point as follows.

Figure 17.1.3:

They consider a small disk R of radius r and center at P , as in Figure 17.1.4.
Let m(r) be the mass in that disk and A(r) be the area of the disk (πr2). The

“Density at P” = lim
r→0

m(r)

A(r)
.

Thus density is denoted σ(P ), “sigma of P,” σ is Greek for our letter “s”,
the initial letter of
“surface.” σ(P ) denotes
the density of a surface or
“lamina” at P .

With the physicists, we will assume the density σ(P ) exists at each point
and that it is a continuous function. In addition, we will assume that if R is a
very small region of area A and P is a point in that region then the product
σ(P )A is an approximation of the mass in R.

Total Mass Approximated by Sums

Assume that a flat region R is occupied by a material of varying density. The
density at point P in R is σ(P ). Estimate M , the total mass in R.

As expected, we cut R into n small regions R1, R2, . . . , Ri has area Ai.
We next choose points P1 in R1, P2 in R2, . . . , Pu in Rn. Then we estimate
the mass in each little region Ri, as shown in Figure 17.1.4. The mass in Ri is

Figure 17.1.4: This exam-
ple has i = 7 subregions.

approximately

σ(Pi)︸ ︷︷ ︸
density

· Ai︸︷︷︸
area

Thus
n∑
i=1

σ(P1)Ai (17.1.3)

is the total estimate. As we divide R into smaller and smaller regions, , the
sums (17.1.2) approaches the total mass M , if σ is a continuous function.

EXAMPLE 2 A rectangular lamina, of varying density occupies the rect-
angle with corners at (0, 0), (2, 0), (2, 3), and (0, 3) in the xy plane. Its density
at (x, y) is xy grams per square cm. Estimate its mass by cutting it into six 1
by 1 squares and evaluating the density at the center of each square.

SOLUTION One such square is shown in Figure 17.1.5. The density at its

Figure 17.1.5:

center is 1
2
· 1

2
= 1

4
. Since its area is 1× 1 = 1, an estimate of σ, its mass, is

1

4︸︷︷︸
density

· 1︸︷︷︸
area

=
1

4
grams.
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1178 CHAPTER 17 PLANE AND SOLID INTEGRALS

Similar estimates for the remaining six small squares gives a total estimate of

1

4
· 1 +

3

4
· 1 +

3

4
· 1 +

9

4
· 1 +

5

4
· 1 +

15

4
· 1 = 9 grams

Thus sum is identical to the sum (17.1.2), which estimates a volume. �

The arithmetic in Examples 1 and 2 show that totally unrelated problems,
one in volume, the other in mass, lead to the same estimates. Moreover, as
the rectangle is cut into smaller pieces, the estimate would become closer and
closer to the volume or the mass. These estimates, similar to the estimates∑n

i=1(f(ci)∆xi that appears in the definition of the definite integral
∫ b
a
f(x) dx,

brings us to the definition of “double integral”. It is called the double integral
because the domain of the function is in the two-dimensional plane.

——————-

The Double Integral

The definition of the double integral is almost the same as that of
∫ b
a
f(x) dx,

the integral over an interval. The only differences are:

1. instead of dividing an interval into smaller intervals, we divide a planar
region into smaller planar regions,

2. instead of a function defined on an interval, we have a function defined
on a planar region, and

3. we need a quantitative way to say that a “little” region is “small.”

To meet the need described in (3) we define the “diameter” of a planar
region. The diameter of a region bounded by a curve is the maximum distance
between two points in the region. For instance, the diameter of a square of
side s is s

√
2 and the diameter of a disk is the same as its traditional diameter

that we know from geometry.
With that aside taken care of, we are ready to define a double integral.

DEFINITION (Double Integral) Let R be a region in a plane
bounded by curves and f a continuous numerical function defined
at least on R. Partition R into smaller regions R1, R2, . . . , Rn of
respective areas A1, A2, . . . , An. Choose a point P1 in R1, P2 in
R2, . . . , Pn in Rn and form the approximating (Riemann) sum

n∑
i=1

f(Pi)Ai. (17.1.4)
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§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS 1179

Form a sequence of such partitions such that as one goes out in
the sequence of partitions, the sequence of diameters of the largest
region in each partition approaches 0. Then the sums (17.1.4)
approach a limit, which is called “the integral of f over R” or the
“double integral” of f over R. It is denoted∫

R

f(P ) dA.

Before looking at some examples, we make four brief remarks:

1. It is called a double integral because R lies in a plane, which has dimen-
sion 2.

2. We use the notion of a diameter of a region only to be able to define the
double integral.

3. It is proved in advanced calculus that the sums do indeed approach a
limit.

4. Other notations for a double integral are discussed near the end of this
section.

Our discussion of integrals over a plane region started with two important
illustrations . The rest of this section is devoted to these applications in the
context of double integrals.

Volume Expressed as a Double Integral

Consider a solid S and its projections (“shadows”) R on a plane, as in Fig-
ure 17.1.6. Assume that for each point P in R the line through P perpendicular
to R intersects S in a line segment of length C(P ). Then

Figure 17.1.6: ARTIST:
Delete the line L, and the
current caption. Add a
point P in R and draw
the vertical line through P ,
highlighting the part that is
in S (and has length c(P ).

“The double integral of cross-section is the volume.”

Volume of S =

∫
R

C(P ) dA.
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1180 CHAPTER 17 PLANE AND SOLID INTEGRALS

Mass Expressed as a Double Integral

Consider a plane distribution of mass through a region R, as shown in Fig-
ure 17.1.7. The density may vary throughout the region. Denote the density
at P by σ(P ) (in grams per square centimeters). Then

Figure 17.1.7:

“The double integral of density is the total mass.”

Mass in R =

∫
R

σ(P ) dA

Average Value as a Double Integral

The average value of f(x) for x is the interval [a, b] was defined in Section 6.3
as ∫ b

a
f(x) dx

length of interval.

We make a similar definition for a function defined on a two-dimensional region.

DEFINITION (Average value) The average value of f over the
region R is ∫

R
f(P ) dA

Area of R
.

If f(P ) is positive for all P in R, there is a simple geometric interpretation
of the average of f over R. Let S be the solid situated below the graph of f (a
surface) and above the region R. The average value of f over R is the height
of the cylinder whose base is R and whose volume is the same as the volume
of S. (See Figure 17.1.8. The integral

∫
R
f(P ) dA is called “an integral over a

Figure 17.1.8:

plane region” to distinguish it from
∫ b
a
f(x) dx, which, for contrast, is called,

“an integral over an interval.”
/mnoteSHERMAN: Duplicitous? Or needed? Shorten to margin note?

Recall that
∫
R
f(P ) dA is often denoted

∫∫
R
f(P ) dA, with the two integral

signs emphasizing that the integral is over a plane set. However, the symbol
dA, which calls to mind areas, is an adequate reminder.

The integral of the function f(P ) = 1 over a region is of special interest.
The typical approximating sum

∑n
i=1 f(Pi)Ai then equals

∑n
i=1 1 · Ai = A1 +

A2 + · · ·+An, which is the area of the region R that is being partitioned. Since
every approximating sum has this same value, it follows that

lim
n→∞

n∑
i=1

f(Pi)Ai = Area of R.
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§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS 1181

Integral Interpretation∫
R

1 dA Area of R∫
R
σ(P ) dA, σ(P ) = density Mass of R∫

R
c(P ) dA, c(P ) = length of cross section of solid Volume of R

Table 17.1.1:

Consequently The integral of a constant
function, 1, gives area.

∫
R

1 dA = Area of R.

This formula will come in handy on several occasions. The 1 is often omitted,
in which case we write

∫
R
dA = Area of R. This table summarizes some of

the main applications of the double integral
∫
R
dA:

Properties of Double Integrals

Integrals over plane regions have properties similar to those of integrals over
intervals:

1.
∫
R
cf(P ) dA = c

∫
R
f(P ) dA for any constant c.

2.
∫
R

[f(P ) + g(P )] dA =
∫
R
f(P ) dA+

∫
R
g(P ) dA.

3. If f(P ) ≤ g(P ) for all points P in R, then
∫
R
f(P ) dA ≤

∫
R
g(P ) dA.

4. If R is broken into two regions, R1 and R2, overlapping at most on their
boundaries, then∫

R

f(P ) dA =

∫
R1

f(P ) dA+

∫
R2

f(P ) dA.

For instance, consider 3 when f(P ) and g(P ) are both positive. Then
∫
R
f(P ) dA

is the volume under the surface z = f(P ) and above R in the xy plane. Simi-
larly

∫
R
g(P ) dA is the volume under z = f(P ) and above R. Then 3 asserts

that the volume of a solid is not larger than the volume of a solid that contains
it. (See Figure 17.1.9.)

Figure 17.1.9:

SHERMAN: This summary
needs to be written.
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Summary

A Word about 4-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (x, y) of real
numbers. The set of ordered triplets of real numbers (x, y, z) represents 3-
dimensional space. The set of ordered quadruplets of real numbers (x, y, z, t)
represents 4-dimensional space.
It is easy to show that 4-dimensional space is a very strange place.
In 2-dimensional space the set of points of the form (x, 0), the x-axis, meets
the set of points of the form (0, y), the y-axis, in a point, namely the origin
(0, 0). Now watch what can happen in 4-space. The set of points of the form
(x, y, 0, 0) forms a plane congruent to our familiar xy-plane. The set of points
of the form (0, 0, z, t) forms another such plane. So far, no surprise. But notice
what the intersection of those two planes is. Their intersection is just the point
(0,0,0,0). Can you picture two endless planes meeting in a single point? If so,
tell us how.
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§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS 1183

EXERCISES for Section 17.1 Key: R–routine,
M–moderate, C–challenging

1.[R] In the estimates for the volume in Example 1,
the centers of the squares were used as the Pi’s. Make
an estimate for the volume in Example 1 by using the
same partition but taking as Pi

(a) the lower left corner of each Ri,

(b) the upper right corder of each Ri.

(c) What do (a) and (b) tell about the volume of the
solid?

2.[R] Estimate the mass in Example 2 using the par-
tition of R into six squares and taking as the Pi’s

(a) upper left corners,

(b) lower right corners.

3.[R] Let R be a set in the plane whose area is A. Let
f be the function such that f(P ) = 5 for every point
P in R.

(a) What can be said about any approximating sum∑n
i=1 f(Pi)Ai formed for this R and this f?

(b) What is the value of
∫
R f(P ) dA?

4.[R] Let R be the square with vertices (1, 1), (5, 1),
(5, 5), and (1, 5). Let f(P ) be the distance from P to
the y-axis.

(a) Estimate
∫
R f(P ) dA by partitioning R into four

squares and using midpoints as sampling points.

(b) Show that 16 ≤
∫
R f(P ) dA ≤ 80.

5.[R] Let f and R be as in Example 1. Use the es-

timate of
∫
R f(P ) dA obtained in the text to estimate

the average of f over R.

6.[R] Assume that for all P in R, m ≤ f(P ) ≤ M ,
where m and M are constants. Let A be the area of
R. By examining approximating sums, show that

mA ≤
∫
R

f(P ) dA ≤MA.

7.[R]

(a) Let R be the rectangle with vertices (0, 0), (2, 0),
(2, 3), and (0, 3). Let f(x, y) =

√
x+ y. Esti-

mate
∫
R

√
x+ y dA by participating R into six

squares and choosing the sampling points to be
their centers.

(b) Use (a) to estimate the average value of f over
R.

8.[R]

(a) Let R be the square with vertices (0, 0), (0.8, 0),
(0.8, 0.8), and (0, 0.8). Let f(P ) = f(x, y) = exy.
Estimate

∫
R e

xy dA by partitioning R into 16
squares and choosing the sampling points to be
their centers.

(b) Use (a) to estimate the average value of f(P )
over R.

(c) Show that 0.64 ≤
∫
R f(P ) dA ≤ 0.64e0.64.

9.[R]

(a) Let R be the triangle with vertices (0, 0), (4, 0),
and (0, 4) shown in Figure 17.1.10. Let f(x, y) =
x2y. Use the partition into four triangles and
sampling points shown in the diagram to esti-
mate

∫
R f(P ) dA.

(b) What is the maximum value of f(x, y) in R?
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1184 CHAPTER 17 PLANE AND SOLID INTEGRALS

(c) From (b) obtain an upper bound on
∫
R f(P ) dA.

Figure 17.1.10:

10.[R]

(a) Sketch the surface z =
√
x2 + y2.

(b) Let V be the region in space below the surface in
(a) and above the square R with vertices (0, 0),
(1, 0), (1, 1), and (0, 1). Let V be the volume of
V. Show that V ≤

√
2.

(c) Using a partition of R with 16 squares, find an
estimate for V that is too large.

(d) Using the partition in (c), find an estimate for V
that is too small.

11.[R] The amount of rain that falls at point P during
one year is f(P ) inches. Let R be some geographic re-
gion, and assume areas are measured in square inches.

(a) What is the meaning of
∫
R f(P ) dA?

(b) What is the meaning of∫
R f(P ) dA
Area of R

?

12.[M] A region R in the plane is divided into two
regions R1 and R2. The function f(P ) is defined
throughout R. Assume that you know the areas of R1

and R2 (they are A1 and A2) and the average of f over
R1 and the average of f over R2 (they are f1 and f2).
Find the average of f over R. (See Figure 17.1.11(a).)

(a) (b)

Figure 17.1.11:

13.[M] A point Q on the xy plane is at a distance b
from the center of a disk R of radius a(a < b) in the
xy plane. For P in R let f(P ) = 1/

−−→
PQ. Find positive

numbers c and d such that:

c <

∫
R

f(P ) dA < d.

(The numbers c and d depend on a and b.) See Fig-
ure 17.1.11(b).

14.[M] Figure 17.1.12(a) shows the parts of some level
curves of a function z = f(x, y) and a square R. Esti-
mate

∫
R f(P ) dA, and describe your reasoning.

(a) (b)

Figure 17.1.12:

15.[M] Figure 17.1.12(b) shows the parts of some
level curves of a function z = f(x, y) and a unit circle
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§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS 1185

R. Estimate
∫
R f(P ) dA, and describe your reasoning.

16.[C]

(a) Let R be a disk of radius 1. Let f(P ), for P in
R, be the distance from P to the center of the
disk. By cutting R into narrow circular rings
with center at the center of the disk, evaluate∫
R f(P ) dA.

(b) Find the average of f(P ) over R.

Exercises 17 and 18 introduce an idea known as Monte
Carlo methods for estimating a double integral us-
ing randomly chosen points. These methods tend to be
rather inefficient because the error decreases on the or-
der of 1/

√
n, where n is the number of random points.

That is a slow rate. These methods are used only when
it’s possible to choose n very large.
17.[C] This exercise involves estimating an integral by
choosing points randomly. A computing machine can
be used to generate random numbers and thus random
points in the plane which can be used to estimate defi-
nite integrals, as we now show. Say that a complicated
region R lies in the square whose vertices are (0, 0),
(2, 0), (2, 2), and (0, 2), and a complicated function f
is defined in R. The machine generated 100 random
points (x, y) in the square. Of these, 73 lie in R. The
average value of f for these 73 points is 2.31.

(a) What is a reasonable estimate of the area of R?

(b) What is a reasonable estimate of
∫
R f(P ) dA?

18.[C] Let R be the disk bounded by the unit circle
x2 + y2 = 1 in the xy plane. Let f(x, y) = ex

2y be the
temperature at (x, y).

(a) Estimate the average value of f over R by
evaluating f(x, y) at twenty random points in
R. (Adjust your program to select each of
x and y randomly in the interval [−1, 1]. In

this way you construct a random point (x, y)
in the square whose vertices are (1, 1), (−1, 1),
(−1,−1), (1,−1). Consider only those points
that lie in R.)

(b) Use (a) to estimate
∫
R f(P ) dA.

(c) Show why π/e ≤ fRf(P ) dA ≤ πe.

19.[C] Sam is heckling again. “As usual, the authors
made this harder than necessary. They didn’t need to
introduce “diameters.” Instead they could have used
good old area. They could have taken the limit as all
the areas of the little pieces approached 0. I’ll send
them a note.”
Is Sam right?

In making finer and finer partitions as n→∞ we saw
that each Ri is small in the sense it fits in a disk of
radius rn, where rn → 0 as n → ∞. The Exercises 20
to 23 in this section explore another way to control the
size of a region.
20.[C] Consider a region R in the plane. The diame-
ter, d of R, is defined as the greater distance between
two points in R. Find the diameter of

(a) a disk of radius r,

(b) and equilateral triangle of side length s,

(c) a square whose sides have length s.

21.[C]

(a) Show that a region of diameter d can always fit
into a disk of diameter 2d.

(b) Can it alway fit into a disk of diameter d?

22.[C] If a region has diameter d,

(a) how small can its area be?

(b) show that area is less than or equal to πd2/2.SHERMAN: Is this in polar
coordinate area? If so, move
to Section 17.3 or Chapter
Summary.
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1186 CHAPTER 17 PLANE AND SOLID INTEGRALS

23.[C] The unit square can be partitioned with nine
congruent squares.

(a) What is the diameter of each of these small
squares?

(b) It is possible to partition that square into nine
regions whose largest diameter is 5/11. Show

that 5/11 is smaller than the diameter in (a).

24.[R] Some practice differentiates.

25.[R] Some practice integrals, e.g.
∫
x2+1
x3 dx, etc.
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17.2 Computing
∫
R f (P ) dA Using Rectangular

Coordinates

In this section, we will show how to use rectangular coordinates to evaluate
the integral of a function f over a plane region R,

∫
R
f(P ) dA. This method

requires that both R and f be described in rectangular coordinates. We first
show how to describe plane regions R in rectangular coordinates.

Describing R in Rectangular Coordinates

Some examples illustrate how to describe planar regions by their cross sections
in terms of rectangular coordinates.

EXAMPLE 1 Describe a disk R of radius a in a rectangular coordinates.

(a) (b)

Figure 17.2.1:

SOLUTION Introduce an xy coordinate system with its origin at the center
of the disk, as in Figure 17.2.1(a). A glance at the figure shows that x ranges
from −a to a. All that remains is to tell how y varies for each x in [−a, a].

Figure 17.2.1(b) shows a typical x in [−a, a] and corresponding cross sec-
tion. The circle has the equation x2 +y2 = a2. The top half has the description
y =
√
a2 − x2 and the bottom half, y = −

√
z2 − y2. So, for each x in [−a, a],

y varies from −
√
a2 − x2 to

√
a2 − x2. (As a check, test x = 0. Does y

vary from −
√
a2 − 02 = −a to

√
a2 − 02 = a? It does, as an inspection of

Figure 17.2.1(b) shows.)
All told, this is the description of R by vertical cross sections:

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.
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�

EXAMPLE 2 Let R be the region bounded by y = x2, the x-axis, and the
line x = 2. Describe R in terms of cross sections parallel to the y-axis.

SOLUTION A glance at R in Figure 17.2.2(a) shows that for points (x, y)
in R, x ranges from 0 to 2. To describe R completely, we shall describe the
behavior of y for any x in the interval [0, 2].

Hold x fixed and consider only the cross section above the point (x, 0). It
extends from the x-axis to the curve y = x2; for any x, the y coordinate varies
from 0 to x2. The compact description of R by vertical cross sections is:

0 ≤ x ≤ 2, 0 ≤ y ≤ x2.

�

(a) (b)

Figure 17.2.2:

EXAMPLE 3 Describe the region R of Example 2 by cross sections parallel
to the x-axis, that is, horizontal cross sections.

SOLUTION A glance at R in Figure 17.2.2(b) shows that y varies from 0
to 4. For any y in the interval [0, 4], x varies from a smallest value x1(y) to a
largest value x2(y). Note that x2(y) = 2 for each value of y in [0, 4]. To find
x1(y), utilize the fact that the point (x1(y), y) is on the curve y = x2, that is,

x1(y) =
√
y.

The compact description of R in terms of horizontal cross sections is

0 ≤ y ≤ 4,
√
y ≤ x ≤ 2.
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0 ≤ x ≤ 4, 0 ≤ y ≤ 2
and

4 ≤ x ≤ 6, 0 ≤ y ≤ 6− x.

�

EXAMPLE 4 Describe the region R whose vertices are (0, 0), (0, 6), (4, 2),
and (0, 2) by vertical cross sections and then by horizontal cross sections. (See
Figure 17.2.3.)

Figure 17.2.3:

SOLUTION Clearly, x varies between 0 and 6. For any x in the interval
[0, 4], y ranges from 0 to 2 (independently of x). For x in [4, 6], y ranges from
0 to the value of y on the line through (4, 2) and (6, 0). This line has the
equation y = 6 − x. The description of R by vertical cross sections therefore
requires two separate statements:

Use of horizontal cross sections provides a simpler description. First, y
goes from 0 to 2. For each y in [0, 2], x goes from 0 to the value of x on the
line y = 6− x. Solving this equation for x yields x = 6− y.

The compact description in terms of horizontal cross-sections is much
shorter:

0 ≤ y ≤ 2, 0 ≤ x ≤ 6− y.

�

These examples are typical. First, determine the range of one coordinate,
and then see how the other coordinate varies for any fixed value of the first
coordinate.

Evaluating
∫
R f(P ) dA by Iterated Integrals

We will offer an intuitive development of a formula for computing double in-
tegrals over plane regions.

We first develop a way for computing a double integral over a rectangle.
After applying this formula in Example 5, we make the slight modification
needed to evaluate double integrals over more general regions.

Consider a rectangular region R whose description by cross sections is

a ≤ x ≤ b, c ≤ y ≤ d,

as shown in Figure 17.2.4(a). If f(P ) ≤ 0 for all P in R, then
∫
R
f(P ) dA is the

volume V of the solid whose base is R and which has, above P , height f(P ).
(See Figure 17.2.4(b).) Let A(x) be the area of the cross section made by a
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(a) (b) (c)

Figure 17.2.4:

plane perpendicular to the x-axis and having abscissa x, as in Figure 17.2.4(c).
As was shown in Section 5.1,

V =

a∫
b

A(x) dx.

But the area A(x) is itself expressible as a definite integral:

A(x) =

d∫
c

f(x, y) dy.

Note that x is held fixed throughout the integration to find A(x). This rea-
soning provides an iterated integral whose value is V =

∫
R
f(P ) dA, namely,∫

R

f(P ) dA = V =

b∫
a

A(x) dx =

b∫
a

 d∫
c

f(x, y) dy

 dx.

In short

∫
R

f(P ) dA =

b∫
a

 d∫
c

f(x, y) dy

 dx.

An integral over a rectangle
expressed an iterated

integral
Of course, cross sections by planes perpendicular to the y-axis could be used.
Then similar reasoning shows that

∫
R

f(P ) dA =

d∫
c

 b∫
a

f(x, y) dx

 dy.
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The quantities
∫ b
a

(∫ d
c
f(x, y) dy

)
dx and

∫ d
c

(∫ b
a
f(x, y) dx

)
dy are called

iterated integrals. Usually the brackets are omitted and are written
∫ b
a

∫ d
c
f(x, y) dy dx

and
∫ d
c

∫ b
a
f(x, y) dx dy. The order of dx and dy

matters; the differential that
is on the left tells which
integration is performed
first.

EXAMPLE 5 Compute the double integral
∫
R
f(P ) dA, where R is the

rectangle shown in Figure 17.2.5(a) and the function f is defined by f(P ) =

AP
2
.

(a) (b)

Figure 17.2.5:

SOLUTION Introduce xy coordinates in the convenient manner depicted in
Figure 17.2.5(b). Then f has this description in rectangular coordinates:

f(x, y) = AP
2

= x2 + y2.

To describe R, observe that x takes all values from 0 to 4 and that for each
x the number y takes all values between 0 and 2. Thus

∫
R

f(P ) dA =

4∫
0

 2∫
0

(x2 + y2) dy

 dx.

We must first compute the inner integral The cross-sectional area
A(x).

2∫
0

(x2 + y2) dy, where x is fixed in [0, 4].

To apply the Fundamental Theorem of Calculus, first find a function F (x, y)
such that

∂F

∂y
= x2 + y2.
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Keep in mind that x is constant during this first integration.

F (x, y) = x2y +
y3

3

is such a function. The appearance of x in this formula should not disturb us,
since x is fixed for the time being. By the Fundamental Theorem of Calculus,

2∫
0

(x2 + y2) dy =

(
x2y +

y3

3

)∣∣∣∣y=2

y=0

=

(
x2 · 2 +

23

3

)
−
(
x2 · 0 +

03

3

)
= 2x2 +

8

3
.

The notation |y=2
y=0 reminds

us that y is replaced by 0
and 2.

The formula 2x2 + 8
3

is the area A(x) discussed earlier in this section.
Now compute

4∫
0

A(x) dx =

4∫
0

(2x2 +
8

3
) dx.

By the Fundamental Theorem of Calculus,

4∫
0

(
2x2 +

8

3

)
dx =

(
2x3

3
+

8x

3

)∣∣∣∣4
0

=
160

3
.

How do these compare with
the estimates in

Section 17.1?
Hence the two-dimensional definite integral has the value 160

3
. The volume

of the region in Problem 1 of Sec. 16.1 is 160
3

cubic inches. The mass in
Problem 2 is 160

3
grams. �

If R is not a rectangle, the repeated integral that equals
∫
R
f(P ) dA differs

from that for the case where R is a rectangle only in the intervals of integration.
If R has the description

a ≤ x ≤ b y1(x) ≤ y ≤ y2(x),

by cross sections parallel to the y-axis, then

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Figure 17.2.6:

Similarly, if R has the description

c ≤ y ≤ d x1(y≤x ≤ x2(y),

by cross sections parallel to the x-axis, then
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∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

The intervals of integration are determined by R; the function f influences
only the integrand. (See Figure 17.2.7.)

Figure 17.2.7:

In the next example R is the region bounded by y = x2, x = 2, and
y = 0; the function is f(x, y) = 3xy. The integral

∫
R

3xy dA has at least three
interpretations:

Figure 17.2.8:

1. If at each point P = (x, y) in R we erect a line segment above P of
length 3xy, then the integral is the volume of the resulting solid. (See
Figure 17.2.8.)

2. If the density of matter at (x, y) in R is 3xy, then
∫
R

3xy dA is the total
mass in R.

3. If the temperature at (x, y) in R is 3xy then
∫
R

3xy dA divided by the
area of R is the average temperature in R.

EXAMPLE 6 Evaluate
∫
R

3xy dA over the region R shown in Figure 17.2.9.

Figure 17.2.9:

This is the same R as in
Examples 2 and 3.SOLUTION If cross sections parallel to the y-axis are used, then R is de-

scribed by
0 ≤ x ≤ 2 0 ≤ y ≤ x2.

Thus ∫
R

3xy dA =

2∫
0

 x2∫
0

3xy dy

 dx,

which is easy to compute. First, with x fixed,

x2∫
0

3xy dy =

(
3x
y2

2

)∣∣∣∣y=x2

y=0

= 3x
(x2)2

2
− 3x

02

2
=

3x5

2
.

Then,
2∫

0

3x5

2
dx =

3x6

12

∣∣∣∣2
0

= 16.
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(a) (b)

Figure 17.2.10:

Figure 17.2.10(a) shows which integration is performed first.

The region R can also be described in terms of cross sections parallel to
the x-axis:

0 ≤ y ≤ 4
√
y ≤ x ≤ 2.

In this case, the double integral is evaluated as:

∫
R

3xy dA =

4∫
0

 2∫
√
y

3xy dx

 dy,

which, as the reader may verify, equals 16. See Figure 17.2.10(b). �

In Example 6 we could evaluate
∫
R
f(P ) dA by cross sections in either

direction. In the next example we don’t have that choice.

Figure 17.2.11:

EXAMPLE 7 A triangular lamina is located as in Figure 17.2.11. Its
density at (x, y) is ey

2
. Find its mass, that is

∫
R
f(P ) dA, where f(x, y) = ey

2
.

SOLUTION The description of R by vertical cross sections is

0 ≤ x ≤ 2,
x

2
≤ y ≤ 1.

Hence ∫
R

f(P ) dA =

2∫
0

 1∫
x/2

ey
2

dy

 dx.
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Since ey
2

does not have an elementary antiderivative, the Fundamental Theo-
rem of Calculus is useless in computing

1∫
x/2

ey
2

dy.

So we try horizontal cross sections instead. The description of R is now

0 ≤ y ≤ 1, 0 ≤ x ≤ 2y.

This leads to a different iterated integral, namely:

∫
R

f(P ) dA =

1∫
0

 2y∫
0

ey
2

dx

 dy.

The first integration,
∫ 2

0
ey

2
dx, is easy, since y is fixed; the integrand is Note that the integrand

does not depend on x.constant. Thus

2y∫
0

ey
2

dx = ey
2

2y∫
0

1 dx = ey
2

x
∣∣∣x=2y

x=0
= ey

2

2y.

The second definite integral in the repeated integral is thus
∫ 1

0
ey

2
2y dy, which

can be evaluated by the Fundamental Theorem of Calculus, since d(ey
2
)/dy =

ey
2
2y:

1∫
0

ey
2

2y dy = ey
2
∣∣∣1
0

= e12 − e02

= e− 1.

The total mass is e− 1. �
Notice that computing a definite integral over a plane region R involves,

first, a wise choice of an xy-coordinate system; second, a description of R
and f relative to this coordinate system; and finally, the computation of two
successive definite integrals over intervals. The order of these integrations
should be considered carefully since computation may be much simpler in one
than the other. This order is determined by the description of R by cross
sections.

Summary

We showed that the integral of f(P ) over a plane region R can be evaluated
by an iterated integral, where the limits of integration are determined by R
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(not by f). If each line parallel to the y-axis meets R in at most two points
then R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)

and ∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

If each line parallel to the x-axis meets R in at most two points, then,
similarly, R can be described in the form

c ≤ y ≤ d x1(y) ≤ x ≤ x2(y)

and ∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

A Few Words on Notation
We use the notation

∫
f(P ) dA or

∫
R
f(P ) dA for a (double) integral over

a plane region,
∫
f(P ) dS or

∫
S f(P ) dS for an integral over a surface, and∫

f(P ) dV or
∫
R
f(P ) dV for a (triple) integral over a region in space. The

symbols dA, dS, and dV indicate the type of set over which the integral is
defined.

Many people traditionally use repeated integral signs to distinguish di-
mensions. For instance they would write

∫
f(P ) dA as

∫∫
f(P )dA or∫∫

f(x, y) dxdy. Similarly, they denote a triple integral by
∫∫∫

f(P ) dxdydz.
We use the single-integral-sign notation for all integrals for three reasons:

1. it is free of any coordinate system

2. it is compact (uses the fewest symbols):
∫

for “integral”, f(P ) or f for
the integrand, and dA, dS, or dV for the set

3. it allows the symbols
∫∫

and
∫∫∫

to be reserved for use exclusively for
iterated integrals.

Iterated integrals are a completely different mathematical object. Each integral
in an iterated integral is an integral over an interval. Note that this means we
we write dx (or dy or dz) only when we are talking about an integral over an
interval.
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EXERCISES for Section 17.2 Key: R–routine,
M–moderate, C–challenging

Exercises 1 to 12 provide practice in describing plane
regions by cross sections in recangular coordinates. In
each exercise, describe the region by (a) vertical cross
sections and (b) horizontal cross sections.
1.[R] The triangle whose vertices are (0, 0), (2, 1),
(0, 1).

2.[R] The triangle whose vertices are (0, 0), (2, 0),
(1, 1).

3.[R] The parallelogram with vertices (0, 0), (1, 0),
(2, 1), (1, 1).

4.[R] The parallelogram with vertices (2, 1), (5, 1),
(3, 2), (6, 2).

5.[R] The disk of radius 5 and center (0, 0).

6.[R] The trapezoid with vertices (1, 0), (3, 2),
(3, 3),(1, 6).

7.[R] The triangle bounded by the lines y = x,
x+ y = 2, and x+ 3y = 8.

8.[R] The region bounded by the ellipse 4x2 +y2 = 4.

9.[R] The triangle bounded by the lines x = 0, y = 0,
and 2x+ 3y = 6.

10.[R] The region bounded by the curves y = ex,
y = 1− x, and x = 1.

11.[R] The quadrilateral bounded by the lines y = 1,
y = 2, y = x, y = x/3.

12.[R] The quadrilateral bounded by the lines x = 1,
x = 2, y = x, y = 5− x.

In Exercises 13 to 16 draw the regions and describe
them by horizontal cross sections.

13.[R] 0 ≤ x ≤ 2,
2x ≤ y ≤ 3x
14.[R] 1 ≤ x ≤ 2,
x3 ≤ y ≤ 2x2

15.[R] 0 ≤ x ≤ π/4,

0 ≤ y ≤ sinx and π/4 ≤
x ≤ π/2, 0 ≤ y ≤ cosx
16.[R] 1 ≤ x ≤ e,
(x−1)/(e−1? ≤ y ≤ lnx

In Exercises 17 to 22 evaluate the iterated integrals.

17.[R]
∫ 1

0

(∫ x
0 (x+ 2y) dy

)
dx

18.[R]
∫ 2

1

(∫ 2x
x dy

)
dx

19.[R]
∫ 2

0

(∫ x2

0 xy2 dy
)
dx

20.[R]
∫ 2

1

(∫ y
0 e

x+y dx
)
dy

21.[R]
∫ 2

1

(∫ √y
0 yx2 dx

)
dy

22.[R]
∫ 1

0

(∫ x
0 y sin(πx) dy

)
dx

23.[R] Complete the calculation of the second iter-
ated integral in Example 6.

24.[R]

(a) Sketch the solid region S below the plane z =
1 + x + y and above the triangle R in the place
with vertices (0, 0), (1, 0), (0, 2).

(b) Describe R in terms of coordinates.

(c) Set up an iterated integral for the volume of S.

(d) Evaluate the expression in (c), and show in
the manner of Figure 17.2.10(a) and 17.2.10(b)
which integration you performed first.

(e) Carry out (c) and (d) in the other order of inte-
gration.

25.[R] Let S be the solid region below the paraboloid
z = x2 + 2y2 and above the rectangle in the xy plane
with vertices (0, 0), (1, 0), (1, 2), (0, 2). Carry out the
steps of Exercise 24 in this case.

26.[R] Let S be the solid region below the saddle
z = xy and above the triangle in the xy plane with
vertices (1, 1), (3, 1), and (1, 4). Carry out the steps of
Exercise 24 in this case.

27.[R] Let S be the solid region below the saddle
z = xy and above the region n the first quadrant of
the xy plane bounded by the parabolas y = x2 and
y = 2x2 and the line y = 2. Carry out the steps of
Exercise 24 in this case.

28.[R] Find the mass of a thin lamina occupying the
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finite region bounded by y = 2x2 and y = 5x − 3 and
whose density at (x, y) is xy.

29.[R] Find the mass of a thin lamina occupying
the triangle whose vertices are (0, 0), (1, 0), (1, 1) and
whose density at (x, y) is 1/(1 + x2).

30.[R] The temperature at (x, y) is T (x, y) =
cos(x + 2y). Find the average temperature in the
triangle with vertices (0, 0), (1, 0), (0, 2).

31.[R] The temperature at (x, y) is T (x, y) = ex−y.
Find the average temperature in the region in the first
quadrant bounded by the triangle with vertices (0, 0),
(1, 1), and (3, 1).

In each of Exercises 32 to 35 replace the given iterated
integral by an equivalent one with the order of integra-
tion reversed. First sketch the region R of integration.
32.[R]

∫ 2
0

(∫ x2

0 x3y dy
)
dx

33.[R]
∫ π/2

0

(∫ cosx
0 x2 dy

)
dx

34.[R]
∫ 1

0

(∫ x
x/2 xy dy

)
dx+

∫ 2
1

(∫ 1
x/2 xy dy

)
dx

35.[R]
∫ 0
−1/
√

2

(∫ √1−x2

−x x3y dy
)
dx+

∫ 1
0

(∫ √1−x2

0 x3y dy
)
dx

In Exercises 36 to 39 evaluate the iterated integrals.
First sketch the region of integration.

36.[R]
∫ 1

0

(∫ 1
x sin(y2) dy

)
dx

37.[R]
∫ 1

0

(∫ 1√
x

dy√
1+y3

)
dx

38.[R]
∫ 1

0

(∫ 1
3
√
y

√
1 + x4/dx

)
dy

39.[R]
∫ 2

1

(∫ y
1

lnx
x dx

)
dy+∫ 4

2

(∫ 2
y/2

lnx
x dx

)
dy

40.[R] Let f(x, y) = y2ey
2

and let R be the triangle
bounded by y = a, y = x/2, and y = x. Assume that
a is positive.

(a) Set up two repeated integrals for
∫
R f(P ) dA.

(b) Evaluate the easier one.

41.[R] Let R be the finite region bounded by the curve
y =
√
x and the line y = x. Let f(x, y) = (sin(y))/y if

y 6= 0 and f(x, 0) = 1. Compute
∫
R f(P ) dA.
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17.3 Computing
∫
R f (P ) dA Using Polar Coor-

dinates

This section shows how to evaluate
∫
R
f(P ) dA by using polar coordinates.

This method is especially appropriate when the region R has a simple de-
scription in polar coordinates, for instance, if it is a disk or cardioid. As in
Section 17.2, we first examine how to describe cross sections in polar coordi-
nates. Then we describe the iterated integral in polar coordinates that equals∫
R
f(P ) dA.

Describing R in Polar Coordinates

In describing a region R in polar coordinates, we first determine the range of θ
and then see how r varies for any fixed value of θ. (The reverse order is seldom
useful.) Some examples show how to find how r varies for each θ.

EXAMPLE 1 Let R be the disk of radius a and center at the pole of a
polar coordinate system. (See Figure 17.3.1.) Describe R in terms of cross
sections by rays emanating from the pole.

Figure 17.3.1:

SOLUTION To sweep out R, θ goes from 0 to 2π. Hold θ fixed and con-
sider the behavior of r on the ray of angle θ. Clearly, r goes from 0 to a,
independently of θ. (See Figure 17.3.1.) The complete description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

�

EXAMPLE 2 R Let R be the region between the circles r = 2 cos θ and
r = 4 cos θ. Describe R in terms of cross sections by rays from the pole. (See
Figure 17.3.2.)

Figure 17.3.2:

SOLUTION To sweep out this region, use the rays from θ = −π/2 to θ =
π/2. for each such θ, r varies from 2 cos θ to 4 cos θ. The complete description
is

−π
2
≤ θ ≤ π

2
, 2 cos θ ≤ r ≤ 4 cos θ.

�
As Examples 1 and 2 suggest, polar coordinates provide simple descriptions

for regions bounded by circles. The next example shows that polar coordinates
may also provide simple descriptions of regions bounded by straight lines,
especially if some of the lines pass through the origin.

EXAMPLE 3 Let R be the triangular region whose vertices, in rectangular
coordinates, are (0, 0), (1, 1), and (0, 1). Describe R in polar coordinates.

Figure 17.3.3: ARTIST:
Show typical ray, as in Fig-
ure 17.3.2.
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SOLUTION Inspection of R in Figure 17.3.3 shows that θ varies from π/4
to π/2. For each θ, r goes from 0 until the point (r, θ) is on the line y = 1, that
is, on the line r sin(θ) = 1. Thus the upper limit of r for each θ is 1/ sin(θ).
The description of R is

π

4
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

sin(θ)
.

� In general, cross sections by rays lead to descriptions of plane regions of the

form:

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

A Basic Difference Between Rectangular and Polar Co-
ordinates

Before we can set up an iterated integral in polar coordinates for
∫
R
f(P ) dA

we must contrast certain properties of rectangular and polar coordinates.
Consider all points (x, y) in the plane that satisfy the inequalities

x0 ≤ x ≤ x0 + ∆x and y0 ≤ y ≤ y0 + ∆y,

where x0, ∆x, y0 and ∆y are fixed numbers with ∆x and ∆y positive. The
set is a rectangle of sides ∆x and ∆y shown in Figure 17.3.4(a). The area of
this rectangle is simply the product of ∆x and ∆y; that is,

Area = ∆x∆y. (17.3.1)

This will be contrasted with the case of polar coordinates.

(a) (b)

Figure 17.3.4:
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Consider the set in the plane consisting of the points (r, θ) such that

r0 ≤ r ≤ r0 + ∆r and θ0 ≤ θ ≤ θ0 + ∆θ,

where r0, ∆r, θ0 and ∆θ are fixed numbers, with r0, ∆r, θ0 and ∆θ all positive,
as shown in Figure 17.3.4(b). The exact area is found in

Exercise 32.When ∆r and ∆θ are small, the set is approximately a rectangle, one side
of which has length ∆r and the other, r0∆θ. So its area is approximately
r0∆r∆θ. In this case,

Area ≈ r0∆r∆θ. (17.3.2)

The area is not the product of ∆r and ∆θ. (It couldn’t be since ∆θ is in
radians, a dimensionless quantity – “arc length subtended on a circle divided
by length of radius” – so ∆r∆θ has the dimension of length, not of area.) The
presence of this extra factor r0 will be reflected in the integrand we use when
integrating in polar coordinates.

It is necessary to replace dA by r dr dθ, not simply by dr dθ.

How to Evaluate
∫
R f(P ) dA by an Iterated Integral in

Polar Coordinates

The method for computing
∫
R
f(P ) dA with polar coordinates involves an iter-

ated integral where the dA is replaced by r dr dθ. A more detailed explanation
of why the r must be added is given at the end of this section. Notice the factor r in the

integrand.

Evaluating
∫
R
f(P ) dA in Polar Coordinates

1. Express f(P ) in terms of r and θ: f(r, θ).

2. Describe the region R in polar coordinates:

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

3. Evaluate the iterated integral:

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

Figure 17.3.5:
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EXAMPLE 4 Let R be the semicircle of radius a shown in Figure 17.3.5.
Let f(P ) be the distance from a point P to the x-axis. Evaluate

∫
R
f(P ) dA

by an iterated integral in polar coordinates.
SOLUTION In polar coordinates, R has the description

0 ≤ θ ≤ π, 0 ≤ r ≤ a.

The distance from P to the x-axis is, in rectangular coordinates, y. Since
y = r sin(θ), f(P ) = r sin(θ). Thus,Notice the extra r in the

integrand. ∫
R

f(P ) dA =

π∫
0

 a∫
0

(r sin(θ))r dr

 dθ.

From here on the
calculation are like those in

the preceding section.
The calculation of the iterated integral is like that for an iterated integral

in rectangular coordinates. First, evaluate the inside integral:

a∫
0

r2 sin(θ) dr = sin(θ)

a∫
0

r2 dr = sin(θ)

(
r3

3

)∣∣∣∣a
0

=
a3 sin(θ)

3
.

The outer integral is therefore

π∫
0

a3 sin θ

3
dθ =

a3

3

π∫
0

sin θ dθ =
a3

3
(− sin θ)

∣∣∣∣π
0

=
a3

3
[(− cos π)− (− cos 0)] =

a3

3
(1 + 1) =

2a3

3
.

Thus ∫
R

y dA =
2a3

3
.

�
Example 5 refers to a ball of radius a. Generally, we will distinguish be-

tween a ball, which is a solid region, and a sphere, which is only the surface
of a ball.

EXAMPLE 5 A ball of radius a has its center at the pole of a polar co-
ordinate system. Find the volume of the part of the ball that lies above the
plane region R bounded by the curve r = a cos(θ). (See Figure 17.3.6.)

Figure 17.3.6:

SOLUTION It is necessary to describe R and f in polar coordinates, where
f(P ) is the length of a cross section of the solid made by a vertical line through
P . R is described as follows: r goes 0 to a cos(θ) for each θ in [−π/2, π/2],
that is,

−π
2
≤ θ ≤ π

2
, 0 ≤ r ≤ a cos θ.
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To express f(P ) in polar coordinates, consider Figure 17.3.7, which shows the

Figure 17.3.7:

top half of a ball of radius a. By the Pythagorean Theorem,

r2 + (f(r, θ))2 = a2.

Thus
f(r, θ) =

√
a2 − r2.

Consequently,

Volume =

∫
R

f(P ) dA =

π/2∫
−π/2

 a cos(θ)∫
0

√
z2 − r2r dr

 dθ.

Exploiting symmetry, compute half the volume, keeping θ in [0, π/2], and then Remember to double.

double the result:

a cos(θ)∫
0

√
a2 − r2r dr =

−(a2 − r2)3/2

3

∣∣∣∣a cos(θ)

0

= −
(

(a2 − a2 cos2(θ))3/2

3
− (a2)3/2

3

)

=
a3

3
− (a2 − a2 cos2(θ))3/2

3
=
a3

3
− a3(1− cos2(θ))3/2

3

=
a3

3
(1− sin3(θ)).

(The trigonometric formula used above, sin(θ) =
√

1− cos2(θ), is true when
0 ≤ θ ≤ π/2 but not when −π/2 ≤ θ ≤ 0.)

Then comes the second integration:

π/2∫
0

a3

3
(1− sin3(θ)) dθ =

a3

3

π/2∫
0

(1− (1− cos2(θ)) sin(θ)) dθ

=
a3

3

π/2∫
0

1− sin(θ)− cos2(θ) sin(theta) dθ

=
a3

3

(
θ + cos(θ)− cos3(θ)

3

)∣∣∣∣π/2
0

=
a3

3

[
π

2
−
(

1− 1

3

)]
= a3

(
3π − 4

18

)
.

The total volume is twice is large: We remembered.

a3

(
3π − 4

9

)
.
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�

EXAMPLE 6 A circular disk of radius a is formed of a material which had
a density at each point equal to the distance from the point to the center.

(a) Set up an iterated integral in rectangular coordinates for the total mass
of the disk.

(b) Set up an iterated integral in polar coordinates for the total mass of the
disk.

(c) Compute the easier one.

Figure 17.3.8:

SOLUTION The disk is shown in Figure 17.3.8.

(a) (Rectangular coordinates) The density σ(P ) at the point (P ) = (x, y) is√
x2 + y2. The disk has the description

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.

Thus

Mass =

∫
R

σ(P ) dA =

a∫
−a


√
a2−x2∫

−
√
a2−x2

√
x2 + y2 dy

 dx.

(b) (Polar coordinates) The density σ(P ) at P = (r, θ) is r. The disk has
the description

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

Thus

Mass =

∫
R

σ(P ) dA =

2π∫
0

 a∫
0

r · r dr

 dθ =

2π∫
0

 a∫
0

r2 dr

 dθ.

(c) Even the first integration in the iterated integral in (a) would be tedious.
However, the iterated integral in (b) is a delight: The first integration
gives

a∫
0

r2 dr =
r3

3

∣∣∣∣a
0

=
a3

3
.
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The second integration gives

2π∫
0

a3

3
dθ =

a3θ

3

∣∣∣∣2π
0

=
2πa3

3
.

The total mass is 2πa3/3.

�

A Fuller Explanation of the Extra r in the Integrand

Consider
∫
R
f(P ) dA as the region in the plane bound by the circle r = a and

r = b and the range θ = α and θ = β. Break it into n2 little pieces with
the aid of the partitions r0 = a, r1, ri, rn = b and θ0 = α, θ1, θj, θn = β. For
convenience, assume that all ri−ri−1 are equal to ∆r and all θj−θj−1 are equal
to ∆θ. (See Figure 17.3.9(a).) The typical patch, shown in Figure 17.3.9(b),

(a) (b)

Figure 17.3.9: (b) Pij is
(
rj+rj+1

2
,
θj+θi−1

2

)
has area, exactly

Aij =
(rj + rj−1)

2
(rj − rj−1)(θi − θi−1),

as shown in Exercise 6.
Then the sum of the n2 terms of the form f(Pij)Aij is an estimate of∫

R
f(P ) dA.

Figure 17.3.10:

Let us look closely at the summand for the n patches between the rays
θ = θi−1 and θ = θi, as shown in Figure 17.3.10.
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The sum is
n∑
j=1

f

(
rj + rj−1

2
,
θi + θi−1

2

)
rj + rj+1

2
∆r∆θ. (17.3.3)

In (17.3.3), θi, θi−1, and ∆θ are constants. If we define g(r, θ) to be f(r, θ)r,
then the sum is (

n∑
i−1

g

(
rj + rj+1

2
,
θi + θi−1

2

)
∆r

)
∆θ. (17.3.4)

The sum in brackets in (17.3.4) is an estimate of

b∫
a

g

(
r,
θj + θj−1

2

)
dr.

Thus the sum, corresponding to the region between the rays θ = θi and θ =
θi−1, is

n∑
i=1

b∫
a

g

(
r,
θi + θi−1

2

)
dr ∆θ. (17.3.5)

Now let h(θ) =
∫ b
a
g(r, θ) dr. Then (17.3.5) equals

n∑
i=1

h

(
θi + θi−1

2

)
∆θ.

This is an estimate of
∫ b
a
f(θ) dθ. Hence the sum of all n2 little terms of the

form f(Pij)Aij is an approximation of

β∫
α

h(θ) dθ =

β∫
α

 b∫
a

g(r, θ) dr

 dθ =

β∫
α

 b∫
a

f(r, θ)r dr

 dθ.

The extra factor r appears as we obtained the first integral,
∫ b
a
f(r, θ)r dr.

The sum of the n2 terms Aij, which we knew approximated the double integral∫
R
f(P ) dA, we now see approximate also the iterated integral (17.3.6). Taking

limits as n→∞ show that the iterated integral equals the double integral.

Summary

We saw how to calculate an integral
∫
R
f(P ) dA by introducing polar coordi-

nates. In this case, the plane region R can be described, in polar coordinates,
as

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)
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then ∫
R

f(P ) dA =

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

The extra r in the integrand is due to the fact that a small region corresponding
to changes dr and dθ has area area approximately r dr dθ (not dr dθ). Polar
coordinates are convenient when either the function f or the region R has a
simple description in terms of r and θ.
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EXERCISES for Section 17.3 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 6 draw and describe the given regions
in the form α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).
1.[R] The region inside the curve r = 3 + cos(θ).
2.[R] The region between the curve r = 3 + cos(θ)
and the curve r = 1 + sin(θ).
3.[R] The triangle whose vertices have the rectangu-
lar coordinates (0, 0),(1, 1), and (1,

√
3).

4.[R] The circle bounded by the curve r = 3 sin(θ).

5.[R] The region shown in Figure 17.3.11.

Figure 17.3.11:

6.[R] The region in the loop of the three-leaved rose,
r = sin(3θ), that lies in the first quadrant.

7.[R]

(a) Draw the region R bounded by the lines y = 1,
y = 2, y = x, y = x/

√
3.

(b) Describe R in terms of horizontal cross sections,

(c) Describe R in terms of vertical cross sections,

(d) Describe R in terms of cross sections by polar
rays.

8.[R]

(a) Draw the region R whose description is given by

−2 ≤ y ≤ 2, −
√

4− y2 ≤ x ≤
√

4− y2.

(b) Describe R by vertical cross sections.

(c) Describe R by cross sections obtained using po-
lar rays.

9.[R] Describe in polar coordinates the square whose
vertices have rectangular coordinates (0, 0), (1, 0),
(1, 1), (0, 1).

10.[R] Describe the trapezoid whose vertices have
rectangular coordinates (0, 1), (1, 1), (2, 2), (0, 2).

(a) in polar coordinates,

(b) by horizontal cross sections,

(c) by vertical cross sections.

In Exercises 5 to 14 draw the regions and evaluate∫
R r

2 dA for the given regions R.

11.[R] −π/2 ≤ θ ≤ π/2,
0 ≤ r ≤ cos(θ)
12.[R] 0 ≤ θ ≤ π/2,
0 ≤ r ≤ sin2(θ)
13.[R] 0 ≤ θ ≤ 2π,

0 ≤ r ≤ 1 + cos(θ)

14.[R] 0 ≤ θ ≤ 0.3,
0 ≤ r ≤ sin 2(θ)

In Exercises 15 to 18 draw R and evaluate
∫
R y

2 dA for
the given regions R.
15.[R] The circle of radius a, center at the pole.
16.[R] The circle of radius a with center at (a, 0) in
polar coordinates.
17.[R] The region within the cardioid r = 1 + sin θ.

18.[R] The region within one leaf of the four-leaved
rose r = sin 2θ.

In Exercises 19 and 20, use iterated integrals in polar
coordinates to find the given point.
19.[R] The center of mass of the region within the
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cardioid r = 1 + cos(θ).
20.[R] The center of mass of the region within the
leaf r = cos 3(θ) that lies along the polar axis.

The average of a function f(P ) over a region R in the
plane is defined as

∫
R f(P ) dA divided by the area of

R. In each of Exercises 21 to 24, find the average of
the given function over the given region.
21.[R] f(P ) is the distance from P to the pole; R is
one leaf of the three-leaved rose, r = sin(3θ).
22.[R] f(P ) is the distance from P to the x-axis; R
is the region between the rays θ = π/6, θ = π/4, and
the circles r = 2, r = 3.
23.[R] f(P ) is the distance from P to a fixed point
on the border of a disk R of radius a. (Hint: Choose
the pole wisely.)
24.[R] f(P ) is the distance from P to the x-axis; R
is the region within the cardioid r = 1 + cos(θ).

In Exercises 25 to 28 evaluate the given iterated in-
tegrals using polar coordinates. Pay attention to the
elements of each exercise that makes it appropriate for
evaluation in polar coordinates.

25.[R]
∫ 1

0

(∫ x
0

√
x2 + y2 dy

)
dx

26.[R]
∫ 1

0

(∫ √1−x2

0 x3 dy
)
dx

27.[R]
∫ 1

0

(∫ √1−x2

x xy dy
)
dx

28.[R]
∫ 2

1

(∫ √3x

x/
√

3
(x2 + y2)3/2 dy

)
dx

29.[R] Evaluate the integrals over the given regions.

(a)
∫
R cos(x2 + y2) dA; R is the portion in the first

quadrant of the disk of radius a centered at the
origin.

(b)
∫
R

√
x2 + y2 dA; R is the triangle bounded by

the line y = x, the line x = 2, and the x-axis.

30.[R] Find the volume of the region above the
paraboloid z = x2+y2 and below the plane z = x+y.

31.[R] The area of a region R is equal to
∫
R 1 dA.

Use this to find the area of a disk of radius a. (Use an
iterated integral in polar coordinates.)

32.[R] Find the area of the shaded region in Fig-
ure 17.3.4(b) as follows:

(a) Find the area of the ring between two circles, one
of radius r0, the other of radius r0 + ∆r.

(b) What fraction of the area in (a) is included be-
tween two rays whose angles differ by ∆θ?

(c) Show that the area of the shaded region in Fig-
ure 17.3.4(b) is precisely(

r0 +
∆r
2

)
∆r∆θ.

33.[R] Evaluate the repeated integral

π/2∫
−π/2

 a cos(θ)∫
0

√
a2 − r2 r dr

 dθ

directly. The result should still be a3(3π − 4)/9. (In
Example 5 we computed half the volume and doubled
the result.)
Caution: Use trigonometric formulas with care.
Prior to beginning Exercise 34, consider the following
two quotes:

Once when lecturing to a class he [the
physicist Lord Kelvin] used the word
“mathematician” and then interrupting
himself asked the class: “Do you know
what a mathematician is?” Stepping
to his blackboard he wrote upon it:∫∞
−∞ e

−x2
dx =

√
π. Then putting his fin-

ger on what he had written, he turned to
his class and said, “A mathematician is
one to whom this is as obvious as that
twice two makes four is to you.”

S. P. Thompson, in Life of Lord Kelvin (Macmillan,
London, 1910).

Many things are not accessible to intuition
at all, the value of

∫∞
0 e−x

2
dx for instance.
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J. E. Littlewood, “Newton and the Attraction of the
Sphere”, Mathematical Gazette, vol. 63, 1948.

34.[M] This exercise shows that
∫∞

0 e−x
2
dx =

√
π

2 .
Let R1, R2, and R3 be the three regions indicated in
Figure 17.3.12, and f(P ) = e−r

2
where r is the dis-

tance from P to the origin. Hence, f(r, θ) = e−r
2

in polar coordinates and in rectangular coordinates
f(x, y) = e−x

2−y2 . Note: Observe that R1 is inside
R2 and R2 is inside R3.

(a) Show that
∫
R1
f(P ) dA = π

4

(
1− e−a2

)
and that∫

R3
f(P ) dA = π

4

(
1− e−2a2

)
.

(b) By considering
∫
R2
f(P ) dA and the results in

(a), show that

π

4

(
1− e−a2

)
<

 ∞∫
0

e−x
2
dx

2

<
π

4

(
1− e−2a2

)
.

(c) Show that
∫∞

0 e−x
2
dx =

√
π

2 .

(a) (b) (c)

Figure 17.3.12:

35.[R] Figure 17.3.13 shows the “bell curve” or
“normal curve” often used to assign grades in large
classes. Using the fact established in Exercise 34 that∫∞

0 e−x
2
dx =

√
π/2, show that the area under the

curve in Figure 17.3.13 is 1.

Figure 17.3.13:

36.[R] (The spread of epidemics.) In the theory of
a spreading epidemic it is assumed that the probabil-
ity that a contagious individual infects an individual D
miles away depends only on D. Consider a population
that is uniformly distributed in a circular city whose
radius is 1 mile. Assume that the probability we men-
tioned is proportional to 2−D. For a fixed point Q let
f(P ) = 2 − PQ. Let R be the region occupied by the
city.

(a) Why is the exposure of a person residing
at Q proportional to

∫
R f(P ) dA, assuming

that contagious people are uniformly distributed
throughout the city?

(b) Compute this definite integral when Q is the cen-
ter of town and when Q is on the edge of town.

(c) In view of (b), which is the safer place?

Transportation problems lead to integrals over plane
sets, as Exercises 37 to 40 illustrate.
37.[R] Show that the average travel distance from the
center of a disk of area A to points in the disk is pre-
cisely 2

√
A/(3

√
)π ≈ 0.376

√
A.

38.[R] Show that the average travel distance from the
center of a regular hexagon of area A to points in the

October 22, 2010 Calculus



§ 17.3 COMPUTING
∫
R F (P ) DA USING POLAR COORDINATES 1211

hexagon is
√

2A
33/4

(
1
3

+
ln 3
4

)
≈ 0.377

√
A.

39.[R] Show that the average travel distance from the
center of a square of area A to points in the square is
(
√

2 + ln(tan(3π/8)))
√
A/6 ≈ 0.383

√
A.

40.[R] Show that the average travel distance from the
centroid of an equilateral triangle of area A to points
in the triangle is

√
A

39/4

(
2
√

3 + ln(tan(
5π
12

))
)
≈ 0.404

√
A

Note: The centroid of a triangle is its center of mass.

In Exercises 37 to 40 the distance is the ordinary
straight-line distance. In cities the usual street pat-
tern suggests that the “metropolitan” distance between
the points (x1, y1) and (x2, y2) should be measured by
|x1 − x2|+ |y1 − y2|.
41.[M] Show that if in Exercise 37 metropolitan
distance is used, then the average is 8

√
A/(3π3/2) ≈

0.470
√
A.

42.[M] Show that if in Exercise 40 metropolitan dis-
tance is used, then the average is

√
A/2. In most cities

the metropolitan average tends to be about 25 percent
larger than the direct-distance average.

43.[C]

Sam: The formula in this section for integrating in
polar coordinates is wrong. I’ll get the right for-
mula. We don’t need the factor r.

Jane: But the book’s formula gives the correct an-
swers.

Sam: I don’t care. Let f(r, θ) be positive and I’ll show
how to integrate over the set R bounded by r = b
and r = a, b > a, and θ = β and θ = α. We have∫
R f(P ) dA is the volume under the graph of f

and above R. Right?

Jane: Right.

Sam: The area of the cross-section corresponds to a
fixed angle θ is

∫ b
a f(r, θ) dr. Right?

Jane: Right.

Sam: So I, just integrate cross-sectional areas as θ
goes from α to β, and the volume is therefore∫ β
α (
∫ b
a f(r, θ) dr) dθ. Perfectly straightforward.

I hate to overthrow a formula that’s been around
for three centuries.

What does Jane say next?

44.[C]

Jane: I won’t use a partition. Instead, look at the
area under the graph of f and above the circle
of radius r. I’ll draw this fence for you (see Fig-
ure 17.3.14(a).

(a) (b)

Figure 17.3.14:

To estimate its area I’ll cut the arc AB into n
sections of equal length by angle θ0 = a . . . .

Then break AB into n short area, each of length
r∆θ. (Remember, Sam, how radians are de-
fined.) The typical small approach to the shaded
area looks like Figure 17.3.14(b). That’s just
an estimate of

∫ β
α f(r, θ)r dθ. Here r is fixed.

Then I integrate the cross-sectional area as r
goes from a to b. The total volume is then∫ b
a

∫ β
α f(r, θ)r dθ dr. But

∫
R f(r, θ) dA is the

volume.

Sam: All right.

Jane: At least it gives the r factor.

Sam: But you had to assume f is positive.

Jane: Well, if it isn’t just add a big positive number
k to f , then g = f + k is positive. From then on
its easy. If it’s so far g it’s so far f .

Check that Jane is right about g and f .
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17.4 The Triple Integral: Integrals Over Solid

Regions

In this section we define integrals over solid regions in space and show how to
compute them by iterated integrals using rectangular coordinates. Throughout
we assume the regions are bounded by smooth surfaces and the functions are
continuous.

The Triple Integral

Let R be a region in space bounded by some surface. For instance, R could
be a ball, a cube, or a tetrahedron. Let f be a function refined at least on R.

For each positive integer n break R into n small region R1, R2, . . . Rn.
Choose a point P , in R1, P2 in R2, . . . , Pn in Rn. Let the volume of Ri

be Vi. Then

lim
n→∞

n∑
i=1

f(Pi)Vi

exists. It is denoted ∫
R

f(P ) dV (17.4.1)

and is called the integral of f over R or the triple integral of f over R.
Note:

1. As in the preceding section, we define small. For each n let rn be the
smallest number such that each Ri in the partition fits inside a ball of
radius rn. We assume that rn → 0 as n→∞.

2. The notation
∫ ∫ ∫

R
f(P ) dV is commonly used, but, we stick to using

one integral sign,
∫
R
f(P ) dV to emphasize that the triple integral is not

a repeated integral.

3. The notation
∫ ∫ ∫

f(x, y, z) dV is also used, but, again, we prefer not
to refer to a particular coordinate system.

EXAMPLE 1 If f(P ) = 1 for each point P in a solid region R, compute∫
R
f(P ) dV .

SOLUTION Each approximating sum
∑n

i=1 f(Pi)Vi has the value

n∑
i=1

1 · Vi = V1 + V2 + · · ·+ Vn = Volume of R.
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Hence ∫
R

f(P ) dV = Volume of R,

a fact that will be useful for computing volumes. �
Average of a function

The average value of a function f defined on a region R in space is defined
as ∫

R
1 dV

Volume of R
.

This is the analog of the definition of the average of a function over an interval
(Section 6.3) or the average of a function over a plane region (Section 17.1).
If f describes the density of matter in R, then the average value of f is the
density of a homogeneous solid occupying R and having the same total mass
as the given solid.

Think about it. If the number∫
R
f(P ) dV

Volume of R
.

is multiplied by the volume of R, the result is∫
R

f(P ) dV,

which is the total mass. SHERMAN: I have a feeling
I’ve read this before, but
didn’t find it in a quick
search. Is this a repeat? If,
should one be removed?

“Density” at a point is defined for lamina; with balls replacing disks. For
a positive number r, let m(r) be the mass in a ball with center P and radius
r. Let V (r) be the volume of the ball of radius r. Then the density at P is
defined as

lim
r→0

m(r)

V (r)
.

An Interpretation of
∫
R f(P ) dV .

Triple integrals appear in the study of gravitation, rotating bodies, centers of
gravity, and electro-magnetic theory. The simplest way to think of them is to
interpret f(P ) as the density at P of some disturbance of matter and, then,∫
R
f(P ) dV is the total mass in a region R.
We can’t picture

∫
R
f(P ) dV as measuring the volume of something. We

could do this for
∫
R
f(P ) dA, because we could use two dimensions for de-

scribing the region of integration and then the third dimension for the values
of the function, obtaining a surface in three-dimensional space. However, with
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1214 CHAPTER 17 PLANE AND SOLID INTEGRALS

∫
R
f(P ) dV , we use up three dimensions just describing the region of integra-

tion. We need four-dimensional space to show the values of the function. But
it’s hard to visualize such a space, no matter how hard we squint.

A Word about Four-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (x, y) of real
numbers. The set of ordered triplets of real numbers (x, y, z) represents 3-
dimensional space. The set of ordered quadruplets of real numbers (x, y, z, t)
represents 4-dimensional space.
It is easy to show 4-D space is a very strange place.
In 2-dimensional space the set of points of the form (x, 0), the y-axis, meets
the set of points of the form (0, y), the y-axis, in a point, namely the origin
(0, 0). Now watch what can happen in 4-space. The set of points of the form
(x, y, 0, 0) forms a plane congruent to our familiar xy-plane. The set of points
of the form (0, 0, z, t) forms another such plane. So far, no surprise. But notice
what the intersection of those two planes is. Their intersection is just the point
(0, 0, 0, 0). Can you picture two endless planes meeting in a single point? If
so, please tell us how.

Describing a Solid Region

In order to evaluate triple integrals, it is necessary to describe solid regions in
terms of coordinates.

A description of a typical solid region in rectangular coordinates has the
formThis is the order x, y, then

z. There are six possible
orders, as you may check. a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

The inequalities on x and y describe the “shadow” or projection of the region

Figure 17.4.1:

on the xy plane. The inequalities for z then tell how z varies on a line parallel
to the z-axis and passing through the point (x, y) in the projection. (See
Figure 17.4.1.)

EXAMPLE 2 Describe in terms of x, y, and z the rectangular box shown
in Figure 17.4.2(a).

SOLUTION The shadow of the box on the xy plane has a description 1 ≤
x ≤ 2, 0 ≤ y ≤ 3. For each point in this shadow, z varies from 0 to 2, as
shown in Figure 17.4.2(b). So the description of the box is

1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2,
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(a) (b)

Figure 17.4.2:

which is read from left to right as “x goes from 1 to 2; for each such x, the
variable y goes from 0 to 3; for each such x and y, the variable z goes from 0
to 2.”

Of course, we could have changed the order of x and y in the description
of the shadow or projected the box on one of the other two coordinate planes.
(All told, there are six possible descriptions.) �

EXAMPLE 3 Describe by cross sections the tetrahedron bounded by the
planes x = 0, y = 0, z = 0, and x+ y + z = 1, as shown in Figure 17.4.3(a).

(a) (b) (c)

Figure 17.4.3:

SOLUTION For the sake of variety, project the tetrahedron onto the xz
plane. The shadow is shown in Figure 17.4.3(b). A description of the shadow
is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x,

since the slanted edge has the equation x + z = 1. For each point (x, z) in
this shadow, y ranges from 0 up to the value of y that satisfies the equation
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x+y+z = 1, that is, up to y = 1−x−z. (See Figure 17.4.3(c).) A description
of the tetrahedron is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x, 0 ≤ y ≤ 1− x− z.

That is, x goes from 0 to 1; for each x, z goes from 0 to 1− x; for each x and
z, y goes from 0 to 1− x− z. �

EXAMPLE 4 Describe in rectangular coordinates the ball of radius 4
whose center is at the origin.

SOLUTION The shadow of the ball on the xy plane is the disk of radius 4
and center (0, 0). Its description is

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2.

Hold (x, y) fixed in the xy plane and consider the way z varies on the line
parallel to the z-axis that passes through the point (x, y, 0). Since the sphere
that bounds the ball has the equation

x2 + y2 + z2 = 16,

for each appropriate (x, y), z varies from

Figure 17.4.4:

−
√

16− x2 − y2 to
√

16− x2 − y2.

This describes the line segment shown in Figure 17.4.4.
The ball, therefore, has a description

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2,
√

16− x2 − y2 ≤ z ≤
√

16− x2 − y2.

�

Iterated Integrals for
∫
R f(P ) dV

The iterated integral in rectangular coordinates for
∫
R
f(P ) dV is similar to

that for evaluating integrals over plane sets. It involves three integrations
instead of two. The limits of integration are determined by the description of
R in rectangular coordinates. If R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y),

then ∫
R

f(P ) dV =

b∫
a

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy dx.
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An example illustrates how this formula is applied. In Exercise 31 an argument
for its plausibility is presented.

EXAMPLE 5 Compute
∫
R
z dV , where R is the tetrahedron in Example 3.

SOLUTION A description of the tetrahedron is

0 ≤ y ≤ 1, 0 ≤ x ≤ 1− y, 0 ≤ z ≤ 1− x− y.

Hence ∫
R

z dV =

1∫
0

 1−y∫
0

 1−x−y∫
0

z dz

 dx

 dy.

Compute the inner integral first, treating x and y as constants. By the
Fundamental Theorem,

1−x−y∫
0

z dz =
z2

2

∣∣∣∣z=1−x−y

z=0

=
(1− x− y)2

2
.

The next integration, where y is fixed, is

1−y∫
0

(1− x− y)2

2
dx = −(1− x− y)3

6

∣∣∣∣x=1−y

x=0

= −03

6
+

(1− y)3

6
=

(1− y)3

6
.

The third integration is

1∫
0

(1− y)3

6
dy = −(1− y)4

24

∣∣∣∣1
0

= − 04

24
+

14

24
=

1

24
.

This completes the calculation that∫
R

z dV =
1

24
.

�

Summary

We defined
∫
R
f(P ) dV , where R is a region in space. The volume of a solid re-

gion R is
∫
R
dV and, if f(P ) is the density of matter near P , then

∫
R
f(P ) dV

is the total mass. We also showed how to evaluate these integrals by introduc-
ing rectangular coordinates.
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There are six possible
orders. The general approach is to, first, describe R, for instance, as

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Then ∫
R

f(P ) dV =

b∫
a

 y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dx

 dy

 dx.
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EXERCISES for Section 17.4 Key: R–routine,
M–moderate, C–challenging

Exercises 1 to 4 concern the definition of
∫
R f(P ) dV .

1.[R] A cube of side 4 centimeters is made of a
material of varying density. Near one corner A it is
very light; at the opposite corner it is very dense. In
fact, the density f(P ) (in grams per cubic centimeter)
at any point P in the cube is the square of the dis-
tance from A to P (in centimeters). See Figure 17.4.5.

Figure 17.4.5:

(a) Find upper and lower estimates for the mass of
the cube by partitioning it into eight cubes.

(b) Using the same partition as in (a), estimate the
mass of the cube, but select as the Pi’s the cen-
ters of the four rectangular boxes.

(c) Estimate the mass of the cube described in the
opening problem by cutting it into eight congru-
ent cubes and using their centers as the Pi’s.

(d) What does (c) say about the average density in
the cube?

2.[R] How would you define the average distance from
points of a certain set in space to a fixed point P0?
3.[R] If R is a ball of radius r and f(P ) = 5 for each
point in R, compute

∫
R f(P ) dV by examining approx-

imating sums. Recall that the ball has volume 4/3πr3.

4.[R] If R is a three-dimensional set and f(P ) is never

more than 8 for all P in R.

(a) what can we say about the maximum possible
value of

∫
R f(P ) dV ?

(b) what can we say about the average of f over R?

In Exercises 5 to 10 draw the solids described.
5.[R] 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ x
6.[R] 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 1 ≤ z ≤ 1 + x+ y

7.[R] 0 ≤ y ≤ 1, 0 ≤ x ≤ y2, y ≤ z ≤ 2y
8.[R] 0 ≤ y ≤ 1, y2 ≤ x ≤ y, 0 ≤ z ≤ x+ y

9.[R] −1 ≤ z ≤ 1, −
√

1− z2 ≤ x ≤
√

1− z2,
−1

2 ≤ y ≤
√

1− x2 − z2

10.[R] 0 ≤ z ≤ 3, 0 ≤ y ≤
√

9− z2, 0 ≤ x ≤√
9− y2 − z2

In Exercises 11 to 14 evaluate the iterated integrals.

11.[R]
∫ 1

0

(∫ 2
0

(∫ x
0 z dz

)
dy
)
dx.

12.[R]
∫ 1

0

(∫ x2

x3

(∫ x+y
0 z dz

)
dy
)
dx.

13.[R]
∫ 3

2

(∫ 2x
x

(∫ 1
0 (x+ z) dz

)
dy
)
dx.

14.[R]
∫ 1

0

(∫ x
0

(∫ 3
0 (x2 + y2) dz

)
dy
)
dx.

15.[R] Describe the solid cylinder of radius a and
height h shown in Figure 17.4.6(a) in rectangular co-
ordinates

(a) in the order first x, then y, then z,

(b) in the order first x, then z, then y.

(a) (b)

Figure 17.4.6:

16.[R] Describe the prism shown in Figure 17.4.6(b)
in rectangular coordinates, in two ways:
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(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

17.[R] Describe the tetrahedron shown in Fig-
ure 17.4.7(a) in rectangular coordinates in two ways:

(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

(a) (b)

Figure 17.4.7:

18.[R] Describe the tetrahedron whose vertices are
given in Figure 17.4.7(b) in rectangular coordinates as
follows:

(a) Draw its shadow on the xy plane.

(b) Obtain equations of its top and bottom planes.

(c) Give a parametric description of the tetrahedron.

19.[R] Let R be the tetrahedron whose vertices are
(0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c), where a, b, and
c are positive.

(a) Sketch the tetrahedron.

(b) Find the equation of its top surface.

(c) Compute
∫
R z dV .

20.[R] Compute
∫
R z dV , where R is the region

above the rectangle whose vertices are (0, 0, 0), (2, 0, 0),
(2, 3, 0), and (0, 3, 0) and below the plane z = x+2y.

21.[R] Find the mass of the cube in Exercise 1. (See
Figure 17.4.1.)

22.[R] Find the average value of the square of the
distance from a corner of a cube of side a to points in
the cube.

23.[R] Find the average of the square of the distance
from a point P in a cube of side a to the center of the
cube.

24.[R] A solid consists of all points below the surface
z = xy that are above the triangle whose vertices are
(0, 0, 0), (1, 0, 0), and (0, 2, 0). If the density at (x, y, z)
is x+ y, find the total mass.

25.[R] Compute
∫
R xy dV for the tetrahedron of Ex-

ample 3.

26.[R]

(a) Describe in rectangular coordinates the right cir-
cular cone of radius r and height h if its axis is
on the positive z-axis and its vertex is at the ori-
gin. Draw the cross sections for fixed x and fixed
x and y.

(b) Find the z coordinate of its centroid.

27.[R] The temperature at the point (x, y, z) is
e−x−y−z. Find the average temperature in the tetrahe-
dron whose vertices are (0, 0, 0), (1, 1, 0), (0, 0, 2), and
(1, 0, 0).

28.[R] The temperature at the point (x, y, z), y > 0,
is e−x/

√
y. Find the average temperature in the region
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bounded by the cylinder y = x2, the plane y = 1, and
the plane z = 2y.

29.[R] Without using a repeated integral, evaluate∫
R x dV , where R is a spherical ball whose center is

(0, 0, 0) and whose radius is a.

30.[R] The work done in lifting a weight of w pounds
a vertical distance of x feet is wx foot-pounds. Imagine
that through geological activity a mountain is formed
consisting of material originally at sea level. Let the
density of the material near point P in the mountain
be g(P ) pounds per cubic foot and the height of P
be h(P ) feet. What definite integral represents the
total work expended in forming the mountain? This
type of problem is important in the geological theory
of mountain formation.

31.[R] In Section 17.2 an intuitive argument was pre-
sented for the equality

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Here is an intuitive argument for the equality

∫
R

f(P ) dV =

x2∫
x1

 y2(x)∫
y1(x)

 x2(x,y)∫
x1(x,y)

f(x, y, z) dz

 dy

 dx.

To start, interpret f(P ) as “density.”

(a) Let R(x) be the plane cross section consisting of
all points in R with abscissa x. Show that the
average density in R(x) is∫ y2(x)

y1(x)[
(∫ z2(x,y)

z1(x,y) f(x, y, z) dz
)
dy

Area of R(x)

(b) Show that the mass of R between the plane sec-
tions R(x) and R(x+ ∆x) is approximately

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy ∆x.

(c) From (b) obtain a repeated integral in rectangu-
lar coordinates for

∫
R f(P ) dV .
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17.5 Cylindrical and Spherical Coordinates

Rectangular coordinates provide convenient descriptions of solids bounded by
planes. In this section we describe two other coordinate systems, cylindrical –
ideal for describing circular cylinders — and spherical — ideal for describing
spheres, balls, and cones. Both will be used in the next section to evaluate
multiple integrals by iterated integrals.

CYLINDRICAL COORDINATES

Figure 17.5.1:

Cylindrical coordinates combine polar coordinates in the plane with the z
of rectangular coordinates in space. Each point P in space receives the name
(r, θ, z) as in Figure 17.5.1. We are free to choose the direction of the polar
axis; usually it will coincide with the x-axis of an (x, y, z) system. Note that
(r, θ, z) is directly above (or below) P ∗ = (r, θ) in the rθ plane. Since the set
of all points P = (r, θ, z) for which r is some constant is a circular cylinder,
this coordinate system is convenient for describing such cylinders. Just as with
polar coordinates, cylindrical coordinates of a point are not unique.

(a) (b) (c)

Figure 17.5.2:

Figure 17.5.2 shows the surfaces θ = k, r = k, and z = k, where k is a
positive number.

Figure 17.5.3:

EXAMPLE 1 Describe a solid cylinder of radius a and height h in cylindri-
cal coordinates. Assume that the axis of the cylinder is on the positive z-axis
and the lower base has its center at the pole, as in Figure 17.5.3.

SOLUTION The shadow of the cylinder on the rθ plane is the disk of radius

Figure 17.5.4:
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a with center at the pole shown in Figure 17.5.4. Its description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

Figure 17.5.5:

For each point (r, θ) in the shadow, the line through the point parallel to
the z-axis intersects the cylinder in a line segment. On this segment z varies
from 0 to h for every (r, θ). (See Figure 17.5.5.) Thus a description of the
cylinder is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, 0 ≤ z ≤ h.

�

EXAMPLE 2 Describe in cylindrical coordinates the region in space formed
by the intersection of a solid cylinder of radius 3 with a ball of radius 5 whose
center in on the axis of the cylinder. Place the cylindrical coordinate system
as shown in Figure 17.5.6.

Figure 17.5.6:

SOLUTION Note that the point P = (r, θ, z) is a distance
√
r2 + z2 from the

origin O, for, by the pythagorean theorem, r2 +z2 = ¯OP 2. (See Figure 17.5.7.)
We will use this fact in a moment.

Now consider the description of the solid. First of all, θ varies from 0 to
2π and r from 0 to 3, bounds determined by the cylinder. For fixed θ and
r, the cross section of the solid is a line segment determined by the sphere
that bounds the ball, as shown in Figure 17.5.7(b). Now, since the sphere has
radius 5, for any point (r, θ, z) on it,

r2 + z2 = 25 or z ±
√

25− r2.

Thus, on the line segment determined by fixed r and θ, z varies from−
√

25− r2

to
√

25− r2.
The solid has this description:

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, −
√

25− r2 ≤ z ≤
√

25− r2.

�

EXAMPLE 3 Describe a ball of radius a in cylindrical coordinates.

SOLUTION Place the origin at the center of the ball, as in Figure 17.5.7(a).
The shadow of the ball on the (r, θ) plane is a disk of radius a, shown in
Figure 17.5.7(b) in perspective. This shadow is described by the equations

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

All that is left is to see how z varies for a given r and θ. In other words,
how does z vary on the line AB in Figure 17.5.7(c)?
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(a) (b) (c)

Figure 17.5.7:

(a) (b)

Figure 17.5.8:
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If r is a, then z “varies” from 0 to 0, as Figure 17.5.7(c) shows. If r is 0, then
z varies from−a to a. The bigger r is, the shorter AB is. Figure 17.5.8 presents
the necessary geometry, first in perspective. With the aid of Figure 17.5.8, we
see that z varies from −

√
a2 − r2 to

√
a2 − r2. You can check this by testing

the easy cases, r = 0 and r = a. All told,

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a︸ ︷︷ ︸
The shadow

,−
√
a2 − r2 ≤ z ≤

√
a2 − r2︸ ︷︷ ︸

Range of z for each θ and r

�

EXAMPLE 4 Draw the region R bounded by the surfaces r2 + z2 = a2,
θ = π/6, and θ = π/3, situated in the first octant.

SOLUTION In the rz-plane, r2+z2 = a2 describes a circle of radius a, center
at the origin. There is no restriction on θ. Thus it is a circular cylinder with
its axis along the polar axis, as shown in Figure 17.5.9(a) in perspective. The
shadow of R, which lies in the first octant, on the rz-plane is a quarter circle,
shown in Figure 17.5.9(b).

(a) (b) (c) (d)

Figure 17.5.9:

Next we draw the half planes θ = π/6 and θ = π/3, as in Figure 17.5.9(c)
showing at least the part in the first octant.

Finally we put Figure 17.5.9(a) and (c) together in (d), to show R.

R has three planar surfaces and one curved surface. The two curved edges
are parts of ellipses, not parts of circles.

The description of R is

0 ≤ r ≤ a, 0 ≤ z ≤
√
a2 − r2, π/6 ≤ θ ≤ π/3.

�
Note that the shading and
dashed hidden line help
make the diagram clearer.
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THE VOLUME SWEPT OUT BY ∆r, ∆, and ∆θ

To use polar coordinates to evaluate an integral over a plane set we needed
to know that the area of the little region corresponding to small changes ∆r
and ∆θ is roughly r∆r∆θ. In order to evaluate integrals over solids using
an iterated integral in cylindrical coordinates, we will need to estimate the
volume of the small region correspond to small changes ∆r, ∆θ, ∆z in the
three coordinates.

(a) (b)

Figure 17.5.10:

The set of all points (r, θ, z) whose r coordinates are between r and r+∆r,
whose θ coordinates are between θ and θ + ∆θ, and whose z coordinates are
between z and z+ ∆z is shown in Figure 17.5.10(a). It is a solid with four flat
surfaces and two curved surfaces.

When ∆r is small, the area of the flat base of the solid is approximately
r∆r∆θ, as shown in Section 9.2 and as we saw when working with polar
coordinates in the plane. Thus, when ∆r, ∆θ, and ∆z are small, the volume
∆V of the solid in Figure 17.5.10(b) is

∆V = (Area of base)(height) ≈ r∆r∆θ∆z.

That is,

∆V ≈ r∆r∆θ∆z.

Just as the factor r appears in iterated integrals in polar coordinates, the
same factor appears in iterated integrals in cylindrical coordinates.
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SPHERICAL COORDINATES

The third standard coordinate system in space is spherical coordinates,
which combines the θ of cylindrical coordinates with two other coordinates.

In spherical coordinates a point P is described by three numbers: ρ is pronounced “row” or
“roe”; it is the Greek letter
for r. The letter φ is
pronounced “fee” or “fie.”

ρ the distance from P to the origin O, θ the same angle as in cylindrical
coordinates, φ the angle between the positive z-axis and the ray from O to P .

In physics and engineering r is used instead of ρ.

Figure 17.5.11:

The point P is denoted P = (ρ, θ, φ). Note the order: first ρ, then θ, then
φ. See Figure 17.5.11. Note that φ is the same as the direction angle of OP
with k, 0 ≤ φ ≤ π. The surfaces ρ = k (a sphere), φ = k (a cone), and θ = k
(a half plane) are shown in Figure 17.5.12.

(a) (b) (c)

Figure 17.5.12: (a) θ and φ vary, (b) ρ and θ vary, (c) ρ and φ vary.

When φ and θ are fixed and ρ varies, we describe a ray, as shown in Fig-
ure 17.5.13.

Figure 17.5.13:

RELATION TO RECTANGULAR COORDINATES

Figure 17.5.14 displays the relation between spherical and rectangular coordi-
nates of a point P = (ρ, θ, φ) = (x, y, z).

Note, in particular, right triangle OSP has hypotenuse OP and a right
angle at S, and right triangle OQR has a right angle at Q.
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(a) (b) (c) (d)

Figure 17.5.14:

First of all, z = ρ cos(φ). Then OR = ρ sin(φ). Finally x = OR cos(θ) =
ρ sin(φ) cos(θ) And y = OR sin(θ) = ρ sin(φ) sin(θ).

EXAMPLE 5 Figure 17.5.15 shows a point given in spherical coordinates.
Find its rectangular coordinates.

Figure 17.5.15:

SOLUTION In this case, ρ = 2, θ = π/3, φ = π/6. Thus

x = 2 sin(π/6) cos
π

3
= 2 · 1

2
· 1

2
=

1

2

y = 2 sin(
π

6
) sin(

π

3
) = 2 · 1

2
·
√

32

=

√
3

2

z = 2 cos(
π

6
= 2

√
3

2
=
√

3.

As a check, x2 + y2 + z2 should equal ρ2, and it does, for (1/2)2 + (
√

3
2

) +

(
√

3)2 = 1
4

+ 3
4

+ 3 = 4 = 22. �
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The next example exploits spherical coordinates to describe a cone and a
ball.

EXAMPLE 6 The region R consists of the portion of a ball of radius a that
lies within a cone of half angle π/6. The vertex of the cone is at the center of
the ball.

(a) (b)

Figure 17.5.16:

SOLUTION R is shown in Figure 17.5.17. It resembles an ice cream cone,

Figure 17.5.17:

the dry cone topped with spherical ice cream.
Because R is a solid of revolution (around the z-axis), 0 ≤ θ ≤ 2π. The

section of R corresponding to a fixed angle θ is the intersection of R with a
half plane, shown in Figure 17.5.16.

Figure 17.5.18:

In this sector of a disk, φ goes from 0 to π/6, independent of θ. Finally, a
fixed θ and φ determine a ray on which ρ goes from 0 to a, as in Figure 17.5.18.
�

The next example describes a ball in rectangular and spherical coordinates.

EXAMPLE 7 Describe a ball of radius a in rectangular and spherical co-
ordinates.

SOLUTION In each case we put the origin of the coordinate system at the
center of the ball.

Rectangular coordinates: The shadow of the ball on the xy-plane is a disk
of radius a, described by

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.
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For each point (x, y) in that projection, z varies along the line AB in Fig-

Figure 17.5.19:

ure 17.5.19.
Since the equation of the sphere is x2+y2+z2 = a2 atA, z is−

√
z2 − x2 − y2,

and at B is
√
a2 − x2 − y2. The entire description is

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2, −

√
a2 − x2 − y2 ≤ z ≤

√
z2 − x2 − y2.

Spherical coordinates: This time the shadow on the xy-plane plays no role.
Instead, we begin with

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,

which sweeps out all the rays from the origin. On each such ray ρ goes from
0 to a. The complete description involves only constants as bounds:

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a.

Since the range of each variable is not influenced by other variables, the three
restraints can be given in any order. �

THE VOLUME SWEPT OUT BY ∆rho, ∆phi, and ∆θ

In the next section we will need an estimate of the volume of the little curvy
“box-like” region bounded by spheres with radii ρ and ρ+ ∆ρ, the half-planes
with angles θ and θ+ ∆θ, and the cones with half-angles φ and φ+ ∆φ. This
region is shown in Figure 17.5.20. Two of its surfaces are flat, two are spherical,
and two are patches on cones.

(a) (b)

Figure 17.5.20:
AB and AD are arcs of

circles, while AC is straight

October 22, 2010 Calculus



§ 17.5 CYLINDRICAL AND SPHERICAL COORDINATES 1231

(a) (b) (c)

Figure 17.5.21:

The product of the length of AB, AC and AD is an estimate of the volume
of the little box. Figure 17.5.21 shows how to find these lengths.

Therefore the volume of the small box is approximately (ρ sin(φ)∆θ)(ρ∆φ)(∆ρ):

∆V ≈ ρ2 sin(φ)∆ρ∆φ∆θ

Just as we added an r to an integrand in polar coordinates, we must, in the
next section, and the factor ρ2 sin(φ) to an integrand when using an iterated
integral in spherical coordinates.

Summary

This section described cylindrical and spherical coordinates. The volume of the
small box corresponding to small changes in the three cylindrical coordinates
is approximately r∆r∆θ∆z. Because of the presence of the factor r, we must
adjoin an r to the integrand when using an iterated integral in cylindrical
coordinates.

Similarly, ρ2 sin(φ) must be added to an integrand when using an iterated
integral in spherical coordinates.

The next section illustrates the computations using these coordinates.
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EXERCISES for Section 17.5 Key: R–routine,
M–moderate, C–challenging

DOUG: Perhaps there
should be examples and

exercises with the bounds
involving variables more??

(See Stewart)

1.[R] On the region in Example 2 draw the set of
points described by (a) z = 2, (b) z = 3, (c) z = 4.5.

2.[R] For the cylinder in Example 1 draw the set
of points described by (a) r = a/2, (b) θ = π/4, (c)
z = h/3.

3.[R]

(a) In the formula ∆V ≈ r∆r∆θ∆z, which factors
have the dimension of length?

(b) Why would you expect three such factors?

4.[R]

(a) In the formula ∆V ≈ ρ2∆ρ∆θ∆φ, which factors
have the dimension of length?

(b) Why would you expect three such factors?

5.[R] Drawing one clear, large diagram, show how to
express rectangular coordinates in terms of cylindrical
coordinates.

6.[R] Drawing one clear, large diagram, show how to
express rectangular coordinates in terms of spherical
coordinates.

7.[R] Find the cylindrical coordinates of (x, y, z) =
(3, 3, 1), including a clear diagram.

8.[R] Find the spherical coordinates of (x, y, z) =
(3, 3, 1),including a clear diagram.

In Exercises 9 to 11 (a) draw the set of points described,
and (b) describe that set in words.

9.[R] ρ and φ fixed, θ
varies.
10.[R] ρ and θ fixed, φ
varies.

11.[R] θ and φ fixed, ρ
varies.

12.[R] What is the equation of a sphere of radius a
centered at the origin in

(a) spherical,

(b) cylindrical ,

(c) rectangular coordinates?

13.[R] Explain why if P = (x, yz) = (ρ, θ, φ),
in spherical coordinates, that x2 + y2 + z2 = ρ2.
Hint: Draw a box.

14.[R] Describe the region in Example 6 in cylindrical
coordinates in the order α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ),
z1(r, θ) ≤ z ≤ z2(r, θ).

15.[R] Like Exercise 14, but in the order a ≤ z ≤ b,
θ1(z) ≤ θ ≤ θ2(z), r1(θ, z) ≤ r ≤ r2(θ, z).

16.[R] Sketch the region in the first octant bounded
by the planes θ = π

6 and θ = π
3 and the sphere ρ = a.

17.[R] Estimate the area of the bottom face of the
curvy box shown in Figure 17.5.20. It lies on the sphere
of radius ρ.

18.[A] cone of half-angle π/6 is cut by a plane per-
pendicular to its axis at a distance 4 from its vertex.

(a) Place it conveniently on a cylindrical coordinate
system.

(b) Describe it in cylindrical coordinates.

19.[R] Like the preceding exercise, but use spherical
coordinates.
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20.[R] A cone has its vertex at the origin and its axis
along the positive z-axis. It is made by revolving a line
through the origin that has an angle A with the z-axis,
about the z-axis. Describe it in

(a) spherical coordinates,

(b) cylindrical coordinates, and

(c) rectangular coordinates.

21.[R] Use spherical coordinates to describe the sur-
face in Figure 17.5.22. It is part of a cone of half
vertex angle B with the z-axis as its axis, situated
within a sphere of radius a centered at the origin.

Figure 17.5.22:

22.[R] A triangle ABC is inscribed in a circle, with
AB a diameter of the circle.

(a) Using elementary geometry, show that angle
ACB is a right angle.

(b) Instead, using the equation of a circle in rect-
angular coordinates, show that AC and BC are
perpendicular.

(c) Use (a) or (b) to show that the graph in the plane
of r = b cos(θ) is a circle of diameter b.

(d) In view of the preceding exercise, show that
the equation of the circle in Figure 17.5.22 is
r = 2a cos(θ).

23.[R] (See Exercise 22.) A ball of radius a has a
diameter coinciding with the interval [0, 2a] on the x-
axis. Describe the ball in spherical coordinates.

24.[R] The ray described in spherical coordinates by
θ = π

6 and φ = π
4 makes an angle A with the x-axis.

(a) Draw a picture that shows the three angles.

(b) Find cos(A).

25.[R]

(a) If you describe the region in Example 2 in the
order 0 ≤ θ ≤ 2π, z1(θ) ≤ z ≤ z2(θ), r1(θ, z) ≤
r ≤ r2(θ, z), what complication arises?

(b) Describe the region using the order given in (a).

By differentiating, verify the equations in Exercises 26
to 27.

26.[R]
∫
|fracdx(x3

√
z2 + x2 =

−
√
a2+x2

2a2+x2 + 1
2a3 ln |a+

√
a2+x2

x |.

27.[R]
∫ x2]dx
a4−x4 =

1
4a ln |a+x

a−x | −
1
2a arctan x

a .

28.[R] What is the distance between P1 = (ρ1, θ1, φ1)
and P2 = (ρ2, θ2, φ2)?

29.[R] The points P1 = (ρ1, θ1, φ1) and P2 =
(ρ1, θ2, φ2) both lie on a sphere of radius ρ1. As-
suming that both are in the first octant, find the great
circle distance between them. Note: If the sphere is
the earth’s surface, ρ is approximately 3960 miles, φ
is the complement of the latitude, and θ is related to
longitude.

30.[R] At time t a particle moving along a curve is
at the point (ρ(t), θ(t), φ(t)) What is its speed?
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31.[R] How far apart are the points (r1, θ1, z1) and
(r2, θ2, z2) in the first octant?

(a) Draw a large clear diagram.

(b) Find the distance.

32.[R] A bug is wandering on the surface of a cylinder
whose description is 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ 2.
It is at the point (3, 0, 2) and wants the shortest route
on the surface to (3, π, 0). The bug plans to go straight
down, keeping θ = 0, and then taking a straight path
on the base along a diameter. Is that the shortest
path? If not, what is?
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17.6 Iterated integrals for
∫
R f (P ) dV in Cylin-

drical or Spherical Coordinates

In Section 17.2 we evaluated an integral of the form
∫
R
f(P ) dA by an iterated

integral in polar coordinates. In this method it is necessary to multiply the
integrand by an “r.” This is necessary because the small patch determined
by small increments in r and θ is not ∆r∆θ but r∆r∆θ. Similarly, when
developing iterated integrals using cylindrical coordinates, an extra r must be
adjoined to the integrand. In the case of spherical coordinates one must adjoin
ρ2ρ sin(φ). These adjustments are based on the estimates of the volumes of
the small curvy boxes made in the previous section.

A few examples will illustrate the method, which is: Describe the solid R
and the integrand in the most convenient coordinate system. Then use that
description to set up an iterated integral, being sure to include the appropriate
extra factor in the integrand.

ITERATED INTEGRALS IN CYLINDRICAL COOR-
DINATES

To evaluate
∫
R
f(P ) dV in cylindrical coordinates we express the integrand in

cylindrical coordinates and describe the region R in cylindrical coordinates.
It must be kept in mind that dV is replaced by r dz dr dθ. There are six
possible orders of integration, but the most common one is: z varies first, then
r, finally θ:

∫
R
f(P ) dV =

∫ β
α

∫ r2(θ)

r1(θ)

(∫ z2(r,θ)

z1(r,θ)
f(r, θ, z)r dz

)
dr dθ.

EXAMPLE 1 Find the volume of a ball R of radius a using cylindrical
coordinates.

SOLUTION Place the origin of a cylindrical coordinate system at the center

Figure 17.6.1:

of the ball, as in Figure 17.6.1.

The volume of the ball is
∫
R

1 dV . The description of R in cylindrical
coordinates is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, −
√
a2 − r2 ≤ z ≤

√
a2 − r2.

Note, as with polar
coordinates, the extra factor
r.
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The iterated integral for the volume is thus

∫
R

1 dV =

2π∫
0

 a∫
0


√
a2−r2∫

−
√
a2−rs

1 · r dz

 dr

 dθ.

Evaluation of the first integral, where r and θ are fixed, yields

√
a2−r2∫

−
√
a2−r2

r dz = rz|z=
√
a2−r2

z=−
√
z2−r2 = 2r

√
a2 − r2.

Note that the order of
integration is determined by
the order of the variables in

describing R.

Evaluation of the second integral, where θ is fixed, yields

a∫
0

2r
√
a2 − r2 dr =

−2(a2 − r2)3/2

3

∣∣∣∣r=a
r=0

=
2a3

3
.

Finally, evaluation of the third integral gives

2π∫
0

2a3

3
dθ =

2a3

3

2π∫
0

dθ =
2a3

3
cdot2π =

4

3
πa3.

�

EXAMPLE 2 Find the volume of the region R inside the cylinder x2 +y2 =
a, above the xy-plane, and below the plane z = x + 2y + 9. Use cylindrical
coordinates.
SOLUTION We wish to evaluate

∫
R

1 dV over the region R described in
cylindrical coordinates R by

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ r cos(θ) + 2r sin(θ) + 9.

(Here we replace the equation z = x+ 2y + 9 by z = r cos(θ) + 2r sin(θ) + 9.)Note, as with polar
coordinates, the extra factor

r.
The iterated integral takes the form

2π∫
0

 3∫
0

 r cos(θ)+2r sin(θ)+9∫
0

1 · r dz

 dr

 dθ.

Integration with respect to z givesr and θ are constant

r cos(θ)+2r sin(θ)+9∫
0

r dz = r

r cos(θ)+2r sin(θ)+9∫
0

dz = r2 cos(θ) + 2r2 sin(θ) + 9r.
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Then comes integration with respect to r, with θ constant:

3∫
0

(
r2 cos(θ) + 2r2 sin(θ) + 9r

)
dr =

r3

3
cos(θ) +

2r3

3
sin(θ) +

9r2

2

∣∣∣∣3
0

= 9 cos(θ)+18 sin(θ)+
81

2
.

Finally, integration with respect to θ gives

2π∫
0

(
9 cos(θ) + 18 sin(θ) +

81

2

)
dθ. (17.6.1)

Because
∫ 2π

0
cos(θ) dθ = 0 =

∫ 2π

0
sin(θ) dθ, (17.6.1) reduces to

∫ 2π

0
81
2
dθ = 81π.

The volume is 81π. �

Computing
∫
R f(P ) dV in Spherical Coordinates

To evaluate a triple integral
∫
R
f(P ) dV in spherical coordinates, first describe

the region R in spherical coordinates. Usually this will be in the order:

α ≤ θ ≤ β, φ1(θ) ≤ φ ≤ φ2(θ), ρ1(θ, φ) ≤ ρ ≤ ρ2(ρ, θ).

Sometimes the order of ρ and φ is switched:

α ≤ θ ≤ β ρ1(θ) ≤ ρ ≤ ρ2(θ) φ1(ρ, θ) ≤ φ ≤ φ2(ρ, θ).

Then set up an iterated integral, being sure to express dV as ρ2 sin(φ) dρ dφ dθ
(or ρ2 sin(φ) dφ dρ dθ).

EXAMPLE 3 Find the volume of a ball of radius a, using spherical coor-
dinates.

Figure 17.6.2:

SOLUTION Place the origin of spherical coordinates at the center of the
ball, as in Figure 17.6.2. The ball is described by

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a.

Hence

Volume of ball =

∫
R

1 dV =

2π∫
0

π∫
0

a∫
0

ρ2 sin(φ) dρ dφ dθ.

The inner integral is

a∫
0

ρ2 sin(φ) dρ = sinφ

a∫
0

ρ2 dρ =
a3 sin(φ)

3
.
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The next integral is

π∫
0

a3 sin(φ)

3
dφ =

−a3 sin(φ)

3

∣∣∣∣π
0

=
−a3(−1)

3
− −a

3(1)

3
=

2a3

3
.

The final integral is

2π∫
0

2a3

3
dθ =

2a3

3

2π∫
0

dθ =
2a3

3
2π =

4πa3

3
.

�

An Integral in Gravity

The next example is of importance in the theory of gravitational attraction.
It implies that a homogeneous ball attracts a particle (or satellite) as if all the
mass of the ball were at its center.

EXAMPLE 4 Let A be a point at a distance H from the center of the ball,
H > a. Compute

∫
R

(δ/q) dV , where δ is density and q is the distance from a
point P in R to A. (See Figure 17.6.3.)

(a) (b)

Figure 17.6.3:

SOLUTION First, express q in terms of spherical coordinates. To do so,
choose a spherical coordinate system whose origin is at the center of the sphere
and such that the φ coordinate of A is 0. (See Figure 17.6.3(b).)
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Let P = (ρ, θ, φ) be a typical point in the ball. Applying the law of cosines
to triangle AOP , we find that

a2 = H2 + ρ2 − 2ρH cos(φ).

Hence
q =

√
H2 + ρ2 − 2ρH cos(φ).

Since the ball is homogeneous,

δ =
M

4
3
πa3

=
3M

4πa3
.

Hence ∫
R

δ

q
dV =

∫
R

3M

4πa3q
dV =

3M

4πa3

∫
R

1

q
dV. (17.6.2)

Now evaluate ∫
R

1

q
dV

by an iterated integral in spherical coordinates: A case where integration
with respect to ρ is not first∫

R

1

q
dV =

2π∫
0

 a∫
0

 π∫
0

ρ2 sin(φ)√
H2 + ρ2 − 2ρH cos(φ)

dφ

 dρ

 dθ.

We integrate with respect to φ first, rather than ρ, because it is easier in
this case.

Evaluation of the first integral, where ρ and θ are constants, is accomplished
with the aid of the fundamental theorem:
π∫

0

ρ2 sinφ√
H2 + ρ2 − 2ρH cos(φ)

dφ =
ρ
√
H2 + ρ2 − 2ρH cos(φ)

H

∣∣∣∣∣
φ=π

φ=0

=
ρ

H
(
√
H2 + ρ2 + 2ρH −

√
H2 + ρ2 − 2ρH.

Now,
√
H2 + ρ2 + 2ρH = H + ρ. Since ρ ≤ a < H, H − ρ is positive and√

H2 + ρ2 − 2ρH = H − ρ.
Thus the first integral equals

ρ

H
[H + ρ)− (H − ρ)] =

2ρ2

H
.

Evaluation of the second integral yields

a∫
0

2ρ2

H
dρ =

2a3

3H
.
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Evaluation of the third integral yields

2π∫
0

2a3

eH
dθ =

4πa3

3H
.

Hence ∫
R

1

q
dV =

4πa3

3H
.

By (17.6.2) ∫
R

δ

q
dV =

3M

4πa3

4πa3

3H
=
M

H
.

Newton obtained this
remarkable result in 1687. This result, M/H, is exactly what we would get if all the mass were located

at the center of the ball. �
SHERMAN: Compare this
with your version. What is
your M? I thought it was
the object, i.e., the region

together with its density,
but you are using it also as

the mass of the object. If
you want the latter, you

can’t talk about “a mass M
occupies a region R.” I

prefer to say we have an
object that occupies a

region R, with density δ,
and mass M where

M =
∫
R δ(P ) dV . See

what I have written. This
may need to be changed

elsewhere. That should not
be difficult to do, but I want
to see your comments first.

THE MOMENT OF INERTIA ABOUT A LINE

In the study of rotation of a object about an axis, one encounters the “moment
of inertia”, I of the object. It is defined as follows. The object occupies a region
R. The density of the object at a typical point P is δ(P ), so the mass of the
object is M =

∫
R
δ(P ) dV . Usually the density is constant, in which case it isAn object with constant

density is called
homogeneous.

M divided by the volume of R (or M divided by the area of R if R is planar).
Let r(P ) be the distance from P to a fixed line L. Then, by definition,

I = Moment of Inertia =

∫
R

(r(P ))2δ(P ) dV.

A similar definition holds for objects distributed on a planar region. The only
difference is that dV is replaced by dA.Exercise 31 shows that I

plays the same role in a
rotating body (such as a
spinning skater) as mass

does in an object moving
along a line.

EXAMPLE 5 Compute the moment of inertia of a uniform mass M in the
form of a ball of radius a around a diameter L.
SOLUTION The density δ(P ), being constant, is M/(4

3
πa3). We place theAs a check on our answer

we note in advance that I
must be less than Ma2,

since the maximum of r(P )
is a.

diameter L along the z-axis, as in Figure 17.6.4

Figure 17.6.4:

Because the distance r(P ) is just r in cylindrical coordinates, we will first
work in those coordinates. Then we will calculate the moment of inertia in
spherical coordinates.

One description of the ball is

0 ≤ θ ≤ 2π, −a ≤ z ≤ a, 0 ≤ r ≤
√
a2 − z2.
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Then

I =
∫
R

M
4
3
πa3 r

2 dV = 3M
4πa3

∫
R
r2 dV Note the introduction of the extra r

= 3M
4πa3

∫ 2π

0

∫ a
−a

∫ √a2−z2
0

r3 dr dz dθ

The first integration is
√
a2−z2∫
0

r3 dr =
r4

4

∣∣∣∣
√
a2−z2

0

=
(a2 − z2)2

4
.

The second is

a∫
−a

(a2 − z2)2

4
dz =

a∫
−a

a4 − 2a2z2 + z4

4
dz =

1

4

(
a4z − 2a2z3

3
+
z5

5

)
|a−a

=
1

4

(
a5 − 2a5

3
+
a5

5

)
− 1

4

(
−a5 +

2a5

3
− a5

5

)
=

4

15
a5.

The third is
2π∫

0

4

15
a5 dθ =

8π

15
a5.

Then remembering to include the factor 3M/4πa3, we have

I =
3M

4πa3
· 8π

15
a5 =

2

5
Ma2.

Because spherical coordinates provide a simple description of the ball, we
will also use them to find I to see if the computations are easier. Now the
distance r(P ) has a more complicated form, δ(P ) = δ(ρ, θ, φ) = ρsin(φ). The
integral for the moment of inertia is

I =
3M

4πa3

∫
R

(ρ sin(φ)2 dV.

The iterated integral for this multiple integral is

2]pi∫
0

 π∫
0

 a∫
0

(ρ sin(φ))2 ρ2 sin(φ) dρ

 dφ

 dθ.

The first integration is

a∫
0

ρ4 sin3(φ) dρ =
ρ5

5
sin3(φ)

∣∣∣∣ρ=a

ρ=0

=
a5

5 sin3(φ)
.
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The second is
π∫

0

a5

5
sin3(φ) dφ =

a5

5

π∫
0

sin3(φ) dφ.

Since the exponent, 3, is odd, we write sin3(φ) as (1−cos2(φ)) sin(φ) and have
π∫

0

sin3(φ) dφ =

π∫
0

(sin(φ)− cos2(φ) sin(φ)) = (− cos(φ) +
cos3(φ)

3

∣∣∣∣π
0

= (−(−1) +
(−1)3

3
)− (−1 +

1

3
) =

4

3
.

The final integration is just

2π∫
0

a5

5
· 4

3
dθ =

8

15
π.

Note that this is 2/5 of our
upper estimate, hence is

plausible.
And, as expected, gives, again

I = (2/5)Ma2.

�

Summary

A multiple integral
∫
R
f(P ) dV may be evaluated by an iterated integral in

cylindrical or spherical coordinates. In cylindrical coordinates the iterated
integral takes the form

θ2∫
θ1

 r2(θ)∫
r1(θ)

 z2(r,θ)∫
z1(r,θ)

rf(r, θ, z) dz

 dr

 dθ.

The description of the region determines the range of integration on each
of the three integrals over intervals. (Changing the order of the description of
R changes the order of the integrations.) The factor r must be inserted into
the integrand.

In spherical coordinates the iterated integral usually takes the form

θ2∫
θ1

 φ2(θ)∫
φ1(θ)

 ρ2(θ,φ)∫
ρ1(θ,φ)

f(r, θ, φ)ρ2 sin(φ) dφ

 dφ

 dθ.

In this form, integration with respect to ρ is first, but as Example 4 illus-
trates, it may be convenient to integrate first with respect to φ. The factor
ρ2 sin(φ) must be inserted in the integrand.
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EXERCISES for Section 17.6 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4: (a) draw the region, (b) set up
an iterated integral in cylindrical coordinates for the
given multiple integrals, and (c) evaluate the iterated
integral.

1.[R]
∫
R r

2 dV , R is
bounded by the cylinder
r = 3 and the planes
z = 2x and z = 3x.

2.[R]
∫
R z dV , R is

bounded by the sphere
z2 + r2 = 25, the rθ co-
ordinate plane, and the
plane z = 2.

3.[R]
∫
R rz dV , R is the

part of the ball bounded
by r2 +z2 = 16 in the first
octant.
4.[R]

∫
R cos θ/dV , R

is bounded by the cylin-
der r = 2 cos(θ) and the
paraboloid z = r2.

5.[R] Compute the volume of a right circular cone of
height h and radius r using (a) spherical coordinates,
(b) cylindrical coordinates, and (c) using rectangular
coordinates.

6.[R] Find the volume of the region above the xy
plane and below the paraboloid z = 9− r2 using cylin-
drical coordinates.

7.[R] A right circular cone of radius a and height h
has a density at point P equal to the distance from P
to the base of the cone. Find its mass, using spherical
coordinates.

In Exercises 8 to 9 draw the regionR and give a formula
for the integrand f(P ) such that

∫
R dV is described

by the given iterated integrals.

8.[R]
∫ π/2

0 [
∫ π/4

0 (
∫ cosφ

0 ρ3 sin2(θ) sin(φ) dρ) dφ] dθ.9.[R]
∫ π/4

0 [
∫ π/2
π/6 (

∫ sec θ
0 ρ3 sin(θ) cos(φ) dρ) dφ] dθ.

10.[R] Let R be the solid region inside both the
sphere x2 + y2 + z2 = 1 and the cone z =

√
x2 + y2.

Let the density at (x, y, z) be f(x, y, z) = z. Set up it-
erated integrals for the mass in R using (a) rectangular

coordinates, (b) cylindrical coordinates, (c) spherical
coordinates. (d) Evaluate the iterated integral in (c).

11.[R] Find the average temperature in a ball of ra-
dius a if the temperature is the square of the distance
from a fixed equatorial plane.

In each of Exercises 12 to 13 evaluate the iterated in-
tegral.

12.[R]
∫ 2π

0

(∫ 1
0

(∫ 1
r zr

3 cos2 θ dz
)
dr
)
dθ13.[R]

∫ 2π
0

(∫ 1
0

(∫ √a2−r2
−
√
a2−r2 z

2r dz
)
dr
)
dθ

14.[R] Let R be the solid region inside both the sphere
x2 + y2 + z2 = 1 and the cone z =

√
x2 + y2. Let the

density at (x, y, z) be f(x, y, z) = z. Using cylindrical
coordinates, find the mass of R.

15.[R] Using cylindrical coordinates, find the volume
of the region below the plane z = y + 1 and above
the circle in the xy plane whose center is (0, 1, 0) and
whose radius is 1. (Include a drawing of the region.)
Hint: What is the equation of the circle in polar co-
ordinates when the polar axis is along the positive
x-axis?

16.[R] Find the average distance from the center of
a ball of radius a to other points of the ball by setting
up appropriate iterated integrals in the three types of
coordinate systems and evaluating the easiest.

17.[R] A solid consists of that part of a ball of radius
a that lies within a cone of half-vertex angle φ = π/6,
the vertex being at the center of the ball. Set up
iterated integrals for

∫
R z dV in all three coordinate

systems and evaluate the simplest.

In Exercises 18 to 23 evaluate the multiple integrals
over a ball of radius a with center at the origin, with-
out using an iterated integral (φ,θ, and z are cylindrical
or spherical coordinates).
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18.[R]
∫
R cos(θ) dV

19.[R]
∫
R cos2 θ dV

20.[R]
∫
R z dV

21.[R]
∫
R(3+2 sin(θ) dV

22.[R]
∫
R sin2(φ) dV

23.[R]
∫
R sin(φ) dV

24.[R] In polar, cylindrical, and spherical coordinates
one must introduce an extra factor in the integrand
when using an iterated integral. Why is that not nec-
essary when using rectangular coordinates?

25.[R] Is
√
a2 always equal to a?

26.[R] Using the method of Example 4 find the aver-
age value of q for all points P in the ball. Note that it
is not the same as if the entire ball were placed at its
center.

27.[C] Show that the result of Example 4 holds if
the density δ(P ) depends only on ρ, the distance to
the center. (This is approximately the case with the
planet Earth, which is not homogeneous.) Let g(ρ)
denote δ(ρ, θ, φ).

In Exercises 28 to 29check the equations by differenti-
ation.

28.[R] tan
(
x
2

)
=∫

dx
1+cos(x)

29.[R] x tan
(
x
2

)
+

2 ln
∣∣cos

(
x
2

)∣∣ =
∫

x dx
1+cos(x)

30.[R]

(a) Find the exact volume of the little curvy box
corresponding to the changes ∆ρ, ∆θ, ∆φ.

(b) One hopes that the ratio between that exact
volume and our estimate, ρ2 sin(φ)∆ρ∆θ∆ρ ap-
proaches 1 as ∆ρ, ∆θ, ∆φ approach 0. Show
that it does. Hint: Recall the definition of a
derivative.

(c) Show that the exact volume in (a) can be writ-
ten in the form (ρ∗t)2 sin(φ∗)∆ρ∆φ∆θ, where ρ∗

is between ρ and ρ+∆ρ and φ∗ is between φ and
φ+ ∆φ.

31.[R] The kinetic energy of an object with mass m
moving at the velocity v is mv2/2. An object moving in
a circle of radius r at the angular speed ω radians per
unit time has velocity rω. (Why?) Thus its kinetic
energy is (mr2/2)ω2. Now consider a mass M that
occupies the region R in space. Its density is ∆(P ),
which may vary from point to point. (If it is constant,
it equals M/(Volume of R).) Let f(P ) be the distance
from P to a fixed line L. If the mass is spinning around
the axis L at the angular rate ω, show that its total
kinetic energy is

∫
R

1
2

(f(P ))2δ(P )w2 dv.

This can be written as

Kinetic Energy = (
1
2
Iω2.

Thus I plays the same role in rotational motion that
mass m plays in linear motion in the formula (1

2mv
2.

Every spinning ice skater knows this. When spinning
with her arms extended she has a certain amount of
kinetic energy. If she suddenly puts her arms to her
sides she decreases her moment of inertia but has not
destroyed her kinetic energy. That forces her angular
speed to increase. The larger the mass m is, the harder
it is to start it moving and to stop it when it is moving.
Similarly, the larger I is, the harder it is to stop the
mass from spinning and to stop it when it is spinning.

In Exercises 32 to 36 the objects have a homogeneous
(constant density) mass M . Find I.
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32.[R] A rectangular
box of dimensions, a, b, c
around a line through its
center and perpendicular
to the face of dimensions
a and b.

33.[R] A solid cylinder
of radius a and height h
around its axis.

34.[R] A solid cylinder
of radius a and height h

around a line on its sur-
face.
35.[R] A hollow cylinder
of height h, inner radius a,
and outer radius b, about
its axis.
36.[R] A solid cylinder
of radius a and height h
around a diameter in its
base.

37.[R] In Example 2 what unpleasantness occurs
when you describe the region in the order of the form
a ≤ θ ≤ b, z1(θ) ≤ z ≤ z2(θ), r1(θ, z) ≤ r ≤ r2(θ, z)?

38.[R] Solve Example 2 using rectangular coordi-
nates.

39.[R] Evaluate the moment of inertia in Exam-
ple 5 using the description 0 ≤ θ ≤ 2π, 0 ≤ r ≤ a,
−
√
a2 − r2 ≤ z ≤

√
a2 − r2.

40.[R] Let R be a solid ball of radius a with center
at the origin of the coordinate system

(a) Explain why
∫
R x

2 dV = 1
3

∫
R(x2 + y2 + z2) dV .

(b) Evaluate the second integral by spherical coor-
dinates.

(c) Use (b) to find
∫
R x

2 dV .

41.[M] Show that
∫
R(x3 + y3 + z3) dV = 0, where

R is a ball whose center is the origin of a rectangular
coordinate system. Note: Do not use an iterated in-
tegral. Hint: Use symmetry.

42.[R] A homogeneous object with mass M occupies
the region R between concentric spheres of radii a and
b, a < b. Let A be a point at a distance H from
their center, H < a. Evaluate

∫
R
δ
q dV , where δ is the

density and q = q(P ) is the distance from H to any
point P in R. (That the value of the integral does not
involve H has an important consequence: A uniform
hollow sphere exerts no gravitational force on objects

in its interior.)

43.[R] In Example 4, H is greater than a. Solve the
same problem for H less than a. Note: For some ρ,√
H2 + ρ2A− 2ρH equals H−ρ and for some it equals

ρ−H.

44.[C] (See Example 43.) Let A be a point in the
plane of a disk but outside the disk. Is the average
of the reciprocal of the distance from A to points in
the disk equal to the reciprocal of the distance to the
center of the disk?

45.[C] A certain ball of radius a is not homogeneous.
However, its density at P depends only on the dis-
tance from P to the center of the ball. That is, there is
a function f(ρ) such that the density at P = (ρ, θ, φ)
is f(ρ). Using an iterated integral, show that the mass
of the ball is

4π

a∫
0

f(ρ2
ρ dρ.

46.[C] Let R be the part of a ball of radius a removed
by a cylindrical drill of diameter a whose edge passes
through the center of the sphere.

(a) Sketch R.

(b) Notice that R consists of four congruent pieces.
Find the volume of one of these pieces using
cylindrical coordinates. Multiply by four to get
the volume of R.

47.[C] Let R be the ball of radius a. For any point
P in the ball other than the center of the ball, define
f(P ) to be the reciprocal of the distance from P to
the origin. The average value of r over R involves an
improper integral, since the function blows up near
the origin. Does this improper integral converge or
diverge? What is the average value of f over R? Sug-
gestion: Examine the integral over the region between
concentric spheres of radii a and t, and let t→ 0+.
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17.7 Integrals Over Surfaces

In this section we define an integral over a surface and then show how to
compute it by an iterated integral.

Definition of a Surface Integral

Consider a surface S such as the surface of a ball or part of the saddle z = xy.
If f is a numerical function defined at least on S, we will define the integral∫
S
f(P ) dS. The definition is practically identical with the definition of the

double integral, which is the special case when the surface is a plane.
We assume that the surfaces we deal with are smooth, or composed of a

finite number of smooth pieces, and that the integrals we define exist.

Figure 17.7.1:

DEFINITION (Definite integral of a function f over a surface
S.) Let f be a function that assigns to each point P in a surface
S a number f(P ). Consider the typical sum

f(P1)S1 + f(P2)S2 + · · ·+ f(Pn)Sn,

formed from a partition of S, where Si is the area of the ith re-
gion in the partition and Pi is a point in the ith region. (See
Figure 17.7.1.) If these sums approach a certain number as the Si
are chosen smaller and smaller, the number is called the integral
of f over S and is written∫

S

f(P ) dS.

Surface integrals are also
denoted

∫∫
S f(P ) dS. If f(P ) is 1 for each point P in S then

∫
S f(P ) dS is the area of S. If S is

occupied by material of density σ(P ) at P then
∫
S σ(P ) dS is the total mass

of S.
First we show how to integrate over a sphere.

Integrating over a Sphere

If S is a sphere or part of a sphere, it is often convenient to evaluate an integral
over it with the aid of spherical coordinates.See Section 17.6 for a

similar argument, where ρ
was not constant.

If the center of a spherical coordinate system (ρ, θ, φ) is at the center of a
sphere of radius a, then ρ is constant on the sphere ρ = a. As Figure 17.7.2
suggests, the area of the small region on the sphere corresponding to slight
changes dθ and dφ is approximately

(a dφ) (a sin(φ) dθ) = a2 sin(φ) dθ dφ.
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Figure 17.7.2:

Thus we may write

dS = a2 sin(φ) dθ dφ

and evaluate ∫
S

f(P ) dS

in terms of a repeated integral in φ and θ. Example 1 illustrates this technique.

EXAMPLE 1 Let S be the top half of the sphere with radius a. Evaluate∫
S z dS.

SOLUTION Since the sphere has radius a, ρ = a. The top half of the sphere
is described by 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. And, in spherical coordinates,
z = ρ cos(φ) = a cos(φ). Thus

∫
S

z dS =

∫
S

(a cos(φ)) dS =

2π∫
0

 π/2∫
0

(a cos(φ))a2 sin(φ) dφ

 dθ.

Now,

π/2∫
0

(a cos(φ))a2 sin(φ) dφ = a3

π/2∫
0

cos(φ) sin(φ) dφ = a3 (− cos2(φ))

2

∣∣∣∣π/2
0

=
a3

2
[−0− (−1)] =

a3

2
.
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so that ∫
S

z dS =

2π∫
0

a3

2
dθ = πa3.

�

We can interpret the result in Example 1 in terms of average value. The
average value of f(P ) over a surface S is defined as∫

S f(P ) dS

Area of S
.

Geometric interpretation

Example 1 shows that the average value of z over the given hemisphere is∫
S z dS

Area of S
=

πa3

2πa2
=
a

2
.

“The average height above the equator is exactly half the radius.”

A General Technique

When we faced an integral over a curve,
∫
C
f ds, we evaluated it by replacing

it with
∫ b
a
f ds

dt
dt, an integral over an interval [a, b].

We will do something similar for an integral over a surface: We will replace
an surface integral by a double integral over a set in a coordinate plane.

The basic idea is to replace a small patch on the surface S by its projection
(shadow) or, say, the xy-coordinate plane. The area of the shadow is not the
same as the area of the patch. With the aid of Figure 17.7.3 we will express
the area of the shadow in terms of the tilt of the patch.

The unit normal vector to the patch is n. The angle between n and k is
γ. Call the area of the patch, dS, and the area of its projection, dA. Then

Figure 17.7.3:

dA ≈ | cos(γ)| dS.

Recall the discussion of
direction angles and
direction cosines in

Section 14.4.

Notice that the angle γ is one of the direction angles of the unit normal
vector, k.

For instance, if γ = 0, then dA = dS. If γ = π/2, then dA = 0. We use
the absolute value of cos(γ), since γ could be larger than π/2.

It follows, if cos(γ) is not 0, that
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dS =
dA

| cos(γ)|
(17.7.1)

With the aid of (17.7.1), we replace an integral over S with an integral over
its shadow in the xy plane.

The replacement is visible in the approximating sums involved in the inte-
gral over a surface.

Let S be a surface that meets each line parallel to the z-axis at most once.
Let f be a function whose domain includes S.

Consider an approximating sum for
∫
S f(P ) dS, namely

∑n
i=1 f(pi)∆Si.

The partition is shown in Figure 17.7.4.

Figure 17.7.4:

Let R be the projection of S in the xy plane. The patch Si with area Si,
projects down to Ri, of area Ai, and the point Pi on Si points down to Qi in
Ri. Let γi be the angle between the normal at Pi and k.

Then f(P )Si is approximately f(Pi)
| cos(γi)|Ai. Thus an approximation of

∫
S f(P ) dS

is
n∑
i=1

f(Pi)

| cos γi|
Ai. (17.7.2)

Replacing an integral over a
surface with an integral over
a planar region.

Theorem 17.7.1. Let S be a surface and let A be its projection on the xy
plane. Assume that for each point Q on A the line through Q parallel to the z-
axis meets S in exactly one point P . Let f be a function defined on S. Define
a function h on A by

h(Q) = f(P ).

Then ∫
S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

In this equation γ denotes the angle between k and a vector normal to the
surface of S at P . (See Figure 17.7.5.)

Figure 17.7.5:

In order to apply this result, we need to be able to compute cos(γ).

Computing cos(γ)

We find a vector perpendicular to the surface in order to compute cos(γ). If
S is the level surface of g(x, y, z), that is g(x, y, z) = c, for some constant c,
then the gradient ∇g is such a vector.
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If the surface S is given in the form z = f(x, y), rewrite it as z−f(x, y) = 0.
That means that S is a level surface of g(x, y, z) = z−f(x, y), Theorem 17.7.2
shows what the formulas for cos(γ) look like. However, it is unnecessary, even
distracting, to memorize them. Just remember that a gradient provides a
normal to a level surface.

Theorem 17.7.2. (a) If the surface S is part of the level surface g(x, y, z) =
c, then

| cos(γ)| =
|∂g
∂z
|√

( ∂g
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) If the surface S is given in the form z = f(x, y), then

| cos(γ)| = 1√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
.

Proof

(a) A normal vector to S at a given point is provided by the gradient

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k.

The cosine of the angle between k and ∇g is

k · ∇g
‖k‖‖∇g‖

=
k · ( ∂g

∂x
i + ∂g

∂y
j + ∂g

∂z
k)

(1)
(
·
√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
) ;

hence

| cos(γ)| =
|∂g
∂z
|√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) Rewrite z = f(x, y) as z − f(x, y) = 0. The surface z = f(x, y) is thus
the level surface g(x, y, z) = 0 of the function g(x, y, z) = z − f(x, y).
Note that

∂g

∂x
= −∂f

∂x
,

∂g

∂y
= −∂f

∂y
and

∂g

∂z
= 1.

By the formula in (a),

| cos(γ)| = 1√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
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•

Theorem 17.7.2 is stated for projections on the xy plane. Similar theorems
hold for projections on the xz or yz plane. The direction angle γ is then
replaced by the corresponding direction angle, β or α, and the normal vector
is dotted into j or i. Just draw a picture in each case; there is no point in
trying to memorize formulas for each situation.

EXAMPLE 2 Find the area of the part of the saddle z = xy inside the
cylinder x2 + y2 = a2.
SOLUTION Let S be the part of the surface z = xy inside x2 + y2 = a2.
Then

Area of S =

∫
S

1 dS.

The projection of S on the xy plane is a disk of radius a and center (0, 0). Call
it A, as in Figure 17.7.6. Then

Area of S =

∫
S

1 dS =

∫
A

1

| cos(γ)|
dA. (17.7.3)

Figure 17.7.6:

To find the normal to S rewrite z = xy as z − xy = 0. Thus S is a level
surface of the function g(x, y, z) = z − xy. A normal to S is therefore

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k

= −yi− xj + k.

Then

cos(γ) =
k · ∇g
‖k‖‖∇g‖

=
k · (−yi− xj + k)√

y2 + x2 + 1
=

1√
y2 + x2 + 1

.

The area of S is∫
A
√

(∂f/∂x)2 + (∂f/∂y)2 + 1 dA.By (17.7.3),

Area of S =

∫
A

√
y2 + x2 + 1 dA. (17.7.4)

Use polar coordinates to evaluate the integral in (17.7.4):

∫
A

√
y2 + x2 + 1 dA =

2π∫
0

a∫
0

√
r2 + 1r dr dθ.
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The inner integration gives

a∫
0

√
r2 + 1f dr =

(r2 + 1)3/2

3

∣∣∣∣a
0

=
(1 + a2)3/2 − 1

3
.

The second integration gives

2π∫
0

(1 + a2)3/2 − 1

3
dθ =

2π

3

(
(1 + a2)3/2 − 1

)
.

�

Summary

After defining
∫
S f(P ) dS, an integral over a surface, we showed how to com-

pute it when the surface is part of a sphere.Replace dS by
a2 sin(φ) dφ dθ, where a is

the radius of the sphere.
If each line parallel to the z-axis meets the surface S in at most one point,

an integral over S can be replaced by an integral over A, the projection of S
on the xy plane: ∫

S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

To find cos(γ), use a gradient. If the surface is a level surface of, g(x, y, z) = c,
use ∇g. If it has the equation z = f(x, y), rewrite the equation as z−f(x, y) =
0. As a special case, if S is the graph of z = f(x, y), then the area of S

Area of S =

∫
S

dS =

∫
A

√
(∂f/∂x)2 + (∂f/∂y)2 + 1 dA.
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EXERCISES for Section 17.7 Key: R–routine,
M–moderate, C–challenging

1.[R] A small patch of a surface makes an angle of
π/4 with the xy plane. Its projection on that plane
has area 0.05. Estimate the area of the patch.

2.[R] A small patch of a surface makes an angle of
25◦ with the yz plane. Its projection on that plane has
area 0.03. Estimate the area of the patch.

3.[R]

(a) Draw a diagram of the part of the plane x+2y+
3z = 12 that lies inside the cylinder x2 + y2 = 9.

(b) Find as simply as possible the area of the part
of the plane x+ 2y+ 3z = 12 that lies inside the
cylinder x2 + y2 = 9.

4.[R]

(a) Draw a diagram of the part of the plane z =
x+ 3y that lies inside the cylinder r = 1 + cos θ.

(b) Find as simply as possible the area of the part of
the plane z = x+ 3y that lies inside the cylinder
r = 1 + cos θ.

5.[R] Let f(P ) be the square of the distance from P
to a fixed diameter of a sphere of radius a. Find the
average value of f(P ) for points on the sphere.

6.[R] Find the area of that part of the sphere of radius
a that lies within a cone of half-vertex angle π/4 and
vertex at the center of the sphere, as in Figure 17.7.7.

Figure 17.7.7:
In Exercises 7 and 8 evaluate

∫
S F · n dS for the given

spheres and vectors fields (n is the outward unit nor-
mal.)
7.[R] The sphere x2 + y2 + z2 = 9 and F =
x2i + y2vj + z2k.
8.[R] The sphere x2+y2+z2 = 1 and F = x3i+y2j.

9.[R] Find the area of the part of the spherical surface
x2 + y2 + z2 = 1 that lies within the vertical cylinder
erected on the circle r = cos θ and above the xy plane.

10.[R] Find the area of that portion of the parabolic
cylinder z = 1

2x
2 between the three planes y = 0,

y = x, and x = 2.

11.[R] Evaluate
∫
S x

2y dS, where S is the portion in
the first octant of a sphere with radius a and center at
the origin, in the following way:

(a) Set up an integral using x and y as parameters.

(b) Set up an integral using φ and θ as parameters.

(c) Evaluate the easier of (a) and (b).

12.[R] A triangle in the plane z = x + y is directly
above the triangle in the xy plane whose vertices are
(1, 2), (3, 4), and (2, 5). Find the area of

(a) the triangle in the xy plane,
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(b) the triangle in the plane z = x+ y.

13.[R] Let S be the triangle with vertices (1, 1, 1),
(2, 3, 4), and (3, 4, 5).

(a) Using vectors, find the area of S.

(b) Using the formula

Area of S =
∫
S

1 dS,

find the area of S.

14.[R] Find the area of the portion of the cone
z2 = x2 + y2 that lies above one loop of the curve
r =

√
cos 2(θ).

15.[R] Let S be the triangle whose vertices are
(1, 0, 0), (0, 2, 0), and (0, 0, 3). Let f(x, y, z) =
3x+ 2y + 2z. Evaluate

∫
S f(P ) dS.

In Exercises 16 and 17 let S be a sphere of radius a
with center at the origin of a rectangular coordinate
system.
16.[R] Evaluate each of these integrals with a mini-
mum amount of labor.

(a)
∫
S x dS

(b)
∫
S x

3 dS

(c)
∫
S

2x+4y5√
2+x2+3y2

dS

17.[R]

(a) Why is
∫
S x

2 dS =
∫
S y

2 dS?

(b) Evaluate
∫
S(x2 + y2 + z2) dS with a minimum

amount of labor.

(c) In view of (a) and (b), evaluate
∫
S x

2 dS.

(d) Evaluate
∫
S(2x2 + 3y3) dS.

18.[R] An electric field radiates power at the rate
of k(sin2(φ)/ρ2 units per square meter to the point
P = (ρ, θ, φ). Find the total power radiated to the
sphere ρ = a.

19.[R] A sphere of radius 2a has its center at the
origin of a rectangular coordinate system. A circular
cylinder of radius a has its axis parallel to the z-axis
and passes through the z-axis. Find the area of that
part of the sphere that lies within the cylinder and is
above the xy plane.

Consider a distribution of mass on the surface S.
Let its density at P be σ(P ). The moment of in-
ertia of the mass around the z-axis is defined as∫
S(x2 + y2)σ(P ) dS. Exercises 20 and 21 concern this

integral.
20.[R] Find the moment of inertia of a homogeneous
distribution of mass on the surface of a ball of radius
a around a diameter. Let the total mass be M .
21.[R] Find the moment of inertia about the z-axis
of a homogeneous distribution of mass on the triangle
whose vertices are (a, 0, 0), (0, b, 0), and (0, 0, c). Take
a, b, and c to be positive. Let the total mass be M .

22.[R] Let S be a sphere of radius a. Let A be a
point at distance b > a from the center of S. For
P in S let δ(P ) be 1/q, where q is the distance from
P to A. Show that the average of δ(P ) over S is 1/b.

23.[R] The data are the same as in Exercise 22 but
b < a. Show that in this case the average of 1/q is 1/a.
(The average does not depend on b in this case.)

Exercises 24 to 26 concern integration over the curved
surface of a cone. Spherical coordinates are also useful
for integrating over a right circular cone. Place the ori-
gin at the vertex of the cone and the “φ = 0” ray along
the axis of the cone, as shown in Figure 17.7.8(a). Let
α be the half-vertex angle of the cone.
On the surface of the cone φ is constant, φ = α, but ρ
and θ vary. A small “rectangular” patch on the surface
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of the cone corresponding to slight changes dθ and dρ
has area approximately

(ρ sin(α) dθ) dρ = ρ sin(α) dρ dθ.

(See Figure 17.7.8.) So we may write

dS = ρ sinα dρ dθ.

ch16/f16-7-9

Figure 17.7.8:
24.[R] Find the average distance from points on the
curved surface of a cone of radius a and height h to its
axis.
25.[R] Evaluate

∫
S z

2 dS, where S is the entire sur-
face of the cone shown in Figure 17.7.8(b), including
its base.
26.[R] Evaluate

∫
S x

2 dS, where S is the curved sur-
face of the right circular cone of radius 1 and height 1
with axis along the z-axis.

Integration over the curved surface of a right circular
cylinder is easiest in cylindrical coordinates. Consider
such a cylinder of radius a and axis on the z-axis. A
small patch on the cylinder corresponding to dz and dθ
has area approximately dS = a dz dθ. (Why?) Exer-
cises 27 and 28 illustrate the use of these coordinates.
27.[R] Let S be the entire surface of a solid cylinder
of radius a and height h. For P in S let f(P ) be
the square of the distance from P to one base. Find∫
S f(P ) dS. Be sure to include the two bases in the

integration.
28.[R] Let S be the curved part of the cylinder in

Exercise 27. Let f(P ) be the square of the distance
from P to a fixed diameter in a base. Find the average
value of f(P ) for points in S.

29.[R] The areas of the projections of a small flat
surface patch on the three coordinate planes are 0.01,
0.02, and 0.03. Is that enough information to find the
area of the patch? If so, find the area. If not, explain
why not.

30.[R] Let F describe the flow of a fluid in space.
(See Section 16.3 for fluid flow in a planar region.)
F(P ) = δ(P )v(P ), where δ(P ) is the density of the
fluid at P and v(P ) is the velocity of the fluid at P .
Making clear, large diagrams, explain why the rate at
which the fluid is leaving the solid region enclosed by
a surface S is

∫
S F · n dS, where n denotes the unit

outward normal to S.

31.[R] Let S be the smooth surface of a convex body.
Show that

∫
S z cos(γ) dS is equal to the volume of the

solid bounded by S. Hint: Break S into two parts. In
one part cos(γ) is positive; and the other it negative.

32.[M] Let R(x, y, z) be a scalar function defined over
a closed surface S. (See Figure 17.7.9.)

(a) Show that

∫
S

R(x, y, z) cos(γ) dS =
∫
A

(P (x, y, z2)− P (x, y, z1)) dA,

where A is the projection of S on the xy plane
and the line through (x, y, 0) parallel to the z-
axis meets S at (x, y, z1) and (x, y, z2), with
z1 ≤ z2.

(b) Let S be a surface of the type in (a). Evaluate∫
S x cos γ dS.
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Figure 17.7.9:
33.[C]

(a) Let g be a differentiable function such that
g((x + y)/2) = ((g(x) + g(y))/2 for all x and
y. Show that g(x) = kx+ c for some constraints
k and c. Hint: Differentiate.

(b) Let f be a differentiable function such that
(x + y)f(x + y) + (x − y)f(x − y) = 2xf(x) for
all x and y. Deduce that there are constraints k
and c such that f(x) = k + c/x.

34.[C] (Suggested by Exercises 22 and 23.) The func-
tion f(x) = 1/x has the remarkable property that the
average value of f(d(P )) over a sphere is the same as
f(H). Here d(P ) is the distance from P to a fixed
point at a distance H for the center of a sphere, of ra-
dius a, a < H. Show that the only functions with this
property have the form k + c/x for some constraints k
and c. Hint: Use part of the Fundamental Theorem of
Calculus to remove integration. Then the Exercise 33
many come in handy.
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17.8 Moments, Centers of Mass, and Centroids

Now that we can integrate over planar regions, surfaces, and solid regions, we
can define and calculate the center of mass of a physical object. The center of
mass is important in the eyes of a naval architect, who wants his ships not to
tip over easily. A pole vaulter hopes that as she clears the bar her center of
mass goes under it. Archimedes, the first person to study the center of mass,
was interested in the stability of floating paraboloids.

The Center of Mass

Figure 17.8.1:

A small boy on one side of a seesaw (which we regard as weightless) can
balance a bigger boy on the other side. For example, the two boys in Fig-
ure 17.8.1 balance. (According to physical laws, each boy exerts a force on the
seesaw, due to gravitational attraction, proportional to his mass.)

The small mass with the long lever arm balances the large mass with the
small lever arm. Each boy contributes the same tendency to turn–but in
opposite directions.

This tendency is called the moment:

Moment = (Mass) · (Lever arm),

where the lever arm can be positive or negative. To be more precise, introduce
on the seesaw an x-axis with its origin 0 at the fulcrum, the point on which
the seesaw rests. Define the moment about 0 of a mass m located at the point
x on the x-axis to be the product mx. Then the bigger boy has a moment
(90)(4), which the smaller boy has a moment (40)(−9). The total moment of
the lever-mass system is 0, and the masses balance. (See Figure 17.8.2.)

Figure 17.8.2:

If a mass m is located on a line with coordinate x, we define its moment
about the point having coordinate k as the product m(x− k).

Now consider several point masses m1,m2, . . . ,mi. If mass mi is located at
xi, with i = 1, 2, . . . , n, then

∑n
i=1mi(xi − k) is the total moment of all the

masses about the point k. If a fulcrum is placed at k, then the seesaw rotates
clockwise if the total moment is greater that 0, rotates counterclockwise if it is
less than 0, and is in equilibrium if the total moment is 0. See Figure 17.8.3.

Figure 17.8.3:

To find where to place the fulcrum so that the total tendency to turn is 0,
we find k such that

n∑
i=1

mi(xi − k) = 0.

Writing this as

k

n∑
i=1

mi =
n∑
i=1

mi − xi,

we see that
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k =

∑n
i=1mixi∑n
i=1mi

. (17.8.1)

The number k given by (17.8.1) is called the center of mass or center of
gravity of the system of masses. It is the point about which all the masses
balance. The center of mass is found by dividing the total moment about 0 by
the total mass. It is usually denoted x̄.

(a) (b)

Figure 17.8.4:

Finding the center of mass of a finite number of “point masses” involves
only arithmetic, no calculus. For example, suppose three masses are placed
on a seesaw as in Figure 17.8.4(a). Introduce an x-axis with origin at mass
m1 = 20 pounds. Two additional masses are located at x2 = 4 feet and
x3 = 14 feet with masses m2 = 10 pounds and m3 = 50 pounds, respectively.
The total moment about x = k is

M = 20(0− k) + 10(4− k) + 50(14− k) = 740− 80k.

This moment vanishes when M = 0, that is, when k = 740/80 = 9.25.
This is consistent with the formula for the center of mass:

x̄ =
m1x1 +m2x2 +m3x3

m1 +m2 +m3

=
0 + 40 + 700

10 + 20 + 50
=

740

80
= 9.25.

The seesaw balances when the fulcrum is placed 9.25 feet from the first
mass. (See Figure 17.8.4(b).)

Now let us turn our attention to finding the center of mass of a continuous
distribution of matter in a plane region. For this purpose, we consider double
integrals.

Let R be a region in the plane occupied by a thin piece of metal whose
density, σ(P ), varies. Let L be a line in the plane, as shown in Figure 17.8.5(a).
We will find a formula for the unique line parallel to L, around which the mass
in R balances.
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(a) (b)

Figure 17.8.5:

To begin, let L′ be any line parallel to L. We will compute the moment
about L′ and then see how to choose L′ to make that moment equal to 0. To
compute the moment of R about L′, introduce an x-axis perpendicular to L
with its origin at its intersection with L. Assume that L′ passes through the
x-axis at the pointx = k, as in Figure 17.8.5(b). In addition, assume that
each line parallel to L meets R either in a line segment or at a point on the
boundary of R. The lever arm of the mass distributed throughout R varies
from point to point.

We partition R into n small regions R1, R2, . . . , Rn. Call the area of Ri, Ai.
In each of these regions the lever arm around L′ varies only a little. So, if we
pick a point P1 in R1, P2 in R2, . . . , Pn, in Rn, and the x-coordinate of Pi is
xi, then

(xi − k)︸ ︷︷ ︸
lever arm

σ(Pi)Ai︸ ︷︷ ︸
mass in Ri

is a local estimate of the turning tendency.

Thus
n∑
i=1

(xi − k)σ(Pi)Ai (17.8.2)

would presumably be a good estimate of the total turning tendency around
L′. Taking the limit of (17.8.2) as all Ri are chosen smaller and smaller, we
expect ∫

R

(x− k)σ(P ) dA (17.8.3)

to represent the turning tendency of the total mass around L′. The quantity
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(17.8.3) is called the moment of torque of the mass distribution around L′.

EXAMPLE 1 Let R be the region under y = x2 and above [0, 1] DOUG
with the density σ(x, y) = xy. Find its moment around the line x = 1/2.
SOLUTION R is shown in Figure 17.8.6. The moment (17.8.3) equals

Figure 17.8.6:

∫
R

(
x− 1

2

)
xy dA. (17.8.4)

We evaluate this double integral by the iterated integral

1∫
0

 x2∫
0

(
x− 1

2

)
xy dy

 dx.

The first integration givesSee Exercise 2.

x2∫
0

(
x− 1

2

)
xy dy = (x− 1/2)x

x2∫
0

y dy =

(
x− 1

2

)
x5

2
.

The second integration is

1∫
0

(
x− 1

2

)
x5

2
=

1∫
0

2x6 − x5

4
dx =

5

168
.

Since the total moment (17.8.4) is positive, the object would rotate clockwise
around the line x = 1

2
. �

October 22, 2010 Calculus



§ 17.8 MOMENTS, CENTERS OF MASS, AND CENTROIDS 1261

Now that we have a way to find the moment around any line parallel to
the y-axis we can find the line around which the moment is zero, the so-called
“balancing line.” We just solve for k in the equation∫

R

(x− k)σ(P ) dA = 0.

Thus ∫
R

xσ(P ) dA = k

∫
R

σ(P ) dA,

from which we find that

k =

∫
R
xσ(P ) dA∫

R
σ(P ) dA

. (17.8.5)

The denominator is the total mass. The numerator is the total torque. So we
can think of k as “the average lever arm as integrated by the density.”

That is therefore a unique balancing line parallel to the y axis. Call its
x-coordinate x (read: “x bar”). Similarly, there is a unique balancing line
parallel to the x axis. Call its y-coordinate y. The point (x, y) is called the
center of mass of the region R. We have:

The center of mass of a region R with density σ(P ) has coordinates (x̄, ȳ)
where

x =

∫
R
xσ(P ) dA∫

R
σ(P ) dA

and y =

∫
R
yσ(P ) dA∫

R
σ(P ) dA

.

The integral
∫
R
xσ(P ) dA is called the moment of R around the y-axis,

and is denoted My. Similarly, Mx =
∫
R
yσ(P ) dA.

If the density σ(P ) is constant, say, equal to 1 everywhere in R, then the
two equations reduce to

x =

∫
R
x dA∫

R
dA

and y =

∫
R
y dA∫

R
dA

.

In this case the center of mass R is also called the centroid of the region, a
purely geometric concept:
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The centroid of the plane region R has the coordinates (x̄, ȳ) where

x =

∫
R
x dA

Area of R
and y =

∫
R
y dA

Area of R)
. (17.8.6)

EXAMPLE 2 Find the center of mass of the region in Example 1.
SOLUTION The density at (x, y) in R is given by σ = xy. We compute three
double integrals: the mass

∫
R
xy dA and the two moments My =

∫
R
x(xy) dA

and Mx =
∫
R
y(xy) dA.

We have∫
R

x2y dA =

1∫
0

 x2∫
0

x2y dy

 dx =

1∫
0

x6

2
dx =

1

14
.

Then ∫
R

xy dA =

1∫
0

 1∫
0

xy dy

 dx =

1∫
0

x5

2
dx =

1

12
.

Finally, ∫
R

xy2 dA =

0∫
1

 0∫
1

xy2 dy

 dx =

1∫
0

x7

3
dx =

1

24
.

Thus

x =
1
14
1
12

=
6

7
and y =

1
24
1
12

=
1

2
.

It is not surprising that x is greater than 1/2, since in Example 17.8.1 we
found that the object rotates clockwise around the line x = 1/2. �

Figure 17.8.7:

An Important Point About an Important Point
We defined the center of mass (x, y) by first choosing an xy coordinate system.
What if we choose an x′y′ coordinate system at an angle to the xy coordinate
system? Would the center of mass computed in this system, (x′, y′) be the
same point as (x, y)? See Figure 17.8.7. Fortunately, it is, as Exercise 59
shows.

October 22, 2010 Calculus



§ 17.8 MOMENTS, CENTERS OF MASS, AND CENTROIDS 1263

Shortcuts for Computing Centroids

Assume that R is the region under y = f(x) for x in [a, b]. Then the moment
about the x-axis is

Mx =

∫
R

y dA.

Thus

My =

b∫
a

(

f(x)∫
0

y dy) dx =

b∫
a

(f(x))2

2
dx =

1

2

b∫
a

(f(x))2 dx.

Thus, by (17.8.6)

y =
1
2

∫ b
a
(f(x))2 dx

Area of R
. (17.8.7)

Figure 17.8.8:

EXAMPLE 3 Find the centroid of the semicircular region of radius a shown
in Figure 17.8.8.
SOLUTION By symmetry, x = 0.

To find y, use (17.8.7). The function f in this case is given by the formula
f(x) =

√
a2 − x2, an even function. The moment of R about the x-axis is

a∫
−a

(
√
z2 − x2)2

2
dx =

a∫
−a

a2 − x2

2
dx = 2

a∫
0

a2 − x2

2
dx

=

a∫
0

(a2 − x2) dx =

(
a2x− x3

3

)∣∣∣∣a
0

= (a3 − a3

3
)− 0 =

2

3
a3.

Thus Since 4/(3π) ≈ 0.42, the
center of gravity of R is at
a height of about 0.42a.y =

2
3
a3

Area of R
=

2
3
a3

1
2
πa2

=
4a

3π
.

�
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Centers of Other Masses

We developed the ideas of moments and centers of mass for masses situation
in a plane. The definition generalizes easily to masses distributed on a curve
(such as a wire) or in space (such as a potato).

In the case of a curve, the curve would have a linear density λ(P ). A short
piece around P of length ∆s would have mass approximately λ(P )∆s. Thus,
the mass and moments of the curve would be

M =

∫
C

λ(P ) ds, My =

∫
C

xλ(P ) ds, and Mx =

∫
C

yλ(P ) ds.

We state the definition in the case of a solid object of density λ(P ) occu-
pying the region R. We assume an xyz-coordinate system. The total mass
is

M =

∫
R

δ(P ) dV.

Now, there are three moments — one around each of the three coordinate
planes:

Myz =

∫
R

xδ(P ) dV,Mxz =

∫
R

yδ(P ) dV,Mxy

∫
R

zρ dV.

The center of mass is (x, y, z), where

overlinex =

∫
R
xδ(P ) dV

M
, y =

∫
R
yδ(P ) dv

M
, z =

∫
R
zδ(P ) dV

M
.

If δ(P ) = 1 for all P in R, the center of mass is called the centroid. In this
case the mass is the same as the volume.

EXAMPLE 4 Find the centroid of a hemisphere of radius a.

Figure 17.8.9:

SOLUTION We place the origin of an xyz-coordinate system at the center
of the hemisphere, as in Figure 17.8.9.

First of all, by symmetry, the centroid must be at the z-axis. mnoteIf the
centroid were not at the z-axis, you would get two centroids for the same object.
(If you spin the hemisphere about the z-axis you get the same hemisphere back,
which must have the same centroid.)

So x = y = 0. Calling the hemisphere R, we have

z =

∫
R
z dV

Volume of R
.

The volume of the hemisphere is half that of a ball, (2/3)πa3. To evaluate the
moment

∫
R
z dV , we bring in an iterated integral in spherical coordinates:∫

R

z dV =

2π∫
0

π/2∫
0

a∫
0

(ρ cos(φ))ρ2 sin(φ) dρ dφ dθ.
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z = ρ cosφSee Exercise 3.

Straightforward computations show that∫
R

z dV =
πa4

4
.

Thus

z =
πa4

4
2
3
πa3

=
3a

8
.

The centroid is (0, 0, 3a
8

). �

EXAMPLE 5 Find the centroid of a homogeneous cone of height h and
radius a.
SOLUTION As we just saw for the sphere in Example 4, symmetry tells us
the centroid lies on the axis of the cone.

Introduce a spherical coordinate system with the origin at the vertex of the
cone and with the axis of the cone lying on the ray φ = 0, as in Figure 17.8.10.

Figure 17.8.10:

The half-vertex angle is arctan(a/h). The plane of the base of the cone is
z = h (in rectangular coordinates), hence

ρ cos(φ) = h.

In spherical coordinates, the cone’s description is

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ arctan(a/h), 0 ≤ ρ ≤ h/ cos(φ).

To find the centroid of the cone we compute
∫
R
z dV and divide the results

by the volume of the cone, which is 1
3
πa2h.

Now

∫
R

z dV =

2π∫
0

arctan(a/h)∫
0

h/ cos(φ)∫
0

ρ cos(φ)(ρ2 sin(φ)) dρ dφ dθ.

See Exercise 4

For the first integration, φ and θ are constant; hence

h/ cos(φ)∫
0

ρ cos(φ)ρ2 sin(φ) dρ = cos(φ) sin(φ)

h/ cos(φ)∫
0

ρ3 dρ =
h4 sin(φ)

4 cos3(φ)
.

The second integration is

arctan(a/h)∫
0

h4 sin(φ)

4 cos3(φ)
dφ =

h4

4

arctan(a/h)∫
0

sin(φ)

cos3(φ)
dφ =

a2h2

8
.
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curve (C) solid (R)
density λ(P ) δ(P )
M

∫
C
λ(P ) ds

∫
S
δ(P ) dV

Myz

∫
C
xλ(P ) ds

∫
S
xδ(P ) dV

Mxz

∫
C
yλ(P ) ds

∫
S
yδ(P ) dV

Mxy

∫
C
zλ(P ) ds

∫
S
zδ(P ) dV

The final integral is simply:

2π∫
0

a2h2

8
dθ =

a2h2

8
2π =

πa2h2

4
.

Thus,

z =

∫
R
z dV

Volume of R
=

(
πa2h2

4

)
(
πa2h

3

) =
3h

4
.

The centroid of a cone is three-fourths of the way from the vertex to the
base. �

Summary

We defined the moment about a line and used this concept to define the center
of mass for a plane distribution of mass. The moment of a mass about a line
L indicates the tendency of the mass to rotate about the line L. The center
of mass for a region R is the point in the region where the region balances.

• The moment about the y-axis, My, is
∫
R
xδ(P ) dA.

• The moment about the x-axis, Mx, is
∫
R
yδ(P ) dA.

Then, the center of mass is (x̄, ȳ) where

x =
My

Mass
, y =

Mx

Mass
.

If the density is constant, we have a purely geometric concept,

x =

∫
R
x dA

Area of R
, y =

∫
R
y dA

Area of R
.

These definitions generalize to curves and solids.
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EXERCISES for Section 17.8 Key: R–routine,
M–moderate, C–challenging

1.[R]

(a) How would you define the centroid of a curve?
Call its (linear) density λ(P ).

(b) Find the centroid of a semicircle of radius a.

2.[R] Carryout the integrations in Example 1.

3.[R] Carryout the “straightforward calculations” in
Example 4.

4.[R] Provide the details needed to complete the in-
tegrals in Example 5.

5.[R] Example 4 showed that the centroid of a hemi-
sphere is less than halfway from the center to its sur-
face. Why is that to be expected?

6.[M] If R is the region below y = f(x) and above
[a, b], show that

x =

∫ b
a xf(x) dx
Area of R

.

7.[M] The corners of a triangular piece of metal of
constant density 1 are (0, 0), (1, 0), and (0, 2).

(a) Is the line y = 11x/5 a balancing line?

(b) If not, if the metal rests on this line which way
would it rotate?

DEFINITION (Section of a region)
Let R be a convex set in the plane.
A section of R is a part of R that is
bounded by a chord and part of the the
boundary, as shown as Figure 17.8.11

Figure 17.8.11:

8.[C] Consider a convex set R in the plane furnished
with a density. Show that different sections have dif-
ferent centers of gravity.

9.[C] (See Exercise 8.) Is every point in R that is not
on the boundary the center of mass of some section of
R?

10.[C] Archimedes (287-212 b.c.) investigated the
centroid of a section of a parabola. Consider the
parabola y = x2. The typical section is shown in
Figure 17.8.12. M is the midpoint of the chord and
N is the point on the parabola directly below M .

Figure 17.8.12:

Calculus October 22, 2010



1268 CHAPTER 17 PLANE AND SOLID INTEGRALS

He showed, without calculus, that the centroid is on
the line MN , three-fifths of the way from N and M .
Obtain his result with the aid of calculus.

11.[C] (See Exercise 10.) Is every point in the region
bounded by the parabola the centroid of some section?

12.[R] Find the centroid of a solid paraboloid of rev-
olution. This is the region above z = x2 + y2 and
below the plane z = c. Archimedes solved this prob-
lem without calculus and used the result to analyze the
equilibrium of a floating paraboloid. (If it is slightly
tilted, will it come back to the vertical or topple over?)
For details as how he did this 2200 years ago see S.
Stein, Archimedes: What Did He Do Besides Cry Eu-
reka?, Math. Assoc. America, 1999.

13.[C] (See Exercise 12.) The plane z = c in Exer-
cise 12 is perpendicular to the axis of the paraboloid.
Archimedes was also interested in the case when the
plane is not perpendicular to the axis. Find the cen-
troid of the region below the tilted plane z = cy and
above the paraboloid z = x2 + y2.

14.[R] Using cylindrical coordinates, find z for the
region below the paraboloid z = x2 + y2 and above
the disk in the rθ plane bounded by the circle r = 2.
(Include a drawing of the region.)

15.[R] Find the z coordinate, z, of the centroid of the
part of the saddle z = xy that lies above the portion
of the disk bounded by the circle x2 + y2 = a2 in the
first quadrant.

16.[M] A plane distribution of matter occupies the

region R. It is cut into two pieces, occupying regions
R1 and R2, as in Figure 17.8.13(a). The part in R1

has mass M1 and centroid (x1, y1). The part in R2 has
mass M2 and centroid (x2, y2). Find the centroid (x, y)
of the entire mass, which occupies R. [Express (x, y)
in terms of M1, M2, x1, x2, y1 and y2.]

(a) (b)

Figure 17.8.13:

17.[M] Use the formula in Exercise 16 to find the
center of mass of the homogeneous lamina shown in
Figure 17.8.13(b).

In Exercises 18 to 25 find the centroid of the given re-
gions R. (Exercises 22 to 25 require integral tables or
techniques of Chapter 8.)
18.[R] R is bounded by y = x2 and y = 4.

19.[R] R is bounded by y = x4 and y = 1.

20.[R] R is bounded by y = 4x − x2 and the x-axis.

21.[R] R is bounded by y = x, x + y = 1, and the
x-axis.

22.[R] The region bounded by y = ex and the x-axis,
between the lines x = 1 and x = 2.

23.[R] The region bounded by y = sin(2x) and the
x-axis, between the lines x = 0 and x = π/2.

24.[R] The region bounded by y =
√

1 + x and the
x-axis, between the lines x = 0 and x = 3.

25.[R] The region bounded by y = ln(x) and the
x-axis between the lines x = 1 and x = e.

Exercises 26 to 28 concern Pappus’s Theorem, which
relates the volume of a solid of revolution to the cen-
troid of the planar region R that is revolved to form
the solid.
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Theorem 17.8.1 (Pappus). Let R be a region in the
plane and L a line in the plane that does not cross R
(though it can touch R at its border). Then the volume
of the solid formed by revolving R about L is equal to
the product

(Distance the centroid of R is rotated) · (Area of R) .

26.[C]

(a) Prove Pappus’s Theorem

(b) Use Pappus’s Theorem to find the volume of the
torus or “doughnut” formed by revolving a circle
of radius 3 inches about a line 5 inches from its
center.

27.[C] Use Pappus’s Theorem to find the centroid of
the half disk R of radius a.
28.[C] Use Pappus’s Theorem to find the cen-
troid of the right triangle in Figure 17.8.14.

Figure 17.8.14:

29.[M] Consider a distribution of mass in a plane re-
gion R with density σ(P ) at P . Use the following steps
to show that any line in the plane that passes through
the center of the mass is a balancing line.

(a) For convenience, place the origin of the xy-
coordinate system at the center of mass. That
is, assume (x̄, ȳ) = (0, 0). Show that∫
R xσ(P ) dA = 0 and

∫
R yσ(P ) dA = 0.

(b) Let L be any line ax+by = 0 through the origin.
Show that the moment of the mass about L is∫

R

ax+ by√
a2 + b2

σ(P ) dA.

Hint: What is the distance from a point (x, y)
in R to the line ax+ by = 0?

(c) From (a) and (b) deduce that the moment of the
mass about L is 0. Thus all balancing lines for
the mass pass through a single point. Any two
of them therefore determine that point, which
is called the center of mass. It is customary to
use the two lines parallel to the x and y axes to
determine that point.

30.[M] (See Exercise 29.) Show that the moment of
a mass occupying a solid region R about any plane
through its center of mass is 0.

31.[C] This exercise concerns hydrostatic pressure.
(See Section 7.6.)

(a) Show that the pressure of water against a sub-
merged vertical surface occupying the plane re-
gion R equals the pressure at the centroid of R
times the area of R.

(b) Is the assertion in (a) correct if R is not vertical?

In each of Exercises 32 to 39 find the center of mass of
the lamina occupying the given region and having the
given density.
32.[R] The triangle with vertices (0, 0), (1, 0), (0, 1);
density at (x, y) is x+ y.
33.[R] The triangle with vertices (0, 0), (2, 0), (1, 1);
density at (x, y) is y.
34.[R] The square with vertices (0, 0), (1, 0), (1, 1),
(0, 1); density at (x, y) equals to y arctan(x).
35.[R] The finite region bounded by y = 1 + x and
y = 2x; density at (x, y) is x+ y.
36.[R] The triangle with vertices (0, 0), (1, 2), (1, 3);
density at (x, y) is xy.
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37.[R] The finite region bounded by y = x2, the x-
axis, and x = 2; density at (x, y) is ex

38.[R] The finite region bounded by y = x2 and
y = x + 6, situated to the right of the y-axis; density
at (x, y) is 2x.

39.[R] The trapezoid with vertices (0, 0), (3, 0), (2, 1),
(0, 1); density at (x, y) is sin(x).

40.[C] Let R be a region in a plane and P a point
a distance h > 0 from the plane. P and R determine
a cone with base R and vertex P , as shown in Fig-
ure 17.8.15. Let the area of R be A. What can be said
about the distance of the centroid of the cone from the
plane of R?

(a) What is that distance in the case of a right cir-
cular cone?

(b) Experiment with another cone with any conve-
nient base of your choice.

(c) Make a conjecture.

(d) Explain why the conjecture is true.

Figure 17.8.15:

In Exercises 41 and 42 find z for the given surfaces.

41.[M] The portion of
the paraboloid 2z = x2 +
y2 below the plane z = 9.

42.[M] The portion of
the plane x + 2y + 3z =

6 above the triangle in
the xy plane whose ver-
tices are (0, 0), (4, 0), and
(0, 1).

43.[R] In a letter of 1680 Leibniz wrote:

Huygens, as soon as he had published
his book on the pendulum, gave me a copy
of it; and at that time I was quite igno-
rant of Cartesian algebra and also of the
method of indivisibles, indeed I did not
know the correct definition of the center of
gravity. For, when by chance I spoke of it
to Huygens, I let him know that I thought
that a straight line drawn through the cen-
ter of gravity always cut a figure into two
equal parts; since that clearly happened
in the case of a square, or a circle, an el-
lipse, and other figures that have a cen-
ter of magnitude. I imagine that it was
the same for all other figures. Huygens
laughed when he heard this, and told me
that nothing was further from the truth.

(Quoted in C.H. Edwards, The Historical Development
of the Calculus, p. 239, Springer-Verlag, New York,
1979.)
Give an example showing that “nothing is further from
the truth.”

44.[R] Let a be a constant that is not less than 1. Let
R be the region below y = xa, above the x-axis, and
between the lines x = 0 and x = 1.

(a) Sketch R for a large value of a.

(b) Compute the centroid (x, y) of R.

(c) Find lima→∞ x and lima→∞ y.

(d) For large a, does the centroid of R lie in R?
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45.[C] (Contributed by Jeff Lichtman) Let f and g
be two continuous functions such that f(x) ≥ g(x) ≥ 0
for x in [0, 1]. Let R be the region under y = f(x) and
above [0, 1]; let R* be the region under y = g(x) and
above [0, 1].

(a) Do you think the center of mass of R is at least
as high as the center of mass of R*? (An opinion
only.)

(b) Let g(x) = x. Define f(x) to be 1
3 for 0 ≤ x ≤ 1

3
and f(x) to be x if 1

3 ≤ x ≤ 1. (Note that f
is continuous.) Find y for R and also for R*.
(Which is larger?)

(c) Let a be a constant, 0 ≤ a ≤ 1. Let f(x) = a for
0 ≤ x ≤ a and let f(x) = x for a ≤ x ≤ 1. Find
y for R.

(d) Show that the number a for which y defined in
part (c) is a minimum is a root of the equation
x3 + 3x− 1 = 0.

(e) Show that the equation in (d) has only one real
root q.

(f) Find q to four decimal places.

46.[M] This exercise shows that the three medians
of a triangle meet at the centroid of the triangle. (A
median of a triangle is a line that passes through a
vertex and the midpoint of the opposite edge.)
Let R be a triangle with vertices A, B, and C. It suf-
fices to show that the centroid of R lies on the median
through C and the midpoint M of the edge AB. In-
troduce an xy coordinate system such that the origin
is at A, and B lies on the x-axis, as in Figure 17.8.16.

(a) Compute (x, y).

(b) Find the equation of the median through C and
M .

(c) Verify that the centroid lies on the median com-
puted in (b).

(d) Why would you expect the centroid to lie on each
median? (Just use physical intuition.)

Figure 17.8.16:

47.[R] Cut an irregular shape out of cardboard and
find three balancing lines for it experimentally. Are
they concurrent; that is, do they pass through a com-
mon point?

48.[R] Let f and g be continuous functions such that
f(x) ≥ g(x) ≥ 0 for x in [a, b]. Let R be the region
above [a, b] which is bounded by the curves y = f(x)
and y = g(x).

(a) Set up a definite integral (in terms of f and g)
for the moment of R about the y-axis.

(b) Set up a definite integral with respect to x (in
terms of f and g) for the moment of R about the
x-axis.

In Exercises 49 to 52 find (a) the moment of the given
region R about the y-axis, (b) the moment of R about
the x-axis, (c) the area of R, (d) x, (e) y. Assume the
density is 1. (See Exercise 48.)
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49.[R] R is bounded by
the curves y = x2, y = x3.

50.[R] R is bounded by
y = x, y = 2x, x = 1, and
x = 2.
51.[R] R is bounded by
the curves y = 3x and
y = 2x between x = 1

and x = e.

52.[R] (Use a table of in-
tegrals or techniques from
Chapter 8.) R is bounded
by the curves y = x − 1
and y = ln(x), between
x = 1 and x = e.

53.[M] Which do you think would have the highest
centroid? The semicircular wire of radius a, shown in
Figure 17.8.17(a); the top half of the surface of a ball
of radius a, shown in Figure 17.8.17(b); the top half of
a ball of radius a, shown in Figure 17.8.17(c).

(a) (b) (c)

Figure 17.8.17:

54.[C] Consider the parabolic surface z = x2 + y2

below the plane za2.

(a) Set up a double integral in the xy-plane for the
moment about the xy plane.

(b) Express this integral as an iterated integral in
polar coordinates.

(c) Evaluate the integral.

(d) Find the centroid of the (curved) surface.

SHERMAN: This set of
exercises was moved from

Section 17.4.
Exercises 55 to 58 concern the moment of inertia. Note
that if the object is homogeneous, has mass M and vol-
ume V , its density δ(P ) is M/V .

55.[R] A homogeneous
rectangular solid box has
mass M and sides of
lengths a, b, and c.
Find its moment of inertia
about an edge of length a.

56.[R] A rectangular ho-
mogeneous box of mass M
has dimensions a, b and c.
Show that the moment of
inertia of the box about
a line through its center
and parallel to the side of
length a is M(b2 + c2)/12.

57.[R] A right solid cir-
cular cone has altitude h,
radius a, constant density,
and mass M .

(a) Why is its moment
of inertia about its
axis less that Ma2?

(b) Show that its mo-
ment of inertia
about its axis is
3Ma2/10.

58.[R] Let P0 be a fixed
point in a solid of mass M .
Show that for all choices of
three mutually perpendic-
ular lines that meet at P0

the sum of the moments of
inertia of the solid about
the lines is the same.

59.[C] [An exercise showing that the center of mass
does not depend on the choice of coordinates.]
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17.S Chapter Summary

This chapter generalizes the notion of a definite integral over an interval to
integrals over plane sets, surfaces, and solids. These definitions are almost
the same, the integral of f(P ) over a set being the limit of sums of the form∑
f(Pi) ∆Ai,

∑
f(Pi) ∆Si, or

∑
f(Pi) ∆Vi for integrals over plane sets,

surfaces, or solids, respectively.
If f(P ) denotes the density at P , then in each case, the integrals give the

total mass.
The average value concept extends easily to functions of several variables.

For instance, if f(P ) is defined on some plane region R, its average value over
R is defined as

1

area(R)

∫
R

f(P ) dA.

Sometimes these “multiple integrals” (also known as “double” or “triple” in-
tegrals) can be calculated by repeated integrations over intervals, that is, as
“iterated integrals.” This requires a description of the region in an appropriate
coordinate system and replaces dA or dV by an expression based on the area
or volume of a small patch swept out by small changes in the coordinates, as
recorded in Table 17.S.1.

Coordinate System Substitution
Rectangular (2-d) dA = dx dy
Rectangular (3-3) dV = dx dy dz
Polar dA = r dr dθ
Cylindrical dV = r dr dθ dz
Cylindrical (surface) dS = r dθ dz
Spherical dV = ρ2 sin(φ) dφ dρ dθ
Spherical (surface) dS = ρ2 sin(φ) dφ dθ

Table 17.S.1:

An integral over a surface S,
∫
S
f(P ) dS, can often be replaced by an

integral over the projection of S onto a plane R, replacing dS by dA cos(γ),
where γ is the angle between a normal to S and a normal to R. If density is 1, the center of

mass is called the centroid.

Figure 17.S.1:Figure 17.S.2:

To remember these
formulas, be able to draw
Figures 17.S.1 and 17.S.2,
including the labels.

EXERCISES for 17.S Key: R–routine, M–moderate, C–challenging

1.[R] The temperature at the point (x, y) at time t is
T (x, y, t) = e−tx sin(x + 3y). Let f(t) be the average
temperature in the rectangle 0 ≤ x ≤ π, 0 ≤ y ≤ π/2

at time t. Find df/dt.

2.[R] Let f be a function such that f(−x, y) =
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Key Facts

Formula Significance∫
R

1 dA Area of R∫
R

1 dV Volume of RR
R f(P ) dA

Area of R
or

R
R f(P ) dV

Volume of R
Average value of f over R∫

R
σ(P ) dA or

∫
R
δ(P ) dV Total mass of R, M (σ and

δ denote density)∫
R
yσ(P ) dA,

∫
R
xσ(P ) dA Moments, Mx and My about

x and y axes, respectively.
(A moment can be com-
puted around any line in the
plane.)∫

R
f(P )σ(P ) dA,

∫
R
f(P )σ(P ) dV

where f(P ) is the square of the distance
from P to some fixed line L

Moment of inertia around L
for planar and solid regions,
respectively.∫

R
x2σ(P ) dA,

∫
R
y2σ(P ) dA Second moments, Mxx and

Myy about x and y axes, re-
spectively.(

My

M
, Mx

M

)
Center of mass, (x̄, ȳ)∫

R
zδ(P ) dV Moment Mxy∫

R
yδ(P ) dV Moment Mxz∫

R
xδ(P ) dV Moment Myz(

Myz

M
, Mxz

M
, Mxy

M

)
Center of mass of solid,
(x̄, ȳ, z̄)

Table 17.S.2:

Relations Between Rectangular Coordinates and Spherical or Cylindrical
Coordinates

x = ρ sin(φ) cos(θ) x = r cos(θ)
y = ρ sin(φ) sin(θ) y = r sin(θ)
z = ρ cos(φ) z = z

Table 17.S.3:
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−f(x, y).

(a) Give some examples of such functions.

(b) For what type regions R in the xy plane is∫
R f(x, y) dA certainly equal to 0?

3.[R] Find
∫
R(2x3y2 + 7) dA where R is the square

with vertices (1, 1), (−1, 1), (−1,−1), and (1,−1). Do
this with as little work as possible.

4.[R] Let f(x, y) be a continuous function. Define
g(x) to be

∫
R f(P ) dA, where R is the rectangle with

vertices (3, 0), (3, 5), (x, 0), and (x, 5), x > 3. Express
dg/dx as a suitable integral.

5.[R] Let R be a plane lamina in the shape of
the region bounded by the graph of the equation
r = 2a sin(θ) (a > 0). If the variable density of the
lamina is given by σ(r, θ) = sin(θ), find the center of
mass R.

In Exercises 6 to 9 find the moment of inertia of a
homogeneous lamina of mass M of the given shape,
around the given line.
6.[R] A disk of radius a, about the line perpendicular
to it through its center.

7.[R] A disk of radius a, about a line perpendicular
to it through a point on the circumference.

8.[R] A disk of radius a, about a diameter.

9.[R] A disk of radius a, about a tangent.

10.[C] Let S be the sphere of radius a and center at
the origin. The integral

∫
S(xz + y2)dS can be done

with little effort.

(a) Why is
∫
S xzdS = 0?

(b) Why is
∫
S x

2dS =
∫
S y

2dS =
∫
S z

2dS?

(c) Why is
∫
S y

2dS =
∫
S(a2/3)dS?

(d) Show that
∫
S(xz + y2)dS = 4πa2/3.

11.[C] Let f(P ) and g(P ) be continuous functions
defined on the plane region R.

(a) Show that∫
R

f(P )g(P ) dA

2

≤

∫
R

f(P )2 dA

∫
R

g(P )2 dA

 .

Hint: Review the proof of the Cauchy-Schwarz
inequality presented in the CIE on Average
Speed and Class Size on page 600.

(b) Show that if equality occurs in the inequality in
(a), then f is a constant times g.

12.[C] (Courtesy of G. D. Chakerian.) A solid re-
gion S is bounded below by the x − y plane, above
by the surface z = f(P ), and the sides by the
surface of a cylinder, as shown in Figure 17.S.3.

Figure 17.S.3:
The volume of S is V . If V is fixed, show that the
top surface that minimizes the height of the centroid
of S is a horizontal plane. Note: Water in a glass
illustrates this, for nature minimizes the height of the
centroid of the water. Hint: See Exercise 11.

Exercises 13 to 19 explore the average distance for all
points on a curve or in a region. Recall that the dis-
tance from a point to a curve is the shortest distance
from the point to the curve.
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13.[M] Find the average distance from points in a
disk of radius a to the center of the disk.

(a) Set up the pertinent definite integral in rectan-
gular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

14.[M] Find the average distance from points in a
square of side a to the center of the square.

(a) Set up the pertinent definite integral in rectan-
gular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

15.[M] Find the average distance from points in a ball
of radius a to the center of the ball.

(a) Set up the pertinent definite integral in rectan-
gular coordinates.

(b) Set it up in spherical coordinates.

(c) Evaluate the easier integral in (a) and (b).

16.[M] Find the average distance from points in a
cube of side a to the center of the cube.

(a) Set up the pertinent definite integral in rectan-
gular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

17.[M] Find the average distance from points in a
square of side a to the border of the square.

(a) Set up the pertinent definite integral in rectan-
gular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

18.[M] Find the average distance from the points in
a disk of radius a to the circular border.

(a) Before doing any calculations, decide whether
the average distance is greater than a/2 or less
than a/2. Explain how you made this decision.

(b) Carry out the calculation using a convenient co-
ordinate system.

19.[C] Let A and B be two points in the xy-plane.
A curve (in the xy-plane) consists of all points P such
that the sum of the distances from P to A and P to
B is constant, say 2a. Consider the distance from P
to A as a function of arclength on the curve. Find the
average of that distance.

October 22, 2010 Calculus



C.22– Solving the Wave Equation 1277

Calculus is Everywhere # 22

Solving the Wave Equation

In the The Wave in a Rope Calculus is Everywhere in the previous chapter
we encountered the partial differential equation

∂2y

∂x2
=

1

c2

∂2y

∂t2
. (C.22.1)

Now we will solve this equation to find y as a function of x and t. First, we
solve some simpler equations, which will help us solve (C.22.1).

EXAMPLE 6 Let u(x, y) satisfy the equation ∂u/∂x = 0. Find the form
of u(x, y).
SOLUTION Since ∂u/∂x is 0, u(x, y), for a fixed value of y, is constant.
Thus, u(x, y) depends only on y, and can be written in the form h(y) for some
function h of a single variable.

On the other hand, any function u(x, y) that can be written in the form
h(y) has the property that ∂u/∂x = 0 is any function that can be written as
a function of y alone. �

EXAMPLE 7 Let u(x, y) satisfy

∂2u

∂x∂y
= 0. (C.22.2)

Find the form of u(x, y).
SOLUTION We know that

∂
(
∂u
∂y

)
∂x

=
∂2u

∂x∂y
= 0.

By Example 6,
∂u

∂y
= h(y) for some function h(y).

By the Fundamental Theorem of Calculus, for any number b,

u(x, b)− u(x, 0) =

b∫
0

∂u

∂y
dy =

b∫
0

h(y)dy.
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Let H be an antiderivative of h. Then

u(x, b)− u(x, 0) = H(b)−H(0).

Replacing b by y shows that

u(x, y) = u(x, 0) +H(y)−H(0).

That tells us that u(x, y) can be expressed as the sum of a function of x and
a function of y,

u(x, y) = f(x) + g(y). (C.22.3)

�
We will solve the wave equation (C.22.1) by using a suitable change of

variables that transforms that equation into the one solved in Example 7.
The new variables are

p = x+ ct and q = x− ct.

One could solve these equations and express x and t as functions of p and q.x = 1
2(p+ q) and

t = 1
2c(p− q). We will apply the chain rule, where y is a function of p and q and p and q are

Figure C.22.1:

functions of x and t, as indicated in Figure C.22.1. Thus y(x, t) = u(p, q).
Keeping in mind that

∂p

∂x
= 1,

∂p

∂t
= c,

∂q

∂x
= 1, and

∂q

∂t
= −c,

we have
∂y

∂x
=
∂u

∂p

∂p

∂x
+
∂u

∂q

∂q

∂x
=
∂u

∂p
+
∂u

∂q
.

Then

∂2y

∂x2
=

∂

∂x

(
∂u

∂p
+
∂u

∂q

)
=

∂

∂p

(
∂u

∂p
+
∂u

∂q

)
∂p

∂x
+

∂

∂q

(
∂u

∂p
+
∂u

∂q

)
∂q

∂x

=

(
∂2u

∂p2
+

∂2u

∂p∂q

)
· 1 +

(
∂2u

∂q∂p
+
∂2u

∂2q

)
· 1.

Thus
∂2y

∂x2
=
∂2u

∂p2
+ 2

∂2u

∂p∂q
+
∂2u

∂q2
. (C.22.4)

A similar calculation shows that

∂2y

∂t2
= c2

(
∂2u

∂p2
− 2

∂2u

∂p∂q
+
∂2u

∂q2

)
. (C.22.5)
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Substituting (C.22.4) and (C.22.5) in (C.22.1) leads to

∂2u

∂p2
+ 2

∂2u

∂p∂q
+
∂2u

∂q2
. =

1

c2

(
c2
)(∂2u

∂p2
− 2

∂2u

∂p∂q
+
∂2u

∂q2

)
,

which reduces to

4
∂2u

∂p∂q
= 0.

By Example 7, there are function f(p) and g(q) such that

y(x, t) = u(p, q) = f(p) + g(q).

or
y(x, t) = f(x+ ct) + g(x− ct). (C.22.6)

The expression (C.22.6) is the most general solution of the wave equation
(C.22.1).

What does a solution (C.22.6) look like? What does the constant c tell us?
To answer these questions, consider just

y(x, t) = g(x− ct). (C.22.7)

Here t represents time. For each value of t, y(x, t) = g(x − ct) is simply a
function of x and we can graph it in the xy plane. For t = 0, (C.22.7) becomes

y(x, 0) = g(x).

That is just the graph of y = g(x), whatever g is, as shown in Figure C.22.2(a).

(a) (b)

Figure C.22.2: (a) t = 0, (b) t = 1.

Now consider y(x, t) when t = 1, which we may think of as “one unit of
time later.” Then

y = y(x, 1) = g(x− c · 1) = g(x− c).
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The value of y(x, 1) is the same as the value of g at x − c, c units to the left
of x. So the graph at t = 1 is the graph of f in Figure C.22.2(a) shifted to the
right c units, as in Figure C.22.2(b).

As t increases, the initial “wave” shown in Figure C.22.2(a) moves further
to the right at the constant speed, c. Thus c tells us the velocity of the moving
wave. That fact will play a role in Maxwell’s prediction that electro-magnetic
waves travel at the speed of light, as we will see in the Calculus is Everywhere
at the end of Chapter 18.

EXERCISES

1.[R] Which functions u(x, y) have both ∂u/∂x and
∂u/∂y equal to 0 for all x and y?

2.[R] Let u(x, y) satisfy the equation ∂2u/∂x2 = 0.
Find the form of u(x, y).

3.[R] Show that any function of the form (C.22.3)
satisfies equation (C.22.2).

4.[R] Verify that any function of the form (C.22.6)
satisfies the wave equation.

5.[M] We interpreted y(x, t) = g(x − ct) as the de-

scription of a wave moving with speed c to the right.
Interpret the equation y(x, t) = f(x+ ct).

6.[M] Let k be a positive constant.

(a) What are the solutions to the equation

∂2y

∂x2
= k

∂2y

∂t2
?

(b) What is the speed of the “waves”?
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