
Chapter 18

The Theorems of Green, Stokes,
and Gauss

Imagine a fluid or gas moving through space. Its density may vary from point
to point. Also its velocity vector may vary from point to point. Figure 18.0.1
shows a typical situation. The diagram shows a flow in the plane because it’s
easier to sketch and show the vectors there than in space.

Figure 18.0.1:
The figure resembles the slope fields you saw in Section 3.6 but now, instead

of short segments, we have vectors, which may be long, and point in a definite
direction. This particular flow has a whirlpool. The speed tends to increase
from left to right. On the left, fluid is entering the region bounded by the
dashed loop. On the right, it tends to leave that region. Several questions
come to mind:

• Is the amount of fluid in the region bounded by the dashed curve in-
creasing or decreasing (or unchanged)?

• In (three-dimensional) space, the similar question asks:
Is the amount of fluid in a region bounded by a given surface tending to
increase, decrease, or remain constant?

• At a given point how strong is the tendency of the fluid to rotate?
In other words, if we put a little propeller in the fluid would it turn? If
so, in which direction, and how fast or slow?

Chapter 18 provides techniques for answering these questions. These tech-
niques will apply more generally, to a general “vector field.” Applications come
from magnetics as well as fluid flow.

There is another way to look at this chapter.
The Fundamental Theorem of Calculus relates the integral of a function f

on an interval, [a, b], to the behavior of another function, an antiderivative of
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f , F , at the boundary of the interval:

b∫
a

f(x) dx = F |ab = F (b)− F (a).

We will discover three different relations between integrals of certain functions
over regions to integrals of other functions over their boundaries. We will see
how these ideas are important in the study of gravity, magnetism, and fluid
flow. Throughout we assume that all partial derivatives of the first and second
orders exist and are continuous.
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18.1 Conservative Vector Fields
SHERMAN: We did not
use ”differential form” in
Section 15.3. I had to mod-
ify this introduction.

In Section 15.3 we defined integrals of the form∫
C

(P dx+Q dy +R dz). (18.1.1)

where P , Q, and R are scalar functions of x, y, and z and C is a curve in
space. Similarly, in the xy plane, for scalar functions of x and y, P and Q, we
have ∫

C

(P dx+Q dy).

Instead of three scalar fields, P , Q, and R, we could think of a single vector
function F(x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Such a function is
called a vector field, in contrast to a scalar field. It’s hard to draw a vector
field defined in space. However, it’s easy to sketch one defined only on a plane.
Figure 18.1.1 shows part of a vector field that has two whirlpools.

Figure 18.1.1:

SHERMAN: Better: a
weather map with winds.
Source?

Introducing the formal vector
−→
dr = dxi+dyj+dzk, we may rewrite (18.1.1)

as ∫
C

F · dr.

The vector notation is compact and emphasizes the idea of a vector field.
However, the clumsy notations∫
C

(P dx+Q dy+R dz) and

∫
C

(P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz) :

do have two useful purposes: to prove theorems and to carry out calculations.
We use one of these forms on those occasions we have a need to refer to the
individual scalar components of F .

Conservative Vector Fields

Recall the definition of a conservative vector field from Section 15.3.

DEFINITION (Conservative Field) A vector field F defined in
some planar or spatial region is called conservative if∫

C1

F · dr =

∫
C2

F · dr

whenever C1 and C2 are any two simple curves in the region with
the same initial and terminal points.
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Another way to view “con-
servative”An equivalent definition of a conservative vector field F is that for any

simple closed curve C in the region
∮
C

F · dr = 0, as Theorem 18.1.1 implies.
A closed curve is a curve that begins and ends at the same point, forming The symbol

∮
indicates

“closed curve”.a loop. It is simple if it passes through no point — other than its start and
finish points — more than once. A curve that starts at one point and ends at a
different point is simple if it passes through each point just once. Figure 18.1.2
shows some curves that are simple and some that are not.

Figure 18.1.2:

Theorem 18.1.1. A vector field F is conservative if and only if
∮
C

F · dr = 0
for every simple closed curve in the region where F is defined.

Proof

Assume that F is a conservative and let C be simple closed curve that starts
and ends at the point A. Pick a point B on the curve and break C into two
curves:C1 from A to B and C + 2∗ from B to A, as indicated in Figure 18.1.3.

Figure 18.1.3:
Let C2 be the curve C∗2 traversed in the opposite direction, from A to B.

Then, since F is conservative,∮
C

F · dr =

∫
C1

F · dr +

∫
C∗2

F dr

=

∫
C1

F · dr −
∫
C2

F · dr = 0.

Note the sign change.
On the other hand, assume that F has the property that

∮
C

F · dr = 0 for
any simple closed curve C in the region. Let C1 and C2 be two simple curves
in the region, starting at A and ending at B. Let C2 be C2 taken in the reverse
direction. (See Figure 18.1.4.) Then C1 followed by C2 is a closed curve C
from A back to A. Thus

0 =

∮
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr =

∫
C1

F · dr −
∫
C2

F · dr.
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(a) (b)

Figure 18.1.4:

Consequently, ∫
C1

F · dr =

∫
C2

F · dr.

This concludes both directions of the argument. •
In this proof we tacitly assumed that C1 and C2 overlap only at their

endpoints, A and B. Exercise 25treats the case when the curves intersect
elsewhere also.

Every Gradient Field is Conservative
To Doug: We define “-
C” back in earlier chapter?
SHERMAN: Yes, in Sec-
tion 15.3.

Whether a particular vector field is conservative is important in the study of
gravity, electro-magnetism, and thermodynamics. In the rest of this section
we describe says to determine whether a vector field F is conservative.

The first method that may come to mind is to evaluate
∮

F · dr for every
simple closed curve and see if it is always 0. If you find a case where it is
not 0, then F is not conservative. Otherwise you face the task of evaluating
a never-ending list of integrals checking to see if you always get 0. That is a
most impractical test. The use of partial derivatives will help us obtain much
simpler tests. The first test involves gradients.

Gradient Fields Are Conservative

The fundamental theorem of calculus asserts that
∫ b
a
f ′(x) dx = f(b) − f(a).

The next theorem asserts that
∫
C
∇f ·dr = f(B)−f(A), where f is a function of

two or three variables and C is a curve from A to B. Because of its resemblance
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to the fundamental theorem of calculus, Theorem 18.1.2 is sometimes called
the fundamental theorem of vector fields.

Any vector field that is the gradient of a scalar field turns out to be conser-
vative. That is the substance of Theorem 18.1.2, which says, “The circulation
of a gradient field of a scalar function f along a curve is the difference in values
of f at the end points.”

Theorem 18.1.2. Let F be a scalar field defined in some region in the plane
or in space. Then the gradient field F = ∇f is conservative. In fact, for any
points A and B in the region,∫

C

∇f · dr = f(B)− f(A).

Proof

For simplicity take the planar case. Let C be given by the parameterization
r = G(t) for t in [a, b]. Let G(t) = x(t)i + y(t)j. Then,

∫
C

∇f · dr =

∫
C

(
∂f

∂x
dx+

∂f

∂y
dy

)
=

b∫
a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt.

The integrand (∂f/∂x)(dx/dt) + (∂f/∂y)(dy/dt) is reminiscent of the chain
rule in Section 16.3. To be specific, if we introduce the function H defined by
the formula

H(t) = f(x(t), y(t)),

then the chain rule gives

dH

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Thus
b∫

a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt =

b∫
a

dH

dt
dt = H(b)−H(a)

by the fundamental theorem of calculus. But

H(b) = f(x(b), y(b)) = f(B)

and
H(a) = f(x(a), y(a)) = f(A).

Consequently, ∫
C

∇f · dr = f(B)− f(A), (18.1.2)
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and the theorem is proved. •
In differential form Theorem 18.1.2 reads

If f is defined as the xy-plane, and C starts at A and ends at B,∫
C

(
∂f

∂x
dx+

∂f

∂y
dy

)
= f(B)− f(A) (18.1.3)

If f is defined in space, then,∫
C

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
= f(B)− f(A). (18.1.4)

Note that the one vector equation (18.1.2) covers both cases (18.1.3) and
(18.1.4). This illustrates an advantage of vector notation.

It is a much more pleasant task to evaluate f(B)− f(A) than to compute
a line integral.

EXAMPLE 1 Let f(x, y, z) = 1√
x2+y2+z2

, which is defined everywhere ex-

cept at the origin. (a) Find the gradient field F = ∇f , (b) Compute
∫
C

F · dr
where C is any curve from (1, 2, 2) to (3, 4, 0).
SOLUTION (a) Straightforward computations show that

∂f

∂x
=

−x
(x2 + y2 + z2)3/2

,
∂f

∂y
=

−y
(x2 + y2 + z2)3/2

,
∂f

∂z
=

−z
(x2 + y2 + z2)3/2

.

So

∇f =
−zi− yj− zk

(x2 + y2 + z2)3/2
. (18.1.5)

If we let r(x, y, z) = xi + yj + zk, r = ‖r‖, and r̂ = r/r, then (18.1.5) can
be written more simply as

F = ∇f =
−r

r3
=

r̂

r2
.

This vector field, F = r̂/r2, is called the inverse square central field. It
will play an important role, in both two and three dimensions, in Chapter 18.

(b) For any curve C from (1, 2, 2) to (3, 4, 0),∫
C

∇f · dr = f(3, 4, 0)− f(1, 2, 2) =
1√

32 + 42 + 02
− 1√

12 + 22 + 22

=
1

5
− 1

3
= − 2

15
.
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�
In this example ‖∇f‖ = ‖−vr‖

r3
= r

r3
= 1

r2
and ‖f(x, y, z)‖ = 1

r
. In the study

of gravity, ∇f measures gravitational attraction, and f measures “potential.”

EXAMPLE 2 Evaluate
∮
C

(y dx + x dy) around a closed curve C taken
counterclockwise.

SOLUTION In Section 15.3 it was shown that
∮
C
x dy = A and

∮
C
y dx =

−A, where A is the area of the region enclosed by C. Thus,∮
C

(y dx+ x dy) = −A+ A = 0.

A second solution uses Green’s theorem. Note that

∇(xy) =
∂(xy)

∂x
i +

∂(xy)

∂y
j = yi + xj,

that is, the gradient of xy is yi + xj.
Hence, by Green’s theorem,∮

C

(y dx+ x dy) =

∮
C

∇(xy) · dr = xy|BA

where A and B are the endpoints of C. Because C is a closed curve, A = B
and so the integral is 0. �

SHERMAN: In V, you have
many more stated theorems
and corollaries. I think I
prefer the approach we are
using in VI, it has less to
memorize and emphasizes a
small number of fundamen-
tals from which everything
else can be derived.

A differential form P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz is called exact
if there is a scalar function f such that P (x, y, z) = ∂f/∂x, Q(x, y, z) = ∂f/∂y,
and R(x, y, z) = ∂f/∂z. In that case, the expression takes the form

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

That is the same thing as saying that the vector field F = P (x, y, z)i +
Q(x, y, z)j +R(x, y, z)k is a gradient field: F = ∇f .

If F is Conservative Must It Be a Gradient Field?

The proof of the next theorem is similar to the proof that showed every con-
tinuous function has an antiderivative. We suggest you review that proof
(page 1300) before reading the following proof.

The question may come to mind, “If F is conservative, it is necessarily the
gradient of some scalar function?” The answer is “yes.” This is the substance
of the next theorem. SHERMAN: Is “arcwise-

connected” defined?
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Theorem 18.1.3. Let F be a conservative vector field defined in some arcwise-
connected region in the plane (or in space). Then there is a scalar function f
define in that region such that F = ∇f .

Proof

Consider the case when F is planar, F = P (x, y)i +Q(x, y)j. (The case where
F is defined in space is similar.) Define a scalar function f as follows. Let
(x, y) be a point in the region. Select a curve C in the region that starts at
(a, b) and ends at (x, y).

Define f(x, y) to be
∫
C

F · dr. Since F is conservative, the number f(x, y)
depends only on the point (x, y) and not on the choice of C. (See Figure 18.1.5.)

Figure 18.1.5:
All that remains is to show that ∇f = F; that is, ∂f/∂x = P and ∂f/∂y =

Q. We will go through the details for the first case, ∂f/∂x = P . The reasoning
for the other partial derivative is similar.

Let (x0, y0) be an arbitrary point in the region and consider the difference
quotient whose limit is ∂f/∂x(x0, y0), namely,

f(x0 + h, y0)− f(x0, y0)

h
,

for h small enough so that (x0 + h, y0) is also in the region.
Let C1 be a curve from (a, b) to (x0, y0) and let C2 be the straight path

from (x0, y0) to (x0 + h, y0). (See Figure 18.1.6.) Let C by the curve from
(0, 0) to the point(x0 + h, y0) formed by taking C1 first and then continuing
on C2. Then

Figure 18.1.6:f(x0, y0) =

∫
C1

F · r,

and

f(x0 + h, y0) =

∫
C

F · r =

∫
C1

F · r +

∫
C2

F · r.

Thus

f(x0 + h, y0)− f(x0, y0)

h
=

∫
C2

F · r
h

=

∫
C2

(P (x, y) dx+Q(x, y) dy)

h
.

On C2, y is constant, y = y0; hence dy = 0. Thus
∫
C2
P (x, y) dy = 0. Also,

∫
C2

P (x, y) dx =

x0+h∫
x0

P (x, y0) dx.

By the Mean-Value Theorem for definite integrals, there is a number x∗ be- See Section 6.3 for the
MVT for Definite Integrals
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tween x0 and x0 + h such that

x0+h∫
x0

P (x, y0) dx = P (x∗, y0)h.

Hence

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
= lim

h→0

1

h

x0+h∫
x0

P (x, y0) dx = P (x0, y0).

Consequently,
∂f

∂x
(x0, y0) = P (x0, y0),

as was to be shown.
In a similar manner, we can show that

∂f

∂y
(x0, y0) = Q(x0, y0).

•
For a vector field F defined throughout some region in the plane (or space)

the following three properties are therefore equivalent: In Figure 18.1.7, an Three views of a conserva-
tive field

Figure 18.1.7:

arrow (⇒) means “implies” and a double arrow (⇔) means “if and only if”
or “is equivalent to.” This figure tells us that any one of the three properties,
(1),(2), or (3), completely describes a conservative field. We used property (3)
as the definition.
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Almost A Test For Being Conservative

Figure 18.1.7 describes three ways of deciding whether a vector field F =
P i + Qj + rk is conservative. Now we give a simple way to tell that it is not
conservative. The method is simpler than finding a particular line integral∫
C

F · dr that is not 0.
Remember that we have assumed that all of the functions we encounter in

this chapter have continuous first and second partial derivatives.
The test depends on the fact that the two order in which are may compute

a second-order mixed partial derivative give the same result. (We used this
fact in Section 16.8 in a thermodynamics context.)

Consider an expression of the form P dx+Q dy +R dz (or equivalently a
vector field F = P i + Qj + Rk). If F is exact, then F is a gradient and there
is a scalar function f such that

∂f

∂x
= P,

∂f

∂y
= Q,

∂f

∂z
= R.

Since
∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
,

we have
∂P

∂y
=
∂Q

∂x
.

Similarly we find
∂Q

∂z
=
∂R

∂y
and

∂P

∂z
=
∂P

∂x
.

These three equations can be rewritten as

∂Q

∂x
− ∂P

∂y
= 0,

∂R

∂y
− ∂Q

∂z
= 0,

∂R

∂x
− ∂P

∂z
= 0. (18.1.6)

If at least one of these three equations (18.1.6) doesn’t hold, then P dx +
Q dy +R dz is not exact (and F = P i +Qj +Rk is not conservative).

EXAMPLE 3 Show that cos(y) dx+sin(xy) dy+ln(1+x) dz is not exact.
SOLUTION Checking whether the first equation in (18.1.6) holds we com-
pute

∂(sin(xy))

∂x
− ∂(cos(y))

∂y
,

which equals
y cos(xy) + sin(y),

which is not 0. There’s no need to check the remaining two equations in
(18.1.6). The expression sin(xy) dx + cos(y) dy + ln(1 + x) dz is not exact.
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(Equivalently, the vector field sin(xy)i + cos(y)j + ln(1 + x)k is not a gradient
field, hence not conservative.) �

We can restate the three equations (18.1.6) as a single vector equation, by
introducing a 3 by 3 formal determinant i j k

∂x ∂y ∂z
P Q R

 (18.1.7)

Expanding this as though the nine entries were numbers, we get

i

(
∂R

∂y
− ∂Q

∂z

)
− j

(
∂R

∂x
− ∂R

∂z

)
+ k

(
∂Q

∂x
− ∂P

∂y

)
. (18.1.8)

If the three scalar equations in (18.1.8) hold, then (18.1.8) is the 0-vector. In
view of the importance of the vector (18.1.8), it is given a name.

DEFINITION (Curl of a Vector Field) The curl of the vector
field F = P i + Qj + Rk is the vector field given by the formula
(18.1.7) or (18.1.8). It is denoted ∇× F.

The formal determinant (18.1.7) is like the one for the cross product of
two vectors. For this reason, it is also denoted curl F (read as “del cross F”).
That’s a lot easier to write than (18.1.8), which refers to the components.
Once again we see the advantage of vector notation.

The definition also applies to a vector field F = P (x, y)i + Q(x, y)j in the
plane. Writing F as P (x, y)i +Q(x, y)j + 0k, we find that

∇× F =

(
∂Q

∂x
− ∂P

∂y

)
k,

since ∂Q/∂z = 0 and ∂P/∂z = 0. The physical meaning of ∇ × F will be
explored later in this chapter.

EXAMPLE 4 Compute the curl of F = xyzi + x2j− xyk.
SOLUTION The curl of F is given by i j k

∂
∂x

∂
∂y

∂
∂z

xyz x2 −xy,


which is short for(

∂

∂y
(−xy)− ∂

∂z
(x2)

)
i−
(
∂

∂x
(−xy)− ∂

∂z
(xyz)

)
j +

(
∂

∂x
(−x2)− ∂

∂y
(xyz)

)
k

= (−x− 0)i− (−y − xy)j + (2x− xz)k

= −xi + (y + xy)j + (2x− xz)k.
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�
If any case, for vector fields in space or in the xy-plane we have this theorem.

Theorem 18.1.4. If F is a conservative vector field, then ∇× F = 0.

You may wonder why the vector field curl F obtained from the vector field
F is called the “curl of F.” Here we came upon the concept purely mathemat-
ically, but, as you will see in Section 18.5 it has a physical significance: If F
describes a fluid flow, curl F, the curl of F, describes the tendency of the fluid
to form whirlpools.

The Converse of Theorem ?? Isn’t True
Warning: The converse of
Theorem 18.1.4 is false.All would be delightful if the converse of Theorem th17-1-5 were true. Un-

fortunately, it is not. There are vector fields F whose curls are 0 that are
not conservative. Example 5 provides one such F. Its curl is 0 but it is not
conservative.

EXAMPLE 5 Let F = −yi
x2+y2

+ xj
x2+y2

. Show that (a) ∇×F = 0, but (b) F
is not conservative.
SOLUTION (a) We must compute i j k

∂x ∂y ∂z
−y

x2+y2
x

x2+y2
0,


which equals(
∂(0)

∂y
− ∂

∂z

(
x

x2 + y2

)
)

)
i−
(
∂(0)

∂x
− ∂

∂z

(
(
−y

x2 + y2

)
)

)
j+

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
k.

The i and j components are clearly 0, and a direct computation shows that
the k component is

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0.

Thus the curl of F is 0.
(b) To show that F is not conservative, it suffices to exhibit a closed curve

C such that
∮
C

F · dr is not 0. One such choice for C is the unit circle
parameterized counterclockwise by

x = cos(θ), y = sin(θ), 0 ≤ θ ≤ 2π.

On this curve x2 + y2 = 1; so F(x, y) = −yi + xj. Figure 18.1.8 shows a few
values of f at points on C. Clearly

∫
C

F · dr, which measures circulation, is
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Figure 18.1.8:

positive, not 0. However, if you have any doubt, here is the computation of∫
C

F · dr: ∮
C

F · dr =

∮
C

(
−y dx
x2 + y2

+
x dy

x2 + y2

)

=

2π∫
0

(
− sin θd(cos θ)

cos2 θ + sin2 θ
+

cos θd(sin θ)

cos2 θ + sin2 θ

)

=

2π∫
0

(sin2 θ + cos2 θ) dθ

sin2 θ + cos2 θ
=

2π∫
0

dθ = 2π.

This establishes (b). �

The curl of F being 0 is not enough to assure us that the vector field F
is conservative. An extra condition must be satisfied by F. This condition
concerns the domain of F. This extra assumption will be developed for planar
fields in Section 18.2 and for spatial fields F(x, y, z) in Section 18.5. Then we
will have a simple test for determining whether a vector field is conservative.

Summary

We showed that a vector field being conservative is equivalent to its being the
gradient of a scalar field. Then we defined the curl of a vector field. If a field
is denoted F, the curl of F is a new vector field denoted curl F or ∇× F. If
F is conservative, then ∇×F, is 0. However, if the curl of F is 0, it does not
follow that F is conservative. An extra assumption (on the domain of F) must
be added. That assumption will be described later in this chapter.
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The Theorems of Green, Stokes, and Gauss § 18.1

EXERCISES for 18.1 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4 answer “True” or “False” and explain.

1.[R] “If F is conservative, the ∇× F = 0.”

2.[R] “If ∇× F = 0, the F is conservative.”

3.[R] “If F is a gradient field, then ∇× F = 0.”

4.[R] “If ∇× F = 0, then F is a gradient field.”

5.[R] Using information in this section, describe various ways of showing a vector
field F is not conservative.

6.[R] Using information in this section, describe various ways of showing a vector
field F is conservative.

7.[R] In Example 1 we computed a certain line integral by using the fact that
the vector field (−xi− yj− zk)/(x2 + y2 + z2)3/2 is a gradient field. Compute that
integral directly, without using the information that the field is a gradient.

8.[R] Let f(x, y, z) = e3x ln(z+y2). Compute
∫
C ∇f · dr, where C is the straight

path from (1, 1, 1) to (4, 3, 1).

9.[R] We obtained the first of the three equations in (18.1.6). Derive the other
two.

10.[R] Find the curl of F(x, y, z) = ex
2
yzi + x3 cos2 3yj + (1 + x6)k.

11.[R] Find the curl of F(x, y) = tan2(3x)i + e3x ln(1 + x2)j.

12.[R] Using theorems of this section, explain why the curl of a gradient is 0,
that is, curl∇f = 0 for a scalar function f(x, y, z).

13.[R] By a computation, show that for the scalar function f(x, y, z), curl∇f = 0.

14.[R] Let f(x, y) = cos(x+ y). Evaluate
∫
C ∇f · dr, where C is the curve that
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lies on the parabola y = x2 and goes from (0, 0) to (2, 4).

15.[M] If F and G are conservative, is F + G?

16.[M] If F and G are conservative, is F×G?

17.[M] Assume that F(x, y) is conservative. Let C1 be the straight path from
(0, 0, 0) to (1, 0, 0), C2 the straight path from (1, 0, 0) to (1, 1, 1). If

∫
C F dr = 3 and∫

C F dr = 4, what can be said about
∫
C F dr, where C is the straight path from

(0, 0, 0) to (1, 1, 1)?

18.[M] Let F = yi + xj. (this is the vector field in Example 2.)

(a) Compute
∫
C1

F · dr where C1 goes from (2, 0) to (−2, 0) on the top half of
the circle x2 + y2 = 4.

(b) Compute
∫
C2

F · dr when C2 goes from (2, 0) to (−2, 0) on the bottom half
of the circle x2 + y2 = 4.

(c) The curl of F is 0, yet the integrals in (a) and (b) are different. Is this a
contradiction?

19.[M] Let F(x, y) be a field that can be written in the form F(x, y) = g(
√
x2 + y2) xi+yj√

x2+y2

where g is a scalar function. If we denote xi + yj as r, then F(x, y) = g(r)r̂, where
r = ‖r‖ and r̂ = ‖r‖/r. Show that

∮
C F · dr = 0, for any path ABCDA of the

form shown in Figure 18.1.9. (The path consists of two circular arcs and parts of
two rays from the origin.)

Figure 18.1.9:
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20.[C] In view of the previous exercise, we may expect F(x, y) = g(
√
x2 + y2) xi+yj√

x2+y2

to be conservative. Show that it is by showing that F is the gradient of G(x, y) =
H(
√
x2 + y2), where H is an antiderivative of g, that is, H ′ = g.

21.[C] The domain of a vector field F is all of the xy-plane. Assume that there
are two points A and B such that

∫
C F dr is the same for all curves C from A to B.

Deduce that F is conservative.

22.[C] A gas at temperature T0 and pressure P0 is brought to the temperature
T1 > T0 and pressure P1 > P0. The work done in this process is given by the line
integral in the TP plane ∫

C

(
RT dP

P
−R dT

)
,

where R is a constant and C is the curve that records the various combinations of
T and P during the process. Evaluate this integral over the following paths, shown
in Figure 18.1.10.

Figure 18.1.10:

(a) The pressure is kept constant at P0 while the temperature is raised from T0

to T1; then the temperature is kept constant at T1 while the pressure is raised
from P0 to P1.

(b) The temperature is kept constant at T0 while the pressure is raised from P0

to P1; then the temperature is raised from T0 to T1 while the pressure is kept
constant at P1.

(c) Both pressure and temperature are raised simultaneously in such a way that
the path from (P0, T0) to (P1, T1) is straight.

Because the integrals are path dependent, the differential expression RT dP/P −
R dT defines a thermodynamic quantity that depends on the process, not just on
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the state. Vectorially speaking, the vector field (RT/P )i − Rj is not conservative.

23.[C] Assume that F(x, y) is defined throughout the xy-plane and that
∮
C F(x, y)·

dr = 0 for every closed curve that can fit inside a disk of diameter 0.01. Show that
F is conservative.

24.[C] This exercise completes the proof of Theorem 18.1.1 in the case when
C1 and C2 overlap outside of their endpoints A and B. In that case; introduce a
third simple curve from A to B that overlap C1 and C2 only at A and B. Then
an argument similar to that in the proof of Theorem 18.1.1 can dispose of this case.

25.[M] In Theorem 18.1.1 we proved that ∂f/∂x = P . Prove that ∂f/∂y = Q.

26.[C] We proved that lim
R x1+h
x0

P (x,y0) dx

h equals P (x0, y0), by using the Mean
Value Theorem for definite integrals. Find a new proof of this result that uses a
Fundamental Theorem of Calculus.
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18.2 Green’s Theorem and Circulation

In this section we discuss a theorem that relates an integral of a vector field
over a closed curve, C, to an integral of a related scalar function over the
region, R, whose boundary is C. We will also see what this means in terms of
the circulation of a vector field.

Statement of Green’s Theorem
Green’s theorem in space is
found in Section 18.3.We begin by giving the statement of Green’s theorem in the plane. We will

explain each term used in this result, then see several applications of Green’s
theorem. The proof of Green’s theorem can be found at the end of this section.

Theorem. Green’s Theorem in the Plane Let C be a simple, closed
counterclockwise curve in the xy-plane, bounding a region R. Let P
and Q be scalar functions defined at least on an open set containing R.
Assume P and Q have continuous first partial derivatives. Then∮

C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

SHERMAN: I’ve rewritten
this, but does it really need
to be here? Could it be de-
ferred until the proof? Do
you have a nice example to
show what’s possible when
C is not simple? Maybe
to be done as an exercise?
Sam?

Recall, from Section 18.1 that a curve is closed when the curve starts and
ends at the same point. It’s simple when it does not intersect itself (except at
the common endpoints). These restrictions on C ensure that this curve is the
boundary of a region R in the xy-plane.

A set S in the xy-plane is “open” if for each point (x, y) in S there is a
disk with center at (x, y) that is also in S. The disk that consists of all point
(x, y) such that x2 + y2 is less than 1 is open. But the set that consists of that
disk and its boundary is not open. (Why not?)

Now let P (x, y) and Q(x, y) be defined at least on an open set that contains
the set R shown in Figure 18.1.1. That assures us that we can form the limits
used in the definition of the partial derivatives of P (x, y) and Q(x, y) even for
points on the boundary, namely, on C.

These details will be important when we give the proof of Green’s Theorem
at the end of the next section.

Since P and Q are independent of each other, Green’s Theorem really
consists of two theorems:∫

C

P dx = −
∫
R

∂P

∂y
dA and

∮
C

Q dy =

∫
R

∂Q

∂x
dA. (18.2.1)
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EXAMPLE 1 In Section 15.3 we showed that if the counterclockwise curve
C bounds a region R, then

∮
C
y dx is the negative of the area of R. Obtain

this result with the aid of Green’s Theorem.
SOLUTION Let P (x, y) = y, and Q(x, y) = 0. Then Green’s Theorem says
that ∮

C

y dx = −
∫
R

∂y

∂y
dA.

Since ∂y/∂y = 1∂, it follows that
∮
y dx is −

∫
R 1 dA, the negative of the area

of R. �

Green’s Theorem and Circulation

What does Green’s Theorem say about a vector field F = P i + Qj? First of
all,

∮
C

(P dx+Q dy) now becomes simply
∮
C

F · dr.
The right hand side of Green’s Theorem looks a bit like the curl of a vector

field in the plane. To be specific, we compute the curl of F: i j k
∂x ∂y ∂z

P (x, y) Q(x, y) )

 = 0i− 0j +

(
∂Q

∂x
− ∂P

∂y

)
k

Thus the curl of F, curl F, equals the vector function(
∂Q

∂x
− ∂P

∂y

)
k. (18.2.2)

To obtain the (scalar) integrand on the right-hand side of (18.2.2), we “dot
(18.2.2) with k,” ((

∂Q

∂x
− ∂P

∂y

)
k

)
] · k =

∂Q

∂x
− ∂P

∂y
.

So with the same assumptions as in the component form of Green’s Theorem,
we have this new formula.

Green’s Theorem Expressed Terms of Circulation

Circulation expressed as a double integral:

If the counterclockwise curve C bounds the region R, then∮
C

F · dr =

∫
R

(∇× F) · k dA.
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This is the planar version of Stokes’ theorem, to be discussed in Section 18.5.
Recall that if F describes the flow of a fluid in the xy-plane, then

∮
C

F · dr
represents its circulation, or tendency to form whirlpools. This theorem tells
us that the magnitude of the curl of F represents the tendency of the fluid to
rotate. If the curl of F is 0 everywhere, then F is called irrotational.

This form of Green’s theorem provides an easy way to show that a vector
field F is conservative. It uses the idea of a simply-connected region. Informally
“a simply-connected region in the xy-plane comes in one piece and has no
holes.” More precisely, any two points in the region can be joined by a curve
that lies wholly within the region and any closed curve in the region can be
shrunk gradually to a point while staying within the region.

For instance, the xy-plane is simply connected. So is the xy-plane without
its positive x-axis. However, the xy-plane, without the origin is not simply
connected, because a circular path around the origin cannot be shrunk to a
point while staying within the region.

Now we can state the easy way to tell whether a vector filed is conservative.

Theorem. If a vector field F is defined in a simply-connected region
in the xy-plane and has ∇ × F = 0 throughout that region, then F is
conservative.

Proof

Let C be any simple closed curve in the region. We wish to prove that the
circulation of F over C is 0. Denoting the region that C bounds by R we have∮

C

F · dr =

∫
R

(curl F) dA.

Since curl F is 0 throughout R,
∮
C

F · dr = 0. •
In Example 5 in Section 18.1, there is a vector field whose curl is 0 but is

not conservative. In view of the theorem just proved, its domain must not be
simply connected. Indeed, the field is not defined at the origin.

EXAMPLE 2 Let F(x, y, z) = exyi + (ex + 2y)j.

1. Show that F is conservative.

2. Exhibit a scalar function f whose gradient is F.

SOLUTION
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1. A straightforward calculation shows that ∇×F = 0. Since F is defined
throughout the xy-plane, a simply-connected region, Theorem 18.2 tells
us that F is conservative.

2. By Section 18.1, we know that there is a scalar function f such that
∇f = F. There are several ways to find f . We show one of these
methods here. Additional approaches are pursued in Exercises 7 and 8.

The approach chosen here follows the construction in the proof of Theo-
rem 18.1.3. Define f(a, b) to equal

∫
C

F · dr, where C is any curve from
(0, 0) to (a, b). Any curve with the prescribed endpoints will do. For
simplicity, choose C to be the curve that goes from (0, 0) to (a, b) in a
straight line. (See Figure 18.2.1.) When a is not zero, we can use x as a
parameter are write this segment as: x = t, y = (b/a)t for 0 ≤ t ≤ a. (If
a = 0, we would use y as a parameter.) Then

Figure 18.2.1:

Note that in this con-
structive we already have
f(0, 0) = 0.

f(a, b) =

∫
C

(exy dx+ (ex + 2y) dy) =

a∫
0

(
et
b

a
t dt+

(
et + 2

b

a
t

)
b

a
dt

)

=
b

a

a∫
0

(
tet + et + 2

b

a
t

)
dt =

b

a

(
(t− 1)et + et +

b

a
t2
)a

0

=
b

a

(
tet +

b

a
t2
)a

0

= bea + b2.

Since f(a, b) = bea + b2, we see that f(x, y) = yex + y2 is the desired yex+y2+k for any constant
k, also would be a poten-
tial.

function.

� SHERMAN: In Sec-
tion 18.4 we refer to the
Two-Curve Case of Green’s
Theorem. Some adjust-
ments are needed there,
and here.
Green’s Theorem — The
Two-Curve Case

EXAMPLE 3 Figure 18.2.2(a) shows two curves C1, and C2 that enclose
a ring-shaped region R in which ∇ × F is 0. Show that the circulation of F
over C1 equals the circulation of F over C2.
SOLUTION Cut R into two regions, each bounded by a simple curve, to
which we can apply Theorem 18.2. Let C3 bound one of the regions and C4

bound the other, with the usual counterclockwise orientation. On the cuts, C3

and C4 go in opposite directions. On the outer curve C3 and C4 have the same
orientation as C1. On the inner curve they are the opposite orientation of C2.
(See Figure 18.1.2(b).) Thus∫

C3

F · dr +

∫
C4

F · dr =

∫
C1

F · dr −
∫
C2

F · dr. (18.2.3)

By Theorem 18.2 each integral on the left side of (18.2.3) is 0. Thus∫
C1

F · dr =

∫
C2

F · dr (18.2.4)
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(a) (b)

Figure 18.2.2:

�

Example 3 tells us “as you move a closed curve within a region of zero-curl,
you don’t change the circulation.”

How to Draw ∇× F

For the planar vector field F, its curl, ∇×F is of the form aF. If a is positive,
the curl points directly up from the page. Indicate this by the symbol �,
which reminds you of the point of an arrow or the nose of a rocket. If a is
negative, curl points down from the page. To show this, use the symbol ⊕,
which suggests the feathers of an arrow or the fins of a rocket. Figure 18.2.3
illustrates their use.

Figure 18.2.3:

DOUG: Some xrcss on
this? or also in text? (it’s
standard in physics.)
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Summary

We first expressed Green’s theorem in terms of scalar functions∮
C

(P dx+Q dy) =

∫
R

(
∂Q

∂∂x
− ∂P

∂y

)
dA.

We then translated it into a statement about the circulation of a vector field;∮
C

F · dr =

∫
R

(∇× F) · k dA.

With the aid of this theorem we were able to show the following important
result:

If the curl of F is 0 and if the domain of F is simply connected, then F
is conservative.

Also, in a region in which ∇×F = 0, the value of
∮
C

F · dr does not change
as you gradually change C to other curves in the region.
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EXERCISES for 18.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 through 4 verify Green’s Theorem for the given P and Q
and curve C.

1.[R] P = xy, Q = y2 C is the border of the square whose vertices are (0, 0),
(1, 0), (1, 1) and (0, 1).

2.[R] P = x2, Q = 0 C is the boundary of the unit circle with center (0, 0).

3.[R] P = ey, Q = ex, C is the triangle with vertices (0, 0), (1, 0), and (0, 1).

4.[R] P = sin(y), Q = 0, C is the boundary of the portion of the unit circle center
(0, 0) in the first quadrant.

5.[R] Figure 18.2.4 shows a vector field for a fluid flow F. At the indicated points
A, B, C, and D tell when the curl of F is pointed up, down or is 0.

Figure 18.2.4:

6.[R] Assume that F describes a fluid flow. Let P be a point in the domain of F
and C a small circular path around P swept out counterclockwise.

(a) The curl of F points upward, in what direction is the fluid tending to turn
near P , clockwise or counterclockwise?

(b) Would you expect
∮
C F · dr to be positive or negative?

In Example 2 we constructed a potential function f for a vector field F =
exyi + (ex + 2y)j by using a straight path from (0, 0) to (a, b). Exercises 7
through 13 provide practice finding a potential function, f , with ∇f = F.
7.[R] In Example 2 we constructed a function f by using a straight path from (0, 0)

to (a, b). Instead, construct f by using a path that consists of two line segments,
the first from (0, 0) to (a, 0), and the second, from (a, 0) to (a, b).
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8.[R] In Example 2 we constructed a function f by using a straight path from (0, 0)
to (a, b). Instead, construct f by using a path that consists of two line segments,
the first from (0, 0) to (0, b), and the second from (0, b) to (a, b).
9.[R] Another way to construct a potential function f for a vector field F = P i+Qj

is to work directly with the requirement that ∇f = F. That is, with

∂f

∂x
= P (x, y) and

∂f

∂y
= Q(x, y).

(a) Integrate ∂f
∂x = exy with respect to x to conclude that f(x, y) = exy + C(y).

Note that the “constant of integration” can be any function of y. (Why?)

(b) Next, differentiate the result found in (a) with respect to y. This gives two
formulas for ∂f

∂y : ex +C ′(y) and ex + 2y. Use this fact to explain why C ′(y) =
2y.

(c) Solve the equation for C found in (b).

(d) Combine the results of (a) and (c) to obtain the general form for a potential
function for this vector field.

In Exercises 10 through 13

(a) check that F is conservative in the given domain.

(b) construct f such that ∇f = F, using integrals on curves.

(c) construct f such that ∇f = F, using antiderivatives.

10.[R] F = 3x2y vi+ x3j

11.[R] F = y cos(xy) vi+ (x cos(xy) + 2y)j

12.[R] F = (yexy + 1/x)i + xexyj, x > 0

13.[R] F = 2y ln(x)
x i + (ln(x))2j, x > 0

14.[R] Verify Green’s Theorem when F(xy) = xi + yj and R is the disk of radius
a and center at the origin.

15.[R] In Example 1 we used Green’s Theorem to show that
∮
C y dx is the nega-

tive of the area that C encloses. Use Green’s Theorem to show that
∮
C x dy equals

that area. (We obtained this result previously, in Section 15.3.)

16.[R] Let A be a plane region with boundary C a simple closed curve swept out
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counterclockwise. Use Green’s theorem to show that the area of A equals

1
2

∮
(−y dx+ x dy).

17.[R] See Example 16 to find the area of the region bounded by the line y = x
and the curve {

x = t6 + t4

y = t3 + t
for t in [0, 1].

18.[R] Say curl F at (0, 0) is −3. Let C sweep out the boundary of a circle of
radius a, center at (0, 0). When a is small, estimate

∫
C F · dr.

19.[R] Which of these fields are conservative:

(a) xi− yj

(b) xi−yj
x2+y2

(c) 3i + 4j

(d) (6xy − y3)i + (4y + 3x2 − 3xy2)j

(e) yi−xj
1+x2y2

(f) xi+yj
x2+y2

20.[R] Figure 18.2.5 shows a fluid flow F. All the vectors are parallel, but their

November 3, 2008 Calculus 1269



The Theorems of Green, Stokes, and Gauss § 18.2

magnitudes increase from bottom to top. A small simple curve C is placed in the
flow.

Figure 18.2.5:

(a) Is the circulation around C positive, negative, or 0? Justify your opinion.

(b) Assume that a wheel with small blades is free to rotate around it axis, which
is perpendicular to the page, is inserted into this flow. Which way would it
turn, or would it not turn at all?

SHERMAN: Isn’t this the
same field as in the previ-
ous Exercise? I know it’s
not given by a formula, but
is this what you intend? It
should not be difficult to
make them different, if so
desired.

21.[R] Let F(x, y) = yi.

(a) Sketch the field.

(b) Predict whether (∇× F) · k is positive, negative or 0.

(c) Compute (∇× F) · k.

(d) What would happen if you dipped a wheel with small blades free to rotate
around its axis, which is perpendicular to the page, is inserted into this flow.
(Don’t just say, ”It would get wet.”)

22.[M] A curve is given parametrically by x = t(1 − t2), y = t2(1 − t3), for t in
[0, 1].

(a) Sketch the points corresponding to t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, and use
them to sketch the curve.

(b) Let A be the region enclosed by the curve. What difficulty arises when you try
to compute the area of A by a definite integral involving vertical or horizontal
cross sections?

(c) Use Exercise 16 to find the area of A.

November 3, 2008 Calculus 1270



The Theorems of Green, Stokes, and Gauss § 18.2

23.[M] Repeat Exercise 22 for x = sin(πt) and y = t − t2, for t in [0, 1]. In (a),
let t = 0, 1/4, 1/2, 3/4, and 1.

24.[R] Use Exercise 16 to obtain the formula for area in polar coordinates:

Area =
1
2

β∫
α

r2 dθ.

Hint: Assume C is given parametrically as x = r(θ) cos(θ), y = r(θ) sin(θ), for
α ≤ θ ≤ β.

25.[C] Assume that you know that Green’s theorem is true when A is a triangle
and C its boundary.

(a) Deduce that it therefore holds for quadrilaterals.

(b) Deduce that it holds for polygons.

26.[C] Assume that ∇ × F = 0 in the region R bounded by an exterior
curve C1 and two interior curves C2 and C3, as in Figure 18.2.6. Show that∫
C1

F · dr =
∫
C2

F · dr +
∫
C3F · dr.

Figure 18.2.6:

27.[R] Check that the curl of the vector field in Example 2 is 0, as asserted.

28.[R] Explain in words, without explicit calculations, why the circulation of the
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Figure 18.2.7:

field f(r)r̂ around the curve in Figure 18.2.7 is zero. As usual, f is a scalar function,
r = ||r||, and r̂ = r/r.

In Exercises 29 to 32 let F be a vector field defined everywhere in the plane
except a the point P shown in Figure 18.2.8. Assume that ∇ × F = 0 and
that

∫
C1

F · dr = 5.

Figure 18.2.8:

29.[R] What, if anything, can be said about
∫
C2

F · dr?

30.[R] What, if anything, can be said about
∫
C3

F · dr?

31.[R] What, if anything, can be said about
∫
C4

F · dr?

32.[R] What, if anything, can be said about
∫
C F ·dr, where C is the curve formed

by C1 followed by C3?

In Exercises 33 to 36 show that the vector field is conservative and then
construct a scalar function of which it is the gradient. Use the method in
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Example 2.
33.[R] 2xyi + x2j

34.[R] sin(y)i + (x cos(y) + 3)j

35.[R] (y + 1)i + (x+ 1)j

36.[R] 3y sin2(xy) cos(xy)i + (1 + 3x sin2(xy) cos(xy))j

37.[R] Show that

(a) 3x2y dx+ x3 dy is exact.

(b) 3xy dx+ x2 dy is not exact.

38.[R] Show that (x dx+ y dy)/(x2 + y2) is exact and exhibit a function f such
that df equals the given expression. (That is, find f such that ∇f · dr agrees with
the given differential form.)

39.[R] Let F = r̂/‖r‖ in the xy plane and let C be the circle of radius a and
center (0, 0).

(a) What does Green’s theorem say about
∮
C F · n ds?

(b) Evaluate
∮
C F · n ds without using Green’s theorem.

(c) Let C now be the circle of radius 3 and center (4, 0). Evaluate
∮
C F · n ds,

doing as little work as possible.

40.[R] Figure 18.2.9(a) shows the direction of a vector field at three points. Draw
a vector field comparable with these values. (No zero-vectors, please.)

(a) (b) (c)

Figure 18.2.9:
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41.[R] Consider the vector field in Figure 18.2.9(b). Will a paddle wheel turn at
A? At B? If so, in which direction?

42.[C] We proved that
∫
R
∂Q
∂y dA =

∫
C Q dy in a special case. Prove it with this

more general case, in which we assume less about the region R. Assume that R has
the description a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x). Figure 18.2.9(c) shows such a region,
which need not be convex. The curved path C breaks up into four paths, two of

Figure 18.2.10:

which are straight (or may be empty), as would be in Figure 18.2.9(c).

43.[C] We proved the second part of (18.2.1), namely that
∮
C Q dy =

∫
R ∂Q/∂x dA.

Prove the first part,
∮
C P dx = −

∫
R ∂p/∂y dA.
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18.3 Green’s Theorem, Flux, and Divergence

In the previous section we translated Green’s theorem into a theorem about circu-
lation and curl. That concerned the line integral of F ·T, the tangential component
of F, since F · dr is short for (F ·T) ds. Now we will translate Green’s theorem into
a theorem about the line integral of F · n, the normal component of F.

Green’s Theorem Expressed in Terms of Flux

Let F = M i +N j and C a counterclockwise closed curve. (We use M and N now,
to avoid confusion with P and Q needed later.) To compute F · n in terms of M
and N , we first express n in terms of i and j.

The vector
T =

dx

dx
i +

dy

ds
j

is tangent to the curve, has length 1, and points in the direction in which the curve

Figure 18.3.1:
is swept out. A typical T and n are shown in Figure 18.3.1. As Figure 18.3.1 shows,
the exterior unit normal n has its x component equal to the y component of T and
its y component equal to the negative of the component of T. Thus

n =
dy

ds
i− dx

ds
j.

Consequently, if F = M i +N j, then∮
C

F · n =
∮
C

(M i +N j) ·
(
dy

ds
i− dx

dx
j
)
ds =

∮
C

(
M
dy

ds
−N dx

ds

)
ds

=
∮
C

(M dy −N dx) =
∮
C

(−N dx+M dy). (18.3.1)

In (18.3.1), −N plays the role of P and M plays the role of Q in Green’s Theorem.
Since Green’s Theorem states that∮

C

(P dx+Q dy) =
∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA

we have ∮
C

(−N dx+M dy) =
∫
R

(
∂M

∂x
− ∂(−N)

∂y

)
dA

or simply, if F = M i + nj, then∮
C

F · n ds =
∫
R

(
∂M

∂x
+
∂N

∂y

)
dA.

In our customary “P and Q” notations, we have
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Theorem. Flux Expressed as a Double Integral If F = P i +Qj, then∮
C

F · n ds =
∫
R

(
∂P

∂x
+
∂Q

∂y

)
dA.

Note that ∇ · F is a scalar
function while ∇ × F is a
vector function.

The expression
∂P

∂x
+
∂Q

∂y
,

the sum of two partial derivatives, is call the divergence of F = P i + Qj. It is
written ∇ · F or div F. The latter notation is suggested by the “symbolic” dot
product (

∂

∂x
i +

∂

∂y
j
)
· (P i +Qj) =

∂P

∂x
+
∂Q

∂y
.

It is pronounce “del dot eff”. Theorem 18.3 is called “the divergence theorem in the
plane.”

EXAMPLE 1 Compute the divergence of

(a) F = exyi + arctan(3x)j and

(b) F = −x2i + 2xyj.

SOLUTION

(a) ∂
∂xe

xy + ∂
∂y arctan(3x) = yexy + 0 = yexy

(b) ∂
∂x(−x2) + ∂

∂y (2xy) = −2x+ 2x = 0.

�

The double integral of ∇·F over a region describes the amount of flow across the
border of that region. It tells how rapidly the fluid is leaving (diverging) or entering
(converging) the region. Hence the name “divergence”.

In the next section we will be using the divergence of a vector field defined in
space, F = P i + Qj + Rk, where P , Q and R are functions of x, y, and z. As you
may anticipate, it is defined as the sum of three partial derivatives

∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

It will play a role in measuring flux across a surface.

EXAMPLE 2 Verify that
∮
C F ·n ds equals

∫
R∇·F dA, when F(x, y) = xi+ yj,

R is the disk of radius a and center at the origin. C is the boundary curve of R.
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SOLUTION First we compute
∮
C F·n ds, where C is the circle boundary R, taken

counterclockwise. (See Figure 18.3.2.)

Figure 18.3.2:
Since C is a circle centered at (0, 0), the unit exterior normal n is r̂:

n = r̂ =
xi + yj
‖xi + yj‖

=
xi + yj
a

.

Thus
∮
C ds = arclength of C∮

C

F · n ds =
∮
C

(xi + yj) ·
(
xi + yj
a

)
ds =

∮
C

x2 + y2

a
ds

=
∮
C

a2

a
ds = a

∮
C

ds = a(2πa) = 2πa2. (18.3.2)

Next we compute
∫
R

(
∂P
∂x + ∂Q

∂y

)
dA. Since P = x and Q = y, ∂P/∂x+∂Q/∂y =

1 + 1 = 2. Then ∫
R

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫
R

2 dA,

which is twice the area of the disk R, hence 2πa2. This agrees with (18.3.2). �

As the next example shows, the double integral for flux provides an indirect way
of computing

∮
F · n ds.

EXAMPLE 3 Let F = x2i+xyj. Evaluate
∮

F ·n ds over the curve that bounds
the quadrilateral with vertices (1, 1), (3, 1), (3, 4), and (1, 2) shown in Figure 18.3.3.

Figure 18.3.3:SOLUTION The line integral could be evaluated directly, but would require pa-
See Exercise 23.rameterizing each of the four edges of C. With Green’s theorem we can instead

evaluate an integral over a single plane region.
Let A be the region that C bounds. By Green’s theorem∮

C

F · n ds =
∫
A

∇ · F dA =
∫
A

(
∂(x2)
∂x

+
∂(xy)
∂y

)
dA

=
∫
A

(2x+ x) dA =
∫
A

3x dA.

Then ∫
A

3x dA =

3∫
1

y(x)∫
1

3x dy dx,
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where y(x) is determined by the equation of the line that provides the top edge of
A. We easily find that the line through (1, 2) and (3, 4) has the equation y = x+ 1.
Therefore, ∫

A

3x dA =

3∫
1

x+1∫
1

3x dy dx.

The inner integration gives

x+1∫
1

3x dy = 3xy|y=x+1
y=1 = 3x(x+ 1)− 3x = 3x2.

The second integration gives

3∫
1

3x2 dx = x3
∣∣3
1

= 27− 1 = 26

�

A Local View of ∇ · F
We have presented a “global” view of ∇ · F, integrating it over a region R to get
the total divergence across the boundary of R. But there is another way of viewing
∇ · F, “locally.”

Let P = (a, b) be a point in the plane and F a vector field describing fluid flow.
Choose a very small region R around P of area A, and let C be its boundary, taken
counterclockwise. (See Figure 18.3.4.) Then the net flow out of R is

Figure 18.3.4:
∮
C

F · n ds.

By Green’s theorem, the net flow is also∫
R

∇ · F dA.

Now, since ∇ · F is continuous and A is small, ∇ · F is almost constant throughout
R, staying close to the value at (a, b), namely, (∇ · F)(a, b), the divergence of F at
(a, b). Thus ∫

A

∇ · F dA ≈ (∇ · F)(a, b)A.

or, equivalently,
Net flow out of R

A
≈ (∇ · F)(a, b). (18.3.3)
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This means that
∇ · F at P

is a measure of the rate at which fluid tends to leave a small region around P .
Hence the name “divergence”. If ∇ · F is positive, fluid near P tends to get less
dense (diverge). If ∇ · F is negative, fluid near P tends to accumulate (converge).

Moreover,, (18.3.3) suggests a new definition of the divergence ∇ · F at (a, b),
namely

(∇ · F)(a, b) = lim
Area of R→0

∮
C F · n ds

Area of R
where R is any region enclosing (a, b) whose boundary C is a simple closed
curve.

This definition appeals to our physical intuition. We began by defining ∇ · F
mathematically, as ∂P/∂x + ∂Q/∂y. We now see its physical meaning, which is
independent of any coordinate system. ((Exercise 24 in Section 18.2 uses this fact
to find divergence when F is given in polar coordinates.)

EXAMPLE 4 Estimate the flux of F across a small circle C of radius a if div F
at the center of the circle is 3.
SOLUTION The flux of F across C is

∮
C F ·n ds, which equals

∫
R∇·F dA, where

R is the disk that C bounds. Since ∇ · F is continuous, it changes little in a small
enough disk, and we treat it as almost constant. Then

∫
R∇·F dA is approximately

(3)(Area ofR) = 3(πa2) = 3πa2. �

Proof of Green’s Theorem

As Steve Whitaker of the chemical engineering department at the University of
California at Davis says, “The concepts that one must understand to prove a theorem
are frequently the concepts one must understand to apply the theorem.” So read
the proof slowly at least twice. It is not here just to show that Green’s theorem is
true. After all, it has been around for over 150 years, and no one has said it is false.
Studying a proof strengthens one’s understanding of the fundamentals.

In this proof we use the concepts of a double integral, an iterated integral, a
line integral, and the fundamental theorem of calculus. The proof provides a quick
review of four basic ideas.

We prove that
∮
RQ dy =

∫
R
∂Q
∂x dA. The proof that

∮
C P dx = −

∫
∂P
∂y dA is

similar.
To avoid getting involved in distracting details we assume that R is strictly

convex: It has no dents and its border has no straight line segments. The basic
ideas of the proof show up clearly in this special case. Thus R has the description
a ≤ x ≤ b, y(1x) ≤ y ≤ y2(x), as shown in Figure 18.3.5. We will express both

November 3, 2008 Calculus 1279



The Theorems of Green, Stokes, and Gauss § 18.3

Figure 18.3.5:

∫
R
∂Q
∂y dA and

∫
C Q dy as definite integrals over the interval [a, b]. First, we have

∫
R

∂Q

∂y
dA =

b∫
a

y2(x)∫
y1(x)

∂Q

∂y
dy dx.

By the Fundamental Theorem of Calculus,

y2(x)∫
y1(x)

∂Q

∂y
dy = Q(x, y2(x))−Q(x, y1(x)).

Hence ∫
A

∂Q

∂y
dA =

b∫
a

(Q(x, y2(x))−Q(x, y1(x))) dx. (18.3.4)

Next, to express
∫
C −Q dx as an integral over [a.b], break the closed path C into

two successive paths, one along the bottom part of A, described by y = y1(x), the
other along the top part of A, described by y = y2(x). Denote the bottom path C1

and the top path C2. (See Figure 18.3.6.)

Figure 18.3.6:
Then ∮

C

(−Q) dx =
∫
C1

(−Q) dx+
∫
C2

(−Q) dx. (18.3.5)

But ∫
C1

(−Q) dx =
∫
C1

(−Q(x, y1(x))) dx =

b∫
a

(−Q(x, y1(x))) dx,

and∫
C2

(−Q) dx =
∫
C2

(−Q(x, y2(x))) dx =

b∫
a

(−Q(x, y2(x))) dx,=

b∫
a

Q(x, y2(x)) dx.
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thus by (18.3.5),

∮
C

(−Q) dx =

b∫
a

−Q(x, y1(x)) dx+

b∫
a

Q(x, y2(x)) dx

=

b∫
a

[Q(x, y2(x))−Q(x, y1(x))] dx.

This is also the right side of (18.3.4) and concludes the proof.

Summary

We translated Green’s theorem into a theorem about the flux of a vector field in the
xy-plane. In symbols, the divergence theorem in the plane says that∮

C

F · n ds =
∫
A

∇ · F dA.

“The integral of the normal component of F around a simple closed curve equals
the integral of the divergence of F over the region that the curve bounds.”

From this it follows that

∇ · F(P ) = lim
Area of R→0

∮
C F · n ds

Area of R
,

where C is the boundary of the region R, which contains P .
This introduced the notion of the “divergence” of F = P i + Qj, namely the

scalar field ∂P/∂x + ∂Q/∂y. (In the next section we have the divergence of F =
P i + Qj + Rk, namely the sum ∂P/∂x + ∂Q/∂y + ∂R/∂z.) We then showed the
divergence of F at a point P is

lim
Area of R→0

Flux across C
Area of R

,

where C, the boundary of R, is chosen smaller and smaller. We concluded with a
proof of Green’s theorem, which amounts to a review of several basic concepts.
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EXERCISES for 18.3 Key: R–routine, M–moderate, C–challenging

1.[R] State the divergence form of Green’s theorem in symbols.

2.[R] State the divergence form of Green’s theorem in words, using no symbols
to denote the vector fields, etc.

3.[C] Let F(x, y) describe a fluid flow. Assume ∇·F is never 0 in a certain region
R. Show that none of the stream lines in the region closes up to form a loop within
R. Hint: At each point P on a stream line, F(P ) is tangent to that streamline.

4.[M] Find the area of the region bounded by the line y = x and the curve{
x = t6 + t4

y = t3 + t

for t in [0, 1]. Hint: Use Green’s Theorem.

5.[M] Let f be a scalar function. Let R be a convex region and C its boundary
taken counterclockwise. Show that∫

R

(
∂2f

∂x2
+
∂2f

∂y2

)
dA =

∮
C

(
∂f

∂x
dy − ∂f

∂x
dx

)
.

6.[C] Let R be a region in the xy plane bounded by the closed curve C. Let
f(x, y) be defined on the plane. Show that∫

R

(
∂2f

∂x2
+
∂2f

∂x

)2

dA =
∮
C

Dn(f) ds.

7.[C] Assume that F is defined everywhere in the xy-plane except at the origin
and that the divergence of F is identically 0. Let C1 and C2 be two counterclock-
wise simple curves circling the origin C1 lies within the region within C2. Show that∮
C1

F · n ds =
∫
C2

F · n ds. (See Figure 18.3.7(a).) Hint: Draw the dashed lines in
Figure 18.3.7(b) to cut the region between C1 and C2 into two regions.

8.[C] (This continues Exercise 7.) Assume that F is defined everywhere in the xy-
plane except at the origin and that the divergence of F is identically 0. Let C1 and
C2 be two counterclockwise simple curves circling the origin. They may intersect.
Show that

∮
C1

F ·n ds =
∮
C2

F ·n ds. The message to be learned from this Exercise
is this: if the divergence of F is 0, you are permitted to replace a line integral over
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(a) (b)

Figure 18.3.7:

a complicated curve by a line integral over a simpler curve.

9.[M] Let F be the vector field whose formula in polar coordinates is F(r, θ) = rnr̂,
where r = xi+yj, r = ‖r‖, and r̂ = r/r. Show that the divergence of F is (n+1)rn−1.
Hint: First express F in rectangular coordinates.

10.[M] A region with a hole is bounded by two oriented curves C1 and C2, as in
Figure 18.3.8. which shows typical exterior-pointing unit normal vectors. Find an

Figure 18.3.8:

equation expressing
∫
R∇·F dA in terms of

∮
C1

F·n ds and
∮
C2

F·n ds. Hint: Break
R into two regions that have no holes, as in Exercises 7 and 8.

In Exercises 11 to 14 compute the divergence of the given vector fields.

11.[R] F = x3yi + x2y3j
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12.[R] F = arctan(3xy)i + (ey/x)j

13.[R] F = ln(x+ y)i + xy(arcsin y)2j

14.[R] F = y
√

1 + x2i + ln((x+ 1)3(sin(y))3/5ex+y)j

In Exercises 15 to 18 compute
∫
R div F dA and

∮
C F · n and verify the planar

divergence theorem. The differential form of Green’s theorem DOUG will be help- SHERMAN: Do we use this
name?ful.

15.[R] F = 3xi + 2yj, and R is the disk of radius 1 with center (0, 0).
16.[R] F = 5y3i− 6x2j, and R is the disk of radius 2 with center (0, 0).
17.[R] F = xyi + x2yj, and R is the square with vertices (0, 0), (a, 0) (a, b) and

(0, b), where a, b > 0.
18.[R] F = cos(x + y)i + sin(x + y)j, and R is the triangle with vertices (0, 0),

(a, 0) and (a, b), (a, b), where a, b > 0.

In Exercises 19 to 22 use the planar divergence theorem to evaluate
∮
C F · n ds

for the given F, where C is the boundary of the given region R.
19.[R] F = ex sin yi+e2x cos(y)j, and R is the rectangle with vertices (0, 0), (1, 0),

(0, π/2), and (1, π/2).
20.[R] F = y tan(x)i + y2j, and R is the square with vertices (0, 0), (1, 0), (1, 1),

and (0, 1).
21.[R] F = 2x3yi− 3x2y2j, and R is the triangle with vertices (0, 1), (3, 4), and

(2, 7).
22.[R] F = −i

xy2
+ j

x2y
, and R is the triangle with vertices (1, 1), (2, 2), and (1, 2).

Hint: Write F with a common denominator.

23.[R] In Example 3 we found
∮
C F·n ds by computing a double integral. Instead,

evaluate the line integral
∮
C F · n ds directly.

24.[R] A small curve C bounds a small region of area A.

(a) If
∮
C F · n ds = −2, estimate ∇× F at points in R.

(b) Would you use � or ⊕ to indicate the curl?

In Exercises 25 to 28, F is defined on the whole plane but indicated only at
points on a curve C bounding a region A. What can be said about

∫
A∇ · F dA in

each case?
25.[R] See Figure 18.3.9(a).
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(a) (b) (c) (d)

Figure 18.3.9:

26.[R] See Figure 18.3.9(b).
27.[R] See Figure 18.3.9(c).
28.[R] See Figure 18.3.9(d).

29.[R] Let F(x, y) = i, a constant field.

(a) Evaluate directly the flux of F around the triangular path, (0, 0) to (1, 0), to
(0, 1) back to (0, 0).

(b) Use the divergence of F to evaluate the flux in (a).

30.[R] Let a be a “small number” and R be the square with vertices (a, a),
(−a, a), (−a,−a), and (a,−a), and C its boundary. If the divergence of F at the
origin is 3, estimate

∮
C F · n ds.

31.[R] Assume ‖F(P )‖ ≤ 4 for all points P on a curve of length L that bounds
a region R of area A. What can be said about integral

∫
R∇ · F dA.

32.[R] Let F(x, y) = r̂/r. Evaluate as simply as possible the flux of F across the
rectangular curve whose vertices are (−1,−2), (3,−2), (3, 4), and (−1, 4).

33.[R] Let F(x, y) = r̂/r. Evaluate as simply as possible the flux of F across

(a) the triangle whose vertices are (1, 0), (2, 0), and (2, 3),

(b) the triangle whose vertices are (1,−1), (1, 4), and (−2,−1).

34.[R] Verify the divergence form of Green’s theorem for F = 3xi + 4yj and C
the square whose vertices are (2, 0), (5, 0), (5, 3), and (2, 3).

SHERMAN: Is this the cor-
rect cross-reference?35.[M] (See Example 3 in Section 18.2.) The region R is bounded by the curves
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Figure 18.3.10:

C1 and C2, as in Figure 18.3.10.

(a) Show that
∮
C1

F · n ds−
∫
C2

F · n ds =
∫
R(∇ · F) dA.

(b) If ∇ · F = 0, show that
∫
C1

F · n ds =
∫
C2

F · n ds.

A vector field F is said to be divergence free when ∇ ·F = 0 at every point in
the field. 36.[R] Figure 18.3.11 shows four vector fields. Two are divergence-free
and two are not. Decide which two are not, copy them onto a sheet of drawing
paper, and sketch a closed curve C for which

∮
C F · n ds is not 0.

Figure 18.3.11:

37.[R] For a vector field F or scalar field f ,
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(a) Is the curl of the gradient of F always 0?

(b) Is the divergence of the gradient of F always 0?

(c) Is the divergence of the curl of F always 0?

(d) Is the gradient of the divergence of F always 0?

38.[R] Figure 18.3.12 describes the flow F of a fluid. Decide whether ∇ · F is
positive, negative, or zero at each of the points A, B, and C.

Figure 18.3.12:

SHERMAN: Do you care
that (0, 0) is not an interior
point for this R?

39.[R] If ∇ ·F at (0, 0) is 3 estimate
∮
C F ·n ds, where C is the curve around the

square whose vertices are (0, 0), (0.01, 0), (0.01, 0.01), (0, 0.01).

40.[C]

(a) Compute ∇ · F.

(b) Draw enough vectors for the field F(x, y) = (xi + yj)/(x2 + y2) to show what
it looks like.

(c) Does your sketch in (b) agree with what you found for ∇ · F. in (a)? (If not,
go back to (a) and redraw the vector field.)
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18.4 The Divergence Theorem in Space (Gauss’s

Theorem)

In Sections 18.2 and 18.3 we developed Green’s theorem and applied it in two forms
for a vector field F in the plane. One form concerned the line integral of the normal
component of F,

∮
C F · n ds. The other concerned the integral of the tangential

component of F,
∮
C F ·Tds, also written as

∮
C F · dr. In this section we generalize

the first form to space, in the divergence theorem in space. In Section 18.5 we
will generalize the second form to space in Stokes’ theorem.

The Divergence (or Gauss’s) Theorem

Consider a region R in space bounded by a single connected surface S. For instance,
R may be a ball and S its surface. This is a case encountered in the elementary
theory of electro-magnetism. In another case, R is a right circular cylinder and S
is its surface, which consists of two disks and its curved side. See Figure 18.4.1(a).
Both figures show typical unit exterior normals, perpendicular to the surface. The

(a) (b)

Figure 18.4.1:

divergence theorem relates an integral over the surface to our integral over the region
it bounds.

Theorem. Divergence Theorem —One-Surface Case Let V be the region in space
bounded by the single connected surface S. Let n denote the exterior unit normal of
V along the boundary S. Then∫

S

F · n ds =
∫
V

∇ · F dV

for any vector field F defined on V.
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Say the Theorem also.
In words: “The integral of the normal component of F over a surface equals the

integral of the divergence of F over the solid region the surface bounds.”
The integral

∫
S F · n dS is called the flux of the field F across the surface S.

If F = P i +Qj +Rk and cos(α), cos(β), and cos(γ) are the direction cosines of
the exterior normal, then the divergence theorem reads∫
S

(P i +Qj +Rk) · (cos(α)i + cos(β)j + cos(γ)k) dS =
∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV,

where cos(α), cos(β), and cos(γ) are the direction cosines of the exterior normal. Direction cosines are de-
fined in Section 14.4.Evaluating the dot product puts the divergence theorem in the form∫

S

(P cos(α) +Q cos(β) +R cos(γ)) dS =
∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV.

When the divergence theorem is expressed in this form, we see that it amounts to
three scalar theorems:∫
S

P cos(α) dS =
∫
V

∂P

∂x
dV,

∫
S

Q cos(β) dS =
∫
V

∂Q

∂y
dV, and

∫
S

R cos(γ) dS =
∫
V

∂R

∂z
dV.

(18.4.1)
As is to be expected, establishing these three equations proves the divergence

theorem. We delay the proof to the end of this section, after we have shown how
the divergence theorem is applied.

EXAMPLE 1 Let S be a surface that bounds a solid region R. Assume that the
region lies outside R. Evaluate ∫

S

r̂
r2
· n dS.

SOLUTION The divergence of r̂/r2, the inverse-square central field in space, is 0.
By the divergence theorem,∫

V

r̂
r2
· n dS =

∫
S

(div
r̂
r2

) dS =
∫
S

0 ds = 0.

So the flux of r̂/r2 in this case is 0. �
SHERMAN: Not intro-
duced previously? Is this
something that can be
omitted, or moved to
the Exercises? This does
appear again later in this
chapter, Section 18.6 and
its Exercises.

You could have guessed the result in this Example by thinking in terms of the
solid angle and steradians. Why?
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Two-Surface Version of the Divergence Theorem

The divergence theorem also holds if the solid region has several holes like a piece
of Swiss cheese. In this case, the boundary consists of several separate connected
surfaces. The most important case is when there is just one hole and hence an inner
surface S1 and an outer surface S2 as shown in Figure 18.4.2.

Figure 18.4.2:

SHERMAN: Should the
formal statement be
deleted, leaving a parallel
presentation as for Green’s
Theorem in Section 18.2?

Theorem. Divergence Theorem — Two-Surface Case. Let V be a region in space
bounded by the surfaces S1 and S2. Let n∗ denote the exterior normal along the
boundary. Then ∫

S1

F · n∗ dS +
∫
S2

F · n∗ dS =
∫
V

div F dV

for any vector field defined on V.
SHERMAN: We do not
have an explicit two-curve
result for Green’s Theorem.
Compare with (18.2.4) in
Exercise 3 in Section 18.2.

The importance of this form of the divergence theorem is that it allows us to
conclude that the fluxes(?) across two surfaces are the same provide these surfaces
form the boundary of a solid where F is divergence-free.

DOUG: Corollary a bad
word?
SHERMAN: Corollary is
used is Section 4.1, and
again here. There are a few
references to these corollar-
ies in Section 6.3 and Sec-
tion 18.5. Maybe we can
find better choice of word
for this. Maybe as Exam-
ples?

SHERMAN: I do not see
that we made such a formal
statement in Section 18.2.

Let S1 and S2 be two connected surfaces that form the boundary of the
region V. Let F be a vector field defined on V such that the divergence of
F, ∇ · F, is 0 throughout V. Then∫

S1

F · n dS =
∫
S2

F · n dS (18.4.2)

The proof of this result closely parallels the derivation of (18.2.4) in Section 18.2.
The next example is a major application of (18.4.2), which enables us, if the

divergence of F is 0, to replace the integral of F · n over a surface by an integral
of F · n over a more convenient surface. This appears in physics books that do not
mention that the flux of F(r) = r̂/r2 is the solid angle subtended by the surface.

SHERMAN: Where would
they have heard about solid
angle and steradians?

For the moment, forget you ever heard of solid angle and steradians.

EXAMPLE 2 Let F(r) = r̂/r2, the inverse square vector field with center at
the origin. Let S be a surface that encloses the origin. Find the flux of F over the
surface

∫
S F · n dS.

SOLUTION Select a sphere with center at the origin that does not intersect S.
This sphere should be very small in order to miss S. Call this spherical surface S1

and its radius α. Then, by (18.4.2),∫
S

F · n dS =
∫
S1

F · n dS
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But
∫
S1 F·n dS is easy because the integrand (r̂/r2)·n is constant: n = r̂ so r̂·n = 1.

Since the radius of the sphere S is a:∫
S1

F · n dS =
∫
S1

1
a2

dS =
1
a2

∫
S1

dS =
1
a2

4πa2 = 4π.

�

A uniform or constant vector field is a vector field where vectors at every point
are all identical. Such fields are used in the next example.

EXAMPLE 3 Verify the divergence theorem for the constant field F(x, y, z) =
2i + 3j + 4k and the surface S of a cube whose sides have length 5 and is situated
as shown in Figure 18.4.3.

Figure 18.4.3:

SOLUTION To find
∫
S F · n dS we consider the integral of F · n over each of the

six faces.
On the bottom face, ABCD the unit exterior normal is −k. Thus

F · n = (2i + 3j + 4k) · (−k) = −4.

So ∫
ABCD

F · n dS =
∫

ABCD

(−4) dS = −4
∫

ABCD

dS = (−4)(25) = −100.

The integral over the top face involves the exterior unit normal k instead of
−k. Then

∫
EFGH F · n dS = 100. The sum of these two integrals is 0. Similar

computations show that the flux of F over the entire surface is 0.
The divergence theorem says that this flux equals

∫
R∇ · F dV , where R is the

solid cube. Now, div F = ∂(2)/∂x + ∂(3)/∂y + ∂(4)/∂z = 0 + 0 + 0 = 0. So the
integral of div F over R is 0, thus verifying the divergence theorem. �
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Why div F is Called the Divergence

Let F(x, y, z) be the vector field describing the flow field for a gas. That is,
F(x, y, z) is the product of the density of the gas at (x, y, z) (mass per unit vol-
ume) and the velocity vector of the gas there.

The integral
∫
S F·n dS over a closed surface S represents the tendency of the gas

to leave the region R that S bounds. If that integral is positive the gas is tending
to escape or “diverge”. If negative, the net effect is for the amount of gas in R to
increase and become denser.

Let ρ(x, y, z, t) be the density of the gas at time t at the point (x, y, z). Then∫
R ρ dV is the total mass of gas in R at a given time. So the rate at which the mass

in R changes as given by the derivative

d

dt

∫
R

ρ dV.

SHERMAN: Can we direct
students to a prior discus-
sion of this?

If ρ is sufficiently well-behaved, mathematicians assure us that we may “differ-
entiate past the integral sign.” Then

d

dt

∫
R

ρ dV =
∫
R

∂p

∂t
dV.

Therefore ∫
R

∂p

∂t
dV =

∫
S

F · n dS

since both represent the rate at which gas accumulates in or escapes from R. But, SHERMAN: Reference?
The Permanence Principle
in Section 3.9 is the only
thing along these lines that
I recall seeing in this book.
Do we need to add it?
Where? Should this be an
Exercise?

by the divergence theorem,
∫
S F · n dS =

∫
R∇ · F dV , and so∫

R

∇ · F dV =
∫
R

∂p

∂t
dV

or, ∫
R

(∇ · F− ∂p

∂t
) dV = 0. (18.4.3)

Equation 18.4.3 holds not just for the solid R but for any solid region within
R. By the zero-integral principle, the integrand must be zero thought R, and we
conclude that

∇ · F =
∂p

∂t
.

This equation tells us that div F at a point P represents the rate gas is getting
denser or lighter near P . That is why div F is called the “divergence of F”. Where
div F is positive, the gas is dissipating. Where div F is negative, the gas is collecting. See Exercise 36 in Sec-

tion 18.3.For this reason a vector field for which the divergence is 0 is called “incompress-
ible”. It is also called “divergence free”.

We conclude this section with a proof of the divergence theorem.

November 3, 2008 Calculus 1292



The Theorems of Green, Stokes, and Gauss § 18.4

Proof of the Divergence Theorem
We will prove the theorem in the special case that each line parallel to an axis meets
the surface S in at most two points and V is convex. We prove the third equation
in (18.4.1). The other two are established the same way.

We wish to show that ∫
V

R cos(γ) dS =
∫
V

∂R

∂z
dV. (18.4.4)

Let A be the projection of S on the xy plane. Its description is

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x).

The description of V is then

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Then (see Figure 18.4.4)∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

z2(x,y)∫
z1(x,y)

∂R

∂z
dz dy dx. (18.4.5)

Figure 18.4.4:
The first integration gives

z2(x,y)∫
z1(x,y)

∂R

∂z
dz = R(x, y, z2)−R(x, y, z1),

by the fundamental theorem of calculus. We have, therefore,∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

(R(x, y, z2)−R(x, y, z1)) dy dx,

hence ∫
V

∂R

∂z
dV =

∫
A

(R(x, y, z2)−R(x, y, z1)) dA.

This says that, essentially, on the “top half” of V, where 0 < γ < π/2, dA =
cos(γ) dS is positive. And, on the bottom half of V, where π/2 < γ < π, dA =
− cos(γ) dS. According to (17.5.1) in Section 17.5, the last integral equals∫

S

R(x, y, z) cos(γ) dS.

Thus ∫
V

∂R

∂z
dV =

∫
S

R cos γ dS,

and (18.4.4) is established.
Similar arguments establish the other two equations in (18.4.1). •
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Summary

We stated the divergence theorem for a single surface and for two surfaces. It enables
one to calculate the flux of a vector field F in terms of an integral of its divergence
∇ · F over the region. This is especially useful for fields that are divergence free.
The most famous such field in space is the inverse-square central vector field. The
flux of such a field depends on whether its center is inside or outside the surface.
Specifically, if the center is at Q and the field is a constant multiple of

−−→
QP

‖
−−→
QP‖3

its

flux across a surface not enclosing Q of 0. If it encloses Q, its flux is 4πc. This is
a consequence of the divergence theorem. It also can be explained geometrically, in
terms of solid angles. SHERMAN: You appear to

have c/(4π). Shouldn’t this
be 4πc?
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EXERCISES for 18.4 Key: R–routine, M–moderate, C–challenging

1.[R] State Gauss’s theorem in symbols.

2.[R] State Gauss’s theorem only in words, not using symbols such as F, ∇ · F,
n, S, or V.

3.[R] Explain why ∇·F at a point P can be expressed as a coordinate-free limit.

4.[R] What is the two-surface version of Gauss’s theorem?

5.[R] Verify the divergence theorem for F(x, y, z) = xi + yj + 0k and the surface
x2 + y2 + z2 = 9.

6.[R] Verify the divergence theorem for the field F(x, y, z) = xi and the cube whose
vertices are (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 2, 0), (0, 0, 2), (2, 0, 2), (2, 2, 2), (0, 2, 2).

7.[R] Verify the divergence theorem for F = 2i + 3j + 4k and the tetrahedren
whose four vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

8.[R] Verify the two-surface version of Gauss’s theorem for F(x, y, z) = (x2 +y2 +
z2)(xi + yj + zk) and the surfaces are the spheres of radii 2 and 3 centered at the
origin.

9.[R] Let F = 2xi + 3yj + (5z + 6x)k, and let

G = (3x+ 4z2)i + (2y + 5x)j + 5zk.

Show that ∫
S

F · n dS =
∫
S

G · n dS,

where S is any surface bounding a region in space.

In Exercises 10 to 17 use the divergence theorem.
10.[R] Let V be the solid region bounded by the xy plane and the paraboloid

z = 9 − x2 − y2. Evaluate
∫
S F · n dS, where F = y3i + z3j + x3k and S is the

boundary of V.
11.[R] Evaluate

∫
V ∇ ·F dV for F =

√
x2 + y2 + z2(xi + yj + zk) and V the ball

of radius 2 and center at (0, 0, 0).
In Exercises 12 and 13 find

∫
S F · n dS for the given F and S. 12.[R] F =

z
√
x2 + z2i + (y + 3)j − x

√
x2 + z2k and S is the boundary of the solid region

between z = x2 + y2 and the plane z = 4x.
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13.[R] F = xi + (3y + z)j + (4x+ 2z)k and S is the surface of the cube bounded
by the planes x = 1, x = 3, y = 2, y = 4, z = 3 and z = 5.

14.[R] Evaluate
∫
S F · n dS, where F = 4xzi− y2j + yzk and S is the surface of

the cube bounded by the planes x = 0, x = 1, y = 0, z = 0, and z = 1, with the
face corresponding to x = 1 removed.

15.[R] Evaluate
∫
S F · n dS, where F = xi + yj + 2xk and S is the boundary of

the tetrahedron with vertices (1, 2, 3), (1, 0, 1) (2, 1, 4), and (1, 3, 5).
16.[R] Let S be a surface of area S that bounds a region V of volume V .

Assume that ‖F(P )‖ ≤ 5 for all points P on the surface S. What can be said about∫
V ∇ · F dV ?
17.[R] Evaluate

∫
S F · n dS, where F = x3i + y3j + z3k and S is the sphere of

radius a and center (0, 0, 0).

In Exercises 18 to 21 evaluate
∫
S F · n dS for F = r̂/r2 and the given surfaces,

doing as little calculation as possible.
18.[R] S is the sphere of radius 2 and center (5, 3, 1).
19.[R] S is the sphere of radius 3 and center (1, 0, 1).
20.[R] S is the surface of the box bounded by the planes x = −1, x = 2, y = 2,

y = 3, z = −1, and z = 6.
21.[R] S is the surface of the box bounded by the planes x = −1, x = 2, y = −1,
y = 3, z = −1, and z = 4.

22.[M] Assume that the flux of F across every sphere is 0. Must the flux of F
across every cube be 0 also?

23.[R] If F is always tangent to a given surface S what can be said about the
integral of ∇ · F over the region that S bounds?

24.[M] Let F(r) = f(r)r̂ be a central vector field in space that has zero di-
vergence. Show that f(r) must have the form f(r) = a/r2 for some constant a.
Hint: Consider the flux of F across the closed surface in Figure 18.4.5

Figure 18.4.5:

November 3, 2008 Calculus 1296



The Theorems of Green, Stokes, and Gauss § 18.4

25.[M] Let F be defined everywhere except at the origin and be divergence-free.
Let
cS1 and S2 be two closed surfaces that enclose the origin. Explain why

∫
S1 F·n dS =∫

S2 F · n dS. (The two surfaces may intersect.)

26.[C] Express ∇ · F in cylindrical coordinates if F is given in cylindrical coor-

dinates F(r, θ, z) = P r̂ + Q
̂̂
θ + Rẑ. Hint: Review Exercise 24 in Section 18.2 and

Exercise 9 in Section ?? for similar derivations in polar coordinates in the plane.

27.[C]

(a) Show that the proof in the text of the divergence theorem applies to tetrahe-
dron. Hint: Choose your coordinate system carefully.

(b) Deduce that if the divergence theorem holds for tetrahedron then it holds for
any polyhedron. Hint: Each polyhedron can be cut into tetrahedron.

28.[C] In Exercise 24 you were asked to show generally that the only central fields
with zero divergence are the inverse square fields. Show this, instead, by computing
the divergence of F(x, y, z) = f(r)r̂, where r = xi + yj + zk.

29.[C] Let F be defined everywhere in space except at the origin. Assume that

lim
‖r‖→∞

F(r)
‖r‖2

= 0

and that F is defined everywhere except at the origin, and is divergence free. What
can be said about

∫
S F · n dS, where S is the sphere of radius 2 centered at the

origin?

30.[C] We proved one-third of the divergence theorem.

1. Prove that ∫
S

Q cos(β) dS =
∫
V

∂Q

∂y
dV

2. Prove that ∫
S

P cos(α) dS =
∫
V

∂P

∂x
dV
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18.5 Stokes’ Theorem

Stokes’ theorem in the xy plane asserts that∮
C

F · dr =
∫
A

(∇× F) · k dA,

where C is counterclockwise and C bounds the region A. The general Stokes’ theo-
rem extends this result to closed curves in space. (It is this version that is usually
called Stokes’ theorem.) It asserts that if the closed curve C bounds a surface S,
then ∮

C

F · dr =
∫
S

(∇× F) · n dS.

As usual, the vector n is a unit normal to the surface. There are two such
normals at each point on the surface. In a moment we describe which are to use.

In words, Stokes’ theorem reads, “The circulation vector field around a closed
curve is equal to the integral of the normal component of the curl of the field over
the surface that the curve bounds.

Stokes’ published his theorem in 1854 (without proof, for it appeared as a ques-
tion on a Cambridge University examination.) By 1870 it was in common use. It
is the most recent of the three major theorems discussed in this chapter, for green
published his theorem in 1828 and Gauss published the divergence theorem in 1839.

Choosing the Normal n

In order to state Stokes’ theorem precisely, we must describe what kind of surface
S is permitted and which of the two possible normals n to choose.

Figure 18.5.1:
In the case of a typical surface S that comes to mind, it is possible to assign

at each point P a unit normal n in a continuous manner. On the surface shown in
Figure 18.5.1, there are two ways to do this. They are shown in Figure 18.5.2. But,
for the surface shown in Figure 18.4.3 (a Mobius band), it is impossible to make
such a choice. If you start with choice (1) and move the normal continuously along

Figure 18.5.2:

Figure 18.5.3:
the surface, by the time you return to the initial point on the surface at stage (9),
you have the opposite normal. A surface for which a continuous choice can be made
is called orientable or two-sided. Stokes’ theorem holds for orientable surfaces,
which include, for instance, any part of the surface of a convex body, such as a ball,
cube or cylinder. Follow the choices through

nine stages— there’s trou-
ble.

Consider an orientable surface S, bounded by a parameterized curve C so that
the curve is swept out in a definite direction. If the surface is flat or almost flat, we
can simply use the right-hand rule to choose n: The direction of n should match the
thumb of the right hand if the fingers curl in the direction of C and the thumb and
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palm are perpendicular to the tangent plane to the surface. Figure 18.5.4 illustrates
the choice of n. For instance, if C is counterclockwise in the xy plane, this definition
picks out the normal k, not −k.

Figure 18.5.4:Theorem 18.5.1. Stokes’ theorem. Let S be an orientable surface bounded by the
parameterized curve C. At each point of S let n be the unit normal chosen by the
right-hand rule. Let F be a vector field defined on some region in space including S.
Then ∮

C

F · dr =
∫
S

(∇× F) · n dS.

Some Applications of Stokes’ Theorem
Choosing a simpler surface

Stokes’ theorem enables us to replace
∫
∫ (∇ × F) · n dS by a similar integral over

a surface that might be simpler than S. That is the substance of the following
corollary of Stokes’ theorem.

Corollary 18.5.2. Let S∞ and S∈ be two surfaces bounded by the same curve C
and oriented so that they yield the same orientation on C. let F be a vector field
defined on both S∞ and S∈. Then∫

S∞

(∇× F) · n dS = intS∈(∇× F) · n dS

The two integrals are equal since both equal
∮
C F · dr.

EXAMPLE 1 Let F = xezi + (x+ xz)j + 3ezk and let S be the top half of the
sphere x2 + y2 + z2 = 1. Find

∫
S(∇ × F) · n dS, where n is the outward normal.

(See Figure 18.5.5.)

Figure 18.5.5:
SOLUTION By Corollary DOUG,∫

S

(∇× F) · n dS =
∫
S∗

(∇× F) · k dS,

where S∗ is the flat base of the hemisphere. (On S∗ note that k, not −k, is the
correct normal to use.)

A straightforward calculation shows that

∇× F = −xi + xezj + (z + 1)k,

hence (∇× F) · k = z + 1. On S∗, z = 0, so∫
S∗

(∇× F) · k dS =
∫
S∗

dS = π.

thus the original integral over S is π. �

Just as there is a two-curve version of Green’s theorem there is a two-curve
version of Stokes’ theorem.
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Corollary 18.5.3. OUG Stokes’ theorem (two-curve version). Let S be an ori-
entable surface whose boundary consists of the two closed curves C1 and C2. Give
C1 an orientation. Orient S consistent with the the right-hand rule, as applied to
C1. Give C2 the same orientation as C1. (If C2 is moved on S to C1, the orientation
agree.) Then ∮

C1

F · dr−
∮
C2

F · dr =
∫
S

(∇× F) · n dS.

Proof F
igure 18.5.6 shows the typical situation.

Figure 18.5.6:
We will obtain the corollary from Stokes’ theorem with the aid of the cancellation

principle. Introduce lines AB and CD on S, cutting S into two surfaces, S∗ and
S ∗ ∗. Now apply Stokes’ theorem to S∗ and S ∗ ∗. (See Figure 18.5.7.)

Figure 18.5.7:
Let C∗ be the curve that bounds S∗, oriented so that where it overlaps C1 it

has the same orientation as C1. Let C ∗ ∗ be the curve that bounds S ∗ ∗, again
oriented to match C1. (See Figure 18.5.7.)

By Stokes’ theorem, ∮
C∗

F · dr =
∫
S∗

(∇× F) · n dS (18.5.1)

and ∮
C∗∗

F · dr =
∫
S∗∗

(∇× F) · n dS. (18.5.2)

DOUG: where did we de-
fine “irrotational”Adding 18.5.1 and 18.5.2 and using the cancellation principle gives∮

C1

F · dr−
∮
C2

F · dr =
∫
S

(∇× F) · n dS.

•
In practice, Corollary ?? is applied when ∇× F = 0.

Corollary 18.5.4. Let F be a field such that ∇ × F = 0. Let C1 and C2 be two
closed curves that together bound an orientable surface S on which F is defined. If
C1 and C2 are similarly oriented, then∮

C1

F · dr =
∮
C2

F · dr.

Corollary ?? follow directly from Corollary ?? since
∫
S(∇× F) · n dS = 0.

EXAMPLE 2 Assume that F is irrotational and defined everywhere except on
the z axis. Given that

∮
C1

F · dr = 3, find (a)
∮
C2

F · d/vr and (b)
∮
C3

F · d/vr.
(See Figure 18.5.8.)

Figure 18.5.8:
SOLUTION (a) By Corollary ??,

∮
C2

F · dr =
∮
C1

F · dr = 3. (b) By Stokes’
theorem,

∮
C3

F · dr = 0. �
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Curl and Conservative Fields

In Sec. DOUG we learned that if F = P i + Qj is defined on a simply connected
region in the xy plane and if ∇× F = 0, the F is conservative. Now that we have
Stokes’ theorem, this result can be extended to a field F = P i +Qj +Rk defined on
a simply connected region in space.

A region in space is simply connected if each closed curve in the region can be
gradually shrunk to a point while remaining in the region. The entire xyz-space is
simply connected. So is the region that consists of all of space except a point or a
bounded a line segment or a ball. However, if we delete the z-axis, what remains is
not simply connected. (See Figure 18.5.9.)

Figure 18.5.9:

In the plane “simply connected” is the same thing as “no holes”; but in space
this is not true.

Theorem 18.5.5. Let F be defined on a simply connected region in space. If ∇×F =
0, the F is conservative.

Proof S
ketch of proof. Let C be a simple closed curve situated in the simply connected
region. To avoid topological complexities, we assume that it bounds an orientable
surface S. To show that

∮
C F · dr = 0, we use the same short argument as in Sec.

DOUG: ∮
C

F · dr =
∫
S

(∇× F) · n dS =
∫
S

0 dS = 0.

•
It follows from Theorem 18.5.5 that every central field F is conservative: A

straight-forward calculation shows that the curl of a central field is 0. Moreover, F
is defined either throughout space or everywhere except at the center of the field.

Exercise DOUG of Sec. DOUG prevents a purely geometric argument for why
a central field is conservative.

In Section DOUG we show how Stokes’ theorem is applied in the theory of
electromagnetism.

Why Curl is Called Curl

Let F be a vector field describing the flow of a fluid, as in Sec. DOUG. Stokes’
theorem will give a physical interpretation of ∇× F.

Figure 18.5.10:
Consider a fixed point P0 in space. Imagine a small circular disk S with center

P0. Let C be the boundary of S oriented in such a way that C and n fit the
right-hand rule. (See Figure 18.5.10)
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Now examine the two sides of the equation∫
S

(∇× F) · n dS =
∮
C

F ·T ds. (18.5.3)

The right side of Equation 18.5.3 measures the tendency of the fluid to move along
C (rather than, say, perpendicular to it.) Thus

∮
C F ·T ds might be thought of as

the “circulation” or “whirling tendency” of the fluid along C. For each tilt of the
small disk S at P0–or, equivalently, each choice of unit normal vector n –

∮
C F ·T ds

measures a corresponding circulation. It records the tendency of a paddle wheel at
P0 with axis along n to rotate. (See Figure 18.5.11.)

Figure 18.5.11:
Consider the left side of (18.5.3). If S is small, the integrand is almost constant

and the integral is approximately

(∇× F)P0 · n ·Area of S, (18.5.4)

where (∇× F)P0 denotes the curl of P0.
Keeping the center of S at P0, vary the vector n by tilting the disk S. For

which choice of n will (18.5.4) be largest? Answer: For that n which has the same
direction as the fixed vector (∇× F)P0 . With that choice of n, (18.5.4) becomes

‖(∇× F)P0‖Area of S.
The physical interpretation
of curlThus a paddle wheel placed in the fluid at P0 rotates most quickly when its axis

is in the direction of ∇×F at P0. The magnitude of ∇×F is a measure of how fast
the paddle wheel can rotate when placed at P0. Thus ∇× F records the direction
and magnitude of maximum circulation at a given point.

A vector Definition of Curl

In Sec. DOUG ∇× F was defined in terms of the partial derivatives of the compo-
nents of F. By Stokes’ theorem, ∇×F is related to the circulation,

∮
C vF · dr. We

exploit this relation to obtain a new view of ∇× F, free of coordinates.
Let P0 be a point in space and let n be a unit vector. Consider a small disk

Sn(a), perpendicular to n, whose center is P0, and which has a radius a. Let Cn(a)
be the boundary of Sn(a), oriented to be compatible with the right-hand rule. Then∫

Sn(a)

(∇× F) · n dS =
∮

Cn(a)

F · dr.

As in our discussion of the physical meaning of curl, we see that

(∇× F)P0 · n(Area ofS\(a)) ≈
∮
C\(a)

F · dr,

or

(∇× F)P0 · n ≈

∮
Cn(a) F · dr

Area ofS\(a)
.
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Thus

(∇× F)P0 · n = lim
a→0

∮
Cn(a) F · dr

Area ofS\(a)
. (18.5.5)

Equation 18.5.5 gives meaning to the component of (∇× F)P0 in any direction
n. So the magnitude and direction of ∇× F at P0 can be described in terms of F,
without looking at the components of F.

The magnitude of (∇× F)P0 is the maximum value of

lim
a→0

∮
Cn(a) F · dr

Area ofS\(a)
, (18.5.6)

for all unit vectors n.
The direction of (∇ × F)P0 is given by the vector n that maximizes Equa-
tion 18.5.6.

EXAMPLE 3 Let F be a vector field such that at the origin ∇×F = 2i+4j+4k.
Estimate

∮
C F · dr if C encloses a disk of radius 0.01 in the xy plane with center

(0, 0, 0). C is swept out clockwise. (See Figure 18.5.12.)

Figure 18.5.12:
SOLUTION Let S be the disk whose border is C. Choose the normal to S that
is consistent with the orientation of C and the right-hand rule. That choice is −k.
Thus

(∇× F) · (−k) ≈
∮
C F · dr

Area ofS
.

The area of S is π(0.01)2 and ∇× F = 2i + 3j + 4k. Thus

(2i + 3j + 4k) · (−k) ≈
∮
C F · dr
π(0.01)2

.

¿From this it follows that ∮
C

F · dr ≈ −4π(0.01)2.

�

In a letter to the mathematician Tait written on November 7, 1870, Maxwell
offered some names for ∇× F:
Here are some rough-hewn names. Will you like a good Divinity shape their
ends property so as to make them stick? . . .
The vector part [∇× F] I would call the twist of the vector function. Here
the work twist has nothing to do with a screw or helix. The word turn
. . . would be better than twist, for twist suggests a screw. Twirl is free from
the screw motion and is sufficiently racy. Perhaps it is too dynamical for pure
mathematicians, so for Cayley’s sake I might say Curl (after the fashion of
Scroll.)
His last suggestion, “curl,” has stuck.
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Proof of Stokes’ Theorem

The proof uses Green’s theorem, the normal to a surface z = f(x, y), and expressing
an integral over a surface to an integral over its shadow on a plane. The approach
is straightforward. As usual, we begin by expressing the theorem in terms of com-
ponents. We will assume that the surface S meets each line parallel to all axes in
at most all points That permits us to project S onto each coordinate plane in an
one-one fashion.

To begin we write F9x, y, z) as P (x, y, z)i +Q(x, y, z)j +R(x, u, z)k, or, simply
F = P i +Qj + rk. We will project S onto the xy-plane, so write the equation for S
as z − f(x, y) = 0. A unit normal to S is

n =
−∂f
∂x i− ∂f

∂y j + k√
∂f
∂x

2
+ ∂f

∂y

2
+ 1

.

Let C∗ be the projection of C on the xy plane, swept out counterclockwise.
(Since the k component of n is positive, it is the correct normal, given by the
right-hand rule.)

A straightforward computation shows that Stokes’ theorem, expressed in com-
ponents, reads

∫
C

P dx+Q dy+R dz =
∫
S

[
(
∂R
∂x −

∂Q
∂z

)(
−∂f
∂x

)
−
(
∂R
∂x −

∂P
∂z

) (
−∂f
∂y

)
+
(
∂Q
∂x −

∂P
∂y

)
(1)√(

∂f
∂x

)2
+
(
∂f
∂y

)2
+ 1

dS.

As expected, this equation reduces to these three equations, on P , on Q and on
R.

We will establish the area on P , namely∫
C

P dx =
∫
S

[∂P∂z (−∂f
∂y )− frac∂P∂y(1)√

(∂f∂x
2
) + (∂f∂y )2 + 1

. (18.5.7)

To change the integral over S to an integral over its projection on the xy-plane,
we replace dS by

√
(∂f/∂x)2 + (∂f/∂y)2 + 1, changes the same time we project

C out a counterclockwise curve C∗. The square roots cancel leaving us with this
equation in the xy-plane.∫

C∗

P (x, y, f(x, y)) ds =
∫
R

(
−∂P
∂z

∂f

∂y
− ∂P

∂y

)
dA. (18.5.8)

Finally, we apply Green’s theorem to the left side of (18.5.8). It asserts that∫
C∗

P (x, y, f(x, y)) ds =
∫
R

−∂P (x, y, f(x, y))
∂y

dA.
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But
∂P (x, y, f(x, y))

∂y
=
∂p

∂y
+
∂P

∂z

∂f

∂y
. (18.5.9)

Combining (??) and (??) completes the proof.
In this proof we assumed that the surface S has a special form, meeting lines

parallel to an axis just once. However, more general surfaces, such as the surface
of a sphere or a polyhedron can be cut into pieces treated in the proof. Exercise
DOUG shows why this observation then implies that Stokes theorem hold in these
cases also.

NOTE TO DOUG: In V DOUG the “cancellation principle” I deleted it.

Summary

Stokes’ theorem relates the circulation of a vector field over a closed curve C to
the integral over a surface S that C bounds. The integrand over the surface is the
component of the curl of the field perpendicular to the surface,∫

C

F · dr =
∫
S

9∇× F) · n dS.

The normal n is the area given by the right-hand rule.
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EXERCISES for 18.5 Key: R–routine, M–moderate, C–challenging

DOUG: Too many xrcs’s. Some repetition? Some go to Chapter Summary?
1.[C] Draw a picture showing S, C, S∗, C∗, and n with proof of Stokes’ theorem.

2.[C] Carry out the calculations that yield the component form of Stokes’ theo-
rem.

3.[C] We dealt only with the component P . What is the analog of DOUG for Q?
Prove it. (Hint: the steps would parallel the steps used for P .

4.[R] State Stokes’ theorem (symbols permitted).

5.[R] State Stokes’ theorem in words (symbols not permitted).

6.[M] Explain why DOUG holds if S∞ and S∈ together form the boundary surface
S of a solid region R. Use the divergence theorem, not Stokes’ theorem.

7.[R] Let F (r) be an antiderivative of f(r). Show that f(r)r
r is the gradient of

F (r), hence is conservative.

8.[M] Show that a central field f(r)r/r is conservative by showing that it is
irrotational and defined on a simply connected region. Suggestion: express r and r
in terms of x, y and z.

9.[R]

(a) Using the fact that a gradient, ∇f , is conservative, show that the curl of a
gradient is 0.

(b) Compute ∇×∇f in terms of components to show that the curl of a gradient
is 0.

10.[C]

Sam: The only conservative field in space that I know are the “inverse square central
fields” with centers anywhere I please.

Jane: There are a lot more.

Sam: Oh?

Jane: Just start with any scalar function f(x, y, z) with continuous partial deriva-
tion of the first and second orders. Then its gradient will be a conservative
field.
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Sam: O.K. But I bet there are still more.

Jane: No. I got them all.

Question: Who is right?

Exercises 11 to 13 concern the proof of Stokes’ theorem.
11.[C] Carry out the calculations in the proof that translated Stokes’ theorem

into an equation involving the components P , Q, and R.

12.[C] In the proof of Stokes’ theorem we used a normal n. Show that it is the
“correct” one, compatible with counterclockwise orientation of C∗.

13.[C] Draw a picture of S, S∗, C and C∗ that appear in the proof.

Intro to Exercises
14.[M] Assume that G is the curl of another vector field F, G = ∇× F. Let S

be a surface that bounds a solid region V . Let C be a closed curve as the surface S
breaking S into two pieces S∞ and S∈.

15.[M] Using the divergence theorem, show that
∫
SG · n dS = 0.

16.[M] Using Stokes’ theorem, show that
∫
SG · n dS = 0. Hint: Break the

integral into integrals over S∞ and S∈.

17.[R] Let F = exyi + tan 3yzj + 5zk and S be the tetrahedron whose vertices
are (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Let S∞ be the base of S and S∈ consist
of the other three faces. Find

∫
S(∇ × F) · n dS. Hint: think about the preceding

two exercises.

18.[R] Assume that F is defined everywhere except on the z axis and is irrota-
tional. What, it anything, can be said about∮

C1

F · dr, ,

∮
C2

F · dr,
∮
C3

F · dr, and
∮
C4

F · dr,

where the curves are shown in Figure 18.5.13?

Figure 18.5.13:

In Exercises 19 to 22 verify Stokes’ theorem for the given F and surface S.
19.[R] F = xy2i + y3j + y2zk; S is the top half of the sphere x2 + y2 + z2 = 1.
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20.[R] F = yi + xzj + x2k; S is the triangle with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

21.[R] F = y5i+x3j+z4k; S is the portion of z = x2+y2 below the plane z = 1.

22.[R] F = −yi + xj + zk, S is the portion of the cylinder z = x2 inside the
cylinder x2 + y2 = 4.

23.[R] Evaluate as simply as possible
∫
S F · n dS, where F(x, y, z) = xi− yj and

S is the surface of the cube bounded by the three coordinate planes and the planes
x = 1, y = 1, z = 1, exclusive of the surface in the plane x = 1. (Let n be outward
from the cube.)

24.[R] Using Stokes’ theorem, evaluate
∫
S(∇× F) · n dS, where F = (x2 + y −

4)i + 3xyj + (2xz+ z2)k, and S is the portion of the surface z = 4− (x2 + y2) above
the xy plane. (Let n be the upward normal.)

In each of Exercises 25 to 28 use Stokes’ theorem to evaluate
∮
C F · dr for the

given F and C. In each case assume that C is oriented counterclockwise when viewed
from above.

25.[R] F = sinxyi; C is the intersection of the plane x + y + z = 1 and the
cylinder x2 + y2 = 1.

26.[R] F = exj; C is the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 4).

27.[R] F = xyk; C is the intersection of the plane z = y with the cylinder
x2 − 2x+ y2 = 0.

28.[R] F = cos(x+ z)j; C is the boundary of the rectangle with vertices (1, 0, 0),
(1, 1, 1), (0, 1, 1), and (0, 0, 0).

29.[R] Let S∞ be the top half and S∈ the bottom half of a sphere of radius a in
space. Let F be a vector field defined on the sphere and let n denote an exterior
normal to the sphere. What relation, if any, is there between

∫
S∞(∇×F) ·n dS and∫

S∈(∇× F) · n dS?

30.[R] Let F be a vector field throughout space such that F(P ) is perpendicular
to the curve C at each point P on C, the boundary of a surface S. What can one
conclude about ∫

S

(∇× F) · n dS?
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31.[R] Let C1 and C2 be two closed curves in the xy plane that encircle the origin
and are similarly oriented, as in Figure 18.5.14. Let F be a vector field defined

Figure 18.5.14:

throughout the plane except at the origin. Assume that ∇× F = 0.

(a) Must
∮
C = F dr = 0?

(b) What, it any, relation exists between
∮
C1

F · dr and
∮
C2

F · dr?

32.[R] Let F be defined everywhere in space except on the z axis. Assume also
that F is irrotational,

∮
C1

F · dr = 3, and
∮
C2

F · dr = 5. (See Figure 18.5.15.)
What if, anything, can be said about

(a)
∮
C3

F · dr,

(b)
∮
C4

F · dr?

Figure 18.5.15:

33.[R] Which of the following sets are connected? simply connected?

(a) A circle (x2 + y2 = 1)

(b) A disk (x2 + y2 ≤ 1)

(c) The xy plane from which a circle is removed

(d) The xy plane from which a disk is removed

(e) The xy plane from which one point is removed

(f) xyz space from which one point is removed

(g) xyz space from which a sphere is removed

(h) xyz space from which a ball is removed

(i) A solid torus (doughnut)

(j) xyz space from which a solid torus is removed

(k) A coffee cup with one handle
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34.[R] Which central fields have curl 0?

35.[R] Let V be the solid bounded by z = x+ 2, x2 + y2 = 1, and z = 0. Let S∞
be the portion of the plane z = x+2 that lies within the cylinder x2 +y2 = 1. Let C
be the boundary of S∞, with a counterclockwise orientation (as viewed from above.
Let F = yi + xzj + (x+ 2y)k. Use Stokes’ theorem for S∞ to evaluate

∮
C F · dr.

36.[R] (See Exercise 35.) Let S∈ be the curved surface of V together with the
base of V. Use Stokes’ theorem for S∈ to evaluate

∮
C F · dr.

37.[R] Verify Stokes’ theorem for the special case when F has the form ∇f , that
is, is a gradient field.

38.[R] Let F be a vector field defined on the surface S of a convex solid. Show
that

∫
S(∇× F) · n dS = 0

(a) by the divergence theorem,

(b) by drawing a closed curve on C on S and using Stokes’ theorem on the two
parts into which C divides S.

39.[R] Evaluate
∮
C F dr as simply as possible if F(x, y, z) = −yi/(x2 + y2) +

xj/(x2 + y2) and C is the intersection of the plane z = 2x+ 2y and the paraboloid
z = 2x2 + 3y2 oriented counterclockwise as viewed from above.

40.[R] Let F9x, y) be a vector filed defined everywhere in the plane except at the
origin. Assume that ∇×F = 0. Let C1 be the circle x2 + y2 = 1 counterclockwise;
let C2 be the circle x2 + y2 = 4 clockwise; let C3 be the circle (x − 2)2 + y2 = 1
counterclockwise; let C4 be the circle(x − 12

) + y2 = 9 clockwise. Assuming that∮
C1

F · dr is 5, evaluate

(a)
∮
C2

F · dr

(b)
∮
C3

F · dr

(c)
∮
C4

F · dr.

41.[M] Let F(x, y, z) = r/‖r‖a, where r = i+uj+zk and a is a fixed real number.
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(a) Show that ∇× F = 0.

(b) Show that F is conservative.

(c) Exhibit a scalar function f such that F = ∇f .

42.[M] Let F be defined throughout space and have continuous divergence and
curl.

(a) For which F is
∫
S F · n dS = 0 for all spheres S?

(b) For which F is
∫
C F · dr = 0 for all circles C?

(c) If
∫
C F · dr = 0 for all circles C, must

∫
C F · dr = 0 for all closed curves?

43.[M] Let C be the curve formed by the intersection of the plane z = x and the
paraboloid z = x2 + y2. Orient C to be counterclockwise when viewed from above.
Evaluate

∮
C(xyz dx+ x2 dy + xz dz).

44.[M] Assume that Stokes’ theorem is true for triangles. Deduce that it then
holds for the surface S in Figure 18.5.16, consisting of the three triangles DAB,
DBC, DCA, and the curve ABCA.

Figure 18.5.16:

45.[C] A Möbius band can be made by making a half-twist in a narrow rectangular
strip, bringing the two ends together, and fastening them with glue or tape. See
Figure 18.5.17.

Figure 18.5.17:

(a) Make a Möbius band.

(b) Letting a pencil represent a normal n to the band, check that the Möbius
band is not orientable.

(c) If you form a band by first putting in a full twist (360◦), is it orientable?

(d) What happens when you cut the bands in (b) and (c) down the middle? on
third of the way from one edge to the other?
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46.[C]

(a) Explain why the line integral of a central vector field around the path in
Figure 18.5.18 is 0.

(b) Deduce from (a) and the coordinate-free view of curl that the curl of a central
fields is 0.

Figure 18.5.18:

47.[C]

(a) The proof of Stokes’ theorem we gvae would not apply to surfaces that are
more complicated, such as the ‘top three fourths of a sphere,” as shown in
Figure 18.5.19. However, how called you cut S into pieces to each of which

Figure 18.5.19:

the proof applies? (Describe then in general terms, in words.)

(b) How could you use (a) to show that Stokes’ theorem hold for C and S in
Figure 18.5.19

November 3, 2008 Calculus 1312



The Theorems of Green, Stokes, and Gauss § 18.6

18.6 Central Fields

DOUG: Should we switch the order of this and Stokes? (It refers to Stokes’ !)
A special but important type of vector field appear in the study of gravity or the

attraction or repulsion of electric charges. It is “central fields” that radiates from
a point mass or point charge. Physicists invented these fields in order to avoid the
mystery of “action at a distance.” One particle acts on another directly, through
the vector field it creates. This comforts students of gravitation of electromagnetism
by glossing over the riddle of how an object can act upon and then without DOUG
I CAN’T READ THE REST.

Central Fields

A central field is a continuous vector field defined everywhere in the plane (or in
space) except, perhaps, at a point 0, with these two properties:

1. Each vector points towards (or away from) 0.

2. The magnitudes of all vectors at a given distance from 0 are equal.

0 is call the center of the field. A central field is also called “radially symmetric.”
There are various ways to think of a central vector field. For such a field in the plane,
the vector at point on a circle with center 0 are perpendicular to the circle and have
the same length, as shown in Figure 18.6.1.

Figure 18.6.1:

The same holds for central vector fields in space, with “circle” replace by “sphere.”
The formula for a central vector field has a particularly simple form. Let the

field be F and P any point other than 0. Then there is a scalar function f , defined
for all positive numbers, such that

F(P ) = f(|
−−→
OP |)

−−→
OP

|
−−→
OP |

.

Here,
−−→
OP/|

−−→
OP | is a unit vector parallel to the radius vector

−−→
OP . The magnitude

of F(P ) is |f(|
−−→
OP |)|. If f(|

−−→
OP |) is positive, F(P ) points away from 0. If f(|

−−→
OP |) is

negative, F(P ) points toward 0.

Central Vector Fields in the Plane

Using polar coordinates with pole placed at the point 0, we may express a central
field in the form

F(r) = f(r)r̂,

where r = |r| and r̂ = r/r. The magnitude of F(r) is |f(r)|.
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We already met such a field in Section DOUG in the study of line integrals.
That was the case, f(r) = 1/r, the “field varied as the inverse first power.” The
line integral for the normal component of this field along a curve gives the number
of radians the curve subtends.

F(r) = 1
r r̂ can also be written

F(r) =
r
r2
. (18.6.1)

When glancing too quickly at (18.6.1), you might think its magnitude is inversely
proportional to the square of r. However, the magnitude of the vector r in the DOUG
is r; the magnitude of r/r2 is DOUG the reciprocal of the first power of r.

EXAMPLE 1 Evaluate the flux
∮
C F · n ds for the central field F(x, y) = f(r)r̂,

where r = xi + yj over the closed curve shown in Figure 18.6.2.

Figure 18.6.2:

We have a < b and the path goes from A = (a, 0) to B = (b, 0) to C = (0, b), to
D = (0, a) and ends at A = (a, 0).
SOLUTION On the parts from A to B and from C to D F is perpendicular to the
exterior normal n, so F · n = 0, and these integrals DOUG nothing to the integral.
On BC, F equals f(b)r̂. there r̂ = n, so F · n = f(b) since r · n = 1. Thus

C∫
B

F · n ds =

C∫
B

f(b) ds = f(b)

C∫
B

ds = f(b)(
1
4

)(2πb) =
πb

2
f(b)

On the arc DC, r̂ = −n. A similar calculation shows that

C∫
D

π · n ds = −π
2
af(a).

Hence ∮
C

F · n ds = 0 +
π

2
bf(b) + 0− π

2
af(a)

=
π

2
(bf(b)− af(a)).

�

In order for a central field f(r)r̂ to have zero flux around all paths of the special
type shown in DOUG, we must have

f(b)b− f(a)a = 0,
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for all positive a and B. In particular,

f(b)b− f(1)1 = 0

or
f(b) =

f(1)
b
.

Thus f(r) must be inversely DOUG to r, that is, there is a constant C such that

f(r) =
c

r
.

If f(r) is not of the form c/r, the vector field F(x, y) = f(r)r̂ does not have zero
flux across these paths. In Exercise 2 you may compute ∇ · ((c/r)r̂) and show that
it is zero.

The only central vector field with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the dis-
tance from the origin.

We underline “in the plane,” because in space only central fields with flux across
closed surfaces a magnitude inversely proportional to the square of the distance, as
we will see in a moment.

Knowing that the central field Fr̂/r has zero divergence enables us to evaluate
easily line integrals of the form

∮
C
br cdotdn

r ds, as the next example shows.

EXAMPLE 2 Let F(r) = r̂/r. Evaluate
∮
C F ·n ds where C is the counterclock-

wise circle of radius 1 and center (2, 0), as shown in Figure 18.6.3.

Figure 18.6.3:

SOLUTION The field F has 0-diveregence throughout C and the region R that C
bounds. By Green’s theorem, the integral also equals the integral of the divergence
over R: ∮

C

F · n ds =
∫
R

∇ · F dA. (18.6.2)

Since the divergence of F is 0, throughout R, the integral on the right side of (18.6.2)
is 0. Therefore

∮
C F · n ds = 0. �

The next example involves a curve that surrounds a point where the vector field
F = r̂/r is not defined.

EXAMPLE 3 Let C be a simple closed curve enclosing the origin. Evaluate∮
F · n ds, where F = r̂/r.

SOLUTION Figure 18.6.4 shows C and a small circle D centered at the origin and
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Figure 18.6.4:

situated in the region that C bounds. Without a formula describing C, we could
not compute

∮
C F ·n ds directly. However, since the divergence of F is 0 throughout

the region bounded by C and D, we have, by DOUG in Section DOUG.∮
C

F · n ds =
∮
D

F · n ds. (18.6.3)

The integral on the right-hand side of (18.6.3) is easy to compute directly. To do
so, let the radius of D be a. Then for points P on D, F(P ) = r̂/a. Now, r̂ and n
all the same unit vector. So r̂ · n = 1. Thus∮

D

F · n ds =
∮
D

r · n
a

ds =
∫
D

1
a
ds =

1
a

2πa = 2π.

Hence
∮
C F · n ds = 2π. �

Central Fields in Space

A central field in space with center at the origin has the form F(x, y, z) = f(r)−→r ,
where r = xi + yj + zk, and P = |r| =

√
x2 + y2 + z2. We show that if the flux of F

over any surface bounding certain special regions is zero then f(r) must be inversely
proportional to the square of r. Compare to DOUG in the

plane.Consider the surface S shown in Figure 18.6.5. It consists of an octant of two
DOUG spheres, are of radius 2, the other of radius b, a, b, together with the DOUG
surfaces on the coordinate planes.

Figure 18.6.5:

Let R be the region that surface S bounds. On its three flat sides F is perpen-
dicular to the exterior normal. On the outer sphere F(x, y, z) · n = f(f). On the
inner sphere F(x, y, z) · n = −f(b). Thus∮

S

F · n dS = f(b)(
1
8

)(4πb2)− f(a)(
1
8

)4πa2

=
π

2
(f(b)b2 − f(a)a2).

Recall the surface area of a
sphere of radius r is 4πr2.Since this is to be 0 for all positive a and b, it follows that there is a constant

C, such that
f(r) =

c

r2
.
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The magnitude must be proportional to the “inverse square.”
As we will see in Sec. DOUG the flux of an inverse-square central fields, cr̂/r2,

across any closed surface that bounds a region which does not contain the origin is
zero.

A Geometric Application

As we will see later in this chapter this “inverse square” central field is at the heart
of gravitational theory and electrostatics. Now we show how it is used in geometry,
a result we will apply both in these fields.

In Sec. DOUG we showed how radian measure could be expressed in term of
the line integral

∫
C(r̂/r) · n ds, that is, in terms of the line field whose magnitude

is inversely proportional to the first power of the distance from the center. That
was based on circular arcs in a plane. Now we move up one dimension and consider
patches on surfaces of spheres, which will help us measure solid angles.

Let O be a point and S a surface such that each ray from O meets S in at most
one point. Let S∗ be the unit sphere with center at O. The rays from O that meet
S intersect S∗ in a set that we call A, as shown in Figure 18.6.6. Let the area of A
be A. The solid angle subtended by S at O is said to have a measure of A steradians
(from stereo, the Greek word for space, and radians). For instance, a closed surface
S that encloses O subtends a solid angle of 4π steradians, because the area of the
unit sphere is 4π.

Figure 18.6.6:EXAMPLE 4 Let S be part of the surface of a sphere of radius a, Sa, whose
center is O. Find the angel subtended by S at O. (See Figure 18.6.7.)

Figure 18.6.7:
SOLUTION The entire sphere S subtends an angle of 4π steradians and has an
area 4πa2. We therefore have the propotion

AngleSsubtends
AngleSasubtends

=
Area ofS
Area ofSa

,

or
AngleSsubtends

4π
=

Area ofS
4πa2

.

Hence
AngleSsubtends =

Area ofS
a∈

steradians.

�

EXAMPLE 5 Let S be a surface such that each ray from the point O meets S
in at most one point. Find an integral that represents in steradians the solid angle
that S subtends at O.
SOLUTION Consider a very small patch of S. Call it dS and let its area be dS.

Figure 18.6.8:
If we can estimate the angle that this patch subtends at O, then we will have the
local approximation that will tell us what integral represents the total solid angle
subtended by S.
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Let n be a unit normal at a point in the patch, which we regard as essentially flat,
as in Figure 18.6.8. Let dA be the projection of the path dS on a plane perpendicular
to r, as shown in Figure 18.6.8. The area of dA is approximately dA, where

dA = n · r̂ dS.

Now, dS and dA subtend approximately the same sold angle, which according
to Example 4 is about

dA

‖r‖2
=

n · r̂
‖r‖2

dSsteradians.

Consequently S subtends a sold angle of∫
S

n · r̂
‖r‖2

dSsteradians.

�

We will make use of this important application of steradian measure of solid
angles.

Let O be a point in the region bounded by the closed surface S. Assume
each ray from O meets S in exactly one point, and let r denote the position
vector from O to that point. Then∫

S

r̂ · n
r2

dS = 4π. (18.6.4)

Incidentally, (18.6.4) is easy to establish when S is a sphere of radius a and
center at 0. In that case r̂ = n, so r̂ · n = 1. Also, r = a. Then (18.6.4) becomes∫
S(1/a2) dS = (1/a2)4πa2 = 4π. However, it is obvious that (18.6.4) hold for more

generally, for instance S is a sphere and O is not its center, or when S is not a
sphere.

EXAMPLE 6 Let S be the cube of side 2 bounded by the six planes x = ±1,
y = ±1, z = ±1, shown in Figure 18.6.9. Find

∮ br·n
r2

dS, where S is one of the six
faces of the cube.

Figure 18.6.9:
SOLUTION Each of the six faces subtends the same solid angle at the origin.
Since the entire surface subtends 4π steradians, each face subtends 4π/6 = 2π/3
steradians. Then the flux over each face is∫

S

r̂ · n
r2

dS =
2π
3
.

�

DOUG: We should have cos(A,B) defined in Vec. algebra.
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In physics books you will see the integral
∫
S
br·n
r2

ds written as
∫
S
br·n
r3

dS,∫
S
br·−→dS
r2

or
∫
S
br·−→dS
r3

,
∫
S

cos(r,n)
r2

dS. The symbol
−→
dS is short for n dS, and calls

to mind Figure 18.6.10, which shows a small patch on the surface, together
with an exterior normal unit vector.

Figure 18.6.10:

Summary

We investigated central vector fields. In the plane the only central field with diver-
gence O are of the form kr̂/r where k is a constant, “an inverse first power.” In
space the only central fields with divergence 0 are of the form kr̂/r2, “an inverse
second power.” This field can be used to express the size of a sold angle in steradians
as an integral,

∫
S r̂ ·n ds/r2. In particular, it S encloses the center of the field, then∫

S r̂ · n ds/r2 = 4π.
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EXERCISES for 18.6 Key: R–routine, M–moderate, C–challenging

1.[R] Define a central field in words, using no symbols.

2.[R] Define a central field with center at 0, in symbols.

3.[R] Give an example of a central field in the plane that

(a) does not have zero divergence,

(b) that does.

4.[R] Give an example of a central field in space that

(a) does not have zero divergence,

(b) that does

5.[C] Carry out the computation to show that the only central fields in space
that have zero divergence have the form F(r) = kr̂/r2, if the origin of coordinates
is at the center of the field.

6.[M] In Example DOUG the integral
∮
r̂ ·n/r ds turned out to be 0. How would

you explain this geometrically in terms of subtended angles?

7.[R] Show that the curl of a central vector field in the plane is 0.

8.[R] Show that the curl of a central vector field in spce is 0.

9.[R] Let F(r) = r̂/r. Evaluate
∮
C F ·n ds as simply as you can for the 2 ellipses

in Figure 18.6.11.

Figure 18.6.11:

10.[R] Figure 18.6.12 shows a cube of side 2 with one corner at the origin.
Evaluate as easily as you can the integral of the function r̂ · n/r2 over

(a) the square EFGH,

(b) the square ABCD,

(c) the entire surface of the cube.
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Figure 18.6.12:

11.[C] If we DOUG in four-dimensional space instead of the plane or three-
dimensional space, which central fields do you think would have zero divergence?
Carry out the calculation to confirm your conjecture.

12.[M] Let F and G be central vector fields with different centers but whose
magnitudes are the inverse property to the plane in the inverse first power.

(a) Show that the vector field F and G is not a central field.

(b) Show that the divergence of F adn G is 0.

13.[M] In Example DOUG, we evaluated a surface integral by integrating it in
terms of the size of a subtended solid angle. Evaluate the integral directly, without
that knowledge.

14.[M] Let S be the triangle whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1). Evalu-
ate

∫
S
br·n
r2

ds by using steradians.

15.[M] Evaluate the integral in Exercise 17-6ex-1 directly (DOUG check that this
is a reasonable integral.)

DOUG: Some review derivatives (use integral table to get messy f with single
f ′) Throughout the final chapters. Some integral review. MAX MIN

16.[R] Let F(r) = r̂/r3. Evaluate the flux of F over the sphere of radius 2 and
center at the origin.

17.[R] Let F = r̂/r2 and S be the surface of the lopsided pyramid with square
base, whose vertices are (0, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1).

(a) Sketch the pyramid.

(b) What is the integral of F · n over the square base?

(c) What is the integral of F · n over each of the remaining four faces?

(d) Evaluate
∮
S F · n ds.
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Examples of derivatives: NOTE TO DOUG: More and in other sections, too.
lift from integral table

18.[R] Show that the derivative of 1
3 tan3 x− tanx+ x is tan4 x.

19.[R] Use integration by parts to show that∫
tann x dx =

tann−1 x

n− 1
−
∫

tann−2 x dx.

20.[R] Show that x cos−1−
√

1− x2 is an integral of cos−1 x (etc.)

21.[R] Find
∫
xeax dx.

22.[R]

(a) Use integration by parts to show that∫
xmeax dx =

xmeax

a
− m

a

∫
xm−1eax dx.

(b) Establish the equation in (a) by differentiating the right hand side.

23.[R] Let F(x, y, z) = xi+yj+0k
x2+y2

, a vector field in space.

(a) What is the domain of F?

(b) Sketch F(1, 1, 0) and F(1, 1, 2) with tails at the given points.

(c) Show F is not a central field.

(d) Show its divergence is 0.

24.[C] Let C be the circle x2 + y2 = 2 in the xy plane. For each point Q in the
disk bounded by C consider the central field with center Q, F(P ) =

−−→
PQ/|PQ|2. Its

magnitude is inversely proportional to the first power of the distance DOUG from
Q. For each point Q consider the flux across C, by the associated central field,∫
|
−−→
QP |/|

−−→
QP |2 ds.

(a) Evaluate directly the flux when Q is the origin (0, 0).

(b) If Q is not the origin, evaluate the flux of the associated central field.

(c) Evaluate the flux when Q lies in C.
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25.[C] Let F the central field in the plane, with center at (1, 0) and with magnitude
inversely proportional to the first power of the distance, F(x, y) = (x−1)i+yj

|(x−1)i+yj|2 . Let
C be the circle gradient with center at (0, 0).

(a) By thinking in terms of subtended angle, evaluate the flux
∮

F · n ds.

(b) Evaluate the flux by carrying out the integration.

26.[R] Let F(x, y) be an inverse-first-power central field in the plane F(x, y) =
cr̂/r, where r = si + yj. Compute the divergence of F which should turn out to be
0. Suggestion: First write F(x, y) as cxi+cyj

x2+y2
.

27.[R] A pyramid is made of four congruent equilateral triangles. Find the number
of steradians subtended by one face at the centroid of the pyramid. (No integration
is necessary.)

28.[R] How many steradians does one face of a cube subtend at

(a) One of the four vertices not on the face?

(b) The center of the cube? (No integration is necessary.)

29.[C] This exercise gives a geometric way to see why a central force is conser-
vative. Let F(x, y) = f(r)r̂. Figure 18.6.13 show F(x, y) and a short vector

−→
dr and

two circles.

Figure 18.6.13:

(a) Why is F(x, y) · dr approximately f(r) dr, where dr is the difference in the
radii of the two circles.

(b) Let C be a curve from A to B, where A = (a, α) and B = (b, β) in polar
coordinates. Why is

∫
C F · dr =

∫ b
a f(r) dr?

(c) Why is F conservative?

30.[M] Let F be a planar central field. Show that ∇× F is 0. (Hint: F(x, y) =
g(
√
x2+y2)(xi+yj)√

x2+y2
for some scalar function g.
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31.[M] (This continues DOUG.) Show that F is a gradient field; to be specific
F = ∇g(

√
x2 + y2).

32.[M] By a direct computation, show that the divergence of F(x, y) = r̂/rn,
when r = xi + yj, is (1− n)/rn+1.

33.[M] By a direct computation, show that the divergence F(x, y, z) = r̂/rn,
when r = xi + yj + 2k, is (2− n)/rn+1.
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18.7 Applying the Field r
‖r‖2

Even if you are not an engineer or physicist, as someone living in the 21st century,
you are surrounded by devises that depends on electricity. For that reason, we now
introduce one of the four equations that explain all of the phenomena of electricity
and magnetism. Later in the chapter we will turn to the other three equations,
all of which are expressed in terms of vector fields. The chapter concludes with a
detailed description of how James Clerk Maxwell, using just these four equations,
predicted both the existence of radio waves and also that they travel with the speed
of light. Everyone who uses a cell phone, watches TV, or microwaves dinner may be
interested in how he did it. Our explanation does not assume any prior knowledge
of physics.

The Electric Field Due To a Single Charge

The starting point is some assumptions about the fundamental electrical charges,
electrons and protons. An electron has a negative charge and a proton has a positive
charge of equal absolute value. Two like charges exert a force of repulse on each
other. The opposite charges attract each other (just as the tow genders in daily life
generally do.)

The force that charge q exert a charge q0 is proportional to q and to q0, hence
proportional to the product qq0. The force is also inversely proportional to the
square of the distance separately q and q0.

Let r be the vector from q to q), as in Figure 18.7.1.

Figure 18.7.1:

If q and q0 are both protons or both electrons, the force pushes the charges
further apart. If one is a proton and the other is an electron, the force draws them
closer.

Assume that q is positive, that is, the charge of a proton. The magnitude force it
exerts on charge q0 is proportional to q and also proportional to q0. It is also inversely
proportional to the distance r = |r̂| that separates them. So the magnitude of the
force is of the form

k
q q0

r2
.

It is directed along the vector r. If q0 is also positive, it is in the same direction as
r. If q0 is negative, it is in the direction of −r. We can summarize these observations
in one vector equation

F = k
q q0

r2
r. (18.7.1)

The constant k is positive.
For convenience in later calculations, k is replaced by 1/4πε0 (ε0 = “epsilon zero”

or ”epsilon niel”.) The value of ε0 depends on the units in which charge, distance
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and force are measured. Then (18.7.1) is written

F =
q q0

4πε0r2
r.

To avoid thinking in terms of the mysterious “action at a distance,” where a
force is exerted without the aid of ropes or springs, physicists have invented the a
vector field, takes on the role of ropes and springs. This is how they do it.

Consider a positive charge q at point C.
It “creates” a central inverse-square vector field E with center at C. It is defined

everywhere except at C. Its value at a typical point P is

E(P ) =
q r̂

4πε0r2

where −→r =
−−→
CP , as in Figure 18.7.2.

Figure 18.7.2:

The value of E depends only on q and the vector from C to P .
To find the force exerted by charge q on charge q0 at P just DOUG E by q0,

obtaining
F = q0E (18.7.2)

The field E, which is a sheer invention, can be calculated in principle by putting
a charge q0 at P , the DOUG force F and then divides F by q0.

The Electric Field Due to a Distribution of Charge

Electrons and protons usually do not live in isolation. Instead, charge may be
distributed on a line, a curve, a surface or in space.

Imagine a total charge Q occupying a region R in space. The density of the
charge varies from point to point. Denote the density at P by S(P ). Like the
density of mass it is defined as a limit as follows. Let V (r) be a small ball of radius
r and center at P . Let Q(r) be the charge in that ball. Then we have the definition

S(P ) = lim
r→)

charge inV (r)
volume ofV (r)

.

The the charge in V (r) is approximately the volume of V (r) times S(P ). We
will be interested only in uniform charges, where the density is constant, with the
fixed value S. Thus the charge in a region of volume V is SV .

The field due to a uniform charge Q distributed in a region R is the sum of the
fields due to the individual point charges in Q.

To estimate this field we partition R into small regions R1 R2, . . . Rn and choose
a point Pi in Ri , i = 1, 2 . . . , n. The volume of Ri is Vi. The charge in Ri us SVi,
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Figure 18.7.3:

where S is the density of the charge. Figure 18.7.3 shows this contribution to the
values of the field at a point P .

Let ri be the vector from Pi to P . Let ri = |ri|. Then the field due to the charge
in this small patch Ri is approximately

SVi r̂i
4πε0 ri

.

As an estimate of the field due to Q, we have the sum

n∑
i=1

SVcr̂i
4πε0r2

i

=
n∑
i=1

Sr̂i
4πε0r2

i

= Vi.

Taking limits as all the regions Ri are chosen smaller, we have

E(P ) = Field atP =
∫
R

sr̂

4πε0r2
dv

Factoring out the constant S/4πε0, we have

E(P ) =
∫
R

r̂

r2
dv

That is an integral over a solid region. If the charge is just on a surface S with
uniform surface density σ, the field would be

E(P ) =
σ

4πε0

∫
S

r̂

r2
dS.

If the charge lies on a line or a curve C, with uniform density λ, then

E(P ) =
λ

4πε0

∫
C

r̂

r2
ds.

To illustrate the definition we compute one such field value directly. In Example 2
we solve the same problem much more simply.

EXAMPLE 1 A charge Q is uniformly distributed on a sphere of radius α, S.
Find the electro static field E at a point B a distance b from the center of a sphere
of radius α, b > a.
SOLUTION We evaluate

σ

4πε0

∫
S

r̂

r2
dS. (18.7.3)
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Figure 18.7.4:

Note that σ = Q/4πa2, since the charge is uniform on an area of 4πa2.
Place a rectangular coordinate system with its origin at the center of the sphere

and the z-axis on B, so that B = (0, 0, b), as in Figure 18.7.4.
Before we start to evaluate an integral, let us use the symmetry of the sphere to

predict something about the vector E(B). Could it look like the vector v, which is
not parallel to the z axis, as in Figure 18.7.5?

Figure 18.7.5:

If you spin the sphere around the z-axis, the vector v would change. But the
sphere is unchanged and so is the charge. So E(B) must be parallel to the z axis.
That means we know its x and y components are both 0: E(B) = 0j + 0k + zk. So
we must find just its z component, which is E(B) · k.

Let (x, y, z) be a typical point in the sphere S. Then

r = (0i + 0j + bk)− (xi + yj− zk)
= −xi− yj + (b− z)k.

So
r̂

r2
=

r
r3

=
−xi− yj + (b− z)k

(
√
x2 + y2 + b2 − 2bz + z2)3

=
−xi− yj + (b− z)k
(a2 + b2 − 2bz)3/2

.

We need only the z component of this,

−xi− yj + (b− z)k
(a2 + b2 − 2bz)3/2

· k =
b− z

(a2 + b2 − 2bz)3/2
.

The magnitude of E(B) is therefore

σ

4πε0

∫
S

b− z
(a2 + b2 − 2bz)3/2

. (18.7.4)

We evaluate the integral in∫
S

b− z√
z2 + b2 − 2bz

ds. (18.7.5)

To do this, introduce spherical coordinates in the standard position. We have
dS = a2 since dφ dθ and z = a cosφ. So (18.7.5) becomes

2π∫
0

2π∫
0

(b− a cosφ)a2 sinφ√
a2 + b2 − 2ab cosφ

3 dφ dθ;
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which reduces, after the first integrate within to θ

2πa2

π∫
0

(b− z cosφ) sinφ dφ
(
√
a2 + b2 − 2ab cosφ)3

(18.7.6)

Let u = cosφ, hence du = −sinφ dφ. This transforms (18.7.6) into

−2πz2

−1∫
1

(b− au) du
(
√
a2 + b2 − 2abu)3

. (18.7.7)

Then to make a second substitution, v = a2 + b2 − 2abu.
As you may check, this changes (18.7.7) into

2πa2

4ab2

(b+a)2∫
(b−a)2

v + b2a2

v3/2
dv (18.7.8)

Recent the integrand as the sum of 1/
√
v and (b2 − a2)/v3/2, and use the fun-

damental DOUG of calculus, to show that DOUG equal 4πa2/b2.
Combining this with (18.7.8) shows that

E(B) =
σ

4πε0
4πa2

b2
k =

QK

4πε0b2
.

�

The result in this example, Q/(4πε0b2)k is the same as if all the change Q were at
the center of the sphere. In other words, DOUG change as a sphere acts or external
particles as though the whole charge was placed at its center. NOTE TO DOUG
FROM SHERMAN: Rewrite sentence: This was DOUG for the gravitational field
by Newton and proved geometrically in his DOUG of 1687.

Using Flux and Symmetry to Find E

We included Example 1 for two reasons. First, it’s a nice review of some integration
techniques. Second, it will help you appreciate a much simpler way to find the field
E due to change distribution.

Picture a charge Q distributed outside of the region bound by a surface S, as in
Figure 18.7.6.

Figure 18.7.6:

Because each point charge in Q produces zero flux across S, Q exerts zero-flux.
Consider a charge Q contained wholly within the region bounded by S. Recall

that a point-charge q in Q exerts a flux of q/ε0 across S.
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Chop the solid R that the charge occupies into n small regions R1, R2, . . . , Rn.
In region Ri select a point Pi. Let the density of charge at Pi be S(Pi). Thus the
charge in Ri produces a flux of approximately S(Pi)Vi/ε0. Consequently

i=1∑
u

S(Pi)Vi
ε0

estimate the flux produced by Q. Taking limits, we see that

Flux acrossSproduced byQ =
∫
R

S(Pi)
ε0

dV

But
∫
R S(Pi) dV is the total charge Q. Thus we have

Flux =
Q

ε0
.

Thus we have one of th four fundamental equations of electrostatics:

Gauss’s Laws: The flux produced by a distribution of charge across a closed
surface is the charge Q in the region bounded by S, divided by ε0.

The charge outside of S produces no flux across S. More precisely, the negative
flux across S cancels the positive flux.

Let’s illustrate the power of Gauss’s Law by applying it to the case in Example 1.

EXAMPLE 2 A charge Q is distributed uniformly on a sphere of radius a. Find
the electrostatic field E at a point B at a distance b from the center of a sphere of
radius a, b > a.
SOLUTION We don’t need to introduce a coordinate system in Figure 18.7.7. By

Figure 18.7.7:

symmetry, the field at any point P outside the sphere is parallel to the vector
−−→
OP .

Moreover, the magnitude of the filed is the same for all points at a given distance
from 0. Call this magnitude, f(r), where r is the distance from 0. We want to find
f(b).

To do this, imagine another sphere S∗, with center 0 and radius b, as in Fig-
ure 18.7.8.

Figure 18.7.8:

The flux of E across S∗ is
∫
S∗E · n dS.

But E ·n is just f(b) since E and n are parallel and E and E(P ) has magnitude
f(b) for all P or S∗. Thus

∫
S∗E · n dS =

∫
S∗ f(b) dS = f((b))

∫
S∗ dS = f(b)4πb2.
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By Gauss’s Law
Q

ε0
= f(b)(4πb2).

That tells us that
f(b) =

Q

4epsilon0b2
.

This is the same result as in Example 1, but compare the work in each case.
Symmetry and Gauss’s Law provide an easy way to find the electrostatic field due
to distribution of charge. �

The same approach shows that the field E produced by the spherical charge
in Examples 1 and 2 inside the sphere is 0. Let f(r) be the magnitude of E at
a distance r from the center of the sphere. For r > a, f(r) = Q/(4πε0r2); for
0 < r < a, f(r) = 0. The graph of f is shown in Figure 18.7.9.

Figure 18.7.9:

If you are curious about f(0) and f(a), see Exercises DOUG and DOUG.

Summary

The field due to a point charge q at a point C is given by the formula E(P ) = 1
4πε0

qbr
r2

,

where R =
−−→
OP . This field “produces” a force q0E(P ) a charge q0 located at P .

The field due to a distribution of charge is obtained by an integration, with

E(P ) =
S

4πε0)

∫
R

r̂

r2
dV.

Here V is the solid occupied by the charge and S is the density, which we take
to be constant.

We showed that a charge Q outside a surface produces a net flux of zero across
the surface. However the flux produced by a charge within the surface is simply
Q/ε0. That is Gauss’s Law.

We used Gauss’s Law to find the field produced by a spherical distribution of
charge.
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EXERCISES for 18.7 Key: R–routine, M–moderate, C–challenging

1.[C] We showed that E(P ) = S
4πε0

∫
R
br
r2
dV if the charge density is constant. If

the charge density varies find the integral for E(P ).

2.[C] In Example 1, we used an integral to find the electrostatic field outside a
uniformly charged sphere. Carry outs similar calculation to find the field inside the
sphere. Warning: is the square root of (b− a)2 still b− a?

3.[C] Use the approach in Example 2 to find the electrostatic field inside a uni-
formly charged sphere.

4.[R] Describe to a friend who knows no physics the field E “produced” by a
point charge q.

5.[R] State Gauss’s Law aloud several times.

6.[R] Why do you think that the constant k was replaced by 1/4πε0. (Later we
will see why it is convenient to have ε0 in the denominator.)

7.[R] A charge is distributed uniformly over a infinite plane. For any part of this
surface of area A the charge is kA, where k is a constant. Find the field E due to
the charge.

(a) Use symmetry to say as much as you can about its DOUG.

(b) Show that the magnitude is constant by applying Gauss’s Theorem to a cylin-
der whose axes is perpendicular to the plane and which does not intersect the
plane.

Figure 18.7.10:

(c) Find the magnitude by applying Gauss’s Theorem to the cylinder in Fig-
ure 18.7.11. Let the area DOUG circular cross section be A and the area of

Figure 18.7.11:

its curved side be B.

8.[C] Find the field E in the Exercise DOUG by integrates over the whole plane.
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(Don’t use Gauss’s Theorem.)

9.[R] A field F is called uniform if all its vectors are the same. Let F(x, y, z) = 3i.

(a) Find the flux of F across each of the six faces of the cube in Figure 18.7.12 of
side 3.

Figure 18.7.12:

(b) Find the total flux of F across the surface of the box.

(c) Verify the divergence theorem for this F.

10.[R] Let F be the uniform field F(x, y, z) = 2i+3j+0k. Carry out the preceding
exercise for this field.

11.[R] In Example DOUG, we computed the field E at a point outside a sphere
of radius a, due to a uniform distribution of charge Q on the sphere. Fill in the
missing calculations.

12.[R] Find the field E of the charge in Exercise DOUG at a point inside the
sphere. Assume, as in Example DOUG, that this point has coordinates (0, 0, b).
Warning: The computations will be almost the same as in Example DOUG. How-
ever, be careful when computing the square root of (b− a)2. Answer:

13.[R] Find the field E of the charge in Exercise DOUG at a point on the surface
of the sphere. Hint: Let the point be (0, 0, a). Answer: Q/(8πε0a2). Why is Gauss’s
Law not applicable here.

14.[R] See Exercise 13 If you placed the point at which E is evaluated at (a, 0, 0)
instead of at (0, 0, a), what integral in spherical coordinates arises.

(a) would you like to evaluate it?

15.[R] Find the field E of the charge in DOUG at the center of the sphere.
Hint: Use symmetry, don’t integrate.

16.[R] Complete the graph in Figure DOUG.
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17.[R] A charge is distributed uniformly along an infinite straight wire. The
charge on a section of length l is kl. Find the field E due to this charge.

(a) Use symmetry to say as much as you can about its direction and magnitude.

(b) Find the magnitude by applying Gauss’s Law to the cylinder of radius r adn
height h shown in Figure 18.7.13

Figure 18.7.13:

(c) Find the force directly by an integral over the line, as in Example 1.

18.[R] Figure 18.7.14 shows four surfaces. Inside S1 is a total charge Q1, and in
S2 is a total charge Q2. Find the total flux across each of the four surfaces.

Figure 18.7.14:

19.[R] Imagine that there is a uniform distribution of charge Q throughout a ball
of radius a. Use Gauss’s Law to find electrostatic field E produced by their charge

(a) at points outside the ball,

(b) at points inside the ball.

20.[R] (See Exercise DOUG) Let f(r) be the magnitude of the field in Exercise
DOUG at a distance r from the center of the ball. Graph f(r) for r ≥ 0.

21.[R] A charge Q lies partly under a closed surface S and partly outside. Let
Q1 be the amount inside and Q2 the amount outside, as in Figure 18.7.15. What is

Figure 18.7.15:

the flux across S of the charge Q?

22.[R] Write up Example 1 in full, filling in all details.

23.[R] In Exercise DOUG you found the field E due to a charge uniformly spread
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on an infinite line. If the charge density is λ, E at a point at a distance a from the
line is [λ/(2πaε0)]j.

Now assume that the line occupies only the right half of the x-axis, (0,∞).

(a) Using the result in Exercise, show that the j-component of E(0, a) is (λ/4πaε0)j.

(b) By integrating over [0,∞], show that the x-component of E at (0, a) is λ/(4πaε0)i.

(c) What angle does E(0, a) make with the y-axis?

(d) Why is Gauss’s Law of no use in determining the x-component of E in this
case.
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18.8 Vector Functions in Other Coordinate Sys-

tems

We have expressed the gradient, divergence, and curl in terms of rectangular coor-
dinates. However, students who apply vector analysis in engineering and physics
courses will see these functions express in polar, cylindrical and spherical coordi-
nates. This section introduces these expressions.

Polar Coordinates

Let g(r, θ) be a scalar function expressed in polar coordinates. Its gradient has the
form A(r, θ)r̂+B(r, θ)θ̂, where r̂ and θ̂ are the unit vectors shown in Figure 18.8.1.
The “radial vector” r̂ points in the direction of increasing r. The “tangential vector”

Figure 18.8.1:

θ̂ points in the direction determined by increasing θ. Note that 0̂ is tangent to the
circle through (r, θ) with center at the pole.

Our goal is to find A(r, θ) and B(r, θ), which we may also denote simply as A
and B.

One might guess, in analogy with rectangular coordinates, that A(r, θ) would be
∂g/∂r and V (r, θ) would be ∂g/∂θ. That guess is part right and part wrong, for we
will show that

∇g =
∂g

∂r
r̂ +

1
r

∂g

∂θ
θ̂ (18.8.1)

One way to obtain (??) is labor-intensive and not illuminating: express g, r̂, θ̂ in
terms of x, y, î, ĵ and, use the formula for gradient in terms of rectangular coordi-
nates, the translate back to polar coordinates. This approach, whose only virtue is
that it offers good practice applying the chain rule for partial derivatives, is outlined
in Exercise DOUG.

We will use a simpler way which easily generalizes the cylindrical and spherical
coordinates. It exploits the connection between a gradient and directional deriva-
tives. In particular it shows why the coefficient 1/r appears in (18.8.1).

Recall that if û is a unit vector, the directional derivation of g in the direction
û is just the dot product of ∇g with û:

Dug = ∇g · û.

In particular,
Dbrg = (Ar̂ +Bθ̂) · r̂ = A

and
Dθg = (Ar̂ +Bθ̂) · θ̂ = B.
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So all we do is find Dbrg and Dbθg.
First,

Dbr(g) = lim
∆r→

g(r + ∆r, θ − g(r, θ)
∆r

=
∂g

∂r
.

So A(r, θ) = ∂g/∂r(r, θ). That explains part of (18.8.1).
Now we will see why B is not simply the partial derivation of g with respect to

θ.
If we want to estimate a directional derivative at P of q in the direction û we

pick a nearby point Q a distance ∆s away in the direction of û and form the quotient

g(Q)− g(P )
∆s

(18.8.2)

Then we take the limit of (18.8.2) as ∆s→ 0.
Now let û be θ̂, and let’s examine (18.8.2) in case P = (r, θ) and Q = (r, θ+∆θ).

The numerator in (18.8.2) is

g(r, θ + ∆θ)− g(r, θ).

We draw a picture to find ∆s, as in Figure 18.8.2.

Figure 18.8.2:

The distance between P and Q is not ∆θ. Rather it is approximately r∆θ (when
∆θ is small). That tells us that ∆s in (18.8.2) is not ∆θ but r∆θ. Therefore

Dθg = lim
∆θ→0

g(r, θ + ∆θ)− g(r, θ)
r∆θ

=
1
r

lim
∆θ→0

g(r, θ + ∆θ)− g(r, θ)
∆θ

=
1
r

∂g

∂θ
.

That is why there is a 1/r in the formula (18.8.1) for the gradient of g. It occurs
because a change ∆θ in the parameter θ causes a point to move about the distance
r∆θ.

Divergence in the Plane

The divergence of F(x, y) = P (x, y)̂i + Q)x, y)j is simply ∂P/∂x + ∂Q/∂y. But
what is the divergence of a vector field described in polar coordinates, G(r, θ) =
A(r, θ)r̂ +B(r, θ)θ̂. (By now you are on guard, ∇ ·G is not the sum of ∂A/∂r and
∂B/∂θ).
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To find ∇ · G, DOUG the relation between ∇ · G at P = (r, θ) and the flux
across a small curve C that surrounds P .

∇ ·G = lim

∮
C G · n ds

Area withinC
(18.8.3)

as the length of C approaches 0. Note that (18.8.3) provides a coordinate-free
description of divergence in the plane.

We are free to choose the small curve C to make it easy to estimate the flux
across it. The curve C that corresponds to small changes ∆r and ∆θ is convenient.
See Figure 18.8.3.

Figure 18.8.3:

We will use (18.8.3) to find the divergence at Q = (r, θ). Now, Q is not inside
C; rather it is on C. However, since G is continuous, G(Q) is the limit of values of
G at points inside, so we may use (18.8.3).

To estimate the flux across C, we estimate the flux across each of the four parts
of the curve. Because these sections are short when ∆r and ∆θ are small, we may
estimate an integral over each part by multiplying the value of the integrand at any
point of the section (even at an end point) by the length of the section. As usual, n̂
denotes an exterior unit vector perpendicular to C.

On QR and ST , Bθ̂ contributes to the flux (on RS and TQ it does not since
n · θ is 0). On QR, θ̂ is parallel to n, as shown in Figure 18.8.4.

Figure 18.8.4:

However, at points in the opposite direction. So θ̂ · n̂ is −1. So across QR, the
flux contributed by Bθ̂ is approximately

(Bθ̂ · n̂)∆r = −B(r, θ)∆r.

(We would get a better estimate by using B(r + ∆r
2 , θ) but B(r, θ) is good enough

since B is continuous.)
On ST , θ̂ on n̂ point in almost the same direction, hence θ̂ · n̂ is close to 1 when

∆θ is small. So on ST Bθ̂ contributes approximately B(r, θ + ∆θ)∆r to the flux.
All told, the total contribution of Bθ̂ to the flux across C is

B(r, θ + ∆θ)∆r −B(r, θ)∆r (18.8.4)

The contribution of Ar̂ to the flux is negligible on QR ans ST because there r̂ and
widehatn are perpendicular. On TQ, r̂ and n̂ point in almost directly opposite
directions, hence r̂ · n̂ is near −1. The flux of Ar̂ there is approximately

A(r, θ)(r̂, n̂)r∆θ = −A(r, θ)r∆θ. (18.8.5)
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On RS, which has radius r+∆r, r̂ and n̂ are almost identical, hence r̂ · n̂ is near
1. The contribution on RS, which has radius r + ∆r is approximately

A(r + ∆r, θ)(r + ∆r)∆θ. (18.8.6)

Combining (18.8.4), (18.8.5) and (18.8.6), we see that the limit in (18.8.3) is the
sum of two limits:

lim
∆r,∆θ→0

A(r + ∆r, θ)(r + ∆r)∆θ −A(r, θ)r∆θ
r∆r∆θ

(18.8.7)

The are within C is approx-
imately, r∆r∆θ.and

lim
∆r,∆θ→0

B(r, θ + ∆θ, θ)∆r)−B(r, θ)∆r
r∆r∆θ

(18.8.8)

The first limit (18.8.7) equals

lim
∆r,∆θ→0

A(r + ∆r,∆θ)(r + ∆r)−A(r, θ)r
∆r

,

which is
1
r

∂(Ar)
∂r

.

Note that r appears in the coefficient, 1/r, and also in the function, Ar, being
differentiated.

The second limit (18.8.8) equals

lim
∆r,∆θ→0

1
r

B(r, θ + ∆θ)−B(r, θ)
∆θ

,

hence is
1
r

∂B

∂θ
.

Here r appears only once, in the coefficient.
All told, we have the desired formula:

∇ · (Ar̂ +Bθ̂) =
1
r

∂(Ar)
∂r

+
1
r

∂B

∂θ
. (18.8.9)

Curl in the Plane

The curl of F(x, y) = P (x, y)i + Q(x, y)j + 0k, a vector field in the plane, is given
by the formula

∇× F =
(
∂Q

∂x
− ∂P

∂y

)
k.

What is the formula for the curl of a vector field G(r, θ) = A(r, θ)r̂ + B(r, θ)θ̂?
To find out we will reason as we did with divergence. This time we use

(∇×G) · k = lim

∮
C G · π ds

Area Bound byC
.
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See page DOUG.
Here C is a closed curve in the (r, θ) plane, and the limit is taken as the length

of C approaches 0. The curl is evaluated at a fixed point, which is on or within C.
As is to be expected, we compute the circulation of G = Ar̂ + Bθ̂ around the

same curve used before.
On TQ and RS, Ar̂ being perpendicular to the curve, contributes nothing to

the circulation of G around C. On QR is contributes approximately

(A(r, θ)(r̂ · π)∆r = A(r, θ)∆r = A(r, θ)∆r.

On ST , since there r̂ · π = −1, it contributes approximately

A(r, θ + ∆θ)(r · T )∆r = −A(r, θ + ∆θ)∆r.

A similar computation shows that Bθ̂ contributes to the total circulation ap-
proximately

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ.

therefore ∇×G in the sum of two limits:

lim
∆r,∆θ→0

A(r, θ)∆r −A(r, θ + ∆θ)∆r
r∆r∆θ

= −1
r

∂A

∂θ

and
lim

∆r.∆θ→0

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ
r∆r∆θ

=
1
r

∂(r,B)
∂r

.

All told, we have

∇× (Ar̂ +Bθ̂) =
(
−1
r

∂A

∂θ
+

1
r

∂(rB)
∂r

)
k.

EXAMPLE 1 Find the curl of rθ2r̂ + r3 tan θθ̂.
SOLUTION DOUG �

Cylindrical Coordinates

In cylindrical coordinates the gradient of g(r, θ, z) is

∇g =
∂g

∂r
r̂ +

1
r

∂g

∂θ
θ̂ +

∂g

∂z
ẑ/ (18.8.10)

Here ẑ is the unit vector in the positive z direction, denoted k in Chapter DOUG.
Note that (18.8.10) differs from (18.8.1) only by the extra term (∂y/∂z)ẑ. You can
obtain (18.8.10) by computing directional derivatives of g along r̂, θ̂, and ẑ. The
calculation are similar to those that gave us the formulas for the gradient of g(r, θ).

The divergence of G(r, θ, z) = Ar̂ +Bθ̂ + Cẑ is given by the formula
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∇ ·G =
1
r

(
∂θ(rA)
∂r

+
∂∂B

∂θ
+
∂(rC)
∂z

)
. (18.8.11)

(The notation ∇·G might be misleading.) Note that the partial derivatives with
respect to r and z are similar in that the factor r is present in both ∂(rA)/∂r and
∂(rC)/∂r. You can obtain (18.8.11) by using the relation between ∇ ·G and the
flux across the small surface determined by small change ∆r, ∆θ, and ∆z.

The curl of G = Ar̂ +Bθ̂ + Cẑ is given by a formal determinant:

∇×G =
1
r

∣∣∣∣∣∣
r̂ rθ̂ ẑ
∂
∂r

∂
∂θ

∂
∂z

A rB C

∣∣∣∣∣∣ (18.8.12)

To obtain this formula consider the circulation around three small closed curves
lying in planes perpendicular to r̂, θ̂ and ẑ.

Spherical Coordinates

In mathematics texts, spherical coordinates are denoted ρ, φ, θ. In physics and
engineering a different notation is standard. There ρ is replaced by r, θ is the angle
with z-axis, and φ plays the role of the mathematicians θ, switching the roles of φ
and θ. The formulas we state are in the mathematicians’ notation.

The three basic unit vector for spherical coordinates are denoted ρ̂, φ̂, θ̂. For
instance, ρ̂ points in the direction of increasing ρ. See Figure 18.8.5.

Figure 18.8.5:

Note that φ̂ and θ̂ are tangent to the sphere through P and center at the origin,
while ρ̂ is perpendicular to that sphere. Also, any two of ρ̂, φ̂, θ̂ are perpendicular.

In obtaining the formulas for ∇ ·G and ∇×G, we would use the region corre-
spondence to small changes ∆ρ,∆φ,∆θ, shown in Figure 18.8.6. The computation

Figure 18.8.6:

would yield these formulas: If g(ρ, φ, θ) is a scalar function,

∇g =
∂g

∂ρ
ρ̂+

1
ρ

∂g

∂φ
φ̂+

1
ρ sinφ

∂g

∂θ
θ̂. (18.8.13)

If G(ρ, φ, θ) = Aρ̂+Bφ̂+ Cθ̂
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∇ ·G =
1
ρ2

∂(ρ2A

∂r
+

1
ρ sinφ

∂(sinφB)
∂φ

+
1

ρ sinφ
∂C

∂θ
(18.8.14)

and

∇×G =
1
ρ

((
1

sinφ
∂

∂φ
(sinC)− 1

ρ sinφ
∂B

∂θ

)
ρ̂+

(
1

sinφ
∂A

∂θ
− ∂

∂ρ
(ρC)

)
φ̂+

(
∂

∂ρ
(ρB)− ∂A

∂φ

)
θ̂

)
(18.8.15)

These can all be obtained by the method we used in the case of polar coordinates.
In each case keep in mind that the change in φ or θ is not the same as the distance the
corresponding point moves. However, a change in ρis the same as the distance the
corresponding point moves. Specifically, the distance between (ρ, φ, θ) and (ρ, (φ+
∆φ),∆θ) is approximately ρ∆φ and the distance between (ρ, φ, θ) and (ρ, φ, θ+∆θ)
is approximately ρ sinφ∆θ.

An Application of Rotating Fluids

Consider a fluid rotating in a cylinder, for instance, in a centrifuge. If it rotates as
a rigid body, then DOUG velocity at a distance r from the axis of rotation has the
form

G(r, θ) = crθ̂,

when c is a positive constant.
Then

∇×G =
1
r

∂(c2r)
∂r

k = 2ck.

The curl is independent of r. That means that an imaginary paddle held in a
fixed position would rotate at the same rate no matter where it is placed.

Now consider more general case, where

G(r, θ) = crnθ̂,

and n is an integer. Now

∇×G =
1
r

(crn+1

∂r
k = c(n+ 1)rn−1k.

We just considered the case n = 1. If n > 1, the curl increases as r increase. The
paddle wheel rotates faster if placed farther from the axis of rotation. The direction
of rotation is the same as that of the fluid, counterclockwise.

Next consider the case n = −2. The speed of the fluid decreases as r increases.
Now

∇×G = c(−2 + 1)r−2−1k = −cr−3k.

The minus sign before the coefficient c tells us that the paddle wheel spins
clockwise even though the fluid rotates counterclockwise. The farther the paddle
wheel is from the axis, the slower it rotates.
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Summary

We expressed gradient, divergence and curl in several coordinate systems. Even
though the basic unit vectors in each system may change direction from point to
point, they remain perpendicular to each other. That simplified the computation of
flux and circulation. The formulas are more complicated than there in rectangular
coordinates because “distance a parameter moves”is not the same as “distance the
corresponding point moves.”
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EXERCISES for 18.8 Key: R–routine, M–moderate, C–challenging

In Exercises 1 through 4 find and draw the gradient of the given functions of
(r, θ) at (2, π/4)

1.[R] r

2.[R] r2θ

3.[R] e−rθ

4.[R] r3θ2

In Exercises 5 through 8 find the divergence of the given function

5.[R] 5r̂ + r2θθ̂

6.[R] r3θr̂ + 3r
thetaθ̂

7.[R] rr̂ + r3θ̂

8.[R] r sin θr̂ + r2 cos θθ̂

In Exercise 9 through 12 compute the curl of the given function.

9.[R] rθ̂

10.[R] r3θr̂ + erθ̂

11.[R] r cos θr̂ + rθθ̂

12.[R] 1/r3θ̂

13.[R] What is the directional derivative of r2θ3 in the direction
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(a) r̂

(b) θ̂

(c) î

(d) j?

14.[R] What property of rectangular coordinates makes the formulas for gradient,
divergence, and curl in those coordinate relatively simple?

15.[R] Estimate the flux of rθr̂+r2θ3θ̂ around the circle of radius 0.01 with center
at (r, θ) = (2, π/6).

16.[R] Estimate the circulation of the function in the preceding exercise around
the same circle.

When translating between rectangular and polar coordinates, it may be neces-
sary to express r̂ and θ̂ in terms of î and ĵ and also î and ĵ in terms of r̂ and θ̂.
Exercise 17 and 18 concern this matter.

17.[R] Drawing a picture, show that at (r, θ), which has rectangular coordinates
(x, y)

(a) r̂ = cos θi + sin θj which equals x/
√
x2 + y2i + y/

√
x2 + y2j

(b) Show that θ̂ = − sin θi + cos θj, which equals −y/
√
x2 + y2i + x/

√
x2 + y2j.

So we have r̂ and θ̂ in terms of î and ĵ:

DOUGr̂ =
x√

x2 + y2
i +

y√
x2 + y2

jθ̂ = − y√
x2 + y2

i +
x√

x2 + y2
j. (18.8.16)

18.[R] Show that if (x, y) has polar coordinates (r, θ), then DOUG î = cos θθr̂−
sin θθ̂ ĵ = sin θθr̂ + cos θθ̂ by solving the simultaneous equations 18.8.16 in the pre-
ceding exercise for î and ĵ.

In exercises 19 through 22

• find the gradient of the given function, using the formula for gradient in rect-
angular coordinates,

• find it by first expressing the function in polar coordinates and using DOUG,
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show that the two results agree.

19.[R] x2 + y2

20.[R]
√
x2 + y2

21.[R] 3x+ 2y

22.[R] x/
√
x2 + y2

In Exercises 23 through 26

• find the gradient of the given function, using DOUG,

• find it by first expressing the function n rectangular coordinates,

• show that the two results agree.

23.[R] r2

24.[R] r2 cos θ

25.[R] r sin θ

26.[R] er

In Exercise 27 and 28

• find the divergence of the given vector filed in rectangular coordinates,

• find it by first expressing the function in polar coordinates,

• show that the result agree.

27.[R] x2i + y2j

28.[R] xyi

In Exercises 29 and 30

November 3, 2008 Calculus 1346



The Theorems of Green, Stokes, and Gauss § 18.8

• find the curl of the given vector field in rectangular coordinates,

• find it by first expressing the function in polar coordinates,

• show that the two results agree.

29.[R] xyi + x2y2j

30.[R] (x/
√
x2 + y2i

The next two exercises would be useful in developing the formula for the gradient
in cylindrical and spherical coordinates.

31.[R] Approximately how far is it from the points (r, θ, z) to

(a) (r + ∆r, θ, z),

(b) (r, θ + ∆θ, z),

(c) r, θ, z + ∆z)?

32.[R] Approximately how far is it from the point (ρ, φ, θ) to

(a) (ρ+ ∆ρ, φ, θ),

(b) (ρ, φ+ ∆φ, θ),

(c) ρ, φ, θ + ∆θ)?

33.[M] Using the formulas for the gradient of g(r, φ, θ), find the directional
derivative of g in the direction

(a) ρ̂,

(b) φ̂,

(c) θ̂.

34.[M] Using the formulas for the gradient of g(r, θ, z), find the directional

November 3, 2008 Calculus 1347



The Theorems of Green, Stokes, and Gauss § 18.8

derivative of g in the direction

(a) r̂,

(b) θ̂,

(c) ẑ.

35.[M] Without using the formula for the gradient, do Exercise 33.

36.[M] Without using the formula for the gradient, do Exercise 34.

37.[M] Using as few mathematical symbols as you can, state the formula for the
divergence of a vector field given relative to r̂ and θ̂.

38.[M] Using as few mathematical symbols as you can, state the formula for the
curl of a vector field given relative to r̂ and θ̂.

39.[M] In the formula for the divergence of Ar̂ + Bθ̂, why does the term
(1/r)(∂(rA)/∂r and rA appear? Explain in detail why 1/r appears.

40.[M] Obtain the formula for the gradient in cylindrical coordinates.

41.[M] Obtain the formula for curl in cylindrical coordinates.

42.[M] Obtain the formula for divergence in cylindrical coordinates.

43.[M] Obtain the formula for the gradient in spherical coordinates.

44.[M] This exercise shows how to obtain the formula for the gradient of g(r, θ)
in polar coordinates by starting with the formula for the gradient of f(x, y) in
rectangular coordinates. During the calculations you will have some happy moments
as complicated expressions cancel and the identity cos2 θ + sin2 θ = 1 simplifies
expressions.
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Assume g(r, θ) = f(x, y), where x = r cos θ and y = r sin θ. To express ∇f =
∂f/∂xi + ∂f/∂yj in terms of polar coordinates, it is necessary to express ∂f/∂x,
∂f/∂y, i, and j in terms of partial derivative of g(r, θ) and r̂ and θ̂.

(a) Show that ∂r/∂x = cos θ, ∂r/∂y = sin θ, ∂θ/∂x = −(sin θ)/r, ∂θ/∂y = (cos θ)/r.

(b) Use the chain rule to express ∂f/∂x and ∂f/∂y in terms of partial derivatives
of g(r, θ).

(c) Recalling the expression of î and ĵ in terms of r̂ and θ̂ in Exercise 18 obtain
the gradient of g(r, θ) in polar coordinates.
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18.9 Maxwell’s Equations

Any point in space there is an electric field E and a magnetic field B. The elec-
tric field is due to charges (electrons, protons) whether stationary or moving. The
magnetic field is due to moving charges.

To assure yourself that the magnetic field B is everywhere, hold up a pocket
compass. The magnetic field, produced within the Earth, makes the needle point
north.

All of electrical phenomenon and their applications can be explained by four
equations. These equations allow B and E to vary in time. We state them for the
simpler case; when B and E are constant, ∂B/∂t = 0 and ∂E/∂t = 0. We met the
first one in the previous section. DOUG, this needs to be

Roman numerals
1.
∫
S E · n dS = Q/E0, where S is a surface bounding a spatial region and Q is

the change in that region. (Gauss’s Law)

2.
∮
C E · dr = 0 for any closed curve C.

3.
∫
S B · n dS = 0 for any surface S that bounds a spatial region.

4. 1
µε0

∮
C B · dr = 1

ε0

∫
S j · n dS, where C bounds the surface S and j is the

electric current flowing through S.

The constant ε0 and µ0 (“myu zero”) depends on the unit used. They will be
important in the next section.

Each of the four statements about integrals can be translated with information
about the behavior of E or B at each point.

In derivative or “local” form the four principles read: Doug: these need to be Ro-
man numerals

1. ∇ ·E = q/ε0, where q is the charge density (Couloumb’s Law)

2. ∇×E = 0

3. ∇ ·B = 0

4. 1
µ0ε0
∇×B = j

ε0

In may books 1/(µ0ε0) is replaced by C2, where C is the speed of light. Why
that is justified is an astonishing story told in detail at the end of this chapter.

Going Back and Forth, “local” to “global.”

Examples 1 and 2 show that Gauss’s Law is equivalent to Coulomb’s.

EXAMPLE 1 Obtain Gauss’s law from Coulomb’s law.
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SOLUTION Let V be the solid region whose boundary is S. Then∫
S

E · n dS =
∫
V

∇ ·E dV divergence theorem

=
∫
V

q

ε0
dV Coulomb’s law

=
1
ε0

∫
V

q dV

=
Q

ε0
.

�

“Does Gauss’s law imply Coulomb’s law?” Example 2 shows that the answer is
yes.

EXAMPLE 2 Deduce Coulomb’s law from Gauss’s law.
SOLUTION Let V be any spatial region and let S be its surface. Let Q be the
total charge in V. Then

Q

ε0
=

∫
S

E · n dS Gauss’s law

=
∫
V

∇ ·E dV divergence theorem.

On the other hand,

Q =
∫
V

q dV,

where a is the charge density. Thus∫
V

q

ε0
dV =

∫
V

∇ ·E dV,

or ∫
V

(
q

ε0
−∇ ·E

)
dV = 0,

for all spatial regions. Since the integrand is assumed to be continuous, the “vanishing-
integral principle” tells us that it must be identically 0. That is,

q

ε0
−∇ ·E = 0,

which give us Coulomb’s law. �
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EXAMPLE 3 Show that DOUG,
∮
C E · dr = 0 for closed curves, implies that

DOUG, ∇×E = 0.
SOLUTION By Stokes’ theorem,∫

calS

(∇×E) · n dS = 0

for any DOUG surface bounded by a closed curve. The zero-integral principle implies
that (∇×E) ·n = 0 at each point on the surface. Choosing S such that n is parallel
to ∇ × E (if ∇ × E was not 0), implies that the magnitude of ∇ × E is 0, hence
∇×E is 0. �

Maxwell, by studying the four equation, DOUG,deduced that there are radio
waves, that they travel with the speed of light, and therefore light is an electro-
magnetic phenomenon. In DOUG we show how he accomplished this, in one of the
greatest creative insights in the history of science.

The exercises present the analogy of the four equations in integral form for the
general case whose B and E vary with time. It is here that B and E became tangled
with each other; both appearing in the same equation. In this generality they are
known as Maxwell’s Equations, in honor of James Clerk Maxwell (1831-1879), who
put them in their final form in 1865.

Mathematical Origin of Electricity

Benjamin Franklin, in his book Experiments and Observations Made in
Philadelphia, published in 1751, made electricity into a science. For his
accomplishments, Franklin was elected a Foreign Associate of the French
Academy of Sciences, an honor not bestowed on another American for over
a century. In 1873, Maxwell completed the theory that Franklin had begun.
At the time that Newton Published his Principia on the gravitational field
(1687), electricity and magnetism were the subjects of little scientific study.
But the experiments of Franklin, Oersted, Henry, AmpDOUGre, Faraday,
and others in the eighteenth and early nineteenth centuries gradually built up
a mass of information subject to mathematical analysis. All the phenomena
cold be summarized in four equations, which in their final form appeared
in Maxwell’s Treatise on Electricity and Magnetism, published in 1873. For
a fuller treatment, see The Feynman Lectures on Physics, vol. 2, Addison-
Wesley, Reading, Mass., 1964. NOTE TO DOUG: Or a McGraw text??

Summary

We stated the four equations that describe electrostatic and magnetic fields that do
not vary with time. Then we showed how to use the divergence theorem or Stokes’
theorem to translate between their global and local forms. The exercises include the
four equations in their general form, where E and B vary with time.
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EXERCISES for 18.9 Key: R–routine, M–moderate, C–challenging

1.[R] Obtain DOUG from DOUG.

2.[R] Obtain DOUG from DOUG.

3.[R] Obtain DOUG from DOUG.

4.[R] Obtain DOUG from DOUG.

5.[R] Obtain DOUG from DOUG.

Using terms such as “circulation,” “flux,” “current,” “change density,” in Exer-
cise ?? through ?? express the given equation in words.

6.[R] DOUG

7.[R] DOUG

8.[R] DOUG

9.[R] DOUG

10.[R] Which of the four laws tell us that an electric current produces a magnetic
field?

11.[R] Which of the four laws tells us that a magnetic field produces an electric
current?

In this section we assumed that the fields E and B do not vary in time, that
is, ∂E/∂t = 0 and ∂B/∂t = 0. The general case, in empty space, where E and B
depend on time, is also described by four equations, which we call 1, 2, 3, 4. Numbers
1 and 3, do not involve time. They are DOUG and DOUG.

1. ∇ ·E = q/ε0

2. ∇×E = −∂B/∂t

3. ∇ ·B = 0

4. ∇×B = µ0g + µ0ε0
∂E
∂t

(Here j is the current.)
12.[R] Which equation implies that a changing magnetic field creates an electric

field?
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13.[R] Which equation implies that a changing electrostatic field creates a mag-
netic field?

14.[R] Show that (??) is equivalent to∮
C

E · dt = − ∂

∂t

∫
S

B · n dS

Here, C bounds S. You may assume that ∂/∂t
∫
S B·n dS equals

∫
S(∂B/∂t)·n dS.

15.[R] Show that (??) is equivalent to∮
C

B · dr = µ0

∫
S

j · n dS + µ0ε0
∂

∂t

∫
S

E · n dS

(The circulation of B is related to the total current through the surface S that C
bounds and to the rate at which the flux of E through S changes.)

16.[R] Use Green’s theorem to evaluate
∮
C(xy dx+ ex dy), where C is the curve

that goes from (0, 0) to (2, 0) on the x axis and returns from (2, 0) to (0, 0) on the
parabola y = 2x− x2.

17.[R] Let C be the circle of radius 1 with center (0, 0).

(a) What does Green’s theorem say about the line integral∮
C

[(x2 − y3) dx+ (y2 + x3) dy]?

(b) Use Green’s theorem to evaluate the integral in (a).

(c) Evaluate the integral in (a) directly.
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18.10 Chapter Summary

The two key theorems in this chapter are Gauss’ Theorem and Stokes’ Theorem.
Gauss’ Theorem says that Gauss’ Theorem Gauss’ Theorem (framed

boxed?)∫
R

∇ · F dV =
∫
S

Fṅ dS where S encloses the solid region R.

If F represents gas- or fluid-flow, the surface integral measures the rate it escapes
(or enters) R across S — the flux. The divergence, ∇ · F measures this change
locally. So both integrals measure the rate of total change of the mass of R. If the
divergence is 0 throughout R, the field F is called incompressible.

Stokes’ Theorem concerns a closed curve C in space (or in a plane) and any sur-
face S whose boundary is C. It says that Stokes’ TheoremStokes’ Theorem (framed

boxed?)∮
C

F · dr =
∫
S

(∇× F) · n dS.

The physical interpretation of Stokes’ Theorem is that the circulation around the
curve is equal to the integral of the normal component of the curl over the surface.

There are two unit normals to a surface at each point. The “correct” one is
determined by the orientation of the curve. If the curl of F is identically 0, F is
called “irrotational.” In general, the curl describes the tendency of F to rotate.

We offer a sample showing how Gauss’ Theorem is applied. Section 18.9 il-
lustrates the role of curl in establishing the foundations of electromagnetic theory.
Section 18.8 explained how to obtain formulas for the gradient, divergence, and curl
in other coordinate systems. This introduction should lessen the shock when you
encounter, and apply, these ideas in later courses.

If the surface in Stokes’ Theorem lies in a plane, we obtain a version of Green’s
Theorem. Green’s Theorem can also be expressed like Gauss’ Theorem. It says
that, for a curve C bounding a region R in the plane,∮

C

(P dx+Q dy) =
∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

The integrand, in differential form, can be expressed as either the tangential com-
ponent (F ·T) or normal component (F · n, with n = k) of suitable fields F. These
give the planar versions of Gauss’ and Stokes’ Theorems.

Of central interest in the study of gravity or electromagnetism are the central
fields, which have the form F(r) = f(r)r. In space all such fields have curl 0, but
only the case when f(r) is inversely proportional to the square of r (or is 0) is the
divergence 0.

A field F whose integral
∫
C F · dr depends only on the endpoints of the curve

C is called conservative. Equivalently,
∮
C F · dr = 0 for closed curves. There is

a simple way to check whether a field is conservative: see if its curl is 0 and the
region is simply connected (closed curves can be shrunk to a point while staying in
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the region). A field is conservative if and only if it is the gradient of some scalar
field f : F = ∇f . This is good news since it’s generally easier to work with a scalar
field than with a vector field. For instance, in physics, the scalar field is called the
potential, and its gradient is related to the force.

Along the way, there were several applications including the use of steradians to
evaluate an important integral. The flux of r/r2 over any closed surface is always
4π: ∫

S

r
r2
· n dS = 4π where S is a closed surface.

EXERCISES for 18.S Key: R–routine, M–moderate, C–challenging
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