
Chapter 16

Partial Derivatives

The use of contour lines to help understand a function whose domain is part
of the plane goes back to the year 1774. A group of surveyors had collected a
large number of the elevations of points on Mount Schiehalli in Scotland. They
were doing this in order to estimate its mass and by its gravitational attraction,
the mass of the earth. They asked the mathematician Charles Hutton for help
in using the data entered as a map. Hutton saw that if he connected points
on the map that showed the same elevation, the resulting curves — contour
lines — suggested the shape of the mountain. Reference: Bill Bryson, A

Short History of Nearly
Everything, Broadway
Books, New York, 2003,
p. 57.
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1078 CHAPTER 16 PARTIAL DERIVATIVES

16.1 Picturing a Function of Several Variables

The graph of y = f(x), a function of just one variable, x, is a curve in the
xy-plane. The graph of a function of two variables, z = f(x, y) is a surface in
space. It consists of the points (x, y, z) for which z = f(x, y). For instance, if
z = 2x+ 3y, the graph is the plane 2x+ 3y − z = 0.

A vector field in the xy-plane is a vector-valued function of x and y. We
pictured it by drawing a few vectors with their tails placed at the arguments.

This section describes some of the ways of picturing a scalar-valued func-
tions of two or three variables.

Contour Lines
This is similar to what we

did for vector fields. For a function, z = f(x, y), the simplest method is to attach at some
point (x, y) the value of the function, z = f(x, y). For instance, if z = xy,
Figure 16.1.1 shows this method. This conveys a sense of the function. Its

Figure 16.1.1:

values are positive in the first and third quadrants, negative in the second and
fourth. For (x, y) far from the origin near the lines y = x or y = −x the values
are large.

Rather than attach the values at points, we could indicate all the points
where the function has a specific fixed value. In other words we could graph,
for a constant c, all the points where f(x, y) = c. Such as graph is called acontours and level curves

contour or level curve.
For the function z = xy, the contours are hyperbolas xy = c. In Fig-

ure 16.1.2(a) the contours corresponding to c = 2, 4, 6, 0, −2, −4, −6 are
shown.

Many newspapers publish a daily map showing the temperature throughout
the nation with the aid of contour lines. Figure 16.1.2(b) is an example.
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§ 16.1 PICTURING A FUNCTION OF SEVERAL VARIABLES 1079

(a) (b)

Figure 16.1.2:

At a glance you can see where it is hot or cold and in what direction to
travel to warm up or cool off.

Traces
SHERMAN: xrcs Katrina
wind / pressure?Another way to get some idea of what the surface z = f(x, y) looks like is to

sketch the intersection of various planes with the surface. These intersections
(or cross sections) are called traces.

For instance, Figure 16.1.3 exhibits the notion of a trace by a plane parallel
to the xy-coordinate plane, namely, the plane z = k This trace is an exact copy
of the contour f(x, y) = k, as shown in Figure 16.1.3.

Figure 16.1.3:
Doug: maybe z = x2 − y2 is
better? SHERMAN: I’m OK
with xy, it’s just a matter
of perspective.

EXAMPLE 1 Sketch the traces of the surface z = xy with the planes

1. z = 1,
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1080 CHAPTER 16 PARTIAL DERIVATIVES

2. x = 1,

3. y = x,

4. y = −x,

5. x = 0.

SOLUTION

1. The trace with the plane z = 1 is shown in Figure 16.1.4. For points
(x, y, z) on this trace xy = 1. The trace is a hyperbola. In fact, it is
just the contour line xy = 1 in the xy plane raised by one unit as in
Figure 16.1.4(a)

2. The trace in the plane x = 1 satisfies the equation z = 1 · y = y. It is a
straight line, shown in Figure 16.1.4(b)

3. The trace in the plane y = x satisfies the equation z = x2. It is the
parabola shown in Figure 16.1.4(c).

4. The trace in the plane y = −x satisfies the equation z = x(−x) = −x2.
It is an “upside-down” parabola, shown in Figure 16.1.4(d).

5. The intersection with the coordinate plane x = 0 satisfies the equation
z = 0 · y = 0. It is the y-axis, shown in Figure 16.1.4(e).

(a) (b) (c) (d) (e)

Figure 16.1.4:

So the surface can be viewed as made up of lines, or of parabolas or of
hyperbolas.

Figure 16.1.5:

The surface z = xy is shown in Figure 16.1.5 with some of the traces drawn
on it. �

The surface z = xy looks like a saddle or the pass between two hills, as
shown in Figure 16.1.6.
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(a) (b)

Figure 16.1.6:

Functions of Three Variables

The graph of y = f(x) consists of certain points in the xy plane. The graph
of z = f(x, y) consists of certain points in the xyz space. But what if we
have a function of three variables, u = f(x, y, x)? (The volume V of a box
of sides x, y, z is given by the equation V = xyz; this is an example of the
function of three variables.) We cannot graph the set of points (x, y, z, u)
where u = f(x, y, z, u) since we live in space of only three dimensions. What
we could do is pick a constant k and draw the “level surfaces,” the set of points
where f(x, y, z) = k. Varying k may give an idea of this function’s behavior,
just as varying the k of f(x, y) = k yields information about the behavior of a
function of two variables.

For example, let T = f(x, y, z) be the temperature (Fahrenheit) at the
point (x, y, z). Then the level surface

68 = f(x, y, z)

consists of all points where the temperature is 68◦.

EXAMPLE 2 Describe the level surfaces of the function u = x2 + y2 + z2.
SOLUTION For each k we examine the equation u = x2 + y2 + z2. If k is
negative, there are no points in the “level surface.” If k = 0, there is only
one point, the origin (0, 0, 0). If k = 1, the equation 1 = x2 + y2 + z2, which
describes a sphere of radius 1 center (0, 0, 0). If k is positive, the level surface
f(x, y, z) = k is a sphere of radius

√
k, center (0, 0, 0). See Figure 16.1.7 �

Summary

We introduced the idea of a function of two variables z = f(P ) is in some
region in the xy plane. The graph of z = f(P ) is usually a surface. But it is
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1082 CHAPTER 16 PARTIAL DERIVATIVES

Figure 16.1.7:

often more useful to sketch a few of its level curves than to sketch that surface.
Each level curve is the projection of a trace of the surface in a plane of the
form z = k. Note that at all points (x, y) on a level curve the function have
the same value. In other words, the function f is constant on a level curve.

In particular, we used level curves to analyze the function z = xy whose
graph is a saddle.

For functions of three variables u = (x, y, z), we defined level surfaces.
When considered on a level surface, k = f(x, y, z) such a function is constant,
with value k.
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EXERCISES for Section 16.1 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 10, graph the given function.

1.[R] f(x, y) = y

2.[R] f(x, y) = x+ 1
3.[R] f(x, y) = 3
4.[R] f(x, y) = −2
5.[R] f(x, y) = x2

6.[R] f(x, y) = y2

7.[R] f(x, y) = x+ y + 1

8.[R] f(x, y) = 2x−y+1

9.[R] f(x, y) = x2 + 2y2

10.[M] f(x, y) =√
x2 + y2

In Exercises 11 to 14 draw for the given functions the
level curves corresponding to the values −1, 0, 1, and
2 (if they are not empty).

11.[R] f(x, y) = x+ y

12.[R] f(x, y) = x+2y
13.[R] f(x, y) = x2 +2y2

14.[R] f(x, y) = x2−2y2

In Exercises 15 to 18 draw the level curves for the given
functions that pass through the given points.

15.[R] f(x, y) = x2 + y2

through (1, 1) Hint: First
compute f(1, 1).

16.[R] f(x, y) = x2 +3y2

through (1, 2)

17.[R] f(x, y) = x2 − y2

through (3, 2)
18.[R] f(x, y) = x2 − y2

through (2, 3)

19.[R]

(a) Draw the level curves for the functions f(x, y) =
x2 + y2 corresponding to the values k =
0, 1, . . . , 9.

(b) By inspection of the curves in (a), decide where
the functions changing most rapidly. Explain
why you think so.

20.[R] Let f(P ) be the average daily so-
lar radiation at the point P (measured in lang-
leys). The level curves corresponding to 350, 400,
450, and 500 langley are shown in Figure 16.1.8.

Figure 16.1.8:

(a) What can be said about the ratio between
the maximum and minimum solar radiation at
points in the United States?

(b) Why are there rather sharp bends in the level
curves in two areas?

21.[R] Let u = g(x, y, z) be a function of three
variables. Describe the level surface g(x, y, z) = 1 if
g(x, y, z) is

(a) x+ y + z

(b) x2 + y2 + z2

(c) x2 + y2 − z2

(d) x2 − y2 − z2 Hint: For (c) and (d) are examples
of quadric surfaces.
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22.[R]

Figure 16.1.9:
The daily weather map shows the barometric pressure
function by a few well-chosen level curves (called iso-
bars), as in Figure 16.1.9. In this case, the function is
‘pressure at (x, y).”

(a) Where is the lowest pressure?

(b) Where is the highest pressure?

(c) Where do you think the wind at ground level is
the fastest? Why?

23.[R] A map of August, 26, 2005 showing isobars
and wind vectors, day of Katrina and some questions.

24.[R] Questions about the map in Figure 16.1.2(b).

25.[M]

(a) Sketch the surface z = x2 + y2.

(b) Show that all the traces by planes parallel to the
xz plane are parabolas.

(c) Show that the parabolas in (b) are all congruent.
(So the surface is made up of identical parabo-
las.)

(d) What kind of curve is a trace in a plane parallel
to the xy plane?

26.[M] Consider the surface z = x2 +4y2. What type
of curve is produced by a trace by a plane parallel to

(a) the xy plane,

(b) the xz palne,

(c) the yz plane.

27.[C]

(a) Is the parabola y = x2 congruent to the parabola
y = 4x2?

(b) Is the parabola y = x2 similar to the parabola
y = 4x2? (One figure is similar to another if one
is simply the other magnified by the same factor
in all direction.)
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16.2 The Many Derivatives of f (x, y).

The notions of limit, continuity and derivative carry over with similar defi-
nitions from functions f(x) of one variable to functions of several variables
f(x, y). However, the derivatives of functions of several variable involves some
new ideas. SHERMAN: There are more

new ideas for limits than
derivatives. In fact, partial
derivatives are a single
variable concept.

Limits and Continuity of f(x, y)

Figure 16.2.1:

The domain of function f(x, y) is the set of points where it is defined.
The domain of f(x, y) = x+ y is the entire xy plane. The domain of f(x, y) =√

1− x2 − y2 is much smaller. In order for the square root of 1 − x2 − y2 to
be defined, 1 − x2 − y2 must not be negative. In other words, we must have
x2 + y2 ≤ 1. The domain is the disk bounded by the circle x2 + y2 = 1, shown
in Figure 16.2.1.

A point P0 is on the boundary of a set if every disk centered at P0, no
matter how small, contains points in the set and points not in the set. (See
Figure 16.2.3.) The boundary of the circle x2 +y2 ≤ 1 is the circle x2 +y2 = 1.
The domain of f(x, y) =

√
1− x2 − y2 includes every point on its boundary.

The domain of f(x, y) = 1/
√

1− x2 − y2 is even smaller. Now we must

not let 1−x2−y2 be 0 or negative. The domain of 1/
√

1− x2 − y2 consists of
the points (x, y) such that x2 + y2 < 1. It is the disk in Figure 16.2.1 without
its boundary.

The function f(x, y) = 1/(y − x) is defined everywhere except on the line
y − x = 0. Its domain is the xy plane from which the line y = x is removed.
(See Figure 16.2.2.)

Figure 16.2.2:

The domain of a function of interest to us will either be the entire xy plane
or some region bordered by curves or lines, or perhaps such a region with a
few points omitted. Let P0 be a point in the domain of a function f . If there is

(a) (b)

Figure 16.2.3:
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a disk with center P0 that lies within the domain of f , we call P0 an interior
point of the domain. (See Figure 16.2.3(b).) When P0 is an interior point of
the domain of f , we know that f(P ) is defined for all points P sufficiently near
P0. Every point P0 in the domain not on its boundary is an interior point. A
set R is called open if each point P of R is an interior point of R. The entire
xy plane is open. So is any disk without its circumference. More generally,
the set of points inside some closed curve but not on it forms an open set.

The definition of the limit of f(x, y) as (x, y) approaches P0 = (a, b) will
not come as a surprise.

DEFINITION (Limit of f(x, y) at P0 = (a, b)) Let f be a func-
tion defined at least at every point in some disk with center P0,
except perhaps at P0. If there is a number L such that f(P ) ap-
proaches L whenever P approaches P0 we call L the limit of f(P )
as P approaches P0. We write

lim
P→P0

f(P ) = L

or
f(P )→ L as P → P0.

We also write
lim

(x,y)→(a,b)
f(x, y) = L.

For most of the functions of interest the limit will always exist throughout
its domain. However, even a formula that is easily defined may not have a
limit at some points.

EXAMPLE 1 Let f(x, y) = x2−y2
x2+y2

. Determine whether limP→(0,0) f(P )
exists.

SOLUTION The function is not defined at (0, 0). When (x, y) is near (0, 0),
both the numerator and denominator of (x2−y2)/(x2 +y2) are small numbers.
There are, as in Chapter 2, two influences. The numerator is pushing the
quotient towards 0 while the denominator is influencing the quotient to be
large. We must be careful.

Figure 16.2.4:

We try a few inputs near (0, 0). For instance, (0.01, 0) is near (0, 0) and

f(0.01, 0) =
(0.01)2 − 02

(0.01)2
+ 02 = 1

Also, (0, 0.01) is near (0, 0) and

f(0, 0.01) =
02 − (0.01)2

02 + (0.01)2
= −1
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More generally, for x 6= 0,

f(x, 0) = 1;

while, for y 6= 0,

f(0, y) = −1

Since x can be as near 0 as we please and y can be as near 0 as we please, it
is not the case that limP→(0,0) f(P ) exists. Figure 16.2.4 shows the graph of

z = x2−y2
x2+y2

. �

Continuity of f(x, y) at P0 = (a, b)

With only slight changes, the definition of continuity for f(x) in Section 2.4
easily generalizes to the definition of continuity for f(x, y).

DEFINITION (Continuity of f(x, y) at P0 = (a, b)). Assume
that f(P ) is defined throughout some disk with center P0. Then f
is continuous at P0 if limP→P0 f(P ) = f(P0).

This means

1. f(P0) is defined (that is, P0 is in the domain of f),

2. limP→P0 f(P ) exists, and

3. limP→P0 f(P ) = f(P0).

Continuity at a point on the boundary of the domain can be defined
similarly. A function f(P ) is continuous if it is continuous at
every point in its domain.

EXAMPLE 2 Determine whether f(x, y) = x2−y2
x2+y2

is continuous at (1, 1).

SOLUTION This is the function explored in Example 1. First, f(1, 1) is

defined. (It equals 0.) Second, lim(x,y)→(1,1)
x2−y2
x2+y2

. (It is 0
2

= 0.) Third,

lim(x,y)→(1,1) f(x, y) = f(1, 1).

Hence, f(x, y) is continuous at (1, 1). �

In fact, the function of Example 2 is continuous at every point (x, y) in its
domain. We do not need to worry about the behavior of f(x, y) when (x, y) is
near (0, 0) because (0, 0) is not in the domain. Since f(x, y) is continuous at
every point in its domain, it is a continuous function.
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The Two Partial Derivatives of f(x, y)

Let (a, b) be a point on the domain of f(x, y). The trace on the surface
z = f(x, y) by a plane through (a, b) and parallel to the z-axis is a curve, as
shown in Figure 16.2.5.

If f is well behaved at the point P = (a, b, f(a, b)) the trace has a slope.
This slope depends on the plane through (a, b). In this section we consider
only the two planes parallel to the coordinate planes y = 0 and x = 0. In the
next section we treat the general cases.

Figure 16.2.5:

Consider the function f(x, y) = x2y3. If we hold y constant and differenti-
ate with respect to x, we obtain d(x2y3)/dx = 2xy3. This derivative is called
the “partial derivative” of x2y3 with respect to x. We could hold x fixed instead
and find the derivative of x2y3 with respect to y, that is, d(x2y3)/dy = 3x2y2.
This derivative is called the “partial derivative” of x2y3 with respect to y. This
example introduces the general idea of partial derivative. First we define them.
Then we will see what they mean in terms of slope and rate of change.

DEFINITION (Partial derivatives.) Assume that the domain of
f(x, y) includes the region within some disk with center (a, b). If

lim
∆x→0

f(a+ ∆x, b)− f(a, b)

∆x

exists, this limit is called the partial derivative of f with re-
spect to x at (a, b). Similarly, if

lim
∆x→0

f(a, b+ ∆y)− f(a, b)

∆y

exists, it is called the partial derivative of f with respect to
y at 9a, b).

The following notations are used for the partial derivatives of z = f(x, y)
with respect to x:Notations for partial

derivatives. ∂z

∂x
,
∂f

∂y
, fx, f1, or zx.

And the following are used for partial derivative of z = f(x, y) with respect to
y:

∂z

∂y
,
∂f

∂y
, fy, f2, or zy.

Since physicists and engineers use the subscript notation in study of vectors,
they prefer to use

∂f

∂x
and

∂f

∂y

October 22, 2010 Calculus
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to denote the two partial derivatives. The symbol ∂∂f/∂x may be viewed as
“the rate at which the function f(x, y) changes when x varies and y is kept
fixed.” The symbol ∂f/∂y records “the rate at which the function f(x, y)
changes when y varies and x is kept fixed.”

The value of ∂f/∂x at (a, b) is denoted

∂f

∂x
(a, b) or

∂f

∂x

∣∣∣∣
(a,b)

.

In the middle of a sentence, we will write it as fx(a, b) or ∂f/∂x(a, b).

EXAMPLE 3 If f(x, y) = sin(x2y), find

1. ∂f/∂x,

2. ∂f/∂y, and

3. ∂f/∂y at (1, π/4).

SOLUTION

1. To find ∂
∂x

(sinx2y), differentiate with respect to x, keeping y constant:

∂
∂x

(sinx2y) = cos(x2y) ∂
∂x

(x2y) chain rule
= cos(x2y)(2xy) y is constant
= 2xy cos(x2y).

2. To find ∂
∂y

(sinx2y), differentiate with respect to y, keeping x constant:

∂
∂y

(sinx2y) = cos(x2y) ∂
∂y

(x2y) chain rule

= cos(x2y)(x2) x is constant
= x2 cos(x2y).

3. By (b)

∂f
∂y

(1, π/4) = x2 cos(x2y)|(1,π/4) = 12 cos
(
12 π

4

)
=
√

2
2
.

�

As Example 3 shows, since partial derivatives are really ordinary deriva-
tives, the procedures for computing derivatives of a function f(x) of a single
variable carry over to functions of two variables.
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Higher-Order Partial Derivatives

Just as there are derivatives of derivatives, so are there partial derivatives of
partial derivatives. For instance, if

z = 2x+ 5x4y7,

then
∂z

∂x
= 2 + 20x3y7 and

∂z

∂y
= 35x4y6.

We may go on and compute the partial derivatives of ∂z/∂x and ∂z/∂y:

∂
∂x

(
∂z
∂x

)
= 60x2y7 ∂

∂y

(
∂z
∂y

)
= 140x3y6

∂
∂x

(
∂z
∂y

)
= 140x3y6 ∂

∂y

(
∂z
∂y

)
= 210x4y5.

There are four partial derivatives of the second order:

∂

∂x

(
∂z

∂x

)
,
∂

∂y

(
∂z

∂x

)
,
∂

∂y

(
∂z

∂y

)
,
∂

∂x

(
∂z

∂y

)
.

These are usually denoted, in the same order, as

∂2z

∂x2
,
∂2z

∂y∂x
,
∂2z

∂y2
,
∂2z

∂x∂y
.

To compute ∂2z/∂x∂y, you first differentiate with respect to y, then with
respect to x. To compute ∂2z/∂y∂x, you first differentiate with respect to x,
then with respect to y. In both cases, “differentiate from right to left in the
order that the variables occur.”

The partial derivative ∂f
∂x

is also denoted fx and ∂f
∂y

is denoted fy. The

second partial derivative ∂2f
∂x∂y

= ∂(fy)

∂x
= (fy)x is denoted fyx. In this case you

differentiate from left to right, “first fy, then (fy)x.” In short, fyx = (fy)x,The subscript notation, fyx,
is generally preferred in the

midst of other text.
fyy = (fy)y, and fxy = (fx)y. In both notations the mixed partial is computed
in the order that resembles its definition (with the parentheses removed), Thus

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
and fxy = (fx)y

are the two different mixed second partial derivatives of f .Equality of the mixed
partials In the computations just done, the two mixed partials zxy and zyx are

equal. For the functions commonly encountered, the two mixed partials are
equal. (For a proof, see Appendix K.)SHERMAN: V had an

appedix on interchanging
limits. How will we deal

with this in VI?
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Exercise 27 presents a function for which the two mixed particles are not
equal. Such a special case mathematicians call “pathological”, though the
function does not view itself as sick.

EXAMPLE 4 Compute
∂2z

∂x2
= fxx,

∂2z

∂y∂x
= fxy, and

∂2z

∂x∂y
= zyx for

z = y cos(xy).
SOLUTION First compute

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
=

∂

∂x
(−y2 sin(xy)) = −y3 cos(xy).

Then

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(−y2 cos(xy)) = −2y sin(xy)− xy2 cos(xy).

Finally,

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(−yx sin(xy) + cos(xy))

= −y ∂
∂x

(x sin(xy) +
∂

∂x
(cos(xy)) = −y(xy cos(xy) + sin(xy))− y sin(xy)

= −xy2 cos(xy)− y sin(xy)− y sin(xy) = −2y sin(xy)− xy2 cos(xy).

Notice that while the work required to compute the mixed partials is very
different, the two derivatives are, as expected, are equal. �

Functions of More Than Two Variables

A quantity may depend on more than two variables. For instance, the volume
of a box depends on three variables: the length l, width w, and height h,
V = lwh. The “chill factor” depends on the temperature, humidity, and wind
velocity. The temperature T at any point in the atmosphere is a function of
the three space coordinates, x, y, and z: T = f(x, y, z). To differentiate, hold all

variables constant except
one.

The notions and notations of partial derivatives carry over to functions of
more than two variables. If u = f(x, y, z, t), there are four first-order partial
derivatives. For instance, the partial derivative of u with respect to x, holding
y, z, and t fixed, is denoted

∂u

∂x
,
∂f

∂x
, ux, etc.

Higher-ordered partial derivatives are defined and denoted similarly. Many Insert CIE on the Vibrating
String.basic problems in chemistry and physics, such as vibrating string are examined

in terms of equations involving partial derivatives (known as PDEs).
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Summary

We defined limit, continuity, and derivatives for functions of several variables.
These notions are all closely related to the one variable versions.

A key difference is that a partial derivative with respect to one variable, say
x, is found by treating all other variables as constants and applying the stan-
dard differentiation rules with respect to x. Higher-order partial derivatives
are also defined much like higher-order derivatives. An important property of
higher-order partial derivatives is that the order in which the partial deriva-
tives are applied can be important, but not for the functions usually met in
applications.
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EXERCISES for Section 16.2 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 8 evaluate the limits, if they exist. SHERMAN: Move some of
these to Chapter Summary.
Emphasis is on partial
derivatives.1.[R] lim

(x,y)→(2,3)

x+ y

x2 + y2

2.[R] lim
(x,y)→(1,1)

x2

x2 + y2

3.[R] lim
(x,y)→(0,0)

x2

x2 + y2

4.[R] lim
(x,y)→(0,0)

xy

x2 + y2

5.[R] lim
(x,y)→(2,3)

xy

6.[R] lim
(x,y)→(0,0)

(x2)y

7.[R] lim
(x,y)→(0,0)

(1 +

xy)1/(xy)

8.[R] lim
(x,y)→(0,0)

(1 + x)1/y

In Exercises 9 to 14, (a) describe the domain of the
given functions and (b) state whether the functions
are continuous.

9.[R] f(x, y) = 1/(x+ y)

10.[R] f(x, y) = 1/(x2 +
2y2)
11.[R] f(x, y) = 1/(9 −
x2 − y2)
12.[R] f(x, y) =

√
x2 + y2 − 25

13.[R] f(x, y) =√
16− x2 − y2

14.[R] f(x, y) =√
49− x2 − y2

In Exercises 15 to 20, find the boundary of the given
region R.

15.[R] R consists of all
points (x, y) such that
x2 + y2 ≤ 1.
16.[R] R consists of all
points (x, y) such that
x2 + y2 < 1.
17.[R] R consists of all
points (x, y) such that
1/(x2 + y2) is defined.
18.[R] R consists of all

points (x, y) such that
1/(x+ y) is defined.

19.[R] R consists of all
points (x, y) such that
y < x2.

20.[R] R consists of all
points (x, y) such that
y ≤ x.

In Exercises 21 to 24 concern the precise definition of
lim(x,y)→P0

f(x, y).
21.[R] Let f(x, y) = x+ y.

(a) Show that if P = (x, y) lies within a distance 0.01
of (1, 2), then |x − 1| < 0.01 and |y − 2| < 0.01.
(See Figure 16.2.6).

(b) Show that if |x − 1| < 0.01 and |y − 2| < 0.01,
then |f(x, y)− 3| < 0.02.

(c) Find a number δ > 0 such that if P = (x, y)
is in the disk of center (1, 2) and radius δ, then
|f(x, y)− 3| < 0.001.

(d) Show that for any positive number ε, no mat-
ter how small, there is a positive number δ such
that when P = (x, y) is in the disk of radius δ
and center (1, 2), then |f(x, y)− 3| < ε. (Give δ
as a function of ε.)

(e) What may we conclude on the basis of (d)?

Figure 16.2.6:

22.[R] Let f(x, y) = 2x+ 3y.

(a) Find a disk with center (1, 1) such that whenever
P is in that disk, |f(P )− 5| < 0.01

(b) Let ε be any positive number. Show that there
is a disk with center (1, 1) such that whenever
P us in that disk, |f(P ) − 5| < ε. (Give δ as a
function of ε.)

(c) What may we conclude on the basis of (b)?
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23.[R] Let f(x, y) = s2y/(x4 + 2y2).

(a) What is the domain of f?

(b) Fill in this table:

(x, y) (0.01, 0.01) (0.01, 0.02) (0.001, 0.003)
f(x, y)

(c) On the basis of (b), do you think limP→(0,0) f(P )
exists? If so, what is its value?

(d) Fill in this table:

(x, y) (0.5, 0.25) (0.1, 0.01) (0.001, 0.000001)
f(x, y)

(e) On the basis of (d), do you think limP→(0,0) f(P )
exists? If so, what is its value?

(f) Does limP→(0,0) f(P ) exist? If so, what is it?
Explain.

24.[R] Let f(x, y) = 5x2y/(2x4 + 3y2).

(a) What is the domain of f?

(b) As P approaches (0, 0) on the line y = 2x, what
happens to f(P )?

(c) As P approaches (0, 0) on the line y = 3x, what
happens to f(P )?

(d) As P approaches (0, 0) on the parabola y = x2,
what happens to f(P )?

(e) Does limP→(0,0) f(P ) exist? If so, what is it?
Explain.

25.[R] Show that for any polynomial P (x, y), Pyx
equals Pxy. Suggestion: It is enough to show it for an
arbitrary monomial axmyn, where a is constant and m
and n are non-negative integers. The case where m or
n is 0 should be treated separately.

26.[M] Let T (x, y, z) = 1/
√
x2 + y2 + z2, if (x, y, z)

is not the origin (0, 0, 0). Show that

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
= 0

This equation arises in the theory of heat as we will
show in Section 16.4.

27.[C] This exercise presents a function f(x, y) such
that its two mixed partial derivatives at (0, 0) are not
equal.

(a) Let g(x, y) = x2−y2
x2+y2

for (x, y) not (0, 0).
Show that limk→0(limh→0 g(h, k)) = −1 but
limh→0(limk→0 g(h, k)) = 1.

(b) Let f(x, y) = xyg(x, y) if (x, y) is not (0, 0) and
f(0, 0) = 0. Show that f(x, y) = 0 if x or y is 0.

(c) Show that fxy(0, 0) = limk→0
fx(0,k)−fx(0,0)

k .

(d) Show that fxy(0, 0) = limk→0

(
limh→0

f(h,k)−f(j,k)−f(h,0)+f(0,0)
hk

)
.

(e) Show that fxy(0, 0) = −1.

(f) Similarly, show that fxy(0, 0) = 1.

(g) Show that in polar coordinates the value of f at
the point (r, θ) is r2 sin(4θ)/4.
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16.3 Change and the Chain Rule

For a function of one variable, f(x), the change in the value of the function as
the input changes from a to a+ ∆x is approximately f ′(a)∆x. In this section
we estimate the change in f(x, y) as (x, y) moves from (a, b) to (a+∆x, b+∆y).

That type of estimate is the key to obtaining the chain rule for functions
of several variables. We will find that the chain rule involves the sum of terms
that resemble the product dy

du
· du
dx

that appear in the chain rule for a function
of one variable.

Estimating the Change of ∆f

Let z = f(x, y) be a function of two variables with continuous partial deriva-
tives at least throughout a disk centered at the point (a, b). We will express
∆f = f(a+ ∆x, b+ ∆y)− f(a, b) in terms of fx and fy. This change is shown
in Figure 16.3.1. We can view this change as obtained in two steps. First, the

Figure 16.3.1:

change as x goes from a to a+ ∆x, that is, f(a+ ∆x, b)− f(a, b). Second, the
change from f(a+ ∆x, b) to f(a+ ∆x, b+ ∆y), as y changes from b to b+ ∆y.

In short,

∆f = (f(a+ ∆x, b)− f(a, b)) + (f(a+ ∆x, b+ ∆y)− f(a+ ∆, b)) . (16.3.1)

By the mean-value theorem, there is a number c1 between a and a+ ∆x such (16.3.1) is clear algebraically
because the two
f(a+ ∆x, b) terms cancel.

that

f(a+ ∆x, b)− f(a, b) =
∂f

∂x
(c1, b)∆x (16.3.2)

Similarly, applying the mean-value theorem to the second bracket expres-
sion as (16.3.2), we see that there is a number c3 between b and b + ∆y such
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that

f(a+ ∆x, b+ ∆y)− f(a+ ∆x, b) =
∂f

∂y
(a+ ∆x, c2)∆y. (16.3.3)

Combining (16.3.1), (16.3.2) and (16.3.3) we obtain

∆f =
∂f

∂x
(c1, b)∆x+

∂f

∂y
(z + ∆x, c2)∆y. (16.3.4)

When both ∆x and ∆y are small, the points (c1, b) and (a+∆x, c2) are near
the point (a, b). If we assume that the partial derivatives fx are continuous at
(a, b), then we may conclude that

∂f

∂x
(c1, b) =

∂f

∂x
(a, b) + ε1 and

∂f

∂y
(a+ ∆x, c2) =

∂f

∂y
(a, b) + ε2, (16.3.5)

where both ε1 and ε2 approach 0 as ∆x and ∆y approach 0.
Combining (16.3.4) and (16.3.5) gives the key to estimating the change in

the function f . We state this important result as a theorem.

Theorem 16.3.1. Let f have continuous partial derivatives fx and fy for all
points within some disk with center at the point (a, b). Then ∆f , which is the
change f(a+ ∆x, b+ ∆y)− f(a, b), can be written

∆f =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y + ε1∆x+ ε2∆y, (16.3.6)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0. (Both ε1 and ε2 are
functions of the four variables a, b, ∆x and ∆y.)

This equation is the core of
this section. The term fx(a, b)∆x estimates the change due to the change in the x-

coordinate, while fy(a, b)∆y estimates the change due to the change in the
y-coordinate.

We will call f(x, y) differentiable at (a, b) if (16.3.6) holds. In particular if
the partial derivatives fx and fy exist in a disk around (a, b) and are continuous
at (a, b), then f is differentiable at (a, b).

Since ε1 and ε2 in (16.3.6) both approach 0 as ∆x and ∆y approach 0,

∆f ≈ ∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y, (16.3.7)
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The approximation (16.3.7) gives us a way to estimate ∆f when ∆x and
∆y are small.

EXAMPLE 1 Estimate (2.1)2(0.95)3.
SOLUTION Let f(x, y) = x2y3. We wish to estimate f(2.1, 0.95). We know
that f(2, 1) equals 2213 = 4. We use (16.3.7) to estimate ∆f = f(2.1, 0.95)−
f(2, 1). We have

∂(x2y3)

∂x
= 2xy3 and

∂(x2y3)

∂y
= 3x2y2.

Then
∂f

∂x
(2, 1) = 4 and

∂f

∂y
(2, 1) = 12.

Since ∆x = 0.1 and ∆y = −0.05, we have

∆f = 4(0.1) + 12(−0.05) = 0.4− 0.6 = −0.2.

Thus (2, 1)2(0.95)3 is approximately 4 + (−0.2) = 3.8. � The exact value is
3.78102375.
DOUG: You may want to do
more with “approximation”.
SHERMAN: What do you
mean by this?

The Chain Rule

We begin with two special cases of the chain rule for functions of more than one
variable. Afterward we will state the chain rule for functions of any number
of variables.

The first theorem considers the case when z = f(xy) and x and y are
functions of just one variable t. The second theorem is more general, where x
and y may be functions of two variables, t and u.

Theorem. Chain Rule – Special Case #1 Let z = f(x, y) have continuous
partial derivatives fx and fy, and let x = x(t) and y = y(t) be differentiable
functions of t. Then z is a differentiable function of t and

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
. (16.3.8)

Proof

By definition,
dz

dt
= lim

∆t→0

∆z

∆t
.

Now, ∆t induces changes ∆x and ∆y in x and y, respectively. According to
Theorem 16.3.1,

Figure 16.3.2:

∆z =
∂f

∂x
(x, y)∆x+

∂f

∂y
(x, y)∆y + ε1∆x+ ε2∆y,
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where ε1 → 0 and ε2 → 0 as ∆x and ∆y approach 0. (Keep in mind that x
and y are fixed.) Thus

∆z

∆t
=
∂f

∂x
(x, y)

∆x

∆t
+
∂f

∂y
(x, y)

∆y

∆t
+ ε1

∆x

∆t
+ ε2

∆y

∆t
.

and
dz

dt
= lim

∆t→0

∆z

∆t
=
∂f

∂x
(x, y)

dx

dt
+
∂f

∂y
(x, y)

dy

dt
+ 0

dx

dt
+ 0

dy

dt
.

This proves the theorem. •

MEMORY AID: Each path produces one summand. And, each leg in each
path produces one factor in that summand.

The two summands on the right-hand sides of (16.3.8) remind us of the
chain rule for functions of one variable. Why is there a “+” in (16.3.8)? The
“+” first appears in (16.3.4) and you can trace it back to Figure 16.3.1.

The diagram in Figure 16.3.2 helps in using this special case of the chain
rule . There are two paths from the top variable z down to the bottom variable

Figure 16.3.3:Figure 16.3.4:

t. Label each edge with the appropriate partial derivative (or derivative). For
each path there is a summand in the chain rule. The left-hand path (see
Figure 16.3.3) gives us the summand

∂z

∂x

dx

dt
.

The right-hand path (see Figure 16.3.4) gives us the summand

∂z

∂y

dy

dt
.

Then dz/dt is the sum of those two summands.

EXAMPLE 2 Let z = x2y3, x = 3t2, and y = t/3. Find dz/dt when t = 1.
SOLUTION In order to apply the special case of the chain rule, compute zx,
zy, dx/dt, and dy/dt:

∂z

∂x
= 2xy3 ∂z

∂y
= 3x2y2

dx

dt
= 6t

dy

dt
=

1

3
.
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By the special case of the chain rule,

dz

dt
= 2xy3 · 6t+ 3x2y2 · 1

3
.

In particular, when t = 1, x is 3 and y is 1
3
. Therefore, when t = 1,

dz

dt
= 2 · 3

(
1

3

)3

6 · 1 + 3 · 32

(
1

3

)2
1

3
=

36

27
+

27

27
=

7

3
.

�
In Example 2, the derivative dz/dt can be found without using the theorem.

To do this, express z explicitly in terms of t:

z = x2y3 = (3t2)2

(
t

3

)3

=
t7

3
.

Then
dz

dt
=

7t6

3
.

When t = 1, this gives
dz

dt
=

7

3
,

in agreement with the first computation.

EXAMPLE 3 The temperature at the points (x, y) on a window is T (x, y).
A bug wandering on the window is at the point (x(t), y(t)) at time t. How fast
does the bug observe that the temperature of the glass changes as he crawls
about?
SOLUTION The bug is asking us to find dT/dt. The chain rule (16.3.8) tells
us that

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
.

The bug can influence this rate by crawling faster or slower. He may want to
know the direction he should choose in order to cool off as quickly as possible.
But we will not be able to tell him how to do this until the next section,
Section 16.4. �

The proof of the next chain rule is almost identical to the proof of Theo-
rem 16.3. (See Exercise 24.)

Theorem. Chain Rule – Special Case #2 Let z = f(x, y) have continuous
partial derivatives, fx and ft. Let x = x(t, u) and y = (t, u) have continuous
partial derivatives

∂x

∂t
,

∂x

∂u
,

∂y

∂t
,

∂y

∂u
.

Calculus October 22, 2010



1100 CHAPTER 16 PARTIAL DERIVATIVES

Then
∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
and

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
.

Figure 16.3.5:

The variables are listed in Figure 16.3.5.
To find zt, draw all the paths from z down to t. Label the edges by the

appropriate partial derivative, as shown in Figure 16.3.6.
Each path from the top variable down to the bottom variable contributes a

summand in the chain rule. The only difference between Figure 16.3.2 and Fig-
ure 16.3.6 is that ordinary derivatives dx/dt and dy/dt appear in Figure 16.3.2,
while partial derivatives xt and yt appear in Figure 16.3.6.

Figure 16.3.6:

In the first special case of the chain rule there are two middle variables and
one bottom variable. In the second chain rule there are two middle variables
and two bottom variables. The chain rule holds for any number of middle
variables and any number of bottom variable. For instance, there may be
three middle variables and, say, four bottom variables. In that case there are
three summands for each of four partial derivatives.

In the next example there is only one middle variable and two bottom
variables.

EXAMPLE 4 Let z = f(u) be a function of a single variable. Let u =
2x+ 3y. Then z is a composite function of x and y. Show that

2
∂z

∂y
= 3

∂z

∂x
. (16.3.9)

SOLUTION We will evaluate both zx and zy by the chain rule and then
check whether (16.3.9) is true.

To find zx we consider all paths from z down to x. There is only one middle
variable so there is only one path. Since u = 2x+ 3y, ux = 2. Thus

∂z

∂x
=
dz

du

∂u

∂x
=
dz

du
· 2 = 2

dz

du

(Note that one derivative is ordinary, while the other is a partial derivative.)
Next we find zy. Again, there is only one summand. Since u = 2x + 3y,

uy = 3. Thus
∂z

∂y
=
dz

du

∂u

∂y
=
dz

du
· 3 = 3

dz

du
.

Thus zx = 2dz/du and zy = 3dz/du. Substitute these into the equation

2
∂z

∂y
= 3

∂z

∂x
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to see whether we obtain a true equation:

2

(
3
dz

du

)
= 3

(
2
dz

du

)
. (16.3.10)

Since (16.3.10) is true, we have verified (16.3.9). �

An Important Use of the Chain Rule

There is a fundamental difference between Example 2 and Example 4. In the
first example, we were dealing with explicitly given functions. We did not
really need to use the chain rule to find the derivative, dz/dt. As remarked
after the example, we could have shown that z = t7/3 and easily found that
dz/dt = 7t6/3. But in Example 4, we were dealing with a general type of
function formed in a certain way: We showed that (16.3.9) holds for every
differentiable function f(u). No matter what f(u) we choose, we know that
2zy = 3zx.

Example 4 shows why the chain rule is important. It enables us to make
general statements about the partial derivatives of an infinite number of func-
tions, all of which are formed the same way. The next example illustrates this
use again. The wave equation also

appears in the study of
sound or light.

D’Alembert in 1746 obtained the partial differential equation for a vibrating
string:

∂2y

∂t2
= k2 ∂

2y

∂x2
. (16.3.11)

(See Figure C.21.3 in the CIE about the Wave in a Rope.) This “wave equa-
tion” created a great deal of excitement, especially since d’Alembert showed
that any differentiable function of the form

g(x+ kt) + h(x− kt)

is a solution.
Before we show that d’Alembert is right, we note that it is enough to check

it for g(x+kt). If you replace k by −k in it, you will also have a solution since
replacing k by −k in (16.3.11) doesn’t change the equation.

EXAMPLE 5 Show that any function y = g(x + kt) satisfies the partial
differential equation (16.3.11).
SOLUTION In order to find the partial derivatives yxx and ytt we express
y = g(x+ kt) as a composition of functions:

Figure 16.3.7:

y = g(u) where u = x+ kt.

Note that g is a function of just one variable. Figure 16.3.7 lists the variables.
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We will compute yxx and ytt in terms of derivatives of g and then check
whether (16.3.11) holds. We first compute yxx. First of all,Recall that u = x+ kt.

∂y

∂x
=
dy

du

∂u

∂x
=
dy

du
· 1 =

dy

du
. (16.3.12)

(There is only one path from y down to x. See Figure 16.3.7.) In (16.3.12)
dy/du is viewed as a function of x and t; that is, u is replaced by x+kt. Next,

∂2y

∂x2
=

∂

∂x

(
∂y

∂x

)
=

∂

∂x

(
dy

du

)
.

Now, dz/du, viewed as a function of x and t, may be expressed as a composite
function. Letting w = dy/du, we have

w = f(u), where u = x+ kt.

Therefore

Figure 16.3.8:

∂2y
∂x2 = ∂

∂x

(
∂y
∂x

)
= ∂w

∂x

= dw
du
· ∂u
∂x

(only one path down to x)

= d
du

(
dy
du

)
∂u
∂x

= d2y
du2 · 1;

hence
∂2y

∂x2
=
d2y

du2
. (16.3.13)

Then we also express ytt in terms of d2y/du2, as follows. First of all,

Figure 16.3.9:

∂y

∂t
=
dy

du

∂u

∂t
=
dy

du
· k = k

dy

du
.

(See Figure 16.3.9.)
Then

∂2y
∂t2

= ∂
∂t

(
∂y
∂t

)
= ∂

∂t

(
k dy
du

)
= k d

du

(
dy
du

)
· ∂u
∂t

(only one path down to t)

= k d
2y
du2 · k;

hence
∂2y

∂t2
= k2 d

2z

du2
(16.3.14)

Comparing (16.3.13) and (16.3.14) shows that

∂2z

∂t2
= k2 d

2z

dx2

�
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Summary

The section opened by showing that under suitable assumptions on f(x, y)

∆f =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b) + ε1∆x+ ε2∆y, (16.3.15)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0. This gave us a way to
estimate ∆f , namely

∆f ≈ ∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y

“The change is due to both the change in x and the change in y.” (16.3.15)
generalizes to any number of variables and also is the basis for the various
chain rules for partial derivatives. This is the general case:

Figure 16.3.10:

If z is a function of x1, x2, . . . xm and each xi is a function of t1, t2 . . . tn,
then there are n partial derivatives of ∂z/∂tj. Each is a sum of m products
of the form (∂z/∂xi)(∂xi/∂tj). To do the bookkeeping, first make a roster
as shown in Figure 16.3.10. To compute ∂z/∂tj, list all paths from z down

Figure 16.3.11:

to tj, as shown in Figure 16.3.11. Each path that starts at z and goes down
to tj “contributes” a product. You do not have to be a great mathematician Some advice

to apply the chain rule. However, you must do careful bookkeeping. First,
display the top, middle, and bottom variables. Second, keep in mind that the
number of middle variables determines the number of summands.
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EXERCISES for Section 16.3 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4 verify the chain rule (Special Case
#1, on page 1097) by computing dz/dt two ways: (a)
with the chain rule, (b) without the chain rule (by
writing z as a function of t).

1.[R] z = x2y3, x = t2,
y = t3

2.[R] z = xey, x = t,
y = 1 + 3t
3.[R] z = cos(xy2),

x = e2t, y = sec(3t)

4.[R] z = ln(x + 3y),
x = t2, y = tan(3t).

In Exercises 5 and 6 verify the chain rule (Special Case
#2, on page 1099) by computing dz/dt two ways: (a)
with the chain rule, (b) without the chain rule (by
writing z as a function of t and u).

5.[R] z = x2y, x−3t+4u,
y = 5t− u
6.[R] z = sin(x + 3y),

x =
√
t/u, y =

√
t+
√
u

7.[R] Assume that z = f(x1, x2, x3, x4, x5) and that
each xi is a function of t1, t2, t3.

(a) List all variables, showing top, middle, and bot-
tom variables.

(b) Draw the paths involved in expressing ∂z/∂t3 in
terms of the chain rule.

(c) Express ∂z/∂t3 in terms of the sum of products
of partial derivatives.

(d) When computing ∂z/∂t2, which variables are
constant?

(e) When computing ∂z/∂t3, which variables are
constant?

8.[R] If z = f(g(t1, t2, t3), h(t1, t2, t3))

(a) How many middle variables are there?

(b) How many bottom variables?

(c) What does the chain rule say about ∂z/∂t3? (In-
clude a diagram showing the paths.)

9.[R] Find dz/dt if zx = 4, xy = 3, dx/dt = 4, and
dy/dt = 1.

10.[R] Find dz/dt if zx = 3, zy = 2, dx/dt = 4, and
dy/dt = −3.

11.[R] Let z = f(x, y), x = u+ v, and y = u− v.

(a) Show that (zx)2 − (zy)2 = (zu)(zv). (Include di-
agrams.)

(b) Verify (a) when f(x, y) = x2 + 2y3.

12.[R] Let z = f(x, y), x = u2 − v2, and y = v2 − u2.

(a) Show that

u
∂z

∂v
+ v

∂z

∂u
= 0.

(Include diagrams.)

(b) Verify (a) when f(xy) = sin(x+ 2y).

13.[R] Let z = f(t− u,−t+ u).

(a) Show that ∂z
∂t + ∂z

∂u = 0 (Include diagrams.)

(b) Verify (a) when f(x, y) = x2y

14.[R] Let w = f(x− y, y − z, z − x).

(a) Show that ∂w
∂x + ∂w

∂y + ∂w
∂z = 0. (Include diagrams.)

(b) Verify (a) in the case f(s, t, u) = s2 + t2 − u.
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§ 16.3 CHANGE AND THE CHAIN RULE 1105

15.[R] Let z = f(u, v) where u = ax+by, v = cx+dy,
and a, b, c, d are constants. Show that

(a)
∂2z

∂x2
= a2∂

2f

∂u2
+ 2ac

∂2f

∂u∂v
+ c2∂

2f

∂v2

(b)
∂2z

∂y2
= b2

∂2f

∂u2
+ 2bd

∂2f

∂u∂v
+ d2∂

2f

∂v2

(c)
∂2z

∂x∂y
= ab

∂2f

∂u2
+ (ad+ bc)

∂2f

∂u∂v
+ cd

∂2f

∂v2
.

16.[R] Let a, b, and c be given constants and consider
the partial differential equation

a
∂2z

∂x2
+ b

∂2z

∂x∂y
+ c

∂2z

∂y2
= 0

Assume a solution of the form z = f(y + mx), where
m is a constant. Show that for this function to be a
solution, am2 + bm+ c must be 0.

17.[R]

(a) Show that any function of the form z = f(x+ y)
is a solution of the partial differential equation

∂2z

∂x2
− 2

∂2z

∂x∂y
+
∂2z

∂y2
= 0.

(b) Verify (a) for z = (x+ y)3.

18.[R] Let u(x, t) be the temperature at point x along
a rod at time t. The function u satisfies the one-
dimensional heat equation for a constant k:

∂u

∂t
= k

∂2u

∂x2
.

(a) Show that u(x, t) = ektg(x) satisfies the heat
equation if g(x) is any function such that g′′(x) =
g(x).

(b) Show that if g(x) = 3e−x + 4ex, then g′′(x) =
g(x).

19.[R]

(a) Show that any function of the form z = f(x +
y) + eyf(x− y) is a solution of the partial differ-
ential equation

∂2z

∂x2
− ∂2z

∂y2
− ∂z

∂x
+
∂z

∂y
= 0.

(b) Check (a) for z = (x+ y)2 + ey sin(x− y).

20.[R] Let z = f(x, y) denote the temperature at the
point (x, y) in the first quadrant. If polar coordinates
are used, then we would write z = f(r, θ).

(a) Express zr in terms of zx and xy. Hint: What
is the relation between rectangular coordinates
(x, y) and polar coordinates (r, θ)?

(b) Express zθ in terms of zx and zy.

(c) Show that(
∂z

∂x

)2

+
(
∂z

∂y

)2

=
(
∂z

∂r

)2

+
1
r2

(
∂z

∂θ

)2

.

21.[R] Let u = f(r) and r = (x2 + y2 + z2)1/2. Show
that

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=
d2u

dr2
+

2
r

du

dr
.

22.[R] At what rate is the volume of a rectangular
box changing when its width is 3 feet and increasing
at the rate of 2 feet per second, its length is 8 feet
and decreasing at the rate of 5 feet per second, and its
height is 4 feet and increasing at the the rate of 2 feet
per second?

23.[R] The temperature T at (x, y, z) in space is
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f(x, y, z). An astronaut is traveling in such a way that
his x and y coordinates increase at the rate of 4 miles
per second and his z coordinate decreases at the rate of
3 miles per second. Compute the rate dT/dt at which
the temperature changes at a point where

∂T

∂x
= 4,

∂T

∂y
= 7, and

∂T

∂z
= 9.

24.[M] We proved Special Case #1 of the chain rule
(page 1097), when there are two are two middle vari-
ables and one bottom variable. Prove Special Case
#2 of the chain rule (page 1099), where there are two
middle variables and two bottom variables.

25.[M] To prove the general chain rule when there
are three middle variables, we need an analog of Theo-
rem 16.3.1 concerning ∆f when f is a function of three
variables.

(a) Let y = f(x, y, x) be a function of three vari-
ables. Show that

∆f = f(x+ ∆x, y + ∆y, z + ∆z)− f(x, y, z)
= (f(x+ ∆x, y, z)− f(x, y, z)) + (f(x+ ∆x, y + ∆y, z)− f(x+ ∆x, y, z))

+(f(x+ ∆x, y + ∆y, z + ∆z)− f(x+ ∆x, y + ∆y, z)).

(b) Using (a) show that

∆f =
∂f

∂x
(x, y, z)∆x+

∂f

∂y
(x, y, z)∆y+

∂f

∂z
(x, y, z)∆z+ε1∆x+ε2∆y+ε3∆z,

where ε1, ε2, ε3 → 0 as ∆x, ∆y, ∆z → 0.

(c) Obtain the general chain rule in the case of three
middle variables and any number of bottom vari-
ables.

26.[M] Let z = f(x, y), where x = r cos(θ) and
y = r sin(θ). Show that

∂2z

∂r2
= cos2(θ)

∂2f

∂x2
+ 2 cos(θ) sin(θ)

∂2f

∂x∂y
+ sin2(θ)

∂2f

∂y2
.

27.[M] Let u = f(x, y), where x = r cos(θ) and
y = r sin(θ). Verify the following equation, which ap-
pears in electromagnetic theory,

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
=
∂2u

∂x2
+
∂2u

∂y2
.

28.[M] Let u be a function of x and y, where x and
y are both functions of s and t. Show that

∂2u

∂s2
=
∂2u

∂x2

(
∂x

∂s

)2

+2
∂2u

∂x∂y

∂x

∂s

∂y

∂x
+
∂2u

∂y2

(
∂y

∂x

)2

+
∂u

∂x

∂2x

∂s2
+
∂u

∂y

∂2y

∂s2
.

29.[C] Let (r, θ) be polar coordinates for the point
(x, y) given in rectangular coordinates.

(a) From the relation r =
√
x2 + y2, show that

∂r/∂x = cos(θ).

(b) From the relation r = x/ cos θ, show that
∂r/∂x = 1/ cos(θ).

(c) Explain why (a) and (b) are not contradictory.

30.[C] In developing (16.3.6), we used the path that
started at (x, y), went to (x + ∆x, y), and ended at
(x + ∆x, y + ∆y). Could we have used the path from
(x, y), through (x, y+∆y), to (x+∆x, y+∆y) instead?
If “no”, explain why. If “yes,” write out the argument,
using the path.

In Exercises 31 to 34 concern homogeneous func-
tions. A function f(x, y) is homogeneous of degree r if
f(kx, ky) = krf(x, y) for all k > 0.
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31.[R] Verify that each
of the following functions
is homogeneous of degree
1 and also verify that each
satisfies the conclusion of
Euler’s theorem (with r =
1):

f(x, y) = x
∂f

∂x
+ y

∂f

∂y
.

(a) f(x, y) = 3x+ 4y

(b) f(x, y) = x3y−2

(c) f(x, y) = xex/y

32.[M] Show that each
of the following functions
is homogeneous, and find
the degree r.

(a) f(x, y) = x2(lnx −
ln y)

(b) f(x, y) = 1/
√
x2 + y2

(c) f(x, y) = sin
( y
x

)

33.[C] (See Exercise 31.)
Show that if f is homo-
geneous of degree r, then
xfx + yfy = rf . This is
the general form of Euler’s
theorem.

34.[C] (See Exercise 33.)
Verify Euler’s theorem for
each of the functions in
Exercise 32.

35.[C] (See Exercise 32.)
Show that if f is homo-
geneous of degree r, then
∂f/∂x is homogeneous of
degree r − 1.
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16.4 Directional Derivatives and the Gradient

In this section we generalize the notion of a partial derivative to that of a
directional derivative. Then we introduce a vector, called “the gradient,” to
provide a short formula for the directional derivative. The gradient will have
other uses later in this chapter and in Chapter 18.

Directional Derivatives

If z = f(x, y), the partial derivative ∂f/∂x tells us how rapidly z changes as
we move the input point (x, y) in a direction parallel to the x-axis. Similarly,
fy tells how fast z changes as we move parallel to the y-axis. But we can ask,
“How rapidly does z change when we move the input point (x, y) in any fixed
direction in the xy plane?” The answer is given by the directional derivative.It is important to remember

that ‖u‖ = 1. Consider a function z = f(x, y), let’s say the temperature at (x, y). Let
(a, b) be a point and let u be a unit vector in the xy plane. Draw a line through
(a, b) and parallel to u. Call it the t-axis and let its positive part point in the
direction of u. Place the 0 of the t-axis at (a, b). (See Figure 16.4.1.) Each
value of t determines a point (x, y) on the t-axis and thus a value of z. Along
the t-axis, z can therefore be viewed as a function of t, z = g(t). The derivative
dg/dt, evaluated at t = 0, is called the directional derivative of z = f(x, y)
at (a, b) in the direction u. It is denoted Duf . The directional derivative is the
slope of the tangent line to the curve z = g(t) at t = 0. (See Figure 16.4.1(c).)

(a) (b) (c)

Figure 16.4.1: ARTIST: Improved figures are needed here.

When u = i, we obtain the directional derivative Duf , which is simply fx.
When u = j, we obtain Djf , which is fy.

The directional derivative generalizes the two partial derivatives fx and fy.
After all, we can ask for the rate of change of z = f(x, y) in any direction in
the xy plane, not just the directions indicated by the vectors i and j.

The following theorem shows how to compute a directional derivative.
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Theorem. (Directional Derivatives) If f(x, y) has continuous partial deriva-
tives fx and fy, then the directional derivative of f at (a, b) in the direction of
u = cos(θ)i + sin(θ)j where θ is the angle between u and i is

∂f

∂x
(a, b) cos(θ) +

∂f

∂y
(a, b) sin(θ). (16.4.1)

Proof

The directional derivative of f at (a, b) in the direction u is the derivative of

Figure 16.4.2:

the function
g(t) = f(a+ t cos(θ), b+ t sin(θ))

when t = 0. (See Figure 16.3.2 and Figure 16.3.3.)

Figure 16.4.3:

Now, g is a composite function

g(t) = f(x, y) where

{
x = a+ t cos(θ)
y = b+ t sin(θ).

The chain rule tells us that

g′(t) =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Moreover,
dx

dt
= cos(θ) and

dy

dt
= sin(θ).

Thus

g′(0) =
∂f

∂x
(a, b) cos θ +

∂f

∂y
(a, b) sin θ,

and the theorem is proved. • Check (16.4.1) when θ = 0
When θ = 0, that is, u = i, (16.4.1) becomes

∂f

∂x
(a, b) cos(0) +

∂f

∂y
(a, b) sin(0) =

∂f

∂x
(a, b)(1) +

∂f

∂y
(a, b)(0) =

∂f

∂x
(a, b).

Check (16.4.1) when θ = π

When θ = π, that is, u = −i, (16.4.1) becomes

∂f

∂x
(a, b) cos(π) +

∂f

∂y
(a, b) sin(π) =

∂f

∂x
(a, b)(−1) +

∂f

∂y
(a, b)(0) = −∂f

∂x
(a, b).

(This makes sense: If the temperature increases as you walk east, then it
decreases when you walk west.) Check (16.4.1) when θ = π

2

When θ = π
2
, that is, u = j, (16.4.1) asserts that the directional derivative

is

∂f

∂x
(a, b) cos(

π

2
) +

∂f

∂y
(a, b) sin(

π

2
) =

∂f

∂x
(a, b)(0) +

∂f

∂y
(a, b)(1) =

∂f

∂y
(a, b).
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which also is expected.

EXAMPLE 1 Compute the derivative of f(x, y) = x2y3 at (1, 2) in the di-
rection given by the angle π/3. (That is, u = cos(π/3)i+sin(π/3)j.) Interpret
the results if f describes a temperature distribution.

SOLUTION First of all,

∂f

∂x
= 2xy3 and

∂f

∂y
= 3x2y2.

Hence
∂f

∂x
(1, 2) = 16 and

∂f

∂y
(1, 2) = 12.

Second,

cos
(π

3

)
=

1

2
and sin

(π
3

)
=

√
3

2
.

Thus the derivative of f in the direction given by θ = π/3 is

16

(
1

2

)
+ 12

(√
3

2

)
= 8 + 6

√
3 ≈ 18.3923.

If x2y3 is the temperature in degrees at the point (x, y), where x and y are
measured in centimeters, then the rate at which the temperature changes at
(1, 2) in the direction given by θ = π/3, is approximately 18.4 degrees per
centimeter. �

The Gradient

Equation (16.4.1) resembles the formula for the dot product. To exploit this
similarity, it is useful to introduce the vector whose scalar components are
fx(a, b) and fy(a, b).

DEFINITION (The gradient of f(x, y).) The vector

∂f

∂x
(a, b)i +

∂f

∂y
(a, b)j

is the gradient of f at (a, b) and is denoted ∇f . (It is also called
“del f ,” because of the upside-down delta ∇.)

The del symbol is in boldface to emphasize that the gradient of f is a
vector. For instance, let f(x, y) = x2 + y2. We compute and draw ∇f at a few
points, listed in the following table:

Figure 16.4.4:

Figure 16.4.4 shows ∇f , with the tail of ∇f placed at the point where ∇f
is computed.

In vector notation, Theorem 16.4 reads as follows:
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(x, y) ∂f
∂x

= 2x ∂f
∂y

= 2y ∇f
(1, 2) 2 4 2i + 4j
(3, 0) 6 0 6i

(2,−1) 4 −2 4i− 2j

Table 16.4.1:

Theorem. Directional Derivative - Rephrased If z = f(x, y) has continuous
partial derivatives fx and fy, then at (a, b)

Duf = ∇f(a, b) · u = (fx(a, b)i + fy(a, b)j) · u.

The gradient is introduced not merely to simplify the computation of di-
rectional derivatives. Its importance is made clear in the next theorem.

A Different View of the Gradient

The gradient vector provides two important pieces of geometric information
about a function. The gradient vector, ∇f(a, b), always points in the direction
in which the function increases most rapidly from the point (a, b). In the
same way, the negative of the gradient vector, −∇f(a, b), always points in the
direction in which the function decreases most rapidly from the point (a, b).
And, the length of the gradient vector, ‖∇f(a, b)‖, is the largest directional
derivative of f at (a, b). The meaning of ‖∇f‖ and

the direction of ∇f

Theorem. Significance of ∇f Let z = f(x, y) have continuous partial deriva-
tives fx and fy. Let (a, b) be a point in the plane where ∇f is not 0. Then the
length of ∇f at (a, b) is the largest directional derivative of f at (a, b). The
direction of ∇f is the direction in which the directional derivative at (a, b) has
its largest value.

Proof

By the definition of the directional derivative, if u is a unit vector, then, at

Figure 16.4.5:

(a, b),
Duf = ∇f · u.

By the definition of the dot product

∇f · u = ‖∇f‖‖u‖ cos(α),

where α is the angle between ∇f and u, as shown in Figure 16.4.5. Since
|u| = 1,

Duf = ‖∇f‖ cos(α). (16.4.2)
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The largest value of cos(α) for 0 ≤ α ≤ π, occurs when cos(α) = 1; that
is, when α = 0. Thus, by (16.4.2), the largest directional derivative of f(x, y)
at (a, b) occurs when the direction is that of ∇f at (a, b). For that choice of
u, Duf = ‖∇f‖. This proves the theorem. •

What does this theorem tell a bug wandering around on a flat piece of
metal? If it is at the point (a, b) and wishes to get warmer as quickly as
possible, it should compute the gradient of the temperature function and then
go in the direction indicated by that gradient.

EXAMPLE 2 What is the largest direction derivative of f(x, y) = x2y3 at
(2, 3)? In what direction does this maximum directional derivative occur?
SOLUTION At the point (x, y),

∇f = 2xy3i + 3x2y2j.

Figure 16.4.6:

Thus at (2, 3),

∇f = 108i + 108j,

which is sketched in Figure 16.4.6 (not to scale). Note that its angle θ is
π/4. The maximal directional derivative of x2y3 at (2, 3) is ‖∇f‖ = 108

√
2 ≈

152.735. This is achieved at the angle θ = π/4, relative to the x-axis, that is,
for

u = cos
(π

4

)
i + sin

(π
4

)
j =

√
2

2
i +

√
2

2
j.

�
Direction of fastest decrease

is −∇f Incidentally, if f(x, y) denotes the temperature at (x, y), the gradient ∇f
helps indicate the direction in which heat flows. It tends to flow “toward the
coldest,” which boils down to the mathematical assertion, “Heat tends to flow
in the direction of −∇f .”

The gradient and directional derivative have been interpreted in terms of
a temperature distribution in the plane and a wandering bug. It is also in-
structive to interpret these concepts in terms of a hiker on the surface of a
mountain.

Consider a mountain above the xy plane. The elevation of the point on
the surface above the point x, y) will be denoted by f(x, y). The directional
derivative Duf indicates the rate at which altitude changes per unit change in

Figure 16.4.7:

horizontal distance in the direction of u. The gradient ∇f at (a, b) points in
the compass direction the hiker should choose to climb in the direction of the
steepest ascent. The length of ∇f tells the hiker the steepest slope available.
(See Figure 16.4.7.)
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Generalization to f(x, y, z)

The notions of directional derivative and gradient can be generalized with
little effort to functions of three (or more) variables. It is easiest to interpret
the directional derivative of f(x, y, z) in a particular direction in space as
indicating the rate of change of the function in that direction in space. A
useful interpretation is how fast the temperature changes in a given direction.

Let u be a unit vector in space, with direction angles α, β, and γ. Then
u = cosαi + cos βj + cos γk. We now define the derivative of f(x, y, z) in the
direction u.

DEFINITION (Directional Derivative of f(x, y, z).) The direc-
tional derivative of f at (a, b, c) in the direction of the unit vector
u = cos(α)i + cos(β)j + cos(γ)k is g′(0), where g is defined by

g(t) = f(a+ t cos(α), b+ t cos(β), c+ t cos(γ)).

It is denoted Duf .

Note that t is the measure of length along the line through (a, b, c) with
direction angles α, β, and γ. Therefore Duf is just a derivative along the
t-axis.

The proof of the following theorem for a function of three variables is like
those given earlier in this section for functions of two variables.

Theorem. Directional Derivative of f(x, y, z) If f(x, y, z) has continuous par-
tial derivatives fx, fy, and fz, then the directional derivative of f at (a, b, c)
in the direction of the unit vector u = cos(α)i + cos(β)j + cos(γ)k is

∂f

∂x
(a, b, c) cos(α) +

∂f

∂y
(a, b, c) cos(β) +

∂f

∂z
(a, b, c) cos(γ).

DEFINITION (The gradient of f(x, y, z).) The vector

∂f

∂x
(a, b, c)i +

∂f

∂y
(a, b, c)j +

∂f

∂z
(a, b, c)k

is the gradient of f at (a, b, c) and is denoted ∇f .

This theorem thus asserts that

the derivative of f(x, y, z) in the direction of the unit vector u equals the dot
product of u and the gradient of f :

Duf = ∇f · u.
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Just as in the case of a function of two variables, ∇f evaluated at (a, b, c),
points in the direction u that produces the largest directional derivative at
(a, b, c). Moreover ‖∇f‖ is that largest directional derivative. Just as in
the two variable case, the key steps in the proof of this theorem are writing
∇f · u = ‖∇f‖‖u‖ cos(∇f,u) and recalling that u is a unit vector.

EXAMPLE 3 The temperature at the point (x, y, z) in a solid piece of
metal is given by the formula f(x, y, z) = c2x+y+3z degrees. In what direction
at the point (0, 0, 0) does the temperature increase most rapidly?

SOLUTION First compute

∂f

∂x
= 2e2x+y+3z,

∂f

∂y
= e2x+y+3z,

∂f

∂z
= 3e2x+y+3z.

Then form the gradient vector:

∇f = 2e2x+y+3zi + e2x+y+3zj + 3e2x+y+3zk.

At (0, 0, 0),

∇f = 2i + j + 3k.

Consequently, the direction of most rapid increase in temperature is that given
by the vector 2i + j + 3k. The rate of increase is then

‖2i + j + 3k‖ =
√

14 degrees per unit length.

If the line through (0, 0, 0) parallel to 2i + j + 3k is given a coordinate system
so that it becomes the t-axis, with t = 0 at the origin and the positive part in
the direction of 2i + j + 3k, the df/dt =

√
14 at 0. �

The gradient was denoted ∆ by Hamilton in 1846. By 1870 it was denoted ∇,
an upside-down delta, and therefore called “atled.” In 1871 Maxwell wrote,
“The quantity ∇P is a vector. I venture, with much diffidence, to call it the
slope of P .” The name “slope” is no longer used, having been replaced by
“gradient.” “Gradient” goes back to the word “grade,” the slope of a road or
surface. The name “del” first appeared in print in 1901, in Vector Analysis, A
text-book for the use of students of mathematics and physics founded upon the
lectures of J. Willard Gibbs, by E.B. Wilson.
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Summary

We defined the derivative of f(x, y) at (a, b) in the direction of the unit vector u
in the xy plane and the derivative of f(x, y, z) at (a, b, c) in the direction of the
unit vector u in space. Then we introduced the gradient vector ∇f in terms
of its components and obtained the formula

Duf = ∇f · u.

By examining this formula we saw that the length and direction of ∇f at
a given point are significant:

• ∇f points in the direction u that maximizes Duf at the given point

• ‖∇f‖ is the maximum directional derivative of f at the given point.
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EXERCISES for Section 16.4 Key: R–routine,
M–moderate, C–challenging

As usual, we assume that all functions mentioned have
continuous partial derivatives.
In Exercises 1 and 2 compute the directional deriva-
tives of x4y5 at (1, 1) in the indicated directions.

1.[R] (a) i, (b) −i, (c)
cos(π/4)i + sin(π/4)j
2.[R] (a) j, (b) −j, (c)

cos(π/3)i + sin(π/3)j

In Exercises 3 and 4 compute the directional deriva-
tives of x2y3 in the directions of the given vectors.

3.[R] (a) j, (b) k, (c) −i

4.[R] (a) i + j + k, (b)
2i − j + 2k, (c) i + k
Note: These are not unit

vectors. First construct a
unit vector with the same
direction.

5.[R] Assume that, at the point (2, 3), ∂f/∂x = 4 and
∂f/∂y = 5.

(a) Draw ∇f at (2, 3).

(b) What is the maximal directional derivative of f
at (2, 3)?

(c) For which u is Duf at (2, 3) maximal? (Write u
in the form xi + yj.)

6.[R] Assume that, at the point (1, 1), ∂f/∂x = 3 and
∂f/∂y = −3.

(a) Draw ∇f at (1, 1).

(b) What is the maximal directional derivative of f
at (1, 1)?

(c) For which u is Duf at (1, 1) maximal? (Write u
in the form xi + yj.)

In Exercises 7 and 8 compute and draw ∇f at the in-
dicated points for the given functions.

7.[R] f(x, y) = x2y at
(a) (2, 5), (b) (3, 1)
8.[R] f(x, y) =

1/
√
x2 + y2 at (a) (1, 2),

(b) (3, 0)

9.[R] If the maximal directional derivative of f at
(a, b) is 5, what is the minimal directional derivative
there? Explain.

10.[R] For a given function f(x, y) at a given point
(a, b) is there always a direction in which the direc-
tional derivative is 0? Explain.

11.[R] If (∂f/∂x)(a, b) = 2 and (∂f/∂t)(a, b) = 3, in
what direction should a directional derivative at (a, b)
be computed in order that it be

(a) 0?

(b) as large as possible?

(c) as small as possible?

12.[R] If, at the point (a, b, c), ∂f/∂x = 2, ∂f/∂y = 3,
∂f/∂z = 4, what is the largest directional derivative
of f at (a, b, c)?

13.[R] Assume that f(1, 2) = 2 and f(0.99, 2.01) =
1.98.

(a) Which directional derivatives Duf at (1, 2) can
be estimated with this information? (Give u.)

(b) Estimate the directional derivatives in (a).

14.[R] Assume that f(1, 1, 1) = 3 and
f(1.1, 1.2, 1.1) = 3.1.
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(a) Which directional derivativesDuf at (1, 1, 1) can
be estimated with this information? (Give u.)

(b) Estimate the directional derivatives in (a).

15.[R] When a bug crawls east, it discovers that the
temperature increases at the rate of 0.02◦ per centime-
ter. When it crawls north, the temperature decreases
at the rate of −0.03◦ per centimeter.

(a) If the bug crawls south, at what rate does the
temperature change?

(b) If the bug crawls 30◦ north of east, at what rate
does the temperature change?

(c) If the bug is happy with its temperature, in what
direction should it crawl to try to keep the tem-
perature the same?

16.[R] A bird is very sensitive to the temperature. It
notices that when it flies in the direction i, the tem-
perature increases at the rate of 0.03◦ per centimeter.
When it flies in the direction j, the temperature de-
creases at the rate of 0.02◦ per centimeter. When it
flies in the direction k the temperature increases at
the rate of 0.05◦ per centimeter. It decides to fly off in
the direction of the vector (2, 5, 1). Will it be getting
warmer or colder?

17.[R] Assume that f(1, 2) = 3 and that the direc-
tional derivative of f at (1, 2) in the direction of the
(nonunit) vector i + j is 0.7. Use this information to
estimate f(1.1, 2.1).

18.[R] Assume that f(1, 1, 2) = 4 and that the direc-
tional derivative of f at (1, 1, 2) in the direction of the
vector from (1, 1, 2) to (1.01, 1.02, 1.99) is 3. Use this
information to estimate f(0.99, 0.98, 2.01).

In Exercises 19 to 24 find the directional derivative of
the function in the given direction and the maximum
directional derivative.

19.[R] xyz2 at (1, 0, 1);
i + j + k
20.[R] x3yz at (2, 1,−1);
2i− k
21.[R] exy sin(z) at
(1, 1, π/4); i + j + +3k
22.[R] arctan(

√
x2 + y + z)

at (1, 1, 1); −i

23.[R] ln(1 + xyz) at
(2, 3, 1); −i + j

24.[R] xxyez
2

at (1, 1, 0);
i− j + k

25.[R] Let f(x, y, z) = 2x+ 3y + z.

(a) Compute ∇f at (0, 0, 0) and at (1, 1, 1).

(b) Draw ∇f for the two points in (a), in each case
putting its tail at the point.

26.[R] Let f(x, y, z) = x2 + y2 + z2.

(a) Compute ∇f at (2, 0, 0), (0, 2, 0) and (0, 0, 2).

(b) Draw ∇f for the three points in (a), in each case
putting its tail at the point.

27.[M] Assume that ∇f at (a, b) is not 0. Show that
there are two unit vectors u1 and u2, such that the
directional derivatives of f at (a, b) in the direction of
u1 and u2 are 0.

28.[M] Assume that ∇f at (a, b, c) is not 0. How
many unit vectors u are there such that Duf = 0?
Explain.

29.[R] Let T (x, y, z) be the temperature at the point
(x, y, z). Assume that ∇T at (1, 1, 1) is 2i + 3j + 4k.

(a) Find DuT at (1, 1, 1) if u is in the direction of
the vector i− j + 2k.

(b) Estimate the change in temperature as you move
from the point (1, 1, 1) a distance 0.2 in the di-
rection of the vector i− j + 2k.

(c) Find three unit vectors u such that DuT = 0 at
(1, 1, 1).
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30.[R] A bug at the point (1, 2) is very sensitive to
the temperature and observes that if it moves in the
direction i the temperature increases at the rate of 2◦

per centimeter. If it moves in the direction j, the tem-
perature decreases at the rate of 2◦ per centimeter. In
what direction should it move if it wants

(a) to warm up most rapidly?

(b) to cool off most rapidly?

(c) to change the temperature as little as possible?

31.[R] Let f(x, y) = 1/
√
x2 + y2; the function f is

defined everywhere except at (0, 0). Let r = 〈x, y〉.

(a) Show that ∇f = −r/‖r‖3.

(b) Show that ‖∇f‖ = −1/‖r‖2.

32.[R] Let f(x, y, z) = 1/
√
x2 + y2 + z2, which is

defined everywhere except at (0, 0, 0). (This function
is related to the potential in a gravitational field due
to a point-mass.) Let r = xi + yj + zk. Express ∇f in
terms of r.

33.[R] Let f(x, y) = x2 + y2. Prove that if (a, b) is
an arbitrary point on the curve x2 + y2 = 9, then ∇f
computed at (a, b) is perpendicular to the tangent line
to that curve at (a, b).

34.[R] Let f(x, y, z) equal temperature at (x, y, z).
Let P = (a, b, c) and Q be a point very near (a, b, c).
Show that ∇f ·

−−→
PQ is a good estimate of the change

in temperature from point P to point Q.
SHERMAN: Exercises 28

and 35 are similar, but
different. Should (27 and)

28 be moved later, and
classified as M? Or, one

moved to the Chapter
Summary?

35.[R]

(a) If (∂f/∂x)(a, b, c) = 2, (∂f/∂y)(a, b, c) = 3 and
(∂f/∂z)(a, b, c) = 1, find three different unit vec-
tors u such that Duf at (a, b, c) is 0.

(b) How many unit vectors u are there such that
Duf at (a, b, c) is 0?

36.[C] Let f(x, y) = xy.

(a) Draw the level curve xy = 4 carefully.

(b) Compute ∇f at three convenient points on that
level curve and draw it with its tail at the point
where it is evaluated.

(c) What angle does ∇f seem to make with the
curve at the point where it is evaluated?

(d) Prove that the angle is what you think it is.

37.[M] Let (x, y) be the temperature at (x, y). As-
sume that ∇f at (1, 1) is 2i + 3j. A bug is crawling
northwest at the rate of 3 centimeters per second. Let
g(t) be the temperature at the point where the bug
is at time t seconds. Then dg/dt is the rate at which
temperature changes on the bug’s journey (degrees per
second.) Find dg/dt when the bug is at (1, 1).

SHERMAN: There is a typo
for this exercise in V. What

coefficient do you want? I
assumed −1/c2.

38.[R] If f(P ) is the electric potential at the point
P , then the electric field E at P is given by −1/c2∇f .
Calculate E if f(x, y) = sin(αx) cos(βy), where α and
β are constants.

39.[R] The equality ∂2f/∂x∂y = ∂2f/∂y∂x can be
written as Di(Djf) = Dj(Dif). Show for any two
unit vectors u1 and u2 that Du2(Du1f) = Du1(Du2f).
(Assume that all partial derivatives of f of all orders
are continuous.)

40.[C] Without the aid of vectors, prove that the
maximum value of

g(θ) = ∂f/∂x(a, b) cos(θ) + ∂f/∂y(a, b) sin(θ)

is
√

(∂f/∂x(a, b))2 + (∂f/∂y(a, b))2. Note: This is
the first part of the theorem about the significance of
the gradient, on page 1111.
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41.[R] Figure 16.4.8 shows two level curves of a func-
tion f(x, y) near the point (1, 2), namely f(x, y) = 3
and f(x, y) = 3.02. Use the diagram to estimate

(a) Dif at (1, 2),

(b) Djf at (1, 2),

(c) Draw ∇f at (1, 2).

Figure 16.4.8:

42.[C] Why is a unit vector u in the xy-plane de-
scribed by a single angle θ, but a unit vector in space
is described by three angles?

43.[M] Let f and g be two vector functions defined
throughout the xy-plane. Assume they have the same
gradient, ∇f = ∇g. Must f = g? Is there any relation
between f and g?
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16.5 Normals and Tangent Planes

In this section we first find how to obtain a normal vector to a curve given
implicitly, as a level curve f(x, y) = k. Then we find how to obtain a normal
to a surface given implicitly, as a level surface f(x, y, z) = k. With the aid of
this vector we define the tangent plane to a surface at a given point on the
surface.

Normals to a Curve in the xy Plane

We saw in Section 14.4 how to find a normal vector to a curve when the curve
is given parametrically, r = G(t). Now we will see how to find a normal when
the curve is given implicitly, as a level curve f(x, y) = k. Throughout this
section we assume that the various functions are “well behaved.” In particular,
curves have continuous tangent vectors and functions have continuous partial
derivatives.

Theorem. The gradient ∇f at (a, b) is a normal to the level curve of f passing
through (a, b).

Proof

Let G(t) = x(t)i + y(t)j be a parameterization of the level curve of f that
passes through the point (a, b). On this curve, f(x, y) is a constant and has
the value f(a, b). Let G′(t0) be the tangent vector to the curve at (a, b) and
let the gradient of f at (a, b) be ∇f(a, b) = fx(a, b, )i − fy(a, b)j. We wish to
show that

∇f ·G′(t0) = 0;

that is,
∂f

∂x
(a, b)

dx

dt
(t0) +

∂f

∂y
(a, b)

dy

dt
(t0) = 0. (16.5.1)

The left side of (16.5.1) has the form of a chain rule. To make use of this fact,
introduce the function u(t) defined as

u(t) = f(x(t), y(t)).

Note that u(t) is the value of f at a point on the level curve that passes through
(a, b). Hence u(t) = f(a, b). What is more important is that u(t) is a constant
function. Therefore, du/dt = 0.

Now, u = f(x, y), where x and y are functions of t. The chain rule asserts
that

du

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.
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Since du/dt = 0, (16.5.1) follows. Hence ∇f , evaluated at (a, b), is a normal
to the level curve of f that passes through (a, b). •

What does this theorem say about the daily weather map that shows the
barometric pressure? A level curve, or contour, shows the points where the
pressure has a prescribed value. The gradient ∇f at anyplace on such a curve
points in the direction in which the pressure increases most rapidly. So −∇f
points where the pressure is decreasing most rapidly. Since the wind tends to
go from high pressure to low pressure, we can think of −∇f as representing
the wind.

Figure 16.5.1:

Figure 16.5.1 shows a typical level curve and gradient. The gradient is
perpendicular to the level curve. Moreover, as we saw in Section 16.4, the
gradient points in the direction in which the function increases most rapidly.

EXAMPLE 1 Find and draw a normal vector to the hyperbola xy = 6 at
the point (2, 3).
SOLUTION Let f(x, y) = xy. Then fx = y and fy = x. Hence,

∇f = yi + xj.

In particular

∇f(2, 3) = 3i + 2j.

This gradient and level curve xy = 6 are shown in Figure 16.5.2. �

Figure 16.5.2:

EXAMPLE 2 Find an equation of the tangent line to the ellipse x2 +2y2 =
7 at the point (2, 1).
SOLUTION As we saw in Section 14.4, we may write the equation of a line
in the plane if we know a point on the line and a vector normal to the line.
We know that (2, 1) lies on the line. We use a gradient to produce a normal.

The ellipse x2 + 3y2 = 7 is a level curve of the function f(x, y) = x2 + 3y2.
Since fx = 2x and fy = 6y, ∇f = 2xi + 6yj. In particular

∇f(2, 1) = 4i + 6j.

Hence the tangent line at (2, 1) has an equation

4(x− 2) + 6(y − 1) = 0 or 4x+ 6y = 14.

The level curve, normal vector, and tangent line are all shown in Figure 16.5.3.
�

Figure 16.5.3:
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Normals to a Surface

We can construct a vector perpendicular to a surface f(x, y, z) = k at a given
point P = (a, b, c) as easily as we constructed a vector perpendicular to a
planar curve. It turns out that the gradient vector ∇f , evaluated at (a, b, c),
is perpendicular to the surface f(x, y, z) = k. The proof of this result is similar
to the proof for normal vectors to a level curve, given earlier in this section.

Before going on, we must state what is meant by a “vector being perpen-
dicular to a surface.”

DEFINITION (Normal vector to a surface) A vector is perpen-A vector is perpendicular to
a curve at a point (a, b, c)

on the curve if the vector is
perpendicular to a tangent

vector to the curve at
(a, b, c).

dicular to a surface at the point (a, b, c) on this surface if the vector
is perpendicular to each curve on the surface through the point
(a, b, c). Such a vector is called a normal vector.

Theorem. Normal vectors to a level surface The gradient ∇f at (a, b, c) is a
normal to the level surface of f passing through (a, b, c).

Finding a normal to the
surface f(x, y, z) = k

SHERMAN: You have a
note about using

ai + bj + ck or < a, b, c >. I
think we should use both,
but I don’t have a strong

opinion about this.

Proof

Let G(t) = x(t)i+y(t)j+z(t)k be the parameterizations of a curve in the level
surface of f that passes through the point (a, b, c). Assume G(t0) = ai+bj+ck.
Then G′(t0) is the tangent vector to the curve at the point (a, b, c) and the
gradient at (a, b, c) is

∇f =
∂f

∂x
(a, b, c)i +

∂f

∂y
(a, b, c)j +

∂f

∂z
(a, b, c)k.

We wish to show that
∇f ·G′(t0) = 0;

that is

∂f

∂x
(a, b, c)x′(t0) +

∂f

∂y
(a, b, c)y′(t0) +

∂f

∂z
(a, b, c)z′(t0) = 0. (16.5.2)

(See Figure 16.5.4.) Introduce the function u(t) defined by

Figure 16.5.4:

u(t) = f(x(t), y(t), z(t)).

By the chain rule,Once again the chain rule
comes to our aid.

du

dt

∣∣∣∣
t=t0

=
∂f

∂x
(a, b, c)x′(t0) +

∂f

∂y
(a, b, c)y′(t0) +

∂f

∂z
(a, b, c)z′(t0) = 0 (16.5.3)

However, since the curve G(t) lies on a level surface of f , u(t) is constant. [In
fact, u(t) = f(a, b, c).] Thus du/dt = 0, and the right side of (16.5.3) is 0, as
required. •
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A simple check of this result is to see whether it is correct when the level
surfaces are just planes. Consider f(x, y, z) = Ax+By + Cz +D. The plane
Ax + By + Cz + D = 0 is the level surface f(x, y, z) = 0. According to the
theorem, ∇f is perpendicular to this surface. Now, fx = A, fy = B, and
fz = C. Hence,

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k = Ai +Bj + Ck.

This agrees with the fact that Ai +Bj + Ck = 0, as we saw in Section 14.4.

EXAMPLE 3 Find a normal vector to the ellipsoid x2 + y2/4 + z2/9 = 3
at the point (1, 2, 3).
SOLUTION The ellipsoid is a level surface of the function

f(x, y, z) = x2 +
y2

4
+
z2

9
.

The gradient of f at the point (x, y, z) is

∇f = 2xi +
y

2
j +

2z

9
k.

At (1, 2, 3)
∇f = 2i + j + 2/3k.

This vector is normal to the ellipsoid at (1, 2, 3). �

Tangent Planes to a Surface

Now that we can find a normal to a surface we can define a tangent plane at
a point on the surface.

Figure 16.5.5:

DEFINITION (Tangent plane to a surface) Consider a surface
that is a level surface of a function u = f(x, y, z). Let (a, b, c) be
a point on this surface where ∇f is not 0. The tangent plane to
the surface at the point (a, b, c) is that plane through (a, b, c) that
is perpendicular to the vector ∇f evaluated at (a, b, c).

The tangent plane at (a, b, c) is the plane that best approximates the surface
near (a, b, c). It consists of all the tangent lines at (a, b, c) to curves in the
surface that pass through the point (a, b, c). See Figure 16.5.5.

Note that an equation of the tangent plane to the surface f(x, y, z) = k at
(a, b, c) is

∂f

∂x
(a, b, c)(x− a) +

∂f

∂y
(a, b, c)(y − b) +

∂f

∂z
(a, b, c)(z − c) = 0.
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EXAMPLE 4 Find an equation of the tangent plane to the ellipsoid x2 +
y2/4 + z2/9 = 3 at the point (1, 2, 3).
SOLUTION By Example 3, the vector 2i + j + 2/3k is normal to the surface
at the point (1, 2, 3). The tangent plane consequently has an equation

2(x− 1) + 1(u− 2) + 2/3(z − 3) = 0

�

Normals and Tangent Planes to z = f(x, y)

A surface may be described explicitly in the form z = f(x, y) rather than
implicitly in the form f(x, y, z) = k. The techniques already developed enable
us to find the normal and tangent plane in the case z = f(x, y) as well.Finding a normal to the

surface z = f(x, y) We need only rewrite the equation z = f(x, y) in the form z − f(x, y) = 0.
Then define g(x, y, z) to be z − f(x, y). The surface z − f(x, y) is simply
the particular level surface of g given by g(x, y, z) = 0. There is no need to
memorize an extra formula for a vector normal to the surface z = f(x, y). The
next example illustrates this advice.DOUG: I graphed z = xy,

not z = x2 = y2. What to
do? SHERMAN: I do not

see how this graph is
incorrect.

EXAMPLE 5 Find a vector perpendicular to the saddle z = y2−x2 at the
point (1, 2, 3).

SOLUTION In this case, rewrite z = y2−x2 as z+x2− y2 = 0. The surface
in question is a level surface of g(x, y, z) = z+x2−y2. Hence∇g = 2xi−2yj+k
is perpendicular to the surface at the point (1, 2, 3).

Figure 16.5.6:

This surface looks like a saddle near the origin. The surface and the normal
vector 2i− 4j + k are shown in Figure 16.5.6. �

Estimates and the Tangent Planes

In the case of a function of one variable, y = f(x), the tangent line at (a, f(a))
closely approximates the graph of y = f(x). The equation of the tangent
line y = f(a) + f ′(a)(x − a) gives us a linear approximation of f(x). (See
Section 5.3.)

We can use the tangent plane to the surface z = f(x, y) similarly. To find
the equation of the plane tangent at (a, b, f(a, b)), we first rewrite the equation
of the surface as

g(x, y, z) = f(x, y)− z = 0.

Then ∇g is a normal to the surface at (a, b, f(a, b)). Now,

∇g =
∂f

∂x
i +

∂f

∂y
j− k,
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where the partial derivatives are evaluated at (a, b).
The equation of the tangent plane at (a, b, f(a, b)) is therefore

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)− (z − f(a, b)) = 0.

We can rewrite this equation as

z = f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b). (16.5.4)

Letting ∆x = x− a and ∆y = y − b, (16.5.4) becomes

z =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y.

This tells us that the change of the z coordinate on the tangent plane, as the
x coordinate changes from a to a + ∆x and the y coordinate changes from b
to b+ ∆y is exactly

∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y.

Figure 16.5.7:

By (16.3.1) in Section 16.3, this is an estimate of the change ∆f in the
function f as its argument changes from (a, b) to (a + ∆x, b + ∆y). This is
another way of saying that “the tangent plane to the surface z = f(x, y) at
(a, b, f(a, b)) looks a lot like that surface near that point.” See Figure 16.5.7.

The expression fx(a, b) dx + fy(a, b) dy is called the differential of f at
(a, b). For small values of dx and dy it is a good estimate of ∆f = f(a +
dx, b+ dy)− f(a, b).

EXAMPLE 6 Let z = f(x, y) = x2y. Let ∆z = f(1.01, 2.02)− f(1, 2) and
let

dz =
∂f

∂x
(1, 2) · 0.0 +

∂f

∂y
(1, 2) · 0.02.

Compute ∆z and dz.
SOLUTION

∆z = (1.01)2(2.02)− 122 = 2.060602− 2 = 0.060602

Since fx = 2xy and fy = x2, we have fx = 4 and fy = 1 at (1, 2). Hence,

dz = (4)(0.01) + (1)(0.02) = 0.06.

Note that dz is a good approximation of ∆z. �
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Function Level Curve/Surface Normal Tangent
f(x, y) level curve:

f(x, y) = k
∇f = fxi + fyj Tangent line at (a, b) is

fx(a, b)(x − a) + fy(a, b)(y − b) =
f(a, b)

f(x, y, z) level surface:
f(x, y, z) = k

∇f = fxi + fyj + fzk Tangent plane at (a, b, c) is
fx(a, b, c)(x − a) + fy(a, b, c)(y −
b) + fz(a, b, c)(z − c) = f(a, b)

Table 16.5.1: t15-5-1

Summary

This table summarizes mot of what we did concerning normal vectors.
To find a normal and tangent plane to a surface given in the form z =

f(x, y), treat the surface as a level surface of the function z−f(x, y), normally
z − f(x, y) = 0.

We also showed that the differential approximation of ∆f in Section 16.3
is simply the change along the tangent plane.DOUG: Must get implicit

diff in partials somewhere??
SHERMAN: Exercises??

Maybe back in the Chain
Rule section, with a few

more exercises in this
section. Or, in §16.8.
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EXERCISES for Section 16.5 Key: R–routine,
M–moderate, C–challenging

1.[R] In estimating the value of a right circular cylin-
drical tree trunk, a lumber jack may make a 5 percent
error in estimating the diameter and a 3 percent error
in measuring the height. How large an error may he
make in estimating the volume?

2.[R] Let T denote the time it takes for a pendulum to
complete a back-and-forth swing. If the length of the
pendulum is L and g the acceleration due to gravity,
then

T = 2π

√
L

g
.

A 3 percent error may be made in measuring L and
a 2 percent error in measuring g. How large an error
may we make in estimating T?

3.[R] Let A(x, y) = xy be the area of a rectangle of
sides x and y. Compute ∆A and dA and show them
in Figure 16.5.8

Figure 16.5.8:
The differential of a function u = f(x, y, z) is defined
to be fx∆x+ fy∆y+ fz∆z, in analogy with the differ-
ential of a function of two variables.

4.[R] Let V (x, y, z) = xyz be the volume of a box
of sides x, y, and z. Compute ∆V and dV and show
them in Figure 16.5.9.

Figure 16.5.9:

5.[R] Let u = f(x, y, z) and r = G(t). Then u is a
composite function of t. Show that

du

dt
= ∇f ·G′(t),

where ∇f is evaluated at G(t). For instance, let
y = f(x, y, z) and let G describe the journey of a
bug. Then the rate of change in the temperature as
observed by the but is the dot product of the temper-
ature gradient ∇f and the velocity vector v = G′.

6.[R] We have found a way to find a normal and
a tangent plane to a surface. How would you find a
tangent line to a surface? Illustrate your method by
finding a line that is tangent to the surface z = xy at
(2, 3, 6).

7.[R] Suppose you are at the point (a, b, c) on the level
surface f(x, y, z) = k. At that point ∇F = 2i+3j−4k.

(a) If u is tangent to the surface at (a, b, c), what
would Duf equal?

(b) If u is normal to the level surface at (a, b, c), what
would Du equal? (There are two such normals.)

8.[R]
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(a) Draw three level curves of the function f defined
by f(x, y) = xy. Include the curve through (1, 1)
as one of them.

(b) Draw three level curves of the function g defined
by g(x, y) = x2 − y2. Include the curve through
(1, 1) as one of them.

(c) Draw three level curves of the function g defined
by g(x, y) = x2 − y2. Include the curve through
(1, 1) as one of them.

(d) Prove that each level curve of f intersects each
level curve of g at a right angle.

(e) If we think of f as air pressure, how may we
interpret the level curves of g?

9.[R]

(a) Draw a level curve for the function 2x2 + y2.

(b) Draw a level curve for the function y2/x.

(c) Prove that any level curve of 2x2+y2 crosses any
level curve of y2/x at a right angle.

10.[R] The surfaces x2yz = 1 and xy + yz + zx = 3
both pass through the point (1, 1, 1). The tangent
planes to these surfaces meet in a line. Find paramet-
ric equations for this line.

11.[R] Let T (x, y, z) be the temperature at the
point (x, y, z), where ∇T is not 0. A level surface
T (x, y, z) − k is called an isotherm. Show that if you
are at the point (a, b, c) and wish to move in the direc-
tion in which the temperature changes most rapidly,
you would move in a direction perpendicular to the
isotherm that passes through (a, b, c).

12.[R] Two surfaces f(x, y, z) = 0 and g(x, y, z) = 0
both pass through the point (a, b, c). Their intersec-
tion is a curve. How would you find a tangent vector

to that curve at (a, b, c)?

13.[R] Write a short essay on the wonders of the
chain rule. Include a description of how it was used to
show that Duf = ∇f · u and in showing that ∇f is a
normal to the level surface of f at the point where it
is evaluated.

The angle between two surfaces that pass through
(a, b, c) is defined as the angle between the two lines
through (a, b, c) that are perpendicular to the two sur-
faces at the point (a, b, c). This angle is taken to be
acute. Use this definition in Exercises 14 to 16.

14.[R]

(a) Show that the point
(1, 1, 2) lies on the
surfaces xyz = 2
and x3yz2 = 4.

(b) Find the angle be-
tween the surfaces
in (a) at the point
(1, 1, 2).

15.[R]

(a) Show that the point
(1, 2, 3) lies on the
plane

2x+ 3y − z = 5

and the sphere

x2 + y2 + z2 = 14.

(b) Find the angle be-
tween them at the
point (1, 2, 3).

16.[R]

(a) Show that the sur-
faces z = x2y3

and z = 2xy pass
through the point
(2, 1, 4).

(b) At what angle do
they cross at that
point?

17.[R] Let z = f(x, y) describe a surface. Assume
that at (3, 5), z = 7, ∂z/∂x = 2, and ∂z/∂y = 3.

(a) Find two vectors that are tangent to the surface
at (3, 5, 7).

(b) Find a normal to the surface at (3, 5, 7).

(c) Estimate f(3.02, 4.99).
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18.[R] This map shows the pressure p(x, y) in terms
of level curves called isobars. Where is the gradient of
p, ∇p the longest? In what direction does it point? In
which direction (approximately) would the wind vector
point?

Figure 16.5.10: Source: http://www.

walltechnet.com/b_f/Weather/USAIsobarMap.

htm (18 July 2008)

19.[M] How far is the point (2, 1, 3) from the tangent
plane to z = xy at (3, 4, 12)?

20.[C] The surface x2

a2 + y2

b2
+ z2

c2
= 1 is called an

ellipsoid. If a2 = b2 = c2 it is a sphere. Show that if
a2, b2, and c2 are distinct, then there are exactly six
normals on the ellipsis that pass through the origin.

21.[C] Let S be a surface with the property that its
target planes are always perpendicular to r. Must S
be a sphere?

Calculus October 22, 2010
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16.6 Critical Points and Extrema

In the case of a function of one variable, y = f(x), the first and second deriva-
tives were of use in searching for relative extrema. First, we looked for critical
numbers, that is, solutions of the equation f ′(x) = 0. Then we checked theRecall: f ′′(x) positive

means the graph of f is
concave up; f ′′(x) negative

means the graph of f is
concave down.

value of f ′′(x) at each such point. If f ′′(x) were positive, the critical number
gave a relative minimum. If f ′′(x) were negative, the critical number gave a
relative maximum. If f ′′(x) were 0, then anything might happen: a relative
minimum or maximum or neither. (For instance, at 0 the functions x4, −x4,
and x3 have both first and second derivatives equal to 0, but the first function
has a relative minimum there, the second has a relative maximum, and the
third has neither.) In such a case, we have to resort to other tests.Remember that

∂f

∂x
= fx.

The subscript notation is
used in text to save space.

This section extends the idea of a critical point to functions f(x, y) of two
variables and shows how to use the second-order partial derivatives fxx, fyy,
and fxy to see whether the critical point provides a relative maximum, relative
minimum, or neither.

Extrema of f(x, y)

The number M is called the maximum (or global maximum) of f over a
set R in the plane if it is the largest value of f(x, y) for (x, y) in R. A relative
maximum (or local maximum) of f occurs at a point (a, b) in R if there is
a disk around (a, b) such that f(a, b) ≥ f(x, y) for all points (x, y) in the disk.
Minimum and relative (or local) minimum are defined similarly.

Figure 16.6.1:

Let us look closely at the surface above a point (a, b) where a relative
maximum of f occurs. Assume that f is defined for all points within some
circle around (a, b) and possesses partial derivatives at (a, b). Let L1 be the
line y = b in the xy plane; let L2 be the line x = a in the xy plane. (See
Figure 16.6.1. Assume, for convenience, that the values of f are positive.)

Let C1 be the curve in the surface directly above the line L1. Let C2 be
the curve in the surface directly above the line L2. Let P be the point on the
surface directly above (a, b).

Since f has a relative maximum at (a, b), no point on the surface near P
is higher than P . Thus P is a highest point on the curve C1 and on the curve
C2 (for points near P ). The study of functions of one variable showed that
both these curves have horizontal tangents at P . In other words, at (a, b) both
partial derivatives of f must be 0:

∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0.

This conclusion is summarized in the following theorem.
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Theorem. Relative Extremum of f(x, y) Let f be defined on a domain that
includes the point (a, b) and all points within some circle whose center is (a, b).
If f has a relative maximum (or relative minimum) at (a, b) and fx and fy exist
at (a, b), then both these partial derivatives are 0 at (a, b); that is,

∂f

∂x
(a, b) = 0 =

∂f

∂y
(a, b),

In short, the gradient of f , ∇f is 0 at a relative extremum.

A point (a, b) where both partial derivatives fx and fy are 0 is clearly of
importance. The following definition is analogous to that of a critical point of
a function of one variable.

DEFINITION (Critical point) If fx(a, b) = 0 and fy(a, b) = 0,
the point (a, b) is a critical point of the function f(x, y).

You might expect that if (a, b) is a critical point of f and the two second
partial derivatives fxx and fyy are both positive at (a, b), then necessarily has
a relative minimum at (a, b). The next example shows that the situation is
not that simple.

EXAMPLE 1 Find the critical points of f(x, y) = x2 + 3xy + y2 and
determine whether there is an extremum there.

SOLUTION First, find any critical points by setting both fx and fy equal
to 0. This gives the simultaneous equations

2x+ 3y = 0 and 3x+ 2y = 0.

Since the only solution of these equations is (x, y) = (0, 0), the function has
one critical point, namely (0, 0).

Now look at the graph of f for (x, y) near (0, 0).
First, consider how f behaves for points on the x axis. We have f(x, 0) =

x2 + 3 · x · 0 + 02 = x2. Therefore, considered only as a function of x, the
function has a minimum at the origin. (See Figure 16.6.2(a).)

On the y-axis, the function reduces to f(0, y) = y2, whose graph is another
parabola with a minimum at the origin. (See Figure 16.6.2(b).) Note also that
fxx = 2 and fyy = 2, so both are positive at (0, 0).

So far, the evidence suggests that f has a relative minimum at (0, 0). How-
ever, consider its behavior on the line y = −x. For points (x, y) on this line

f(x, y) = f(x,−x) = x2 + 2x(−x) + (−x)2 = −x2.

On this line the function assumes negative values, and its graph is a parabola
opening downward, as shown in Figure 16.6.2(c).
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(a) (b) (c)

Figure 16.6.2:

Thus f(x, y) has neither a relative maximum nor minimum at the origin.
Its graph resembles a saddle. �

Example 1 shows that to determine whether a critical point of f(x, y)
provides an extremum, it is not enough to look at fxx and fyy The criteriafxx and fyy describe the

behavior of f(x, y) only on
lines parallel to the x-axis

and y-axis, respectively.

are more complicated and involve the mixed partial derivative fxy as well.
Exercise 58 outlines a proof of the following theorem. At the end of this
section a proof is presented in the special case when f(x, y) is a polynomial of
the form Ax2 +Bxy + Cy2, where A, B and C are constants.

Theorem 16.6.1. Second-partial-derivative test for f(x, y) Let (a, b) be a crit-
ical point of the function f(x, y). Assume that the partial derivatives fx, fy,
fxx, fxy, and fyy are continuous at and near (a, b). LetIn subscript notation,

D = fxxfyy − (fxy)2.

D =
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

.

1. If D > 0 and fxx(a, b) > 0, then f has a relative minimum at (a, b).

2. If D > 0 and fxx(a, b) < 0, then f has a relative maximum at (a, b).

3. If D < 0, then f has neither a relative minimum nor a relative maximum
at (a, b). (There is a saddle point at (a, b).)

If D = 0, then anything can happen; there may be a relative minimum,
a relative maximum, or a saddle. These possibilities are illustrated in Exer-
cise 43.

To see what the theorem says, consider case 1, the test for a relative mini-
mum. It says that fxx(a, b) > 0) (which is to be expected) and that

∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

> 0,
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Or equivalently, (
∂2f

∂x∂y
(a, b)

)2

<
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b). (16.6.1)

Memory aid regarding size
of fxySince the square of a real number is never negative, and fxx(a, b) is positive,

it follows that fyy(a, b) > 0, which was to be expected. But inequality (16.6.1)
says more. It says that the mixed partial fxy(a, b) must not be too large. For
a relative maximum or minimum, inequality (16.6.1) must hold. This may be
easier to remember than “D > 0.”

EXAMPLE 2 Examine each of these functions for relative extrema:

1. f(x, y) = x2 + 3xy + y2,

2. g(x, y) = x2 + 2xy + y2,

3. h(x, y) = x2 + xy + y2.

SOLUTION

1. The case f(x, y) = x2 + 3xy + y2 is Example 1. The origin is the only
critical point, and it provides neither a relative maximum nor a relative
minimum. We can check this by the use of the discriminant. We have

∂2f

∂x2
(0, 0) = 2,

∂2f

∂x∂y
(0, 0) = 3, and

∂2f

∂y2
(0, 0) = 2.

Hence D = 2 · 2− 32 = −5 is negative. By the second-partial-derivative
test, there is neither a relative maximum nor a relative minimum at the
origin. Instead, there is a saddle there.

2. It is straightforward matter to show that all the points on the line x+y =
0 are critical points of g(x, y) = x2 + 2xy + y2. Moreover,

∂2g

∂x2
(x, y) = 2,

∂2g

∂x∂y
(x, y) = 2, and

∂2g

∂y2
(x, y) = 2.

Thus the discriminant D = 2 · 2− 22 = 0. Since D = 0, the discriminant
gives no information.

Note, however, that x2 + 2xy + y2 = (x + y)2 and so, being the square
of a real number, is always greater than or equal to 0. Hence the origin
provides a relative minimum of x2 + 2xy+ y2. (In fact, any point on the
line x+ y = 0 provides a relative minimum. Since g(x, y) = (x+ y)2, the
function is constant on each line x+y = c, for any choice of the constant
c. See Figure 16.6.3.)

Figure 16.6.3:
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3. For h(x, y) = x2 + xy+ y2, again the origin is the only critical point and
we have

∂2h

∂x2
(0, 0) = 2,

∂2h

∂x∂y
(0, 0) = 1, and

∂2h

∂y2
(0, 0) = 2.

In this case, D = 2 · 2 − 12 = 3 is positive and hxx(0, 0) > 0. Hence
x2 + xy + y2 has a relative minimum at the origin.

The graph of h is shown in Figure 16.6.4

Figure 16.6.4:

�

EXAMPLE 3 Examine f(x, y) = x + y + 1/(xy) for global and relative
extrema.

SOLUTION When x and y are both large positive numbers or small positive
numbers, then F (x, y) may be arbitrarily large. There is therefore no global
maximum. By allowing x and y to be negative numbers of large absolute
values, we see that there is no global minimum.Function has no global

extrema. Any local extrema will occur at a critical point. We have

∂f

∂x
= 1− 1

x2y
and

∂f

∂y
= 1− 1

xy2
.

Setting these derivatives equal to 0 gives

1

x2y
= 1 and

1

xy2
= 1 (16.6.2)

Hence x2y = xy2. Since the function f is not defined when x or y is 0, we
may assume xy 6= 0. Dividing both sides of x2y = xy2 by xy gives x = y.
By (16.6.2) (either equation), 1/x3 = 1; hence x = 1. Thus there is only one
critical point, namely, (1, 1).

To find whether it is a relative extremum, use Theorem 16.6.1. We have

∂2f

∂x2
=

2

x3y
,

∂2f

∂x∂y
=

1

x2y2
, and

∂2f

∂y2
=

2

xy3
.

Thus at (1, 1),

∂2f

∂x2
= 2,

∂2f

∂x∂y
= 1, and

∂2f

∂y2
= 2.

Therefore,
D = 2 · 2− 12 = 3 > 0.

Since D > 0 and fxx)(1, 1) > 0, the point (1, 1) provides a relative mini-
mum. �
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Extrema on a Bounded Region

In Section 4.3, we saw how to find a maximum of a differentiable function,
y = f(x), on an interval [a, b]. The procedure is as follows:

1. First find any numbers x in [a, b] (other than a or b) where f ′(x) =
0. Such a number is called a critical number. If there are no critical
numbers, the maximum occurs at a or b.

2. If there are critical numbers, evaluate f at them. Also find the values of
f(a) and f(b). The maximum of f in [a, b] is the largest of the numbers:
f(a), f(b), and the values of f at critical numbers.

Figure 16.6.5:

We can similarly find the maximum of F (x, y) in a region R in the plane
bounded by some polygon or curve. (See Figure 16.5.7.) It is assumed that R
includes its border and is a finite region in the sense that it lies within some
disk. (In advanced calculus, it is proved that a continuous function defined on
such a domain has a maximum – and a minimum – value.) If f has continuous
partial derivatives, the procedure for finding a maximum is similar to that for
maximizing a function on a closed interval.

1. First find any points that are in R but not on the boundary of R where
both fx and fy are 0. These are called critical points. (if there are no
critical points, the maximum occurs on the boundary.)

2. If there are critical points, evaluate f at them. Also find the maximum
of f on the boundary. The maximum of f on R is the largest value of f
on the boundary and at critical points.

A similar procedure finds the minimum value on a bounded region.

EXAMPLE 4 Maximize the function f(x, y) = xy(108−2x−2y) = 108xy−
2x2y − 2xy2 on the triangle R bounded by the x-axis, the y-axis, and the line
x+ y = 54. (See Figure 16.6.6.)

Figure 16.6.6:

SOLUTION First find any critical points. We have Find all critical points.

∂f

∂x
(x, y) = 108y − 4xy − 2y2 = 0 (16.6.3)

∂f

∂y
(x, y) = 108x− 2x2 − 4xy = 0 (16.6.4)

which give the simultaneous equations

2y(54− 2x− y) = 0, (16.6.5)

2x(54− x− 2y) = 0. (16.6.6)
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By the first equation, y = 54−2x. Substitution of this into the second equation
gives: 54− x− 2(54− 2x) = 0, or −54 + 3x = 0. Hence x = 18 and therefore
y = 54− 2 · 18 = 18.

The point (18, 18) lies in the interior of R, since it lies above the x-axis,Evaluate f at critical points.

to the right of the y-axis, and below the line x + y = 54. Furthermore,
f(18, 18) = 18 · 18(108− 2 · 18− 2 · 18) = 11, 664.

Next we examine the function f(x, y) = xy(108−2x−2y) on the boundaryEvaluate f on boundary.

of the triangle R. On the base of R, y = 0, so f(x, y) = 0. On the left edge of
R, x = 0, so again f(x, y) = 0. On the slanted edge, which lies on the same
line x + y = 54, we have 108 − 2x − 2y = 0, so f(x, y) = 0 on this edge also.
Thus f(x, y) = 0 on the entire boundary.

Therefore, the local maximum occurs at the critical point (18, 18) and has
the value 11, 664. �

EXAMPLE 5 The combined length and girth (distance around) of a pack-
age sent through the mail cannot exceed 108 inches. If the package is a rect-
angle box, how large can its volume be?

SOLUTION Introduce letters to name the quantities of interest. We label

Figure 16.6.7:

its length (a longest side) z and the other sides x and y, as in Figure 16.6.7.
The volume V = xyz is to be maximized, subject to girth plus length at most
108, that is,

2x+ 2y + z ≤ 108.

Since we want the largest box, we might as well restrict our attention to boxes
for which

2x+ 2y + z = 108. (16.6.7)

By (16.6.7), z = 108− 2x− 2y. Thus V = xyz can be expressed as a function
of two variables:

V = f(x, y) = xy(108− 2x− 2y).

This function is to be maximized on the triangle described by x ≥ 0, y ≥ 0,Why is 2x+ 2y ≤ 108?

2x+ 2y ≤ 108, that is, x+ y ≤ 54.
These are the same function and region as in the previous example. Hence,

the largest box has x = y = 18 and z = 108−2x−2y = 108−2·18−2·18 = 36;
its dimensions are 18 inches by 18 inches by 36 inches and its volume is 11, 664
cubic inches. �

Remark: In Example 5 we let z be the length of a longest side, an
assumption that was never used. So if the Postal Service regula-
tions read “The length of one edge plus the girth around the other
edges shall not exceed 108 inches,” the effect would be the same.
You would not be able to send a larger box by, say, measuring the
girth around the base formed by its largest edges.
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EXAMPLE 6 Find the maximum and minimum values of f(x, y) = x2 +
y2 − 2x− 4y on the disk R of radius 3 and center (0, 0).

SOLUTION First, find any critical points. We have

∂f

∂x
= 2x− 2 and

∂f

∂y
= 2y = 4.

The equations

2x− 2 = 0

2y − 4 = 0

have the solutions x = 1 and y − 2. This point lies in R (since its distance
from the origin is

√
12 + 22 =

√
5, which is less than 3). At the critical point

(1, 2), the value of the function is 12 + 22 − 2(1)− 4(2) = 5− 2− 8 = −5.
Second, find the behavior of f on the boundary, which is a circle of radius

3. We parameterize this circle:

x = 3 cos(θ)

y = 3 sin(θ).

On this circle,

f(x, y) = x2 + y2 − 2x− 4y

= (3 cos(θ))2 + (3 sin(θ))2 − 2(3 cos(θ))− 4(3 sin(θ))

= 9 cos2(θ) + 9 sin2(θ)− 6 cos(θ)− 12 sin(θ)

= 9− 6 cos(θ)− 12 sin(θ).

We now must find the maximum and minimum of the single-variable func-
tion g(θ) = 9− 6 cos(θ)− 12 sin(θ) for θ in [0, 2π].

To do this, find g′(θ):

g′(θ) = 6 sin θ − 12 cos θ.

Setting g′(θ) = 0 gives

0 = 6 sin(θ)− 12 cos(θ)

or
sin(θ) = 2 cos(θ). (16.6.8)

Why is cos(θ) not 0?

To solve (16.6.8), divide by cos(θ) (which will not be 0), getting

sin(θ)

cos(θ)
= 2
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or
tan(θ) = 2.

There are two angles θ in [0, 2π] such that tan(θ) = 2. One is in the first
quadrant, θ = arctan(2), and the other is in the third quadrant, π+arctan(2).
To evaluate g(θ) = 9 − 6 cos(θ) − 12 sin(θ) at these angles, we must compute
their cosine and sine. The right triangle in Figure 16.6.8 helps us do this.

Figure 16.6.8:

Inspection of Figure 16.6.8 shows that for θ = arctan(2),

cos(θ) =
1√
5

and sin(θ) =
2√
5
.

For this angle

g(arctan(2)) = 9− 6

(
1√
5

)
− 12

(
2√
5

)
= 9− 30√

5
≈ −4.41641.

When θ = π + arctan(2),

cos(θ) =
−1√

5
and sin(θ) =

−2√
5
.

So

g(π + arctan(2)) = 9− 6

(
−1√

5

)
− 12

(
−2√

5

)
= 9 +

30√
5
≈ 22.41641.

Since g(2π) = g(0) = 9−6(1)−12(0) = 3, the maximum of f on the border
of R is about 22.41641 and the minimum is about −4.41641. (Recall that at
the critical point the value of f is −5.)

We conclude that the maximum value of f on R is about 22.41641 and the
minimum value is −5 (and it occurs at the point (1, 2), which is not on the
boundar)]. See Figure 16.6.9. �

Figure 16.6.9:

Proof of Theorem 16.6.1 in a Special Case

We will prove Theorem 16.6.1 in case f(x, y) is a second-degree polynomial of
the form

f(x, y) = Ax2 +Bxy + Cy2.

Theorem 16.6.2. Let f(x, y) = Ax2 + Bxy + Cy2, where A, B, and C are
constants. Then (0, 0) is a critical point. Let

D =
∂2f

∂x2
(0, 0)

∂2f

∂y2
(0, 0)−

(
∂2f

∂x∂y
(0, 0)

)2

.

October 22, 2010 Calculus



§ 16.6 CRITICAL POINTS AND EXTREMA 1139

1. If D > 0 and fxx(0, 0) > 0, then f has a relative minimum at (0, 0).

2. If D > 0 and fxx(0, 0) < 0, then f has a relative maximum at (0, 0).

3. If D < 0, then f has neither a relative minimum nor a relative maximum
at (0, 0).

Proof

We prove Case 1, leaving Cases 2 and 3 for Exercises 60 and 61.
First, compute the first- and second-order partial derivatives of f :

∂f

∂x
= 2Ax+By,

∂f

∂y
= Bx+ 2Cy,

∂2f

∂x2
= 2A,

∂2f

∂x∂y
= B,

∂2f

∂y2
= 2C.

Note that both fx and fy are 0 at (0, 0). Hence (0, 0) is a critical point and
f(0, 0) = 0. We must show that f(x, y) ≥ 0 for (x, y) near (0, 0). [In fact we
will show that f(x, y) ≥ 0 for all (x, y).]

Next, expressing Case 1 in terms of A, B, and C, we have

D = fxx(0, 0)fyy(0, 0)− f 2
xy(0, 0) = (2A)(2C)−B2 = 4AC −B2 > 0.

and fxx(0, 0) = 2A > 0. In short, we are assuming that 4AC − B2 > 0 and
A > 0, and want to deduce that f(x, y) = Ax2 + Bxy + Cy2 ≥ 0, for (x, y)
near (0, 0).

Since A is positive, this amounts to showing that

A(Ax2 +Bxy + Cy2) ≥ 0. (16.6.9)
We multiply by A to
simplify completing the
square on the next step.

Now we complete the square,

A(Ax2 +Bxy + Cy2) = A2x2 + ABxy + ACy2

= A2x2 + ABxy +
B2

4
y2 − B2

4
y2 + ACy2

= (Ax+
B

2
y)2 + (AC − B2

4
)y2

= (Ax+
B

2
y)2 + (

4AC −B2

4
)y2.

Now,
(
Ax+ B

2
y
)2 ≥ 0 and y2 ≥ 0 since they are squares of real numbers.

But by our assumption on D, 4AC − B2 is positive. Thus (16.6.9) holds for
all (x, y), not just for (x, y) near (0, 0) varies Case 1 of the theorem is proved.
•
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Summary

We defined a critical point of f(x, y) as a point where both partial derivatives
fx and fy are 0. Even if fxx and fyy are negative there, such a point need not
provide a relative maximum. We must also know that fxy is not too large in
absolute value.

• If fxx < 0 and f 2
xy < fxxfyy, then there is indeed a relative maximum at

the critical point. (Note that the two inequalities imply fyy < 0.)

• Similar criteria hold for a relative maximum: if fxx > 0 and f 2
xy < fxxFyy,

then this critical point is a relative minimum.

• The critical point is a saddle point when fxy > fxxfyy.

• When f 2
xy = fxxfyy, the critical point may be a relative maximum, rela-

tive minimum, or neither.

We also saw how to find extrema of a function defined on a bounded region.
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EXERCISES for Section 16.6 Key: R–routine,
M–moderate, C–challenging

DM: Are there some more
varied realistic exercises?
SHERMAN: Have you had
complaints about these
problems in your earlier
books? We can look, but I
don’t believe it’s too critical
to be creative here.

Use Theorems 16.6 and 16.6.1 to determine any rela-
tive maxima or minima of the functions in Exercises 1
to 10.

1.[R] x2 + 3xy + y2

2.[R] f(x, y) = x2− y2

3.[R] f(x, y) = x2−2xy+
2y2 + 4x
4.[R] f(x, y) = x4+8x2+
y2 − 4y
5.[R] f(x, y) = x2−xy+
y2

6.[R] f(x, y) = x2+2xy+
2y2 + 4x

7.[R] f(x, y) = 2x2 +
2xy + 5y2 + 4x

8.[R] f(x, y) = −4x2 −
xy − 3y2

9.[R] f(x, y) = 4/x +
2/y + xy

10.[R] f(x, y) = x3 −
y3 + 3xy

Let f by a function of x and y such that at (a, b) both
fx and fy equal 0. In each of Exercises 11 to 16. val-
ues are specified for fxx, fxy, and fyy at (a, b). Assume
that all these partial derivatives are continuous. On
the basis of the given information decides whether

1. f has a relative maximum at (a, b),

2. f has a relative minimum at (a, b),

3. f has a saddle point at (a, b),

4. there is inadequate information.

11.[R] fxy = 4, fxx = 2,
fyy = 8
12.[R] fxy = −3, fxx =
2, fyy = 4
13.[R] fxy = 3, fxx = 2,
fyy = 4
14.[R] fxy = 2, fxx = 3,

fyy = 4

15.[R] fxy = −2, fxx =
−3, fyy = −4

16.[R] fxy = −2, fxx =
3, fyy = −4

In Exercises 17 to 24 find the critical points and the
relative extrema of the given functions.

17.[R] x+ y − 1
xy

18.[R] 3xy − x3 − y3

19.[R] 12xy − x3 − y3

20.[R] 6xy−x2y−xy2

21.[R] exp(x3 + y3)

22.[R] 2xy

23.[R] 3x+xy+x2y−2y

24.[R] x+ y + 8
xy

25.[R] Find the dimensions of the open rectangular
box of volume 1 of smallest surface area. Use Theo-
rem 16.6.1 as a check that the critical point provides
a minimum.

26.[R] The material for the top and bottom of a
rectangular box costs 3 cents per square foot, and that
for the sides 2 cents per square foot. What is the least
expensive box that has a volume of 1 cubic foot? Use
Theorem 16.6.1 as a check that the critical point pro-
vides a minimum.

27.[R] UPS ships packages whose combined length
and girth is at most 165 inches (and weighs at most
150 pounds).

(a) What are the dimensions of the package with the
largest volume that it ships?

(b) What are the dimensions of the package with
maximum surface are that UPS will ship?

28.[R] Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3),
and P4 = (x4, y4). Find the coordinates of the point P
that minimizes the sum of the squares of the distances
from P to the four points.

29.[R] Find the dimensions of the rectangle box of
largest volume if its total surface area is to be 12 square
meters.

30.[R] Three nonnegative numbers x, y, and z have
the sum 1.

(a) How small can x2 + y2 + z2 be?

(b) How large can it be?

Calculus October 22, 2010



1142 CHAPTER 16 PARTIAL DERIVATIVES

31.[R] Each year a firm can produce r radios and t
television sets at a cost of 2r2 +rt+2t2 dollars. It sells
a radio for $600 and a television set for $900.

(a) What is the profit from the sale of r radios and t
television sets? Note: Profit is revenue less the
cost.

(b) Find the combination of r and t that maximizes
profit. Use the discriminant as a check.

32.[R] Find the dimensions of the rectangular box
of largest volume that can be inscribed in a sphere of
radius 1.

33.[R] For which values of the constant k does
x2 + kxy + 3y2 have a relative minimum at (0, 0)?

34.[R] For which values of the constant k does the
function kx2 + 5xy + 4y2 have a relative minimum at
(0, 0)?

35.[R] Let f(x, y) = (2x2 + y2)e−x
2−y2 .

(a) Find all critical points of f .

(b) Examine the behavior of f when x2 +y2 is large.

(c) What is the minimum value of f?

(d) What is the maximum value of f?

36.[R] Find the maximum and minimum values of the
function in Exercise 35 on the circle

(a) x2 + y2 = 1,

(b) x2 + y2 = 4.

Hint: Express the function in terms of θ.

37.[R] Find the maximum value of f(x, y) =
3x2 − 4y2 + 2xy for points (x, y) in the square re-
gion whose vertices are (0, 0), (0, 1), (1, 0), and (1, 1).

38.[R] Find the maximum value of f(x, y) = xy for
points (x, y) in the triangular region whose vertices are
(0, 0), (1, 0), and (0, 1).

39.[R] Maximize the function −x + 3y + 6 on the
quadrilateral whose vertices are (1, 1), (4, 2), (0, 3),
and (5, 6).

40.[M]

(a) Show that z = x2 − y2 + 2xy has no maximum
and no minimum.

(b) Find the minimum and maximum of z if we con-
sider only (x, y) on the circle of radius 1 and cen-
ter (0, 0), that is all (x, y) such that x2 + y2 = 1.

(c) Find the minimum and maximum of z if we con-
sider all (x, y) in the disk of radius 1 and center
(0, 0), that is, all (x, y) such that x2 + y2 ≤ 1.

41.[M] Suppose z is a function of x and y with con-
tinuous second partial derivatives. If, at the point
(x0, y0), zx = 0 = zy, zxx = 3, and zyy = 12, for what
values of zxy is it certain that z has a relative minimum
at (x0, y0)?

42.[M] Let U(x, y, z) = x1/2y1/3z1/6 be the “utility”
or “desirability” to a given consumer of the amounts
x, y, and z of three different commodities. Their prices
are, respectively, 2 dollars, 1 dollar, and 5 dollars, and
the consumer has 60 dollars to spend. How much of
each product should he buy to maximize the utility?

43.[M] This exercise shows that if the discriminant
D is 0, then any of the three outcomes mentioned in
Theorem 16.6.1 are possible.
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(a) Let f(x, y) = x2 + 2xy + y2. Show that at (0, 0)
both fx and fy are 0, fxx and fyy are positive,
D = 0, and f has a relative minimum.

(b) Let f(x, y) = x2 + 2xy + y2 − x4 Show that at
(0, 0) both fx and fy are 0, fxx and fyy are pos-
itive, D = 0, and f has neither a relative maxi-
mum nor a relative minimum at (0, 0).

(c) Give an example of a function f(x, y) for which
(0, 0 is a critical point and D = 0 there, but f
has a relative maximum at (0, 0).

44.[M] Let f(x, y) = ax + by + c, for constants a, b,
and c. Let R be a polygon in the xy plane. Show that
the maximum and minimum values of f(x, y) on R are
assumed only at vertices of the polygon.

45.[M] Two rectangles are placed in the triangle
whose vertices are (0, 0), (1, 1), and (−1, 1) as shown
in Figure 16.6.10(a). SHERMAN:I modified your

picture in (b), some. OK? I
didn’t think it was so bad;
see my answer.

(a) (b)

Figure 16.6.10:
Show that they can fill as much as 2/3 of the area of
the triangle.

46.[M] Two rectangles are placed in the parabola
y = x2 as shown in Figure 16.6.10(b). How large can
their total area be?

47.[M] Let P0 = (a, b, c) be a point not on the surface
f(x, y, z) = 0. Let P be the point on the surface near-
est P0. Show that

−−→
PP0 is perpendicular to the surface

at P . Hint: Show it is perpendicular to each curve on
the surface that passes through P .

48.[C] Let (x1, y1), (x2, y2), . . . , (xn, yn) be n points

in the plane. Statisticians define the line of regres-
sion as the line that minimizes the sum of the squares
of the differences between yi and the ordinates of the
line at xi. (See Figure 16.6.11.) Let the typical line in
the plane have the equation y = mx+ b.

(a) Show that the line of regression minimizes
the sum

∑n
i=1 (yi − (mxi + b))2 considered as a

function of m and b.

(b) Let f(m, b) =
∑n

i=1 (yi − (mxi + b))2. Compute
fm and fb.

(c) Show that when fm = 0 = fbb, we have

m
n∑
i=1

x2
i + b

n∑
i=1

x1 =
n∑
i=1

xiyi

and

m

n∑
i=1

xi + nb =
n∑
i=1

yi.

(d) When do the simultaneous equations in (c) have
a unique solution for m and b?

(e) Find the regression line for the points (1, 1),
(2, 3), and (3, 5).

Figure 16.6.11:
49.[C] If your calculator is programmed to compute
lines of regression, find and draw the line of regression
for the points (1, 1), (2, 1.5), (3, 3), (4, 2) and (5, 3.5).

50.[C] Let f(x, y) = (y − x2)(y − 2x2).
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(a) Show that f has neither a local minimum nor a
local maximum at (0, 0)

(b) Show that f has a local minimum at (0, 0) when
considered only on any fixed line through (0, 0).

Suggestion for (b): Graph y = x2 and y = 2x2 and
show where f(x, y) is positive and where it is negative.

51.[C] Find (a) the minimum value of xyz, and (b)
the maximum value of xyz, for all triplets of nonnega-
tive real numbers x, y, z such that x+ y + z = 1.

52.[C]

(a) Deduce from Exercise 51 that for any three
nonegative numbers a, b, and c, 3

√
abc ≤ (a +

b + c)/3. Note: This exercise asserts that the
“geometric mean” of three numbers is not larger
than their ‘arithmetic mean”.

(b) Obtain a corresponding result for four numbers.

53.[C] Prove case 2 of Theorem 16.6.2.

54.[C] Prove case 3 of Theorem 16.6.2.

55.[C] The three dimensions of a box are x, y, and
z. The girth plus length are at most 165 inches. If
you are free to choose which dimension is the length,
which would you choose if you wanted to maximize the
volume of the box? Assume x < y < z.

56.[C] A surface is called closed when it is the
boundary of a region R, as a balloon surrounds the air
within it. A surface is called smooth when it has a
continuous outward unit normal vector at each point
of the surface. Let S be a smooth closed surface. Show
that for any point P0 in R, there are at least two points
on S such that

−−→
P0P is normal to S. Note: It is con-

jectured that if P0 is the centroid of R, then there are
at least four points on S such that P0P is normal to
S.

57.[C] Find the point P on the plane Ax+By+Cz+
D = 0 nearest the point P0 = (x0, y0, z0), which is not
on that plane.

(a) Find P by calculus.

(b) Find P by using the algebra of vectors. (Why is
−−→
P0P perpendicular to the plane?)

58.[C] This exercise outlines the proof of The-
orem 16.6.2 in the case fxx(a, b) > 0 and
fxx(a, b)fyy(a, b)− fxy2(a, b) > 0. Assuming that fxx,
fyy, and fxy are continuous, we know by the perma-
nence principle that fxx and fxxfyy−fx2y remain posi-
tive throughout some disk R whose center is (a, b). The
following steps show that f has a minimum (a, b) on
each line L through (a, b). Let u = cos(θ) + sin(θ) be a
unit vector. Show that Du(Duf) is positive throughout
the part of L that lies in the dark.

(a) Show that Duf(a, b) = 0.

(b) Show that Du(Duf) = fxx cos2(θ) +
2fxy sin(θ) cos(θ) + fyy sin2(θ) .

(c) Show that fxxDu(Duf) = (fxxcos(θ) +
fxy sin(θ))2 + (fxxfyy − f2

xy) sin2(θ) .

(d) Deduce from (b) that f is concave up as the part
of each line through (a, b) inside the disk R.

(e) Deduce that f has a relative minimum at (a, b).

59.[C] Let f(x) have period 2π and let

S(x) =
a0

2
+
∞∑
k=1

ak cos(kx) +
∞∑
k=1

bk sin(kx)

be the series that minimizes the integral

π∫
−π

(f(x)− S(x))2 dx. (16.6.10)
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Show that S(x) is the Fourier series associated with
f(x). Note: You may assume that in this case you
may “differentiate past the integral sign,” that is

∂

∂y

b∫
a

g(x, y) dx =

b∫
a

∂g

∂y
dx.

The quantity in (16.6.10) measures the total squared
error between S(x) and f(x) over the interval [−π, π].

60.[C] Prove Case 2 of Theorem 16.6.2.

61.[C] Prove Case 3 of Theorem 16.6.2.
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16.7 Lagrange Multipliers

Another method of finding maxima or minima of a function is due to Joseph
Louis LaGrange (1736–1813). It makes use of the fact that a gradient of aSee http://en.

wikipedia.org/wiki/
Joseph_Louis_Lagrange.

function is perpendicular to the level curves (or level surfaces) of that function.

The Essence of the Method

Figure 16.7.1:

We introduce the technique by considering the simplest case. Imagine that
you want to find a maxima or a minima of f(x, y) for points (x, y) on the line
L that has the equation g(x, y) = C. See Figure 16.7.1.

Figure 16.7.2:

Imagine that f(x, y), for points on L has a maximum or minimum at the
point (a, b). Let ∇f be the gradient of f evaluated at (a, b). What can we say
about the direction of ∇f? (See Figure 16.7.2

Assume that ∇f is not perpendicular to L. Let u be a unit vector parallel
to L. Then Duf = (∇f)·u is not 0. If Duf is positive then f(x, y) is increasing
in the direction u, which is along L. In the direction −u, f(x, y) is decreasing.
Therefore the point (a, b) could not provide either a maximum or a minimum
of f(x, y) for point (x, y) on L. That means ∇f must be perpendicular to L.
But ∇g is perpendicular to L, since g(x, y) = C is a level curve of g. Since
∇f and ∇g are parallel there must be a scalar λ such that

∇f = λ∇g (16.7.1)

The scalar λ is called a Lagrange multiplier.λ, lambda, Greek letter L.

EXAMPLE 1 Find the minimum of x2y2 on the line x+ y = 2.
SOLUTION Since x2 +2y2 increases without bound in both directions along
the line it must have a minimum somewhere.

Here f(x, y) = x2 + 2y2 and g(x, y) = x+ y so

∇f = 2xi + 4yj and ∇g = i + j

At the minimum, the gradients of f and g must be parallel. That is, there is
a scalar λ such that

∇f = λ∇g,

This means

2xi + 4yj = λ(i + j). (16.7.2)

This single vector equation leads to the 2 equations{
2x = λ equating i components
4y = λ equating j components

(16.7.3)
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But we also have the constraint,

x+ y = 2 (16.7.4)

From (16.7.3), 2x = 4y or x = 2y. Substituting this into (16.7.4) gives 2y+y =

2 or y = 2/3, hence x = 2y = 4/3. The minimum is f
(

4
3
, 2

3

)
=
(

4
3

)2
+
(

2
3

)2
= 20

9
.

There is no need to find λ its there just to help us compute. Its task, done, it
gracefully departs. �

The General Method

Let us see why Lagrange’s method works when the constraint not a line, but
a curve. Consider this problem:

Figure 16.7.3:

Maximize or minimize u = f(x, y), given the constraint g(x, y) = k.

The graph of g(x, y) = k is in general a curve C, as shown in Figure 16.7.3.
Assume that f , considered only on points of C, takes a maximum (or minimum)
value at the point P0. Let C be parameterized by the vector function G(t) =

x(t)i + y(t)j. Let G(t0) =
−−→
OP0. Then u is a function of t:

u = f(x(t), y(t)),

and, as shown in the proof of Theorem 16.5 of Section 16.5,

du

dt
= ∇f ·G′(t0). (16.7.5)

Since f , considered only on C, has a maximum at G(t0),

du

dt
= 0 at t = 0.

Thus, by (16.7.5),

∇f ·G′(t0) = 0.

Figure 16.7.4:

This means that ∇f is perpendicular to G′(t0) at P0. But ∇g, evaluated at
P0, is also perpendicular to G′(t0), since the gradient ∇g is perpendicular to
the level curve g(x, y) = 0. (We assume that ∇g is not 0.) (See Figure 16.7.4.)
Thus

∇f is parallel to ∇g.
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In other words, there is a scalar λ such that ∇f = λ∇g.

EXAMPLE 2 Maximize the function x2y for points (x, y) on the unit circle
x2 + y2 = 1.

SOLUTION We wish to maximize f(x, y) = x2y for points on the circle
g(x, y) = x2 + y2 = 1. Then

∇f = ∇(x2y) = 2xyi + x2j

and
∇g = ∇(x2 + y2) = 2xi + 2yj

At an extreme point of f , ∇f = λ∇g for some scalar λ. This gives us two
scalar equations:

2xy = λ(2x) i component (16.7.6)

x2 = λ(2y) j component (16.7.7)

The third equation is the constraint,

x2 + y2 = 1. (16.7.8)

Since the maximum does not occur when x = 0, we may assume x is not 0.
Dividing both sides of (16.7.6) by x, we get 2y = 2λ or y = λ. Thus (16.7.7)
becomes

x2 = 2y2. (16.7.9)

Combining this with (16.7.8), we have

2y2 + y2 = 1

or

y2 =
1

3
.

Thus

y =

√
3

3
or y = −

√
3

3
.

By (16.7.9),
x =
√

2y or x = −
√

2y.

There are only four points to be considered on the circle:(√
6

3
,

√
3

3

)
,

(
−
√

6

3
,

√
3

3

)
,

(
−
√

6

3
,
−
√

3

3

)
,

(√
6

3
,
−
√

3

3

)
.
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At the first and second points x2y is positive, while at the third and fourth
x2y is negative. The first two points provide the maximum value of x2y on the
circle x2 + y2 = 1, namely (√

6

3

)2 √
3

3
=

2
√

3

9
.

The third and fourth points provide the minimum value of x2y namely,

−2
√

3

9
.

�

More Variables

In the preceding examples we examined the maximum and minimum of f(x, y)
on a curve g(x, y) = k. But the same method works for dealing with extreme
values of f(x, y, z) on a surface g(x, y, z) = k. If f has, say, a minimum at
(a, b, c), then it does on any level curve on the surface g(x, y, z) = k. Thus ∇f
is perpendicular to any curve on the surface through P . But so is ∇g. Thus
∇f and ∇g are parallel, and there is a scalar λ such that the ∇f = λ∇g. So
we will have four scalar equations: three from the vector equation ∇f = λ∇g
and one from the constraint g(x, y, z) = k. That gives four equations in four
unknowns, x, y, z and λ, but it is not necessary to find λ though it may be
useful to determine it. Solving these four simultaneous equations may not be
feasible. However, the exercises in this section lead to fairly simple equations
that are relatively easy to solve.

EXAMPLE 3 Find the rectangle box with the largest volume, given that
its surface area is 96 square feet.
SOLUTION Let the three dimensions be x, y and z and the volume be V ,

Figure 16.7.5:

which equals xyz. The surface area is 2xy + 2xz + 2yz. See Figure 16.7.5.

We wish to maximize V (x, y, z) = xyz subject to the constraint

g(x, y, z) = 2xy + 2xz + 2yz = 96. (16.7.10)

Now

∇V = yzi + xzj + xyk

and

∇g = (2y + 2z)i + (2x+ 2z)j + (2x+ 2y)k.
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The vector equation ∇V = λ∇g provides three scalar equations

yz = λ(2y + 2z)

xz = λ(2x+ 2z)

xy = λ(2x+ 2y)

The fourth equation is the constraint,

2xy + 2xz + 2yz = 96.

Solving for λ in (16.7.11) and in (16.7.11), and equating the results gives

yz

2y + 2z
=

xz

2x+ 2z
.

Since z will not be 0, we haveWhy not?

y

2y + 2z
=

x

2x+ 2z
.

Clearing denominators gives

2xy + 2yz = 2xy + 2xz

2yz = 2xz.

Since z 6= 0, we reach the conclusion that

x = y.

Since x, y and z play the same roles in both the volume xyz and in the
surface area, 2(xy + xz + yz), we conclude also that

x = z.

Then x = y = z. The box of maximum volume is a cube.
To find its dimensions we return to the constraint, which tells us that

6x2 = 96 or x = 4. Hence y and z are 4 also. �

More Constraints

Lagrange multipliers can also be used to maximize f(x, y, z) subject to more
than one constraint; for instance, the constraints may be

g(x, y, z) = k1 and h(x, y, z) = k2. (16.7.11)

Figure 16.7.6:
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The two surfaces (16.7.11) in general meet in a curve C, as shown in Fig-
ure 16.7.6. Assume that C is parameterized by the function G. Then at a
maximum (or minimum) of f at a point P0(x0, y0, z0) on C,

∇f ·G′(t0) = 0.

Thus ∇f , evaluated at P0, is perpendicular to G′(t0). But ∇g and ∇h,
being normal vectors at P0 to the level surfaces g(x, y, z) = K1 and h(x, y, z) =
K2, respectively, are both perpendicular to G′(t0). Thus

Figure 16.7.7:

∇f , ∇g, and ∇h are all perpendicular to G′(t0) at (x0, y0, z0).
(See Figure 16.7.7.) Consequently, ∇f lies in the plane determined by the

vectors∇g and∇h (which we assume are not parallel). Hence there are scalars
λ and µ such that mu, mew, is Greek for the

letter M.∇f = λ∇g + µ∇h.
This vector equation provides three scalar equations in λ, µ, x, y, z. The two
constraints give two more equations. All told: five equations in five unknowns.
(Of course we find λ and µ only if they assist the algebra.)

A rigorous development of the material in this section belongs in an ad-
vanced calculus course. If a maximum occurs at an endpoint of the curves in
question or if the two surfaces do not meet in a curve or if the ∇g and ∇h are
parallel, this method does not apply. We will content ourselves by illustrating
the method with an example in which there are two constraints.

EXAMPLE 4 Minimize the quantity x2 +y2 +z2 subject to the constraints
x+ 2y + 3z = 6 and x+ 3y + 9z = 9.

SOLUTION There are three variables and two constraints. Each of the two
constraints mentioned describes a plane. Thus the two constraints together
describe a line. The function x2 + y2 + z2 is the square of the distance from
(x, y, z) to the origin. So the problem can be rephrased as “How far is the origin
from a certain line?” (It could be solved by vector algebra. See Exercises 19
and 20.) When viewed this way, the problem certainly has a solution; that is,
there is clearly a minimum.

In this case

f(x, y, z) = x2 + y2 + z2 (16.7.12)

g(x, y, z) = x+ 2y + 3z (16.7.13)

h(x, y, z) = x+ 3y + 9z. (16.7.14)

Thus

∇f = 2xi + 2yj + 2zk (16.7.15)

∇g = i + 2j + 3k (16.7.16)

∇h = i + 3j + 9k. (16.7.17)
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There are constants λ and µ so

∇f = λ∇g + µ∇h.

Therefore, the five equations for x, y, z, λ, and µ are

2x = λ+ µ (16.7.18)

2y = 2λ+ 3µ (16.7.19)

2z = 3λ+ 9µ (16.7.20)

x+ 2y + 3z = 6 (16.7.21)

x+ 3y + 9z = 9 (16.7.22)

There are several ways to solve these equations.One way is to use software
programs that solve
simultaneous linear

equations.

One way is to use the first three of the five equations: to express x, y, and
z in terms of λ and µ. Then substitute these values in the last two equations,
getting an old friend from high school “two simultaneous equations in two
unknowns”

By (16.7.18), (16.7.19), and (16.7.20),

x =
λ+ µ

2
, y =

2λ+ 3µ

2
, z =

3λ+ 9µ

2
.

Equations (16.7.21) and (16.7.22) then become

λ+ µ

2
+

2(2λ+ 3µ)

2
+

3(3λ+ 9µ)

2
= 6

and
λ+ µ

2
+

3(2λ+ 3µ)

2
+

9(3λ+ 9µ)

2
= 9,

which simplify to

14λ+ 34µ = 12 (16.7.23)

and 34λ+ 91µ = 18. (16.7.24)

Solving (16.7.23) and (16.7.24) gives

λ =
240

59
µ = −78

59
.

Thus

x =
λ+ µ

2
=

81

59
≈ 1.37288,

y =
2λ+ 3µ

2
=

123

59
≈ 2.08475,

z =
3λ+ 9µ

2
=

9

59
≈ 0.15254.
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The minimum of x2 + y2 + z2 is this Since there is no maximum,
this must be a minimum.
Why?

(
81

59

)2

+

(
123

59

)2

+

(
9

59

)2

=
21, 771

3, 481
=

369

59
≈ 6.24542.

�

In Example 4 there were three variables, x, y, and z, and two constraints.
There may, in some cases, be many variables, x1, x2, . . .xn, and many con-
straints. If there are m constraints, g1, g2 . . . gm introduce Lagrange multipliers
λ1, λ2, . . .λm, one for each constraints. So there would be m+ n equations, n
from the equation

∇f = λ1∇g1 + λ2∇g2 + · · ·+ λm∇gm

and m more equations from the m constraints. There would be m + n un-
knowns, λ1, λ2, . . . , λm, x1, x2, . . . , xn.

Summary

The basic idea of Lagrange multipliers is that if f(x, y, z) (or f(x, y)) has an
extreme value on a curve that lies on the surface g(x, y, z) = C (or the curve
g(x, y) = k), then ∇f and ∇g are both perpendicular to the curve at the point
where the extreme value occurs. If there is only one constraint, then ∇f and
∇g are parallel. If there are two constraints g(x, y, z) = k1 and h(x, y, z) = k2,
then ∇f lies on the plane of ∇g and ∇h. In the first case there is a scalar
λ such that ∇f = λ∇g. In the second case, there are scalars λ and µ such
that ∇f = λ∇g+µ∇h. These vector equations, together with the constraints,
provide simultaneous scalars equations, which must then be solved.
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EXERCISES for Section 16.7 Key: R–routine,
M–moderate, C–challenging

In the exercises use Lagrange multipliers unless other-
wise suggested.
1.[R] Maximize xy for points on the circle x2+y2 = 4.

2.[R] Minimize x2 + y2 for points on the line
2x+ 3y = 6.

3.[R] Minimize 2x + 3y on the portion of the hyper-
bola xy = 1 in the first quadrant.

4.[R] Maximize x+ 2y on the ellipse x2 + y2 = 8.

5.[R] Find the largest area of all rectangles whose
perimeters are 12 centimeters.

6.[R] A rectangular box is to have a volume of 1 cu-
bic meter. Find its dimensions if its surface area is
minimal.

7.[R] Find the point on the plane x+2y+3z = 6 that
is closest to the origin. Hint: Minimize the square of
the distance in order to avoid square roots.

8.[R] Maximize x+y+2z on the sphere x2 +y2z2 = 9.

9.[R] Minimize the distance from (x, y, z) to (1, 3, 2)
for points on the plane 2x+ y + z = 5.

10.[R] Find the dimensions of the box of largest vol-
ume whose surface area is to be 6 square inches.

11.[R] Maximize x2y2z2 subject to the constraint
x2 + y2 + z2 = 1.

12.[R] Find the points on the surface xyz = 1 closest
to the origin.

13.[R] Minimize x2 + y2 + z2 on the line common to
the two planes x+ 2y+ 3z = 0 and 2x+ 3y+ z = 4.

14.[R] The plane 2y + 4z − 5 = 0 meets the cone
z2 = 4(x2 + y2) in a curve. Find the point on this
curve nearest the origin.

In Exercises 15 to 18 solve the given exercise in Sec-
tion 16.5 by Lagrange multipliers.
15.[R] Exercise 25
16.[R] Exercise 26
17.[R] Exercise 29
18.[R] Exercise 30

19.[R] Solve Example 4 by vector algebra.

20.[R] Solve Exercise 13 by vector algebra.

21.[R]

(a) Sketch the elliptical paraboloid z = x2 + 2y2.

(b) Sketch the plane x+ y + z = 1.

(c) Sketch the intersection of the surfaces in (a) and
(b).

(d) Find the highest point on the intersection in (c).

22.[R]

(a) Sketch the ellipsoid x2 +y2/4+z2/9 = 1 and the
point P (2, 1, 3).

(b) Find the point Q on the ellipsoid that is nearest
P .

(c) What is the angle between PQ and the tangent
plane at Q?

23.[R]

(a) Sketch the hyperboloid x2 − y2/4 − z4/9 = 1.
(How many sheets does it have?)
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(b) Sketch the point (1, 1, 1). (Is it “inside” or “out-
side” the hyperboloid?)

(c) Find the point on the hyperboloid nearest P .

24.[R] Maximize x3 + y3 + 2z3 on the intersection of
the surfaces x2+y2+z2 = 4 and (x−3)2+y2+z2 = 4.

25.[R] Show that a triangle in which the product of
the sines of the three angles is maximized is equilat-
eral. Hint: Use Lagrange multipliers.

26.[R] Solve Exercise 25 by labeling the angles x,y,
and π−x− y and minimizing a function of x and y by
the method of Section 16.6.

27.[R] Maximize x+2y+3z subject to the constraints
x2 + y2 + z2 = 2 and x+ y + z = 0.

28.[C]

(a) Maximize x1x2, · · ·xn subject to the constraints
that

∑n
i=1 xi = 1 and all xi ≥ 0.

(b) Deduce that for nonnegative numbers a1, a2, . . . ,
an, n
√
a1a2 · · · an ≤ (a1 + a2 + · · ·+ an)/n. (The

geometric mean is less than or equal to the
arithmetic mean.)

29.[C]

(a) Maximize
∑n

i=1 xiyi subject to the constraints∑n
i=1 x

2
i = 1 and

∑n
i=1 y

2
i = 1.

(b) Deduce that for any numbers a1, a2,
. . . , an and b1, b2, . . . bn,

∑n
i=1 aibi ≤(∑n

i=1 a
2
i

)1/2 (∑n
i=1 b

2
i

)1/2, which is called the
Schwarz inequality. Hint: Let xi = ai

(
Pn
i=1 a

2
i )

1/2

and y1 = bi
(
Pn
i=1 b

2
i )

1/2 .

(c) How would you justify the inequality in (b), for
n = 3, by vectors?

30.[C] Let a1, a2 . . . an be fixed nonzero numbers.
Maximize

∑n
i=1 aixi subject to

∑n
i=1 x

2
i = 1.

31.[C] Let p and q be positive numbers that satisfy
the equation 1/p+1/q = 1. Obtain Holder’s inequality
for nonnegative numbers ai and bi,

n∑
i=1

aibi ≤

(
n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q

,

as follows.

(a) Maximize
∑n

i=1 xiyi subject to
∑n

i=1 x
p
i = 1 and∑n

i=1 y
q
i = 1.

(b) By letting xi = ai
(
Pn
i=1 a

p
i )1/p

and yi = bi
(
Pn
i=1 b

q
i )

1/q ,
obtain Holder’s inequality.

Note that Holder’s inequality, with p = 2 and q = 2,
reduces to the Schwarz inequality in Exercise 29.

32.[C] A consumer has a budget of B dollars and
my purchase n different items. The price of the ith
item is p1 dollars. When the consumer buys x1 units
of the ith item, the total cost is

∑n
i=1 pixi. Assume

that
∑n

i=1 pixi = B and that the consumer wishes to
maximize her utility u(x1, x2 . . . xn).

(a) Show that when x1, . . . , xn, are chosen to maxi-
mize utility, then

∂u/∂xi
pi

=
∂u/∂xj
pj

.

(b) Explain the result in (a) using just economic in-
tuition. Hint: Consider a slight change in xi and
xj , with the other xk’s held fixed.

33.[C] The following is quoted from Colin W. Clark in
Mathematical Bioeconomics, Wiley, New York, 1976:
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[S]uppose there are N fishing grounds.
Let H i = H i(Ri, Ei) denotes the produc-
tion function for the total harvest H i on
the ith ground as a function of the re-
cruited stock level Ri and effort Ei on the
ith ground. The problem is to determine
the least total cost

∑N
i=1 ciE

i at which
a given total harvest H =

∑n
i=1H

i can
be achieved. This problem can be easily
solved by Lagrange multipliers. The re-
sult is simply

1
ci

∂H i

∂Ei
= constant

[independent of i].

Verify his assertion. The ci‘s are constants. The su-
perscripts name the functions; they are not exponents.

34.[C] (Computer science) This exercise is based on J.
D. Ullman, Principles of Database Systems, pp. 82–83,
Computer Science Press, Potomac, Md., 1980. It arises

in the design of efficient “bucket” sorts. (A bucket sort
is a particular way of rearranging information in a
database.) Let p1, p2, . . . , pk and B be positive con-
stants. Let b1, b2, . . . , bk be k nonnegative variables
satisfying

∑k
j=1 bj = B. The quantity

∑k
j=1 pj · 2B−bj

represents the expected search time. What values of
b1, b2, . . . , bk does the method of Lagrange multipliers
suggest provide the minimum expected search time?

35.[C] Assume that f(x, y, z) has an extreme value
at P0 on the level surface g(x, y, z) = k

(a) Why is ∇g evaluated at P0 perpendicular to the
surface at P0?

(b) Why is ∇f evaluated at P0 perpendicular to the
surface at P0?

36.[C] Solve Example 35 by vector algebra (or just
algebra).
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16.8 What Everyone Who Will Study Ther-

modynamics Needs to Know

The basic equations of thermodynamics follow from the Chain Rule and the Review the Chain Rule, if
necessary.equality of the mixed partial derivatives. We will describe the mathematics

within the thermodynamics context.

Implications of The Chain Rule

We start with a function of three variables, f(x, y, z), which we assume has
first partial derivatives

∂f

∂x

∣∣∣∣
y,z

∂f

∂y

∣∣∣∣
x,z

∂f

∂z

∣∣∣∣
x,y

.

The subscripts denote the variables held fixed. This notation is standard
practice in thermodynamics,
though it offends some
mathematicians.

Without this explicit reminder it is necessary to remember the other vari-
ables. At this point this is not difficult. But, when additional information is
included, it can become more difficult to keep track of all of the variables in
the problem.

Now assume that z is a function of x and y, z = g(x, y). Then f(x, y, z) =
f(x, y, g(x, y)) is a function of only two variables. This new function we name
h(x, y): h(x, y) = f(x, y, g(x, y)). There are only two first partial derivatives
of h:

∂h

∂x

∣∣∣∣
y

and
∂h

∂y

∣∣∣∣
x

.

Let the value of f(x, y, z) be called u, u = f(x, y, z). But x, y, and z are
functions of x and y: x = x, y = y, and z = g(x, y).

Figure 16.8.1:

Figure 16.8.1 provides a pictorial view of the relationship between the dif-
ferent variables. Both x and y appear as middle and independent variables.
We have u = f(x, y, z) and also u = h(x, y). By the Chain Rule Then A change in x affects f

directly and also indirectly
because it causes a change
in z, which also affects f .

∂h

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

∂x

∂x

∣∣∣∣
y

+
∂f

∂y

∣∣∣∣
x,z

∂y

∂x

∣∣∣∣
y

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

.

Since x and y are independent variables, ∂x/∂x = 1 and ∂y/∂x = 0 and we
have

∂h

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

, (16.8.1)

or simply
∂h

∂x
=
∂f

∂x
+
∂f

∂z

∂g

∂x
. (16.8.2)
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When the subscripts are omitted we have to look back at the definitions of f ,
g, and h to see which variables are held fixed.

EXAMPLE 1 Let’s check (16.8.2) when

f(x, y, z) = x2y3z5 and g(x, y) = 2x+ 3y.

SOLUTION We have h(x, y) = f(x, y, g(x, y)) = x2y3(2x + 3y)5. Then
∂f

∂x
= 2xy3z5 and

∂f

∂z
= 5x2y3z4. Also

∂g

∂x
= 2.

Computing ∂h/∂x directly gives

∂h

∂x
=

∂

∂x

(
x2y3(2x+ 3y)5

)
= y3 ∂

∂x

(
x2(2x+ 3y)5

)
= y3

(
2x(2x+ 3y)5 + x2

(
5(2x+ 3y)4(2)

))
= 2xy3(2x+ 3y)5 + 10x2y3(2x+ 3y)4. (16.8.3)

On the other hand, by (16.8.2), we have

∂h

∂x
=

∂f

∂x
+
∂f

∂z

∂g

∂x
= 2xy3z5 + (5x2y3z4)(2)

= 2xy3(2x+ 3y)5 + 10x2y3(2x+ 3y)4,

which agrees with (16.8.3). �

What If z = g(x, y) Makes f(x, y, z) Constant?

Next, assume that when z is replaced by g(x, y), the function h(x, y) =
f(x, y, g(x, y)) is constant: h(x, y) = f(x, y, g(x, y)) = C. This happens when
we use the equation f(x, y, z) = C to determine z implicitly as a function of
x and y.

Then
∂h

∂x

∣∣∣∣
y

= 0 and
∂h

∂y

∣∣∣∣
x

= 0.

In this case, which occurs frequently in thermodynamics, (16.8.1) becomes(16.8.4) will be the
foundation for deriving

(16.8.9) and (16.8.10), key
mathematical relationships

used in thermodynamics.

0 =
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

. (16.8.4)
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Solving (16.8.4) for
∂g

∂x

∣∣∣∣
y

we obtain

∂g

∂x

∣∣∣∣
y

=
− ∂f

∂x

∣∣
y,z

∂f
∂z

∣∣
x,y

. (16.8.5)

Equation (16.8.5) expresses the partial derivative of g(x, y) with respect to x
in terms of the partial derivatives of the original function f(x, y, z).

EXAMPLE 2 Let f(x, y, z) = x3y5z7. Define g(x, y) implicitly by x3y5(g(x, y))7 =
1. That is, g(x, y) = x−3/7y−5/7. Verify (16.8.5).

SOLUTION First of all,
∂g

∂x

∣∣∣∣
y

= −3
7
x−10/7y−5/7. Then

∂f

∂x

∣∣∣∣
y,z

= 3x2y5z7 and
∂f

∂z

∣∣∣∣
x,x

= 7x3y5z6.

Substituting in (16.8.5), we have

−
∂f

∂x

˛̨̨̨
˛̨
y,z

∂f

∂z

˛̨̨̨
˛̨
x,y

=
− (3x2y5z7)

7x3y5z6

= −3

7
x−1z

= −3

7
x−1x−3/7y−5/7 because x3y5z7 = 1

= −3

7
x−10/7y−5/7

=
∂g

∂x

∣∣∣∣
y

so (16.8.5) is satisfied.

�

The Reciprocity Relations

In a thermodynamics text you will see equations of the form

∂x

∂z

∣∣∣∣
y

=
1

∂z

∂x

∣∣∣∣
y

. (16.8.6)
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We will explain where this equation comes from, presenting the mathematical
details often glossed over in the applied setting. There is a function f(x, y, z)
with constant value C, f(x, y, z) = C. It is assumed that this equation deter-
mines z as a function of x and y, or, similarly, determines x as a function of y
and z, or y as a function of x and z. There are six first partial derivatives:See Exercise 5.

∂z

∂x

∣∣∣∣
y

,
∂z

∂y

∣∣∣∣
x

,
∂x

∂y

∣∣∣∣
z

,
∂x

∂z

∣∣∣∣
y

,
∂y

∂x

∣∣∣∣
z

,
∂y

∂z

∣∣∣∣
x

. (16.8.7)

An equation analogous to (16.8.5) holds for each of them. For instance,

∂x

∂z

∣∣∣∣
y

=

− ∂f

∂z

∣∣∣∣
x,y

∂f

∂x

∣∣∣∣
y,z

. (16.8.8)

Combining (16.8.5) and (16.8.8) verifies thatThis is to be expected, for
∆z
∆x is the reciprocal of ∆x

∆z .

∂x

∂z

∣∣∣∣
y

=
1

∂z

∂x

∣∣∣∣
y

. (16.8.9)

Equation (16.8.9) is an example of a reciprocity relation: The partial deriva-
tive of one variable with respect to a second variable is the reciprocal of the
partial derivative of the second variable with respect to the first variable.

EXAMPLE 3 Let f(x, y, z) = 2x+ 3y+ 5z = 12. Verify that ∂z/∂x is the
reciprocal of ∂x/∂z.
SOLUTION Since 2x+ 3y + 5z = 12, z = (12− 2x− 3y)/5. Then ∂z/∂x =
−2/5.

Also, x = (12 − 3y − 5z)/2, so ∂x/∂z = −5/2, which is, as predicted, the
reciprocal of ∂z/∂x. �

The Cyclic Relations

With the aid of equations like (16.8.8) it is easy to establish the surprising
relationThe Cyclic Relation, also

known as the Triple Product
Rule, the Cyclic Chain Rule,

or Euler’s Chain Rule. See
http://en.wikipedia.

org/wiki/Triple_
product_rule.
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∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1. (16.8.10)

Equation (16.8.10) results from the use of three versions of (16.8.8). The left-
hand side of (16.8.10) can be expressed as

− ∂f

∂y

∣∣∣∣
x,z

∂f

∂x

∣∣∣∣
y,z



− ∂f

∂z

∣∣∣∣
x,y

∂f

∂y

∣∣∣∣
x,z



− ∂f

∂z

∣∣∣∣
x,y

∂f

∂x

∣∣∣∣
y,z

 (16.8.11)

Cancellation reduces (16.8.11) to -1.

EXAMPLE 4 Let f(x, y, z) = 2x+3y+5z = 12. This equation determines
implicitly each of the variables in terms of the two others. Verify (16.8.10) in
this case.
SOLUTION By the equation 2x+ 3y + 5z = 12,

x =
12− 3y − 5z

2
y =

12− 2x− 5z

3
z =

12− 2x− 3y

5

Then ∂x/∂y = −3/2, ∂y/∂z = −5/3, and ∂z/∂x = −2/5, and we have

∂x

∂y

∂y

∂z

∂z

∂x
=

(
−3

2

)(
−5

3

)(
−2

5

)
= −1

�

If two of the three partial derivatives in (16.8.10) are easy to calculate,
then we can use (16.8.10) to find the third, which may otherwise be hard to
calculate. We illustrate this use of the cyclic relationship with an example
from thermodynamics. In this context T denotes temperature, p, pressure,
and v the mass per unit volume. v is the reciprocal of density

Equations (16.8.4, (16.8.9), and (16.8.10) are the 15sential mathematical
relationships used in thermodynamics. We now show their use in a few typical
thermodynamics problems.

EXAMPLE 5 In van der Waal’s equation p, T , and v are all related by the
relation van der Waal’s equation is

only one example of an
equation of state. See also
Exercises 11 and 12.

p =
RT

v − b
− a

v2
; (16.8.12)
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R, a and b are constants. Use a cyclic relation to find (∂v/∂T )p.

SOLUTION We use the cyclic relationExercises 13 and 14 describe
other ways to solve

Example 5. ∂v

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
v

∂p

∂v

∣∣∣∣
T

= −1. (16.8.13)

Looking at (16.8.12), we see that (∂p/∂T )v is easier to calculate than (∂T/∂p)v.
So (16.8.13) becomes

∂v

∂T

∣∣∣∣
p

∂p

∂v

∣∣∣∣
T

∂p

∂T

∣∣∣∣
v

= −1

and therefore

∂v

∂T

∣∣∣∣
p

= −

∂p

∂T

∣∣∣∣
v

∂p

∂v

∣∣∣∣
T

.

(16.8.14)

Since p is given as a function of v and T , it is easy to calculate the numerator
and denominator in (16.8.14):(

∂p

∂T

)
v

=
R

v − b
and

(
∂p

∂v

)
T

=
−RT

(v − b)2
+

2a

v3
.

Thus, by (16.8.14), (
∂v

∂T

)
p

=
−R/(v − b)

−RT/(v − b)2 + 2a/v3
.

�

Using the Equality of the Mixed Partial Derivatives

Having shown how the Chain Rule provides some of the basic equations in
thermodynamics, let us show how the equality of the mixed partials leads to
other basic equations.

We resume our consideration of a thermodynamic process in which the
pressure is denoted by P , the temperature by T , and the volume per unit
mass by v. Other common variables are

u thermal energy per unit mass
s entropy per unit mass
a Helmholtz free energy per unit mass
g Gibbs free energy per unit mass
h enthalpy per unit mass
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That is a total of 8 variables of interest. If they were independent, the possible
states would be part of an eight-dimensional space. However, they are very
interdependent. In fact any two determine all the others.

For instance, u may be viewed as a function of s and v, and we have
∂u

∂s

∣∣∣∣
v

,

which is the definition of temperature, T . Thermodynamic texts either state When you look at your
thermometer, remember
that you are gazing at the
value of a partial derivative.

or derive the “Gibbs relation”

du = T ds− P dv.

This equation involving differentials tells us that u is viewed as a function of
s and v, and that

∂u

∂s

∣∣∣∣
v

= T and
∂u

∂v

∣∣∣∣
s

= −P.

Equating the mixed second partial derivatives then gives us

∂2u

∂v∂s
=

∂2u

∂s∂v
equality of mixed partials of u(s, v)

∂

∂v

(
∂u
∂s

)
=

∂

∂s

(
∂u
∂v

)
∂T

∂v

∣∣∣∣
s

=
∂(−P )

∂s

∣∣∣∣
v

because
∂u

∂s

∣∣∣∣
v

= T and
∂u

∂v

∣∣∣∣
s

= −P

∂T

∂v

∣∣∣∣
s

= − ∂P

∂s

∣∣∣∣
v

.

Several thermodynamic statements that equate two partial derivatives are
obtained this way. The starting point is an equation of the form In other contexts we will say

that dz = Mdx+Ndy is
an exact differential.

dz = M dx+N dy

where M is
∂z

∂x

∣∣∣∣
y

and N is
∂z

∂y

∣∣∣∣
x

. Then, because

∂z

∂x∂y
=

∂z

∂y∂x
,

it is found that
∂M

∂y

∣∣∣∣
x

=
∂N

∂x

∣∣∣∣
y

.

Summary

We showed how the Chain Rule in the special case where an intermediate vari-
able is also a final variable justifies certain identities, namely, the reciprocal
and cyclic relations used in thermodynamics. Then we showed how the equal-
ity of the mixed partial derivatives is used to derive other equations linking
various partial derivatives.
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EXERCISES for Section 16.8 Key: R–routine,
M–moderate, C–challenging

1.[R] Let u = x2 + y2 + z2 and let z = x+ y.

(a) The symbol
∂u

∂x
has two interpretations. What

are they?

(b) Evaluate
∂u

∂x
in both cases identified in (a).

2.[R] Let z = rst and let r = st.

(a) The symbol
∂z

∂t
has two interpretations. What

are they?

(b) Evaluate
∂z

∂t
in both cases identified in (a).

3.[R] Let u = f(x, y, z) and z = g(x, y). Then u

is indirectly a function of x and of y. Express
∂u

∂x

∣∣∣∣
y

in terms of partial derivatives of f . (Supply all the
steps.)

4.[R] Assume that the equation f(x, y, z) = C,
a constant, determines x as a function of y and z:

x = h(y, z). Express
∂x

∂y

∣∣∣∣
z

in terms of partial deriva-

tives of f . (Supply all the steps.)

5.[R] What is the product of the six partial deriva-
tives in (16.8.7)?

6.[R] Using the function f from Example 2, verify

the analog of (16.8.8) for
∂z

∂y

∣∣∣∣
x

.

7.[R] Let f(x, y, z) = 2x + 4y + 3z. The equation
f(x, y, z) = 7 determines any variable as a funciton of
the other two. Verify (16.8.8), where z is viewed as a
function of x and y.

8.[R] Obtain the cyclic relation

∂x

∂z

∣∣∣∣
y

∂z

∂y

∣∣∣∣
x

∂y

∂x

∣∣∣∣
z

= −1.

Hint: Duplicate the steps leading to (16.8.10).

9.[R] Verify (16.8.10) in the case f(x, y, z) = x3y5z7 =
1.

10.[R] Verify (16.8.10) in the case f(x, y, z) =
2x+ 4y + 3z = 7.

11.[R] The equation of state for an ideal gas is
pv = RT . Find (∂v/∂T )p.

12.[R] The Redlich-Kwang equation

p =
RT

v − b
− a

v(v + b)T 1/2
.

is an improvement upon the van der Waal’s equa-
tion of state (16.8.12) for gases and liquids. Find
(∂v/∂T )p. Note: Do a Google search for ”Redlich
Kwang equation”, or visit http://en.wikipedia.
org/wiki/Equation_of_state.

13.[R] Find (∂v/∂T )p in Example 5 by differentiat-
ing both sides of (16.8.12) with respect to T , holding
p constant.

14.[R] One might try to find (∂v/∂T )p in Example 5
by first finding an equation that expresses v in terms
of T and p. What unpleasantness happens when you
try this approach?

15.[R] In Example 5, find (∂v/∂p)T , (∂T/∂v)p, and
(∂T/∂p)v.

16.[M] In thermodynamics there is the Gibbs relation

dh = T ds+ v dP.

It is understood that
∂h

∂s

∣∣∣∣
p

= T and
∂h

∂p

∣∣∣∣
s

= v. Deduce

that
∂T

∂P

∣∣∣∣
s

=
∂v

∂s

∣∣∣∣
P

.
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17.[R] Consider the thermodynamic equation

∂E

∂T

∣∣∣∣
v

=
∂E

∂T

∣∣∣∣
P

+
∂E

∂P

∣∣∣∣
T

∂P

∂T

∣∣∣∣
v

. (16.8.15)

(a) What is the dependent variable?

(b) What are the independent variables?

(c) What are the intermediate variables?

(d) Draw a diagram showing all the paths from
the dependent variables to the independent vari-
ables.

(e) Use the Chain Rule to complete the derivation
of (16.8.15).

18.[M] Show that
∂P

∂T

∣∣∣∣
v

=
−
∂v

∂T

˛̨̨̨
˛
P

∂v

∂P

˛̨̨̨
˛
T

.

19.[M] Show that

(a)
∂E

∂v

∣∣∣∣
P

=
∂E

∂T

∣∣∣∣
P

∂T

∂v

∣∣∣∣
P

(b)
∂E

∂P

∣∣∣∣
v

=
∂E

∂T

∣∣∣∣
P

∂T

∂P

∣∣∣∣
v

+
∂E

∂P

∣∣∣∣
T

.

20.[M] Show that
∂P

∂T

∣∣∣∣
v

∂T

∂P

∣∣∣∣
v

= 1. Hint: Express

each of the partial derivaties as a quotient of partial
derivatives, as in Exercise 18.

21.[M] Show that
∂P

∂T

∣∣∣∣
v

∂T

∂v

∣∣∣∣
P

∂v

∂P

∣∣∣∣
T

= −1.

22.[M] Let u = F (x, y, z) and z = f(x, y). Thus u
is a (composite) function of x and y: u = G(x, y) =
F (x, y, f(x, y)). Assume that G(x, y) = x2y. Obtain

a formula for
∂f

∂x
in terms of

∂F

∂x
,
∂F

∂y
, and

∂F

∂z
. (All

three need not appear in your answer.)

23.[M] Let u = F (x, y, z) and x = f(y, z). Thus u
is a (composite) function of y and z: u = G(y, z) =
F (f(y, z), y, z). Assume that G(y, z) = 2y + z2. Ob-

tain a formula for
∂f

∂z
in terms of

∂F

∂x
,
∂F

∂y
, and

∂F

∂z
.

(All three need not appear in your answer.)

24.[C] Two functions u and v of the variables x and
y are defined implicitly by the two simultaneous equa-
tions

F (u, v, x, y) = 0 and G(u, v, x, y) = 0.

Assuming all necessary differentiability, find a formula

for
∂u

∂x
in terms of the partial derivatives of F and of

G.
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16.S Chapter Summary

This chapter extends to functions of two or more variables the notions of rate
of change and derivative originally in Chapter 3. For a function of several
variables a “partial derivative” is simply the derivative with respect to one of
the variables, when all the other variables are held constant.

The precise definition rests on a limit. For instance, the partial derivative
with respect to x of f(x, y) at (a, b) is

∂f

∂x
(a, b) = lim

∆x→0

f(a+ ∆x, b)− f(a, b)

∆x
.

Just as there are higher-order derivatives, there are higher-order partial deriva-
tives, for instance:

∂2f

∂x∂x
=

∂

∂x

(
∂f

∂x

)
,
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
, and

∂2f

∂y∂y
=

∂

∂y

(
∂f

∂y

)
.

For functions usually encountered in applications, the two “mixed partialas,”
∂2f/∂x∂y and ∂2f/∂y∂x, are equal; we can therefore not worry about the
order of the differentiation.

Also, for common functions “differentiation under the integral sign” is legal:

if g(y) =

b∫
a

f(x, y) dx, then
dg

dy
=

b∫
a

∂f

∂y
(x, y) dx.

For a function of one variable, f(x), with a continuous derivative,

∆f = f(a+∆x)−f(a) = f ′(c)∆x = (f ′(a)+ε)∆x = f ′(a)∆x+ε∆x. (16.S.1)

Here c is in [a, a + ∆x] and ε → 0 as ∆x → 0. The analog of (16.S.1) for a
function of two or more variables is the basis for the chain rule for functions
of several variables:

∆f = f(a+∆x, b+∆y)−f(a, b) = (f(a+ ∆x, b+ ∆y)− f(a, b+ ∆y))+(f(a, b+ ∆y)− f(a, b)) =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y+ε1∆x+ε2∆y,

(16.S.2)
where ε1 and ε2 → 0 as Deltax and ∆y → 0.See the CIE section on

Maxwell’s equations at the
end of Chapter 18.

The chain rule showed then, if g(u) and h(u) are differentiable functions,
then y = g(x + kt) + h(x − kt), k constant, satisfies the partial differential
equation (PDE) ∂2y/∂t2 = k2∂2y/∂x2. This PDE was the key to Maxwell’s
conjecture that light is an electro-magnetic phenomenon.

The gradient, a vector function, was defined in terms of partial derivatives:
∇f = 〈fx, fy〉 or, for a function of three variables: ∇f = 〈fx, fy, fz〉. The
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gradient points in the direction a function increases most rapidly. The rate
at which f(x, y) changes in the direction of a unit vector u is ∇f · u. The
gradient is perpendicular to the level curve (or level surface) passing through
a given point. At a critical point the gradient vanishes.

For a function of one variable the sign of the second derivative helps tell
whether a critical point is a maximum or a minimum. For a function of two
variables, the test also involves all three second derivatives. In particular, the
signs of fxx and fxxfyy − (fxy)

2 are important. The number λ is called a
Lagrange multiplier.Maximizing a function f subject to a constraint g depends on the obser-

vation that at an extremum ∇f is parallel to ∇g. Hence there is a number λ
such that ∇f = λ∇g.

The final section showed that the chain rule is the bases of two facts in
thermodynamics. It also shows how to apply the chain rule when a middle
variable is also a final variable.

EXERCISES for 16.S Key: R–routine, M–moderate, C–challenging

1.[R] Let f(x, y) = x2 − y2 and g(x, y) = 2xy. Show
that

(a) ∂f
∂x = ∂g

∂y

(b) ∂f
∂y = − ∂g

∂x

(c) ∂2f
∂x2 + ∂2f

∂y2
= 0

(d) ∂2g
∂x2 + ∂2g

∂y2
= 0

2.[R] Repeat Exercise 1 for f(x, y) = ln
(√

x2 + y2
)

and g(x, y) = arctan (y/x).

3.[M] Let f and g be functions of x and y that have
continuous second derivatives. Assume the first partial
derivatives of f and g satisfy:

∂f

∂x
=
∂g

∂y
and

∂f

∂y
= −∂g

∂x
. (16.S.3)

Show that

∂2f

∂x2
+
∂2f

∂y2
= 0 and

∂2g

∂x2
+
∂2g

∂y2
= 0. (16.S.4)

Note: The two equations in (16.S.3) are known as
the Cauchy–Riemann equations. A pair of functions
that satisfy (16.S.4) are called a conformal pair of
functions.

In Exercises 4 to 12 assume the functions have contin-
uous partial derivatives throughout the xy plane.
4.[R] If fx(x, y) = 0 for all points (x, y) in the plane,
must f be constant? If not, describe f .

5.[R] If fx(x, y) = 0 and fy(x, y) = 0 for all points
(x, y) in the plane, must f be constant? If not, de-
scribe f .

6.[R] The function 3x + g(y), for any differentiable
function g(y) satisfies the partial differential equation
∂f/∂x = 3. Are there any other solutions to that
equation? Explain your answer.

7.[R] Find all functions f such that ∂f/∂x = 3 and
also ∂y/∂x = 3 are satisfied.

8.[R] Show that there is no function f such that
∂f/∂x = 3y and ∂f/∂y = 4x.
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9.[R] Find all functions such that fxx(x, y) = 0.

10.[R] Find all functions such that fxx(x, y) = 0 and
fyy(x, y) = 0.

11.[R] Find all functions such that fxy(x, y) = 0.

12.[R] Find all functions such that fxy(x, y) = 1.

13.[M] A hiker is at the origin on a hill whose equa-
tion is z = x. If he walks south, along the positive
x-axis the slope of his path would be steep, 1, with an-
gle π/4. If he walked along the y-axis, the slope would
be 0.

(a) If he walked NE what would the slope of his path
be?

(b) In what direction should he walk in order that
his path would have a slope of 0.2?

14.[C] This exercise outlines a proof that the two
mixed partials of f(x, y) are generally equal. It suffices
to show that fxy(0, 0) = fyx(0, 0). We assume that all
the first and second partial derivatives are continuous
in some disk with center (0, 0).

(a) Why is fxy(0, 0) equal to

lim
k→0

fx(0, k)− fx(0, 0)
k

? (16.S.5)

(b) Why is (16.S.5) equal to

lim
k→0

(
lim
h→0

(f(h, k)− f(0, k))− (f(h, 0)− f(0, 0))
hk

)
?

(16.S.6)

(c) Let u(y) = f(h, y)− f(0, y). Show that the frac-
tion in (16.S.6) equals

u(k)− u(0)
hk

,

and this fraction equals u′(k)/h for some k be-
tween 0 and k.

(d) Why is u′(k) = fy(h, k)− fy(0, k)?

(e) Why is u′(k)/h equal to (fy)x(H,K) for some H
between 0 and h?

(f) Deduce that fxy(0, 0) = fyx(0, 0).

(g) Did this derivation use the continuity of fyx? If
so, how?

(h) Did this derivation use the continuity of fxy? If
so, how?

(i) Did we need to assume fxy exists? If so, where
was this assumption used?

(j) Did we need to assume fyx exists? If so, where
was this assumption used?

15.[C] The assertion that it is safe to “differentiate
across the integral sign,” amounts to the statement
that two definite integrals are equal. To illustrate this,
translate the assertion into the language of limits:

d

dt

b∫
a

f(x, t) dx =

b∫
a

∂

∂t
f(x, t) dx. (16.S.7)

(a) Why is the derivative on the left an ordinary
derivative, d()/dt, but the derivative on the right
is a partial derivative?

(b) Using the definitions of ordinary derivatives and
partial derivatives as limits, show what (16.S.7)
says about limits.

(c) Verify (16.S.7) for f(x, t) = x7t4.

(d) Verfiy (16.S.7) for f(x, t) = cos(xt).

Exercise 16 provides another motivation for the defini-
tion of the Fourier series of a function f defined on the
interval [0, 2π].
16.[C] For a particular integer n consider all functions
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S(x) of the form

S(x) =
a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx)) ,

Let f(x) be a continuous function defined on [0, 2π].
The definite integral

2π∫
0

(f(x)− S(x))2 dx

is a measure of how close S(x) is to f(x) on the interval
[0, 2π]. The integral can never be negative. (Why?)
The smaller the integral, the better S approximates
f on [0, 2π]. Show that the S(x) that minimizes the
integral is precisely a front-end of the Fourier series
associated with f(x).
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Calculus is Everywhere # 21

The Wave in a Rope

We will develop what may be the most famous partial differential equation.
In the CIE of the next chapter we will solve that equation and, then, use it
in the final chapter to show how it helped Maxwell discover that light is an
electrical-magnetic phenomenon.

As Morris Kline writes in Mathematical Thought from Ancient to Modern
Times, “The first real success with partial differential equations came in re-
newed attacks on the vibrating string problem, typified by the violin string.
The approximation that the vibrations are small was imposed by d’Alembert
(1717-1783) in his papers of 1746.”

Figure C.21.1:

Imagine shaking the end of a rope up and down gently, as in Figure C.21.1.
That motion starts a wave moving along the rope. The individual molecules

in the rope move up and down, while the wave travels to the right. In the case
of a sound wave, the wave travels at 700 miles per hour, but the air just
vibrates back and forth. (When someone says “good morning” to us, we are
not struck with a hurricane blast of wind.)

To develop the mathematics of the wave in a weightless rope, we begin
with some simplifying assumptions. First, each molecule moves only up and
down. Second, the distance each one moves is very small and the slope of the
curve assumed by the rope remains close to zero. (Think of a violin string.)

At time t the vertical position of the molecule whose x-coordinate is x is
y = y(x, t), for it depends on both x and t. Consider a very short section of

Figure C.21.2:

the rope at time t, shown as PQ in Figure C.21.2.
We assume that the tension T is the same throughout the rope. Apply

Newton’s Second Law, “force equals mass times acceleration,” to the mass in
PQ.

If the linear density of the rope is λ, the mass of the segment is λ times the
length of the segment. Because we are assuming small displacements, we will
approximate that length by ∆x. The upward force exerted by the rope on the
segment is T sin(θ+ ∆θ) and the downward force is T sin(θ). The net vertical
force is T sin(θ + ∆θ)− T sin(θ). Thus

Tsin(θ + ∆θ)− T sin(θ)︸ ︷︷ ︸
net vertical force

= λ∆x︸︷︷︸
mass

∂2y

∂t2︸︷︷︸
acceleration

. (C.21.1)

(Because y is a function of x and t, we have a partial derivative, not an ordinary
derivative.)

October 22, 2010 Calculus



C.21– The Wave in a Rope 1171

Next we express sin(θ) and sin(θ + ∆θ) in terms of the partial derivative
∂y/∂x.

First of all, because θ is near 0, cos(θ) is near 1. Thus sin(θ) is approxi-
mately sin(θ)/ cos(θ) = tan(θ), the slope of the rope at time t above (or below)
x, which is ∂y/∂x at x and t. Similarly, sin(θ + ∆θ) is approximately ∂y/∂x
at x+ ∆x and t. So (C.21.1) is approximated by

T
∂y

∂x
(x+ ∆x, t)− T ∂y

∂x
(x, t) = λ∆x

∂2y

∂t2
(x, t). (C.21.2)

Dividing both sides of (C.21.2) by ∆x gives

T
(
∂y
∂x

(x+ ∆x, t)− ∂y
∂x

(x, t)
)

∆x
= λ

∂2y

∂t2
(x, t). (C.21.3)

Letting ∆x in (C.21.3) approach 0, we obtain

T
∂2y

∂x2
(x, t) = λ

∂2y

∂t2
(x, t). (C.21.4)

Since both T and λ are positive, we can write (C.21.4) in the form

∂2y

∂x2
=

1

c2

∂2y

∂t2
. (C.21.5)

This is the famous wave equation. It relates the acceleration of the molecule
to the geometry of the curve; the latter is expressed by ∂2y/∂x2. Since we are

assuming that the slope of the rope remains near 0, ∂2y
∂x2 is approximately

∂2y
∂x2(√

1 +
(
∂y
∂x

)2
)3

which is the curvature at a given location and time. At the curvier part of the
rope, the acceleration is greater.

As the CIE in the next chapter shows, the constant c turns out to be the
velocity of the wave.

EXERCISES

1.[M] Figure C.21.3 shows a vibrating string whose
ends are fixed at A and B. Assume that each part
of the string moves parallel to the y-axis (a reason-
able approximation of the vibrations are small.) Let

y = f(x, t) be the height of the string at the point
with abscissa x at time t, as shown in the figure. In
this case, the partial derivatives are denoted ∂y/∂x and
∂y/∂t.
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Figure C.21.3:

(a) What is the meaning of yx?

(b) What is the meaning of yt?

October 22, 2010 Calculus


