
Chapter 17

Plane and Solid Integrals

In Chapter 2 we introduced the derivative, one of the two main concepts in
calculus. Then in Chapter 15 we extended the idea to higher dimensions. In the
present chapter, we generalize the concept of the definite integral, introduced
in Chapter 6, to higher dimensions.

Take a moment to review the definite integral. Instead of using the notation
of Chapter 6, we will restate the definition in a notation that easily generalizes
to higher dimension.

We started with an interval [a, b], which we will call I, and a continuous
function f defined at each point P of I. Then we cut I into n short intervals
I1, I2, . . . , Iu, chose a point P1 in I1, P2 in I2, . . . , Pn in In. See Figure 17.0.1.
Denoting the length of Ii by Li, we formed the sum

Figure 17.0.1:n∑
i=1

f(Pi)Li.

The limit of these sums as all the subintervals are chosen shorter and shorter
is the definite integral of f over interval I. We denoted it

∫ a
b
f(x) dx. We now

denote it
∫
I
f(P )dL. This notation tells us that we are integrating a function,

f , over an interval I. The dL reminds us that the integral is the limit of
approximations formed as the sum of products of the function value and the
length of an interval.

We will define integrals of functions over plane regions, such as square and
disks, over solid regions, such as tubes and balls, and over surfaces such as the
surface of a ball, in the same way. You can probably conjecture already what
the definition will be. These integrals are needed to compute total mass if we
know the density at each point, or total gravitational attraction, or center of
gravity, and so on.

It is one thing to define these higher-dimensional integrals. It is another to
calculate them. Most of our attention will be devoted to seeing how to compute
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Plane and Solid Integrals

them with the aid of so-called “iterated integrals,” which involve integrals over
intervals, the type defined in Chapter 6.

November 3, 2008 Calculus 1170



Plane and Solid Integrals § 17.1

17.1 The Double Integral: Integrals Over Plane

Areas
We suggest you re-read the
introduction to this chap-
ter and the definition of the
definite integral

∫ b
a f(x) dx

before going on.

The goal of this section is to define the integral of a function defined in a region
of a plane. With only a slight tweaking of this definition, we will define later
in the chapter integrals over surfaces and solids.

Volume Approximated by Sums

Let R be a region in the xy plane, bounded by curves. For convenience, assume
R is convex (no dents), for example, an ellipse, a disk, a parallelogram, a
rectangle, or a square. We draw R in perspective in Figure 17.1.1(a). Imagine

(a) (b) (c)

Figure 17.1.1:

that there is a surface above R (perhaps an umbrella). The height of the
surface above point P on R is f(P ), as shown in Figure 17.1.1(b)

If you know f(P ) for every point P how would you estimate the volume,
V , of the solid under the surface and above R?

Just as we used rectangles to estimate the area of regions back in Sec-
tion 6.1, we will use cylinders to estimate the volume of a solid. Recall, from
Section 7.4, that the volume of a cylinder is the product of its height and the
area of its base.

Inspired by the approach in Section 6.1, we cut R into n small regions R1,
R2, . . . , Rn. Each Ri has area Ai. Choose points P1 in R1, P2 in R2, . . . , Pn
in Rn. Then we build a cylinder over each little region Ri. Its height will be
f(Pi). There will then be n cylinders. The total volume of these cylinders is

n∑
i=1

f(Pi)Ai. (17.1.1)

As we choose the regions R1, R2, . . . , Rn, smaller and smaller, the sum (17.1.1)
approaches the volume V , if f is a continuous function.

EXAMPLE 1 Estimate the volume of the solid under the saddle z = xy

November 3, 2008 Calculus 1171



Plane and Solid Integrals § 17.1

and above the rectangle R whose vertices are (1, 0), (2, 0), (2, 3), and (1, 3). SHERMAN: Changed left
edge from 0 to 1 so that
base and height are not the
same.

SOLUTION Figure 17.1.2(a) shows the solid region in question.

(a) (b) (c)

Figure 17.1.2:

The highest point is above (2, 3), where z = 6. So the solid fits in a box
whose height is 6 and whose base has area 4. So we know the volume is at
most 4 · 6 = 24.

To estimate the volume we cut the rectangular box into four 1 by 1 squares
and evaluate z = xy at, say, the center of the squares, as shown in Fig-
ure 17.1.2(b).

Then we form a cylinder for each square. The base is the square and the
height is determined by the value of xy at the center of the square. These are
shown in Figure 17.1.2(c). (The cylinder over rectangle boxes.)

Then the total volume is

3

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
5

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
9

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
15

4︸︷︷︸
height

· 1︸︷︷︸
area of base

= 8

(17.1.2)
This estimate is then 8 cubic units. We know this is an overestimate (Why?)
By cutting the base into smaller pieces and using more cylinders we could
make a more accurate estimate of the volume of the solid. �

Density

Before we consider a “total mass” problem we must define the concept of
“density.” Consider a piece of sheet metal, which we view as part of a plane.
It is homogeneous, “the same everywhere.” Let R be any region in it, of area
A and mass m. The quotient m/A is the same for all regions R, and is called
the “density.”

It may happen that the material, unlike sheet metal is not uniform. For
instance, a towel that was just used to dry dishes. As R varies, the quotient
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Plane and Solid Integrals § 17.1

m/A, or “average density in R,” also varies. Physicists define the density at
a point as follows.

Figure 17.1.3:

They consider a small disk R of radius r and center at P , as in Figure 17.1.4.
Let m(r) be the mass in that disk and A(r) be the area of the disk (πr2). The

“Density at P” = lim
r→0

m(r)

A(r)
.

Thus density is denoted σ(P ), “sigma of P,”

σ is Greek for our letter
“s”, the initial letter of
“surface.” σ(P ) denotes
the density of a surface or
“lamina” at P .

With the physicists, we will assume the density σ(P ) exists at each point
and that it is a continuous function. In addition, we will assume that if R is a
very small region of area A and P is a point in that region then the product
σ(P )A is an approximation of the mass in R.

Total Mass Approximated by Sums

Assume that a flat region R is occupied by a material of varying density. The
density at point P in R is σ(P ). Estimate M , the total mass in R.

As expected, we cut R into n small regions R1, R2, . . . , Ri has area Ai.
We next choose points P1 in R1, P2 in R2, . . . , Pu in Rn. Then we estimate
the mass in each little region Ri, as shown in Figure 17.1.4. The mass in Ri is

Figure 17.1.4: This example has i = 7 subregions.

approximately
σ(Pi)

density
· Ai

area

Thus
n∑
i=1

σ(P1)Ai (17.1.3)
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Plane and Solid Integrals § 17.1

is the total estimate. As we divide R into smaller and smaller regions, , the
sums (17.1.2) approaches the total mass M , if σ is a continuous function.

EXAMPLE 2 A rectangular lamina, of varying density occupies the rect-
angle with corners at (0, 0), (2, 0), (2, 3), and (0, 3) in the xy plane. Its density
at (x, y) is xy grams per square cm. Estimate its mass by cutting it into six 1
by 1 squares and evaluating the density at the center of each square.

SOLUTION One such square is shown in Figure 17.1.5. The density at its

Figure 17.1.5:

center is 1
2
· 1

2
= 1

4
. Since its area is 1× 1 = 1, an estimate of σ, its mass, is

1

4
density︸ ︷︷ ︸ ·1 area︸︷︷︸ =

1

4
grams.

Similar estimates for the remaining six small squares gives a total estimate of

1

4
· 1 +

3

4
· 1 +

3

4
· 1 +

9

4
· 1 +

5

4
· 1 +

15

4
· 1 = 9 grams

Thus sum is identical to the sum (17.1.2), which estimates a volume. �

The arithmetic in Examples 1 and 2 show that totally unrelated problems,
one in volume, the other in mass, lead to the same estimates. Moreover, as
the rectangle is cut into smaller pieces, the estimate would become closer and
closer to the volume or the mass. These estimates, similar to the estimates∑n

i=1(f(ci)∆xi that appears in the definition of the definite integral
∫ b
a
f(x) dx,

brings us to the definition of “double integral”. It is called the double integral
because the domain of the function is in the two-dimensional plane.

——————-
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Plane and Solid Integrals § 17.1

The Double Integral

The definition of the double integral is almost the same as that of
∫ b
a
f(x) dx,

the integral over an interval. The only differences are:

1. instead of dividing an interval into smaller intervals, we divide a planar
region into smaller planar regions,

2. instead of a function defined on an interval, we have a function defined
on a planar region, and

3. we need a quantitative way to say that a “little” region is “small.”

To meet the need described in (3) we define the “diameter” of a planar
region. The diameter of a region bounded by a curve is the maximum distance
between two points in the region. For instance, the diameter of a square of
side s is s

√
2 and the diameter of a disk is the same as its traditional diameter

that we know from geometry.
With that aside taken care of, we are ready to define a double integral.

DEFINITION (Double Integral) Let R be a region in a plane
bounded by curves and f a continuous numerical function defined
at least on R. Partition R into smaller regions R1, R2, . . . , Rn of
respective areas A1, A2, . . . , An. Choose a point P1 in R1, P2 in
R2, . . . , Pn in Rn and form the approximating (Riemann) sum

n∑
i=1

f(Pi)Ai. (17.1.4)

Form a sequence of such partitions such that as one goes out in
the sequence of partitions, the sequence of diameters of the largest
region in each partition approaches 0. Then the sums (17.1.4)
approach a limit, which is called “the integral of f over R” or the
“double integral” of f over R. It is denoted∫

R

f(P ) dA.

Before looking at some examples, we make four brief remarks:

1. It is called a double integral because R lies in a plane, which has dimen-
sion 2.

2. We use the notion of a diameter of a region only to be able to define the
double integral.
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Plane and Solid Integrals § 17.1

3. It is proved in advanced calculus that the sums do indeed approach a
limit.

4. Other notations for a double integral are discussed near the end of this
section.

Our discussion of integrals over a plane region started with two important
illustrations . The rest of this section is devoted to these applications in the
context of double integrals.

Volume Expressed as a Double Integral

Consider a solid S and its projections (“shadows”) R on a plane, as in Fig-
ure 17.1.6. Assume that for each point P in R the line through P perpendicular
to R intersects S in a line segment of length C(P ). Then

Figure 17.1.6: ARTIST:
Delete the line L, and the
current caption. Add a
point P in R and draw
the vertical line through
P , highlighting the part
that is in S (and has
length c(P ).

“The double integral of cross-section is the volume.”

Volume of S =

∫
R

C(P ) dA.

Mass Expressed as a Double Integral

Consider a plane distribution of mass through a region R, as shown in Fig-
ure 17.1.7. The density may vary throughout the region. Denote the density
at P by σ(P ) (in grams per square centimeters). Then

Figure 17.1.7:

“The double integral of density is the total mass.”

Mass in R =

∫
R

σ(P ) dA

Average Value as a Double Integral

The average value of f(x) for x is the interval [a, b] was defined in Section 6.3
as ∫ b

a
f(x) dx

length of interval.

We make a similar definition for a function defined on a two-dimensional region.
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Integral Interpretation∫
R

1 dA Area of R∫
R
σ(P ) dA, σ(P ) = density Mass of R∫

R
c(P ) dA, c(P ) = length of cross section of solid Volume of R

Table 17.1.1:

DEFINITION (Average value) The average value of f over the
region R is ∫

R
f(P ) dA

Area of R
.

If f(P ) is positive for all P in R, there is a simple geometric interpretation
of the average of f over R. Let S be the solid situated below the graph of f (a
surface) and above the region R. The average value of f over R is the height
of the cylinder whose base is R and whose volume is the same as the volume
of S. (See Figure 17.1.8. The integral

∫
R
f(P ) dA is called “an integral over a

Figure 17.1.8:
plane region” to distinguish it from

∫ b
a
f(x) dx, which, for contrast, is called,

“an integral over an interval.”
/mnoteSHERMAN: Duplicitous? Or needed? Shorten to margin note?

Recall that
∫
R
f(P ) dA is often denoted

∫∫
R
f(P ) dA, with the two integral

signs emphasizing that the integral is over a plane set. However, the symbol
dA, which calls to mind areas, is an adequate reminder.

The integral of the function f(P ) = 1 over a region is of special interest.
The typical approximating sum

∑n
i=1 f(Pi)Ai then equals

∑n
i=1 1 · Ai = A1 +

A2 + · · ·+An, which is the area of the region R that is being partitioned. Since
every approximating sum has this same value, it follows that

lim
n→∞

n∑
i=1

f(Pi)Ai = Area of R.

Consequently The integral of a constant
function, 1, gives area.∫

R

1 dA = Area of R.

This formula will come in handy on several occasions. The 1 is often omitted,
in which case we write

∫
R
dA = Area of R. This table summarizes some of

the main applications of the double integral
∫
R
dA:
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Properties of Double Integrals

Integrals over plane regions have properties similar to those of integrals over
intervals:

1.
∫
R
cf(P ) dA = c

∫
R
f(P ) dA for any constant c.

2.
∫
R

[f(P ) + g(P )] dA =
∫
R
f(P ) dA+

∫
R
g(P ) dA.

3. If f(P ) ≤ g(P ) for all points P in R, then
∫
R
f(P ) dA ≤

∫
R
g(P ) dA.

4. If R is broken into two regions, R1 and R2, overlapping at most on their
boundaries, then∫

R

f(P ) dA =

∫
R1

f(P ) dA+

∫
R2

f(P ) dA.

For instance, consider 3 when f(P ) and g(P ) are both positive. Then
∫
R
f(P ) dA

is the volume under the surface z = f(P ) and above R in the xy plane. Simi-
larly

∫
R
g(P ) dA is the volume under z = f(P ) and above R. Then 3 asserts

that the volume of a solid is not larger than the volume of a solid that contains
it. (See Figure 17.1.9.)

Figure 17.1.9:

SHERMAN: This summary
needs to be written.

Summary

A Word about 4-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (x, y)
of real numbers. The set of ordered triplets of real numbers (x, y, z)
represents 3-dimensional space. The set of ordered quadruplets of real
numbers (x, y, z, t) represents 4-dimensional space.
It is easy to show that 4-dimensional space is a very strange place.
In 2-dimensional space the set of points of the form (x, 0), the x-axis,
meets the set of points of the form (0, y), the y-axis, in a point, namely
the origin (0, 0). Now watch what can happen in 4-space. The set of
points of the form (x, y, 0, 0) forms a plane congruent to our familiar
xy-plane. The set of points of the form (0, 0, z, t) forms another such
plane. So far, no surprise. But notice what the intersection of those
two planes is. Their intersection is just the point (0,0,0,0). Can you
picture two endless planes meeting in a single point? If so, tell us how.
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EXERCISES for 17.1 Key: R–routine, M–moderate, C–challenging

1.[R] In the estimates for the volume in Example 1, the centers of the squares
were used as the Pi’s. Make an estimate for the volume in Example 1 by using the
same partition but taking as Pi

(a) the lower left corner of each Ri,

(b) the upper right corder of each Ri.

(c) What do (a) and (b) tell about the volume of the solid?

2.[R] Estimate the mass in Example 2 using the partition of R into six squares
and taking as the Pi’s

(a) upper left corners,

(b) lower right corners.

3.[R] Let R be a set in the plane whose area is A. Let f be the function such
that f(P ) = 5 for every point P in R.

(a) What can be said about any approximating sum
∑n

i=1 f(Pi)Ai formed for this
R and this f?

(b) What is the value of
∫
R f(P ) dA?

4.[R] Let R be the square with vertices (1, 1), (5, 1), (5, 5), and (1, 5). Let f(P )
be the distance from P to the y axis.

(a) Estimate
∫
R f(P ) dA by partitioning R into four squares and using midpoints

as sampling points.

(b) Show that 16 ≤
∫
R f(P ) dA ≤ 80.

5.[R] Let f and R be as in Example 1. Use the estimate of
∫
R f(P ) dA obtained

in the text to estimate the average of f over R.

6.[R] Assume that for all P in R, m ≤ f(P ) ≤M , where m and M are constants.
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Let A be the area of R. By examining approximating sums, show that

mA ≤
∫
R

f(P ) dA ≤MA.

7.[R]

(a) Let R be the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3). Let
f(x, y) =

√
x+ y. Estimate

∫
R

√
x+ y dA by participating R into six squares

and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f over R.

8.[R]

(a) Let R be the square with vertices (0, 0), (0.8, 0), (0.8, 0.8), and (0, 0.8). Let
f(P ) = f(x, y) = exy. Estimate

∫
R e

xy dA by partitioning R into 16 squares
and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f(P ) over R.

(c) Show that 0.64 ≤
∫
R f(P ) dA ≤ 0.64e0.64.

9.[R]

(a) Let R be the triangle with vertices (0, 0), (4, 0), and (0, 4) shown in Fig-
ure 17.1.10. Let f(x, y) = x2y. Use the partition into four triangles and
sampling points shown in the diagram to estimate

∫
R f(P ) dA.

(b) What is the maximum value of f(x, y) in R?

(c) From (b) obtain an upper bound on
∫
R f(P ) dA.

10.[R]

(a) Sketch the surface z =
√
x2 + y2.

(b) Let V be the region in space below the surface in (a) and above the square R
with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Let V be the volume of V. Show
that V ≤

√
2.

(c) Using a partition of R with 16 squares, find an estimate for V that is too
large.

(d) Using the partition in (c), find an estimate for V that is too small.
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Figure 17.1.10:

11.[R] The amount of rain that falls at point P during one year is f(P ) inches.
Let R be some geographic region, and assume areas are measured in square inches.

(a) What is the meaning of
∫
R f(P ) dA?

(b) What is the meaning of ∫
R f(P ) dA
Area of R

?

12.[M] A region R in the plane is divided into two regions R1 and R2. The
function f(P ) is defined throughout R. Assume that you know the areas of R1 and
R2 (they are A1 and A2) and the average of f over R1 and the average of f over R2

(they are f1 and f2). Find the average of f over R. (See Figure 17.1.11(a).)

(a) (b)

Figure 17.1.11:
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13.[M] A point Q on the xy plane is at a distance b from the center of a disk
R of radius a(a < b) in the xy plane. For P in R let f(P ) = 1/

−−→
PQ. Find positive

numbers c and d such that:

c <

∫
R

f(P ) dA < d.

(The numbers c and d depend on a and b.) See Figure 17.1.11(b).

14.[M] Figure 17.1.12 shows the parts of some level curves of a function z = f(x, y)
and a square R. Estimate

∫
R f(P ) dA, and describe your reasoning.

(a) (b)

Figure 17.1.12:

15.[M] Figure ?? shows the parts of some level curves of a function z = f(x, y)
and a unit circle R. Estimate

∫
R f(P ) dA, and describe your reasoning.

16.[C]

(a) Let R be a disk of radius 1. Let f(P ), for P in R, be the distance from P to
the center of the disk. By cutting R into narrow circular rings with center at
the center of the disk, evaluate

∫
R f(P ) dA.

(b) Find the average of f(P ) over R.
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Exercises 17 and 18 introduce an idea known as Monte Carlo methods
for estimating a double integral using randomly chosen points. These methods
tend to be rather inefficient because the error decreases on the order of 1/

√
n,

where n is the number of random points. That is a slow rate. These methods
are used only when it’s possible to choose n very large.
17.[C] This exercise involves estimating an integral by choosing points randomly.

A computing machine can be used to generate random numbers and thus random
points in the plane which can be used to estimate definite integrals, as we now
show. Say that a complicated region R lies in the square whose vertices are (0, 0),
(2, 0), (2, 2), and (0, 2), and a complicated function f is defined in R. The machine
generated 100 random points (x, y) in the square. Of these, 73 lie in R. The average
value of f for these 73 points is 2.31.

(a) What is a reasonable estimate of the area of R?

(b) What is a reasonable estimate of
∫
R f(P ) dA?

18.[C] Let R be the disk bounded by the unit circle x2 + y2 = 1 in the xy plane.
Let f(x, y) = ex

2y be the temperature at (x, y).

(a) Estimate the average value of f over R by evaluating f(x, y) at twenty random
points in R. (Adjust your program to select each of x and y randomly in the
interval [−1, 1]. In this way you construct a random point (x, y) in the square
whose vertices are (1, 1), (−1, 1), (−1,−1), (1,−1). Consider only those points
that lie in R.)

(b) Use (a) to estimate
∫
R f(P ) dA.

(c) Show why π/e ≤ fRf(P ) dA ≤ πe.

19.[C] Sam is heckling again. “As usual, the authors made this harder than
necessary. They didn’t need to introduce “diameters.” Instead they could have
used good old area. They could have taken the limit as all the areas of the little
pieces approached 0. I’ll send them a note.”

Is Sam right?

In making finer and finer partitions as n → ∞ we saw that each Ri is
small in the sense it fits in a disk of radius rn, where rn → 0 as n→∞. The
Exercises 20 to 23 in this section explore another way to control the size of a
region.

20.[C] Consider a region R in the plane. The diameter, d of R, is defined as the
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greater distance between two points in R. Find the diameter of

(a) a disk of radius r,

(b) and equilateral triangle of side length s,

(c) a square whose sides have length s.

21.[C]

(a) Show that a region of diameter d can always fit into a disk of diameter 2d.

(b) Can it alway fit into a disk of diameter d?

22.[C] If a region has diameter d,

(a) how small can its area be?

(b) show that area is less than or equal to πd2/2. SHERMAN: Is this in po-
lar coordinate area? If so,
move to Section 17.3 or
Chapter Summary.

23.[C] The unit square can be partitioned with nine congruent squares.

(a) What is the diameter of each of these small squares?

(b) It is possible to partition that square into nine regions whose largest diameter
is 5/11. Show that 5/11 is smaller than the diameter in (a).

24.[R] Some practice differentiates.

25.[R] Some practice integrals, e.g.
∫
x2+1
x3 dx, etc.

November 3, 2008 Calculus 1184



Plane and Solid Integrals § 17.2

17.2 Computing
∫
R f (P ) dA Using Rectangular

Coordinates

In this section, we will show how to use rectangular coordinates to evaluate
the integral of a function f over a plane region R,

∫
R
f(P ) dA. This method

requires that both R and f be described in rectangular coordinates. We first
show how to describe plane regions R in rectangular coordinates.

Describing R in Rectangular Coordinates

Some examples illustrate how to describe planar regions by their cross sections
in terms of rectangular coordinates.

EXAMPLE 1 Describe a disk R of radius a in a rectangular coordinates.

(a) (b)

Figure 17.2.1:

SOLUTION Introduce an xy coordinate system with its origin at the center
of the disk, as in Figure 17.2.1(a). A glance at the figure shows that x ranges
from −a to a. All that remains is to tell how y varies for each x in [−a, a].

Figure 17.2.1(b) shows a typical x in [−a, a] and corresponding cross sec-
tion. The circle has the equation x2 +y2 = a2. The top half has the description
y =
√
a2 − x2 and the bottom half, y = −

√
z2 − y2. So, for each x in [−a, a],

y varies from −
√
a2 − x2 to

√
a2 − x2. (As a check, test x = 0. Does y

vary from −
√
a2 − 02 = −a to

√
a2 − 02 = a? It does, as an inspection of

Figure 17.2.1(b) shows.)
All told, this is the description of R by vertical cross sections:

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.
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�

EXAMPLE 2 Let R be the region bounded by y = x2, the x axis, and the
line x = 2. Describe R in terms of cross sections parallel to the y axis.

SOLUTION A glance at R in Figure 17.2.2(a) shows that for points (x, y)
in R, x ranges from 0 to 2. To describe R completely, we shall describe the
behavior of y for any x in the interval [0, 2].

Hold x fixed and consider only the cross section above the point (x, 0). It
extends from the x axis to the curve y = x2; for any x, the y coordinate varies
from 0 to x2. The compact description of R by vertical cross sections is:

0 ≤ x ≤ 2, 0 ≤ y ≤ x2.

�

(a) (b)

Figure 17.2.2:

EXAMPLE 3 Describe the region R of Example 2 by cross sections parallel
to the x axis, that is, horizontal cross sections.

SOLUTION A glance at R in Figure 17.2.2(b) shows that y varies from 0
to 4. For any y in the interval [0, 4], x varies from a smallest value x1(y) to a
largest value x2(y). Note that x2(y) = 2 for each value of y in [0, 4]. To find
x1(y), utilize the fact that the point (x1(y), y) is on the curve y = x2, that is,

x1(y) =
√
y.

The compact description of R in terms of horizontal cross sections is

0 ≤ y ≤ 4,
√
y ≤ x ≤ 2.
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0 ≤ x ≤ 4, 0 ≤ y ≤ 2
and

4 ≤ x ≤ 6, 0 ≤ y ≤ 6− x.

�

EXAMPLE 4 Describe the region R whose vertices are (0, 0), (0, 6), (4, 2),
and (0, 2) by vertical cross sections and then by horizontal cross sections. (See
Figure 17.2.3.)

Figure 17.2.3:
SOLUTION Clearly, x varies between 0 and 6. For any x in the interval
[0, 4], y ranges from 0 to 2 (independently of x). For x in [4, 6], y ranges from
0 to the value of y on the line through (4, 2) and (6, 0). This line has the
equation y = 6 − x. The description of R by vertical cross sections therefore
requires two separate statements:

Use of horizontal cross sections provides a simpler description. First, y
goes from 0 to 2. For each y in [0, 2], x goes from 0 to the value of x on the
line y = 6− x. Solving this equation for x yields x = 6− y.

The compact description in terms of horizontal cross-sections is much
shorter:

0 ≤ y ≤ 2, 0 ≤ x ≤ 6− y.

�

These examples are typical. First, determine the range of one coordinate,
and then see how the other coordinate varies for any fixed value of the first
coordinate.

Evaluating
∫
R f(P ) dA by Iterated Integrals

We will offer an intuitive development of a formula for computing double in-
tegrals over plane regions.

We first develop a way for computing a double integral over a rectangle.
After applying this formula in Example 5, we make the slight modification
needed to evaluate double integrals over more general regions.

Consider a rectangular region R whose description by cross sections is

a ≤ x ≤ b, c ≤ y ≤ d,

as shown in Figure 17.2.4(a). If f(P ) ≤ 0 for all P in R, then
∫
R
f(P ) dA is the

volume V of the solid whose base is R and which has, above P , height f(P ).
(See Figure 17.2.4(b).) Let A(x) be the area of the cross section made by a
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(a) (b) (c)

Figure 17.2.4:

plane perpendicular to the x axis and having abscissa x, as in Figure 17.2.4(c).
As was shown in Section 5.1,

V =

a∫
b

A(x) dx.

But the area A(x) is itself expressible as a definite integral:

A(x) =

d∫
c

f(x, y) dy.

Note that x is held fixed throughout the integration to find A(x). This rea-
soning provides an iterated integral whose value is V =

∫
R
f(P ) dA, namely,

∫
R

f(P ) dA = V =

b∫
a

A(x) dx =

b∫
a

 d∫
c

f(x, y) dy

 dx.

In short

∫
R

f(P ) dA =

b∫
a

 d∫
c

f(x, y) dy

 dx.

An integral over a rectangle
expressed an iterated inte-
gral

Of course, cross sections by planes perpendicular to the y axis could be used.
Then similar reasoning shows that

∫
R

f(P ) dA =

d∫
c

 b∫
a

f(x, y) dx

 dy.
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The quantities
∫ b
a

(∫ d
c
f(x, y) dy

)
dx and

∫ d
c

(∫ b
a
f(x, y) dx

)
dy are called

iterated integrals. Usually the brackets are omitted and are written
∫ b
a

∫ d
c
f(x, y) dy dx

and
∫ d
c

∫ b
a
f(x, y) dx dy. The order of dx and dy

matters; the differential
that is on the left tells
which integration is per-
formed first.

EXAMPLE 5 Compute the double integral
∫
R
f(P ) dA, where R is the

rectangle shown in Figure 17.2.5(a) and the function f is defined by f(P ) =

AP
2
.

(a) (b)

Figure 17.2.5:

SOLUTION Introduce xy coordinates in the convenient manner depicted in
Figure 17.2.5(b). Then f has this description in rectangular coordinates:

f(x, y) = AP
2

= x2 + y2.

To describe R, observe that x takes all values from 0 to 4 and that for each
x the number y takes all values between 0 and 2. Thus

∫
R

f(P ) dA =

4∫
0

 2∫
0

(x2 + y2) dy

 dx.

We must first compute the inner integral The cross-sectional area
A(x).

2∫
0

(x2 + y2) dy, where x is fixed in [0, 4].

To apply the Fundamental Theorem of Calculus, first find a function F (x, y)
such that

∂F

∂y
= x2 + y2.
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Keep in mind that x is constant during this first integration.

F (x, y) = x2y +
y3

3

is such a function. The appearance of x in this formula should not disturb us,
since x is fixed for the time being. By the Fundamental Theorem of Calculus,

2∫
0

(x2 + y2) dy =

(
x2y +

y3

3

)∣∣∣∣y=2

y=0

=

(
x2 · 2 +

23

3

)
−
(
x2 · 0 +

03

3

)
= 2x2 +

8

3
.

The notation |y=2
y=0 reminds

us that y is replaced by 0
and 2.

The formula 2x2 + 8
3

is the area A(x) discussed earlier in this section.
Now compute

4∫
0

A(x) dx =

4∫
0

(2x2 +
8

3
) dx.

By the Fundamental Theorem of Calculus,

4∫
0

(
2x2 +

8

3

)
dx =

(
2x3

3
+

8x

3

)∣∣∣∣4
0

=
160

3
.

How do these compare
with the estimates in Sec-
tion 17.1?

Hence the two-dimensional definite integral has the value 160
3

. The volume
of the region in Problem 1 of Sec. 16.1 is 160

3
cubic inches. The mass in

Problem 2 is 160
3

grams. �
If R is not a rectangle, the repeated integral that equals

∫
R
f(P ) dA differs

from that for the case where R is a rectangle only in the intervals of integration.
If R has the description

a ≤ x ≤ b y1(x) ≤ y ≤ y2(x),

by cross sections parallel to the y axis, then

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Figure 17.2.6:

Similarly, if R has the description

c ≤ y ≤ d x1(y≤x ≤ x2(y),

by cross sections parallel to the x axis, then
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∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

The intervals of integration are determined by R; the function f influences
only the integrand. (See Figure 17.2.7.)

Figure 17.2.7:

In the next example R is the region bounded by y = x2, x = 2, and
y = 0; the function is f(x, y) = 3xy. The integral

∫
R

3xy dA has at least three
interpretations:

Figure 17.2.8:

1. If at each point P = (x, y) in R we erect a line segment above P of
length 3xy, then the integral is the volume of the resulting solid. (See
Figure 17.2.8.)

2. If the density of matter at (x, y) in R is 3xy, then
∫
R

3xy dA is the total
mass in R.

3. If the temperature at (x, y) in R is 3xy then
∫
R

3xy dA divided by the
area of R is the average temperature in R.

EXAMPLE 6 Evaluate
∫
R

3xy dA over the region R shown in Figure 17.2.9.

Figure 17.2.9:

This is the same R as in Ex-
amples 2 and 3.

SOLUTION If cross sections parallel to the y axis are used, then R is de-
scribed by

0 ≤ x ≤ 2 0 ≤ y ≤ x2.

Thus ∫
R

3xy dA =

2∫
0

 x2∫
0

3xy dy

 dx,

which is easy to compute. First, with x fixed,

x2∫
0

3xy dy =

(
3x
y2

2

)∣∣∣∣y=x2

y=0

= 3x
(x2)2

2
− 3x

02

2
=

3x5

2
.

Then,
2∫

0

3x5

2
dx =

3x6

12

∣∣∣∣2
0

= 16.

Figure 17.2.10(a) shows which integration is performed first.
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(a) (b)

Figure 17.2.10:

The region R can also be described in terms of cross sections parallel to
the x axis:

0 ≤ y ≤ 4
√
y ≤ x ≤ 2.

In this case, the double integral is evaluated as:

∫
R

3xy dA =

4∫
0

 2∫
√
y

3xy dx

 dy,

which, as the reader may verify, equals 16. See Figure 17.2.10(b). �

In Example 6 we could evaluate
∫
R
f(P ) dA by cross sections in either

direction. In the next example we don’t have that choice.

Figure 17.2.11:EXAMPLE 7 A triangular lamina is located as in Figure 17.2.11. Its
density at (x, y) is ey

2
. Find its mass, that is

∫
R
f(P ) dA, where f(x, y) = ey

2
.

SOLUTION The description of R by vertical cross sections is

0 ≤ x ≤ 2,
x

2
≤ y ≤ 1.

Hence ∫
R

f(P ) dA =

2∫
0

 1∫
x/2

ey
2

dy

 dx.
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Since ey
2

does not have an elementary antiderivative, the Fundamental Theo-
rem of Calculus is useless in computing

1∫
x/2

ey
2

dy.

So we try horizontal cross sections instead. The description of R is now

0 ≤ y ≤ 1, 0 ≤ x ≤ 2y.

This leads to a different iterated integral, namely:

∫
R

f(P ) dA =

1∫
0

 2y∫
0

ey
2

dx

 dy.

The first integration,
∫ 2

0
ey

2
dx, is easy, since y is fixed; the integrand is Note that the integrand

does not depend on x.constant. Thus

2y∫
0

ey
2

dx = ey
2

2y∫
0

1 dx = ey
2

x
∣∣∣x=2y

x=0
= ey

2

2y.

The second definite integral in the repeated integral is thus
∫ 1

0
ey

2
2y dy, which

can be evaluated by the Fundamental Theorem of Calculus, since d(ey
2
)/dy =

ey
2
2y:

1∫
0

ey
2

2y dy = ey
2
∣∣∣1
0

= e12 − e02

= e− 1.

The total mass is e− 1. �
Notice that computing a definite integral over a plane region R involves,

first, a wise choice of an xy-coordinate system; second, a description of R
and f relative to this coordinate system; and finally, the computation of two
successive definite integrals over intervals. The order of these integrations
should be considered carefully since computation may be much simpler in one
than the other. This order is determined by the description of R by cross
sections.

Summary

We showed that the integral of f(P ) over a plane region R can be evaluated
by an iterated integral, where the limits of integration are determined by R
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(not by f). If each line parallel to the y axis meets R in at most two points
then R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)

and ∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

If each line parallel to the x axis meets R in at most two points, then,
similarly, R can be described in the form

c ≤ y ≤ d x1(y) ≤ x ≤ x2(y)

and ∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

A Few Words on Notation
We use the notation

∫
f(P ) dA or

∫
R
f(P ) dA for a (double) integral

over a plane region,
∫
f(P ) dS or

∫
S f(P ) dS for an integral over a

surface, and
∫
f(P ) dV or

∫
R
f(P ) dV for a (triple) integral over a

region in space. The symbols dA, dS, and dV indicate the type of set
over which the integral is defined.

Many people traditionally use repeated integral signs to distinguish
dimensions. For instance they would write

∫
f(P ) dA as

∫∫
f(P )dA

or
∫∫

f(x, y) dxdy. Similarly, they denote a triple integral by∫∫∫
f(P ) dxdydz.

We use the single-integral-sign notation for all integrals for three rea-
sons:

1. it is free of any coordinate system

2. it is compact (uses the fewest symbols):
∫

for “integral”, f(P ) or
f for the integrand, and dA, dS, or dV for the set

3. it allows the symbols
∫∫

and
∫∫∫

to be reserved for use exclusively
for iterated integrals.

Iterated integrals are a completely different mathematical object. Each
integral in an iterated integral is an integral over an interval. Note that
this means we we write dx (or dy or dz) only when we are talking about
an integral over an interval.
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EXERCISES for 17.2 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 12 provide practice in describing plane regions by cross sec-
tions in recangular coordinates. In each exercise, describe the region by (a) ver-
tical cross sections and (b) horizontal cross sections.

1.[R] The triangle whose vertices are (0, 0), (2, 1), (0, 1).

2.[R] The triangle whose vertices are (0, 0), (2, 0), (1, 1).

3.[R] The parallelogram with vertices (0, 0), (1, 0), (2, 1), (1, 1).

4.[R] The parallelogram with vertices (2, 1), (5, 1), (3, 2), (6, 2).

5.[R] The disk of radius 5 and center (0, 0).

6.[R] The trapezoid with vertices (1, 0), (3, 2), (3, 3),(1, 6).

7.[R] The triangle bounded by the lines y = x, x+ y = 2, and x+ 3y = 8.

8.[R] The region bounded by the ellipse 4x2 + y2 = 4.

9.[R] The triangle bounded by the lines x = 0, y = 0, and 2x+ 3y = 6.

10.[R] The region bounded by the curves y = ex, y = 1− x, and x = 1.

11.[R] The quadrilateral bounded by the lines y = 1, y = 2, y = x, y = x/3.

12.[R] The quadrilateral bounded by the lines x = 1, x = 2, y = x, y = 5− x.

In Exercises 13 to 16 draw the regions and describe them by horizontal
cross sections.

13.[R] 0 ≤ x ≤ 2, 2x ≤ y ≤ 3x

14.[R] 1 ≤ x ≤ 2, x3 ≤ y ≤ 2x2

15.[R] 0 ≤ x ≤ π/4, 0 ≤ y ≤ sinx and π/4 ≤ x ≤ π/2, 0 ≤ y ≤ cosx

16.[R] 1 ≤ x ≤ e, (x− 1)/(e− 1? ≤ y ≤ lnx

In Exercises 17 to 22 evaluate the iterated integrals.
17.[R]

∫ 1
0

(∫ x
0 (x+ 2y) dy

)
dx

18.[R]
∫ 2

1

(∫ 2x
x dy

)
dx

19.[R]
∫ 2

0

(∫ x2

0 xy2 dy
)
dx

20.[R]
∫ 2

1

(∫ y
0 e

x+y dx
)
dy

21.[R]
∫ 2

1

(∫ √y
0 yx2 dx

)
dy

22.[R]
∫ 1

0

(∫ x
0 y sin(πx) dy

)
dx

23.[R] Complete the calculation of the second iterated integral in Example 6.
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24.[R]

(a) Sketch the solid region S below the plane z = 1+x+y and above the triangle
R in the place with vertices (0, 0), (1, 0), (0, 2).

(b) Describe R in terms of coordinates.

(c) Set up an iterated integral for the volume of S.

(d) Evaluate the expression in (c), and show in the manner of Figure 17.2.10(a)
and 17.2.10(b) which integration you performed first.

(e) Carry out (c) and (d) in the other order of integration.

25.[R] Let S be the solid region below the paraboloid z = x2 + 2y2 and above
the rectangle in the xy plane with vertices (0, 0), (1, 0), (1, 2), (0, 2). Carry out the
steps of Exercise 24 in this case.

26.[R] Let S be the solid region below the saddle z = xy and above the triangle in
the xy plane with vertices (1, 1), (3, 1), and (1, 4). Carry out the steps of Exercise 24
in this case.

27.[R] Let S be the solid region below the saddle z = xy and above the region
n the first quadrant of the xy plane bounded by the parabolas y = x2 and y = 2x2

and the line y = 2. Carry out the steps of Exercise 24 in this case.

28.[R] Find the mass of a thin lamina occupying the finite region bounded by
y = 2x2 and y = 5x− 3 and whose density at (x, y) is xy.

29.[R] Find the mass of a thin lamina occupying the triangle whose vertices are
(0, 0), (1, 0), (1, 1) and whose density at (x, y) is 1/(1 + x2).

30.[R] The temperature at (x, y) is T (x, y) = cos(x + 2y). Find the average
temperature in the triangle with vertices (0, 0), (1, 0), (0, 2).

31.[R] The temperature at (x, y) is T (x, y) = ex−y. Find the average temperature
in the region in the first quadrant bounded by the triangle with vertices (0, 0), (1, 1),
and (3, 1).

In each of Exercises 32 to 35 replace the given iterated integral by an
equivalent one with the order of integration reversed. First sketch the region
R of integration.
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32.[R]
∫ 2

0

(∫ x2

0 x3y dy
)
dx

33.[R]
∫ π/2

0

(∫ cosx
0 x2 dy

)
dx

34.[R]
∫ 1

0

(∫ x
x/2 xy dy

)
dx+

∫ 2
1

(∫ 1
x/2 xy dy

)
dx

35.[R]
∫ 0
−1/
√

2

(∫ √1−x2

−x x3y dy
)
dx+

∫ 1
0

(∫ √1−x2

0 x3y dy
)
dx

In Exercises 36 to 39 evaluate the iterated integrals. First sketch the region
of integration.

36.[R]
∫ 1

0

(∫ 1
x sin(y2) dy

)
dx

37.[R]
∫ 1

0

(∫ 1√
x

dy√
1+y3

)
dx

38.[R]
∫ 1

0

(∫ 1
3
√
y

√
1 + x4/dx

)
dy

39.[R]
∫ 2

1

(∫ y
1

lnx
x dx

)
dy +

∫ 4
2

(∫ 2
y/2

lnx
x dx

)
dy

40.[R] Let f(x, y) = y2ey
2

and let R be the triangle bounded by y = a, y = x/2,
and y = x. Assume that a is positive.

(a) Set up two repeated integrals for
∫
R f(P ) dA.

(b) Evaluate the easier one.

41.[R] Let R be the finite region bounded by the curve y =
√
x and the line

y = x. Let f(x, y) = (sin(y))/y if y 6= 0 and f(x, 0) = 1. Compute
∫
R f(P ) dA.
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17.3 Computing
∫
R f (P ) dA Using Polar Coor-

dinates

This section shows how to evaluate
∫
R
f(P ) dA by using polar coordinates.

This method is especially appropriate when the region R has a simple de-
scription in polar coordinates, for instance, if it is a disk or cardioid. As in
Section 17.2, we first examine how to describe cross sections in polar coordi-
nates. Then we describe the iterated integral in polar coordinates that equals∫
R
f(P ) dA.

Describing R in Polar Coordinates

In describing a region R in polar coordinates, we first determine the range of θ
and then see how r varies for any fixed value of θ. (The reverse order is seldom
useful.) Some examples show how to find how r varies for each θ.

EXAMPLE 1 Let R be the disk of radius a and center at the pole of a
polar coordinate system. (See Figure 17.3.1.) Describe R in terms of cross
sections by rays emanating from the pole.

Figure 17.3.1:
SOLUTION To sweep out R, θ goes from 0 to 2π. Hold θ fixed and con-
sider the behavior of r on the ray of angle θ. Clearly, r goes from 0 to a,
independently of θ. (See Figure 17.3.1.) The complete description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

�

EXAMPLE 2 R Let R be the region between the circles r = 2 cos θ and
r = 4 cos θ. Describe R in terms of cross sections by rays from the pole. (See
Figure 17.3.2.)

Figure 17.3.2:
SOLUTION To sweep out this region, use the rays from θ = −π/2 to θ =
π/2. for each such θ, r varies from 2 cos θ to 4 cos θ. The complete description
is

−π
2
≤ θ ≤ π

2
, 2 cos θ ≤ r ≤ 4 cos θ.

�
As Examples 1 and 2 suggest, polar coordinates provide simple descriptions

for regions bounded by circles. The next example shows that polar coordinates
may also provide simple descriptions of regions bounded by straight lines,
especially if some of the lines pass through the origin.

EXAMPLE 3 Let R be the triangular region whose vertices, in rectangular
coordinates, are (0, 0), (1, 1), and (0, 1). Describe R in polar coordinates.

Figure 17.3.3: ARTIST:
Show typical ray, as in
Figure 17.3.2.
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SOLUTION Inspection of R in Figure 17.3.3 shows that θ varies from π/4
to π/2. For each θ, r goes from 0 until the point (r, θ) is on the line y = 1, that
is, on the line r sin(θ) = 1. Thus the upper limit of r for each θ is 1/ sin(θ).
The description of R is

π

4
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

sin(θ)
.

� In general, cross sections by rays lead to descriptions of plane regions of the

form:
α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

A Basic Difference Between Rectangular and Polar Co-
ordinates

Before we can set up an iterated integral in polar coordinates for
∫
R
f(P ) dA

we must contrast certain properties of rectangular and polar coordinates.
Consider all points (x, y) in the plane that satisfy the inequalities

x0 ≤ x ≤ x0 + ∆x and y0 ≤ y ≤ y0 + ∆y,

where x0, ∆x, y0 and ∆y are fixed numbers with ∆x and ∆y positive. The
set is a rectangle of sides ∆x and ∆y shown in Figure 17.3.4(a). The area of
this rectangle is simply the product of ∆x and ∆y; that is,

Area = ∆x∆y. (17.3.1)

This will be contrasted with the case of polar coordinates.

(a) (b)

Figure 17.3.4:
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Consider the set in the plane consisting of the points (r, θ) such that

r0 ≤ r ≤ r0 + ∆r and θ0 ≤ θ ≤ θ0 + ∆θ,

where r0, ∆r, θ0 and ∆θ are fixed numbers, with r0, ∆r, θ0 and ∆θ all positive,
as shown in Figure 17.3.4(b). The exact area is found in

Exercise 32.When ∆r and ∆θ are small, the set is approximately a rectangle, one side
of which has length ∆r and the other, r0∆θ. So its area is approximately
r0∆r∆θ. In this case,

Area ≈ r0∆r∆θ. (17.3.2)

The area is not the product of ∆r and ∆θ. (It couldn’t be since ∆θ is in
radians, a dimensionless quantity – “arc length subtended on a circle divided
by length of radius” – so ∆r∆θ has the dimension of length, not of area.) The
presence of this extra factor r0 will be reflected in the integrand we use when
integrating in polar coordinates.

It is necessary to replace dA by r dr dθ, not simply by dr dθ.

How to Evaluate
∫
R f(P ) dA by an Iterated Integral in

Polar Coordinates

The method for computing
∫
R
f(P ) dA with polar coordinates involves an iter-

ated integral where the dA is replaced by r dr dθ. A more detailed explanation
of why the r must be added is given at the end of this section. Notice the factor r in the

integrand.
Evaluating

∫
R
f(P ) dA in Polar Coordinates

1. Express f(P ) in terms of r and θ: f(r, θ).

2. Describe the region R in polar coordinates:

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

3. Evaluate the iterated integral:

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

Figure 17.3.5:EXAMPLE 4 Let R be the semicircle of radius a shown in Figure 17.3.5.
Let f(P ) be the distance from a point P to the x axis. Evaluate

∫
R
f(P ) dA
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by an iterated integral in polar coordinates.
SOLUTION In polar coordinates, R has the description

0 ≤ θ ≤ π, 0 ≤ r ≤ a.

The distance from P to the x axis is, in rectangular coordinates, y. Since
y = r sin(θ), f(P ) = r sin(θ). Thus, Notice the extra r in the in-

tegrand.∫
R

f(P ) dA =

π∫
0

 a∫
0

(r sin(θ))r dr

 dθ.

From here on the calcula-
tion are like those in the
preceding section.

The calculation of the iterated integral is like that for an iterated integral
in rectangular coordinates. First, evaluate the inside integral:

a∫
0

r2 sin(θ) dr = sin(θ)

a∫
0

r2 dr = sin(θ)

(
r3

3

)∣∣∣∣a
0

=
a3 sin(θ)

3
.

The outer integral is therefore

π∫
0

a3 sin θ

3
dθ =

a3

3

π∫
0

sin θ dθ =
a3

3
(− sin θ)

∣∣∣∣π
0

=
a3

3
[(− cos π)− (− cos 0)] =

a3

3
(1 + 1) =

2a3

3
.

Thus ∫
R

y dA =
2a3

3
.

�
Example 5 refers to a ball of radius a. Generally, we will distinguish be-

tween a ball, which is a solid region, and a sphere, which is only the surface
of a ball.

EXAMPLE 5 A ball of radius a has its center at the pole of a polar co-
ordinate system. Find the volume of the part of the ball that lies above the
plane region R bounded by the curve r = a cos(θ). (See Figure 17.3.6.)

Figure 17.3.6:
SOLUTION It is necessary to describe R and f in polar coordinates, where
f(P ) is the length of a cross section of the solid made by a vertical line through
P . R is described as follows: r goes 0 to a cos(θ) for each θ in [−π/2, π/2],
that is,

−π
2
≤ θ ≤ π

2
, 0 ≤ r ≤ a cos θ.

To express f(P ) in polar coordinates, consider Figure 17.3.7, which shows the

Figure 17.3.7:
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top half of a ball of radius a. By the Pythagorean Theorem,

r2 + (f(r, θ))2 = a2.

Thus
f(r, θ) =

√
a2 − r2.

Consequently,

Volume =

∫
R

f(P ) dA =

π/2∫
−π/2

 a cos(θ)∫
0

√
z2 − r2r dr

 dθ.

Exploiting symmetry, compute half the volume, keeping θ in [0, π/2], and then Remember to double.
double the result:

a cos(θ)∫
0

√
a2 − r2r dr =

−(a2 − r2)3/2

3

∣∣∣∣a cos(θ)

0

= −
(

(a2 − a2 cos2(θ))3/2

3
− (a2)3/2

3

)

=
a3

3
− (a2 − a2 cos2(θ))3/2

3
=
a3

3
− a3(1− cos2(θ))3/2

3

=
a3

3
(1− sin3(θ)).

(The trigonometric formula used above, sin(θ) =
√

1− cos2(θ), is true when
0 ≤ θ ≤ π/2 but not when −π/2 ≤ θ ≤ 0.)

Then comes the second integration:

π/2∫
0

a3

3
(1− sin3(θ)) dθ =

a3

3

π/2∫
0

(1− (1− cos2(θ)) sin(θ)) dθ

=
a3

3

π/2∫
0

1− sin(θ)− cos2(θ) sin(theta) dθ

=
a3

3

(
θ + cos(θ)− cos3(θ)

3

)∣∣∣∣π/2
0

=
a3

3

[
π

2
−
(

1− 1

3

)]
= a3

(
3π − 4

18

)
.

The total volume is twice is large: We remembered.

a3

(
3π − 4

9

)
.
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�

EXAMPLE 6 A circular disk of radius a is formed of a material which had
a density at each point equal to the distance from the point to the center.

(a) Set up an iterated integral in rectangular coordinates for the total mass
of the disk.

(b) Set up an iterated integral in polar coordinates for the total mass of the
disk.

(c) Compute the easier one.

Figure 17.3.8:SOLUTION The disk is shown in Figure 17.3.8.

(a) (Rectangular coordinates) The density σ(P ) at the point (P ) = (x, y) is√
x2 + y2. The disk has the description

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.

Thus

Mass =

∫
R

σ(P ) dA =

a∫
−a


√
a2−x2∫

−
√
a2−x2

√
x2 + y2 dy

 dx.

(b) (Polar coordinates) The density σ(P ) at P = (r, θ) is r. The disk has
the description

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

Thus

Mass =

∫
R

σ(P ) dA =

2π∫
0

 a∫
0

r · r dr

 dθ =

2π∫
0

 a∫
0

r2 dr

 dθ.

(c) Even the first integration in the iterated integral in (a) would be tedious.
However, the iterated integral in (b) is a delight: The first integration
gives

a∫
0

r2 dr =
r3

3

∣∣∣∣a
0

=
a3

3
.
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The second integration gives

2π∫
0

a3

3
dθ =

a3θ

3

∣∣∣∣2π
0

=
2πa3

3
.

The total mass is 2πa3/3.

�

A Fuller Explanation of the Extra r in the Integrand

Consider
∫
R
f(P ) dA as the region in the plane bound by the circle r = a and

r = b and the range θ = α and θ = β. Break it into n2 little pieces with
the aid of the partitions r0 = a, r1, ri, rn = b and θ0 = α, θ1, θj, θn = β. For
convenience, assume that all ri−ri−1 are equal to ∆r and all θj−θj−1 are equal
to ∆θ. (See Figure 17.3.9(a).) The typical patch, shown in Figure 17.3.9(b),

(a) (b)

Figure 17.3.9: (b) Pij is
(
rj+rj+1

2
,
θj+θi−1

2

)
has area, exactly

Aij =
(rj + rj−1)

2
(rj − rj−1)(θi − θi−1),

as shown in Exercise 6.
Then the sum of the n2 terms of the form f(Pij)Aij is an estimate of∫

R
f(P ) dA.

Figure 17.3.10:
Let us look closely at the summand for the n patches between the rays

θ = θi−1 and θ = θi, as shown in Figure 17.3.10.
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The sum is
n∑
j=1

f

(
rj + rj−1

2
,
θi + θi−1

2

)
rj + rj+1

2
∆r∆θ. (17.3.3)

In (17.3.3), θi, θi−1, and ∆θ are constants. If we define g(r, θ) to be f(r, θ)r,
then the sum is (

n∑
i−1

g

(
rj + rj+1

2
,
θi + θi−1

2

)
∆r

)
∆θ. (17.3.4)

The sum in brackets in (17.3.4) is an estimate of

b∫
a

g

(
r,
θj + θj−1

2

)
dr.

Thus the sum, corresponding to the region between the rays θ = θi and θ =
θi−1, is

n∑
i=1

b∫
a

g

(
r,
θi + θi−1

2

)
dr ∆θ. (17.3.5)

Now let h(θ) =
∫ b
a
g(r, θ) dr. Then (17.3.5) equals

n∑
i=1

h

(
θi + θi−1

2

)
∆θ.

This is an estimate of
∫ b
a
f(θ) dθ. Hence the sum of all n2 little terms of the

form f(Pij)Aij is an approximation of

β∫
α

h(θ) dθ =

β∫
α

 b∫
a

g(r, θ) dr

 dθ =

β∫
α

 b∫
a

f(r, θ)r dr

 dθ.

The extra factor r appears as we obtained the first integral,
∫ b
a
f(r, θ)r dr.

The sum of the n2 terms Aij, which we knew approximated the double integral∫
R
f(P ) dA, we now see approximate also the iterated integral (17.3.6). Taking

limits as n→∞ show that the iterated integral equals the double integral.

Summary

We saw how to calculate an integral
∫
R
f(P ) dA by introducing polar coordi-

nates. In this case, the plane region R can be described, in polar coordinates,
as

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)
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then ∫
R

f(P ) dA =

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

The extra r in the integrand is due to the fact that a small region corresponding
to changes dr and dθ has area area approximately r dr dθ (not dr dθ). Polar
coordinates are convenient when either the function f or the region R has a
simple description in terms of r and θ.
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EXERCISES for 17.3 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 6 draw and describe the given regions in the form α ≤
θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

1.[R] The region inside the curve r = 3 + cos(θ).

2.[R] The region between the curve r = 3 + cos(θ) and the curve r = 1 + sin(θ).

3.[R] The triangle whose vertices have the rectangular coordinates (0, 0),(1, 1),
and (1,

√
3).

4.[R] The circle bounded by the curve r = 3 sin(θ).

5.[R] The region shown in Figure 17.3.11.

Figure 17.3.11:

6.[R] The region in the lop of the three-leaved rose, r = sin(3θ), that lies in the
first quadrant.

7.[R]

(a) Draw the region R bounded by the lines y = 1, y = 2, y = x, y = x/
√

3.

(b) Describe R in terms of horizontal cross sections,

(c) Describe R in terms of vertical cross sections,

(d) Describe R in terms of cross sections by polar rays.

8.[R]
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(a) Draw the region R whose description is given by

−2 ≤ y ≤ 2, −
√

4− y2 ≤ x ≤
√

4− y2.

(b) Describe R by vertical cross sections.

(c) Describe R by cross sections obtained using polar rays.

9.[R] Describe in polar coordinates the square whose vertices have rectangular
coordinates (0, 0), (1, 0), (1, 1), (0, 1).

10.[R] Describe the trapezoid whose vertices have rectangular coordinates (0, 1),
(1, 1), (2, 2), (0, 2).

(a) in polar coordinates,

(b) by horizontal cross sections,

(c) by vertical cross sections.

In Exercises 5 to 14 draw the regions and evaluate
∫
R
r2 dA for the given

regions R.
11.[R] −π/2 ≤ θ ≤ π/2, 0 ≤ r ≤ cos(θ)

12.[R] 0 ≤ θ ≤ π/2, 0 ≤ r ≤ sin2(θ)

13.[R] 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 + cos(θ)

14.[R] 0 ≤ θ ≤ 0.3, 0 ≤ r ≤ sin 2(θ)

In Exercises 15 to 18 draw R and evaluate
∫
R
y2 dA for the given regions

R.
15.[R] The circle of radius a, center at the pole.

16.[R] The circle of radius a with center at (a, 0) in polar coordinates.

17.[R] The region within the cardioid r = 1 + sin θ.

18.[R] The region within one leaf of the four-leaved rose r = sin 2θ.

In Exercises 19 and 20, use iterated integrals in polar coordinates to find
the given point.

19.[R] The center of mass of the region within the cardioid r = 1 + cos(θ).

20.[R] The center of mass of the region within the leaf r = cos 3(θ) that lies along
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the polar axis.

The average of a function f(P ) over a region R in the plane is defined as∫
R
f(P ) dA divided by the area of R. In each of Exercises 21 to 24, find the

average of the given function over the given region.
21.[R] f(P ) is the distance from P to the pole; R is one leaf of the three-leaved

rose, r = sin(3θ).

22.[R] f(P ) is the distance from P to the x axis; R is the region between the
rays θ = π/6, θ = π/4, and the circles r = 2, r = 3.

23.[R] f(P ) is the distance from P to a fixed point on the border of a disk R of
radius a. (Hint: Choose the pole wisely.)

24.[R] f(P ) is the distance from P to the x axis; R is the region within the
cardioid r = 1 + cos(θ).

In Exercises 25 to 28 evaluate the given iterated integrals using polar co-
ordinates. Pay attention to the elements of each exercise that makes it appro-
priate for evaluation in polar coordinates.

25.[R]
∫ 1

0

(∫ x
0

√
x2 + y2 dy

)
dx

26.[R]
∫ 1

0

(∫ √1−x2

0 x3 dy
)
dx

27.[R]
∫ 1

0

(∫ √1−x2

x xy dy
)
dx

28.[R]
∫ 2

1

(∫ √3x

x/
√

3
(x2 + y2)3/2 dy

)
dx

29.[R] Evaluate the integrals over the given regions.

(a)
∫
R cos(x2 + y2) dA; R is the portion in the first quadrant of the disk of radius
a centered at the origin.

(b)
∫
R

√
x2 + y2 dA; R is the triangle bounded by the line y = x, the line x = 2,

and the x axis.

30.[R] Find the volume of the region above the paraboloid z = x2 +y2 and below
the plane z = x+ y.

31.[R] The area of a region R is equal to
∫
R 1 dA. Use this to find the area of a

disk of radius a. (Use an iterated integral in polar coordinates.)

32.[R] Find the area of the shaded region in Figure ?? as follows:

November 3, 2008 Calculus 1209



Plane and Solid Integrals § 17.3

(a) Find the area of the ring between two circles, one of radius r0, the other of
radius r0 + ∆r.

(b) What fraction of the area in (a) is included between two rays whose angles
differ by ∆θ?

(c) Show that the area of the shaded region in Figure ?? is precisely(
r0 +

∆r
2

)
∆r∆θ.

33.[R] Evaluate the repeated integral

π/2∫
−π/2

 a cos(θ)∫
0

√
a2 − r2 r dr

 dθ

directly. The result should still be a3(3π − 4)/9. (In Example 5 we computed half
the volume and doubled the result.)

Caution: Use trigonometric formulas with care.
Prior to beginning Exercise 34, consider the following two quotes:

Once when lecturing to a class he [the physicist Lord Kelvin] used
the word “mathematician” and then interrupting himself asked the
class: “Do you know what a mathematician is?” Stepping to his
blackboard he wrote upon it:

∫∞
−∞ e

−x2
dx =

√
π. Then putting

his finger on what he had written, he turned to his class and said,
“A mathematician is one to whom this is as obvious as that twice
two makes four is to you.”

S. P. Thompson, in Life of Lord Kelvin (Macmillan, London, 1910).

Many things ar not accessible to intuition at all, the value of∫∞
0
e−x

2
dx for instance.

J. E. Littlewood, “Newton and the Attraction of the Sphere”, Mathematical
Gazette, vol. 63, 1948.

34.[M] This exercise shows that
∫∞

0 e−x
2
dx =

√
π

2 . Let R1, R2, and R3 be the
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three regions indicated in Figure 17.3.12, and f(P ) = e−r
2

where r is the distance
from P to the origin. Hence, f(r, θ) = e−r

2
in polar coordinates and in rectangular

coordinates f(x, y) = e−x
2−y2 . Note: Observe that R1 is inside R2 and R2 is inside

R3.

(a) Show that
∫
R1
f(P ) dA = π

4

(
1− e−a2

)
and that

∫
R3
f(P ) dA = π

4

(
1− e−2a2

)
.

(b) By considering
∫
R2
f(P ) dA and the results in (a), show that

π

4

(
1− e−a2

)
<

 ∞∫
0

e−x
2
dx

2

<
π

4

(
1− e−2a2

)
.

(c) Show that
∫∞

0 e−x
2
dx =

√
π

2 .

(a) (b) (c)

Figure 17.3.12:

35.[R] Figure 17.3.13 shows the “bell curve” or “normal curve” often used
to assign grades in large classes. Using the fact established in Exercise 34 that∫∞

0 e−x
2
dx =

√
π/2, show that the area under the curve in Figure 17.3.13 is 1.

36.[R] (The spread of epidemics.) In the theory of a spreading epidemic it is
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Figure 17.3.13:

assumed that the probability that a contagious individual infects an individual D
miles away depends only on D. Consider a population that is uniformly distributed
in a circular city whose radius is 1 mile. Assume that the probability we mentioned
is proportional to 2 − D. For a fixed point Q let f(P ) = 2 − PQ. Let R be the
region occupied by the city.

(a) Why is the exposure of a person residing at Q proportional to
∫
R f(P ) dA,

assuming that contagious people are uniformly distributed throughout the
city?

(b) Compute this definite integral when Q is the center of town and when Q is
on the edge of town.

(c) In view of (b), which is the safer place?

Transportation problems lead to integrals over plane sets, as Exercises 37
to 42 illustrate.

37.[R] Show that the average travel distance from the center of a disk of area A
to points in the disk is precisely 2

√
A/(3

√
)π ≈ 0.376

√
A.

38.[R] Show that the average travel distance from the center of a regular hexagon
of area A to points in the hexagon is

√
2A

33/4

(
1
3

+
ln 3
4

)
≈ 0.377

√
A.

39.[R] Show that the average travel distance from the center of a square of area
A to points in the square is (

√
2 + ln(tan(3π/8)))

√
A/6 ≈ 0.383

√
A.

40.[R] Show that the average travel distance from the centroid of an equilateral
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triangle of area A to points in the triangle is
√
A

39/4

(
2
√

3 + ln(tan(
5π
12

))
)
≈ 0.404

√
A

Note: The centroid of a triangle is its center of mass.

In Exercises 37 to 39 the distance is the ordinary straight-line distance.
In cities the usual street pattern suggests that the “metropolitan” distance
between the points (x1, y1) and (x2, y2) should be measured by |x1−x2|+ |y1−
y2|.
41.[M] Show that if in Exercise 37 metropolitan distance is used, then the average

is 8
√
A/(3π3/2) ≈ 0.470

√
A.

42.[M] Show that if in Exercise 39 metropolitan distance is used, then the average
is
√
A/2. In most cities the metropolitan average tends to be about 25 percent larger

than the direct-distance average.

43.[C]

Sam: The formula in this section for integrating in polar coordinates is wrong. I’ll
get the right formula. We don’t need the factor r.

Jane: But the book’s formula gives the correct answers.

Sam: I don’t care. Let f(r, θ) be positive and I’ll show how to integrate over the
set R bounded by r = b and r = a, b > a, and θ = β and θ = α. We have∫
R f(P ) dA is the volume under the graph of f and above R. Right?

Jane: Right.

Sam: The area of the cross-section corresponds to a fixed angle θ is
∫ b
a f(r, θ) dr.

Right?

Jane: Right.

Sam: So I, just integrate cross-sectional areas as θ goes from α to β, and the
volume is therefore

∫ β
α (
∫ b
a f(r, θ) dr) dθ. Perfectly straightforward. I hate to

overthrow a formula that’s been around for three centuries.

What does Jane say next?

44.[C]

Jane: I won’t use a partition. Instead, look at the area under the graph of f and
above the circle of radius r. I’ll draw this fence for you (see Figure 17.3.14(a).
To estimate its area I’ll cut the arc AB into n sections of equal length by
angle θ0 = a . . . .
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(a) (b)

Figure 17.3.14:

Then break AB into n short area, each of length r∆θ. (Remember, Sam, how
radians are defined.) The typical small approach to the shaded area looks like
Figure 17.3.14(b). That’s just an estimate of

∫ β
α f(r, θ)r dθ. Here r is fixed.

Then I integrate the cross-sectional area as r goes from a to b. The total
volume is then

∫ b
a

∫ β
α f(r, θ)r dθ dr. But

∫
R f(r, θ) dA is the volume.

Sam: All right.

Jane: At least it gives the r factor.

Sam: But you had to assume f is positive.

Jane: Well, if it isn’t just add a big positive number k to f , then g = f + k is
positive. From then on its easy. If it’s so far g it’s so far f .

Check that Jane is right about g and f .
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17.4 The Triple Integral: Integrals Over Solid

Regions

In this section we define integrals over solid regions in space and show how to
compute them by iterated integrals using rectangular coordinates. Throughout
we assume the regions are bounded by smooth surfaces and the functions are
continuous.

The Triple Integral

Let R be a region in space bounded by some surface. For instance, R could
be a ball, a cube, or a tetrahedron. Let f be a function refined at least on R.

For each positive integer n break R into n small region R1, R2, . . . Rn.
Choose a point P , in R1, P2 in R2, . . . , Pn in Rn. Let the volume of Ri

be Vi. Then

lim
n→∞

n∑
i=1

f(Pi)Vi

exists. It is denoted ∫
R

f(P ) dV (17.4.1)

and is called the integral of f over R or the triple integral of f over R.
Note:

1. As in the preceding section, we define small. For each n let rn be the
smallest number such that each Ri in the partition fits inside a ball of
radius rn. We assume that rn → 0 as n→∞.

2. The notation
∫ ∫ ∫

R
f(P ) dV is commonly used, but, we stick to using

one integral sign,
∫
R
f(P ) dV to emphasize that the triple integral is not

a repeated integral.

3. The notation
∫ ∫ ∫

f(x, y, z) dV is also used, but, again, we prefer not
to refer to a particular coordinate system.

EXAMPLE 1 If f(P ) = 1 for each point P in a solid region R, compute∫
R
f(P ) dV .

SOLUTION Each approximating sum
∑n

i=1 f(Pi)Vi has the value

n∑
i=1

1 · Vi = V1 + V2 + · · ·+ Vn = Volume of R.
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Hence ∫
R

f(P ) dV = Volume of R,

a fact that will be useful for computing volumes. �
Average of a function

The average value of a function f defined on a region R in space is defined
as ∫

R
1 dV

Volume of R
.

This is the analog of the definition of the average of a function over an interval
(Section 6.3) or the average of a function over a plane region (Section 17.1).
If f describes the density of matter in R, then the average value of f is the
density of a homogeneous solid occupying R and having the same total mass
as the given solid.

Think about it. If the number∫
R
f(P ) dV

Volume of R
.

is multiplied by the volume of R, the result is∫
R

f(P ) dV,

which is the total mass. SHERMAN: I have a feel-
ing I’ve read this before,
but didn’t find it in a quick
search. Is this a repeat? If,
should one be removed?

“Density” at a point is defined for lamina; with balls replacing disks. For
a positive number r, let m(r) be the mass in a ball with center P and radius
r. Let V (r) be the volume of the ball of radius r. Then the density at P is
defined as

lim
r→0

m(r)

V (r)
.

An Interpretation of
∫
R f(P ) dV .

Triple integrals appear in the study of gravitation, rotating bodies, centers of
gravity, and electro-magnetic theory. The simplest way to think of them is to
interpret f(P ) as the density at P of some disturbance of matter and, then,∫
R
f(P ) dV is the total mass in a region R.
We can’t picture

∫
R
f(P ) dV as measuring the volume of something. We

could do this for
∫
R
f(P ) dA, because we could use two dimensions for de-

scribing the region of integration and then the third dimension for the values
of the function, obtaining a surface in three-dimensional space. However, with
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∫
R
f(P ) dV , we use up three dimensions just describing the region of integra-

tion. We need four-dimensional space to show the values of the function. But
it’s hard to visualize such a space, no matter how hard we squint.

A Word about Four-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (x, y)
of real numbers. The set of ordered triplets of real numbers (x, y, z)
represents 3-dimensional space. The set of ordered quadruplets of real
numbers (x, y, z, t) represents 4-dimensional space.
It is easy to show 4-D space is a very strange place.
In 2-dimensional space the set of points of the form (x, 0), the y-axis,
meets the set of points of the form (0, y), the y-axis, in a point, namely
the origin (0, 0). Now watch what can happen in 4-space. The set of
points of the form (x, y, 0, 0) forms a plane congruent to our familiar
xy-plane. The set of points of the form (0, 0, z, t) forms another such
plane. So far, no surprise. But notice what the intersection of those
two planes is. Their intersection is just the point (0, 0, 0, 0). Can you
picture two endless planes meeting in a single point? If so, please tell
us how.

Describing a Solid Region

In order to evaluate triple integrals, it is necessary to describe solid regions in
terms of coordinates.

A description of a typical solid region in rectangular coordinates has the
form This is the order x, y, then

z. There are six possible or-
ders, as you may check.a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

The inequalities on x and y describe the “shadow” or projection of the region

Figure 17.4.1:

on the xy plane. The inequalities for z then tell how z varies on a line parallel
to the z axis and passing through the point (x, y) in the projection. (See
Figure 17.4.1.)

EXAMPLE 2 Describe in terms of x, y, and z the rectangular box shown
in Figure 17.4.2(a).

SOLUTION The shadow of the box on the xy plane has a description 1 ≤
x ≤ 2, 0 ≤ y ≤ 3. For each point in this shadow, z varies from 0 to 2, as
shown in Figure 17.4.2(b). So the description of the box is

1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2,
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(a) (b)

Figure 17.4.2:

which is read from left to right as “x goes from 1 to 2; for each such x, the
variable y goes from 0 to 3; for each such x and y, the variable z goes from 0
to 2.”

Of course, we could have changed the order of x and y in the description
of the shadow or projected the box on one of the other two coordinate planes.
(All told, there are six possible descriptions.) �

EXAMPLE 3 Describe by cross sections the tetrahedron bounded by the
planes x = 0, y = 0, z = 0, and x+ y + z = 1, as shown in Figure 17.4.3(a).

(a) (b) (c)

Figure 17.4.3:

SOLUTION For the sake of variety, project the tetrahedron onto the xz
plane. The shadow is shown in Figure 17.4.3(b). A description of the shadow
is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x,

since the slanted edge has the equation x + z = 1. For each point (x, z) in
this shadow, y ranges from 0 up to the value of y that satisfies the equation
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x+y+z = 1, that is, up to y = 1−x−z. (See Figure 17.4.3(c).) A description
of the tetrahedron is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x, 0 ≤ y ≤ 1− x− z.

That is, x goes from 0 to 1; for each x, z goes from 0 to 1− x; for each x and
z, y goes from 0 to 1− x− z. �

EXAMPLE 4 Describe in rectangular coordinates the ball of radius 4
whose center is at the origin.

SOLUTION The shadow of the ball on the xy plane is the disk of radius 4
and center (0, 0). Its description is

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2.

Hold (x, y) fixed in the xy plane and consider the way z varies on the line
parallel to the z axis that passes through the point (x, y, 0). Since the sphere
that bounds the ball has the equation

x2 + y2 + z2 = 16,

for each appropriate (x, y), z varies from

Figure 17.4.4:−
√

16− x2 − y2 to
√

16− x2 − y2.

This describes the line segment shown in Figure 17.4.4.
The ball, therefore, has a description

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2,
√

16− x2 − y2 ≤ z ≤
√

16− x2 − y2.

�

Iterated Integrals for
∫
R f(P ) dV

The iterated integral in rectangular coordinates for
∫
R
f(P ) dV is similar to

that for evaluating integrals over plane sets. It involves three integrations
instead of two. The limits of integration are determined by the description of
R in rectangular coordinates. If R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y),

then ∫
R

f(P ) dV =

b∫
a

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy dx.
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An example illustrates how this formula is applied. In Exercise 31 an argument
for its plausibility is presented.

EXAMPLE 5 Compute
∫
R
z dV , where R is the tetrahedron in Example 3.

SOLUTION A description of the tetrahedron is

0 ≤ y ≤ 1, 0 ≤ x ≤ 1− y, 0 ≤ z ≤ 1− x− y.

Hence ∫
R

z dV =

1∫
0

 1−y∫
0

 1−x−y∫
0

z dz

 dx

 dy.

Compute the inner integral first, treating x and y as constants. By the
Fundamental Theorem,

1−x−y∫
0

z dz =
z2

2

∣∣∣∣z=1−x−y

z=0

=
(1− x− y)2

2
.

The next integration, where y is fixed, is

1−y∫
0

(1− x− y)2

2
dx = −(1− x− y)3

6

∣∣∣∣x=1−y

x=0

= −03

6
+

(1− y)3

6
=

(1− y)3

6
.

The third integration is

1∫
0

(1− y)3

6
dy = −(1− y)4

24

∣∣∣∣1
0

= − 04

24
+

14

24
=

1

24
.

This completes the calculation that∫
R

z dV =
1

24
.

�

Summary

We defined
∫
R
f(P ) dV , where R is a region in space. The volume of a solid re-

gion R is
∫
R
dV and, if f(P ) is the density of matter near P , then

∫
R
f(P ) dV

is the total mass. We also showed how to evaluate these integrals by introduc-
ing rectangular coordinates. There are six possible or-

ders.
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The general approach is to, first, describe R, for instance, as

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Then ∫
R

f(P ) dV =

b∫
a

 y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dx

 dy

 dx.
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EXERCISES for 17.4 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 4 concern the definition of
∫
R
f(P ) dV .

1.[R] A cube of side 4 centimeters is made of a material of varying density. Near
one corner A it is very light; at the opposite corner it is very dense. In fact, the
density f(P ) (in grams per cubic centimeter) at any point P in the cube is the
square of the distance from A to P (in centimeters). See Figure 17.4.5.

Figure 17.4.5:

(a) Find upper and lower estimates for the mass of the cube by partitioning it
into eight cubes.

(b) Using the same partition as in (a), estimate the mass of the cube, but select
as the Pi’s the centers of the four rectangular boxes.

(c) Estimate the mass of the cube described in the opening problem by cutting
it into eight congruent cubes and using their centers as the Pi’s.

(d) What does (c) say about the average density in the cube?

2.[R] How would you define the average distance from points of a certain set in
space to a fixed point P0?

3.[R] If R is a ball of radius r and f(P ) = 5 for each point in R, compute∫
R f(P ) dV by examining approximating sums. Recall that the ball has volume

4/3πr3.
4.[R] If R is a three-dimensional set and f(P ) is never more than 8 for all P in

R.

(a) what can we say about the maximum possible value of
∫
R f(P ) dV ?

(b) what can we say about the average of f over R?
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In Exercises 5 to 10 draw the solids described.
5.[R] 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ x
6.[R] 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 1 ≤ z ≤ 1 + x+ y

7.[R] 0 ≤ y ≤ 1, 0 ≤ x ≤ y2, y ≤ z ≤ 2y

8.[R] 0 ≤ y ≤ 1, y2 ≤ x ≤ y, 0 ≤ z ≤ x+ y

9.[R] −1 ≤ z ≤ 1, −
√

1− z2 ≤ x ≤
√

1− z2, −1
2 ≤ y ≤

√
1− x2 − z2

10.[R] 0 ≤ z ≤ 3, 0 ≤ y ≤
√

9− z2, 0 ≤ x ≤
√

9− y2 − z2

In Exercises 11 to 14 evaluate the iterated integrals.

11.[R]
∫ 1

0

(∫ 2
0

(∫ x
0 z dz

)
dy
)
dx.

12.[R]
∫ 1

0

(∫ x2

x3

(∫ x+y
0 z dz

)
dy
)
dx.

13.[R]
∫ 3

2

(∫ 2x
x

(∫ 1
0 (x+ z) dz

)
dy
)
dx.

14.[R]
∫ 1

0

(∫ x
0

(∫ 3
0 (x2 + y2) dz

)
dy
)
dx.

15.[R] Describe the solid cylinder of radius a and height h shown in Fig-
ure 17.4.6(a) in rectangular coordinates

(a) in the order first x, then y, then z,

(b) in the order first x, then z, then y.

(a) (b)

Figure 17.4.6:
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16.[R] Describe the prism shown in Figure 17.4.6(b) in rectangular coordinates,
in two ways:

(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

17.[R] Describe the tetrahedron shown in Figure 17.4.7(a) in rectangular coordi-
nates in two ways:

(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

(a) (b)

Figure 17.4.7:

18.[R] Describe the tetrahedron whose vertices are given in Figure 17.4.7(b) in
rectangular coordinates as follows:

(a) Draw its shadow on the xy plane.

(b) Obtain equations of its top and bottom planes.

(c) Give a parametric description of the tetrahedron.

19.[R] Let R be the tetrahedron whose vertices are (0, 0, 0), (a, 0, 0), (0, b, 0), and
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(0, 0, c), where a, b, and c are positive.

(a) Sketch the tetrahedron.

(b) Find the equation of its top surface.

(c) Compute
∫
R z dV .

20.[R] Compute
∫
R z dV , where R is the region above the rectangle whose vertices

are (0, 0, 0), (2, 0, 0), (2, 3, 0), and (0, 3, 0) and below the plane z = x+ 2y.

21.[R] Find the mass of the cube in Exercise 1. (See Figure 17.4.1.)

22.[R] Find the average value of the square of the distance from a corner of a
cube of side a to points in the cube.

23.[R] Find the average of the square of the distance from a point P in a cube
of side a to the center of the cube.

24.[R] A solid consists of all points below the surface z = xy that are above the
triangle whose vertices are (0, 0, 0), (1, 0, 0), and (0, 2, 0). If the density at (x, y, z)
is x+ y, find the total mass.

25.[R] Compute
∫
R xy dV for the tetrahedron of Example 3.

26.[R]

(a) Describe in rectangular coordinates the right circular cone of radius r and
height h if its axis is on the positive z axis and its vertex is at the origin.
Draw the cross sections for fixed x and fixed x and y.

(b) Find the z coordinate of its centroid.

27.[R] The temperature at the point (x, y, z) is e−x−y−z. Find the average temper-
ature in the tetrahedron whose vertices are (0, 0, 0), (1, 1, 0), (0, 0, 2), and (1, 0, 0).

28.[R] The temperature at the point (x, y, z), y > 0, is e−x/
√
y. Find the average

temperature in the region bounded by the cylinder y = x2, the plane y = 1, and the
plane z = 2y.
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29.[R] Without using a repeated integral, evaluate
∫
R x dV , where R is a spherical

ball whose center is (0, 0, 0) and whose radius is a.

30.[R] The work done in lifting a weight of w pounds a vertical distance of x feet is
wx foot-pounds. Imagine that through geological activity a mountain is formed con-
sisting of material originally at sea level. Let the density of the material near point
P in the mountain be g(P ) pounds per cubic foot and the height of P be h(P ) feet.
What definite integral represents the total work expended in forming the mountain?
This type of problem is important in the geological theory of mountain formation.

31.[R] In Section 17.2 an intuitive argument was presented for the equality

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Here is an intuitive argument for the equality

∫
R

f(P ) dV =

x2∫
x1

 y2(x)∫
y1(x)

 x2(x,y)∫
x1(x,y)

f(x, y, z) dz

 dy

 dx.

To start, interpret f(P ) as “density.”

(a) Let R(x) be the plane cross section consisting of all points in R with abscissa
x. Show that the average density in R(x) is∫ y2(x)

y1(x)[
(∫ z2(x,y)

z1(x,y) f(x, y, z) dz
)
dy

Area of R(x)

(b) Show that the mass of R between the plane sections R(x) and R(x + ∆x) is
approximately

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy ∆x.

(c) From (b) obtain a repeated integral in rectangular coordinates for
∫
R f(P ) dV .
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17.5 Integrals Over Surfaces

In this section we define an integral over a surface and then show how to
compute it by an iterated integral.

Definition of a Surface Integral

Consider a surface S such as the surface of a ball or part of the saddle z = xy.
If f is a numerical function defined at least on S, we will define the integral∫
S
f(P ) dS. The definition is practically identical with the definition of the

double integral, which is the special case when the surface is a plane.
We assume that the surfaces we deal with are smooth, or composed of a

finite number of smooth pieces, and that the integrals we define exist.

Figure 17.5.1:DEFINITION (Definite integral of a function f over a surface
S.) Let f be a function that assigns to each point P in a surface
S a number f(P ). Consider the typical sum

f(P1)S1 + f(P2)S2 + · · ·+ f(Pn)Sn,

formed from a partition of S, where Si is the area of the ith re-
gion in the partition and Pi is a point in the ith region. (See
Figure 17.5.1.) If these sums approach a certain number as the Si
are chosen smaller and smaller, the number is called the integral
of f over S and is written∫

S

f(P ) dS.

Surface integrals are also
denoted

∫∫
S f(P ) dS.If f(P ) is 1 for each point P in S then

∫
S f(P ) dS is the area of S. If S is

occupied by material of density σ(P ) at P then
∫
S σ(P ) dS is the total mass

of S.
First we show how to integrate over a sphere.

Integrating over a Sphere

If S is a sphere or part of a sphere, it is often convenient to evaluate an integral
over it with the aid of spherical coordinates. See Section ?? for a similar

argument, where ρ was not
constant.

If the center of a spherical coordinate system (ρ, θ, φ) is at the center of a
sphere of radius a, then ρ is constant on the sphere ρ = a. As Figure 17.5.2
suggests, the area of the small region on the sphere corresponding to slight
changes dθ and dφ is approximately

(a dφ) (a sin(φ) dθ) = a2 sin(φ) dθ dφ.
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Figure 17.5.2:

Thus we may write
dS = a2 sin(φ) dθ dφ

and evaluate ∫
S

f(P ) dS

in terms of a repeated integral in φ and θ. Example 1 illustrates this technique.

EXAMPLE 1 Let S be the top half of the sphere with radius a. Evaluate∫
S z dS.

SOLUTION Since the sphere has radius a, ρ = a. The top half of the sphere
is described by 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. And, in spherical coordinates,
z = ρ cos(φ) = a cos(φ). Thus∫

S

z dS =

∫
S

(a cos(φ)) dS =

2π∫
0

 π/2∫
0

(a cos(φ))a2 sin(φ) dφ

 dθ.

Now,

π/2∫
0

(a cos(φ))a2 sin(φ) dφ = a3

π/2∫
0

cos(φ) sin(φ) dφ = a3 (− cos2(φ))

2

∣∣∣∣π/2
0

=
a3

2
[−0− (−1)] =

a3

2
.

so that ∫
S

z dS =

2π∫
0

a3

2
dθ = πa3.
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�
We can interpret the result in Example 1 in terms of average value. The

average value of f(P ) over a surface S is defined as∫
S f(P ) dS

Area of S
.

Geometric interpretation
Example 1 shows that the average value of z over the given hemisphere is∫

S z dS

Area of S
=

πa3

2πa2
=
a

2
.

“The average height above the equator is exactly half the radius.”

A General Technique

When we faced an integral over a curve,
∫
C
f ds, we evaluated it by replacing

it with
∫ b
a
f ds

dt
dt, an integral over an interval [a, b].

We will do something similar for an integral over a surface: We will replace
an surface integral by a double integral over a set in a coordinate plane.

The basic idea is to replace a small patch on the surface S by its projection
(shadow) or, say, the xy-coordinate plane. The area of the shadow is not the
same as the area of the patch. With the aid of Figure 17.5.3 we will express
the area of the shadow in terms of the tilt of the patch.

The unit normal vector to the patch is n. The angle between n and k is
γ. Call the area of the patch, dS, and the area of its projection, dA. Then

Figure 17.5.3:
dA ≈ | cos(γ)| dS.

Recall the discussion of di-
rection angles and direction
cosines in Section 14.4.

Notice that the angle γ is one of the direction angles of the unit normal
vector, k.

For instance, if γ = 0, then dA = dS. If γ = π/2, then dA = 0. We use
the absolute value of cos(γ), since γ could be larger than π/2.

It follows, if cos(γ) is not 0, that

dS =
dA

| cos(γ)|
(17.5.1)

With the aid of (17.5.1), we replace an integral over S with an integral over
its shadow in the xy plane.

The replacement is visible in the approximating sums involved in the inte-
gral over a surface.
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Let S be a surface that meets each line parallel to the z axis at most once.
Let f be a function whose domain includes S.

Consider an approximating sum for
∫
S f(P ) dS, namely

∑n
i=1 f(pi)∆Si.

The partition is shown in Figure 17.5.4.

Figure 17.5.4:

Let R be the projection of S in the xy plane. The patch Si with area Si,
projects down to Ri, of area Ai, and the point Pi on Si points down to Qi in
Ri. Let γi be the angle between the normal at Pi and k.

Then f(P )Si is approximately f(Pi)
| cos(γi)|Ai. Thus an approximation of

∫
S f(P ) dS

is
n∑
i=1

f(Pi)

| cos γi|
Ai. (17.5.2)

Replacing an integral over
a surface with an integral
over a planar region.

Theorem 17.5.1. Let S be a surface and let A be its projection on the xy
plane. Assume that for each point Q on A the line through Q parallel to the z
axis meets S in exactly one point P . Let f be a function defined on S. Define
a function h on A by

h(Q) = f(P ).

Then ∫
S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

In this equation γ denotes the angle between k and a vector normal to the
surface of S at P . (See Figure 17.5.5.)

Figure 17.5.5:In order to apply this result, we need to be able to compute cos(γ).

Computing cos(γ)

We find a vector perpendicular to the surface in order to compute cos(γ). If
S is the level surface of g(x, y, z), that is g(x, y, z) = c, for some constant c,
then the gradient ∇g is such a vector.

If the surface S is given in the form z = f(x, y), rewrite it as z−f(x, y) = 0.
That means that S is a level surface of g(x, y, z) = z−f(x, y), Theorem 17.5.2
shows what the formulas for cos(γ) look like. However, it is unnecessary, even
distracting, to memorize them. Just remember that a gradient provides a
normal to a level surface.

Theorem 17.5.2. (a) If the surface S is part of the level surface g(x, y, z) =
c, then

| cos(γ)| =
|∂g
∂z
|√

( ∂g
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.
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(b) If the surface S is given in the form z = f(x, y), then

| cos(γ)| = 1√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
.

Proof

(a) A normal vector to S at a given point is provided by the gradient

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k.

The cosine of the angle between k and ∇g is

k · ∇g
‖k‖‖∇g‖

=
k · ( ∂g

∂x
i + ∂g

∂y
j + ∂g

∂z
k)

(1)
(
·
√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
) ;

hence

| cos(γ)| =
|∂g
∂z
|√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) Rewrite z = f(x, y) as z − f(x, y) = 0. The surface z = f(x, y) is thus
the level surface g(x, y, z) = 0 of the function g(x, y, z) = z − f(x, y).
Note that

∂g

∂x
= −∂f

∂x
,

∂g

∂y
= −∂f

∂y
and

∂g

∂z
= 1.

By the formula in (a),

| cos(γ)| = 1√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1

•
Theorem 17.5.2 is stated for projections on the xy plane. Similar theorems

hold for projections on the xz or yz plane. The direction angle γ is then
replaced by the corresponding direction angle, β or α, and the normal vector
is dotted into j or i. Just draw a picture in each case; there is no point in
trying to memorize formulas for each situation.

EXAMPLE 2 Find the area of the part of the saddle z = xy inside the
cylinder x2 + y2 = a2.
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SOLUTION Let S be the part of the surface z = xy inside x2 + y2 = a2.
Then

Area of S =

∫
S

1 dS.

The projection of S on the xy plane is a disk of radius a and center (0, 0). Call
it A, as in Figure 17.5.6. Then

Area of S =

∫
S

1 dS =

∫
A

1

| cos(γ)|
dA. (17.5.3)

Figure 17.5.6:
To find the normal to S rewrite z = xy as z − xy = 0. Thus S is a level

surface of the function g(x, y, z) = z − xy. A normal to S is therefore

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k

= −yi− xj + k.

Then

cos(γ) =
k · ∇g
‖k‖‖∇g‖

=
k · (−yi− xj + k)√

y2 + x2 + 1
=

1√
y2 + x2 + 1

.

The area of S is∫
A
√

(∂f/∂x)2 + (∂f/∂y)2 + 1 dA.By (17.5.3),

Area of S =

∫
A

√
y2 + x2 + 1 dA. (17.5.4)

Use polar coordinates to evaluate the integral in (17.5.4):

∫
A

√
y2 + x2 + 1 dA =

2π∫
0

a∫
0

√
r2 + 1r dr dθ.

The inner integration gives

a∫
0

√
r2 + 1f dr =

(r2 + 1)3/2

3

∣∣∣∣a
0

=
(1 + a2)3/2 − 1

3
.

The second integration gives

2π∫
0

(1 + a2)3/2 − 1

3
dθ =

2π

3

(
(1 + a2)3/2 − 1

)
.

�
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Summary

After defining
∫
S f(P ) dS, an integral over a surface, we showed how to com-

pute it when the surface is part of a sphere. Replace dS by
a2 sin(φ) dφ dθ, where
a is the radius of the
sphere.

If each line parallel to the z axis meets the surface S in at most one point,
an integral over S can be replaced by an integral over A, the projection of S
on the xy plane: ∫

S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

To find cos(γ), use a gradient. If the surface is a level surface of, g(x, y, z) = c,
use ∇g. If it has the equation z = f(x, y), rewrite the equation as z−f(x, y) =
0. As a special case, if S is the graph of z = f(x, y), then the area of S

Area of S =

∫
S

dS =

∫
A

√
(∂f/∂x)2 + (∂f/∂y)2 + 1 dA.
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EXERCISES for 17.5 Key: R–routine, M–moderate, C–challenging

1.[R] A small patch of a surface makes an angle of π/4 with the xy plane. Its
projection on that plane has area 0.05. Estimate the area of the patch.

2.[R] A small patch of a surface makes an angle of 25◦ with the yz plane. Its
projection on that plane has area 0.03. Estimate the area of the patch.

3.[R]

(a) Draw a diagram of the part of the plane x+ 2y + 3z = 12 that lies inside the
cylinder x2 + y2 = 9.

(b) Find as simply as possible the area of the part of the plane x+ 2y + 3z = 12
that lies inside the cylinder x2 + y2 = 9.

4.[R]

(a) Draw a diagram of the part of the plane z = x+3y that lies inside the cylinder
r = 1 + cos θ.

(b) Find as simply as possible the area of the part of the plane z = x + 3y that
lies inside the cylinder r = 1 + cos θ.

5.[R] Let f(P ) be the square of the distance from P to a fixed diameter of a
sphere of radius a. Find the average value of f(P ) for points on the sphere.

6.[R] Find the area of that part of the sphere of radius a that lies within a cone
of half-vertex angle π/4 and vertex at the center of the sphere, as in Figure 17.5.7.

In Exercises 7 and 8 evaluate
∫
S F · n dS for the given spheres and vectors

fields (n is the outward unit normal.)
7.[R] The sphere x2 + y2 + z2 = 9 and F = x2i + y2vj + z2k.

8.[R] The sphere x2 + y2 + z2 = 1 and F = x3i + y2j.

9.[R] Find the area of the part of the spherical surface x2 + y2 + z2 = 1 that lies
within the vertical cylinder erected on the circle r = cos θ and above the xy plane.
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Figure 17.5.7:

10.[R] Find the area of that portion of the parabolic cylinder z = 1
2x

2 between
the three planes y = 0, y = x, and x = 2.

11.[R] Evaluate
∫
S x

2y dS, where S is the portion in the first octant of a sphere
with radius a and center at the origin, in the following way:

(a) Set up an integral using x and y as parameters.

(b) Set up an integral using φ and θ as parameters.

(c) Evaluate the easier of (a) and (b).

12.[R] A triangle in the plane z = x+ y is directly above the triangle in the xy
plane whose vertices are (1, 2), (3, 4), and (2, 5). Find the area of

(a) the triangle in the xy plane,

(b) the triangle in the plane z = x+ y.

13.[R] Let S be the triangle with vertices (1, 1, 1), (2, 3, 4), and (3, 4, 5).

(a) Using vectors, find the area of S.

(b) Using the formula

Area of S =
∫
S

1 dS,

find the area of S.
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14.[R] Find the area of the portion of the cone z2 = x2 + y2 that lies above one
loop of the curve r =

√
cos 2(θ).

15.[R] Let S be the triangle whose vertices are (1, 0, 0), (0, 2, 0), and (0, 0, 3). Let
f(x, y, z) = 3x+ 2y + 2z. Evaluate

∫
S f(P ) dS.

In Exercises 16 and 17 let S be a sphere of radius a with center at the
origin of a rectangular coordinate system.

16.[R] Evaluate each of these integrals with a minimum amount of labor.

(a)
∫
S x dS

(b)
∫
S x

3 dS

(c)
∫
S

2x+4y5√
2+x2+3y2

dS

17.[R]

(a) Why is
∫
S x

2 dS =
∫
S y

2 dS?

(b) Evaluate
∫
S(x2 + y2 + z2) dS with a minimum amount of labor.

(c) In view of (a) and (b), evaluate
∫
S x

2 dS.

(d) Evaluate
∫
S(2x2 + 3y3) dS.

18.[R] An electric field radiates power at the rate of k(sin2(φ)/ρ2 units per square
meter to the point P = (ρ, θ, φ). Find the total power radiated to the sphere ρ = a.

19.[R] A sphere of radius 2a has its center at the origin of a rectangular coordi-
nate system. A circular cylinder of radius a has its axis parallel to the z axis and
passes through the z axis. Find the are of that part of the sphere that lies within
the cylinder and is above the xy plane.

Consider a distribution of mass on the surface S. Let its density at P be
σ(P ). The moment of inertia of the mass around the z axis is defined as∫
S(x2 + y2)σ(P ) dS. Exercises 20 and 21 concern this integral.
20.[R] Find the moment of inertia of a homogeneous distribution of mass on the

surface of a ball of radius a around a diameter. Let the total mass be M .

21.[R] Find the moment of inertia about the z axis of a homogeneous distribution
of mass on the triangle whose vertices are (a, 0, 0), (0, b, 0), and (0, 0, c). Take a, b,
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and c to be positive. Let the total mass be M .

22.[R] Let S be a sphere of radius a. Let A be a point at distance b > a from
the center of S. For P in S let δ(P ) be 1/q, where q is the distance from P to A.
Show that the average of δ(P ) over S is 1/b.

23.[R] The data are the same as in Exercise 22 but b < a. Show that in this case
the average of 1/q is 1/a. (The average does not depend on b in this case.)

Exercises 24 to 26 concern integration over the curved surface of a cone.
Spherical coordinates are also useful for integrating over a right circular cone.
Place the origin at the vertex of the cone and the “φ = 0” ray along the axis
of the cone, as shown in Figure 17.5.8(a). Let α be the half-vertex angle of
the cone.

On the surface of the cone φ is constant, φ = α, but ρ and θ vary. A small
“rectangular” patch on the surface of the cone corresponding to slight changes
dθ and dρ has area approximately

(ρ sin(α) dθ) dρ = ρ sin(α) dρ dθ.

(See Figure 17.5.8.) So we may write

dS = ρ sinα dρ dθ.

ch16/f16-7-9

Figure 17.5.8:

24.[R] Find the average distance from points on the curved surface of a cone of
radius a and height h to its axis.
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25.[R] Evaluate
∫
S z

2 dS, where S is the entire surface of the cone shown in
Figure 17.5.8(b), including its base.

26.[R] Evaluate
∫
S x

2 dS, where S is the curved surface of the right circular cone
of radius 1 and height 1 with axis along the z axis.

Integration over the curved surface of a right circular cylinder is easiest in
cylindrical coordinates. Consider such a cylinder of radius a and axis on the
z axis. A small patch on the cylinder corresponding to dz and dθ has area
approximately dS = a dz dθ. (Why?) Exercises 27 and 28 illustrate the use
of these coordinates.
27.[R] Let S be the entire surface of a solid cylinder of radius a and height h. For
P in S let f(P ) be the square of the distance from P to one base. Find

∫
S f(P ) dS.

Be sure to include the two bases in the integration.

28.[R] Let S be the curved part of the cylinder in Exercise 27. Let f(P ) be the
square of the distance from P to a fixed diameter in a base. Find the average value
of f(P ) for points in S.

29.[R] The areas of the projections of a small flat surface patch on the three
coordinate planes are 0.01, 0.02, and 0.03. Is that enough information to find the
area of the patch? If so, find the area. If not, explain why not.

30.[R] Let F describe the flow of a fluid in space. (See Section 16.3 for fluid flow
in a planar region.) F(P ) = δ(P )v(P ), where δ(P ) is the density of the fluid at P
and v(P ) is the velocity of the fluid at P . Making clear, large diagrams, explain
why the rate at which the fluid is leaving the solid region enclosed by a surface S is∫
S F · n dS, where n denotes the unit outward normal to S.

31.[R] Let S be the smooth surface of a convex body. Show that
∫
S z cos(γ) dS

is equal to the volume of the solid bounded by S. Hint: Break S into two parts. In
one part cos(γ) is positive; and the other it negative.

32.[M] Let R(x, y, z) be a scalar function defined over a closed surface S. (See
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Figure 17.5.9.)

(a) Show that∫
S

R(x, y, z) cos(γ) dS =
∫
A

(P (x, y, z2)− P (x, y, z1)) dA,

where A is the projection of S on the xy plane and the line through (x, y, 0)
parallel to the z axis meets S at (x, y, z1) and (x, y, z2), with z1 ≤ z2.

(b) Let S be a surface of the type in (a). Evaluate
∫
S x cos γ dS.

Figure 17.5.9:
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17.6 Chapter Summary

This chapter generalizes the notion of a definite integral over an interval to
integrals over plane sets, surfaces, and solids. These definitions are almost
the same, the integral of f(P ) over a set being the limit of sums of the form∑
f(Pi) ∆Ai,

∑
f(Pi) ∆Si, or

∑
f(Pi) ∆Vi for integrals over plane sets,

surfaces, or solids, respectively.
If f(P ) denotes the density at P , then in each case, the integrals give the

total mass.
The average value concept extends easily to functions of several variables.

For instance, if f(P ) is defined on some plane region R, its average value over
R is defined as

1

area(R)

∫
R

f(P ) dA.

Sometimes these “multiple integrals” (also known as “double” or “triple” in-
tegrals) can be calculated by repeated integrations over intervals, that is, as
“iterated integrals.” This requires a description of the region in an appropriate
coordinate system and replaces dA or dV by an expression based on the area
or volume of a small patch swept out by small changes in the coordinates, as
recorded in Table 17.6.1.

Coordinate System Substitution
Rectangular (2-d) dA = dx dy
Rectangular (3-3) dV = dx dy dz
Polar dA = r dr dθ
Cylindrical dV = r dr dθ dz
Cylindrical (surface) dS = r dθ dz
Spherical dV = ρ2 sin(φ) dφ dρ dθ
Spherical (surface) dS = ρ2 sin(φ) dφ dθ

Table 17.6.1:

An integral over a surface S,
∫
S
f(P ) dS, can often be replaced by an

integral over the projection of S onto a plane R, replacing dS by dA cos(γ),
where γ is the angle between a normal to S and a normal to R. If density is 1, the center

of mass is called the cen-
troid.

Figure 17.6.1:

Figure 17.6.2:

To remember these formu-
las, be able to draw Fig-
ures 17.6.1 and 17.6.2, in-
cluding the labels.

EXERCISES for 17.S Key: R–routine, M–moderate, C–challenging

1.[R] The temperature at the point (x, y) at time t is T (x, y, t) = e−tx sin(x+3y).
Let f(t) be the average temperature in the rectangle 0 ≤ x ≤ π, 0 ≤ y ≤ π/2 at
time t. Find df/dt.

2.[R] Let f be a function such that f(−x, y) = −f(x, y).
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Key Facts

Formula Significance∫
R

1 dA Area of R∫
R

1 dV Volume of R
frac

∫
R
f(P ) dAArea of R or frac

∫
R
f(P ) dVVolume of R Average value of f over R∫

R
σ(P ) dA or

∫
R
δ(P ) dV Total mass of R, M (σ and

δ denote density)∫
R
yσ(P ) dA,

∫
R
xσ(P ) dA Moments, Mx and My about

x and y axes, respectively.
(A moment can be com-
puted around any line in the
plane.)∫

R
f(P )σ(P ) dA,

∫
R
f(P )σ(P ) dV where f(P ) is the square of the distance from P to some fixed line L Moment of inertia around L

for planar and solid regions,
respectively.∫

R
x2σ(P ) dA,

∫
R
y2σ(P ) dA Second moments, Mxx and

Myy about x and y axes, re-
spectively.(

My

M
, Mx

M

)
Center of mass, (x̄, ȳ)∫

R
zδ(P ) dV Moment Mxy∫

R
yδ(P ) dV Moment Mxz∫

R
xδ(P ) dV Moment Myz(

Myz

M
, Mxz

M
, Mxy

M

)
Center of mass of solid,
(x̄, ȳ, z̄)

Table 17.6.2:

Relations Between Rectangular Coordinates and Spherical or Cylindrical
Coordinates

x = ρ sin(φ) cos(θ) x = r cos(θ)
y = ρ sin(φ) sin(θ) y = r sin(θ)
z = ρ cos(φ) z = z

Table 17.6.3:

November 3, 2008 Calculus 1241



Plane and Solid Integrals § 17.6

(a) Give some examples of such functions.

(b) For what type regions R in the xy plane is
∫
R f(x, y) dA certainly equal to 0?

3.[R] Find
∫
R(2x3y2 + 7) dA where R is the square with vertices (1, 1), (−1, 1),

(−1,−1), and (1,−1). Do this with as little work as possible.

4.[R] Let f(x, y) be a continuous function. Define g(x) to be
∫
R f(P ) dA, where

R is the rectangle with vertices (3, 0), (3, 5), (x, 0), and (x, 5), x > 3. Express dg/dx
as a suitable integral.

5.[R] Let R be a plane lamina in the shape of the region bounded by the graph
of the equation r = 2a sin(θ) (a > 0). If the variable density of the lamina is given
by σ(r, θ) = sin(θ), find the center of mass R.

In Exercises 6 to 9 find the moment of inertia of a homogeneous lamina of
mass M of the given shape, around the given line.

6.[R] A disk of radius a, about the line perpendicular to it through its center.

7.[R] A disk of radius a, about a line perpendicular to it through a point on the
circumference.

8.[R] A disk of radius a, about a diameter.

9.[R] A disk of radius a, about a tangent.
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