
948 OVERVIEW OF CALCULUS III

Overview of Calculus III

The first two parts of this book have focused on calculus of a single variable.
The final third of this book extends the basic calculus ideas — limit, derivative,
and integral — to two- and three-dimensions.

October 22, 2010 Calculus



Chapter 14

Vectors

Vectors are sometimes
represented as arrows.Section 14.1 introduces vectors and their arithmetic. Section 14.2 examines

the dot product, which is a number. This includes the geometry of the dot
product and its role in projections. (A projection is related to the shadow cast
by parallel rays of light.)

Section 14.3 examines the cross product, which is a vector. Determinants
are reviewed, and the scalar triple product (a number) is introduced and used
to find the volume of a parallelepiped.

Section 14.4 develops a number of fundamental properties of lines and
planes, in terms of vectors. The distance from a point to a line or plane is
developed, a parametric description of a line is given, using the dot and cross
product. These ideas are used to talk about flows.

This algebra was developed primarily in response to James Clerk Maxwell’s
Treatise on Electricity and Magnetism, published in 1873. Josiah Gibbs, who
in 1863 earned the first doctorate in engineering awarded in the United States
and became a mathematical physicist, put vector analysis in its present form.
His Elements of Vector Analysis, published in 1881, introduced the notation
used in this chapter. Maxwell’s contributions will be studied in greater detail
in Chapter 18.
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950 CHAPTER 14 VECTORS

14.1 The Algebra of Vectors

You have lived with vectors all your life. When you hanged a picture on wire
you dealt with three vectors: one describes the downward force of gravity
and two describe the force of the wires pulling up to oppose gravity, as in
Figure 14.1.1(a)

(a) (b)

Figure 14.1.1:

When you pull a wagon the force you use is represented by a vector, as in
Figure 14.1.1(b). The harder you pull, the larger the vector.

Figure 14.1.2:

A vector has a direction and a magnitude. You may think of it as an
arrow, whose length and direction carry information. Vectors are of use in
describing the flow of a fluid, as in Figure 14.1.2, or the wind, or the strength
and direction of a magnetic field.

Vectors in the Plane

A vector in the xy plane is an ordered pair of numbers x and y, denoted 〈x, y〉.
Its magnitude, or length, is

√
x2 + y2. Though the notation resembles that for
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§ 14.1 THE ALGEBRA OF VECTORS 951

a point, (x, y), we treat vectors quite differently. We can add them, subtract
them and multiply them by a number. Two additional products of vectors are
introduced in Sections 14.2 and 14.3.

Figure 14.1.3: The ar-
row represents the vector
〈x, y〉.

We represent a vector by an arrow whose tail is at (0, 0) and whose head
(or “tip”) is at (x, y), as in Figure 14.1.3.

Figure 14.1.4:

More generally, we represent 〈x, y〉 by any pair of points P = (a1, a2) and
Q = (b1, b2) if b1 − a1 = x and b2 − a2 = y, as in Figure 14.1.4.

We speak then of “the vector from P to Q” and denote it
−→
PQ. A vector

〈x, y〉 will be denoted by bold face letters, such as A, B, r, v, and a. In
handwriting or on the blackboard they are decorated with a bar or arrow on

top, for instance
−→
A or A. A vector of length 1 is called a unit vector and is

topped with a little hat, as in r̂, which is read aloud as “r hat”.

Here is how we operate on vectors. Let A = 〈a1, a2〉 and B = 〈b1, b2〉 be
vectors and let c be a number.

(a) (b) (c) (d)

Figure 14.1.5:

(a) (b) (c) (d)

Figure 14.1.6:
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952 CHAPTER 14 VECTORS

Operation Definition Geometry Comment
A + B 〈a1 + b1, a2 + b2〉 Figure 14.1.5 The tail of B is placed at the

head of A
−A 〈−a1,−a2〉 Figure 14.1.6(a) −A points in opposite direc-

tion of A
A−B 〈a1 − b1, a2 − b2〉 Figure 14.1.6(b) What you add to B to get A
cA 〈ca1, ca2〉 Figure 14.1.6(c) Parallel to A and |c| times

as long as A
A
c

〈
a1

c
, a2

c

〉
Figure 14.1.6(d) Parallel to A and 1

c
times as

long as A (c 6= 0)

(a) (b) (c)

Figure 14.1.7:

The operation of addition obeys the usual rules of addition of numbers.
For instance, A + B = B + A and A + (B + C) = (A + B) + C. Also
A−B = A +−B. This is easy to establish using the definitions. In terms of
arrows it makes sense; see Figure 14.1.7(a).

A − B and A + (−B) appears as opposite sides of a parallelogram. Fig-
ure 14.1.7(a) shows both A + B and B + A; they are equal.

The magnitude of 〈x, y〉 is
√

(cx)2 + (cy)2 =
√
c2
√
x2 + y2, that is, |c|

times the magnitude of 〈x, y〉. If c is positive 〈cx, cy〉 and 〈x, y〉 point in the
same direction. If c is negative they point in opposite direction, as the arrows
in Figure 14.1.7(c) illustrate for c = 2 or −2.

When talking about numbers, such as c, x, and y, in the context of vectors,

we call them scalars. Thus in c
−→
A the scalar c is multiplying the vector A.

The vector 〈0, 0〉 is denoted 0 and is called the zero vector.

EXAMPLE 1 Let A = 〈1, 2〉, B = 〈3,−1〉 and c = −2. Complete A + B,
A−B and cA. Then draw the corresponding arrows.
SOLUTION

A+B = 〈1, 2〉+ 〈3,−1〉 = 〈1 + 3, 2 + (−1)〉 = 〈4, 1〉
A−B = 〈1, 2〉 − 〈3,−1〉 = 〈1− 3, 2− (−1)〉 = 〈−2, 3〉

cA = −2〈1, 2〉 = 〈−2, (1),−2(2)〉 = 〈−2,−4〉
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§ 14.1 THE ALGEBRA OF VECTORS 953

(a) (b) (c)

Figure 14.1.8:

Note that A−B and A + B lie on the two diagonals of a parallelogram. (See
Figure 14.1.8.) �

Before we can make the similar definition for vectors in space, we must
introduce an appropriate coordinate system.

Coordinates in Space

Figure 14.1.9: ARTIST:
A “right hand” should be
added to this figure.

First, pick a pair of perpendicular intersecting lines to serve as the x and y
axes. The positive parts of these axes are indicated by arrows. These two lines
determine the xy plane. The line perpendicular to the xy plane and meeting
the x and y axes will be called the z-axis. The point where the three axes
meet is called the orgin. The 0 of the z-axis will be put at the origin. But
which half of the z-axis will have positive numbers and which half will have
the negative numbers? It is customary to determine this by the right-hand
rule. Moving in the xy plane through a right angle from the positive x-axis
to the positive y-axis determines a sense of rotation around the z-axis. If the
fingers of the right hand curl in that sense, the thumb points in the direction
of the positive z-axis, as shown in Figure 14.1.9.

Figure 14.1.10:

Any point Q in space is now described by three numbers: First, two num-
bers specify the x and y coordinates of the point P in the xy plane directly
below (or above) Q; then the height of Q above (or below) the xy plane is
recorded by the z coordinate of the point R where the plane through Q and
parallel to the xy plane meets the z-axis. The point Q is then denoted (x, y, z).
See Figure 14.1.10.

The points (x, y, z) for which z = 0 lie in the xy plane. There are an infinite
number of these points. The points (x, y, z) for which x = 0 lie entirely in the
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954 CHAPTER 14 VECTORS

plane determined by the y and x axes, which is called the yz plane. Similarly,
the equation y−0 describe the xz plane. The xy, xz and yz planes are called
the coordinate planes.

EXAMPLE 2 Plot the point (1, 2, 3).

(a) (b)

Figure 14.1.11:

SOLUTION One way is to first plot the point (1, 2) in the xy plane. Then,
on a line perpendicular to the xy plane at that point, show the point (1, 2, 3)
as done in Figure 14.1.11(a).

Another way is to draw a box whose edges are parallel to the axes and
which has the origin (0, 0, 0) and (1, 2, 3) as done in Figure 14.1.11(b). (This
time, the y and z axes make a right angle.) �

Just as the axes in the xy plane divide the plane with four quadrants, the
three coordinate planes divide space with eight octants.

Vectors in Space

The only difference between a vector in space and a vector in the xy plane is
that it has three components, x, y, and z, and is written 〈x, y, z〉. Its length or
magnitude is defined as

√
x2 + y2 + z2. The definition of the sum and differ-

ence of such vectors is so similar to the definition for planar vectors that we will
not list them. For instance, 〈a1, a2, a3〉+〈b1, b2, b3〉 is 〈a1 + b1, a2 + b2, a3 + b3〉.
The biggest difference is that they are harder to draw, even though each can
be suggested by our arrow. It may help visualize such a vector by drawing a
box in which it is a main diagonal. For instance, to draw the vector 〈2, 3,−1〉
you may draw the box shown in Figure 14.1.12

Figure 14.1.12:
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§ 14.1 THE ALGEBRA OF VECTORS 955

This representation of A has its tail at the arrow. Of course the arrow and
box could be drawn with the tail of the arrow anywhere else.

The Standard Unit Vectors

The three most important unit vectors indicate the positive directions of the
positive x, y, and z axes. They will be denoted i, j and k, respectively. For
instance, i = 〈1, 0, 0〉. The vectors 〈x, y, z〉 can also be written xi + yj + zk.

EXAMPLE 3 Draw i, j, k and i + 2j + 3k.
SOLUTION Figure 14.1.13(a) shows i, j, k and Figure 14.1.13(b) shows

(a) (b)

Figure 14.1.13:

i + 2j + 3k. �

The magnitude of A is indicated by ‖A‖. ‖A‖ is a scalar and A/‖A‖ is a
vector.

The vector A
‖A‖ is a unit vector for any non-zero vector A. To see this, we

let A = 〈x, y, z〉 and compute A/‖A‖:

A

‖A‖
=

〈x, y, z〉√
x2 + y2 + z2

= 〈 x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

〉.

The square of the length of A/‖A‖ is(
x√

x2 + y2 + z2

)2

+

(
y√

x2 + y2 + z2

)2

+

(
z√

x2 + y2 + z2

)2

=
x2 + y2 + z2

x2 + y2 + z2
= 1.

Thus A/‖A‖ is a unit vector.
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956 CHAPTER 14 VECTORS

Example 4 shows how vectors can be used to establish geometric properties.

EXAMPLE 4 Prove that the line which joins the midpoints of two sides

Figure 14.1.14:
Figure 14.1.15:

of a triangle is parallel to the third side and half as long.
SOLUTION Let the triangle have vertices P , Q, and R. Let the midpoint
of side PQ be M and the midpoint of side PR be N as in Figure 14.1.14.

Introduce an xy coordinate system in the plane of the triangle. Through
its origin could be anywhere in the plane, we should put it at P in order to
simplify the calculations. (See Figure 14.1.15.)

We wish to show that the vector
−−→
MN is 1

2

−→
QR. To do so, we compute

−−→
MN

and
−→
QR in terms of vectors involving P , Q, and R.

First of all,
−−→
PM = 1

2

−→
PQ and

−−→
PN = 1

2

−→
PR. Thus

−−→
MN =

1

2

−→
PR− 1

2

−→
PQ =

1

2
(
−→
PR−

−→
PQ) =

1

2
(
−→
QR).

�

The next example shows the importance of thinking vectorally. Not think-
ing that way, one of the other had a picture fall and break a vase.

EXAMPLE 5 A picture weighing 10 pounds has a wire on the back, which
rests on a picture hook, as shown in Figure 14.1.16(a). Find the force (tension)
on the wire.
SOLUTION There are three vectors involved. One is straight down, with
magnitude 10 lbs. and two are along the wire, with unknown magnitude F :
‖v1‖ = F = ‖v2‖.

(a) (b)

Figure 14.1.16:

To balance the downward force of gravity, each end of the wire must have a
vertical component of 5 lbs. Since the angle with the horizontal is 10◦ we must
have F sin(10◦) = 5 or F = 5/ sin(10◦) ≈ 29 pounds. That is much greater
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§ 14.1 THE ALGEBRA OF VECTORS 957

than the weight of the painting and creates quite a pull on the screws at the
bases of the wire. This force can (sadly, we learned) eventually pull a screw
out of the wall. �

Summary

We introduced the notion of a vector 〈x, y〉 in the xy plane or 〈x, y, z〉 in
space and defined their addition and subtraction. Furthermore we defined the
operation of a scalar c as a vector 〈x, y, z〉, as 〈cx, cy, cz〉.

We visualized vectors with the aid of arrows, which could be drawn any-
where in the xy plane or in space.

Each vector in the xy-plane can be written as xi + yj. Vector in space can
be written as xi + yj + zk.
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958 CHAPTER 14 VECTORS

EXERCISES for Section 14.1 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 and 2 use the plane of your paper as the
xy plane.

1.[R] Draw the vector
2i + 3j, placing its tail at
(a) (0, 0), (b) (−1, 2), (c)
(1, 1).

2.[R] Draw the vector
−i + 2j, placing its tail at
(a) (0, 0), (b) (3, 0), (c)
(−2, 2).

In Exercises 3 to 6 draw the vector A and enough extra
lines to show how it is situated in space.

3.[R] A = 2i + j + 3k,

(a) tail at (0, 0, 0),

(b) tail at (1, 1, 1).

4.[R] A = i + j + k,

(a) tail at (0, 0, 0),

(b) tail at (2, 3, 4).

5.[R] A = −i− 2j + 2k,

(a) tail at (0, 0, 0),

(b) tail at (1, 1,−1).

6.[R] A = j + k,

(a) tail at (0, 0, 0),

(b) tail at (−1,−1,−1).

In Exercises 7 to 10 plot the points P and Q, draw the
vector

−−→
PQ, express it in the form xi+yj+zk, and find

its length.

7.[R] P = (0, 0, 0), Q =
(1, 3, 4)

8.[R] P = (1, 2, 3), Q =
(2, 5, 4)

9.[R] P = (2, 5, 4), Q =
(1, 2, 2)

10.[R] P = (1, 1, 1), Q =
(−1, 3,−2)

In Exercises 11 and 12 express the vector A in the form
xi + yj. North is along the positive y-axis and east is
along the positive x-axis.

11.[R]

(a) ‖A‖ = 10 and A
points northwest;

(b) ‖A‖ = 6 and A
points south;

(c) ‖A‖ = 9 and A
points southeast;

(d) ‖A‖ = 5 and A
points east.

12.[R]

(a) ‖A‖ = 1 and A
points southwest;

(b) ‖A‖ = 2 and A
points west;

(c) ‖A‖ =
√

8 and A
points northeast;

(d) ‖A‖ = 1/2 and A
points south.

13.[M] The wind is 30 miles per hour to the northeast.
An airplane is traveling 100 miles per hour relative to
the air, and the vector from the tail of the plane to its
front tip points to the southeast. (See Figure 14.1.17.)

(a) What is the speed of the plane relative to the
ground?

(b) What is the direction of the flight relative to the
ground?

Figure 14.1.17:
14.[M] (See Exercise 13.) The jet stream is moving
200 miles per hour to the southeast. A plane with a
speed of 550 miles per hour relative to the air is aimed
to the northwest.

October 22, 2010 Calculus



§ 14.1 THE ALGEBRA OF VECTORS 959

(a) Draw the vectors representing the wind and the
plane relative to the air. (Choose a scale and
make an accurate drawing.)

(b) Using your drawing, estimate the speed of the
plane relative to the ground.

(c) Compute the speed in (b) exactly.

15.[R] Compute A + B and A−B if

(a) A = 〈−1, 2, 3〉 and B = 〈7, 0, 2〉.

(b) A = 3j + 4k and B = 6i + 7j.

16.[R] Compute A + B and A−B if

(a) A = 〈1/2, 1/3, 1/6〉 and B = 〈2, 3,−1/3〉.

(b) A = 2i + 3j + 4k and B = −i + 5j + 6k.

17.[R] Compute and sketch cA if A− 2i + 3j + k and
c is

(a) 2,

(b) −2,

(c) 1
2 ,

(d) −1
2 .

18.[R] Express each of the following vectors in the
form c(2i + 3j + 4k) for suitable c:

(a) 〈4, 6, 8〉

(b) −2i− 3j− 4k

(c) 0

(d) 2
11 i + 3

11 j + 4
11k

19.[R] If ‖A‖ = 6, find the length of the following
vectors

(a) −2A

(b) A/3

(c) A/‖A‖

(d) −A

(e) A + 2A.

20.[R] If ‖A‖ = 3, find the length of the following
vecrps

(a) −4A

(b) 13A− 7A

(c) A/‖A‖

(d) A/0.05

(e) A−A.

21.[R]

(a) Find a unit vector u that has the same direction
as A = i + 2j + 3k.

(b) Draw A and u, with their tails at the origin.

22.[R]

(a) Find a unit vector u that has the same direction
as A = 2i− 2j + 3k.

(b) Draw A and u, with their tails at the origin.
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960 CHAPTER 14 VECTORS

23.[R] Using the definition of addition of vectors
A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉, show the
A + B = B + A and A−B = A + (−B).

24.[R] Using the definition of addition of vectors show
that A + (B + C) = (A + B) + C.

25.[R] Which unit vector points in the same direction
as 2i + 3j + 4k?

26.[R] Sketch a unit vector pointing in the same di-
rection as 3i + 4j.

27.[M] (Midpoint formula) Let A and B be two points
in space. Let M be their midpoint. Let A =

−→
OA,

B =
−−→
OB, and M =

−−→
OM .

(a) Show that M = A + 1
2(B−A).

(b) Deduce that M = (A + B)/2. Hint: Draw a
picture.

28.[M] Let A and B be two distinct points in space.
Let C be the point on the line segment AB that is
twice as far from A as it is from B. Let A =

−→
OA,

B =
−−→
OB, and C =

−−→
OC. Show that C = 1

3A + 2
3B.

Hint: Draw a picture.

29.[M] Show that 2i + 3j + 4k and 6i + 9j + 12k are
parallel.

30.[M] Show that i− 3j + 6k and −2i + 6j− 12k are
parallel.

31.[M] This exercise outlines a proof of the distribu-
tive rule: c(A + B) = cA + cB. Write A and B in
components, and obtain the rule by expressing both
c(A + B) and cA + cB in components.

32.[M]

(a) Show that the vectors u1 = 1
2 i + (

√
3/2j and

u2 = (
√

3/2i − 1
2 j are perpendicular unit vec-

tors. Hint: What angles do they make with the
x-axis?

(b) Find scalars x and y such that i = xu1 + yu2.

33.[M]

(a) Show that the vectors u1 = (
√

2/2i) + (
√

2/2j)
and u2 = (−

√
2/2i) + (

√
2/2j) are perpendicular

unit vectors. Hint: Draw them.

(b) Express i in the form of xu1 + yu2. Hint: Draw
i,u1, and u2.

(c) Express j in the form xu1 + yu2.

(d) Express −2i + 3j in the form xu1 + yu2.

34.[M]

(a) Draw a unit vector u tangent to the curve y =
sinx at (0, 0).

(b) Express u in the form xi + yj.

35.[M]

(a) Draw a unit vector u tangent to the curve y = x3

at (1, 1).

(b) Express u in the form xi + yj.

36.[M]

(a) What is the sum of the five vectors shown in
Figure 14.1.18?

(b) Sketch the figure corresponding to the sum A +
C + D + E + B.
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Figure 14.1.18:
37.[M] A rectangular box has sides of length x, y,
and z. Show that the length of a longest diagonal (arc
joining opposite corner) is

√
x2 + y2 + z2. Hint: Use

the Pythogorean Theorem, twice.

38.[M] See Example 5 concerning hanging a picture.
What would be the tension in the wire if it were at an
angle of

(a) 60◦ instead of 10◦ to the horizontal,

(b) 5◦ instead of 10◦ to the horizontal?

39.[C]

(a) Draw the vectors A = 2i + j, B = 4i − j, and
C = 5i + 2j.

(b) With the aid of the drawing show that there are
scalars x and y such that C = xA + yB.

(c) Using the drawing in (a), estimate x and y.

(d) Find x and y exactly.

40.[C] (See Exercise 13.) Let A and B be two nonzero
and nonparallel vectors in the xy plane. Let C be any

vector in the xy plane. Show with the aid of a sketch
that there are scalars x and y such that C = xA+yB.

41.[C] Let A, B and C be three vectors that do not
all lie in one plane. Let D be any vector in space.
Show with the aid of a sketch that there are scalars x,
y, and z such that D = xA + yB + zC.

42.[C] Let A, B and C be the vertices of a triangle.
Let A =

−→
OA, B =

−−→
OB, and C =

−−→
OC.

(a) Let P be the point that is on the line segment
joining A to the midpoint of the edge BC and
twice as far from A as from the midpoint. Show
that

−−→
OP = (A + B + C)/3.

(b) Use (a) to show that the three medians of a tri-
angle are concurrent.

43.[C] The midpoints of a quadrilateral in space are
joined to form another quadrilateral. Prove that this
second quadrilateral is a parallelogram.

44.[C]

(a) Using an appropriate diagram, explain why ‖A+
B‖ ≤ ‖A‖ + ‖B‖. (This is called the triangle
inequality.

(b) For which pairs of vectors A and B is ‖A+B‖ =
‖A‖+ ‖B‖?

45.[C] From Exercise 44 deduce that for any four real
numbers x1, y1, x2, and y2,

x1x2 + y1y2 ≤
√
x2

1 + y2
1

√
x2

2 + y2
2.

When does equality hold?
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962 CHAPTER 14 VECTORS

14.2 The Dot Product of Two Vectors
The dot product is a

number, or scalar. The “dot product” or “scalar product” is a number that is defined for
every pair of vectors. Consider a rock being pulled along level ground by a

(a) (b)

Figure 14.2.1:

rope inclined at at fixed angle to the ground. Let the force applied to the rock
be represented by the vector F. The force F can be expressed as the sum of a
vertical force F2 and a horizontal force F1, as shown in Figure 14.2.1(b).

Figure 14.2.2:

How much work is done by the force F in moving the rock along the ground?
The physicist defines the work accomplished by a constant force F (whatever
direction it may have) as the product of the component of F in the direction
of motion and the distance traveled. Say that the force F, as shown in Fig-
ure 14.2.2, moves an object along a straight line from the tail to the head of
R.

By definition

Work = ‖F‖ cos(θ)︸ ︷︷ ︸
Force in Direction of R

· ‖R‖︸︷︷︸
Distance traveled

where θ is the angle between R and F.

The force F2 in Figure 14.2.1 accomplishes no work. The work accom-
plished by F in pulling the rock is the same as that accomplished by F1.
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The Dot Product

This important physical concept illustrates the dot product of two vectors,
which will be introduced after the following definition.

DEFINITION (Angle between two nonzero vectors.) Let A and

Figure 14.2.3:

B be two nonparallel and nonzero vectors. They determine a tri-
angle and an angle θ, shown in Figure 14.2.3. The angle between
A and B is θ. Note that

0 < θ < π

If A and B are parallel, the angle between them is 0 (if they have
the same direction) or π (if they have opposite directions). The
angle between 0 and any other vector is not defined.

Figure 14.2.4:

The angle between i and j is π/2. The angle between A = −i − j and
B = 3i is 3π/4, as Figure 14.2.4 shows. The angle between k and −k is π; the
angle between 2i and 5i is 0.

DEFINITION (Dot product) Let A and B be two nonzero vec- In the next section we
define another product of A
and B; it will be a vector

tors. Their dot product is the number Sometimes we write
cos(A,B) instead of cos(θ).

‖A‖‖B‖ cos(θ),

where θ is the angle between A and B. If A or B is 0, their dot
product is 0. The dot product is denoted A ·B. It is a scalar and
is also called the scalar product of A and B.

The dot product satisfies several useful identities, which follow from the defi-
nition:

A ·B = B ·A (the dot product is commutative)
A ·A = ‖A‖2

(cA) ·B = c(A ·B) = A · (cB) (c is a scalar)
and 0 ·A = 0.

For instance, to establish that A ·A = ‖A‖2, we calculate A ·A:

A ·A = ‖A‖‖A‖ cos(θ) = ‖A‖2,

since the angle θ between A and A is 0, and cos(0) = 1.

EXAMPLE 1 Find the dot product A ·B if A = 3i + 3j and B = −5i.
SOLUTION Inspection of Figure 14.2.5 shows that θ, the angle between A

Figure 14.2.5:

and B, is 3π/4. Also,

‖A‖ =
√

32 + 32 =
√

18 and ‖B‖ =
√

52 + 02 = 5.
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Thus

A ·B = ‖A‖‖B‖ cos θ =
√

18 ·

(
−
√

2

2

)
= −15.

�

EXAMPLE 2 Find

1. i · j,

2. i · i,

3. 2k · (−3k).

SOLUTIONRecall that i and j are
perpendicular, be definition.

1. The angle between i and j is π/2. Thus

i · j = ‖i‖‖j‖ cos
(π

2

)
= 1 · 1 · 0 = 0.

This is a special case of the
fact that A ·A = ‖A‖2.

2. The angle between i and i is 0. Thus

i · i = ‖i‖‖i‖ cos(0) = 1 · 1 · 1 = 1.

3. The angle between 2k and −3k is π. Thus

2k · (−3k) = ‖2k‖‖ − 3k‖ cos(π) = 2 · 3 · (−1) = −6.

� Computations like those in Example 2 show that ai · bi = ab, aj · bj = ab,

and ak · bk = ab, while ai · bj = 0, ai · bk = 0, and aj · bk = 0.
In particular, i · i = j · j = k · k = 1, while i · j = i · k = j · k = 0.

The Geometry of the Dot Product

Let A and B be nonzero vectors and θ the angle between them. Their dot
product isObserve that, by definition,

the zero vector, 0, is
perpendicular to every

vector in the xy plane.

A ·B = ‖A‖‖B‖ cos(θ).

The quantities ‖A‖ and ‖B‖, being the lengths of vectors, are positive.
However, cos(θ) can be positive, zero, or negative. Note that cos(θ) = 0 only
when θ = π/2, that is when A and B are perpendicular. So the dot product
provides a way of telling whether A and B are perpendicular:A test for perpendicularity
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Let A and B be nonzero vectors. If A·B = 0, then A and B are perpendicular.
Conversely, if A and B are perpendicular, then A ·B = 0.

Figure 14.2.6:

As Figure 14.2.6 shows, A can be expressed as the sum of a vector parallel
to B and a vector perpendicular to B.

The vector parallel to B we call the projection of A on B, denoted
projB A. The vector perpendicular to B is then A− projB A.

The length of projB A is ‖A‖| cos θ|, which equals |A·B|‖B‖ . If θ is less than

π/2, projB A points in the same direction as B.
If π/2 < θ ≤ π, then projB A points in the direction opposite to that of B.

In either case, since B/‖B‖ is the unit vector in the direction of B, we have

Let A and B be vectors. projB A = A·B
‖B‖

B
‖B‖

• If A ·B is positive, then the angle between the vectors is less than π/2.
In this case projB A points in the same direction as B.

• If A · B is negative, then the angle between the vectors is greater than
π/2. In this case projB A points in the opposite direction as B.

Figure 14.2.7:

If A · B is negative, then the angle between A and B is obtuse (greater
than π/2). Figure 14.2.7 shows this situation. As Figure 14.2.7 illustrates,
projB A points in the direction opposite that of B.

Computing A ·B in Terms of Their Components

We defined A · B, using the geometric interpretation of A and B. But what
if A and B are given in terms of their components, A = 〈a1, a2, a3〉 and
B = 〈b1, b2, b3〉? How would we find A ·B in that case?

The answer turns out to be quite simple:

If A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉, then A ·B = a1b1 + a2b2 + a3b3.

The dot product is the sum of three numbers. Each number is a product of
corresponding components.

For vectors in the xy-plane, the result is a bit shorter:
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If A = 〈a1, a2〉 and B = 〈b1, b2〉, then A ·B = a1b1 + a2b2.

A proof of the Law of
Cosines is defined in

Exercise 45

(a) (b)

Figure 14.2.8:

For convenience we establish the second result. Our reasoning rests on
the Law of Cosines. It says that in a triangle where sides have lengths a, b,
and c, and angle θ opposite the side with length c, as in Figure 14.2.8(b),
c2 = a2 + b2 − 2ab cos(θ).

Then

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2‖A‖‖B‖ cos(θ),

which tells us that

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2A ·B, (14.2.1)

All that’s left is to complete the three squares and solve for A ·B.

Translating (14.2.1) into components, we have

(a1 − b1)2 + (a2 − b2)2 = a2
1 + a2

2 + b2
1 + b2

2 − 2A ·B

or

a2
1 − 2a1b1 + b2

1 + a2
2 − 2a2b2 + b2

2 = a2
1 + a2

2 + b2
1 + b2

2 − 2A ·B.

Thus

−2(a1b1 + a2b2) = −2A ·B,

from which it follows, as the night follows the day, that

A ·B = a1b1 + a2b2.
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The argument in the case of space vectors is practically the same, as doing
Exercise 38 will show.

EXAMPLE 3 Find cos(A,B) when A = 〈6, 3〉 and B = 〈−1, 1〉.
SOLUTION We know that A ·B = ‖A‖‖B‖ cos(A,B). Thus

6 · (−1) + 3 · (1) =
√

22 + 32
√

(−1) + 12 cos(A,B)

or − 3 =
√

26 cos(A,B),

from which we conclude that cos(A,B) = −3/
√

26.

�

Figure 14.2.9:

Clearly θ is an obtuse angle. A calculator would estimate θ, if we were
curious. Figure 14.2.9 shows that the answer is reasonable.

As Example 3 illustrates

cos(θ) = A·B
‖A‖‖B‖

EXAMPLE 4

1. Find the projection of A = 2i + j on B = −3i + 2j.

2. Express A as the sum of a vector parallel to B and a vector perpendicular
to B.

SOLUTION

1. In this case

projB A =
A ·B
‖B‖

B

‖B‖

=
(2i + j) · (−3i + 2j)

| − 3i + 2j|
−3i + 2j

| − 2i + 2j|

=
(−6 + 2)√

13

(−3i + 2j)√
13

=
−4

13
(−3i + 2j) =

12

13
i− 8

13
j.

Figure 14.2.10 shows the vector A, B, and projB A.

Figure 14.2.10:

In this case A ·B is negative, the angle between A and B is obtuse, and
projB A points in the direction opposite to the direction of B.
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2. The vector A− projB A is perpendicular to B and we have

A = (projB A) + (A− projB A)

=

(
12

13
i− 8

13
j

)
+

(
2i + j−

(
12

13
i− 8

13
j

))
=

(
12

13
i− 8

13
j

)
︸ ︷︷ ︸

parallel to B

+

(
14

13
i +

21

13
j

)
︸ ︷︷ ︸
perpendicular to B

.

�

The scalar A · (B/‖B‖) is the component of A in the direction of B,
denoted compB(A). It can be positive, negative, or zero. Its absolute value is
the length of projB(A).

EXAMPLE 5 Find projB(A) and compB(A) when A = i+3j and B = i−j.

Figure 14.2.11:

SOLUTION Since ‖B‖ =
√

12 + 12 =
√

2 and A ·B = 1− 3 = −2,

projB(A) =
A ·B
‖B‖

B

‖B‖
=
−2√

2

i− j√
2

= −i + j

and compB(A) = (A · B)/‖B‖ = −2/
√

2 = −
√

2. This agrees with Fig-
ure 14.2.11. �

Properties of the Dot Product

With the aid of the formula for the dot product in terms of components, it is
easy to establish the following properties:

A ·B = B ·A commutative

A · (B + C) = A ·B + A ·C distributive

cA ·B = c(A ·B) c a scalar.

3− 2− 2 cos(θ) = cos(A,B) =
A ·B
‖A‖‖B‖

. (14.2.2)
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Equation (??) tells us how to find the cosine of the angle between two vectors.
With the aid of a calculator, we then can find the angle itself. Note that if
cos(θ) > 0, then 0 < θ < π/2, and when cos(θ) < 0, then π/2 < θ ≤ π.

EXAMPLE 6 Show that the vectors 〈2,−3, 4〉 and 〈1, 2, 1〉 are perpendic-
ular.

SOLUTION We want to show that the angle θ between the vector in π/2.
To do this we show cos(θ) = 0. Now,

cos(θ) =
A ·B
|A||B|

=
(1 · 2) + 2(−3) + 1 · 4

|A||B|
=

2− 6 + 4

|A||B|
= 0.

Therefore the vectors are perpendicular. �

Example 6 illustrates this test for two vectors being perpendicular to each
other.

Two nonzero vectors are perpendicular if their dot product is 0.
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The Dot Product in Business and Statistics
Imagine that a fast food restaurant sells 30 hamburgers, 20 salads, 15 soft
drinks, and 13 orders of french fries. This is recorded by the four-dimensional
“vector” 〈30, 20, 15, 13〉. A hamburger sells for $1.99, a salad for $1.50, a soft
drink for $1.00, and an order of french fries for $1.10. The “price vector”
is 〈1.99, 1.50, 1.00, 1.10〉. The dot product of these two vectors, 30(1.99) +
20(1.50) + 15(1.00) + 13(1.10), would be the total amount paid for all items.
Descriptions of the economy use “production vectors,” “cost vectors,” “price
vectors,” and “profit vectors” with many more than the four componenets of
our restaurant example.
In statistics the coefficient of correlation is defined in terms of a dot prod-
uct. For instance, you may determine the height and weight of n persons.
Let the height of the ith person be hi and the weight be wi. Let h be
the average of the n heights and w be the average of the n weights. Let
H = 〈h1 − h, h2 − h, · · · , hn − h〉 and W = 〈w1 − w,w2 − w, · · · , wn − w〉.
Then coefficient of correlation between the heights and weights is defined to
be

H ·W
‖H‖‖W‖

.

In analogy with vectors in the plane or space,

HW =
n∑
i=1

(hi − h)(wi − w), ‖H‖ =

√√√√ n∑
i=1

(hi − h)2, ‖W‖ =

√√√√ n∑
i=1

(wi − w)2.

It turns out that the coefficient of correlation is simply the cosine
of the angle between the points H = 〈h1 − h, h2 − h, · · · , hn − h〉 and
W〈w1 − w,w2 − w, · · · , wn − w〉 in n-dimensional space.

Summary

We defined the dot (scalar) product of two vectors A and B geometrically
as ‖A‖‖B‖ cos(θ), where θ is the angle between them. We then obtained a
formula for A ·B in terms of their components, as 〈a1, a2〉·〈b1, b2〉 = a1b1 +a2b2

and a similar formula for the dot product of two space vectors.
The dot product enabled us to express a vector A as the sum of a vector

parallel to B (projB A) and a vector perpendicular to B (A− projB A).
When their dot product is 0, two non-zero vectors are perpendicular.
The zero-vector, 0, is considered to be perpendicular to every vector.
More generally, we can use the dot product to find the angle θ between two

vectors:
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cos(θ) = cos(A,B) =
A ·B
|A||B|

.
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EXERCISES for Section 14.2 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4 compute A ·B.

1.[R] A has length 3, B
has length 4, and the an-
gle between A and B is
π/4.

2.[R] A has length 2, B
has length 3, and the an-
gle between A and B is
3π/4.

3.[R] A has length 5, B
has length 1

2 , and the an-
gle between A and B is
π/2.

4.[R] A is the zero vector
0, and B has length 5.

In Exercises 5 to 8 compute A ·B using the formula in
terms of components.

5.[R] A = −2i + 3j,
B = 4i + 4j

6.[R] A = 0.3i + 0.5j,
B = 2i− 1.5j

7.[R] A = 2i − 3j − k,
B = 3i + 4j− k

8.[R] A = i + j + k,B =
2i + +3j− 5k

9.[R]

(a) Draw the vectors 7i + 12j and 9i− 5j.

(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by
examining their dot product.

10.[R]

(a) Draw the vectors i + 2j + 3k and i + j− k.

(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by
examining their dot product.

11.[R]

(a) Estimate the angle between A = 3i + 4j and
B = 5i + 12j by drawing them.

(b) Find the angle between A and B.

12.[R] Let P = (6, 1), Q = (3, 2), R = (1, 3), and
S = (4, 5).

(a) Draw the vectors
−−→
PQ and

−→
RS.

(b) Using the diagram in (a) estimate the angle be-
tween

−−→
PQ and

−→
RS.

(c) Using the dot product, find the cos(
−−→
PQ,

−→
RS),

that is, the cosine of the angle between
−−→
PQ and−→

RS.

(d) Using (c) and a calculator, find the angle in (b).

13.[R] Find the angle between 2i − 4j + 6k and
i + 2j + 3k.

14.[R] Find the angle betwen i+j+3k and 3i+6j−3k.

15.[R] Find the angle between
−−→
AB and

−−→
CD if

A = (1, 3), B = (7, 4), C = (2, 8), and D = (1,−5).

16.[R] Find the angle between
−−→
AB and

−−→
CD if

A = (1, 2,−5), B = (1, 0, 1), C = (0,−1, 3), and
D = (2, 1, 4).

17.[R] Find the length of the projection of −4i + 5j
on the line through (2,−1) and (6, 1).

(a) By making a drawing and estimating the length
by eye.

(b) By using the dot product.

18.[R]
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(a) Find a vector C parallel to i + 2j and a vector
D perpendicular to i + 2j such that −3i + 4j =
C + D.

(b) Draw the vectors in (a) to check that your an-
swer is reasonable.

19.[R]

(a) Find a vector C parallel to 2i− j and a vector D
perpendicular to 2i−j such that 3i+4j = C+D.

(b) Draw the vectors in (a) to check that your an-
swer is reasonable.

20.[M] Give an example of a vector in the xy plane
that is perpendicular to 3i− 2j.

21.[M] Give an example of a vector that is perpen-
dicular to 5i− 3j + 4k.

Exercises 22 to 26 refer to the cube in Figure 14.2.12.

Figure 14.2.12:

22.[M] Find cos(
−→
AC,
−−→
BD),

the cosine of the angle be-
tween

−→
AC and

−−→
BD.

23.[M] Find cos(
−→
AF,
−−→
BD),

the cosine of the angle be-
tween

−→
AF and

−−→
BD.

24.[M] Find cos(
−→
AC,
−−→
AM),

the cosine of the angle be-

tween
−→
AC and

−−→
AM .

25.[M] Find cos(
−−→
MD,

−−→
MF ),

the cosine of the angle be-
tween

−−→
MD and

−−→
MF .

26.[M] Find cos(
−−→
EF,

−−→
BD),

the cosine of the angle be-
tween

−−→
EF and

−−→
BD.

27.[R] How far is the point (1, 2, 3) from the line
through the points (1, 4, 2) and (2, 1,−4)?

28.[M] If A·B = A·C and A is not 0, must B = C?

29.[C] If ‖A‖ = 3 and ‖B‖ = 5,

(a) how large can ‖A +B‖ be?

(b) how small?

30.[C] By considering the dot product of the two unit
vectors u1 = cos θ1i + sin θ1j and u2 = cos θ2i + sin θ2j,
prove that

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2.

31.[C] Consider a tetrahedron (not necessarily reg-
ular). It has six edges. Show that the line segment
joining the midpoints of two opposite edges is per-
pendicular to the line segment joining another pair of
opposite edges if anly only if the remaining two edges
are of the same length.

32.[C] The output of a firm that manufactures x1

washing machines, x2 refrigerators, x3 dishwashers, x4

stoves, and x5 clothes dryers is recorded by the five-
dimensional production vector P = 〈x1, x2, x3, x4, x5〉.
Similarly, the cost vector C = 〈y1, y2, y3, y4, y5〉 records
the cost of producing each item; for instance, each re-
frigerator costs the firm y2 dollars.
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(a) What is the economic significance of P · C =
〈20, 0, 7, 9, 15〉 · 〈50, 70, 30, 20, 10〉?

(b) If the firm doubles the production of all items in
(a), what is its new production vector?

33.[C] Let P1 be the profit from selling a washing
machine and P2, P3, P4, and P5 be defined anal-
ogously for the firm of Exercise 32. (Some of the
P ’s may be negative.) What does it mean to the
firm to have 〈P1, P2, P3, P4, P5〉 “perpendicular” to
〈x1, x2, x3, x4, x5〉?

SHERMAN: This exercise is
also #46 in 14.1. Keep only

one. In Chapter Summary?
Your thoughts?

34.[C] If a1, a2, b1, b2 are four numbers, explain why

|a1b1 + a2b2| ≤
√
a2

1 + a2
2

√
b21 + b22.

35.[R] Prove that A ·B = B ·A

(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms
of components.

36.[R] Prove that A · (B + C) = A ·B + A ·C

(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms
of components.

37.[C] Don’t try to obtain the equation A ·(B+C) =

A · B + A · C geometrically. If you use the geomet-
ric definition of the dot product, what does that dis-
tributive law say? Picture B and C in a horizontal
plane and A not in that plane, as in Figure 14.2.13.

Figure 14.2.13:
It’s not so obvious is it?

38.[R] Prove that 〈a1, a2, a3〉 · 〈b1, b2, b3〉 = a1b1 +
a2b2 + a3b3 Hint: Read the proof in the case of planar
vectors on page 966.

39.[C] Let u1, u2, and u3 be unit vectors such that
each two are perpendicular. Let A be a vector.

(a) Draw a picture that shows that there are scalars
x, y, and z such that A = xu1 + yu2 + zu3.

(b) Express x as a dot product.

(c) Express x− z as a dot product.

40.[M]

(a) Let A be a vector in the xy plane and u1 and
u2 perpendicular unit vectors in that plane. If
A · u1 = 0 and A · u2 = 0, must A = 0?

(b) Let v1 and v2 be nonparallel unit vectors in the
xy plane. If A · v1 and A · v2 = 0, must A = 0?

41.[C] A firm sells x chairs at C dollars per chair
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and y desks at D dollars per week. It costs the firm
c dollars to make a chair and d dollars to make a desk.
What is the economic interpretation of

(a) Cx?

(b) (xi + yj) · (Ci +Dj)?

(c) (xi + yj) · (ci + dj)?

(d) (xi + yj) · (Ci +Dj) > (xi + yj) · (ci + dj)?

42.[C] A force F of 10 newtons has the direction of
the vector 2i + 3j + k. This force pushes an object
on a ramp in a straight line from the point (3, 1, 5) to
the point (4, 3, 7), where coordinates are measured in
meters. How much work does the force accomplish?

43.[C] Show that if the two diagonals of the parallel-
ogram are perpendicular, then the four sides have the
same length (forming a rhombus). Hint: Use the dot
product.

44.[C] Some molecules consist of 4 atoms arranged
as the vertices of a regular tetrahedron, for instance at
the points labeled A, B, C, and D in Figure 14.2.14.

Figure 14.2.14:

(a) Show that A, B, C, and D are vertices of a regu-
lar tetrahedron. Hint: Show that the four faces
are equilateral triangles.

(b) Chemists are interested in the angle θ = AEB.
Show that cos(θ) = −1/3.

(c) Find θ (approximately).

45.[M] The key to obtaining the expression for
the dot product in terms of components is from
trigonometry: the Law of Cosines. In view of this,
it makes sense to see why the Law of Cosines is
true. The proof is quite easy, since it consists just
of two applications of the Pythagorean Theorem. Fig-
ure 14.2.15 shows a triangle with sides a, b, c, with
angle θ opposite side c. (We are concerned, for
the moment, in the case when θ is less than π

2 .

Figure 14.2.15:

(a) Show that h2 = a2 − a2 cos2(θ).

(b) Show that h2 = c2 − (b− a cos(theta))2.

(c) By equating the two expressions for h2 found in
(a) and (b), obtain the Law of Cosines.

46.[C] In the Exercise 45 the altitude of length h
meets the side of length b. If θ > π/2, that altitude
has its base outside of side b. Prove the Law of Cosines
in this case.

47.[R] What is projB A if A = 2i + j − 3k and
B = i + j + k?
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48.[C] How far is the point (2, 3, 5) from the line
through the origin and (1,−1, 2)?

49.[R] Express the vector i + j + k as the sum of a
vector parallel to i− j + 2k and a vector perpendicular
to i− j + 2k.

50.[M]

Jane: I don’t like the way the author found how to
express A as the sum of a vector parallel to B
and a vector perpendicular to B.

Sam: It was O.K. for me. But I had to memorize a
formula.

Jane: My goal is to memorize nothing. I simply write
A = xB + C, when C is perpendicular to A.
Then I dot with B, getting

A ·B = xB ·B + C ·B.

Since C is perpendicular to B, C ·B = 0, and lo
and behold, I have

x =
A ·B
B ·B

.

So the vector parallel to B is A·B
B·BB.

Sam: Cool. So why did the author go through all that
stuff?

Jane: Maybe they wanted to reinforce the definition
of the dot product and the rule of the angle.

Sam: O.K. But how do I get the vector C perpendic-
ular to B?

Jane: Simple...

Complete Jane’s reply.
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14.3 The Cross Product of Two Vectors

The dot product of two vectors is a scalar. The product of two vectors we define
in this section is a vector. This vector has the property that it is perpendicular
to each of the given vector.

Definition of the Cross Product

Let A = a1i + a2j + a3k and B = b1i + b2j + b3k be two non-zero vectors that
are not parallel. We will construct a vector C that is perpendicular to both
A and B. Of course C is not unique since any vector parallel to C is also
perpendicular to A and B.

Let C = xi + yj + zk. We want C ·A and C ·B to be 0. This gives us the
equations

a1x+ a2y + a3z = 0 (14.3.1)

b1x+ b2y + b3z = 0 (14.3.2)

We eliminate x by subtracting b1 times (14.3.1) from a1 times (14.3.2), as
follows.

a1 times (14.3.2) a1b1x+ a1b2y + a1b3z = 0 (14.3.3)

b1 times (14.3.1) b1a1x+ b1a2y + b1a3z = 0 (14.3.4)

Subtracting the bottom equation (14.3.4) from the top equation (14.3.3) gives
us

(a1b2 − a2b1)y + (a1b3 − a3b1)z = 0 (14.3.5)

A simple non-zero solution of (14.3.5) is This is like solving
2y + 3z = 0 by letting
y = −3 and z = 2.y = −(a1b3 − a3b1), z = a1b2 − a2b1

To find the corresponding x, substitute the value found for y and z into
(14.3.1). As Exercise 39 shows, the straightforward algebra yields

x = a2b3 − a3b2.

So the vector

(a2b2 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k (14.3.6)

is perpendicular to A and B. It is denoted A × B and is called the vector
product of A and B or the cross product of A and B. This vector is defined
even if A and B are parallel or if one of them is 0.
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Determinants and the Cross Product

The expression (14.3.6) for the cross product is not easy to memorize. Fortu-
nately, determinants provide a convenient memory aid.

Four numbers arranged in a square from a matrix of order 2, for instance(
a1 a2

b1 b2

)
The determinant of this matrix is the number a1b2 − a2b1, denoted∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ or det

(
cca1 a2

b1 b2

)
.

Each term in the cross product, (14.3.6), is itself the determinant of a matrix
of order 2, namely∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ , ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ , and

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
Nine numbers arranged in a square for a matrix of order 3, for instance c1 c2 c3

a1 a2 a3

b1 b2 b3


Its determinant is defined with the aid of determinants of order 2:

c1

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− c2

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ c3

∣∣∣∣ a1 a2

b1 b2.

∣∣∣∣
The coefficient of each ci is plus or minus the determinant of the matrix of
order 2 that remains when the row and column in which ci appears are deleted,
as shown in Figure 14.3.1 for the coefficient of ci.

Figure 14.3.1:

Therefore we can write (14.3.6) as a determinant of a matrix, and we have

A×B =

 i j k
a1 a2 a3

b1 b2 b3

 (14.3.7)

DEFINITION (Cross product (vector product).) Let

A = a1i + a2k + a3k and B = b1i + b2j + b3k.

The vector∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = i

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− j

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ k

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
= (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k.
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is called the cross product (or vector product) of A and B. It
is denoted A×B.

The determinant for A×B is expanded along its first row:

Delete the two lines
through i. The

determinant of the
remaining square is
the coefficient of i in

A×B.

Delete the two lines
through j. The

determinant of the
remaining square is

the coefficient of j in
A×B.

Delete the two lines
through k. The

determinant of the
remaining square is

the coefficient of k in
A×B.

EXAMPLE 1 Compute A×B if A = 2i− j + 3k and B = 3i + 4j + k.
SOLUTION By definition,

A×B =

∣∣∣∣∣∣
i j k
2 −1 3
3 4 1

∣∣∣∣∣∣ = i

∣∣∣∣ −1 3
4 1

∣∣∣∣− j

∣∣∣∣ 2 3
3 1

∣∣∣∣+ k

∣∣∣∣ 2 −1
3 4

∣∣∣∣
= −13i + 7j + 11k

�
The cross cross product has these properties: Recall: The zero vector is,

by definition, perpendicular
to every vector.

1. A×B is perpendicular to both A and B.

2. A×B = −(B×A).

3. A×B = 0 if A and B are parallel or at least one of them is 0.

4. A× (B + C) = A×B + A×C.
See Exercises 27 and 28.

The first property holds because that is how we constructed the cross prod-
uct. The second and third are established by straightforward computations,
using (14.3.7). Exercises 16 and 17 take care of property 4.

Figure 14.3.2:
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The Direction of A×B?

We know that A×B is perpendicular to A and B, but there are two possible
directions, as Figure 14.3.2 shows,

To find out, take a specific case and we compute i× j:

i× j =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣ = 0i− 0j + k = k.

This suggests the general situation. The direction of A × B is given by theLeft-handed people must
use their right hand here. right hand rule:

Curl the fingers of the right hand to go from A and B. The thumb points
in the direction of A×B.

Figure 14.3.3:

EXAMPLE 2 Check that the right hand rule is correct in the case for j×i.
SOLUTION

j× i =

∣∣∣∣∣∣
i j k
0 1 0
1 0 0

∣∣∣∣∣∣ = 0i− 0j− k = −k.

In this case, j× i, points downward, the opposite of i× j.

Figure 14.3.4:

The right hand rule is illustrated in Figure 14.3.4.
The thumb indeed points downward. �

How Long is A×B

To find a geometric meaning for ‖A ×B‖ we will find |A ×B|2 with the aid
of (4). That is, we will compute (A×B)× (A×B) and interpret the results.
By (4)Check these steps by

multiplying everything out.
‖A×B‖2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a2
2b

2
3 + a2

3b
2
3 + a2

3b
2
1 + a2

1b
2
2 + a2

1b
2
2 + a2

2b
2
1 − 2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

= (a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3)− (a1b1 + a2b2 + a3b3)2

= ‖A‖2‖B‖2 − (A ·B)2

= ‖A‖2‖B‖2 − (‖A‖‖B‖ cos(θ))2 θ is the angle between A and B
= ‖A‖2‖B‖2(1− cos2(θ))
= ‖A‖2‖B‖2 sin2(θ).

Then

‖A×B‖ = ‖A‖‖B‖ sin(θ) sin(θ) is not negative since 0 ≤ θ ≤
π.

(14.3.8)
We then have
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Let A and B be nonzero vectors and θ the angle between them. Then ‖A ×
B‖ = ‖A‖‖B‖ sin(θ).

Figure 14.3.5: This figure
shows the area of a paral-
lelogram is its base times
its height.

With the aid of this fact we now give a simple geometric meaning for the length
of A ×B. A glance at the parallelogram spanned by A and B shows that it
area is

‖A‖︸︷︷︸
base

‖B‖ sin(θ)︸ ︷︷ ︸
height

= area of parallelogram

So now we have a simple geometric description of the length of A×B.

Figure 14.3.6:

The length of A×B is the area of the parallelogram spanned by A and B.
In some texts the cross
product is defined
geometrically: It is the
vector where length is the
area of the parallelogram
mentioned above and where
direction is given by the
right and rule. Then the
author must obtain its
formula in terms of
components.

EXAMPLE 3 Find the area of the parallelogram spanned by A = a1i+a2j
and B = b1i + b2j.
SOLUTION First write A as a1i + a2j + 0k and bi + b2j + 0k. Then the area
of this parallelogram is the length of A×B. So we compute A×B.

A×B =

∣∣∣∣∣∣
i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ = (a1b2 − a2b1)k.

The area is therefore |a1b2 − a2b1|. In other words, it is the absolute value of
the determinant ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ .
� The next example is typical of the geometric applications of the cross

Figure 14.3.7:

product.

EXAMPLE 4 Find a vector perpendicular to the plane determined by the
three points P = (1, 3, 2), Q = (4,−1, 1), and R = (3, 0, 2).

SOLUTION The vectors
−→
PQ and

−→
PR lie in a plane (see Figure 14.3.7). The

vector N =
−→
PQ×

−→
PR being perpendicular to both

−→
PQ and

−→
PR, is perpendic-

ular to the plane. Now,
−→
PQ = 3i− 4j− k and

−→
PR = 2i− 3j + 0k.

Thus

N =

∣∣∣∣∣∣
i j k
3 −4 −1
2 −3 0

∣∣∣∣∣∣ = −3i− 2j− k.

�
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The Scalar Triple Product

The scalar A·(B×C) is called the scalar triple product. It has an important
geometric meaning. (The vector A× (B×C) is also called the vector triple
product.)

Figure 14.3.8:

The vectors A, B, and C span a parallelepiped, as shown in Figure 14.3.8.
The angle between B × C and A is θ (which could be greater than π/2).
The area of the base of the parallelogram is ‖B × C‖. The height of the
parallelepiped is ‖A|| cos(θ)|. Thus its volume is the absolute value of

|A| cos θ︸ ︷︷ ︸
height

|B×C|︸ ︷︷ ︸
area of base

.

This is the definition of the dot of product of A and (B×C).

A · (B×C) is plus or minus the volume of the parallelepiped spanned by A,
B, and C.

The scalar triple product can also be expressed as a determinant. To see
why, note that the dot product of A and B×C is

A · (B×C) = a1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣+ a2(−
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣) + a3

∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ . (14.3.9)

Comparison of Dot Product and Vector Product
A ·B A×B

B ·B = B ·A A×B = −B×A
|A ·B| = ‖A‖‖B‖| cos(θ)| ‖A×B‖ = ‖A‖‖B‖ sin(θ)

A ·B = 0 is a test for perpendicularity A×B = 0 is a test for parallel vectors
formula in components involves aibi (same indices) formula in components involves aibj (unequal indices)

What do you get when you
cross a rock climber with a
mosquito? Answer: You

can’t cross a “scaler” with a
vector. [Move to Chapter

Summary?]

Figure 14.3.9:

Equation (14.3.9) can now be recognized the determinant of a matrix of
order 3:

A · (B×C) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
So this determinant is plus or minus the volume of the parallelepiped

spanned by A, B, and C.
This should not be a surprise. As Example 3 showed, the determinant∣∣∣∣ a1 a2

v1 b2

∣∣∣∣ is plus or minus the area of the parallelogram spanned by the vectors

〈a1, a2〉 and 〈b1, b2〉.
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Summary

We constructed a vector C perpendicular to vectors A and B by demanding
that C ·A = 0 and C ·B = 0. A convenient formula for such a vector∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
It is denoted A × B and called the vector product or cross product of A

and B. It also may be described as the vector whose length is the area of
the parallelogram spanned by A and B and whose direction is given by the
right-hand rule (the finger curling from A and B). These are some of its
properties:

1. A×B = −(B×A) (anticommunitive)

2. A× (B×C) is not usually equal to (A×B)×C) (not associative)

3. A× (B×C) = (C ·A)B− (B ·A)C (See Exercise 17.) Item 5 appeared in finding
the length of A×B. It will
be used in the next
chapters.

4. (A×B) · (A×B) = (A ·A)(B ·B)− (A ·B)(A ·B)

5. A · (B×C) = ± volume of parallelepiped spanned by A, B, and C.
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EXERCISES for Section 14.3 Key: R–routine,
M–moderate, C–challenging
In Exercises 1 to 4 compute and sketch A ·B.SHERMAN: Move some

exercises about lines,
planes, etc. to Section 14.4
or to Chapter Summary for

Chapter 14.

1.[R] A = k, B = j
2.[R] A = i+ j, B = i− j

3.[R] A = i + j + k,

B = i + j

4.[R] A = k, B = i + j

In Exercises 5 and 6, find A × B and check that it is
perpendicular to both A and B.

5.[R] A = 2i − 3j + k,
B = i + j + 2k
6.[R] A = i − j, B =

j + 4k

In Exercises 7 to 10 use the cross product to find the
area of each region.

7.[R] The parallelogram
three of whose vertices
are (0, 0, 0), (1, 5, 4), and
(2,−1, 3).
8.[R] The parallelogram
three of whose vertices
are (1, 2,−1), (2, 1, 4), and
(3, 5, 2).

9.[R] The triangle two of
whose sides are i + j and
3i− j.

10.[R] The triangle
two of whose sides are
i+2j+3k and 2i−j+2k.

In Exercises 11 to 14 find the volumes of the paral-
lelepipeds spanned by the given vectors.

11.[R] 〈2, 1, 3〉,
〈3,−1, 2〉, 〈4, 0, 3〉
12.[R] 3i + 4j + 3k,
2i + 3j + 4k, i − j − k.

13.[R]
−−→
PQ,

−→
PR,

−→
PS,

where P = (1, 1, 1), Q =

(2, 1,−2), R = (3, 5, 2),
and S = (1,−1, 2).

14.[R]
−−→
PQ,

−→
PR,

−→
PS,

where P = (0, 0, 0), Q =
(3, 3, 2), R = (1, 4,−1),
and S = (1, 2, 3).

15.[R] Evaluate A · (A×B).

16.[R] Prove that B×A = −(A×B) in two ways:

(a) using the algebraic definition of the cross prod-
uct;

(b) using the geometric description of the cross prod-
uct.

17.[R] Show that if B = cA, then A×B = 0:

(a) using the algebraic definition of the cross prod-
uct;

(b) using the geometric description of the cross prod-
uct.

18.[M] Show that the points (0, 0, 0), (x1, y1, z1),
(x2, y2, z2) and (x3, y3, z3) lie on a plane if and only
if ∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ = 0.

19.[M]

(a) If B is parallel to C, is A×B parallel to A×C?

(b) If B is perpendicular to C, is A×B perpendic-
ular to A×C?

20.[M] Let A be a nonzero vector. If A×B = 0 and
A ·B = 0, must B = 0?

21.[R] Show that A×(A×B) = (A·B)A−(A·A)B.

22.[R] Show that (A × B) × (C ×D) = ((A × B) ·
D)C − ((A × B) · C)D. Hint: Think of A × B as a
single vector, E.

23.[M]

(a) Give an example of a vector perpendicular to the
vector 3i− j + k.

(b) Give an example of a unit vector perpendicular
to the vector 3i− j + k.
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24.[M] Let u be a unit vector and B be a vector.
What happens as you keep “crossing by u,” that is, as
you form the sequence B, u ×B, u × (u ×B) and so
on? (See Exercise 21)

25.[C] (Crystallography) A crystal is described by
three vectors v1, v2, and v3. They span a “funda-
mental” parallelepiped, whose copies fill out the crys-
tal lattice. (See Figure 14.3.10.) The atoms are
at the corners. In order to study the diffraction of
x-rays and light through a crystal, crystallographers
work with the “reciprocal lattice,” as follows. Its
fundamental parallelepiped is spanned by three vec-
tors, k1, k2, and k3. The vector k1 is perpendicu-
lar to the parallelogram spanned by v2 and v3 and
has a length equal to the reciprocal of the distance
between that parallelogram and the opposite parallel-
ogram of the fundamental parallelepiped. The vec-
tors k2 and k3 are defined similarly in terms of the
other four faces of the fundamental parallelepiped.

Figure 14.3.10:

(a) Show that k1, k2, and k3 may be chosen to be

k1 =
v2 × v3

v1 · (v2 × v3)
, k2 =

v3 × v1

v1 · (v2 × v3)
, k3 =

v1 × v2

v1 · (v2 × v3)

(b) Show that the volume of the fundamental par-
allelopiped determined by k1, k2, and k3 is the
reciprocal of the volume of the one determined
by v1, v2, and v3.

(c) Is the reciprocal of the reciprocal lattice the orig-
inal lattice? For instance, is

v1 =
k2 × k3

k1 · (k2 × k3)
?

26.[M] Let B and C be nonzero, nonparallel vectors
and A a vector that is perpendicular neither to B nor
C.

(a) Why are their scalars x and y such that

A× (B×C) = xB + yC?

(b) Why is 0 = x(A ·B) + y(A ·C)?

(c) Using (b), show that there is a scalar z such that

A× (B×C) = z[(A ·C)B− (A ·B)C].

(d) It would be nice if there were a simple geometric
way to show that z is a constant and equals 1.
Of course we could show that z = 1 by writing
A, B, and C in components and grinding out a
tedious calculation. But that would hardly be
instructive. Can you figure out why z = 1 in a
simpler way?

(This identity, known as Jacobi’s Identity, will come
in handy in Chapter 18 when dealing with electric cur-
rents and magnetic fields.)

OMIT? In this section A × B was defined in terms
of components, and then its geometric description was
obtained. This is the opposite of the way we dealt with
the dot product. Exercises 27 to 29 outline a different
approach to the cross product. We define A × B as
follows. If A or B is 0 or if A is parallel to B, we
define A×B to be 0. Otherwise, A×B is the vector
whose direction is given by the right-hand rule.
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27.[R] Let A be a
nonzero vector and B be
a vector. Let B1 be the
projection of B on a plane
perpendicular to A. Let
B2 be obtained by rotat-
ing B1 90◦ in the direction
given by the right-hand
rule with thumb pointing
in the same direction as A

(a) Show that A×B =
A × B1. (Draw a

clear diagram.)

(b) Show that A×B =
‖A‖B2.

28.[R] Using Exer-
cise 27(b), show that for A
not 0, A× (B+C) = A×
B + A × C. Hint: Draw
a large, clear picture.

29.[R]

(a) From the distributive law A×(B+C) = A×B+
A×C, and the fact that D×E = −E×D, deduce
the distributive law (B+C)×A = B×A+C×A.

(b) From the distributive law A × (B + C) = A ×
B + A × C, deduce that A × (B + C + D) =
A×B + A×C + A×D. Hint: Think of B + C
as a single vector E.

30.[R] Check that −13i + 7j + 11k in Example 1 is
perpendicular to A and to B.

31.[R] Show, using (14.3.7), that 0×B = 0.

32.[R] Show, using (14.3.7), that B×A = −A×B.

33.[M] Using (14.3.7), show that if B is parallel to
A, then A×B = 0. Suggestion: If B is parallel to A,
there is a scalar t such that B = tA.

34.[M] In finding |A×B|2 we stated that

a2
2b

2
3+a2

3b
2
2+a2

3b
2
1+a2

1b
2
3+a2

1b
2
2+a2

2b
2
1−2(a2a3b2b3+a1a3b1b3+a1a2b1b2)

equals

a2
1 + a2

2 + a2
3b

2
1 + b22 + b23 − (a1b1 + a2b2 + a3b3).

Take nothing as faith. Check that the claim is correct.

35.[C] We showed that the direction of i× j is given
by the right hand rule. Then we said that the right
hand rule hold for any non-zero vector A and B. Why
is such a leap justified? Hint: Imagine moving a grad-
ually changing pair of vectors through space, starting
with i and j and ending with the pair A and B.

36.[C]

(a) Thinking in terms of parallelograms, explain why
A · (B×C) is + or − B · (C×A).

(b) Using properties of 3 by 3 determents, decide
which it’s + or −.

37.[C] In some expositions of the cross product, a×b
is simply defined as the determinant of a matrix of or-
der 3. If we start with this definition, use a property
of determents to show that a × b is perpendicular to
both a and b. (This approach bypasses the need to
consider simultaneous equations. On the other hand,
it may appear unmotivated.)

38.[M]

(a) How could you use cross products to produce a
vector perpendicular to 2i + 3j + 4k? Give an
example.

(b) How could you use cross product to produce two
vectors perpendicular to 2i+3j+4k and to each
other? Give an example.

39.[R] Use the exhibited values for y and z when solv-
ing equations (14.3.3) and (14.3.4). Substitute these
values into (14.3.1) and solve for x.

40.[R] By carrying out the necessary calculations,
show that A× (B+C) = A×B+A×C. If you wish,
you may use properties of determinants.
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41.[M] Let A and B be non zero, nonparallel vectors.
Show that A× (A×B) is never equal to (A×A×B).
This shows that the cross product is not associative.

You cannot omit the parentheses in A× (B×C).
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14.4 Lines, Planes and Components

This section uses the dot product and cross product to deal with lines, planes
and projections (“shadows”) of a vector or a line or on a plane.

Equation of a Plane

Figure 14.4.1:

We find an equation of the plane through the point P0 = (x0, y0, z0) and
perpendicular to the vector Ai +Bj + Ck, shown in Figure 14.4.1.

Let P = (x, y, z) be any point on the plane. The vector
−−→
P0P is perpendic-

ular to Ai +Bj +Ck. (Imagine sliding it so that P0 coincides with the tail of
Ai +Bj + Ck.) Thus

(Ai +Bj + Ck) · ((x− x0)i + (y − y0)j + (z − z0)k) = 0.

So
A(x− x0) +B(y − y0) + C(z − z0) = 0. (14.4.1)

In (14.4.1) we have an equation for the plane. The vector Ai + Bj + Ck is
called a normal to the plane.

EXAMPLE 1 Find an equation of the plane through (2,−3, 4) and per-
pendicular to i + 2j + 3k.
SOLUTION An equation for the plane is

1(x− 2) + 2(x− (−3)) + 3(z − 4) = 0

which simplifies to
x+ 2y + 3z − 8 = 0

�
The graph of an equation of the form Ax + By + Cz + D = 0, where not

all of A, B, and C are 0 is a plane perpendicular to the vector Ai +Bj +Ck.
To show this, first pick any point (x0, y0, z0) that satisfies the equation: Ax0 +
Bv0 + C0 +D = 0. Subtracting this from the original equation gives

A(x− x0) +B(y − y0) + C(z − z0) = 0,

which is an equation of the plane through (x0, y0, z0) perpendicular to Ai +
Bj + Ck.

Similarly, we have

An equation for the line through (x0, y0) and perpendicular to the vector Ai +
Bj is A(x− x0) +B(y − y0) = 0.
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Distance From a Point to the Line Ax + By + C = 0 or
Plane Ax+By + Cz +D = 0

(a) (b)

Figure 14.4.2:

Let us find the distance from P = (c, d) to the line whose equation is
Ax+By + C = 0, shown in Figure 14.4.2(a).

Pick any point P0 = (x0, y0) on the line and place Ai + Bj with its tail at
P0, as in Figure 14.4.2(b).

Let θ be the angle between
−−→
P0P and Ai + Bj. Then the distance from P

to the line is cos(θ) could be negative

‖
−−→
P0P‖| cos(θ)| = ‖

−−→
P0P‖

(Ai +Bj) · ((c− x0)i + (d− y0)j)

‖P0P‖‖Ai +Bj‖

=
A(c− x0) +B(d− y0)√

A2 +B2

=
Ac+Bd− (Ax0 +By0)√

A2 +B2
.

Since Ax0 +By0 + C = 0, we have

Distance from (c, d) to the line Ax+By + C = 0 is

|Ac+Bd+ C|√
A2 +B2

In short, to find that distance simply substitute the coordinates of the point
(c, d) into the expression Ax + By + C and divide by

√
A2 +B2 and take its

absolute value.

EXAMPLE 2 How far is the point (1, 3) from the line 2x− 4y = 5?
SOLUTION First, write the equation in the form 2x− 4y− 5 = 0. Then the
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distance is
|2(1)− 4(3)− 5|√

22 + 42
=
| − 15|√

20
=

3
√

5

2
.

� A similar result holds for the distance from a point P = (x0, y0, z0) to a

plane:

The distance from (x0, y0, z0) to the plane Ax+By + C = 0 is

|Ax0 +By0 + C0 +D|√
A2 +B2 + C2

Using Vectors to Parameterize a Line

Let L be the line through the point P0 = (x0, y0, z0) parallel to the vector B,
shown in Figure 14.4.3(a).

(a) (b)

Figure 14.4.3:

Let P be any point on L. Then the vector
−−→
P0P which is parallel to B, is

of the form tB for some scalar t. See Figure 14.4.3(b).

The
−→
OP =

−−→
OP0 +

−−→
P0P =

−−→
OP0 + tB. As t varies the vector from 0 to P

varies, thus parameterizing the line L.

EXAMPLE 3 The line L passes through the point (1, 1, 2) and is parallel
to the vector 3i + 4j + 5k. Use this information to parameterize the line.

SOLUTION In this case
−−→
OP0 = i + j + 2k and B = 3i + 4j + 5k. Thus

−→
OP = i + j + 2k + f(3i + 4j + 5k)

= (3t+ 1)i + (4t+ 1)j + (5t+ 2)k.
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If P is the point (x, y, z), then
−→
OP is the vector xi + yj + zk. One vector equation does

the work of three scalar
equation.

Thus 
x = 3t+ 1
y = 4t+ 1
z = 5t+ 2.

�

Describing the Direction of Vectors and Lines

The direction of a vector in the plane is described by a single angle, the angle
it makes with the positive x-axis. The direction of a vector in space involves
three angles, two of which almost determine the third.

DEFINITION (Direction of a vector.) Let A be a nonzero vector

Figure 14.4.4:

in space. The angle between

A and i is denoted α,

A and j is denoted β,

A and k is denoted γ.

The angles α, β and γ are called the direction angles of A. (See
Figure 14.4.4.)

DEFINITION (Direction cosines of a vector) The direction
cosines of a vector are the cosines of its direction angles, cos(α),
cos(β), and cos(γ).

EXAMPLE 4 The angle between a vector A and k is π/6. Find γ and
cos(γ) for

1. A,

2. −A.

SOLUTION

Figure 14.4.5:

1. By definition, the direction angle γ for A is π/6. It follows that cos(γ) =
cos(π/6) =

√
3/2.

2. To find γ and cos(γ) for −A, we draw Figure 14.4.5. For −A, γ = 5π/6
and cos(γ) = cos(5π/6) = −

√
3/2.
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�

As Example 4 illustrates, if the direction angles of A are α, β, γ, then the
direction angles of −A are π − α, π − β, and π − γ. The direction cosines of
−A are the negatives of the direction cosines of A.

The three direction angles are not independent of each other, as is shown
by the next theorem. Two of them determine the third up to sign.

Theorem 14.4.1. If α, β, γ are the direction angles of the vector A, then
cos2(α) + cos2(β) + cos2(γ) = 1.

Figure 14.4.6:

Proof

It is no loss of generality to assume that A is a unit vector. Its component on
the y-axis, for instance, is cos(β), as the right triangle OPQ in Figure 14.4.6
shows. A lies along the hypotenuse.

Since A is a unit vector, |A|2 = 1, and we have cos2(α)+cos2(β)+cos2(γ) =
12 = 1. •

EXAMPLE 5 The vector A makes an angle of 60◦ with the x and y axes.
What angle does it make with the z-axis?
SOLUTION Here α = 60◦ and β = 60◦; hence

cos(α) =
1

2
and cos(β) =

1

2
.

Since

cos2(α) + cos2(β) + cos2(γ) = 1,

it follows that

(
1

2
)2 + (

1

2
)2 + cos2(γ) = 1,

cos2(γ) =
1

2
.

Thus

cos(γ) =

√
2

2
or cos(γ) = −

√
2

2
.

Hence

γ = 45◦ or γ = 135◦.

Figures 14.4.7(a) and (b) show the two possibilities for A. �
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(a) (b)

Figure 14.4.7:

(a) (b) (c)

Figure 14.4.8:
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Dot Products and Flow

Let the vector v whose magnitude is v describe the velocity of a river, as
in Figure 14.4.8(a). Place an imaginary horizontal stick of length L in theSHERMAN: what word did

you intend to go between
imaginary and stick? My

best guess is horizontal, but
this makes no sense to me.

water. The amount of water crossing the stick depends on the position of the
stick. If the stick is parallel to v, no water crosses the stick. If the stick is
perpendicular to v water crosses it. The question then arises, “How does the
angle at which we place the stick affect the amount of water that crosses in a
given time?

To answer this question, we begin by introducing a unit vector n perpen-
dicular to the stick, and record its position, as in Figure 14.4.8(b). Let the
angle between n and v be θ.

The amount of water that crosses the stick during time ∆t is proportional to
the area of the parallelogram in Figure 14.4.8(c). The base of the parallelogram
has length v∆t (speed times time). The height is L cos(θ). The area of the
parallelogram is therefore

vL cos(θ)

.

But vL cos(θ) is equal to v · n. So v · n measures the tendency of water to
cross the stick.

As a check, when the stick is parallel to v, θ = π/2 and cos(π/2) = 0.
Then v ·n = 0 and no water crosses the stick. When the stick is perpendicular
to v, θ = 0, and v · n = v. For any angle θ < π/2, v · n = v cos(θ) which is
less than v. For any unit vector n and vector A the scalar A · n is called the

(a) (b)

Figure 14.4.9:

scalar component of A along n. It equals ‖vA‖ cos(θ), where θ is the angle
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between A and n. It can be positive or negative, as shown in Figure 14.4.9.

EXAMPLE 6 When a stick is perpendicular to v, water crosses it at the
rate of 100 cubic feet per second. When the stick is placed at an angle of π/6
to v at what rate does water cross it?
SOLUTION Figure 14.4.10 shows the position of the stick PQ.

Figure 14.4.10:

The angle between the normal to the stick, n, and v is π/2 − π/6 = π/3.
Let x be the rate at which the water crosses the stick. Since the rate of flow
across the stick is proportional to v cos(θ), where θ is the angle between the
normal n and v, we have

100

v cos(0)
=

x

v cos(π/3)
.

this tells us that
100

v
=

x

(v)(1/2)
,

have x = 50. The flow is half the maximum possible. �

Summary

We used the dot product to obtain an equation of a plane (or line in the xy
plane) and to find the distance from a point to a line or plane. We also showed
how to parameterize a line with the aid of a vector parallel to the line.

Direction angles and cosines of a vector were defined. Finally, we showed
how the dot product describes the rate of flow across a line segment, a concept
that will be needed in Chapters 17 and 18, where we deal with flows across
curves and surfaces.
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EXERCISES for Section 14.4 Key: R–routine,
M–moderate, C–challenging

SHERMAN: These exercises
need to be reordered. Some
could move to the Chapter

Summary.

In each of Exercises 1 to 4 find an equation of the line
through the given point and perpendicular to the given
vector.

1.[R] (2, 3), 4i + 5j
2.[R] (1, 0), 2i− j
3.[R] (4, 5), 1i + 3j

4.[R] (2,−1), i + 3j

In each of Exercises 5 to 8 find a vector in the xy plane
that is perpendicular to the given line.

5.[R] 2x− 3y + 8 = 0
6.[R] πx−

√
2y = 7

7.[R] y = 3x+ 7

8.[R] 2(x−1)+5(y+2) =
0

9.[M] Find an equation of the plane through (1, 2, 3)
that contains the line given parametrically as

−−→
OP =

2i− j + 3k + t(3i + 2j + k).

10.[M] Is the point (21,−3, 28) on the line given
parametrically as

−−→
OP = i + 2j + 3k + t(4i− j + 5k)?

11.[M] A line segment has projections of lengths a,
b, and c on the coordinates axes. What, if anything,
can be said about its length, L?

12.[C] A line segment has projections of lengths d, e,
and f on the coordinates planes. What, if anything,
can be said about its length, L?

13.[C] Explain why the projection of a circle is an el-
lipse. Hint: Set up coordinate systems in the plane of
the circle and in the plane of its shadow (which might
as well be taken to be the xy plane). Choose the axes
for these coordinate systems to be as convenient as
possible. Then express the equation of the shadow in
terms of x and y by utilizing the equation of the circle.

14.[R] Find a vector perpendicular to the plane
through (2, 1, 3), (4, 5, 1) and (−2, 2, 3).

15.[R] How far is the point (1, 2, 2) from the plane
through (0, 0, 0), (3, 5,−2), and (2,−1, 3)?
16.[R] How far is the point (1, 2, 3) from the line
through (−2,−1, 3), and (4, 1, 2)?
17.[R] Find the parametric equations of the line
through (1, 1, 2) and perpendicular to the plane
3x− y + z = 6.
18.[R] How far apart are the lines whose vec-
tor equations are 2i + 4j + k + t(i + j + k) and
i + 3j + 2k + s(2i− j− k)?
19.[R] Find the point on the line through (1, 2, 1) and
(2,−1, 3) that is closest to the line through (3, 0, 3) and
parallel to the vector i + 2j + 5k.

20.[R]

(a) Describe how you would find an equation for
the plane through points P1 = (x1, y1, z1), P2 =
(x2, y2, z2), and P3 = (x3, y3, z3)?

(b) Find an equation for the plane through (2, 2, 1),
(0, 1, 5) and (2,−1, 0).

21.[R]

(a) Describe how you would decide whether the line
through P1 = (x1, y1, z1) and P2 = (x2, y2, z2), is
parallel to the line through P3 = (x3, y3, z3) and
P4 = (x4, y4, z4)?

(b) Is the line through (1, 2,−3) and (5, 9, 4) parallel
to the line through (−1,−1, 2) and (1, 3, 5)?

22.[R]

(a) Describe how you would decide whether the line
through P1 = (x1, y1, z1) and P2 = (x2, y2, z2) is
parallel to the plane Ax+By + Cz +D = 0?

(b) Is the line through (1,−2, 3) and (5, 3, 0) parallel
to the plane 2x− y + z + 3 = 0?

23.[R]
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(a) Describe how you would decide whether the
line through P1 and P2 is parallel to the plane
through Q1, Q2, and Q3?

(b) Is the line through (0, 0, 0) and (1, 1,−1) par-
allel to the plane through (1, 0, 1), (2, 1, 0), and
(1, 3, 4)?

24.[R]

(a) How would you decide whether the plane
through P1, P2 and P3 is parallel to the plane
through Q1, Q2, and Q3?

(b) Is the plane through (1, 2, 3), (4, 1,−1), and
(2, 0, 1) parallel to the plane through (2, 3, 4),
(5, 2, 0), and (3, 1, 2)?

25.[M]

(a) How would you find the angle between the planes
A1x+B1y+C1z+D1 = 0 and A2x+B2y+C2z+
D2 = 0?

(b) Find the angle between x − y − z − 1 = 0 and
x+ y + z + 2 = 0.

26.[C] Assume that the planes A1x+B1y+C1z+D1 =
0 and A2x+B2y + C2z +D2 = 0 met in a line L.

(a) How would you find a vector parallel to L?

(b) How would you find a point on L?

(c) Find parametric equations for the line that is the
intersection of the planes 2x−y+3z+4 = 0 and
3x+ 2y + 5z + 2 = 0.

27.[C]

(a) How would you decide whether the four points
P1 = (x1, y1, z1), P2 = (x2, y2, z2), P3 =
(x3, y3, z3) and P4 = (x4, y4, z4) lie in a plane?

(b) Do the points (1, 2, 3), (4, 1,−5), (2, 1, 6), and
(3, 5, 3) lie in a plane?

28.[C] What is the angle between the line through
(1, 2, 1) and (−1, 3, 0) and the plane x+ y− 2z = 0?

29.[M]

(a) If you know the coordinates of point P and para-
metric equations of line L, how would you find
an equation of the plane that contains P and L?
(Assume P is not on L.)

(b) Find an equation for the plane through (1, 1, 1)
that contains the line

x = 2 + t
y = 3− t
z = 4 + 2t.

30.[R]

(a) How many unit vectors are perpendicular to the
plane Ax+By + Cz +D = 0?

(b) How would you find one of them?

(c) Find a unit vector perpendicular to the plane
3x− 2y + 4z + 6 = 0.

31.[R]

(a) How would you go about producing a specific
point on the plane Ax+By + Cz +D = 0?

(b) Give the coordinates of a specific point that lies
on the plane 3x− y + z + 10 = 0.

32.[R]
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(a) How would you go about producing a specific
point that lies on both planes A1x+B1y+C1z+
D1 = 0 and A2x+B2y + C2z +D2 = 0?

(b) Find a point that lies on both planes 3x+z+2 =
0 and x− y − z + 5 = 0.

33.[C] The planes A1x + B1y + C1z + D1 = 0 and
A2x+B2y + C2z +D2 = 0 intersect in a line L. Find
the direction cosines of a vector parallel to L.

34.[R]

(a) Let A and B be vectors in space. How would you
find the area of the parallelogram they span?

(b) Find the area of the parallelogram spanned by
(2, 3, 1) and (4,−1, 5).

35.[C] How far is the point (2, 1, 3) from the line
through (1, 5, 2) and (2, 3, 4)?

36.[C] How far is the point P from the line through
Q and R.

37.[C] How far apart are the lines given para-
metrically as 2i + j − 3k + t(3i − 5j + 2k) and
3i + j + 5k + s(2i + 6j + 7k)? (We use different letters,
s and t, for the parameters because they are indepen-
dent of each other.)

38.[M]

(a) Sketch four points P , Q, R, and S, not all in
one plane, such that

−−→
PQ and

−→
RS are not paral-

lel. Explain way there is a unique pair of parallel
planes one of which contains P and Q and are of
which contains R and S.

(b) Express a normal vector to these planes in terms
of P , Q, R, and S.

39.[M] Find an equation for the plane through P1

that is parallel to the non-parallel segments P2P3 and
P4P5.

40.[C]

(a) Using properties of determinents, show that∣∣∣∣∣∣
x y 1
a1 a2 1
b1 b2 1

∣∣∣∣∣∣ = 0

is the equation of a line through the points
(a1, a2) and (b1, b2).

(b) What determinant of order 4 would give an an-
gular equation for the plane through these given
points?

41.[C]

(a) Review the Folium of Descartes in Section 9.3 on
page 706.

(b) Show that the part in the fourth quadrant is
asymptotic to the line x+ y + 1 = 0.

42.[M] Find where the line L through P0 = (2, 1, 3)
and P1 = (4,−2, 5) meets the plane whose equation is
2x+ y − 4z + 5 = 0.

43.[M]

(a) Graph the line and the parabola. Identify,
graphically, the point on the parabola closest to
the line.

(b) Find, analytically, the point on the parabola
y = x2 closest to the line y = x− 3.

(c) The tangent to the parabola at the point found
in (b) looks as if it might be parallel to the line.
Is it?
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44.[C] Let f be a differential function and L a line
that does not meet the graph of F . Assume that P0 is
the point as the graph that is nearest the line.

(a) Using calculus, show that the tangent there is
parallel to L.

(b) Why is the result in (a) to be expected?

In Exercises 45 and 46, find the distance from the
given point to the given line. 45.[R] The point (0, 0)
to 3x+ 4y − 10 = 0
46.[R] The point (3/2, 2/3) to 2x− y + 5 = 0

In Exercises 47 and 48 find a normal and a unit normal
to the given planes.

47.[R] 2x−3y+4z+11 =
0

48.[R] z = 2x− 3y+ 4

In Exercises 49 to 52 find the distance from the given
point to the given plane.

49.[R] The point (0, 0, 0)
to the plane 2x−4y+3z+
2 = 0

50.[R] The point (1, 2, 3)
to the plane x+ 2y− 3z+
5 = 0.

51.[R] The point
(2, 2,−1) to the plane that

passes through (1, 4, 3)
and has a normal 2i−7j+
2k.

52.[R] The point (0, 0, 0)
to the plane that passes
through (4, 1, 0) and is
perpendicular to the vec-
tor i + j + k.

53.[R] Find the direction cosines of the vector
2i + 3j + 4k.

54.[R] Find the direction cosines of the vector from
(1, 3, 2) to (4,−1, 5).

55.[R] Let P0 = (2, 1, 5) and P1 = (3, 0, 4). Find the
direction cosines and direction angles of

(a)
−−−→
P0P1 and

(b)
−−−→
P1P0.

56.[R] Give parametric equations for the line through
(1/2, 1/3, 1/2) with direction numbers 2, −5 and 8 in

(a) scalar form,

(b) vector form.

57.[R] Give parametric equations for the line through
(1, 2, 3) and (4, 5, 7) in

(a) scalar form,

(b) vector form.

58.[R] Give symmetric equations for the line through
the points (7,−1, 5) and (4, 3, 2).

59.[R] A vector A has direction angles α = 70◦ and
β = 80◦. Find the third direction angle γ and show
the possibile angles for γ on a diagram.

60.[M] Suppose that the three direction angles of a
vector are equal. What can they be? Draw the cases.

61.[R] Find the angle between the line through
(3, 2, 2) and (4, 3, 1) and the line through (3, 2, 2) and
(5, 2, 7).

62.[R] Find the angle between the planes 2x + 3y +
4z = 11 and 3x− y + 2z = 13. The angle between two
planes is the angle between their normals.

63.[R] Find where the line through (1, 2) and (3, 5)
meets the line through (1,−1) and (2, 3).

64.[M] Find where the line through (1, 2, 1) and
(2, 1, 3) meets the plane that is perpendicular to the

Calculus October 22, 2010



1000 CHAPTER 14 VECTORS

vector 2i + 5j + 7k and passes through the point
(1,−2,−3).

65.[M] Are the three points (1, 2,−3), (1, 6, 2), and
(7, 14, 11) on a single line?

66.[R] Where does the line through (1, 2, 4) and
(2, 1,−1) meet the plane x+ 2y + 5z = 0?

67.[R] Give parametric equations for the line
through (1, 3,−5) that is perpendicular to the plane
2x− 3y + 4z = 11.

68.[R] Give parametric equations for the line through
(1, 3, 4) that is parallel to the line through (2, 4, 6) and
(5, 3,−2).

69.[C] A square of a side a lies in the plane 2x+ 3y+
2z = 8. What is the area of its projection

(a) on the xy plane?

(b) on the yz plane?

(c) on the xz plane?

70.[M] If α, β, and γ are direction angles of a vector,
what is sin2(α) + sin2(β) + sin2(γ)?

71.[M] Find the angle between the line through
(1, 3, 2) and (4, 1, 5) and the plane x−y−2z+15 = 0.

72.[C] A disk of radius a is situated in the plane
x+ 3y + 4z = 5. What is the area of its projection in
the plane 2x+ y − z = 6?

73.[M] What point on the line through (1, 2, 5) and
(3, 1, 1) is closest to the point (2,−1, 5)?

74.[C] Does the line through (5, 7, 10) and (3, 4, 5)
meet the line through (1, 4, 0) and (3, 6, 4)? If so,
where?

WARNING (Do Not Confuse Parame-
ters from Different Curves) Use paramet-
ric equations but give the parameters of
the lines different names, such as t and s.

75.[C] Develop a general formula for determining the
distance from the point P1 = (x1, y1, z1) to the line
through the point P0 = (x0, y0, z0) and parallel to the
vector A = a1i + z2j + a3k. The formula should be
expressed in terms of the vectors

−−−→
P0P1 and A.

76.[C] How far is the point (1, 2,−1) from the line
through (1, 3, 5) and (2, 1,−3)?

(a) Solve by calculus, minimizing a certain function.

(b) Solve by vectors.

77.[R] Find the direction cosines of the vector A
shown in Figure 14.4.11. Hint: First draw a large dia-

gram.

Figure 14.4.11:

78.[C] How small can the largest of three direction
angles ever be?

79.[C] A plane π is tilted at an angle θ to

October 22, 2010 Calculus



§ 14.4 LINES, PLANES AND COMPONENTS 1001

a horizontal plane. A convex region R in π
has area A. Show that the area of its shadow
(“projection”) on the horizontal plane is A cos(θ).
Assume that the rays of light are perpendicular
to the horizontal plane. (See Figure 14.4.12.)

Figure 14.4.12:

80.[M]

(a) Find the point on the curve y = sin(x), 0 ≤ x ≤
π, nearest the line y = x/2 + 2.

(b) Check your answer by sketching the curve to the
line.

81.[M]

(a) Find the point on the curve y = sinx, 0 ≤ x ≤ π,
nearest the line y = 2x+ 4.

(b) Check your answer by drawing the curve and the
line.

82.[R] Three points P1 = (x1, y1, z1), P2 =
(x2, y2, z2), and P3 = (x3, y3, z3) are the vertices of
a triangle.

(a) What is the area of that triangle?

(b) What is the area of the projection of that trian-
gle on the xy plane?

83.[M] How can you decide whether the line through
P and Q is parallel to the plane Ax+By+Cz+D = 0?

84.[M] Find where the line through (1, 1) and (2, 3)
meets the line x+ 2y + 3 = 0.

85.[R] Show that the line through (1, 1, 1) and (2, 3, 4)
is perpendicular to the plane x1 + 2y + 3z + 4 = 0.

86.[C] How would you decide whether the angle and a
point P = (x0, y0, z0) are on the same side or opposite
sides of the plane Ax+Bx+ Cz +D = 0?

87.[M]

(a) Give an example of a vector perpendicular to the
plane 2x+ 3y − z + 4 = 0.

(b) Give an example of a vector parallel to that
plane.

88.[C] How would you decide whether the points P
and Q are on the same side, or opposite sides, of the
plane Ax+By + Cz +D = 0?

89.[R] A plane contains the points P0, P1, and P2,
which do not lie on a line. Find a vector perpendicular
to the plane

90.[C] Devise a procedure for determining whether
the point P = (x, y) is inside the triangle whose
three vertices are P1 = (x1, y1), P2 = (x2, y2) and
P3 = (x3, y3).

91.[C] Devise a procedure for determining whether
the point P = (x, y, x) is inside the four vertices are
P1 = (x1, y1, z1), P2 = (x2, y2, z2) P3 = (x3, y3, z3) and
P4 = (x4, y4, z4).
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92.[M] How far apart are the planes Ax+By+Cz+
D = 0 and Ax+By + Cz + E = 0? Explain.

93.[R] We showed that the distance from (c, d) to
the line Ax+By + C = 0 is |Ac+Bd+C|√

A2+B2
. Show, follow-

ing a similar argument, that the distance from (c, d, e)
to the plane Ax+By+Cx+D = 0 is |Ac+Bd+Ce+D|√

A2+B2+C2
.

94.[M] What is the ratio of the flows across the two
sticks in Figure 14.4.13(a) and (b)?

(a) (b)

Figure 14.4.13:

95.[R] Why is the angle θ shown in Figure 14.4.13
the same as the angle between −→v and n̂.

96.[R] How far is the point (1, 5) from the line through
(4, 2) and (3, 7)? Hint: Draw a picture and think in
terms of vectors.

97.[R] How far is the point (1, 2,−3) from the line
through (2, 1, 4) and (1, 5,−2)?

98.[C] (Contributed by Melvyn Kopald Stein.) An in-

dustrial hopper is shaped as shown in Figure 14.4.14.
Its top and bottom are squares of different sizes. The
angle between the plane ABD and the plane BDC
is 70◦. The angle between the plane ABD and the
plane ABC is 80◦. What is the angle between plane
ABC and plane BCD? Note: The angle is needed
during the fabrication of the hopper, since the planes
ABC and BCD are made from a single piece of
heavy-gauge sheet metal bent along the edge BC.

Figure 14.4.14:

99.[C]

(a) Let L1 be the line through P1 and Q1 and let L2

be the line through P2 and Q2. Assume that L1

and L2 are skew lines. How would you find the
point R1 on L1 and point R2 on L2 such that−−−→
R1R2 is perpendicular to both L1 and L2?

(b) Find R1 and R2 when P1 = (3, 2, 1), Q1 =
(1, 1, 1), P2 = (0, 2, 0), R2 = (2, 1,−1).
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14.S Chapter Summary
DOUG/SHERMAN:
Mention cos(A,B) in text.Because there are no limits in this chapter, it is, strictly speaking, not part

of calculus. In the next chapter, which concern derivatives of functions whose
inputs are scalars and whose outputs are vectors, we return to calculus. For plane vectors, disregard

the third component.The following table summarizes the basic concepts of vectors in space. Assume
A = a1i + a2j + a3k,
B = b1i + b2j + b3k, and
C = c1i + c2j + c3k.Symbol Name Geometric Descriptions Algebraic Formula

A Vector Direction and magnitude
(Figure)

a1i + a2j + a3k or 〈a1, a2, a3〉

‖A‖ Length (norm,
magnitude)

Length of A
√
a2

1 + a2
2 + a2

3

−A Negative, or op-
posite, of A

Figure −a1i− a2j− a3k or 〈−a1,−a2,−a3〉

A + B Sum of A and B Figure (a1 + b1)i + (a2 + b2)j + (a3 + b3)k or 〈a1 + b1, a2 + b2, a3 + b3〉
A−B Difference of A

and B
Figure (a1 − b1)i + (a2 − b2)j + (a3 − b3)k or 〈a1 − b1, a2 − b2, a3 − b3〉

cA Scalar multiple of
A

Figure ca1i + ca2j + ca3k or 〈ca1, ca2, ca3〉

A ·B Dot, or scalar,
product

‖A‖‖B‖ cos(θ) a1b1 + a2b2 + a3b3

A×B Cross, or vector,
product

Magnitude: area of paral-
lelogram spanned by A and
B, ‖A‖‖B‖ sin(θ) Direction:
perpendicular to A and B,
direction by right-hand rule

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b+ 3

∣∣∣∣∣∣

projB A (Vector) Projec-
tion of A on B

Figure (A · u)u,where u = B/‖B‖

A · (B×C) Scalar triple
product

± volume of parallelepiped
spanned by A, B, and C

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b+ 3
c1 c2 c+ 3

∣∣∣∣∣∣
A× (B×C) Vector triple

product

Table 14.S.1:

Some Common Applications and Definitions
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A ·B = 0 A is perpendicular to B (assuming neither A nor B is 0)
A · 〈x− x0, y − y0, z − z0〉 = 0 plane through (x0, y0, z0) perpendicular to A

|D|√
A2+B2+C2 distance from the plane Ax+By + Cz +D = 0 to the origin

|Ax1+By1+Cz1+D|√
A2+B2+C2 distance from the plane Ax+By+Cz+D = 0 to the (x1, y1, z1)

A·B
‖A‖‖B‖ = cos(θ) θ is the angle between A and B, 0 < θ < π

When the angles between a vector A and i, j, vk are respectively α, β, and
γ, the numbers cos(α), cos(β), and cos(γ) are called the direction cosines of
A. They are linked by the equation cos(α)2 + cos(β)2 + cos(γ)2 = 1.

The line through P0 = (x0, y0, z0) parallel to A = a1i + a2j + a3k is given
parametrically as 

x = x0 + a1t
y = y0 + a2t
z = z0 + a3t,

or vectorially as −→
OP =

−−→
OP0 + tA.

Also, the line has the description in the symmetric formAssuming none of a1, a2,
and a3 are zero.

x− x0

a1

=
y − y0

a2

=
z − z0

a3

.

EXERCISES for 14.S Key: R–routine, M–moderate, C–challenging

1.[R] Find a vector perpendicular to the plane deter-
mined by the points (1, 2, 1), (2, 1,−3), and (0, 1, 5).

2.[R] Find a vector perpendicular to the plane deter-
mined by the points (1, 3,−1), (2, 1, 1), and (1, 3, 4).

3.[R] Find a vector that is perpendicular to the line
through the points (3, 6, 1) and (2, 7, 2) and also to the
line through the points (2, 1, 4) and (1,−2, 3).

4.[R] Find a vector perpendicular to the line through
(1, 2, 1) and (4, 1, 0) and also to the line through
(3, 5, 2) and (2, 6,−3).

5.[C] Figure 14.S.1 shows a tetrahedron OABC

with three edges of the indicated lengths.

Figure 14.S.1:

(a) Find the coordinates of A, B, and C.
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(b) Find the volume of the tetrahedron.

(c) Find the area of triangle ABC.

(d) Find the distance from O to the plane in which
triangle ABC lies.

(e) Find the cosine of angle ABC.
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Calculus is Everywhere # 16

Space Flight: The Gravitational Slingshot
For vector-algebra chapter

In a “slingshot” or “gravitational assist” a spacecraft picks up speed as
it passes near a planet and exploits the planet’s gravity. For instance, New
Horizons, launched on January 19, 2006, enjoys a gravitational assist as it
passed by Jupiter, February 27, 2007 on its long journey to Pluto. With
the aid of that slingshot the speed of the spacecraft increased from 47,000 to
50,000 miles per hour (mph). As a result, it will arrive near Pluto in 2015,
instead of 2018.

Before we see how this technique works, let’s look at a simple situation on
earth that illustrates the idea. Later we will replace the truck with a planet’s
gravitational field.

A playful lad throws a perfectly elastic tiny ball at 30 mph directly at a
truck approaching him at 70 miles per hour, as shown in Figure C.16.1.

Figure C.16.1:

The truck driver sees the ball coming toward her at 70 + 30 = 100 mph.
The balls hits the windshield and, because the ball is perfectly elastic, the
driver sees it bounce off at 100 mph in the opposite direction.

However, because the truck is moving in the same direction as the ball, the
ball is moving through the air at 100 + 70 = 170 mph as it returns to the boy.
The ball has gained 140 mph, twice the speed of the truck.

Now, instead of picturing a truck, think of a planet whose velocity relative
to the solar system is represented by the vector P. A spacecraft, moving in
the opposite direction with the velocity v relative to the solar system comes
close to the planet.

An observer on the planet sees the spacecraft approaching with velocity
−vP + v. The spacecraft swings around the planet as gravity controls its
orbit and sends it off in the opposite direction. Whatever speed it gained as it
arrived, it loses as it exits. Its velocity vector when it exits is −(−vP + v) =
P − v, as viewed by the observer on the planet. Since the planet is moving
through the solar system with velocity vector P, the spacecraft is now moving
through the solar system with velocity P+(P−v) = 2P−v. See Figure C.16.2.If P = 70i and v = −30i,

we have the vector
2(70i)− (−30i) = 170i, the

case of the ball and truck.
But the direction of the spacecraft as it arrives may not be exactly opposite

the direction of the planet. To treat the more general case, assume that P = pi,
where p is positive and v makes an angle θ, 0 ≤ θ ≤ π/2, with −i, as shown
in Figure C.16.3(a). Let v = |v| be the speed of the spacecraft relative to
the solar system. We will assume that the spacecraft’s speed (relative to the
planet) as it exits is the same as its speed relative to the planet on its arrival.
(Figure C.16.3(b)) shows the arrival and exit vectors. Note that E and v−P
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(a) (b)

Figure C.16.2: (a) The velocity vector relative to the solar system. (b) The
velocity vector relative to the planet.

(a) (b) (c)

Figure C.16.3:
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have the same y-components, but the x-component of E is the negative of the
x-component of v −P.

Figure C.16.3(c) shows the arrival vector relative to the solar system. So,
v = −w cos(θ)i + v sin(θ)j.

Relative to the planet we have

Arrival Vector: v −P = −pi + (−v cos(θ)i + v sin(θ)j)
Exit Vector: E = pi + v cos(theta)i + v sin(θ)j

The exit vector relative to the solar system, E, is therefore

E = (2p+ v cos(θ))i + v sin(theta)j.

The magnitude of E is√
(2p+ v cos(θ))2 + (v sin(theta))2 =

√
v2 + 2pv cos(θ) + 4p2.

When θ = 0, we have the case of the truck and ball or the planet and
spacecraft in Figure C.16.2. Then cos(θ) = 1 and |E| =

√
v2 + 2pv + 4p2 =

v + 2p, in agreement with our earlier observations.
The scientists controlling a slingshot carry out much more extensive cal-

culations, which take into consideration the masses of the spacecraft and the
planet, and involve an integration while the spacecraft is near the planet.
Incidentally, the diameter of Jupiter is 86,000 miles.“Near” in the case of the

slingshot around Jupiter
means 1.4 million miles. If

the spacecraft gets too
close, the atmosphere slows
down or destroys the craft.

The gravity assist was proposed by Michael Minovitch in 1963 when he
was still a graduate student at UCLA. Before then it was felt that to send a
spacecraft to the outer solar system and beyond would require launch vehicles
with nuclear reactors to achieve the necessary thrust.
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Calculus is Everywhere # 17

How to Find Planets around Stars

Astronomers have discovered that other stars than the sun have planets circling
them. How do they do this, given that the planets are too small to be seen?
It turns out that they combine some vector calculus with observations of the
star. Let us see what they do.

Imagine a star S and a planet P in orbit around S. To describe the sit-
uation, we are tempted to choose a coordinate system attached to the star.
In that case the star would appear motionless, hence having no acceleration.
However, the planet exerts a gravitational force F on the star and the equa-
tion force = mass × acceleration would be violated. After introducing the
appropriate mathematical tools, we will choose a proper coordinate system. SHERMAN: Do we need to

define “inertial system”?

Figure C.17.1:

Let X be the position vector of the planet P and Y be the position vector
of the star S, relative to our inertial system. Let M be the mass of the sun
and m the mass of planet P . Let r = X −Y be the vector from the star to
the planet, as shown in Figure C.17.1.

The gravitational pull of the star on the planet is proportional to the prod-
uct between them:

F =
−GmMr

r3
.

HereG is a universal constant, that depends on the units used to measure mass,
length, time, and force. Equating the force with mass times acceleration, we
have

MX′′ = −GmMr
r3

.
Thus X′′ = −Gmr

r3
.

Similarly, by calculating the force that the planet exerts on the star, we
have

Y′′ =
Gmr

r3
.

Figure C.17.2:

The center of gravity of the system consisting of the planet and the star,
which we will denote C (see Figure C.17.2), is given by

C =
MY +mX

M +m
.

The center of gravity is much closer to the start than to the planet. In the
case of our sun and Earth, the center of gravity is a mere 300 miles from the
center of the sun.
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The acceleration of the center of gravity is

C′′ =
MY′′ +mX′′

M +m
=

1

M +m

(
M

(
Gmr

r3

)
+m

(
−Gmr

r3

))
= 0.

Because the center of gravity has 0-acceleration, it is moving at a constant
velocity relative to the coordinate system we started with. Therefore a coor-
dinate system rigidly attached to the center of gravity may also serve as an
inertial system in which the laws of physics still hold.

Figure C.17.3:

We now describe the position of the star and planet to this new coordinate
system. Star S has the vector x from C to it and planet P has the vector y
from C to it, as shown in Figure C.17.3. Note that r = x− y.

To obtain a relation between x and y, we first express each in terms of r.
We have

y = Y − ~OC = Y − MY −mX

M +m
=

m

M +m
Y +

m

M +m
X.

Letting k = m/M , a very small quantity, we have

y =
k

1 + k
(Y −X) =

−k
1 + k

r. (C.17.1)

Since r = x− y, it follows that x = r + y, hence

x = r +

(
−k

1 + k

)
r =

1

1 + k
r. (C.17.2)

Combining (C.17.1) and (C.17.2) shows that

y = −kx. (C.17.3)

SHERMAN: First use of
“second inertial system;”

what is the first?
Equation (C.17.3) tells us a good deal about the relation between the orbits

of the star and planet in terms of the second inertial system:

1. The star and planet remain on opposite sides of C on a straight line
through C.

2. The star is always much closer to C than the planet is.

3. The orbit of the star is similar in shape to the orbit of the planet, but
smaller and reflected through C.
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4. If the orbit of the star is periodic so is the orbit of the planet, and both
have the same period.

Equation (C.17.3) is the key to the discover of planets around stars. The
astronomers look for a star that “wobbles” a bit. That wobble is the sign
that the star is in orbit around the center of gravity of it and some planet.
Moveover, the time it takes for the planet to orbit the star is simply the time
it takes for the star to oscillate back and forth once.

The reference cited below shows that the star and the planet sweep out
elliptical orbits in the second coordinate system (the one relative to C).

Astronomers have found over two hundred stars with planets, some with
several planets. A registry of these exoplanets is maintained at http://

exoplanets.org/.
Reference: Robert Osserman, Kepler’s Laws, Newton’s Laws, and the Search

for New Planets, Am. Math. Monthly 108 (2001), pp. 813–820.

EXERCISES

1.[R] The mass of the sun is about 330,000 times that
of Earth. The closest Earth gets to the sun is about
91,341,000 miles, and the farthest from it is about
94,448,000 miles. What is the closest the center of
the sun gets to the center of gravity of the sun-Earth
system? What is the farthest it gets from it? Hint: It

lies within the sun itself.

2.[M] Find the condition that must be satisfied if the
center of gravity of a sun-planet system will lie outside
the sun.

SHERMAN: See http:
//en.wikipedia.org/
wiki/Center_of_mass,
particularly the animations
at the end of the section on
“Barycenter in astrophysics
and astronomy”.
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