
Chapter 6

The Definite Integral

Up to this point we have been concerned with the derivative, which provides
local information, such as the slope at a particular point on a curve or the
velocity at a particular time. Now we introduce the second major concept
of calculus, the definite integral. In contrast to the derivative, the definite
integral provides global information, such as the area under a curve.

Section 6.1 motivates the definite integral through three of its applications.
Section 6.2 defines the definite integral and Section 6.3 presents ways to esti-
mate it. Sections 6.4 and 6.5 develop the connection between the derivative
and the definite integral, which culminates in the Fundamental Theorems of
Calculus. The derivative turns out to be essential for evaluating many definite
integrals.

Chapters 2 to 6 form the core of calculus. Later chapters are mostly vari-
ations or applications of the key ideas in those chapters.

415



416 CHAPTER 6 THE DEFINITE INTEGRAL

6.1 Three Problems That Are One Problem

Figure 6.1.1:

The definite integral is introduced with three problems. At first glance
these problems may seem unrelated, but by the end of the section it will be
clear that they represent one basic problem in various guises. They lead up to
the concept of the definite integral, defined in the next section.

Estimating an Area

It is easy to find the exact area of a rectangle: multiply its length by its width
(see Figure 6.1.1). But how do you find the area of the region in Figure 6.1.2?

Figure 6.1.2:

In this section we will show how to make accurate estimates of that area. The
technique we use will lead up in the next section to the definition of the definite
integral of a function.

PROBLEM 1 Estimate the area of the region bounded by the curve y = x2,
the x-axis, and the vertical line x = 3, as shown in Figure 6.1.2.

Since we know how to find the area of a rectangle, we will use rectangles
to approximate the region. Figure 6.1.3(a) shows an approximation by six
rectangles whose total area is more than the area under the parabola. Fig-
ure 6.1.3(b) shows a similar approximation whose area is less than the area
under the parabola.

(a) (b) (c)

Figure 6.1.3:

In each case we break the interval [0, 3] into six short intervals, all of width
1
2
. In order to find the areas of the overestimate and of the underestimate, we

must find the height of each rectangle. That height is determined by the curve
y = x2. Let us examine only the overestimate, leaving the underestimate for
the Exercises.
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§ 6.1 THREE PROBLEMS THAT ARE ONE PROBLEM 417

There are six rectangles in the overestimate shown in Figure 6.1.3(a). The
smallest rectangle is shown in Figure 6.1.3(c). The height of this rectangle is

equal to the value of x2 when x = 1
2
. Its height is therefore

(
1
2

)2
and its area

is
(

1
2

)2 (1
2

)
, the product of its height and its width. The areas of the other five

rectangles can be found similarly. In each case evaluate x2 at the right end
of the rectangle’s base in order to find the height. The total area of the six
rectangles is(
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This equals

Figure 6.1.4:

1

8

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

8
= 11.375. (6.1.1)

The area under the parabola is therefore less than 11.375.
To get a closer estimate we should use more rectangles. Figure 6.1.4 shows

an overestimate in which there are 12 rectangles. Each has width 3
12

= 1
4
. The

total area of the overestimate is(
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This equals

1

43

(
12 + 22 + 32 + · · ·+ 122

)
=

650

64
= 10.15625. (6.1.2)

Now we know the area under the parabola is less than 10.15625.

Figure 6.1.5:

To get closer estimates we would cut the interval [0, 3] into more sections,
maybe 100 or 10,000 or more, and calculate the total area of the corresponding
rectangles. (This is an easy computation on a computer.)

In general, we would divide [0, 3] into n sections of equal length. The length
of each section is then 3

n
. Their endpoints are shown in Figure 6.1.5.

Then, for each integer i = 1, 2, . . . , n, the ith section from the left has
endpoints (i− 1)

(
3
n

)
and i

(
3
n

)
, as shown in Figure 6.1.6.

Figure 6.1.6: [ARTIST:
Redraw Figure 6.1.6 to
give effect of zooming in
on ith interval]

To make an overestimate, observe that x2 is increasing for x > 0 and
evaluate x2 at the right endpoint of each interval. Then multiply the result by
the width of the interval, getting(

i

(
3

n

))2
3

n
= 33 i

2

n3
.

Then, sum these overestimates for all n intervals:

33 12

n3
+ 33 22

n3
+ 33 32

n3
+ · · ·+ 33 (n− 1)2

n3
+ 33n

2

n3
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418 CHAPTER 6 THE DEFINITE INTEGRAL

which simplifies to

33

(
12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3

)
. (6.1.3)

In the summation notation described in Appendix C, this equals

33

n3

n∑
i=1

i2.

We have already seen that these overestimates become more and more accurate
as the number of intervals increases. We would like to know what happens to
the overestimate as n gets larger and larger. More specifically, does

lim
n→∞

12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3
(6.1.4)

exist? If it does exist, call it L. (Then the area would be 33L.)
The numerator gets large, tending to make the fraction large. But the

denominator also gets large, which tends to make the fraction small. Once
again we encounter one of the “limit battles” that occurs in the foundation of
calculus.Archimedes, some 2200

years ago, found a short
formula for the numerator
in (6.1.3), enabling him to

find the limit in (6.1.4).
See, for instance, S. Stein,
“Archimedes: What did he

do besides cry Eureka?”.

To estimate L, use, say, n = 6. Then we have

1

63

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

216
≈ 0.42130.

Try a larger value of n to get a closer estimate of L.
If we knew L we would know the area under the parabola and above the

interval [0, 3], for the area is 33L. Since we do not know L, we don’t know the
area. Be patient. We will find L indirectly in this section. You may want to
compute the quotient in (6.1.4) for some n and guess what L is. For example,
with n = 12, the estimate is 650

123 = 650
1728
≈ 0.37616.

Estimating a Distance Traveled
The units simplify:

mi
hr × hr = mi. If you drive at a constant speed of v miles per hour for a period of t hours,

you travel vt miles:

Distance = Speed × Time = vt miles.

But how would you compute the total distance traveled if your speed were
not constant? (Imagine that your odometer, which records distance traveled,
was broken. However, your speedometer is still working fine, so you know
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§ 6.1 THREE PROBLEMS THAT ARE ONE PROBLEM 419

your speed at any instant.) The next problem illustrates how you could make
accurate estimates of the total distance traveled.

PROBLEM 2 A snail is crawling about for three minutes. This remarkable
snail knows that she is traveling at the rate of t2 feet per minute at time t
minutes. For instance, after half a minute, she is slowly moving at the rate of(

1
2

)2
feet per minute. At the end of her journey she is moving along at 32 feet

per minute. Estimate how far she travels during the three minutes.

Figure 6.1.7:

The speed during the three-minute trip increases from 0 to 9 feet per
minute. During shorter time intervals, such a wide fluctuation does not occur.
As in Problem 1, cut the three minutes of the trip into six equal intervals
each 1/2 minute long, and use them to estimate the total distance covered.
Represent time by a line segment cut into six parts of equal length, as in
Figure 6.1.7. Speed increases as t

increases.Consider the distance she travels during one of the six half-minute intervals,
say during the interval [3

2
, 4

2
]. At the beginning of this time interval her speed

was
(

3
2

)2
feet per minute; at the end she was going

(
4
2

)2
feet per minute.

The highest speed during this half hour was
(

4
2

)2
feet per minute. Therefore,

she traveled at most
(

4
2

)2 (1
2

)
feet during the time interval [3/2, 4/2]. Similar

reasoning applies to the other five half-minute periods. Adding up these upper
estimates for the distance traveled during each interval of time, we get the total
distance traveled is less than(
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If we divide the time interval into n equal sections of duration 3
n
, the right

endpoint of the ith interval is i
(

3
n

)
. At that time the speed is (3i/n)2 feet per

minute. So the distance covered during the ith interval of time is less than(
3i

n

)2

︸ ︷︷ ︸
max speed

3

n︸︷︷︸
time

=
33i2

n3
.

The total overestimate is then

33 12

n3
+ 33 22

n3
+ 33 32

n3
+ · · ·+ 33 (n− 1)2

n3
+ 33n

2

n3

or

33

(
12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3

)
. (6.1.5)

The calculations in the area problem, (6.1.3), and in the distance problem,
(6.1.5), are the same. Thus, the area and distance have the same upper esti-
mates. Their lower estimates are also the same, as you may check. The limit
of (6.1.5) is 33L. The two problems are really the same problem.
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420 CHAPTER 6 THE DEFINITE INTEGRAL

Estimating a Volume

Figure 6.1.8:

The volume of a rectangular box is easy to compute; it is the product of
its length, width, and height. See Figure 6.1.8. But finding the volume of a
pyramid or ball requires more work. The next example illustrates how we can
estimate the volume inside a certain tent.

PROBLEM 3 Estimate the volume inside a tent with a square floor of side
3 feet, whose vertical pole, 3 feet long, is located above one corner of the floor.
The tent is shown in Figure 6.1.9(a).

(a) (b) (c)

Figure 6.1.9:

The cross-section of the tent made by any plane parallel to the base is a
square, as shown in Figure 6.1.9(b). The width of the square equals its distance
from the top of the pole, as shown in Figure 6.1.9(c). Using this fact, we can
approximate the volume inside the tent with rectangular boxes with square
cross-sections. Begin by cutting a vertical line, representing the pole, into six

(a) (b) (c)

Figure 6.1.10:

sections of equal length, each 1
2

foot long. Draw the corresponding square cross
section of the tent, as in Figure 6.1.10(a). Use these square cross-sections to
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§ 6.1 THREE PROBLEMS THAT ARE ONE PROBLEM 421

(a) (b)

Figure 6.1.11:

form rectangular boxes. Consider the part of the tent corresponding to the
interval [3

2
, 4

2
] on the pole. The base of this section is a square with sides 4

2
feet.

The box with this square as a base and height 1
2

foot encloses completely the
part of the tent corresponding to [3

2
, 4

2
]. (See Figure 6.1.10(c).) The volume of

this box is
(

4
2

)2 (1
2

)
cubic feet. Figure 6.1.11(a) shows six such boxes, whose

total volume is greater than the volume of the tent.
Since the volume of each box is the area of its base times its height, the

total volume of the six boxes is(
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)
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cubic feet.

This sum, which we have encountered twice before, equals 11.375. It is an
overestimate of the volume of the tent. Better (over)estimates can be obtained
by cutting the pole into shorter pieces. Evidently, the arithmetic for the tent
volume is the same as for the previous two problems.

We now know that the number describing the volume of the tent is the same
as the number describing the area under the parabola and also the length of
the snail’s journey. That number is 33L. The arithmetic of the estimates is
the same in all three cases.

Figure 6.1.12:

A Neat Bit of Geometry

If we knew the limit L in (6.1.3), we would then find the answers to all three
problems. But we haven’t found L. Luckily, there is a way to find the volume
of the tent without knowing L.
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422 CHAPTER 6 THE DEFINITE INTEGRAL

The key is that three identical copies of the tent fill up a cube of side 3
feet. To see why, imagine a flashlight at one corner of the cube, aimed into
the cube, as in Figure 6.1.12.

(a) (b) (c)

Figure 6.1.13:
This trick is like the way the

area of a right triangle is
found by arranging two

copies to form a rectangle.

The flashlight illuminates the three square faces not meeting the corner at
the flashlight. The rays from the flashlight to each of the faces fill out a copy
of the tent, as shown in Figure 6.1.13.

Since three copies of the tent fill a cube of volume 33 = 27 cubic feet,
the tent has volume 9 cubic feet. From this, we see that the area under the
parabola above [0, 3] is 9 and the snail travels 9 feet. Incidentally, the limit L
must be 1

3
, since the area under the parabola is both 9 and 33L. In short,

lim
n→∞

12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3
= lim

n→∞

1

n3

n∑
i=1

i2. =
1

3

Summary

Using upper estimates, we showed that problems concerning area, distance
traveled, and volume were the same problem in various disguises. We were
really studying a problem concerning a particular function, x2, over a particular
interval [0, 3]. We solved this problem by cutting a cube into three congruent
pieces. By the end of this chapter you will learn general techniques that will
make such a special device unnecessary.
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§ 6.1 THREE PROBLEMS THAT ARE ONE PROBLEM 423

EXERCISES for Section 6.1 Key: R–routine,
M–moderate, C–challenging

Exercises 1 to 21 concern estimates of areas under
curves.
1.[R] In Problem 1 we broke the interval [0, 3] into
six sections. Instead, break [0, 3] into four sections of
equal lengths and estimate the area under y = x2 and
above [0, 3] as follows.

(a) Draw the four rectangles whose total area is
larger than the area under the curve. The value
of x2 at the right endpoint of each section deter-
mines the height of each rectangle.

(b) On the diagram in (a), show the height and
width of each rectangle.

(c) Find the total area of the four rectangles.

2.[R] Like Exercise 1, but this time obtain an under-
estimate of the area by using the value of x2 at the left
endpoint of each section to determine the height of the
rectangles.
3.[R] Estimate the area under y = x2 and above [1, 2]
using the five rectangles with equal widths shown in
Figure 6.1.14(a).
4.[R] Repeat Exercise 3 with the five rectangles in
Figure 6.1.14(b).

(a) (b)

Figure 6.1.14:
5.[R] Evaluate

(a)
∑4

i=1 i
2

(b)
∑4

i=1 2i

(c)
∑4

n=3(n− 3)

6.[R] Evaluate

(a)
∑4

i=1 i
3

(b)
∑5

i=2 2i

(c)
∑4

k=1(k3 − k2)

7.[R] Figure 6.1.15(a) shows the curve y = 1
x above

the interval [1, 2] and an approximation to the area
under the curve by five rectangles of equal width.

(a) Make a large copy of Figure 6.1.15(a).

(b) On your diagram show the height and width of
each rectangle.

(c) Find the total area of the five rectangles.

(d) Find the total area of the five rectangles in Fig-
ure 6.1.15(b).

(e) On the basis of (c) and (d), what can you say
about the area under the curve y = 1/x and
above [1, 2]?

(a) (b)

Figure 6.1.15:
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424 CHAPTER 6 THE DEFINITE INTEGRAL

Exercises 8 and 9 develop underestimates for each of
the problems considered in this section.

8.[R] In Problem 1
we found overestimates
for the area under the
parabola x2 over the in-
terval [0, 3]. Here we
obtain underestimates for
this area as follows.

(a) Break [0, 3] into six
sections of equal
lengths and draw
the six rectangles
whose total area
is smaller than
the area under the
curve.

(b) Because x2 is in-

creasing on [0, 3],
the left endpoint
of each section de-
termines the height
of each rectangle.
Show the height and
width of each rect-
angle you drew in
(a).

(c) Find the total area
of the six rectangles.

9.[R] Repeat Exercise 8
with 12 sections of equal
lengths.

10.[R] Consider the area under y = 2x and above
[−1, 1].

(a) Graph the curve and estimate the area by eye.

(b) Make an overestimate of the area, using four sec-
tions of equal width.

(c) Make an underestimate of the area, using four
sections of equal width.

11.[R] Use the information found in Exercises 3 and
4 to complete this sentence:
The area in Problem 1 is certainly less than
but larger than .

12.[R] Estimate the area in Problem 1, using the di-
vision of [0, 3] into four sections with endpoints 0, 1, 5

3 ,
11
4 , and 3 (see Figure 6.1.16(a)).

(a) Estimate the area when the right-hand endpoints
of each section are used to find the heights of the
rectangles.

(b) Repeat (a), using the left-hand endpoints of each
section to find the heights of the rectangles.

(c) Repeat (a) computing the heights of the rectan-
gles at the points 1

2 , 3
2 , 2, and 14

5 .

Figure 6.1.16:
In each of Exercises 13 to 18

(a) Draw the region.

(b) Draw six rectangles of equal widths whose total
area overestimates the area of the region.

(c) On your diagram indicate the height and width
of each rectangle.

(d) Find the total area of the six rectangles. (Give
this answer accurate to two decimal places.)

13.[R] Under y = x2,
above [2, 3].
14.[R] Under y = 1

x ,
above [2, 3].
15.[R] Under y = x3,
above [0, 1].
16.[R] Under y =

√
x,

above [1, 4].

17.[M] Under y = sin(x),
above [0, π/2].

18.[M] Under y = ln(x),
above [1, e].

19.[M] Estimate the area under y = x2 and above
[−1, 2] by dividing the interval into six sections of equal
lengths.

(a) Draw the six rectangles that form an overesti-
mate for the area under the curve. Note that
you cannot do this using only left-endpoints or
only right-endpoints.
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(b) Find the total area of all six rectangles.

(c) Repeat (a) and (b) to find an underestimate for
this area.

20.[M] Estimate the area between the curve y = x3,
the x-axis, and the vertical line x = 6 using a division
into

(a) six sections of equal lengths with left endpoints;

(b) six sections of equal lengths with right endpoints;

(c) three sections of equal lengths with midpoints;

(d) six sections of equal lengths with midpoints.

21.[M] Estimate the area below the curve y = 1
x2

and above [1, 7] following the directions in Exercise 20.
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426 CHAPTER 6 THE DEFINITE INTEGRAL

22.[M] To estimate the area in Problem 1 you divide
the interval [0, 3] into n sections of equal lengths. Us-
ing the right-hand endpoint of each of the n sections
you then obtain an overestimate. Using the left-hand
endpoint, you obtain an underestimate.

(a) Show that these two estimates differ by 27
n .

(b) How large should n be chosen in order to be sure
the difference between the upper estimate and
the area under the parabola is less than 0.01?

23.[M] Estimate the area of the region under the curve
y = sin(x) and above the interval [0, π2 ], cutting the in-
terval as shown in Figure 6.1.17(a) and using

(a) left endpoints

(b) right endpoints

(c) midpoints.

(All but the last section are of the same length.)

(a) (b) (c)

Figure 6.1.17:
24.[M] Make three copies of the tent in Problem 3 by
folding a pattern as shown in Figure 6.1.17(b). Check
that they fill up a cube.

25.[M] An electron is being accelerated in such a way
that its velocity is t3 kilometers per second after t sec-
onds. Estimate how far it travels in the first 4 seconds,
as follows:

(a) Draw the interval [0, 4] as the time axis and cut
it into eight sections of equal length.

(b) Using the sections in (a), make an estimate that
is too large.

(c) Using the sections in (a), make an estimate that
is too small.

26.[M] A business which now shows no profit is to
increase its profit flow gradually in the next 3 years
until it reaches a rate of 9 million dollars per year. At
the end of the first half year the rate is to be 1

4 million
dollars per year; at the end of 2 years, 4 million dollars
per year. In general, at the end of t years, where t is
any number between 0 and 3, the rate of profit is to
be t2 million dollars per year. Estimate the total profit
during its first 3 years if the plan is successful using

(a) using six intervals and left endpoints;

(b) using six intervals and right endpoints;

(c) using six intervals and midpoints.

27.[M] Oil is leaking out of a tank at the rate of 2−t

gallons per minute after t minutes. Describe how you
would estimate how much oil leaks out during the first
10 minutes. Illustrate your procedure by computing
one estimate.
28.[C] Archimedes showed that

∑n
i=1 i

2 =
n(n+1)(2n+1)

6 . You can prove this as follows:

(a) Check that the formula is correct for n = 1.

(b) Show that if the formula is correct for the integer
n, it is also correct for the next integer, n+ 1.

(c) Why do (a) and (b) together show that
Archimedes’ formula holds for all positive inte-
gers n?

Note: This type of proof is known as mathematical
induction.
29.[C]

(a) Explain why the area of the region under the
curve y = x2 and above the interval [0, b] is given
by

lim
n→∞

n∑
i=1

(
bi

n

)2 b

n
.
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(b) Use Exercise 28 to find this limit.

(c) Give an explicit formula for the area of the region
under y = x2 and above [0, b].

(d) For 0 < a < b, what is the area under the curve
y = x2 and above the interval [a, b]?
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30.[C] The function f(x) is increasing for x in the
interval [a, b] and is positive. To estimate the area un-
der the graph of y = f(x) and above [a, b] you divide
the interval [a, b] into n sections of equal lengths. You
then form an overestimate B (for “big”) using right-
hand endpoints of the sections and an underestimate
S (for “small”) using left-hand endpoints. Express the
difference between the two estimates, B−S, as simply
as possible.
31.[C] A right circular cone has a height of 3 feet and
a radius of 3 feet, as shown in Figure 6.1.18. Estimate
its volume by the sum of the volumes of six cylindrical
slabs, just as we estimated the volume of the tent with
the aid of six rectangular slabs.

(a) Make a large and neat diagram that shows the
six cylinders used in making an overestimate.

(b) Compute the total volume of the six cylinders in
(a).

(c) Make a separate diagram showing a correspond-
ing underestimate.

(d) Compute the total volume of the six cylinders in
(c). (Note: One of the cylinders has radius 0.)

Figure 6.1.18:
32.[C] The kinetic energy of an object, for example,

a baseball or car, of mass m grams and speed v cen-
timeters per second is defined as 1

2mv
2 ergs. Now, in a

certain machine a uniform rod 3 centimeters long and
weighing 32 grams rotates once per second around one
of its ends as shown in Figure 6.1.17(c). Estimate the
kinetic energy of this rod by cutting it into six sections,
each 1

2 centimeter long, and taking as the “speed of a
section” the speed of its midpoint.

33.[C] Express the sum
n∑
i=1

ln
(
i+ 1
i

)
as simply as

possible. (So that you could compute the sum in the
fewest steps.)

Skill Drill

In Exercises 34 to 39 differentiate the expression.

34.[R] (1 + x2)4/3

35.[R] (1+x3) sin(3x)
3√5x

36.[R] 3x
8 + 3x sin(4x)

32 +
cos3(2x) sin(2x)

8

37.[R] 3
8(2x+3)2

− 1
4(2x+3)

38.[R] cos3(2x)
6 − cos(2x)

2

39.[R] x3
√
x2 − 1 tan(5x)

In Exercises 40 to 50 give an antiderivative of the ex-
pression.

40.[R] (x+ 2)3

41.[R] (x2 + 1)2

42.[R] x sin(x2)
43.[R] x3 + 1

x3

44.[R] 1√
x

45.[R] 3
x

46.[R] e3x

47.[R] 1
1+x2

48.[R] 1
x2

49.[R] 2x

50.[R] 4√
1−x2
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6.2 The Definite Integral

We now introduce the other main concept in calculus, the “definite integral of
a function over an interval.”

The preceding section was not really about area under a parabola, distance
a snail traveled, or volume of a tent. The common theme of all three was a
procedure we carried out with the function x2 and the interval [0, 3]: Cut the
interval into small pieces, evaluate the function somewhere in each section,
form certain sums, and then see how those sums behave as we choose the
sections smaller and smaller.

Here is the general procedure. We have a function f defined at least on
an interval [a, b]. We cut, or “partition,” the interval into n sections by the The sections [a, x1],

[x1, x2], . . . , [xn−1, b] form
a partition of [a, b].

numbers x0 = a, x1, x2, . . ., xn−1, xn = b, as in Figure 6.2.1. They need not

Figure 6.2.1:

all be of the same length, though usually, for convenience, they will be.
Then we pick a sampling number in each interval, c1 in [x0, x1], c2 in

[x1, x2], . . . , ci in [xi−1, xi], . . . , cn in [xn−1, xn] (as in Figure 6.2.1). In Sec-
tion 6.1, the ci’s were mostly either right-hand or left-hand endpoints or mid-
points. However, they can be anywhere in each section.

Next we bring in the particular function f . (In Section 6.1 the function
was x2.) We evaluate that function at each ci and form the sum

f(c1)(x1 − x0) + f(c2)(x2 − x1) + · · ·+ f(ci)(xi − xi−1) (6.2.1)

+ · · ·+ f(cn−1)(xn−1 − xn−2) + f(cn)(xn − xn−1). (6.2.2)

Rather than continue to write out such a long expression, we choose to take
advantage of the fact that each term in (6.2.1) follows the same general pattern:
for each of the n sections, multiply the function value at the sampling number
by the length of the section. This pattern is easily expressed in the shorthand
Σ-notation as:

n∑
i=1

f(ci)(xi − xi−1). (6.2.3)
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If the length of section i is written as ∆xi = xi − xi−1, the expression for the
sum becomes even shorter:

n∑
i=1

f(ci)∆xi. (6.2.4)

If all the sections have the same length, each ∆xi equals (b − a)/n, since
the length of [a, b] is b − a. Let ∆x denote b−a

n
. We can write (6.2.3) and

(6.2.4) also as

n∑
i=1

f(ci)

(
b− a
n

)
or as

n∑
i=1

f(ci)∆x (6.2.5)

where ∆x = b−a
n

.
The final step is to investigate what happens to the sums of the form (6.2.4)

(or (6.2.5)) as the lengths of all the sections approach 0. That is, we try to
find

lim
all ∆xi approach 0

n∑
i=1

f(ci)∆xi. (6.2.6)

The sums in (6.2.1)–(6.2.5) are called Riemann sums in honor of the nine-
teenth century mathematician, Bernhard Riemann.Bernhard Riemann,

1826–1866, http:
//en.wikipedia.org/

wiki/Bernhard_Riemann.

In advanced mathematics it is proved that if f is continuous on [a, b] then
the sums in (6.2.6) do approach a single number. This brings us to the defini-
tion of the definite integral.

The Definite Integral

DEFINITION (Definite Integral of a function f over an interval
[a, b]) Let f be a continuous function defined at least on the interval
[a, b]. The limit of sums of the form

∑n
i=1 f(ci)∆xi, for partitions

of [a, b] where every ∆xi approaches 0, exists (no matter how the
sampling numbers ci are chosen). The limiting value is called the
definite integral of f over the interval [a, b] and is denoted

b∫
a

f(x) dx.

Gottfried Liebniz,
1646–1716, http:

//en.wikipedia.org/
wiki/Gottfried_Leibniz.

Note: The symbol
∫

comes from “S,” for “sum”. The “dx,” strictly speaking,
is not needed. Both symbols were introduced by Liebniz.

The limit in this definition is a little unusual. It requires the length of
every segment within the partition to approach 0. It is not sufficient to simply
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consider partitions of [a, b] with more and more segments as this does not
prevent segments with lengths that do not approach 0. Another way of stating
this requirement is that the length of the largest segment in the partion must
approach zero. This

EXAMPLE 1 Express the area under y = x2 and above [0, 3] as a definite
integral.
SOLUTION Here the function is f(x) = x2 and the interval is [0, 3]. As we
saw in the previous section, the area equals the limit of Riemann sums

lim
∆x→0+

n∑
i=1

c2
i∆x =

3∫
0

x2 dx. (6.2.7)

�
The dx traditionally suggests the length of a small section of the x-axis

and denotes the variable of integration (usually x, as in this case). The
function f(x) is called the integrand, while the numbers a and b are called
the limits of integration; a is the lower limit of integration and b is the
upper limit of integration.

The symbol
∫ b
a
x2 dx is read as “the integral from a to b of x2”. Freeing

ourselves from the variable x, we could say, “the integral from a to b of the
squaring function”. There is nothing special about the symbol x in “x2.” We
could just as well have used the letter t — or any other letter. (We would
typically pick a letter near the end of the alphabet, since letters near the
beginning are customarily used to denote constants.) The notations

b∫
a

x2 dx,

b∫
a

t2 dt,

b∫
a

z2 dz,

b∫
a

u2 du,

b∫
a

θ2 dθ

all denote the same number, that is, “the definite integral of the squaring
function from a to b”. Taken to the extreme, we could express (6.2.7) as

b∫
a

( )2 d( ).

Usually, however, we find it more convenient to use some letter to name the
independent variable. Since the letter chosen to represent the variable has no
significance of its own, it is called a dummy variable. Later in this chapter
there will be cases where the interval of integration is [a, x] instead of [a, b].
Were we to write

∫ x
a
x2 dx, it would be easy to think there is some relation

between the x in x2 and the x in the upper limit of integration. To avoid
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possible confusion, we prefer to use a different dummy variable and write, for
example,

∫ x
a
t2 dt in such cases.

It is important to realize that area, distance traveled, and volume are
merely applications of the definite integral. (It is a mistake to link the definite
integral too closely with one of its applications, just as it narrows our under-
standing of the number 2 to link it always with the idea of two fingers.) The

definite integral
∫ b
a
f(x) dx is also call the Riemann integral.

Slope and velocity are particular interpretations or applications of the
derivative, which is a purely mathematical concept defined as a limit:derivatives are limits

derivative of f at x = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

Similarly, area, total distance, and volume are just particular interpretations
of the definite integral, which is also defined as a limit:definite integrals are also

limits

definite integral of f over [a, b] = lim
as all ∆xi → 0+

n∑
i=1

f(ci)(xi − xi−1).

The Definite Integral of a Constant Function

To bring the definition down to earth, let us use it to evaluate the definite
integral of a constant function.

EXAMPLE 2 Let f be the function whose value at any number x is 4;
that is, f is the constant function given by the formula f(x) = 4. Use only the
definition of the definite integral to compute

3∫
1

f(x) dx.

SOLUTION In this case, every partition of the interval [1, 3] has x0 = 1 and

Figure 6.2.2:

xn = 3. See Figure 6.2.2. Since, no matter how the sampling number ci is
chosen, f(ci) = 4, the approximating sum equals

n∑
i=1

f(ci)∆x =
n∑
i=1

f(ci)(xi − xi−1) =
n∑
i=1

4(xi − xi−1)

Now

n∑
i=1

4(xi − xi−1) = 4
n∑
i=1

(xi − xi−1) = 4 · (xn − x0) = 4 · 2 = 8.
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This is true because the sum of the widths of the sections is the width of the
interval [1, 3], namely 2. All approximating sums have the same value, namely,
8. For every partition,

n∑
i=1

f(ci)∆x =
n∑
i=1

f(ci)(xi − xi−1) = 8.

Thus, as all sections are chosen smaller, the values of the sums are always 8.
This number must be the limit:

3∫
1

4 dx = 8.

�

Figure 6.2.3:

We could have guessed the value of
∫ 3

1
4 dx by interpreting the definite

integral as as area. To do so, draw a rectangle of height 4 and base coinciding
with the interval [1, 3]. (See Figure 6.2.3.) Since the area of a rectangle is its

base times its height, it follows again that
∫ 3

1
4 dx = 8.

Similar reasoning shows that for any constant function that has the fixed
value c,

b∫
a

c dx = c(b− a) (c is a constant function)

The Definite Integral of x

Exercise 34 shows us how to find
∫ b
a
x dx directly from the definition. Alter-

natively, let us use the “area” interpretation of the definite integral to predict
the value of

∫ b
a
x dx.

When the integrand is positive, that is, 0 < a < b, the area in question then
lies above the x-axis, as shown in Figure 6.2.4(a). Two copies of this region
form a rectangle of width b− a and height a+ b, as shown in Figure 6.2.4(b).
Thus, the area shown in Figure 6.2.4(a) is half of (b − a)(b + a) = b2 − a2.
Hence,

b∫
a

x dx =
b2

2
− a2

2
.

The Definite Integral of x2

We will find
∫ b

0
x2 dx by examining the approximating sums when all the

sections have the same length, as they did in Section 6.1.
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(a) (b)

Figure 6.2.4:

Pick a positive integer n and cut the interval [0, b] into n sections of length
∆x = b/n as in Figure 6.2.5. Then the points of subdivision are 0, ∆x, 2∆x,
. . . , (n− 1)∆x, and n∆x = b.

Figure 6.2.5:

In the typical section [(i− 1)∆x, i∆x] we pick the right-hand endpoint as
the sampling number. Thus the approximating sum is

n∑
i=1

(i∆x)2 (∆x) = (∆x)3

n∑
i=1

i2.

Since ∆x = b/n, these overestimates can be written as

b3

n3

n∑
i=1

i2. (6.2.8)

In Section 6.1 we used geometry to find thatOr, see Exercise 29 in
Section 6.1.

lim
n→∞

1

n3

n∑
i=1

i2 =
1

3
.

Thus, (6.2.8) approaches b3/3 as n increases, and we conclude that

b∫
0

x2 dx =
b3

3
.

Note that when b = 3, we have b3/3 = 9, agreeing with the three problems in
Section 6.1.
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Figure 6.2.6:

A little geometry suggests the value of
∫ b
a
x2 dx, for 0 ≤ a < b. Interpret∫ b

a
x2 dx as the area under y = x2 and above [a, b]. This area is equal to the

area under y = x2 and above [0, b] minus the area under y = x2 and above
[0, a], as shown in Figure 6.2.6. Then

b∫
a

x2 dx =
b3

3
− a3

3
.

The Definite Integral of 2x

EXAMPLE 3 Use the definition of the definite integral to evaluate
∫ b

0
2x dx.

(Assume b > 0.)
SOLUTION Divide the interval [0, b] into n sections of equal length, d = b/n.
This time let’s evaluate the integrand at the left-hand endpoint of each section.
Call this number ci, ci = (i − 1)d. The approximating sum has one term for
each section. The contribution from the ith section is d = width of section

2cid = 2(i−1)dd.

The total estimate is the sum

20d+ 2dd+ 22dd+ · · ·+ 2(i−1)dd+ · · ·+ 2(n−1)dd.

This equals

d
(
1 + 2d + (2d)2 + · · ·+ (2d)i + · · ·+ (2d)n−1

)
. (6.2.9)

The terms inside the large parentheses in (6.2.9) form a geometric series with
n terms, whose first term is 1 and whose ratio is 2d. Thus, its sum is Sum of geometric series:

a+ar+ar2 + · · ·+arn−1 =
a1−rn

1−r .1− (2d)n

1− 2d
.

Therefore this typical underestimate is

d(1− (2d)n)

1− 2d
=
d(1− 2dn)

1− 2d
=
d(1− 2b)

1− 2d
. (6.2.10)

In the last step we used the fact that dn = b. We can rewrite (6.2.10) as

d

2d − 1

(
2b − 1

)
. (6.2.11)

It still remains to take the limit as n increases without bound. To find
what happens to (6.2.11) as n→∞, we must investigate how d

2d−1
behaves as
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d approaches 0 (from the right). Though we haven’t met this quotient before,

we have met its reciprocal, 2d−1
d

. This quotient occurs in the definition of the
derivative of 2x at x = 0:

lim
x→0

2x − 20

x
= lim

x→0

2x − 1

x
.

As we saw in Section 3.5, the derivative of 2x is 2x ln(2). Thus D(2x) at x = 0
is ln(2). Hence

lim
d→0+

d

2d − 1
(2b − 1) = lim

d→0+

1(
2d−1
d

) (2b − 1
)

=
2b − 1

ln(2)
.

We conclude thatIncidentally, 1
ln(2) ≈ 1.443.

b∫
0

2x dx =
1

ln(2)

(
2b − 1

)
.

�

To evaluate
∫ b
a

2x dx with b > a ≥ 0, we reason as we did when we gener-

alized
∫ b

0
x2 dx to

∫ b
a
x2 dx. Namely,

b∫
a

2x dx =

b∫
0

2x dx−
a∫

0

2x dx =
2b − 1

ln(2)
− 2a − 1

ln(2)
=

2b

ln(2)
− 2a

ln(2)
.

Summary

We defined the definite integral of a function f(x) over an interval [a, b]. It is
the limit of sums of the form

∑n
i=1 f(ci)∆xi created from partitions of [a, b].

It is a purely mathematical idea. You could estimate
∫ b
a
f(x) dx with your

calculator – even without having any application in mind. However, the def-
inite integral has many applications: three of them are “area under a curve,”
“distance traveled” and “volume.”

The following table contains a great deal of information. Compare the
first three cases with the fourth, which describes the fundamental definition
of integral calculus. In this table, all the functions, whether cross-sectional
length, velocity, or cross-sectional area, are denoted by the same symbol f(x).

Underlying these three applications is one purely mathematical concept,
the definite integral,

∫ b
a
f(x) dx. The definite integral is defined as a certain

limit; it is a number. It is essential to keep the definition of the number∫ b
a
f(x) dx clear. It is a limit of certain sums.
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Spend some time studying
this table. The concepts it
summarizes will be used
often.f(x)

∑n
i=1 f(ci)(xi − xi−1)

∫ b
a
f(x) dx

Variable length of
cross section of set in
plane

Approximate area of
set in the plane

The area of set in the
plane

Variable velocity Approximation to
the distance traveled

The distance traveled

Variable cross section
of a solid

Approximate of vol-
ume

The volume of a solid

A function Just a certain sum The limit of the sums
as the ∆xi → 0
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EXERCISES for Section 6.2 Key: R–routine,
M–moderate, C–challenging
1.[R] Using the formula for

∫ b
a x

2 dx, find the area

under the curve y = x2 and above the interval

(a) [0, 5]

(b) [0, 4]

(c) [4, 5]

Figure 6.2.7:
2.[R] Figure 6.2.7 shows the curve y = x2. What is
the ratio between the shaded area under the curve and
the area of the rectangle ABCD?

3.[R]

(a) Define “the definite integral of f(x) from a to b,∫ b
a f(x) dx.”

(b) Define the definite integral, using as few mathe-
matical symbols as you can.

(c) Give three applications of the definite integral.

4.[R] Assume f(x) is decreasing for x in [a, b]. When
you form an approximating sum for

∫ b
a f(x) dx with

left-hand endpoints as sampling points, is your esti-
mate too large or too small? Explain (in one or more
complete sentneces).

In Exercises 5 to 8 evaluate the sum

5.[R]

(a)
∑3

i=1 i

(b)
∑7

i=3(2i+ 3)

(c)
∑3

d=1 d
2

6.[R]

(a)
∑4

i=2 i
2

(b)
∑4

j=2 j
2

(c)
∑3

i=1(i2 + i)

7.[R]

(a)
∑4

i=1 1i

(b)
∑6

k=2(−1)k

(c)
∑150

j=1 3

8.[R]

(a)
∑5

i=3
1
i

(b)
∑4

i=0 cos(2πi)

(c)
∑3

i=1 2−i

In Exercises 9 to 12 write each sum in Σ-notation. (Do
not evaluate the sum.)

9.[R]

(a) 1+2+22 +23 + · · ·+
2100

(b) x3+x4+x5+x6+x7

(c) 1
3 + 1

4 + 1
5 +· · ·+ 1

102 +
1

103

10.[R]

(a) 1
2 + 1

3 + · · ·+ 1
100

(b) 1
4 + 1

6 + 1
8 + 1

10 + 1
12 +

1
14

(c) 1
12 + 1

32 + 1
52 + · · ·+

1
1012

11.[R]

(a) x2
0(x1−x0)+x2

1(x2−
x1) + x2

2(x3 − x2)

(b) x2
1(x1−x0)+x2

2(x2−
x1) + x2

3(x3 − x2)

12.[R]

(a) 8t20(t1−t0)+8t21(t2−
t1)+· · ·+8t299(t100−
t99)

(b) 8t21(t1−t0)+8t22(t2−
t1) + · · · + 8t2n(tn −
tn−1)

13.[R]

(a) Use the definition of definite integral to evaluate∫ b
0 e

x dx. (See Example 3.)
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(b) From (a), deduce that, for 0 ≤ a < b,
∫ b
a e

x dx =
eb − ea.

14.[R]

(a) Use the definition of definite integral to evaluate∫ b
0 3x dx.

(b) From (a), deduce that, for 0 ≤ a < b,
∫ b
a 3x dx =

(3b − 3a)/ ln(3).

15.[R] The fact that
∫ b
a f(x) dx =

limn→∞
∑n

i=1 f(ci)∆x provides another way to evalu-
ate some limits of sums that would otherwise be very
challenging to evaluate. Use this idea to write each
of the following limits as a definite integral. (Do not
evaluate the definite integrals.)

(a) lim
n→∞

n∑
i=1

ei/n
1
n

(b) lim
n→∞

n∑
i=1

1

1 +
(
1 + 2i

n

)2 2
n

(c) lim
n→∞

n∑
i=1

sin
(
iπ

n

)
π

n

(d) lim
n→∞

n∑
i=1

(
2 +

3i
n

)4 3
n

In Exercises 16 to 18 evaluate
∑n

i=1 f(ci)(xi−xi−1) for
the given function, partition, and sampling numbers.

16.[R] f(x) =
√
x, x0 =

1, x1 = 3, x2 = 5, c1 = 1,
c2 = 4 (n = 2)
17.[R] f(x) = 3

√
x,

x0 = 0, x1 = 1, x2 = 4,
x3 = 10, c1 = 0, c2 = 1,
c3 = 8 (n = 3)

18.[R] f(x) = 1/x, x0 =
1, x1 = 1.25, x2 = 1.5,
x3 = 1.75, x4 = 2, c1 = 1,
c2 = 1.25, c3 = 1.6, c4 = 2
(n = 4)

19.[M] The velocity of an automobile at time t is v(t)

feet per second. [Assume v(t) ≥ 0.] The graph of v
for t in [0, 20] is shown in Figure 6.2.8(a). Explain,
in complete sentences, why the shaded area under the
curve equals the change in position.

(a) (b)

Figure 6.2.8:
In Exercises 20 to 23 partition the interval into 4 sec-
tions of equal lengths. Estimate the definite integral
using sampling numbers chosen to be (a) the left end-
points and (b) the right endpoints.

20.[M]
∫ 2

1 (1/x2) dx.

21.[M]
∫ 5

1 ln(x) dx.

22.[M]
∫ 5

1
2x

x dx.

23.[M]
∫ 1

0

√
1 + x3 dx.

24.[M] Write the following expression using summa-
tion notation.

cn−1 + cn−2d+ cn−3d2 + · · ·+ cdn−2 + dn−1.

25.[M] Assume that f(x) ≤ −3 for all x in [1, 5].
What can be said about the value of

∫ 5
1 f(x) dx? Ex-

plain, in detail, using the definition of the definite in-
tegral.
26.[M] A rocket moving with a varying speed travels
f(t) miles per second at time t seconds. Let t0, . . . , tn
be a partition of [a, b], and let T1, . . . , Tn be sampling
numbers. What is the physical interpretation of each
of the following quantities?

(a) ti − ti−1

(b) f(Ti)

(c) f(Ti)(ti − ti−1)
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(d)
n∑
i=1

f(Ti)(ti − ti−1)

(e)
∫ b
a f(t) dt

27.[M]

(a) Sketch y = cos(x), for x in [0, π/2].

(b) Estimate, by eye, the area under the curve and
above [0, π/2].

(c) Partition [0, π/2] into three equal sections and
use them to provide an overestimate of the area
under the curve.

(d) Use the same partition to provide an underesti-
mate of the area under the curve.

28.[M] Repeat Exercise 27 for the area under the
curve y = e−x above [0, 3].
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29.[M] For x in [a, b], let A(x) be the area of the
cross section of a solid perpendicular to the x-axis at
x (think of slicing a potato). Let x0, x1, . . . , xn be a
partition of [a, b]. Let c1, . . . , cn be the corresponding
sampling numbers. What is the geometric interpreta-
tion of each of the following quantities? Hint: Refer
to Figure 6.2.8(b).

(a) xi − xi−1

(b) A(ci)

(c) A(ci)(xi − xi−1)

(d)
n∑
i=1

A(ci)(xi − xi−1)

(e)
∫ b
a A(x) dx

30.[M] Show that the volume of a right circular cone
of radius a and height h is πa3h

3 . Hint: First show that
a cross section by a plane perpendicular to the axis of
the cone and a distance x from the vertex is a circle of
radius ax/h. Note: See Exercise 29.

31.[M]

(a) Set up an appropriate definite integral
∫ b
a f(x) dx

which equals the volume of the headlight in Fig-
ure 6.2.9(a) whose cross section by a typical
plane perpendicular to the x-axis at x is a disk
whose radius is

√
x/π. Note: A circle is a curve

and a disk is the flat region inside a circle.

(b) Evaluate the definite integral found in (a).

(a) (b)

Figure 6.2.9:

32.[M]

(a) By considering Figure 6.2.9(b), in particular the
area of region ACD, show that

∫ a
0

√
x dx =

2
3a

3/2.

(b) Use (a) to evaluate
∫ b
a

√
x dx when 0 < a < b.

Exercises 33 to 36 involve “telescoping sums”. Let f be
a function defined at least for positive integers. A sum
of the form

∑n
i=1(f(i+ 1)− f(i)) is called telescoping.

To show why, write the sum out in longhand:

(f(2)−f(1))+(f(3)−f(2))+(f(4)−f(3))+· · ·+(f(n)−f(n−1))+(f(n+1)−f(n)).

Everything cancels except −f(1) and f(n + 1). The
whole sum shrinks like a collapsible telescope, with
value f(n+ 1)− f(1).
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33.[C]

(a) Show that
∑n

i=1

(
(i+ 1)2 − i2

)
=

(n + 1)2 − 1.
Hint: This is a tele-
scoping sum.

(b) From (a), show that∑n
i=1(2i+1) = (n+

1)2 − 1.

(c) From (b), show that
n+ 2

∑n
i=1 i = (n+

1)2 − 1.

(d) From (c), show that∑n
i=1 i = n(n+1)

2 .

34.[C] Exercise 33
showed that

∑n
i=1 i =

n(n+1)
2 . Use this infor-

mation to find
∫ b

0 x dx
directly from the defini-
tion of the definite inte-
gral (not by interpreting
it as an area). No picture
is needed.

35.[C]

(a) Starting with the
telescoping sum∑n

i=1

(
(i+ 1)3 − i3

)
show that

n+3
n∑
i=1

i2+3
n∑
i=1

i = (n+1)3−1.

(b) Use (a) to show that∑n
i=1 i

2 = 1
6n(n +

1)(2n+ 1).

(c) Use (b) to show that∫ b
0 x

2 dx = b3

3 .

Note: See Exercise 34.
36.[C]

(a) Using the tech-
niques of Exer-
cises 33 to 35, find
a short formula for
the sum

∑n
i=1 i

3.

(b) Use the formula
found in (a) to show
that

∫ b
0 x

3 dx = b4

4 .

37.[C] The function f(x) = 1/x has a remarkable
property, namely, for a and b greater than 1,

a∫
1

1
x
dx =

ab∫
b

1
x
dx.

In other words, “magnifying the interval [1, a] by a pos-
itive number b does not change the value of the definite
integral.” The following steps show why this is so.

(a) Let x0 = 1, x1, x2, . . . , xn = a divide the in-
terval [1, a] into n sections. Using left endpoints
write out an approximating sum for

∫ a
1

1
x dx.

(b) Let bx0 = b, bx1, bx2, . . . , bxn = ab divide the in-
terval [b, ab] into n sections. Using left endpoints
write out an approximating sum for

∫ ab
b

1
x dx.

(c) Explain why
∫ a

1
1
x dx =

∫ ab
b

1
x dx.

Figure 6.2.10:
38.[C] Let L(t) =

∫ t
1

1
x dx, t > 1.

(a) Show that L(a) = L(ab)− L(b).

(b) By (a), conclude that L(ab) = L(a) + L(b).

(c) What familiar function has the property listed
in (b)?

Gregory St. Vincent noticed the property (a) in 1647,
and his friend A.A. de Sarasa saw that (b) followed.
Euler, in the 18th century, recognized that L(x) is the
logarithm of x to the base e. In short, the area under
the hyperbola y = 1/x and above [1, a], a > 1, is ln(a).
It can be shown that for a in (0, 1), the negative of the
area below that curve and above [a, 1] is ln(a). (See
C. H. Edwards Jr., The Historical development of the
Calculus, pp. 154–158.)

39.[C] In Exercise 13 it was shown that for 0 ≤ a ≤ b,∫ b
a e

x dx = eb − ea.

(a) Use this information and a diagram to show that∫ eb
ea ln(x) dx = eb(b− 1)− ea(a− 1).

(b) From (a), deduce that for 1 ≤ c ≤ d,∫ d
c ln(x) dx = (d ln(d)− d)− (c ln(c)− c).

(c) By differentiating x ln(x)− x, show that it is an
antiderivative of ln(x).
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40.[C]

(a) To estimate
∫ 2

1
1
x dx divide [1, 2] into n sections

of equal lengths and use right endpoints as the
sampling points.

(b) Deduce from (a) that

lim
n→∞

2n∑
i=n+1

1
i

= lim
n→∞

(
1

n+ 1
+

1
n+ 2

+ · · ·+ 1
2n

)
= area under y = 1/x and above [1, 2].

(c) Let g(n) = 1
n+1 + 1

n+2 + · · · + 1
2n . Show that

1
2 ≤ g(n) < 1 and g(n+ 1) < g(n).

41.[C] (This Exercise is used in Exercise 42.) Con-
sider b > 1 and n a positive integer. Define r(n) by the
equation (r(n))n = b.

(a) In the case b = 5, find r(n) for n = 1, 2, 3, and
10. (Note that r = b1/n, so you could use the xy

key on a calculator.)

(b) The calculations in (a) suggest that
limn→∞ r(n) = 1. Show that this conjecture
is correct. Hint: Start by taking ln of both sides
of the equation (r(n))n = b.

42.[C] For b > 1 and k and number, Pierre Fermat
(1601–1665) found the area under y = xk and above
[1, b] by using approximating sums. However, he did
not cut the interval [1, b] into n sections of equal widths.
Instead, for a given positive integer n, he introduced
the number r such that rn = b. As n increases, r ap-
proaches 1, as Exercise 41 shows. Then he divided the
interval [0, b] into sections using the number r, r2, r3,
. . . , rn−1, as shown in Figure 6.2.11. The n sections
are [1, r], [r, r2], . . . , [rn−1, rn] = [rn−1, b].

(a) Show that the width of the ith section, [ri−1, ri],
is ri−1(r − 1).

(b) Using the left endpoints of each section, obtain
an underestimate of

∫ b
1 x

2 dx.

(c) Show that the estimate in (b) is equal to

b3 − 1
1 + r + r2

.

(d) Find limn→∞
b3−1

1+r+r2
. Hint: Remember that r

depends on n.

Figure 6.2.11:
43.[C] Use Fermat’s approach outlined in Exercise 42,
but with right endpoints as the sampling points, to ob-
tain an overestimate of the area under x2, above [1, b],
and then find its limit as n→∞.

44.[C]

(a) Obtain an underestimate and an overestimate
of
∫ π/2

0 cos(x) dx that differ by at most 0.1.
Note: Remember that the angles are measured
in radians.

(b) Average the two estimates in (a).

(c) If
∫ π/2

0 cos(x) dx is a famous number, what do
you think it is?

45.[C] Is
∫ 2

1
1
x2 dx equal to 1/

∫ 2
1 x

2 dx? Hint: Use
Fermat’s formula from Exercise 42.

46.[C] By considering the approximating sums in the
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definition of a definite integral, show that
∫ 4

3
dx

(x+5)3

equals
∫ 3

2
dx

(x+6)3
.

47.[C] For a continuous function f defined for all x,
is
∫ b
a f(x+ 1) dx equal to

∫ b+1
a+1 f(x) dx?

48.[C] For continuous functions f and g defined for
all x, is

∫ b
a f(x)g(x) dx equal to

∫ b
a f(x) dx

∫ b
a g(x) dx?

49.[C] If f is an increasing function such that f(1) = 3
and f(6) = 7, what can be said about

∫ 4
2 f(x) dx? Ex-

plain.

50.[C]

(a) Using formulas already developed, evaluate
G(x) =

∫ x
1 t

2 dt.

(b) Find G′(x).

(c) Repeat (a) and (b) for G(x) =
∫ x

1 2t dt.

(d) Do you noice what appears to be a coincidence
in (b) and (c)?

Skill Drill

In Exercises 51 to 58 give two antiderivatives for the
given functions.

51.[R] x2

52.[R] 1/x3

53.[R] e−4x

54.[R] 1/(2x+ 1)
55.[R] 2x

56.[R] sin(3x)

57.[R] 3
1+9x2

58.[R] 4√
1−x2
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6.3 Properties of the Antiderivative and the

Definite Integral

In Section 3.6 we defined an antiderivative of a function f(x). It is any function F is an antiderivative of f
when F ′(x) = f(x)F (x) whose derivative is f(x). For instance, x3 is an antiderivative of 3x2. So

is x3 + 2011. Keep in mind that an antiderivative is a function.
In this section we discuss various properties of antiderivatives and definite

integrals. These properties will be needed in Section 6.4 where we obtain a
relation between antiderivatives and definite integrals. That relation will be a
great time-saver in evaluating many (but not all) definite integrals.

We have not yet introduced a symbol for an antiderivative of a function.
We will adopt the following standard notation:

Warning: If a function has
an antiderivative, then it
has lots of antiderivatives.

Notation: Any antiderivative of f is denoted
∫
f(x) dx.

For instance, x3 =
∫

3x2 dx. This equation is read “x3 is an antiderivative of
3x2”. That means simply that “the derivative of x3 is 3x2”. It is true that
x3 + 2011 =

∫
3x2 dx, since x3 + 2011 is also an antiderivative of 3x2. That

does not mean that the functions x3 and x3 + 2011 are equal. All it means
is that these two functions both have the same derivative, 3x2. The symbol∫

3x2 dx refers to any function whose derivative is 3x2.
∫
f(x) dx is a function∫ b
a f(x) dx is a number.If F ′(x) = f(x) we write F (x) =

∫
f(x) dx. The function f(x) is called the

integrand. The function F (x) is called an antiderivative of f(x). The symbol
for an antiderivative,

∫
f(x) dx, is similar to the symbol for a definite integral,∫ b

a
f(x) dx, but they denote vastly different concepts. An antiderivative is often

called an “integral” or “indefinite integral,” but should not be confused with
a definite integral. The symbol

∫
f(x)dx denotes a function — any function

whose derivative is f(x). The symbol
∫ b
a
f(x) dx denotes a number — one

that is defined by a limit of certain sums. The value of the definite integral
may vary as the interval [a, b] changes.

We apologize for the use of such similar notations,
∫
f(x) dx and

∫ b
a
f(x) dx,

for such distinct concepts. However, it is not for us to undo over three centuries
of custom. Rather, it is up to you to read the symbols

∫
f(x) dx and

∫ b
a
f(x) dx

carefully. You distinguish between such similar-looking words as “density”
and “destiny” or “nuclear” and “unclear”. Be just as careful when reading
mathematics.

Properties of Antiderivatives

The tables inside the covers of this book list many antiderivatives. One exam-
ple is

∫
sin(x) dx = − cos(x). Of course, − cos(x)+17 also is an antiderivative
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of sin(x). In Section 4.1 it was shown that if F and G have the same deriva-
tive on an interval, they differ by a constant, C. So F (x) − G(x) = C or
F (x) = G(x) + C. For emphasis, we state this as a theorem.

The following theorem asserts that if you find an antiderivative F (x) for a
function f(x), then any other antiderivative of f(x) is of the form F (x) + C
for some constant C.This result was anticipated

back in Section 3.6.

Theorem. If F and G are both antiderivatives of f on some interval, then
there is a constant C such that

F (x) = G(x) + C.

Many tables of integrals,
including the ones in the

cover of this book, omit the
+C.

When using an antiderivative, it is best to include the constant C. (It was
needed in the study of differential equations in Section 5.2.) For example,∫

5 dx = 5x+ C∫
ex dx = ex + C

and

∫
sin(2x) dx =

−1

2
cos(2x) + C.

Observe that

d

dx

(∫
x3 dx

)
= x3 and

d

dx

(∫
sin(2x) dx

)
= sin(2x). (6.3.1)

Are these two equations profound or trivial? Read them aloud and decide.
The first says, “The derivative of an antiderivative of x3 is x3.” It is trueWe know that the square of

the square root of 7 is 7 and
that eln(3) = 3, both by the

definition of inverse
functions.

simply because that is how we defined the antiderivative. We know that

d

dx

(∫
ln(1 + x2)

(sin(x))2
dx

)
=

ln(1 + x2)

(sin(x))2

even though we cannot write out a formula for an antiderivative of ln(1+x2)
(sin(x))2

. In
other words, by the very definition of the antiderivative,

d

dx

(∫
f(x) dx

)
= f(x).
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Any property of derivatives gives us a corresponding property of antideriva-
tives. Three of the most important properties of antiderivatives are recorded
in the next theorem.

Theorem 6.3.1 (Properties of Antiderivatives). Assume that f and g are Properties of antiderivatives

functions with antiderivatives
∫
f(x) dx and

∫
g(x) dx. Then the following

hold:

A.
∫
cf(x) dx = c

∫
f(x) dx for any constant c.

B.
∫

(f(x) + g(x)) dx =
∫
f(x) dx+

∫
g(x) dx.

C.
∫

(f(x)− g(x)) dx =
∫
f(x) dx−

∫
g(x) dx.

Proof

(A) Before we prove that
∫
cf(x) dx = c

∫
f(x) dx, we stop to see what

it means. This equation says that “c times an antiderivative of f(x) is an
antiderivative of cf(x)”. Let F (x) be an antiderivative of f(x). Then the
equation says “c times F (x) is an antiderivative of cf(x)”. To determine if
this statement is true we must differentiate cF (x) and check that we get cf(x).
So, we compute (cF (x))′:

(cF (x))′ = cF ′(x) [c is a constant]
= cf(x). [F is antiderivative of f ]

Thus cF (x) is indeed an antiderivative of cf(x). Therefore, we may write

cF (x) =

∫
cf(x) dx.

Since F (x) =
∫
f(x) dx, we conclude that

c

∫
f(x) dx =

∫
cf(x) dx.

(B) The proof is similar. We show that
∫
f(x) dx +

∫
g(x) dx is an an-

tiderivative of f(x) + g(x). To do this we compute the derivative of the sum∫
f(x) dx+

∫
g(x) dx:

d
dx

(∫
f(x) dx+

∫
g(x) dx

)
= d

dx

(∫
f(x) dx

)
+ d

dx

(∫
g(x) dx

)
[derivative of a sum]

= f(x) + g(x). [definition of antiderivatives]
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(C) The proof is similar to the one for (b). •

EXAMPLE 1 Find (a)
∫

6 cos(x) dx, (b)
∫

(6 cos(x)+3x2) dx, and (c)
∫

(6 cos(x)−
5

1+x2 dx.
SOLUTION (a) Part (a) of the theorem is used to move the “6” (a constant)
past the integral sign, “

∫
”. We then have:∫

6 cos(x) dx = 6

∫
cos(x) dx = 6 sin(x) + C.

Notice that the “C” is added as the last step in finding an antiderivative.
(b)∫

(6 cos(x) + 3x2) dx =
∫

6 cos(x) dx+
∫

3x2 dx [part (b) of the theorem]
= 6 sin(x) + x3 + C.

Here, notice that separate constants are not needed for each antiderivative;
again only one “C” is needed for the overall antiderivative.
(c)∫ (

6 cos(x)− 5
1+x2

)
dx =

∫
6 cos(x) dx−

∫
5

1+x2 dx [part (c) of the theorem]
= 6 sin(x)− 5

∫
1

1+x2 dx [part (a) of the theorem]
= 6 sin(x)− 5 arctan(x) + C [(arctan(x))′ = 1

1+x2 ]

�
The last two parts of Theorem 6.3.1 extend to any finite number of func-

tions. For instance,∫
(f(x)− g(x) + h(x)) dx =

∫
f(x) dx−

∫
g(x) dx+

∫
h(x) dx.

Theorem. Let a be a number other than −1. Then∫
xa dx =

xa+1

a+ 1
+ C.

Proof (
xa+1

a+ 1

)′
=

(a+ 1)x(a+1)−1

a+ 1
= xa.

•
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EXAMPLE 2 Find
∫ (

3√
1−x2 − 2

x
+ 1

x3

)
dx, 0 < x < 1. If −1 < x < 0, we would

write the antiderivative of
1/x as ln |x|.

SOLUTION∫ (
3√

1− x2
− 2

x
+

1

x3

)
dx = 3

∫
1√

1− x2
dx− 2

∫
1

x
dx+

∫
x−3 dx

= 3 arcsin(x)− 2 ln(x) +
x−2

−2
+ C

= 3 arcsin(x)− 2 ln(x)− 1

2x2
+ C.

�

Properties of Definite Integrals

Some of the properties of definite integrals look like properties of antideriva-
tives. However, they are assertions about numbers, not about functions. In
the notation for the definite integral,

∫ b
a
f(x) dx, b is larger than a. It will be

useful to be able to speak about “the definite integral from a to b” even if b is
less than or equal to a. The following two definitions meet this need and we
will use them in the proofs of the two fundamental theorems of calculus in the
next section.

DEFINITION (Integral from a to b, where b < a.) If b is less
than a, then

b∫
a

f(x) dx = −
a∫
b

f(x) dx.

EXAMPLE 3 Compute
∫ 0

3
x2 dx, the integral from 3 to 0 of x2.

SOLUTION The symbol
∫ 0

3
x2 dx is defined as −

∫ 3

0
x2 dx. As was shown in

Section 6.2,
∫ 3

0
x2 dx = 9. Thus

0∫
3

x2 dx = −9.

�
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DEFINITION (Integral from a to a.)

a∫
a

f(x) dx = 0

Remark: The definite integral is defined with the aid of partitions
of an interval. Rather than permit partitions to have sections of
length 0, it is simpler just to make this definition.

The point of making these two definitions is that now the symbol
∫ b
a
f(x) dx

is defined for any numbers a and b and any continuous function f , assuming
f(x) is defined for x in [a, b]. It is no longer necessary that a be less than b.

The definite integral has several properties, some of which we will be using
in this section and some in later chapters. Justifications of these properties
are provided immediately after the following table.
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Theorem (Properties of the Definite Integral). Let f and g be continuous Properties of antiderivatives

functions, and let c be a constant. Then

1. Moving a Constant Past
∫ b
a∫ b

a
cf(x) dx = c

∫ b
a
f(x) dx

2. Definite Integral of a Sum∫ b
a
(f(x) + g(x)) dx =

∫ b
a
f(x) dx+

∫ b
a
g(x) dx

3. Definite Integral of a Difference∫ b
a
(f(x)− g(x)) dx =

∫ b
a
f(x) dx−

∫ b
a
g(x) dx

4. Definite Integral of a Non-Negative Function

If f(x) ≥ 0 for all x in [a, b], a < b, then

b∫
a

f(x) dx ≥ 0.

5. Definite Integrals Preserve Order
If f(x) ≥ g(x) for all x in [a, b], a < b, then

b∫
a

f(x) dx ≥
b∫

a

g(x) dx.

6. Sum of Definite Integrals Over Adjoining Intervals
If a, b, and c are numbers, then

c∫
a

f(x) dx+

b∫
c

f(x) dx =

b∫
a

f(x) dx.

7. Bounds on Definite Integrals
If m and M are numbers and m ≤ f(x) ≤M for all x between a and b,
then

m(b− a) ≤
∫ b
a
f(x) dx ≤M(b− a) if a < b

and

m(b− a) ≥
∫ b
a
f(x) dx ≥M(b− a) if a > b
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Proof of Property 1

Take the case a < b. The equation
∫ b
a
cf(x) dx = c

∫ b
a
f(x) dx resembles

part (a) of Theorem 6.3.1 about antiderivatives:
∫
cf(x) dx = c

∫
f(x) dx.

However, its proof is quite different, since
∫ b
a
cf(x) dx is defined as a limit of

sums.

We have

∫ b
a
cf(x) dx = lim

all ∆xi → 0

n∑
i=1

cf(ci)∆xi definition of definite integral

= lim
all ∆xi → 0

c

n∑
i=1

f(ci)∆xi algebra (distributive law)

= c lim
all ∆xi → 0

n∑
i=1

f(ci)∆xi property of limits

Figure 6.3.1:

= c
∫ b
a
f(x) dx. definition of definite integral

•

Similar approaches can be used to justify each of the other properties.
However, we pause only to make them plausible by giving an intuitive inter-
pretation of each property in terms of area.

Plausibility of Argument for Property 5

This amounts to the assertion that when the graph of y = f(x) is always at
least as high as the graph of y = g(x), then the area of a region under the
curve y = f(x) is greater than or equal to the area under the curve y = g(x)

Figure 6.3.2:

above a given interval. (See Figure 6.3.) •

Plausibility of Argument for Property 6

In the case that a < c < b and f(x) assumes only positive values, this property
asserts that the area of the region below the graph of y = f(x) and above the
interval [a, b] is the sum of the areas of the regions below the graph and above
the smaller intervals [a, c] and [c, b]. Figure 6.3.2 shows that this is certainly
plausible. •

Plausibility of Argument for Property 7

The inequalities in this property compare the area under the graph of y = f(x)

Figure 6.3.3:

with the areas of two rectangles, one of height M and one of height m. (See
Figure 6.3.3.) In the case a < b, the area of the larger rectangle is M(b − a)
and the area of the smaller rectangle is m(b− a). •
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The Mean-Value Theorem for Definite Integrals

The mean-value theorem for derivatives says that (under suitable hypotheses)
f(b)−f(a) = f ′(c)(b−a) for some number c in [a, b]. The mean-value theorem
for definite integrals has a similar flavor. First, we state it geometrically.

If f(x) is positive and a < b, then
∫ b
a
f(x) dx can be interpreted as the area

of the shaded region in Figure 6.3.4(a).

(a) (b) (c) (d)

Figure 6.3.4:
What can you say about the
case when m = M?Let m be the minimum and M the maximum values of f(x) for x in [a, b].

We assume that m < M . The area of the rectangle of height M is larger
than the shaded area; the area of the rectangle of height m is smaller than the
shaded area. (See Figures 6.3.4(b) and (c).) Therefore, there is a rectangle
whose height h is somewhere between m and M , whose area is the same as
the shaded area under the curve y = f(x). (See Figure 6.3.4(d).) Hence∫ b
a
f(x) dx = (b− a)h.
Now, h is a number betweenm andM . By the Intermediate-Value Property

for continuous functions, in Section 2.5 there is a number c in [a, b] such that
f(c) = h. (See Figure 6.3.4(d).) Hence,

Area of shaded region under curve = f(c)(b− a).

This suggests the mean-value theorem for definite integrals. Mean-Value Theorem for
Definite Integrals

Theorem (Mean-Value Theorem for Definite Integrals). Let a and b be num-
bers, and let f be a continuous function defined at least on the interval [a, b].
Then there is a number c in [a, b] such that

b∫
a

f(x) dx = f(c)(b− a).
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Proof of the Mean-Value Theorem for Definite Integrals, using only properties

of the definite integral
Consider the case when a < b. Let M be the maximum and m the minimum
of f(x) on [a, b]. Property 7, combined with division by b− a, gives

m ≤
∫ b
a
f(x) dx

b− a
≤M,

Because f is continuous on [a, b], by the Intermediate-Value Property of Sec-
tion 2.5 there is a number c in [a, b] such that

f(c) =

∫ b
a
f(x) dx

b− a
,

and the theorem is proved (without depending on a picture). •The case b < a can be
obtained from the case

a < b. (see Exercise 37).
EXAMPLE 4 Verify the mean-value theorem for definite integrals when
f(x) = x2 and [a, b] = [0, 3].

SOLUTION In Section 6.2 it was shown that
∫ 3

0
x2 dx = 9. Since f(x) = x2,

we are looking for c in [0, 3] such that

3∫
0

x2 dx = 9 = c2(3− 0)

That is, 9 = 3c2, so c2 = 9
3

= 3, c =
√

3. (See Figure 6.3.5.) The rectangle−
√

3 is not in [0, 3].
with height f(

√
3) = (

√
3)2 = 3 and base [0, 3] has the same area as the region

under the curve y = x2 and above [0, 3]. �

Figure 6.3.5:

The Average Value of a Function

Let f(x) be a continuous function defined on [a, b]. What shall we mean by
the “average value of f(x) over [a, b]”? We cannot add up all the values of
f(x) for all x’s in [a, b] and divide by the number of x’s, since there are an
infinite number of such x’s. However, we can work with the average (or mean)
of n numbers a1, a2, . . . , an, which is their sum divided by n: 1

n

∑n
i=1 ai. For

example, the average of 1, 2, and 6 is 1
3
(1 + 2 + 6) = 9

3
= 3.

This suggests how to define the “average value of f(x) over [a, b]”. Choose
a large integer n and partition [a, b] into n sections of equal length, ∆x =
(b − a)/n. Let the sampling points ci be the left endpoint of each section,
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c1 = a, c2 = a+ ∆x, . . . , cn = a+ (n− 1)∆x = b−∆x. Then an estimate of
the “average” would be

1

n
(f(c1) + f(c2) + · · ·+ f(cn)). (6.3.2)

Since ∆x = (b − a)/n, it follows that 1
n

= ∆x
b−a . Therefore, (6.3.2) can be

rewritten as
1

b− a

n∑
i=1

f(ci)∆x.

But,
∑n

i=1 f(ci)∆x is an estimate of
∫ b
a
f(x) dx. It follows that, as n → ∞,

this average of the n function values approaches 1
b−a

∫ b
a
f(x) dx. This motivates

the following definition:

DEFINITION (Average Value of a Function over an Interval)

Let f(x) be defined on the interval [a, b]. Assume that
∫ b
a
f(x) dx

exists. The average value or mean value of f on [a, b] is defined
to be

1

b− a

b∫
a

f(x) dx.

Figure 6.3.6:

Geometrically speaking (if f(x) is positive), this average value is the height
of the rectangle that has the base [a, b] and the same area as the area of the
region under the curve y = f(x), above [a, b]. (See Figure 6.3.6.) Observe that
the average value of f(x) over [a, b] is between its maximum and minimum
values for x in [a, b]. However, it is not necessarily the average of these two
numbers.

EXAMPLE 5 Find the average value of 2x over the interval [1, 3].
SOLUTION The average value of 2x over [1, 3] by definition equals

1

3− 1

3∫
1

2x dx.

First, by Example 3 in Section 6.2,

3∫
1

2x dx =
1

ln(2)
(23 − 21) =

6

ln(2)
.
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The average of the
maximum and minimum

values of 2x on [1, 3] is
1
2(23 + 21) = 5. It’s not the
same as the average value.

Hence,

average value of 2x over [1, 3] =
1

3− 1

6

ln(2)
=

3

ln(2)
≈ 4.2381.

�

The Zero-Integral Principle

Let f be a continuous function on the interval [a, b]. Suppose for every subin-

terval [c, d] of [a, b] that
∫ d
c
f(x) dx is zero. For example, the constant function

f(x) = 0 has this property. We now show that this is the only such function
with this property.

Let f(x) be any continuous function on [a, b] that is not the constant func-
tion 0. Then there is a number q in [a, b] such that f(q) = p is not zero. We
consider the case when p is positive. (The case when p is negative can be
treated the same way. See Exercise 46.)

By the Permanence Property (see Theorem 2.5.1 in Section 2.5), there is
a subinterval [c, d] of [a, b], where the function values remain larger than p/2.
The integral of f over [c, d] is at least p/2 times the length of the interval

[c, d], hence not 0. This contradicts the assumption that
∫ d
c
f(x) dx = 0 for

all subintervals [c, d] of the domain of f . As a result, the hypothesis must also
be false and so f is zero on [a, b].This interesting result will

be applied in Section 18.5
and 18.8.

Zero-Integral Principle
Let f be a continuous function on an interval [a, b]. If f has the property that∫ d
c
f(x) dx = 0 for every subinterval [c, d] of [a, b], then f(x) = 0 on [a, b].

WARNING (Antiderivative Terminology) As mentioned earlier,
in the real world an antiderivative is most often called an “integral”
or “indefinite integral”. If you stay alert, the context will always
reveal whether the word “integral” refers to an antiderivative (a
function) or to a definite integral (a number). They are two wildly
different beasts. Even so, the next section will show that there is a
very close connection between them. This connection ties the two
halves of calculus — differential calculus and integral calculus —
into one neat package.
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Summary

We introduced the notation
∫
f(x) dx for an antiderivative of f(x). Using

this notation we stated several properties of antiderivatives.
We defined the symbol

∫ b
a
f(x) dx in the special case when b ≤ a, and

stated various properties of definite integrals.
The mean-value theorem for definite integrals asserts that for a continuous

function f(x),
∫ b
a
f(x) dx equals f(c) times (b− a) for at least one value of c

in [a, b].

The quantity 1
b−a

∫ b
a
f(x) dx is called the average value (or mean value)

of f(x) over [a, b]. It can be thought of as the height of the rectangle whose
area is the same as the area of the region under the curve y = f(x).
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EXERCISES for Section 6.3 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 12 evaluate each antiderivative. Re-
member to add a constant to each answer. Check each
answer by differentiating it.

1.[R]
∫

5x2 dx

2.[R]
∫ (

7/x2
)
dx

3.[R]
∫

(2x−x3+x5) dx

4.[R]
∫ (

6x2 + 2x−1 + 1√
x

)
dx

5.[R]

(a)
∫
ex dx

(b)
∫
ex/3 dx

6.[R]

(a)
∫

1
1+x2 dx

(b)
∫

1√
1−x2

dx

7.[R]

(a)
∫

cos(x) dx

(b)
∫

cos(2x) dx

8.[R]

(a)
∫

sin(x) dx

(b)
∫

sin(3x) dx

9.[R]

(a)
∫

(2 sin(x) +
3 cos(x)) dx

(b)
∫

(sin(2x) +
cos(3x)) dx

10.[R]
∫

sec(x) tan(x) dx

11.[R]
∫

(sec(x))2 dx

12.[R]
∫

(csc(x))2 dx

13.[R] State the mean-value theorem for definite in-
tegrals in words, using no mathematical symbols.

14.[R] Define the average value of a function over an
interval, using no mathematical symbols.

15.[R] Evaluate

(a)
∫ 5

2 x
2 dx

(b)
∫ 2

5 x
2 dx

(c)
∫ 5

5 x
2 dx

16.[R] Evaluate

(a)
∫ 2

1 x dx

(b)
∫ 1

2 x dx

(c)
∫ 3

3 x dx

17.[R] Find

(a)
∫
x dx

(b)
∫ 4

3 x dx

18.[R] Find

(a)
∫

3x2 dx

(b)
∫ 4

1 3x2 dx

19.[R] If 2 ≤ f(x) ≤ 3, what can be said about∫ 6
1 f(x) dx?

20.[R] If −1 ≤ f(x) ≤ 4, what can be said about∫ 7
−2 f(x) dx?
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21.[R] Write a sentence or two, in your own words,
that tells what the symbols

∫
f(x) dx and

∫ b
a f(x) dx

mean. Include examples. Use as few mathematical
symbols as possible.

22.[R] Let f(x) be a differentiable function. In this
exercise you will determine if the following equation is
true or false:

f(x) =
∫

df

dx
(x) dx.

(a) Pick several functions of your choice and test if
the equation is true.

(b) Determine if the equation is always true. Write
a brief justification for your answer. Hint: Read
the equation out loud.

The mean-value theorem for definite integrals asserts
that if f(x) is continuous throughout the interval with
endpoints a and b, then

∫ b
a f(x) dx = f(c)(b − a) for

some number c in [a, b]. In each of Exercises 23 to 26
find f(c) and at least one value of c in [a, b].

23.[R] f(x) = 2x; [a, b] =
[1, 5]

24.[R] f(x) = 5x + 2;
[a, b] = [1, 2]

25.[R] f(x) = x2; [a, b] =
[0, 4]

26.[R] f(x) = x2 + x;
[a, b] = [1, 4]

27.[R] If
∫ 2

1 f(x) dx = 3 and
∫ 5

1 f(x) dx = 7, find

(a)
∫ 1

2 f(x) dx

(b)
∫ 5

2 f(x) dx

28.[R] If
∫ 3

1 f(x) dx = 4 and
∫ 3

1 g(x) dx = 5, find

(a)
∫ 3

1 (2f(x) + 6g(x)) dx

(b)
∫ 1

3 (f(x)− g(x)) dx
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29.[R] If the maximum value of f(x) on [a, b] is 7
and the minimum value on [a, b] is 4, what can be said
about

(a)
∫ b
a f(x) dx?

(b) the mean value of f(x) on [a, b]?

30.[R] Let f(x) = c (constant) for all x in [a, b]. Find
the average value of f(x) on [a, b].

Exercises 31 to 34 concern the average of a function
over an interval. In each case, find the minimum, max-
imum, and average value of the function over the given
interval.

31.[R] f(x) = x2, [2, 3]

32.[R] f(x) = x2, [0, 5]

33.[R] f(x) = 2x, [0, 4]

34.[R] f(x) = 2x, [2, 4]

35.[R] Let a, b, and c be constants. Assume that the
integral of

(
ax2 + bx+ c

)2 over any interval is zero.
Find a, b, and c.

36.[R] Let a and b be constants. Assume that the
integral of aex

3
+ b cos10(x) over every interval is zero.

Find a and b.

37.[M] Prove the mean-value theorem for definite
integrals in the case when b < a. Hint: Use the defi-
nition of

∫ b
a f(x) dx when b < a.

38.[M] Is
∫
f(x)g(x) dx always equal to∫

f(x) dx
∫
g(x) dx? Are they ever equal? (Explain.)

39.[M]

(a) Show that 1
3(sin(x))3 is not an antiderivative of

sin(x))2.

(b) Use the identity (sin(x))2 = 1
2(1 − cos(2x)) to

find an antiderivative of sin(x))2.

(c) Verify your answer in (b) by differentiation.

In Exercises 40 and 41 verify the equations quoted from
a table of antiderivatives (integrals). Just differentiate
each of the alleged antiderivatives and see whether you
obtain the quoted integrand. (The number a is a con-
stant in each case.)

40.[M]
∫
x2 sin(ax) dx =

2x
a2 sin(ax) + 2

a3 cos(ax) −
x2

a cos(ax) + C

41.[M]
∫
x(sin(ax))2 dx =

x2

4 − x
4a sin(2ax) −

1
8a2 cos(2ax) + C

42.[M] Define f(x) =


−x 0 < x ≤ 1
−1 1 < x ≤ 2
1 2 < x ≤ 3

4− x 3 < x ≤ 4

.

(a) Sketch the graphs of y = f(x) and y = (f(x))2

on the interval [0, 4].

(b) Find the average value of f on the interval [0, 4].

(c) The root mean square (RMS) of a function

f on [a, b] is defined as
√

1
b−a

∫ b
a f(x)2 dx. (The

voltage, e.g., 110 volts, for an alternating elec-
tric current is the root mean square of a vary-
ing voltage.) Find the “root mean square” value
of f on the interval [0, 4]. That is, compute√

1
4−0

∫ 4
0 (f(x))2 dx.

(d) Why is it not surprising that your answer in (b)
is zero and your answer in (c) is positive?

43.[M]

Sam: The text makes the average value of a function
on [a, b] too hard.

Jane: How so?

Sam: It’s easy. Just average f(a) and f(b).

Jane: That sure is easier.
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(a) Show that Sam is correct when f(x) is any poly-
nomial of degree 0 or 1.

(b) Is Sam always correct? Explain.
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Exercise 44 describes the famous Buffon neeedle
problem, now over 200 years old. Exercise 47 is re-
lated, but not nearly as famous.
44.[M] On the floor there are parallel lines a distance
d from each other, such as the edges of slats. You
throw a straight wire of length d on the floor at ran-
dom. Sometimes it ends up crossing a line, sometimes
it avoids a line.

(a) Perform the experiment at least 20 times and use
the results to estimate the percentage of times
the wire crosses a line.

(b) If the wire makes an angle θ with a line perpen-
dicular to the lines, show that the probability
that it crosses a line is cos(θ).

(c) Find the average value of that probability. That
average is the probability that the wire crosses a
line.

(d) How close is the experimental value in (a) to the
theoretical value in (c)?

45.[M] Assume that f and g are continuous functions
and that

∫ b
a f(x) dx equals

∫ b
a g(x) dx for every interval

[a, b]. Show that f(x) equals g(x) for all x.

46.[M] Provide the details for the proof of the Zero-
Integral Principle in the case when p is negative.

47.[C] An infinite floor is composed of congruent

square tiles arranged as in a checkerboard. You have a
straight wire whose length is the same as the length of
a side of a square. The edges of the squares form lines
in perpendicular directions. What is the probability
that when you throw the wire at random it crosses two
lines, one in each of the two perpendicular directions?
(This is related to Exercise 44, the classic Buffon nee-
dle problem.) Note: You can check if your answer is
reasonable by carrying out the experiment.

48.[C] The average value of a certain function f(x)
on [1, 3] is 4. On [3, 6] the average value of the same
function is 5. What is its average value on [1, 6]? (Ex-
plain your answer.)

49.[C] This exercise evaluates two definite integrals
that appear often in applications.

(a) Draw the graphs of y = (cos(x))2 and y =
(sin(x))2. On the basis of your picture, decide
how

∫ π/2
0 (cos(x))2 dx and

∫ π/2
0 (sin(x))2 dx com-

pare.

(b) Using (a) and a trigonometric identity, show that

π/2∫
0

(cos(x))2 dx =
π

4
=

π/2∫
0

(sin(x))2 dx.

(c) Evaluate
∫ π

0 (cos(x))2 dx.
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6.4 The Fundamental Theorem of Calculus

Introduction and Motivation
This is the most important
section of the entire book.In this section we obtain two closely related theorems. They are called

the Fundamental Theorems of Calculus I and II, or simply The Fundamental
Theorem of Calculus (FTC). The first part of the FTC provides a way to FTC I gives a shortcut to

evaluating
∫ b
a f(x) dxevaluate a definite integral if you are lucky enough to know an antiderivative

of the integrand. That means that the derivative, developed in Chapter 3, has
yet another application. FTC II gives a way to

evaluate d
dx

(∫ x
a f(t) dt

)
The second fundamental theorem tells how rapidly the value of a definite

integral changes as you change the interval [a, b] over which you are integrating.
This part of the Fundamental Theorem is used to prove the first part of the
FTC.

Motivation for the Fundamental Theorem of Calculus I

In Section 6.2 we found that
∫ b
a
c dx = cb− ca and

∫ b
a
x dx = b2

2
− a2

2
. In the

same section we found that
∫ b
a
x2 dx = b3

3
− a3

3
; in this case our reasoning was

based, on the fact that congruent lopsided tents fill a cube. Finally, using the
formula for the sum of a geometric series, we showed that

∫ b
a

2x dx = 2b

ln(2)
− 2a

ln(2)
.

Notice that all four results follow a similar pattern:∫ b
a
c dx = cb− ca

∫ b
a
x dx = b2

2
− a2

2∫ b
a
x2 dx = b3

3
− a3

3

∫ b
a

2x dx = 2b

ln(2)
− 2a

ln(2)

To describe the similarity in detail, compute an antiderivative of each of
the four integrands: We omit “+C” since only

one antiderivative is needed
here. See Exercises 40 and
41.

∫
c dx = cx

∫
x dx = x2

2∫
x2 dx = x3

3

∫
2x dx = 2x

ln(2)
.

In each case the definite integral equals the difference between the values of an
antiderivative of the integrand evaluated at b and at a, the endpoints of the
interval.

This suggests that maybe for any integrand f(x), the following may be
true: If F (x) is an antiderivative of f(x), then

b∫
a

f(x) dx = F (b)− F (a). (6.4.1)

If this is correct, then, instead of resorting to special tricks to evaluate a definite
integral, such as cutting up a cube or summing a geometric series, we should
look for an antiderivative of the integrand.
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We may reason using “velocity and distance” to provide further evidence
for (6.4.1). Picture a particle moving upwards on the y-axis. At time t it is at
position F (t) on that line. The velocity at time t is F ′(t).

But we saw that the definite integral of the velocity from time a to time b
tells the change in position, that is,

“the definite integral of the velocity = the final position−the initial position”

In symbols,
b∫

a

F ′(t) dt = F (b)− F (a). (6.4.2)

If we give F ′(t) the name f(t), then we can restate (6.4.2) as:

If f(t) = F ′(t), then

b∫
a

f(t) dt = F (b)− F (a).

In other words,

If F is an antiderivative of f , then

b∫
a

f(t) dt = F (b)− F (a).

Formulas we found for the integrands c, x, x2, and 2x and reasoning about
motion are all consistent with

Theorem 6.4.1 (Fundamental Theorem of Calculus I).
If f is continuous on [a, b] and if F is an antiderivative of f thenFTC I

b∫
a

f(x) dx = F (b)− F (a).

In practical terms this theorem says, “To evaluate the definite integral of
f from a to b, look for an antiderivative of f . Evaluate the antiderivative
at b and subtract its value at a. This difference is the value of the definite
integral you are seeking”. The success of this approach hinges on finding an
antiderivative of the integrand f . For many functions, it is easy to find an
antiderivative. For some it is hard, but they can be found. For others, the
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antiderivatives cannot be expressed in terms of the functions met in Chapters 2
and 3, such as polynomials, quotients of polynomials, and functions built up Some techniques for finding

antiderivatives are discussed
in Chapter 7.

from trigonometric, exponential, and logarithm functions and their inverses.
Example 1 shows the power of FTC I.

EXAMPLE 1 Use the Fundamental Theorem of Calculus to evaluate
∫ π/2

0
cos(x) dx.

SOLUTION Since (sin(x))′ = cos(x), sin(x) is an antiderivative of cos(x).
By FTC I,

π/2∫
0

cos(x) dx = sin(
π

2
)− sin(0) = 1− 0 = 1.

This tells us that the area under the curve y = cos(x) and above [0, π/2],

Figure 6.4.1:

shown in Figure 6.4.1 is 1.
This result is reasonable since the area lies inside a rectangle of area 1× π

2
=

π
2
≈ 1.5708 and contains a triangle of area 1

2

(
π
2

)
1 = π

4
≈ 0.7854. �

How would the evaluation be different if we used sin(x) + 5 as the an-
tiderivative of cos(x)?

Motivation for the Fundamental Theorem of Calculus II

Let f be a continuous function such that f(x) is positive for x in [a, b]. For x
in [a, b], let G(x) be the area of the region under the graph of f and above the
interval [a, x], as shown in Figure 6.4.2(a). In particular, G(a) = 0.

(a) (b) (c)

Figure 6.4.2:

We will compute the derivative of G(x), that is,

G′(x) = lim
∆x→0

∆G

∆x
= lim

∆x→0

G(x+ ∆x)−G(x)

∆x
.

(This is one of several occasions when we must go back to the definition of the
derivative as a limit.) For simplicity, keep ∆x positive. Then G(x+∆x) is the
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area under the curve y = f(x) above the interval [a, x + ∆x]. If ∆x is small,
G(x+∆x) is only slightly larger than G(x), as shown in Figure 6.4.2(b). Then
∆G = G(x+∆x)−G(x) is the area of the thin shaded strip in Figure 6.4.2(c).

When ∆x is small, the narrow shaded strip above [x, x + ∆x] resembles a
rectangle of base ∆x and height f(x), with area f(x)∆x. Therefore, it seems
reasonable that when ∆x is small,

∆G

∆x
≈ f(x)∆x

∆x
= f(x).

In short, it seems plausible that

lim
∆x→0

∆G

∆x
= f(x).

Briefly,

G′(x) = f(x).

In words, “the derivative of the area of the region under the graph of f and
above [a, x] with respect to x is the value of f at x”.

Now we state these observations in terms of definite integrals.We use t in the integrand to
avoid using x to denote

both an end of the interval
and a variable that takes
values between a and x.

Let f be a continuous function. Let G(x) =
∫ x
a
f(t) dt. Then we expect

that

d

dx

 x∫
a

f(t) dt

 = f(x).

This equation says that “the derivative of the definite integral of f with respect
to the right end of the interval is simply f evaluated at that end”. This is the
substance of the Fundamental Theorem of Calculus II. It tells how rapidly the
definite integral changes as we change the upper limit of integration.

Theorem 6.4.2 (Fundamental Theorem of Calculus II).
Let f be continuous on the interval [a, b]. DefineFTC II

G(x) =

x∫
a

f(t) dt for all a ≤ x ≤ b.

Then G is differentiable on [a, b] and its derivative is f ; that is,

G′(x) = f(x).
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As a consequence of FTC II, every continuous function is the derivative of
some function. See Exercise 63.

There is a similar theorem for H(x) =
∫ b
x
f(t) dt: H ′(x) = −f(x). A glance

at Figure 6.4.3 shows why there is a minus sign: the area in this figure shrinks

Figure 6.4.3:

as x increases.

EXAMPLE 2 Give an example of an antiderivative of sin(x)
x

.

SOLUTION There are many antiderivatives of sin(x)
x

. Any two antideriva-
tives differ by a constant. These curves can be seen in the slope field for
y′ = sin(x)

x
shown in Figure 6.4.4 (a).

x
1 2 3 4 5 6 7 8 9 10

y(x)

K1.0

K0.5

0

0.5

1.0

(a)

x
1 2 3 4 5 6 7 8 9 10

y(x)

K1.0

K0.5

0

0.5

1.0

(b)

Figure 6.4.4: (a) slope field for y′ = sin(x)
x

and (b) same slope field with solution
with y′(1) = sin(1)

Let G(x) =
∫ x

1
sin(t)
t

dt. By FTC II, G′(x) = sin(x)
x

. The graph of y = G(x)
is shown in Figure 6.4.4 (b). Notice that G(1) = 0. �

You probably expected the answer in Example 2 to be an explicit formula
for the antiderivative expressed in terms of the familiar functions discussed
in Chapters 2 and 3. Recall, from Section 3.6, that the derivative of every
elementary function is an elementary function. Liouville proved that there Joseph Liouville

(1809–1882) http:
//en.wikipedia.org/
wiki/Joseph_Liouville

are (many) elementary functions that do not have elementary antiderivatives.
Nobody will ever find an explicit formula in terms of elementary functions for
an antiderivative of sin(x)

x
. (The proof is reserved for a graduate course.)

EXAMPLE 3 Give an example of an antiderivative of sin(
√
x)√
x

.

SOLUTION This integrand appears more terrifying than sin(x)
x

, yet it does
have an elementary antiderivative, namely −2 cos(

√
x). To check, we differ-

entiate y = −2 cos(
√
x) by the Chain Rule. We have y = −2 cos(u) where
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u =
√
x. Therefore,

dy

dx
=
dy

du

du

dx
= −2(− sin(u))

1

2
√
x

=
sin(
√
x)√
x

.

�
Because the antiderivatives of sin(

√
x)√
x

are elementary functions, it would be

easy to calculate
∫ 2

1
sin(
√
x√

x
dx.More generally,

if H(t) =
∫ t
a f(x) dx,

then H ′(t) = f(t).
See also Exercise 63 .

Any antiderivative of ex is of the form ex + C, an elementary function.
However, no antiderivative of e−x

2
is elementary. Statisticians define the error

function to be erf(x) = 2√
π

∫ x
0
e−t

2/2 dt. Except that erf(0) = 0, there is no

easy way to evaluate erf(x). Since erf(x) is not elementary, it is customary to
collect approximate values of it for various values of x in a table. Approximate
values of special functions such as the error function can also be obtained from
mathematical software and even a few calculators.

Net Area

Figure 6.4.5: The area of
a region below the x-axis is
negative.

When we evaluate
∫ π

0
cos(x) dx, we obtain sin(π) − sin(0) = 0 − 0 = 0.

What does this say about areas? Inspection of Figure 6.4.5 shows what is
happening.

For x in [π/2, π], cos(x) is negative and the curve y = cos(x) lies below the
x-axis. If we interpret the corresponding area as negative, then we see that it
cancels with the area from 0 to π/2. Let us agree that when we say “

∫ b
a
f(x) dx

represents the area under the curve y = f(x)”, we mean that it represents the
area between the curve and the x-axis, with area below the x-axis taken as
negative. This is the net area under y = f(x) on the interval [a, b]. Note that
the net area can be positive, zero, or negative.

EXAMPLE 4 Evaluate
∫ 2

1
1
x2 dx by the Fundamental Theorem of Calcu-

lus I.
SOLUTION In order to apply FTC I we have to find an antiderivative of 1

x2 .
In Section 6.3 it was observed that∫

xa dx =
1

a+ 1
xa+1 + C a 6= −1.

In particular, with a = −2,∫
1

x2
dx =

∫
x−2 dx =

1

(−2) + 1
x(−2)+1 + C =

1

−1
x−1 + C =

−1

x
+ C

By FTC I

2∫
1

1

x2
dx =

(
−1

x
+ C

)∣∣∣∣2
1

=

(
−1

2
+ C

)
−
(
−1

1
+ C

)
=
−1

2
− (−1) =

1

2
.
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Note that the C’s cancel. We do not need the C when applying FTC I.
�

The First Fundamental Theorem of Calculus asserts that

2∫
1

1

x2
dx

︸ ︷︷ ︸
The definite integral:
a limit of sums

=

∫
1

x2
dx

∣∣∣∣2
1︸ ︷︷ ︸

The difference between an
antiderivative evaluated at 2
and at 1

The symbols on the right and left of the equal sign are so similar that it is
tempting to think that the equation is obvious or says nothing whatsoever.

WARNING (Notation) This equation is a special instance of the
First Fundamental Theorem of Calculus, FTC I.

Remark: Often we write
∫

1
x2 dx as

∫
dx
x2 , merging the 1 with the

dx. More generally,
∫ f(x)

g(x)
dx may be written as

∫ f(x) dx
g(x)

.

Some Terms and Notation

The related processes of computing
∫ b
a
f(x) dx and of finding an antiderivative∫

f(x) dx are both called integrating f(x). Thus integration refers to two

separate but related problems: computing a number
∫ b
a
f(x) dx or finding a

function
∫
f(x) dx.

In practice, both FTC I and FTC II are called “the Fundamental Theorem
of Calculus.” The context always makes it clear which one is meant.

Proofs of the Two Fundamental Theorems of Calculus

We now prove both parts of the Fundamental Theorem of Calculus — with-
out referring to motion, area, or concrete examples. The proofs use only the
mathematics of functions and limits. We prove FTC II first; then we will use
it to prove FTC I.

Proof of the Second Fundamental Theorem of Calculus

The Second Fundamental Theorem of Calculus asserts that the derivative of
G(x) =

∫ x
a
f(t) dt is f(x). We gave a convincing argument using areas of

regions. However, since definite integrals are defined in terms of approximat-
ing sums, not areas, we include a proof that uses only properties of definite
integrals.
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Proof of Fundamental Theorem of Calculus II

We wish to show that G′(x) = f(x). To do this we must make use of the
definition of the derivative of a function.

We have

G′(x) = lim
∆x→0

G(x+ ∆x)−G(x)

∆x
(definition of derivative)

= lim
∆x→0

∫ x+∆x

a
f(t) dt−

∫ x
a
f(t) dt

∆x
(definition of G)

= lim
∆x→0

∫ x
a
f(t) dt+

∫ x+∆x

x
f(t) dt−

∫ x
a
f(t) dt

∆x
(property 6 in Section 6.3)

= lim
∆x→0

∫ x+∆x

x
f(t) dt

∆x
(canceling)

= lim
∆x→0

f(c)∆x

∆x
(MVT for Definite Integrals; c be-
tween x and x+ ∆x)

= lim
∆x→0

f(c) (canceling)

= f(x). (continuity of f ; c→ x as ∆x→ 0)

Hence
G′(x) = f(x),

which is what we set out to prove. •

A similar argument shows that

d

dx

b∫
x

f(t) dt = −f(x).

For integrands whose values are positive, the minus sign is to be expected. As
x increases, the interval shrinks, and so the (positive) area under the curve
shrinks as well.

Proof of the First Fundamental Theorem of Calculus

The First Fundamental Theorem of Calculus asserts that if F ′ = f , then∫ b
a
f(x) dx = F (b)−F (a). We persuaded ourselves that this is true by thinking

of f as “velocity” and F as “position”, and also by four special cases (f(x) = c,
f(x) = x, f(x) = x2, and f(x) = 2x). We now prove the theorem, which is an
immediate consequence of the Second Fundamental Theorem of Calculus and
the fact that two antiderivatives of the same function differ by a constant.

Proof of the Fundamental Theorem of Calculus I
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We are assuming that F ′ = f and wish to show that F (b)−F (a) =
∫ b
a
f(x) dx.

Define G(x) to be
∫ x
a
f(t) dt. By FTC II, G is an antiderivative of f . Since F

and G are both antiderivatives of f , they differ by a constant, say C. That is,

F (x) = G(x) + C.

Thus,

F (b)− F (a) = (G(b) + C)− (G(a) + C)
= G(b)−G(a) (C’s cancel)

=
∫ b
a
f(t) dt−

∫ a
a
f(t) dt (definition of G)

=
∫ b
a
f(t) dt (

∫ a
a
f(t) dt = 0)

•

Summary

This section links the two basic ideas of calculus, the derivative (more precisely,
the antiderivative) and the definite integral.

FTC I says that if you can find a formula for an antiderivative F of f , then
you can evaluate

∫ b
a
f(x) dx:

b∫
a

f(x) dx = F (b)− F (a).

FTC II says that if f is continuous then it has an antiderivative, namely
G(x) =

∫ x
a
f(t) dt; that is, G′(x) = f(x). Unfortunately, G might not be an

elementary function. However, a reasonable graph of an antiderivative of f
can be obtained from the slope field for dy

dx
= f(x).
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EXERCISES for Section 6.4 Key: R–routine,
M–moderate, C–challenging

1.[R] State (a) FTC I and (b) FTC II.

2.[R] Using only words, no mathematical symbols,
state the First Fundamental Theorem of Calculus.

3.[R] Using only words, no mathematical symbols,
state the Second Fundamental Theorem of Calculus.

In Exercises 4 and 5 evaluate the given expressions.

4.[R]

(a) x3
∣∣2
1

(b) x2
∣∣2
−1

(c) cos(x)|π0

5.[R]

(a) (x+ sec(x))|π/40

(b)
1
x

∣∣∣∣3
2

(c)
√
x− 1

∣∣10

5

In Exercises 6 to 19 use FTC I to evaluate the given
definite integrals.

6.[R]

2∫
1

5x3 dx

7.[R]

3∫
−1

2x4 dx

8.[R]

4∫
1

(x+ 5x2) dx

9.[R]

2∫
1

(6x− 3x2) dx

10.[R]

π/3∫
π/6

5 cos(x) dx

11.[R]

3π/4∫
π/4

3 sin(x) dx

12.[R]

π/2∫
0

sin(2x) dx

13.[R]

π/6∫
0

cos(3x) dx

14.[R]

9∫
4

5
√
x dx

15.[R]

9∫
1

1√
x
dx

16.[R]

8∫
1

3
√
x2 dx

17.[R]

4∫
2

4
x3

dx

18.[R]

1∫
0

dx

1 + x2

19.[R]

1/2∫
1/4

dx√
1− x2

In Exercises 20 to 25 find the average value of the given
function over the given interval.

20.[R] x2; [3, 5]

21.[R] x4; [1, 2]

22.[R] sin(x); [0, π]

23.[R] cos(x); [0, π/2]

24.[R] (sec(x))2;
[π/6, π/4]

25.[R] sec(2x) tan(2x);
[π/8, π/6]

In Exercises 26 to 33 evaluate the given quantities.
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26.[R] The area of the
region under the curve
y = 3x2 and above [1, 4].

27.[R] The area of the
region under the curve
y = 1/x2 and above [2, 3].

28.[R] The area of the
region under the curve
y = 6x4 and above [−1, 1].

29.[R] The area of the
region under the curve
y =
√
x and above [25, 36].

30.[R] The distance an
object travels from time
t = 1 second to time t = 2
seconds, if its velocity at
time t seconds is t5 feet
per second.

31.[R] The distance an
object travels from time
t = 1 second to time t = 8
seconds, if its velocity at
time t seconds is 7 3

√
t feet

per second.

32.[R] The volume of a solid located between a plane
at x = 1 and a plane located at x = 5 if the cross-
sectional area of the intersection of the solid with the
plane perpendicular to the x-axis through the point
(x, 0) has area 6x3 square centimeters. (See Fig-
ure 6.4.6.)

Figure 6.4.6:
33.[R] The volume of a solid located between a plane
at x = 1 and a plane located at x = 5 if the cross-
sectional area of the intersection of the solid with the
plane perpendicular to the x-axis through the point
(x, 0) has area 1/x3 square centimeters.

34.[R] Let f be a continuous function. Estimate f(7)
if
∫ 7

5 f(x)dx = 20.4 and
∫ 7.05

5 f(x)dx = 20.53.

35.[R] Determine if each of the following expressions
is a function or a number.

(a)
∫
x2 dx

(b)
∫
x2 dx

∣∣3
1

(c)
∫ 3

1 x
2 dx
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36.[R]

(a) Which of these two numbers is defined as a limit
of sums?

∫
x2 dx

∣∣∣∣2
1

and

2∫
1

x2 dx

(b) How is the other number defined?

(c) Why are the two numbers in (a) equal?

37.[R] There is no elementary antiderivative of
sin(x2). Does sin(x2) have an antiderivative? Ex-
plain.

38.[R] True or false:

(a) Every elementary function has an elementary
derivative.

(b) Every elementary function has an elementary an-
tiderivative.

Explain.

39.[R]

(a) Draw the slope field for
dy

dx
=
e−x

x
for x > 0.

(b) Use (a) to sketch the graph of an antiderivative
of e−x

x .

(c) On the slope field drawn in (a), sketch the graph

of f(x) =

x∫
1

e−t

t
dt. (For which one value of x

is f(x) easy to compute?)
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Exercises 40 and 41 illustrate why FTC I can be ap-
plied using any antiderivative of the integrand.
40.[R] Evaluate the definite integral

∫ b
a x dx using

each of the following antiderivatives of f(x) = x.

(a) F (x) = 1
2x

2 + 1.

(b) F (x) = 1
2x

2 − 3.

(c) F (x) = 1
2x

2 + C.

41.[R] Evaluate the definite integral
∫ b
a 2x dx using

each of the following antiderivatives of f(x) = 2x.

(a) F (x) = 1
ln(2)2x + 11.

(b) F (x) = 1
ln(2)2x − 7.

(c) F (x) = 1
ln(2)2x + C.

42.[M] Let F (x) =
∫ x

0 e
t2 dt.

(a) Does the graph of F (x) have inflection points?
If so, find them.

(b) Make a rough sketch of the graph of F (x).

43.[M] Area was used in Section 6.2 to develop∫ b
a x dx = b2

2 −
a2

2 when 0 < a < b. To see that this
result is true for all values of a and b (with b > a) we
will consider these additional cases:

(a) If a < b < 0, work with negative area.

(b) If a < 0 < b, divide the interval [a, b] into two
pieces and work with signed areas.

44.[M] Find dy
dx if

(a) y =
∫

sin(x2) dx

(b) y = 3x+
∫ 3
−2 sin(x2) dx

(c) y =
∫ x
−2 sin(t2) dt

In Exercises 45 to 48 differentiate the given functions.

45.[M]

(a)
∫ x

1 t
4 dt

(b)
∫ 1
x t

4 dt Hint: Re-
write this integral
with x as the upper
limit of integration.

46.[M]

(a)
∫ x

1
3
√

1 + sin(t) dt

(b)
∫ x2

1
3
√

1 + sin(t) dt

Hint: Use the
Chain Rule.

47.[M]
∫ x
−1 3−t dt

48.[M]
∫ 3x

2x t tan(t) dt
(Assume x is in the
interval (−π/6, π/6).)
Hint: First rewrite the in-
tegral as

∫ 0
2x t tan(t) dt +∫ 3x

0 t tan(t) dt.

49.[M] Figure 6.4.7(a) shows the graph of a function
f(x) for x in [1, 3]. Let G(x) =

∫ x
1 f(t) dt. Graph

y = G(x) for x in [1, 3] as well as you can. Explain
your reasoning.

(a) (b)

Figure 6.4.7:

50.[M] Figure 6.4.7(b) shows the graph of a function
f(x) for x in [1, 3]. Let G(x) =

∫ x
1 f(t) dt. Graph

y = G(x) for x in [1, 3] as well as you can. Explain
your reasoning.
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Figure 6.4.8: ARTIST: Change “Sphere” to “Ball”

51.[M] A plane at a distance x from the center of the
ball of radius r, 0 ≤ x ≤ 4, meets the ball in a disk.
(See Figure 6.4.8.)

(a) Show that the radius of the disk is
√
r2 − x2.

(b) Show that the area of the disk is πr2 − πx2.

(c) Using the FTC, find the volume of the ball.

52.[M] Let v(t) be the velocity at time t of an object
moving on a straight line. The velocity may be positive
or negative.

(a) What is the physical meaning of
∫ b
a v(t) dt? Ex-

plain.

(b) What is the physical meaning of the slope of the
graph of y = v(t)? Explain.

(c) What is the physical meaning of
∫ b
a |v(t)| dt? Ex-

plain.

53.[M] Give an example of a function f such that
f(4) = 0 and f ′(x) = 3

√
1 + x2.

54.[M] Let f be a continuous function. Show that
d
dx

∫ b
x f(x) dx = −f(x)

(a) by using the definition of derivative as a limit

(b) by using properties of the definite integral and
FTC II.

55.[M] If f(x) =
∫ x
−1 sin3

(
et

2
)
dt, find f ′(1).

56.[M] If
∫ x

1 f(t)dt = sin3(5x), find f ′(3).

57.[M] Figure 6.4.9 shows the graph of a function f .
Let A(x) be the area under the graph of f and above
the interval [1, x].

(a) Find A(1), A(2), and A(3).

(b) Find A′(1), A′(2), and A′(3).

Figure 6.4.9:
58.[M]

(a) If
∫ x+4
x g(t)dt = 5 for all x, what can be said

about the graph of g?

(b) How would you construct such a function?

59.[M] Find D
(∫ x3

x2 e
t2dt

)
.

60.[M] Find D
(∫ 5

x2 sin10(3t)dt
)

.

61.[M] Find the derivative of cos(t2)
∣∣3x
2x

.
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62.[C] How often should a machine be overhauled?
This depends on the rate f(t) at which it depreciates
and the cost A of overhaul. Denote the time between
overhauls by T .

(a) Explain why you would like to minimize g(T ) =
1
T (A+

∫ T
0 f(t) dt).

(b) Find dg
dT .

(c) Show that if dg
dT = 0, then f(T ) = g(T ).

(d) Is this reasonable? Explain.

63.[C] Let f(x) be a continuous function with only
positive values. Define H(x) =

∫ b
x f(t) dt for all

a ≤ x ≤ b. Let ∆x be positive.

(a) Interpreting the definite integral as an area of a
region, draw the regions whose areas are H(x)
and H(x+ ∆x).

(b) Is H(x+ ∆x)−H(x) positive or negative?

(c) Draw the region whose area is related to H(x+
∆x)−H(x).

(d) When ∆x is small, estimate H(x+ ∆x)−H(x)
in terms of the integrand f .

(e) Use (d) to evaluate the derivative H ′(x):

dH

dx
= lim

∆x→0

H(x+ ∆x)−H(x)
∆x

.

64.[C] Say that you want to find the area of a certain
planar cross-section of a rock. One way to find it is
by sawing the rock in two and measuring the area di-
rectly. But suppose you do not want to ruin the rock.
However, you do have a measuring glass, as shown in
Figure 6.4.10, which gives you excellent volume mea-
surements. How could you use the glass to get a good
estimate of the cross-sectional area?

Figure 6.4.10:
65.[C] Let R be a function with continuous second
derivative R′′. Assume R(1) = 2, R′(1) = 6, R(3) = 5,
and R′(3) = 8. Evaluate

∫ 3
1 R

′′(x) dx. Note: Not all
of the information provided is needed.
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66.[C] Two conscientious calculus students are having
an argument:

Jane:
∫ b
a f(x) dx is a number.

Sam: But if I treat b as a variable, then it is a func-
tion.

Jane: How can it be both a number and a function?

Sam: It depends on what “it” means.

Jane: You can’t get out of this so easily.

Which student is correct? That is, either give two in-
terpretations of “it” or explain why “it” has only one
meaning.

67.[C] The function ex

x does not have an elementary
antiderivative. Show that its reciprocal, x

ex , does have
an elementary antiderivative. Hint: Write x

ex as xe−x

and then experiment for a few minutes.

68.[C] Show that if we knew that every continuous
function has an antiderivative, then FTC I would im-
ply FTC II.

69.[C]

(a) Show that for any constant function, f(x) = c,
the average value of f over [a, b] is the same as
the value of the function at the midpoint of the
interval [a, b].

(b) Give an example of a non-constant function f
such that for any interval [a, b],∫ b

a f(t)dt
b− a

= f

(
a+ b

2

)
.

(c) Show that if a continuous function f on (−∞,∞)
satisfies the equation in (b), it is differentiable.

(d) Find all continuous functions that satisfy the
equation in (b).

70.[C] Find all continuous functions f such that their
average over [0, t] always equals f(t).
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71.[C] Give a geometric explanation of the following
properties of definite integrals:

(a) if f is an even function, then
∫ a
−a f(t)dt =

2
∫ a

0 f(t)dt.

(b) if f is an odd function, then
∫ a
−a f(t)dt = 0.

(c) if f is a periodic function with period p, then,
for any integers m and n,

∫ np
mp f(t)dt = (n −

m)
∫ p

0 f(t)dt.

72.[C] Use FTC II to explain why, if u and v are
differentiable functions,

(a) d
dx

∫ v(x)
a f(t) dt = f(v(x))v′(x)

(b) d
dx

∫ b
u(x) f(t) dt = −f(u(x))u′(x)

(c) d
dx

∫ v(x)
u(x) dt = f(v(x))v′(x)− f(u(x))u′(x)

Hint: In (c), break the integral into two convenient
integrals.

73.[C] For which continuous functions f is the aver-
age value of f on the interval [0, b] a non-decreasing
function of b?
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6.5 Estimating a Definite Integral

It is easy to evaluate
∫ 1

0
x2
√

1 + x3 dx by the Fundamental Theorem of Calcu-

lus, for the integrand has an elementary antiderivative, 2
9
(1 + x3)3/2. (Check

that d
dx

2
9
(1 + x3)3/2 simplifies to x2

√
1 + x3.) However, an antiderivative of√

1 + x3 is not elementary, so
∫ 1

0

√
1 + x3 dx cannot be evaluated so easily. In

this case we have to estimate it. This section describes three ways to do this.

Approximation by Rectangles

The definite integral
∫ b
a
f(x) dx is, by definition, a limit of sums of the form

n∑
i=1

f(ci)(xi − xi−1). (6.5.1)

Any such sum is an estimate of
∫ b
a
f(x) dx.

Figure 6.5.1:

In terms of area, the area of a rectangle gives a local estimate of the area
under the graph of y = f(x) above the interval [xi−1, xi]. See Figure 6.5.1.
The sum of the areas of individual rectangles is an estimate the area under
the curve.

To use rectangles to estimate
∫ b
a
f(x) dx, divide the interval [a, b] into n

sections of equal length by the n + 1 numbers a = x0 < x1 < x2 < · · · <
xn−1 < xn = b. (Choosing the sections to have the same length simplifies
the arithmetic.) The width of each section is h = (b − a)/n. Then choose a
sampling number ci in the ith section, i = 1, 2, . . . , n and form the Riemann
sum

∑n
i=1 f(ci)h. By the very definition of the definite integral, this sum is an

estimate of the definite integral.
Denoting f(xi) by yi, and using the left endpoint xi−1 of each interval

[xi−1, xi] as the sampling number, we have this left endpoint rectangular
estimate

b∫
a

f(x) dx ≈ h(y0 + y1 + y2 + · · ·+ yn−2 + yn−1), (h = (b− a)/n).

If the right endpoints are used, we have the right endpoint rectangular
estimate:
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b∫
a

f(x) dx ≈ h(y1 + y2 + · · ·+ yn−1 + yn), (h = (b− a)/n).

We will illustrate this and other ways to estimate a definite integral by
estimating

∫ 1

0
dx

1+x2 . We chose this integral because it can be easily computed
by the FTC:

1∫
0

dx

1 + x2
= arctan(x)|10 = arctan(1)− arctan(0) =

π

4
≈ 0.785398.

That enables us to judge the accuracy of each method.

EXAMPLE 1 Use four rectangles with equal widths to estimate
∫ 1

0
dx

1+x2 .

Figure 6.5.2:

Use the left endpoint of each section as the sampling number to determine the
height of each rectangle.
SOLUTION Since the length of [0, 1] is 1, each of the four sections of equal
length has length 1

4
. See Figure 6.5.2. The sum of the areas of the rectangles

is
1

1 + 02
· 1

4
+

1

1 +
(

1
4

)2 ·
1

4
+

1

1 +
(

2
4

)2 ·
1

4
+

1

1 +
(

3
4

)2 ·
1

4
,

which equals
1

4

(
1 +

16

17
+

16

20
+

16

25

)
.

This is approximately

1

4
(1.0000 + 0.9411 + 0.8000 + 0.6400) =

1

4
(3.3811) ≈ 0.845294.

�

Figure 6.5.3: ARTIST: in-
dicate height is f(xi) = yi

As Figure 6.5.2 shows, it is an overestimate; it exceeds the definite integral
by about 0.06.

Approximation by Trapezoids

Trapezoids can also be used to find a local estimate of the area under the
graph of y = f(x) above the interval [xi−1, xi]. The basic idea is shown in
Figure 6.5.3.

The area, A, of a trapezoid with base width h and side lengths b1 and
b2 is the product of the base width and the average of the two side lengths:
A = 1

2
(b1 + b2)h. (See Figure 6.5.4.)
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The formula for the trapezoidal estimate of
∫ b
a
f(x) dx follows from an

argument like the one for the rectangular estimate.

Figure 6.5.4:

Let n be a positive integer. Divide the interval [a, b] into n sections of equal
length h = (b− a)/n with

x0 = a, x1 = a+ h, x2 = a+ 2h, . . . , xn = a+ nh = b.

Denote f(xi) by yi. The local estimate of the area under y = f(x) and above
[xi−1, xi] is

1

2
(yi−1 + yi)h.

Summing the n local estimates of area gives the formula for the trapezoidal
estimate of

∫ b
a
f(x) dx:

y0 + y1

2
· h+

y1 + y2

2
· h+ · · ·+ yn−1 + yn

2
· h

Factoring out h/2 and collecting like terms gives us the trapezoidal esti-

Figure 6.5.5:

mate:

b∫
a

f(x) dx ≈ h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn) . (6.5.2)

There are n sections of width h = (b− a)/n, each corresponding to one trape-
zoid. However, the function is evaluated at n + 1 points, including both ends
of the interval [a, b].

Note that y0 and yn have coefficient 1 while all other yi’s have coefficient
2. This is due to the double counting of the edges common to two trapezoids.

If f(x) is a polynomial of the form A + Bx, its graph is a straight line.
The top edge of each approximating trapezoid coincides with the graph. The

Figure 6.5.6:

approximation (6.5.2) in this special case gives the exact value of
∫ b
a
f(x) dx.

There is no error.
Figures 6.5.5 and 6.5.6 illustrate the trapezoidal estimate for the case n = 4.

Notice that in Figure 6.5.5 the function is concave down and the trapezoidal
estimate underestimates

∫ b
a
f(x) dx. On the other hand, when the curve is

concave up the trapezoids overestimate, as shown in Figure 6.5.6. In both
cases the trapezoids appear to give a better approximation of

∫ b
a
f(x) dx than

the same number of rectangles. For this reason we expect the trapezoidal
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method to provide better estimates of a definite integral than we obtain by
rectangles.

EXAMPLE 2 Use the trapezoidal method with n = 4 to estimate
∫ 1

0
dx

1+x2 .

SOLUTION In this case a = 0, b = 1, and n = 4, so h = (1− 0)/4 = 1
4
. The

four trapezoids are shown in Figure 6.5.7. The trapezoidal estimate is

h

2

(
f(0) + 2f

(
1

4

)
+ 2f

(
2

4

)
+ 2f

(
3

4

)
+ f(1)

)
.

Now, h/2 = 1
4
/2 = 1/8. To compute the sum of the five terms involving

Figure 6.5.7: ARTIST: Try
to make top side of trape-
zoids more visible.

values of f(x) = 1
1+x2 , make a list as shown in Table 6.5.1.

xi f(xi) coefficient summand decimal form
0 1

1+02 1 1 · 1
1+0

1.0000
1
4

1

1+( 1
4)

2 2 2 · 1
1+ 1

16

1.8823

2
4

1

1+( 2
4)

2 2 2 · 1
1+ 4

16

1.6000

3
4

1

1+( 3
4)

2 2 2 · 1
1+ 9

16

1.2800

4
4

1

1+( 4
4)

2 1 1 · 1
1+ 16

16

0.5000

Table 6.5.1:

The trapezoidal sum is therefore, approximately,

1

8
(1.0000 + 1.8823 + 1.6000 + 1.2800 + 0.5000) ≈ 1

8
(6.2623) ≈ 0.7827.

Thus
1∫

0

dx

1 + x2
≈ 0.782794.

This estimate differs from the definite integral by about 0.0026, which is much
smaller than the error in the rectangular method, which had an error of 0.06.
�

Comparison of Rectangular and Trapezoidal Estimates

If we divide out the 2 in the trapezoidal estimate, it takes the form

h
(y0

2
+ y1 + y2 + · · ·+ yn−1 +

yn
2

)
. (6.5.3)
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In this form it looks much like the rectangular estimate. It has n+1 summands,
while the rectangular estimate has only n summands. However, if f(a) happens
to equal f(b), that is, y0 = yn, then (6.5.3) can be written either as h(y0 +
y1 + y2 + · · ·+ yn−1) (the left endpoint rectangular estimate) or as h(y1 + y2 +
· · ·+ yn−1 + yn) (the right endpoint rectangular estimate). In this special case

when f(a) = f(b) the three estimates for
∫ b
a
f(x) dx coincide.

Simpson’s Estimate: Approximation by Parabolas
Thomas Simpson,

1710–1761, http:
//en.wikipedia.org/
wiki/Thomas_Simpson

In the trapezoidal estimate a curve is approximated by chords. Simpson’s
estimate for

∫ b
a
f(x) dx approximates the curve by parabolas. Given three

points on a curve, there is a unique parabola of the form y = Ax2 + Bx + C
that passes through them, as shown in Figure 6.5.8. (See Exercise 28.) The
area under the parabola is then used to approximate the area under the curve.

Figure 6.5.8:
Curve: y = f(x),
Parabola: y = Ax2+Bx+
C

The computations leading to the formula for the area under the parabola
are more involved than those for the area of a trapezoid. (They are outlined in
Exercises 28 to 29.) However, the final formula is fairly simple. Let the three
points be (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), with x1 < x2 < x3, x2 − x1 = h,
and x3 − x2 = h, as shown in Figure 6.5.9(a). The shaded area under the
parabola turns out to be

h

3
(f(x1) + 4f(x2) + f(x3)) . (6.5.4)

(a) (b)

Figure 6.5.9: ARTIST: In (a), x2, x3, and x4 should be labeled as x1, x2, and
x3.

To estimate
∫ b
a
f(x) dx, we pick an even number n and use n/2 parabolic

arcs, each of width 2h. As in the trapezoidal method, we start with a partition
of [a, b] into n sections of equal width, h: a = x0 < x1 < x2 < · · · < xn−1 <
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xn = b. Denoting f(xi) by yi, form the sum

h

3
((y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · ·+ (yn−2 + 4yn−1 + yn)) .

Collecting like terms gives us Simpson’s estimate for the definite integral∫ b
a
f(x) dx:

h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn) (6.5.5)

Except for the first and last terms, the coefficients alternate 4, 2, 4, 2, . . . ,
2, 4. To apply (6.5.5), pick an even number n. Then h = (b − a)/n. The
estimate uses n + 1 points, x0, x1, . . . , xn, and n/2 parabolas. Example 3
illustrates the method, with n = 4.

EXAMPLE 3 Use Simpson’s method with n = 4 to estimate
∫ 1

0
dx

1+x2 .

SOLUTION In this case, the estimate takes the form

Figure 6.5.10:

h

3
(y0 + 4y1 + 2y2 + 4y3 + y4)

with h = (1 − 0)/4 = 1/4. There are two parabolas, shown in Figure 6.5.10.
Because the parabolas look almost like the curve, we expect Simpson’s estimate
to be even better than the trapezoidal estimate.

The computations are shown in Table 6.5.2.

xi f(xi) coefficient summand decimal form
0 1

1+02 1 1 · 1
1+0

1.0000
1
4

1

1+( 1
4)

2 4 4 · 1
1+ 1

16

3.7647

2
4

1

1+( 2
4)

2 2 2 · 1
1+ 4

16

1.6000

3
4

1

1+( 3
4)

2 4 4 · 1
1+ 9

16

2.5600

4
4

1

1+( 4
4)

2 1 1 · 1
1+ 16

16

0.5000

Table 6.5.2:

Combining the data in the table with the factor h/3 = 1/12 provides the
estimate

1

12
(1.0000 + 3.7647 + 1.6000 + 2.5600 + 0.5000) =

1

12
(9.4247) ≈ 0.7853.

As the decimal form of
∫ 1

0
dx/(1 + x2) begins 0.78539, this Simpson estimate

is accurate to all four decimal places given. �
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Comparison of the Three Methods

We know the value of
∫ 1

0
dx

1+x2 is 0.78539816, to eight decimal places. Table 6.5.3
compares the estimates made in the three examples to this value.Error = |Exact−Estimate|

Method Estimate Error
Rectangles 0.845294 0.059896
Trapezoids 0.782794 0.002604

Simpson’s (Parabolas) 0.785392 0.000006

Table 6.5.3:

Though each method takes about the same amount of work, the table shows
that Simpson’s method gives the best estimate. The trapezoidal method is
next best. The rectangular method has the largest error. These results should
not come as a surprise. Parabolas should fit the curve better than chords
do, and chords should fit better than horizontal line segments. Note that
the trapezoidal and Simpson’s methods in Examples 2 and 3 used the same
sampling numbers to evaluate the integrand; their only difference is in the
“weights” (coefficients) given the outputs of the integrand.

The size of the error is closely connected to the derivatives of the integrand.
For a positive number k, let Mk be the largest value of

∣∣f (k)(x)
∣∣ for x in [a, b].

Table 6.5.4 lists the general upper bounds for the error when
∫ b
a
f(x) dx is esti-

mated by sections of length h = (b−a)/n. These results are usually developed
in a course on numerical analysis. They can also be obtained by a straightfor-Recall that f (k)(x) is the

kth derivative of f . For
instance, f (2)(x) is the

second derivative.

ward use of the Growth Theorem of Section 5.3 and the Fundamental Theorem
of Calculus. (See Exercises 44 and 45 in this section and Exercise 73 in the
Chapter 6 Summary.) They offer a good review of basic ideas.

Table 6.5.4 expresses the bounds on the size of the error for each method
in terms of h = (b− a)/n and n.

Method Bound on Error Bound on Error
in Terms of h in Terms of n

Rectangles M1(b− a)h M1(b− a)2/n
Trapezoids 1

12
M2(b− a)h2 1

12
M2(b− a)3/n2

Simpson’s (Parabolas) 1
180
M4(b− a)h4 1

180
M4(b− a)5/n4

Table 6.5.4:

The coefficients in the error bounds tell us a great deal. For instance, if
M4 = 0, then there is no error in Simpson’s method. That is, if f (4)(x) = 0
for all x in [a, b], then Simpson’s method produces an exact answer. For in
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this case the error is M4(b− a)h4/180 = 0. As a consequence, for polynomials
of at most degree 3, Simpson’s approximation is exact. (See Exercise 76 in
Section 6.5.)

We know that the trapezoidal method is exact for polynomials of degree at
most one, in other words, for functions whose second derivative is zero. That
suggests that the error in this method is controlled by the size of the second
derivative; Table 6.5.4 shows that it is.

The power of h that appears in the error bound is even more important.
For instance, if you reduce the width h by a factor of 10 (using 10 times as
many sections) you expect the error of the rectangular method to shrink by
a factor of 10, the error in the trapezoidal method to shrink by a factor of
102 = 100, and the error in Simpson’s method by a factor of 104 = 10, 000.
These observations are recorded in Table 6.5.5.

Reduction Factor Expected Reduction
Method of h Factor of Error

Rectangles 10 10
Trapezoids 10 100

Simpson’s (Parabolas) 10 10,000

Table 6.5.5:

Because the error in the rectangular method approaches 0 so slowly as
h→ 0, we will not refer to it further.
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Technology and Definite IntegralsReference: Handheld
Calculator Evaluates

Integrals, William Kahan,
Hewlett-Packard Journal,

vol. 31, no. 8, Aug. 1980,
pp. 23–32,

http://www.cs.
berkeley.edu/~wkahan/
Math128/INTGTkey.pdf.

The trapezoidal method and Simpson’s method are just two examples of what
is called numerical integration. Such techniques are studied in detail in
courses on numerical analysis. While the Fundamental Theorem of Calculus is
useful for evaluating definite integrals, it applies only when an antiderivative
is readily available. Numerical integration is an important tool in estimating
definite integrals, particularly when the FTC cannot be applied. Numerical
integration can always be used to find out something about the value of a
definite integral.
The design of an efficient and accurate general-purpose numerical integration
algorithm is harder than it might seem. Effective algorithms typically divide
the interval into unequal-length sections. The sections can be longer where
the function is tame, that is, almost constant. Shorter sections are used where
the function is wild, that is, changes very rapidly. Large, even unbounded,
intervals can lead to another set of difficulties. Some examples of challenging
definite integrals include:∫ 2

0

√
x(4− x) dx

∫ 1

−1
dx

x2+10−10

∫ 600π

0
(sin(x))2√
x+
√
x+π

dx

The HP-34C was, in 1980, the first handheld calculator to perform numerical
integration. Now this is a common feature on most scientific calculators. The
algorithms used vary greatly, and the details are often corporate secrets. The
techniques are similar to those presented in this section and in Exercise 40.

Summary

Three techniques for estimating definite integral are suggested by the areas
of rectangles, the areas of trapezoids, and the areas under parabolas. We
observed that the error in each method is influenced by a derivative of the
integrand and the distance, h = (b − a)/n, between the numbers at which
we evaluate the integrand. The main difference between the methods is the
coefficients used to weight the function values yi = f(xi). In the left-hand
rectangular estimate the coefficients are 1, 1, 1, . . . , 1, 0 (because yn = f(b) is
not used). In the right-hand rectangular estimate the coefficients are 0, 1, 1,
. . . , 1. In the trapezoidal estimate, they are 1, 2, 2, . . . , 2, 1 and in Simpson’s
estimate they are 1, 4, 2, 4, 2, . . . , 2, 4, 1. A course in numerical analysis
presents several other ways to estimate a definite integral.
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Higher-Order Interpolation Methods and Runge’s Counterexample Carle Runge, 1856–1927,
http://en.wikipedia.
org/wiki/Carle_David_
Tolm%C3%A9_Runge

In the trapezoidal method you pass a line through two points to approximate
the curve. That uses a first-degree polynomial, Ax+B. In Simpson’s method
you pass a parabola through three points, using a second-degree polynomial,
Ax2 +Bx+C. You would expect that as you pass higher-degree polynomials
through more points on the curve you would get even better approximations.
This is not always the case.

For the function f(x) = 1/(1 + 25x2), defined on [−1, 1], known as Runge’s
Counterexample, the higher-degree polynomials passing through equally-
spaced points do not resemble the function. Figure 6.5.11 shows the in-
terpolating polynomials of degree 4 (a), 8 (b), and 16 (c). Notice how
the approximations improve away from the endpoints and exhibit increasingly
large oscillations near the endpoints. These oscillations result in poor esti-
mates of

∫ 1

−1
dx

1+25x2 . A Google search for “Runge’s Counterexample” yields
more information on this function.

1.0

0.0

x

0.5−0.5

0.75

−0.25

1.00.0

0.25

−1.0

0.5

(a)

−0.5

−1.0

x

1.0

0.5

0.5

0.0 1.0
0.0

−0.5−1.0

(b)

0.0

−7.5

−10.0

x

−2.5

0.5

−12.5

−0.5 1.00.0−1.0

−5.0

(c)

Figure 6.5.11: In each figure the thick curve is the graph of Runge’s Coun-
terexample and the thin curve is the graph of the interpolating polynomials
of degree 4 (a), 8 (b), and 12 (c). Notice the very different vertical scales in
these three graphs. EDITOR: Please move these figures inside the box.
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EXERCISES for Section 6.5 Key: R–routine,
M–moderate, C–challenging

In the Exercises, Tn refers to the trapezoidal estimate
with n trapezoids (partition with n sections and n+ 1
points), and Sn refers to Simpson’s estimate with n/2
parabolas (partition with n sections and n+ 1 points)
In Exercises 1 to 8 approximate the given definite in-
tegrals by the trapezoidal estimate with the indicated
Tn.

1.[R]

2∫
0

dx

1 + x2
, T2

2.[R]

2∫
0

dx

1 + x2
, T4

3.[R]

2∫
0

sin(
√
x) dx, T2

4.[R]

2∫
0

sin(
√
x) dx, T3

5.[R]

3∫
1

2x

x
dx, T3

6.[R]

3∫
1

2x

x
dx, T6

7.[R]

3∫
1

cos(x2) dx, T2

8.[R]

3∫
1

cos(x2) dx, T4

In Exercises 9 to 12 use Simpson’s estimate to approx-
imate each definite integral with the given Sn.

9.[R]

1∫
0

dx

1 + x3
, S2

10.[R]

1∫
0

dx

1 + x3
, S4

11.[R]

1∫
0

dx

1 + x4
, S2

12.[R]

1∫
0

dx

1 + x4
, S4

13.[R] Write out T6 for
∫ 4

1 5x dx but do not carry out
any of the calculations.

14.[R] Write out S10 for
∫ 1

0 e
x2
dx but do not carry

out any of the calculations.

15.[R] By a direct computation, show that the trape-
zoidal estimate is not exact for second-order polyno-
mials. Hint: Take the simplest case,

∫ 1
0 x

2 dx.

16.[R] By a direct computation, show that the Simp-
son’s estimate is not exact for fourth-order polynomi-
als. Hint: Take the simplest case,

∫ 1
0 x

4 dx.

17.[R] In an interval [a, b] in which f ′′(x) is positive,
do trapezoidal estimates of

∫ b
a f(x) dx underestimate

or overestimate the definite integral? Explain.

18.[R] The cross-section of a ship’s hull is shown
in Figure 6.5.12(a). Estimate the area of this cross-
section by

(a) T6

(b) S6

Dimensions are in feet. Give your answer to four dec-
imal places.

(a) (b)

Figure 6.5.12:
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19.[R] A ship is 120 feet long. The area of the cross-
section of its hull is given at intervals in the table below:

x 0 20 40 60 80 100 120 feet
area 0 200 400 450 420 300 150 square feet

Estimate the volume of the hull in cubic feet by

(a) the trapezoidal estimate and

(b) Simpson’s estimate.

Give your answer to four decimal places. Hint: What
is largest n you can use in this problem?

20.[R] A map of Lake Tahoe is shown in Fig-
ure 6.5.12(b). Use Simpson’s method and data from
the map to estimate the surface area of the lake. Use
cross-sections parallel to the side of the page. (Each
little square represents a square mile.)

Exercises 21 and 22 present cases in which the maxi-
mum bound on the error is assumed.
21.[R] Show that the error for the trapezoidal es-
timate of

∫ 1
0 x

2dx is exactly (b − a)M2h
2/12 where

a = 0, b = 1, h = 1, and M2 is the maximum value of∣∣D2(x2)
∣∣ for x in [0, 1].

22.[R] Show that the error for the Simpson estimate
of
∫ 1

0 x
4dx is exactly (b− a)M4h

4/180 where a = 0,
b = 1, h = 1/2, and M4 is the maximum value of∣∣D4(x4)

∣∣ for x in [0, 1].

23.[M] Figure 6.5.13(b) shows cross-sections of a pond
in two directions. Use Simpson’s method to estimate
the area of the pond using

(a) vertical cross-sections, three parabolas and

(b) horizontal cross-sections, two parabolas.

24.[M] In the case of trapezoidal estimates, if you
double the length of the interval [a, b] and also the
number of trapezoids, would you expect the error in

the estimates to increase, decrease, or stay about the
same? Explain.

25.[M] In the case of Simpson estimates, if you double
the length of the interval [a, b] and also the number of
parabolas, would you expect the error in the estimates
to increase, decrease, or stay about the same? Explain.
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26.[M]

(a) Fill in this table concerning
∫ 6

0 x
2 dx and its

trapezoidal estimates.∫ 6
0 x

2 dx T1 T2 T3

Value
Error —

(b) Are the errors in (a) proportional to hc for some
constant c? (Recall that h is the width of the
trapezoids.)

27.[M]

(a) Fill in this table concerning
∫ 7

1 dx/(1 + x)2 and
its Simpson estimates.

∫ 7
1 dx/(1 + x)2 S2 S4 S6

Value
Error —

(b) Are the errors in (a) using Sn roughly propor-
tional to hk for some constant k? (Recall that h
is the width of the sections.)
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Exercises 28 to 30 provide the basis of Simpson esti-
mates. For convenience we place the origin of the x-
axis at the midpoint of the interval for which a single
parabola will approximate the function. Because the
interval has length 2h, its ends are −h and h.
28.[M] Let f(x) be a function defined on at least
[−h, h], with f(−h) = y1, f(0) = y2, and f(h) = y3.
Show that there is exactly one parabola P (x) =
Ax2 + Bx + C that passes through the three points
(−h, y1), (0, y2), and (h, y3). (See Figure 6.5.13(a).)

(a) (b)

Figure 6.5.13:
29.[M] Let p(x) = Ax2+Bx+C. Show, by computing
both sides of the equation, that

h∫
−h

p(x) dx =
h

3
(p(−h) + 4p(0) + p(h)) .

This equation, expressed geometrically, was known to
the ancient Greeks. In modern terms it says that Simp-
son’s estimates are exact for polynomials of degree at
most two.

30.[M] Let f(x) = x3. Show that

h∫
−h

f(x) dx =
h

3
(f(−h) + 4f(0) + f(h)) .

This information, combined with Exercise 29, implies
that Simpson’s method is exact for polynomials of de-
gree at most 3.
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31.[M] The table lists the values of a function f at
the given points.

x 1 2 3 4 5 6 7
f(x) 1 2 1.5 1 1.5 3 3

(a) Plot the corresponding seven points on the graph
of f .

(b) Sketch six trapezoids that can be used to esti-
mate

∫ 7
1 f(x) dx.

(c) Find the trapezoidal estimate of
∫ 7

1 f(x) dx.

(d) Sketch, by eye, the three parabolas used in Simp-
son’s method to estimate

∫ 7
1 f(x) dx.

(e) Find Simpson’s estimate of
∫ 7

1 f(x) dx.

32.[M] A function f is defined on [a, b] and f(x),
f ′(x), and f ′′(x) are all positive for x in that interval.
Arrange the following quantities in order of size, from
smallest to largest. (Some may be equal.) Sketches
may help.

(a) the area of the trapezoid with base [a, b] and par-
allel sides of lengths f(a) and f(b)

(b) the area of the “midpoint” rectangle with base
[a, b] and height f((a+ b)/2)

(c) the area of the “right-endpoint” rectangle with
base [a, b] and height f(b)

(d) the area of the “left-endpoint” rectangle with
base [a, b] and height f(a)

(e) the average of (c) and (d)

(f) the trapezoid whose base is [a, b] and
whose top edge lies on the tangent line at
((a+ b)/2, f((a+ b)/2))

(g)
∫ b
a f(x) dx.

Exercises 33 to 35 describe the midpoint estimate,
yet another way to estimate a definite integral.
33.[M] Another way to estimate a definite integral is
by a Riemann sum

∑n
i=1 f(ci)h, where the ci are the

midpoints of the intervals. Call such an estimate with
n sections, Mn. Find M4 for

∫ 1
0 dx/(1 + x2).

34.[M] With the aid of a diagram, show that the
midpoint estimate is exact for functions of the form
f(x) = Ax+B.

35.[M] Assume that f ′′(x) is negative for x in [a, b].
With the aid of a diagram, show that the midpoint
method overestimates

∫ b
a f(x) dx. Hint: Draw a tan-

gent at the point ((a+ b)/2, f((a+ b)/2)).

36.[M] If the Simpson estimate with 4 parabolas es-
timate a certain definite integral with an error of 0.35,
what error would you expect with (a) 8 parabolas? (b)
5 parabolas?

37.[C] The equation in Exercise 28 is called the pris-
moidal formula. Use it to compute the volume of

(a) a sphere of radius a and

(b) a right circular cone of radius a and height h.

Note: The prisomoidal formula was known to the
Greeks. Reference: http://www.mathpages.com/
home/kmath189/kmath189.htm

Exercise 38 provides a review of several basic ideas
as it involves the Fundamental Theorem of Calcu-
lus (FTC I), the chain rule, l’Hôpital’s rule, and the
intermediate-value theorem. The midpoint estimate is
defined in Exercise 33.
38.[C] Assume that f ′′(x) is continuous and negative
for x in [0, 2h]. Then the midpoint estimate, M , for∫ h
−h f(x) dx is too large and the trapezoidal estimate,

T , is too small. The error of the first is M−
∫ h
−h f(x) dx
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and of the second is
∫ h
−h f(x) dx− T . Show that

lim
h→0

M −
∫ h
−h f(x) dx∫ h

−h f(x) dx− T
=

1
2
.

This suggests that the error in the midpoint estimate
when h is small is about half the error of the trape-
zoidal estimate. However, the midpoint estimate is
seldom used because data at midpoints are usually not
available (and because the Simpson estimate provides
an even more accurate estimate using same data as the
trapezoidal estimate).

39.[C] Simpson’s estimate is not exact for fourth-
degree polynomials.

(a) Estimate
∫ h

0 x
4 dx by S2.

(b) What is the ratio between that estimate and∫ h
0 x

4 dx?

(c) What does (b) imply about the ratio between
Simpson’s estimate and

∫ h
0 P (x) dx for any poly-

nomial of degree at most 4?

40.[C] There are many other methods for estimat-
ing definite integrals. Some old methods, which had
been of only theoretical interest because of their messy
arithmetic, have, with the advent of computers, as-
sumed practical importance. This exercise illustrates
the simplest of the so-called Gaussian quadrature
formulas. For convenience, we consider only integrals
over [−1, 1].

(a) Show that

1∫
−1

f(x) dx = f

(
−1√

3

)
+ f

(
1√
3

)
for f(x) = 1, x, x2, and x3.

(b) Let a and b be two numbers, −1 ≤ a < b ≤ 1,
such that

1∫
−1

f(x) dx = f(a) + f(b)

for f(x) = 1, x, x2, and x3. Show that only
a = −1√

3
and b = 1√

3
(or a = 1√

3
and b = −1√

3
)

satisfy this equation.

(c) Show that the Gaussian approximation

1∫
−1

f(x) dx ≈ f
(
−1√

3

)
+ f

(
1√
3

)

has no error when f is a polynomial of degree at
most 3.

(d) Use the formula in (a) to estimate

1∫
−1

dx

1 + x2
.

(e) Compare the answer in (d) to the exact value of
1∫
−1

dx

1 + x2
. How large is the error?

41.[C] Let f be a function such that
∣∣f (2)(x)

∣∣ ≤ 10
and

∣∣f (4)(x)
∣∣ ≤ 50 for all x in [1, 5]. If

∫ 5
1 f(x) dx is to

be estimated with an error of at most 0.01, how small
must h be in

(a) the trapezoidal approximation?

(b) Simpson’s approximation?

42.[C]

Sam: I bet I can find a better way than Simpson’s
estimate to approximate

∫ h
−h f(x) dx using the

same three arguments (−h, 0, and h).

Jane: How so?

Sam: Look at his formula h
3 (f(−h) + 4f(0) + f(h)),

which equals 2h
(

1
6f(−h) + 4

6f(0) + 1
6f(h)

)
.

The 2h is the width of the interval. I can’t
change that.

Jane: What would you change?
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Sam: The weights 1
6 , 4

6 , and 1
6 . I’ll use weights w1, w2,

and w3 and demand that the estimates I get be
exact when the function f(x) is either constant,
x, or x2.

Jane: Go ahead.

Sam: If f(x) = c, a constant, then, because∫ h
−h c dx = 2hc, I must have 2hc = 2h(w1c +
w2c + w3c). That tells me that w1 + w2 + w3

must be 1.

Jane: But you need three equations for three un-
knowns.

Sam: When f(x) = x, I get
∫ h
−h f(x) dx = 0, so

0 = 2h(−w1h + w20 + w3h). Now I know that
w1 equals w3.

Jane: And the third equation?

Sam: With f(x) = x2, I find that 2
3h

3 = 2h3(w1+w3).

Jane: So what are your three w’s?

Sam: A little high school algebra shows they are 1
6 , 4

6 ,
and 1

6 . What a disappointment. But at least I
avoided all the geometry of parabolas. It’s really
all about assigning proper weights.

Check the missing details and show that Sam is right.

43.[C] Another way to estimate a definite integral is
to use Taylor polynomials (discussed in Section 5.4).
If the Maclaurin polynomial P2(x) for f(x) of degree
2 is used to approximate f(x) for x in [0, h], express
the possible error in using

∫ h
0 P2(x) dx to estimate∫ h

0 f(x) dx.

In Section 5.4 we showed why a higher derivative con-
trols the error in using a Taylor polynomial to approx-
imate a function value. Exercises 44 and 45 show
why a higher derivative controls the error in using
the trapezoidal or Simpson estimate of a definite in-
tegral

∫ b
a f(x)dx. (See Exercise 73 in Section 6.5 for

the derivation of the corresponding error estimate for

the midpoint estimate.) In each case h = (b−a)/n and
a function E(t), 0 ≤ t ≤ h, is introduced. The “local
error” is E(h), that is, the error in using one trapezoid
of width h or one parabola of width 2h. Once E(h)
is controlled by a higher derivative, we multiply by n,
where nh = b − a, to obtain a measure of the total
error in estimating

∫ b
a f(x) dx. The argument involves

both FTC I and FTC II and provides a review of basic
concepts.
44.[C] (The error in the trapezoid estimate.) As
usual, let h = (b − a)/n. We will estimate the error
for a single section of width h and then multiply by n
to find the error in estimating

∫ b
a f(x) dx. For conve-

nience, we move the graph so the interval (of length h)
is [0, h].

(a) Show that the error when using T1 is E(h) =∫ h
0 f(x) dx− h

2 (f(0) + f(h)).

(b) For t in [0, h] let E(t) =
∫ t

0 f(x) dx − t
2(f(0) +

f(t)). Show that E(0) = 0, E′(0) = 0, and
E′′(t) = − t

2f
′′(t).

(c) Let M be the maximum of f ′′(x) on [a, b] and
m be the minimum. Show that −mt2 ≥ E′′(t) ≥
−Mt

2 .

(d) Using (b) and (c), show that −mt
2

4 ≥ E′(t) ≥
−Mt2

4 .

(e) Show that −mt
3

12 ≥ E(t) ≥ −Mt3

12 .

(f) Show that −mh
3

12 ≥ E(h) ≥ −Mh3

12 .

(g) Show that −m(b−a)h2

12 ≥
∫ b
a f(x) dx − Tn ≥

−M(b−a)h2

12 .

(h) Show that
∫ b
a f(x) dx − Tn = −f ′′(c)(b−a)h2

12 for
some number c in [a, b].

(i) Deduce that
∣∣∣∫ ba f(x) dx− Tn

∣∣∣ ≤ M2(b−a)h2

12 ,
where M2 is the maximum of |f ′′(x)| for x in
[a, b].
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45.[C] (The error in the Simpson estimate.) Now n
is even and [a, b] is divided into n sections of width
h = (b − a)/n. The Simpson estimate is based on
n/2 intervals of length 2h. We will place the origin
at the midpoint of an interval, so that its ends are
−h and h. In this case we wish to control the size of
E(h) =

∫ h
−h f(x) dx − h

3 (f(−h) + 4f(0) + f(h)). In-
troduce the function E(t), for −h ≤ t ≤ h, defined by
E(t) =

∫ t
−t f(x) dx− t

3(f(−t) + 4f(0) + f(t)).

(a) Show that

E′(t) =
2
3

(f(t)+f(−t))−4
3
f(0)− t

3
(f ′(t)−f ′(−t)).

(b) Show that E′′(t) = 1
3(f ′(t)− f ′(−t))− t

3(f ′′(t) +

f ′′(−t)).

(c) Show that E′′′(t) = − t
3(f ′′′(t)− f ′′′(−t)).

(d) Show that E′′′(t) = −2t2

3 f (4)(c) for some c in
[−h, h].

(e) Show that E(0) = E′(0) = E′′(0) = 0.

(f) Let M4 be the maximum of |f (4)(t) on [a, b].
Show that |E(t)| ≤ 2t5

180M4.

(g) Deduce that
∣∣∣∫ ba f(x) dx− Sn

∣∣∣ ≤ M4(b−a)h4

180 .
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6.S Chapter Summary

Chapter 6 introduced the second major concept in calculus, the definite inte-
gral, defined as a limit:

b∫
a

f(x) dx = lim
max ∆xi→0

n∑
i=1

f(ci)∆xi

For a continuous function this limit always exists and
∫ b
a
f(x) dx can be viewed

as the (net) area under the graph of y = f(x) on the interval [a, b]. Both the
definite integral and an antiderivative of a function f are called “integrals.”
Context tells which is meant. An antiderivative is also called an “indefinite
integral.”

The definite integral, in contrast to the derivative, gives global information.

Integrand: f(x) Integral:
∫ b
a
f(x) dx

velocity change in position
speed (|velocity|) distance traveled

cross-sectional length of plane region area of a plane region
cross-sectional area of solid volume of solid
rate bacterial colony grows total growth

As the first and last of these applications show, if you compute the def-
inite integral of the rate at which some quantity is changing, you get the
total change. To put this in mathematical symbols, let F (x) be the quan-
tity present at time x. Then F ′(x) is the rate at which the quantity changes.

Thus
∫ b
a
F ′(x) dx equals the change in F (x) as x goes from a to b, which is

F (b) − F (a). In short,
∫ b
a
F ′(x) dx = F (b) − F (a). This is another way of

stating the Fundamental Theorem of Calculus, because F is an antiderivative
of F ′.

That equation gives a shortcut for evaluating many common definite in-
tegrals. However, finding an antiderivative can be tedious or impossible.
For instance, exp(x2) does not have an elementary antiderivative. However,
continuous functions do have antiderivatives, as slope fields suggest. Indeed
G(x) =

∫ x
a
f(t) dt is an antiderivative of the integrand.

One way to estimate a definite integral is to employ one of the sums∑n
i=1 f(ci) ∆xi that appear in its definition.

A more accurate method, which involves the same amount of arithmetic,
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uses trapezoids. Then the estimate takes the form

b∫
a

f(x) dx ≈ h

2
(f(x0) + 2f(x1) + 2f(x2) + . . .+ 2f(xn−1) + f(xn)) ,

where consecutive xi’s are a fixed distance h = (b− a)/n apart. In Simpson’s
method the graph is approximated by parts of parabolas, n is even, and the
estimate is

h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . .+ 2f(xn−2) + 4f(xn−1) + f(xn)) .

The remaining chapters are simply elaborations of the derivative and the
definite integral or further applications of them. For instance, instead of in-
tegrals over intervals, Chapter 17 deals with integrals over sets in the plane
or in space. Chapter 15 treats derivatives of functions of several variables. In
both cases the definitions involve limits similar to those that appear in the
definitions of the derivative and the definite integral. That is one reason not
to lose sight of those two definitions in their many applications.

EXERCISES for 6.S Key: R–routine, M–moderate, C–challenging

1.[R] State FTC II in words, using no mathematical
symbols. (It refers to F (b)− F (a).)

2.[R] State FTC I in words, using no mathematical
symbols. (It refers to the derivative of

∫ x
a f(t) dt.)

Evaluate the definite integrals in Exercises 3 to 16.

3.[R]
∫ 2

1 (2x3 +3x−5) dx

4.[R]
∫ 7

5
3
x dx

5.[R]
∫ 4

1
dx√
x

6.[R]
∫ 4

1
x+2x3
√
x

dx

7.[R]
∫ 1

0 x(3 + x) dx

8.[R]
∫ 2

0 (2 + 3x)2 dx

9.[R]
∫ 2

1
(2+3x)2

x2 dx

10.[R]
∫ 2

1 e
2x dx

11.[R]
∫ π

0 sin(3x) dx

12.[R]
∫ π/4

0 sec2(x) dx

13.[R]
∫ √2/2

0
3 dx√
1−x2

dx

14.[R]
∫ π/4

0 cos(x) dx

15.[R]
∫ π/4

0 sec(x) tan(x) dx

16.[R]
∫ √2/2

1/2
dx

x
√
x2−1

In Exercises 17 to 24 find an antiderivative of the given

function by guess and experiment. Check your answer
by differentiating it.

17.[R] (2x+ 1)5

18.[R] 1
(2x+1)5

19.[R] 1
x+1

20.[R] 1
2x+1

21.[R] ln(x)

22.[R] x sin(x)

23.[R] sin(2x)

24.[R] xex
2

Use Simpson’s estimate with three parabolas (n = 6)
to approximate the definite integrals in Exercises 25
and 26.

25.[R]
∫ π/2

0 sin(x2) dx 26.[R]
∫

1 2
√

1 + x2 dx

27.[R] Use the trapezoidal estimate with n = 6 to
estimate the integral in Exercise 25.

28.[R] Use the trapezoidal estimate with n = 6 to
estimate the integral in Exercise 26.
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29.[R]

(a) What is the area under y = 1/x and above [1, b],
b > 1?

(b) Is the area under y = 1/x and above [1,∞) finite
or infinite?

(c) The region under y = 1/x and above [1, b] is ro-
tated around the x-axis. What is the volume of
the solid produced?

30.[R] The basis for this chapter is that if f is con-
tinuous and x > a, then d

dx

∫ x
a f(t) dt = f(x).

(a) Review how this equation was obtained.

(b) Use a similar method to show that, if x < b, then
d
dx

∫ b
x f(t) dt = −f(x).
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31.[R] Let f(x) and g(x) be differentiable functions
with f(x) ≥ g(x) for all x in [a, b], a < b.

(a) Is f ′(x) ≥ g′(x) for all x in [a, b]? Explain.

(b) Is
∫ b
a f(x)dx ≥

∫ b
a g(x)dx? Explain.

32.[R] Find D
(∫ x3

x2 e
−t2dt

)
.

33.[R]

Jane: I’m not happy. The text says that a definite
integral measures area. But they never defined
“area under a curve.” I know what the area of
a rectangle is: width times length. But what
is meant by the area under a curve? If they
say, “Well, its the definite integral of the cross-
sections,” that won’t do. What if I integrate
cross-sections that are parallel to the x-axis in-
stead of the y-axis? How do I know I’ll get the
same answer? Once again, the authors are hop-
ing no one will notice a big gap in their logic.

Is Jane right? Have the authors tried to slip something
past the reader?

34.[M] Let Tn be the trapezoidal estimate of∫ b
a f(x) dx with n trapezoids and Mn be the mid-

point estimate with n sections. Show that 1
3Tn + 2

3Mn

equals the Simpson estimate S2n with n parabolas.
Hint: Consider a typical interval of length h.

35.[M] A river flows at the (varying) rate of r(t) cubic
feet per second.

(a) Approximate how many cubic feet passes during
the short time interval from time t to time t+∆t
seconds.

(b) How much passes from time t1 to time t2 sec-
onds?

36.[M] Let f(x) = xe−x for x ≥ 0. For which interval

of length 1 is the area below the graph of f and above
that interval a maximum?

37.[M] Let f(x) = x/(x+ 1)2 for x ≥ 0.

(a) Graph f , showing any extrema.

(b) Looking at your graph, estimate for which inter-
val of length one, the area below the graph of f
and above the interval is a maximum.

(c) Using calculus, find the interval in (b) that yields
the maximum area.

38.[M]

(a) Estimate
∫ 1

0
sin(x)
x dx by approximating sin(x) by

the Taylor polynomial P6(x; 0).

(b) Use the Lagrange bound on the error to bound
the error in (a).

39.[M]

(a) Estimate
∫ 3

1
ex

x dx by using the Taylor polyno-
mial P3(x; 2) to approximate ex. (To avoid com-
puting e2, approximate e by 2.71828.)

(b) Use the Lagrange bound on the error to bound
the error in (a).

40.[M] Assume f(2) = 0 and f ′(2) = 0 and f ′′(x) ≤ 5
for all x in [0, 7]. Show that

∫ 3
2 f(x)dx ≤ 5/6.

41.[M] Find lim
t→0

∫ t
0

(
ex

2 − 1
)
dx∫ t

0 sin(2x2) dx
.

42.[M] Let G(t) =
∫ t

0 cos5(θ) dθ for t in [0, 2π].

(a) Sketch a rough graph of y = G′(t).

(b) Sketch a rough graph of y = G(t).
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(a) (b)

(c)

Figure 6.S.1:

43.[M] Figure 6.S.1(a) shows a triangle ABC in-
scribed in the parabola y = x2 A = (−a, a2),
B = (0, 0), and C = (a, a2). Let T (a) be its
area and P (a) the area bounded by AC and the
parabola above the interval [−a, a]. Find lima→0

T (a)
P (a) .

Note: Archimedes established a much more general
result. In Figure 6.S.1(b) the tangent line at B is par-
allel to AC. He determined for any chord AC the ratio
between the area of triangle ABC and the area of the
parabolic section .

Usually we use a sum to estimate a definite integral.
We can also use a definite integral to estimate a sum.
In Exercises 44 and 45, rewrite each sum so that it be-
comes the sum estimating a definite integral. Then use
the definite integral to estimate the sum.

44.[M] 1
100

∑100
i=1

1
i2

45.[M]
∑100

n=51
1
n

46.[M]

(a) Show that the average value of cos(θ) for θ in
[0, π/2] is about 0.637.

(b) The average in (a) is fairly large, being much
more than half of the maximum value of cos(θ).
Why is that good news for a farmer or solar en-
gineer on Earth who depends on heat from the
sun? Hint: See Figure 6.S.1(c).

47.[M] Assume f ′ is continuous on [0, t].

(a) Find the derivative of F (t) = 2
∫ t

0 f(x)f ′(x) dx−
f(t)2.

(b) Give a shorter formula for F (t).

48.[M] Find a simple expression for the function
F (t) =

∫ t
1 cos(x2) dx−

∫ t2
1

cos(u)
2
√
u
du.

49.[M] A tent has a square base of side b and a pole
of length b/2 above the center of the base.

(a) Set up a definite integral for the volume of the
tent.

(b) Evaluate the integral in (a) by the Fundamental
Theorem of Calculus.

(c) Find the volume of the tent by showing that six
copies of it fill up a cube of side b.

50.[M]

Sam: I can get the second FTC, the one about F (b)−
F (a), without all that stuff in the first FTC.

Jane: That would be nice.

Sam: As usual, I assume F ′ is continuous and∫ b
a F
′(x)dx exists. Now, F (b)−F (a) is the total

change in F . Well, bust up [a, b] by t0, t1, . . . , tn
in the usual way. Then the total change is just
the sum of the changes in F over each of the n
intervals, [ti−1, ti], i = 1, 2, . . . , n.
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Jane: That’s a no-brainer, but then what?

Sam: The change in F over the typical interval is
F (ti) − F (ti−1). By the Mean Value Theorem
for F , that equals F ′(t∗i )(ti− ti−1) for some t∗i in
the ith interval. The rest is automatic.

Jane: I see. You let all the intervals get shorter and
shorter and the sums of the F ′(t∗i )(ti − ti−1) ap-
proach

∫ b
a F
′(x) dx. But they are all already

equal to F (b)− F (a).

Sam: Pretty neat, yes?

Jane: Something must be wrong.

Is anything wrong?

Calculus October 22, 2010



504 CHAPTER 6 THE DEFINITE INTEGRAL

51.[M]

Sam: There are two authors and they are both wrong.

Jane: How so?

Sam: Light can be both a wave and a particle, right?

Jane: Yes.

Sam: Well the definite integral is both a number and
a function.

Jane: Did you get enough sleep?

Sam: This is serious. Take
∫ b

0 x
2. That equals b3/3.

Right?

Jane: So far, right.

Sam: Well, as b varies, so does b3/3. So it’s a func-
tion.

Jane: . . .

What is Jane’s reply?

52.[M]

(a) Graph y = ex for x in [0, 1].

(b) Let c be the number such that the area under the
graph of y = ex above [0, c] equals the area un-
der the graph above [c, 1]. Looking at the graph
in (a), decide whether c is bigger or smaller than
1/2.

(c) Find c.

53.[M] Find lim∆x→0

(
1

∆x

∫ 7+∆x
5 ex

3
dx− 1

∆x

∫ 7
5 e

x3
dx
)
.

54.[M] Find lim∆x→0

(
1

∆x

∫ 7
5+∆x e

x3
dx− 1

∆x

∫ 7
5 e

x3
dx
)
.

55.[M] A company is founded with capital investment
A. It plans to have its rate of investment proportional
to its total investment at any time. Let f(t) denote
the rate of investment at time t.

(a) Show that there is a constant k such that f(t) =
k(A+

∫ t
0 f(x)dx) for any t ≥ 0.

(b) Find a formula for f .

There are two definite integrals in each of Exercises 56
to 59. One can be evaluated by the FTC, the other
not. Evaluate the one that can be evaluated by the
FTC and approximate the other by Simpson’s estimate
with n = 4 (2 parabolas).

56.[M]
∫ 1

0 (ex)2 dx;∫ 1
0 e

x2
dx.

57.[M]
∫ π/4

0 sec(x2) dx;∫ π/4
0 (sec(x))2 dx.

58.[M]
∫ 3

1 e
x2
x dx;∫ 3

1
ex

2

x dx.

59.[M]
∫ 0.4

0.2
dx√
1−x2

;∫ 0.4
0.2

dx√
1−x3

.

60.[M] If F ′(x) = f(x), find an antiderivative for
(a) g(x) = x + f(x), (b) g(x) = 2f(x), and (c)
g(x) = f(2x).

61.[M] John M. Robson in The Physics of Fly Casting,
American J. Physics 58(1990), pp. 234–240, lets the
reader fill in the calculus steps. For instance, he has
the equation

µ(4z + h)ż2 = 2

t∫
0

crhρż3dt+ T (0)

where z is a function of time t, ż = dz/dt, and
z̈ = dz/dt2. He then states, “differentiating this gives

(2µ− crhρ)ż2 + (4z + h)µz̈ = 0.”

Check that he is correct.

62.[C] Jane is running from a to b, on the x-axis.
When she is at x, her speed is v(x). How long does it
take her to go from a to b?

63.[C]
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(a) Find all continuous functions f(t), t ≥ 0, such
that

∫ x2

0 f(t) dt = 3x3. x ≥ 0.

(b) Check that they satisfy the equation in (a).
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64.[C] Let f(x) be defined for x in [0, b], b > 0. As-
sume that f(0) = 0 and f ′(x) is positive.

(a) Use Figure 6.S.2(a) to show that
∫ b

0 f(x) dx +∫ f(b)
0 (invf)(x) dx = bf(b).

(b) As a check on the equation in (a), differentiate
both sides of it with respect to b. You should get
a valid equation.

(c) Use (a) to evaluate
∫ 1

0 arcsin(x) dx.

(a)

(b)

Figure 6.S.2:

65.[C]

(a) Verify, without using the FTC, that∫ 2
0

√
x(4− x) dx = π. Hint: What region has

an area give by that integral?

(b) Approximate the definite integral in (a) by the
trapezoidal estimate with 4 trapezoids and also
with 8 trapezoids.

(c) Compute the error in each case.

(d) By trial-and-error, estimate how many trape-
zoids are needed to have an approximation that
is accurate to three decimal places?

(e) Why is the error bound for the trapezoidal esti-
mate of no use in (d)?

66.[C]

(a) Approximate the definite integral in Exercise 65
by Simpson’s estimate with 2 parabolas and
again with 4 parabolas. (These use the same
number of arguments as in Exercise 65.)

(b) Compute the error in each case.

(c) By trial-and-error, estimate how many parabo-
las are needed to have an estimate accurate to
3 decimal places. Hint: Use your calculator or
computer to automate the calculations.

(d) Why is the error bound for the Simpson’s esti-
mate of no use in (c)?

67.[C] In his Principia, published in 1607, Newton ex-
amined the error in approximating an area by rectan-
gles. He considered an increasing, differentiable func-
tion f defined on the interval [a, b] and drew a figure
similar to Figure 6.S.2(b). All rectangles have the same
width h. Let R equal the sum of the areas of the rect-
angles using right endpoints and let L equal the sum of
the areas of the rectangles using left endpoints. Let A
be the area under the curve y = f(x) and above [a, b].
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(a) Why is R− L = (f(b)− f(a))h?

(b) Show that any approximating sum for A, formed
with rectangles of equal width h and any sam-
pling points, differs from A by at most (f(b) −
f(a))h.

(c) Let M1 be the maximum value of |f ′(x)| for x in
[a, b]. Show that any approximating sum for A
formed with equal widths h differs from A by at
most M1(b− a)h.

(d) Newton also considered the case where the rect-
angles do not necessarily have the same widths.
Let h be the largest of their widths. What can
be said about the error in this case?

68.[C] Let f be a continuous function such that
f(x) > 0 for x > 0 and

∫ x
0 f(t) dt = (f(x))2 for x ≥ 0.

(a) Find f(0).

(b) Find f(x) for x > 0.

69.[C] A particle moves on a line in such a way that
its average velocity over any interval of time [a, b] is
the same as its velocity at (a + b)/2. Prove that the
velocity v(t) must be of the form ct+ d for some con-
stants c and d. Hint: Differentiate the relationship∫ b
a v(t) dt = v

(
a+b

2

)
(b− a) with respect to b and with

respect to a.

70.[C] A particle moves on a line in such a way that
the average velocity over any interval of the form [a, b]
is equal to the average of the velocities at the begin-
ning and the end of the interval of time. Prove that
the velocity v(t) must be of the form ct + d for some
constants c and d.
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Exercises 71 and 72 present Archimedes’ derivations
for the area of a disk and the volume of a ball. He
viewed these explanations as informal, and also pre-
sented rigorous proofs for them.
71.[C] Archimedes pictured a disk as made up of
“almost” isosceles triangles, with one vertex of each
triangle at the center of the disk and the base of the
triangle part of the boundary of the disk. On the basis
of this he conjectured that the area of a disk is one-
half the product of the radius and its circumference.
Explain why Archimedes’ reasoning is plausible.

72.[C] Archimedes pictured a ball as made up of
“almost” pyramids, with the vertex of each pyramid
at the center of the ball and the base of the pyramid
as part of the surface of the ball. On the basis of this
he conjectured that the volume of a ball is one-third
the product of the radius and its surface area. Explain
why Archimedes’ reasoning is plausible.

73.[C] (The midpoint estimates for a definite inte-
gral is described in Exercises 33 to 35 in Section 6.5.)
Let Mn be the midpoint estimate of

∫ b
a f(x) dx based

on n sections of width h = (b − a)/n. This exercise
shows that the bound on the error,

∣∣∣∫ ba f(x) dx−Mn

∣∣∣
is half of the bound on the trapezoidal estimate. The
argument is like that in Exercises 44 and 45 of Sec-
tion 6.5, a direct application of the Growth Theorem
of Section 5.3.
Let E(t) =

∫ t/2
−t/2 f(x) dx− f(0)t.

(a) Show that E(0) = E′(0) = 0, and that E′′(t) =
1
4

(
f ′
(
t
2

)
− f ′

(−t
2

))
.

(b) Show that
∣∣∣∫ ba f(x) dx−Mn

∣∣∣ ≤ 1
24M(b − a)h2,

where M is the maximum of |f ′′(x)| for x in [a, b].

74.[C] Let y = f(x) be a function such that f(x) ≥ 0,
f ′(x) ≥ 0, and f ′′(x) ≥ 0 for all x in [1, 4]. An estimate
of the area under y = f(x) is made by dividing the in-
terval into sections and forming rectangles. The height
of each rectangle is the value of f(x) at the midpoint
of the corresponding section.

(a) Show that the estimate is less than or equal to
the area under the curve. Hint: Draw a tangent
to the curve at each of the midpoints.

(b) How does the estimate compare to the area un-
der the curve if, instead, f ′′(x) ≤ 0 for all x in
[1, 4]?
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75.[C] The definite integral
∫ 1

0

√
x dx gives numerical

analysts a pain. The integrand is not differentiable at
0. What is worse, the derivatives (first, second, etc.)
of
√
x become arbitrarily large for x near 0. It is in-

structive, therefore, to see how the error in Simpson’s
estimate behaves as h is made small.

(a) Use the FTC to show that
∫ 1

0

√
x dx = 2

3 .

(b) Fill in the table. (Keep at least 7 decimal places
in each answer.)

h Simpson’s Estimate Error

1
2

1
4

1
8

1
16

1
32

1
64

(c) In the typical application of Simpson’s method,
when you cut h by a factor of 2, you find that the
error is cut by a factor of 24 = 16. (That is, the
ratio of the two errors would be 1

16 = 0.0625.)
Examine the five ratios of consecutive errors in
the table.

(d) Let E(h) be the error in using Simpson’s method
to estimate

∫ 1
0

√
x dx with sections of length h.

Assume that E(h) = Ahk for some constants k
and A. Estimate k and A.

76.[C] Since Simpson’s method was designed to be ex-
act when f(x) = Ax2 +Bx+C, one would expect the
error associated with it to involve f (3)(x). By a quirk of
good fortune, Simpson’s method happens to be exact
even when f(x) is a cubic, Ax3 +Bx2 +Cx+D. This

suggests that the error involves f (4)(x), not f (3)(x).
Confirm that this is the case. Note: Exercise 45 in
Section 6.5 does this using the Growth Theorem.

(a) Show that

d∫
c

x3 dx =
d− c

6

(
f(c) + 4f

(
c+ d

2

)
+ f(d)

)
.

(b) Why is Simpson’s estimate exact for cubic poly-
nomials?

77.[C] A producer of wine can choose to store it and
sell it at a higher price after it has aged. However,
he also must consider storage costs, which should not
exceed the revenue.
Assume the revenue he would receive when selling the
wine at time t is V (t). If the interest rate on bank
balances is r, which we will assume is constant, the
present value of that sale is V (t)e−rt.
The cost of storing the wine varies with time. Assume
c(t) represents that cost, that is, the cost of storing
the wine during the short interval [t, t+ ∆t] is approx-
imately c(t)∆t.

(a) What is the present value of storing the wine for
the period [0, x]?

(b) What is the present value, P (x), of the profit (or
loss) selling all the wine at time x? That is, the
present value of the revenue minus the present
value of the storage cost if sold at time x?

(c) Show that P ′(x) = V ′(x)e−rx − rV (x)e−rx −
c(x)e−rx.

(d) Show that if V ′(x)e−rx > rV (x)e−rx + c(x)e−rx,
then P ′(x) is positive, and he should continue to
store the wine.

(e) What is the meaning of each of the three terms in
the inequality in (d)? Why does that inequality
make economic sense?
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Figure 6.S.3:
78.[M] This exercise verifies the claims made in the
last paragraph of Section 5.7.

(a) Explain why, for each angle θ in [0, π], a sector
of the unit circle with angle 2θ has area θ.

(b) In Figure 6.S.3, the area of the shaded region
is twice the area of region OAP . The area of
OAP is the area of a triangle less the area under
the hyperbola. Express this area in terms of the
parameter t. Hint: This will include a definite
integral with integrand

√
x2 − 1.

(c) Verify that 1
2

(
x
√
x2 − 1− ln(x+

√
x2 − 1)

)
is

an antiderivative of
√
x2 − 1 for x > 1.

(d) Show that the area of the shaded region in Fig-
ure 6.S.3 is t.

Note: Alternate ways to compute the area of the
shaded region are found in Exercises 74 on page 675
and 8 on page 1059.

Skill Drill: Derivatives

Exercises 79 to 84 offer an opportunity to practice dif-
ferentiation skills. In each case, verify that the deriva-
tive of the first function is the second function.

79.[R] ln
(

ex

1+ex

)
; 1

1+ex

Hint: To simplify, first
take logs.

80.[R] 1
m arctan (emx);

1
emx+e−mx (m is a con-
stant).

81.[R] ln(tan(x));
1

sin(x) cos(x)

82.[R] tan
(
x
2

)
; 1

1+cos(x)

83.[R] 1
2 ln

(
1+sin(x)
1−sin(x)

)
;

sec(x) = 1
cos(x)

84.[R] arcsin(x) −
√

1− x2;
√

1+x
1−x

In Exercises 85 to 87 differentiate the given functions.

85.[R] sin(2x) tan(3x)
x3

86.[R] 2x
2
x3 cos(4x)

87.[R] x2e3x√
1+x2
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Calculus is Everywhere # 7

Peak Oil Production

Figure C.7.1:

The United States in 1956 produced most of the oil it consumed, and the
rate of production was increasing. Even so, M. King Hubbert, a geologist at
Shell Oil, predicted that production would peak near 1970 and then gradually
decline. His prediction did not convince geologists, who were reassured by the
rising curve in Figure C.7.1.

Hubbert was right and the moment of maximum production is known today
as Hubbert’s Peak.

We present below Hubbert’s reasoning in his own words, drawn from “Nu-
clear Energy and the Fossil Fuels,” available at http://www.hubbertpeak.

com/hubbert/1956/1956.pdf. In it he uses an integral over the entire pos-
itive x-axis, a concept we will define in Section 7.8. However, since a finite
resource is exhausted in a finite time, his integral is an ordinary definite inte-
gral, whose upper bound is not known.

First he stated two principles when analyzing curves that describe the rate
of exploitation of a finite resource:

1. For any production curve of a finite resource of fixed amount, two points
on the curve are known at the outset, namely that at t = 0 and again
at t = ∞. The production rate will be zero when the reference time
is zero, and the rate will again be zero when the resource is exhausted;
that is to say, in the production of any resource of fixed magnitude, the
production rate must begin at zero, and then after passing through one
or several maxima, it must decline again to zero.

2. The second consideration arises from the fundamental theorem of integral
calculus; namely, if there exists a single-valued function y = f(x), then

x1∫
0

y dx = A, (C.7.1)

where A is the area between the curve y = f(x) and the x-axis from the
origin out to the distance x1.

In the case of the production curve plotted against time on an arithmetical
scale, we have as the ordinate

P =
dQ

dt
, (C.7.2)
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where dQ is the quantity of the resource produced in time dt. Likewise, from
equation (C.7.1) the area under the curve up to any time t is given by

A =

t∫
0

P dt =

t∫
0

(
dQ

dt

)
dt = Q, (C.7.3)

where Q is the cumulative production up to the time t. Likewise, the ultimate
production will be given by

Qmax =

∞∫
0

P dt, (C.7.4)

and will be represented on the graph of production-versus-time as the total
area beneath the curve.

Figure C.7.2:

These basic relationships are indicated in Figure C.7.2. The only a priori
information concerning the magnitude of the ultimate cumulative production
of which we may be certain is that it will be less than, or at most equal
to, the quantity of the resource initially present. Consequently, if we knew
the production curves, all of which would exhibit the common property of
beginning and ending at zero, and encompassing an area equal to or less than
the initial quantity.

That the production of exhaustible resources does behave this way can be
seen by examining the production curves of some of the older producing areas.

He then examines those curves for Ohio and Illinois. They resembled the
curves below, which describe more recent data on production in Alaska, the
United States, the North Sea, and Mexico.

Hubbert did not use a particular formula. Instead he employed the key
idea in calculus, expressed in terms of production of oil, “The definte integral
of the rate of production equals the total production.”

He looked at the data up to 1956 and extrapolated the curve by eye, and
by logic. This is his reasoning:

Figure C.7.4: Ultimate
United States crude-oil
production based on
assumed initial reserves
of 150 and 200 billion
barrels.

Figure C.7.4 shows “a graph of the production up to the present,
and two extrapolations into the future. The unit rectangle in this
case represents 25 billion barrels so that if the ultimate potential
production is 150 billion barrels, then the graph can encompass
but six rectangles before returning to zero. Since the cumulative
production is already a little more than 50 billion barrels, then only
four more rectangles are available for future production. Also, since
the production rate is still increasing, the ultimate production peak
must be greater than the present rate of production and must occur
sometime in the future. At the same time it is possible to delay
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(a) (b)

(c) (d)

Figure C.7.3: Annual production of oil in millions of barrels per day for (a)
Annual oil production for Prudhoe Bay in Alaska, 1977–2005 [Alaska Depart-
ment of Revenue], (b) moving average of preceding 12 months of monthly
oil production for the United States, 1920–2008 [EIA, “Crude Oil Produc-
tion”], (c) moving average of preceding 12 months of sum of U.K. and Norway
crude oil production, 1973–2007 [EIA, Table 11.1b], and (d) annual production
from Cantarell complex in Mexico, 1996–2007 [Pemex 2007 Statistical Year-
book and Green Car Congress (http://www.greencarcongress.com/2008/
01/mexicos-cantare.html).

the peak for more than a few years and still allow time for the
unavoidable prolonged period of decline due to the slowing rates of
extraction from depleting reservoirs.

With due regard for these considerations, it is almost impossi-
ble to draw the production curve based upon an assumed ultimate
production of 150 billion barrels in any manner differing signifi-
cantly from that shown in Figure C.7.4, according to which the
curve must culminate in about 1965 and then must decline at a
rate comparable to its earlier rate of growth.

If we suppose the figure of 150 billion barrels to be 50 billion
barrels too low — an amount equal to eight East Texas oil fields
— then the ultimate potential reserve would be 200 billion barrels.
The second of the two extrapolations shown in Figure C.7.4 is based
upon this assumption; but it is interesting to note that even then
the date of culmination is retarded only until about 1970.”

Geologists are now trying to predict when world production of oil will peak.
(Hubbert predicted the peak to occur in the year 2000.) In 2009 oil was being
extracted at the rate of 85 million barrels per day. Some say the peak occurred
as early as 2005, but others believe it may not occur until after 2020. To see some of the latest

estimates, do a web search
for “Hubbert peak oil
estimate”.

What is just as alarming is that the world is burning oil faster than we are
discovering new deposits.
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In the CIE on Hubbert’s Peak in Chapter 10 (see page 786) we present a
later work of Hubbert, in which he uses a specific formula to analyze oil use
and depletion.
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Summary of Calculus I

The limit is the fundamental concept that forms the foundation for all of
calculus. Limits are introduced in Chapter 2.

Chapters 3 through 5 were devoted to one of the two basic concepts in
calculus, the derivative, defined as the limit

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
.

It tells how rapidly a function changes for inputs near x. That is local infor-
mation.

Chapter 6 introduced the other major concept in calculus, the definite
integral, also defined as a limit

b∫
a

f(x) dx = lim
max ∆xi

n∑
i=1

f(ci)∆xi.

For a continuous function this limit exists.
∫ b
a
f(x) dx can be viewed as the

(net) area under the graph of y = f(x) above the interval [a, b]. Both the defi-
nite integral and an antiderivative of a function are called “integrals.” Context
tells which is meant. An antiderivative is also called an “indefinite integral.”

The definite integral, in contrast to the derivative, gives global or overall
information.

Integrand: f(x) Integral:
∫ b
a
f(x) dx

velocity change in position
speed (= |velocity|) distance traveled

length of cross-section of plane region area of region
area of cross-section of solid volume of solid
rate bacterial colony grows total growth

As the first and last of these applications show, if you compute the definite
integral of the rate at which some quantity is changing, you get the total
change. To put this in mathematical symbols, let F (x) be the quantity present
at time x. Then F ′(x) is the rate at which it changes.

That equation gives a shortcut for evaluating many common definite inte-
grals. However, finding an antiderivative can be tedious or impossible.

For instance, ex
2

does not have an elementary antiderivative. However,
continuous functions do have antiderivatives, as slope fields suggest. Indeed
G(x) =

∫ x
a
f(t) dt is an antiderivative of the integrand.
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One way to estimate a definite integral is to employ one of the sums∑n
i=1 f(ci)∆xi that appear in its definition. A more accurate method, which

uses the same amount of arithmetic, uses trapezoids. The trapezoidal estimate
takes the form

b∫
a

f(x) dx ≈ h

2
(f(x0) + 2f(x1) + 2f(x2) + · · ·+ 2f(xn−1) + f(xn)) ,

where consecutive xis are a fixed distance hx = (b− a)/n apart.
In the even more accurate Simpson’s estimate the graph is approximated

by parts of parabolas, n is even, and the estimate is

b∫
a

f(x) dx ≈ h

3
(f(x0) + 4f(x1) + 2f(x2) + · · ·+ 2f(xx−1) + 4f(xn−1) + f(xn)) .
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Long Road to Calculus

It is often stated that Newton and Leibniz invented calculus in order to solve
problems in the physical world. There is no evidence for this claim. Rather, as
with their predecessors, Newton and Leibniz were driven by curiosity to solve
the “tangent” and “area” problems, that is, to construct a general procedure
for finding tangents and areas. Once calculus was available, it was then applied
to a variety of fields, notably physics, with spectacular success.

The first five chapters have presented the foundations of calculus in this
order: functions, limits and continuity, the derivative, the definite integral,
and the fundamental theorem that joins the last two. This bears little relation
to the order in which these concepts were actually developed. Nor can we
sense in this approach, which follows the standard calculations syllabus, the
long struggle that culminated in the creation of calculus.

The origins of calculus go back over 2000 years to the work of the Greeks
on areas and tangents. Archimedes (287–212 b.c.) found the area of a section
of a parabola, an accomplishment that amounts in our terms to evaluating∫ b

0
x2dx. He also found the area of an ellipse and both the surface area and the

volume of a sphere. Apollonius (around 260–200 b.c.) wrote about tangents
to ellipses, parabolas, and hyperbolas, and Archimedes discussed the tangents
to a certain spiral-shaped curve. Little did they suspect that the “area” and
“tangent” problems were to converge many centuries later.

With the collapse of the Greek world, symbolized by the Emperor Jus-
tinian’s closing in a.d. 529 of Plato’s Academy, which had survived for a
thousand years, it was the Arab world that preserved the works of Greek
mathematicians. In its liberal atmosphere, Arab, Christian, and Jewish schol-
ars worked together, translating and commenting on the old writings, occasion-
ally adding their own embellishments. For instance, Alhazen (a.d. 965–1039)

computed volumes of certain solids, in essence evaluating
∫ b

0
x3dx and

∫ b
0
x4dx.

It was not until the seventeenth century that several ideas came together
to form calculus. In 1637, both Descartes (1596–1650) and Fermat (1601–165)
introduced analytic geometry. Descartes examined a given curve with the
aid of algebra, while Fermat took the opposite tack, exploring the geometry
hidden in a given equation. For instance, Fermat showed that the graph of
ax2 + bxy+ cy2 + dx+ ey+ f = 0 is always an ellipse, hyperbola, parabola, or
one of their degenerate forms.

In this same period, Cavalieri (1598–1647) found the area under the curve
y = xn for n = 1, 2, 3, . . . , 9 by a method the length of whose computations
grew rapidly as the exponent increased. Stopping at n = 0, he conjectured
that the pattern would continue for larger exponents. In the next 20 years,
several mathematicians justified his guess. So, even the calculation of the area
under y = xn for a positive integer n, which we take for granted, represented
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a hard-won triumph.

“What about the other exponents?” we may wonder. Before 1665 there
were no other exponents. Nevertheless, it was possible to work with the func-
tion which we denote y = xp/q for positive integers p and q by describing it as
the function y such that yq = xp. (For instance, y = x2/3 would be the function
y that satisfies y3 = x2.) Wallis (1616–1703) found the area by a method that
smacks more of magic than of mathematics. However, Fermat obtained the
same result with the aid of an infinite geometric series.

The problem of determining tangents to curves was also in vogue in the
first half of the seventeenth century. Descartes showed how to find a line
perpendicular to a curve at a point P (by constructing a circle that meets the
curve only at P ); the tangent was then the line through P perpendicular to
that line. Fermat found tangents in a way similar to ours and applied it to
maximum-minimum problems.

Newton (1642-1727) arrived in Cambridge in 1661, and during the two
years 1665–1666, which he spent at his family’s farm to avoid the plague, he
developed the essentials of calculus — recognizing that finding tangents and
calculating areas are inverse problems. The first integral table ever compiled
is to be found in one of his manuscripts of this period. But Newton did not
publish his results at that time, perhaps because of the depression in the book
trade after the Great Fire of London in 1665. During those two remarkable
years he also introduced negative and fractional exponents, thus demonstrating
that such diverse operations as multiplying a number by itself several times,
taking its reciprocal, and finding a root of some power of that number are just
special cases of a single general exponential function ax, where x is a positive
integer, −1, or a fraction, respectively.

Independently, however, Leibniz (1646–1716) also invented calculus. A
lawyer, diplomat, and philosopher, for whom mathematics was a serious avo-
cation, Leibniz established his version in the years 1673–1676, publishing his
researches in 1684 and 1686, well before Newton’s first publication in 1711.
To Leibniz we owe the notations dx and dy, the terms “differential calculus”
and “integral calculus,” the integral sign, and the work “function.” Newton’s
notation survives only in the symbol ẋ for differentiation with respect to time,
which is still used in physics.

It was to take two more centuries before calculus reached its present state of
precision and rigor. The notion of a function gradually evolved from “curve” to
“formula” to any rule that assigns one quantity to another. The great calculus
text of Euler, published in 1748, emphasized the function concept by including
not even one graph.

In several texts of the 1820s, Cauchy (1789–1857) defined “limit” and “con-
tinuous function” much as we do today. He also gave a definition of the definite
integral, which with a slight change by Riemann (1826–1866) in 1854 became
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the definition standard today. So by the mid-nineteenth century the discoveries
of Newton and Leibniz were put on a solid foundation.

In 1833, Liouville (1808–1882) demonstrated that the fundamental theorem
could not be used to evaluate integrals of all elementary functions. In fact, he
showed that the only values of the constant k for which

∫ √
1− x2

√
1− kx2dx

is elementary are 0 and 1.

Still some basic questions remained, such as “What do we mean by area?”
(For instance, does the set of points situated within some square and having
both coordinates rational have an area? If so, what is this area?) It was as
recently as 1887 that Peano (1858–1932) gave a precise definition of area —
that quantity which earlier mathematicians had treated as intuitively given.

The history of calculus therefore consists of three periods. First, there was
the long stretch when there was no hint that the tangent and area problems
were related. Then came the discovery of their intimate connection and the
exploitation of this relation from the end of the seventeenth century through
the eighteenth century. This was followed by a century in which the loose ends
were tied up.

The twentieth century saw calculus applied in many new areas, for it is
the natural language for dealing with continuous processes, such as change
with time. In that century mathematicians also obtained some of the deepest
theoretical results about its foundations.
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Pronunciation

Descartes “Day-CART”
Fermat “Fair-MA”
Leibniz “LIBE-nits”
Euler “OIL-er”
Cauchy “KOH-shee”
Riemann “REE-mahn”
Liouville “LYU-veel”
Peano “Pay-AHN-oh”
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Overview of Calculus II

The first part of this book was mainly about the derivative and the definite
integral. The derivative measures a rate of change. The integral measures total
change of a quantity that has a varying rate of change. The derivative and
definite integral are linked by the Fundamental Theorem of Calculus. Both
concepts are defined with the aid of limits, the basis of calculus.

The next six chapters apply the derivative and integral in a variety of con-
texts. Chapters 7 and 8 apply the definite integral and describe a few ways to
find antiderivatives. Chapter 9, which stands by itself, concerns the geometry
of curves and the physics of objects moving in a curved path. The next three
chapters emphasize power series, which you may think of as “polynomials of
infinite degree.” That functions such as ex and sin(x) can be represented by
power series gives a way to compute them. With the aid of power series and
complex numbers we show that the trigonometric functions can be expressed
in terms of exponential functions (a relation applied, for instance, in the the-
ory of alternating currents). Chapter 13, which discusses equations involving
derivatives, could be studied any time after Chapter 8.
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