
Chapter 5

More Applications of
Derivatives

Chapter 2 constructed the foundation for derivatives, namely the concept of a
limit. Chapters 3 and 4 developed the derivative and applied it to graphs of
functions. The present chapter will apply the derivative in a variety of ways,
such as: finding the most efficient way to accomplish a task (Section 5.1), con-
necting the rate one variable changes to the rate another changes (Section 5.2),
the approximation of functions such as ex by polynomials (Sections 5.3 and
5.4), the evaluation of certain limits (Section 5.5), natural growth and decay
(Section 5.6), and to certain special functions (Section 5.7).
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300 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

5.1 Applied Maximum and Minimum Prob-

lems

In Chapter 4, we saw how the derivative and second derivative are of use in
finding the maxima and minima of a given function – the locally high and low
points on its graph. Now we will use these same techniques to find extrema in
applied problems. Though the examples will be drawn mainly from geometry
they illustrate the general procedure. The main challenge in these situations
is figuring out the formula for the function that describes the quantity to be
maximized (or minimized).

The General Procedure

The general procedure runs something along these lines.

1. Get a feel for the problem (experiment with particular cases.)

2. Devise a formula for the function whose maximum or minimum you want
to find.

3. Determine the domain of the function – that is, the inputs that make
sense in the application.

4. Find the maximum or minimum of the function found in Step 2 for inputs
that are in the domain identified in Step 3.

Additional worked examples
can be found on the website

for this book.
The most important step is finding a formula for the function. To become

skillful at doing this takes practice. First, carefully read and study the three
examples that comprise the remainder of this section.

A Large Garden

EXAMPLE 1 A couple have enough wire to construct 100 feet of fence.

Figure 5.1.1:

They wish to use it to form three sides of a rectangular garden, one side of
which is along a building, as shown in Figure 5.1.1. What shape garden should
they choose in order to enclose the largest possible area?

SOLUTION Step 1. First make a few experiments. Figures 5.1.2 show some
possible ways of laying out the 100 feet of fence. In the first case the side
parallel to the building is very long, in an attempt to make a large area.
However, doing this forces the other sides of the garden to be small. The area
is 90× 5 = 450 square feet. In the second case, the garden has a larger area,
60× 20 = 1200 square feet. In the third case, the side parallel to the building
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§ 5.1 APPLIED MAXIMUM AND MINIMUM PROBLEMS 301

(a) (b) (c)

Figure 5.1.2:

is only 20 feet long, but the other sides are longer. The area is 20× 40 = 800
square feet.

In all three cases, once the length of the side parallel to the building is set,
the other side lengths are known and the area can be computed.

Clearly, we may think of the area of the garden as a function of the length
of the side parallel to the building.

Figure 5.1.3:

Step 2. Let A(x) be the area of the garden when the length of the side
parallel to the building is x feet, as in Figure 5.1.3. The other sides of the
garden have length y. But y is completely determined by x since the total
length of the fence is 100 feet:

x+ 2y = 100.

Thus y = (100− x)/2.

Figure 5.1.4:

Since the area of a rectangle is its length times its width,

A(x) = xy = x

(
100− x

2

)
= 50x− x2

2
.

(See Figure 5.1.4.) We now have the function.
Step 3. Which values of x in (5.1.1) correspond to possible gardens?
Since there is only 100 feet of fence, x ≤ 100. Furthermore, it makes no

sense to have a negative amount of fence; hence x ≥ 0. Therefore the domain
on which we wish to consider the function (5.1.1) is the closed interval [0, 100].

Step 4. To maximize A(x) = 50x − x2/2 on [0, 100] we examine A(0),
A(100), and the value of A(x) at any critical numbers.

To find critical numbers, differentiate A(x):

A(x) = 50x− x2

2
so A′(x) = 50− x

and solve A′(x) = 0 to find:

0 = 50− x or x = 50.
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302 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

There is one critical number, 50.
All that is left is to find the largest of A(0), A(100), and A(50). We have

A(0) = 50 · 0− 02

2
= 0,

A(100) = 50 · 100− 1002

2
= 0,

and A(50) = 50 · 50− 502

2
= 1250.

Figure 5.1.5:

The maximum possible area is 1250 square feet, and the fence should be
laid out as shown in Figure 5.1.5. �

A Large Tray

EXAMPLE 2 Four congruent squares are cut out of the corners of a square
piece of cardboard 12 inches on each side and the four remaining flaps can be
folded up to obtain a tray without a top. (See Figure 5.1.6.) What size squares
should be cut in order to maximize the volume of the tray?

(a) (b) (c)

Figure 5.1.6:

SOLUTION First we get a feel for the problem. Let us make a couple ofStep 1.

experiments.
Say that we remove small squares that are 1 inch by 1 inch, as in Fig-

ure 5.1.7(a). When we fold up the flaps we obtain a tray whose base is a
10-inch by 10-inch square and whose height is 1 inch, as in Figure 5.1.7(b).
The volume of the tray is

Area of base× height = 10× 10︸ ︷︷ ︸
base area

× 1︸︷︷︸
height

= 100 cubic inches.
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(a) (b)

Figure 5.1.7:

For our second experiment, let’s try cutting out a large square, say 5 inches
by 5 inches, as in Figure 5.1.8(a). When we fold up the flaps, we get a very
tall tray with a very small base, as in Figure 5.1.8(b). It volume is

Area of base× height = 2× 2× 5 = 20 cubic inches.

Clearly volume depends on the size of the cut-out squares. The function

(a) (b) (c) (d)

Figure 5.1.8:

we will investigate is V (x), the volume of the tray formed by removing four
squares whose sides all have length x.

To find the formula for V (x) we make a large, clear diagram of the typical Step 2.

case, as in Figure 5.1.8(c) and Figure 5.1.8(d). Now

Volume of tray = (12− 2x)︸ ︷︷ ︸
length

(12− 2x)︸ ︷︷ ︸
width

x︸︷︷︸ height = (12− 2x)2x,
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304 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

hence
V (x) = (12− 2x)2x = 4x3 − 48x2 + 144x. (5.1.1)

We have obtained a formula for volume as a function of the length of the
sides of the cut-out squares.

Next determine the domain of the function V (x) that is meaningful in theStep 3.

problem.
The smallest that x can be is 0. In this case the tray has height 0 and is

just a flat piece of cardboard. (Its volume is 0.) The size of the cut is not more
than 6 inches, since the cardboard has sides of length 12 inches. The cut can
be as near 6 inches as we please, and the nearer it is to 6 inches, the smaller
is the base of the tray. For convenience of our calculations, we allow cuts with
x = 6, when the area of the base is 0 square inches and the height is 6 inches.
(The volume in each of these cases is 0 cubic inches.) Therefore the domain
of the volume function V (x) is the closed interval [0, 6].

To maximize V (x) = 4x3 − 48x2 + 144x on [0, 6], evaluate V (x) at criticalStep 4.

numbers in [0, 6] and at the endpoints of [0, 6].
We have

V ′(x) = 12x2 − 96 + 144 = 12(x2 − 8x+ 12) = 12(x− 2)(x− 6).

A critical number is a solution to the equation

0 = 12(x− 2)(x− 6).

Hence x− 2 = 0 or x− 6 = 0. The critical numbers are 2 and 6.
The endpoints of the interval [0, 6] are 0 and 6. Therefore the maximum

value of V (x) for x in [0, 6] is the largest of V (0), V (2), and V (6). Since
V (0) = 0 and V (6) = 0, the largest value is

V (2) = 4(23)− 48(22)− 144 · 2 = 128 cubic inches.

The cut that produces the tray with the largest volume is x = 2 inches. �

Figure 5.1.9:

As a matter of interest, let us graph the function V , showing its behavior
for all x, not just for values of x significant in the problem. Note in Figure 5.1.9
that at x = 2 and x = 6 the tangent is horizontal.

Remark: In Example 2 you might say x = 0 and x = 6 don’t really
correspond to what you would call a tray. If so, you would restrict the domain
of V (x) to the open interval (0, 6). You would then have to examine the
behavior of V (x) for x near 0 and for x near 6. By making the domain [0, 6]
from the start, you avoid the extra work of examining V (x) for x near the
ends of the interval.

The key step in these two examples, and in any applied problem, is Step
2: findng a formula for the quantity whose extremum you are seeking. In case
the problem is geometrical, the following chart may be of aid.
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Setting Up the Function

1. Draw and label the appropriate diagrams.
(Make them large enough so that there is room for labels.)

2. Label the various quantities by letters, such as x, y, A, V .

3. Identify the quantity to be maximized (or minimized).

4. Express the quantity to be maximized (or minimized) in terms of one or
more of the other variables.

5. Finally, express that quantity in terms of only one variable.

An Economical Can

EXAMPLE 3 Of all the tin cans that enclose a volume of 100π cubic
centimeters, which requires the least metal?

(a) (b) (c)

Figure 5.1.10:

SOLUTION The can may be flat or tall. If the can is flat, the side uses little Step 1

metal, but then the top and bottom bases are large. If the can is shaped like
a mailing tube, then the two bases require little metal, but the curved side
requires a great deal of metal. (See Figure 5.1.10, where r denotes the radius
and h the height of the can.) What is the ideal compromise between these two
extremes?
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306 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

(a) (b)

Figure 5.1.11:

The surface area S of the can is the sum of the area of the top, side, andStep 2

bottom. The top and bottom are circles with radius r so their total area is
2πr2. Figure 5.1.11 shows why the area of the side is 2πrh. The total surface
area of the can is given by

S = 2πr2 + 2πrh. (5.1.2)

Since the amount of metal in the can is proportional to S, it suffices to minimize
S.

Equation (5.1.2) gives S as a function of two variables, but we can express
one of the variables in terms of the other. The radius and height are related
by the equation

V = πr2h = 100π, (5.1.3)

since their volume is 100π cubic centimeters. In order to express S as a function
of one variable, use (5.1.3) to eliminate either r or h. Choosing to eliminate
h, we solve (5.1.3) for h,

h =
100

r2
.

Substitution into (5.1.2) yields

S = 2πr2 + 2πr
100

r2
or S = 2πr2 +

200

r
π. (5.1.4)

Equation (5.1.4) expresses S as a function of just one variable, r.
The cans have a positive radius as large as you please. The function S(r)Step 3

is continuous and differentiable on (0,∞).
Compute dS/dr:Step 4

dS

dr
= 4πr − 200π

r2
π =

4πr3 − 200π

r2
. (5.1.5)
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Set the derivative equal to 0 to find any critical numbers. We have r = 0 is not a critical
number because it is not in
the domain of V .

0 =
4πr3 − 200

r2
,

hence 0 = 4πr3 − 200π

or 4πr3 = 200π

r3 =
200

4

r =
3
√

50 ≈ 0.7071.

There is only one critical number. Does it provide a minimum? Let’s check it
two ways, first by the first-derivative test, then by the second-derivative test.

The first derivative is

dS

dr
=

4πr3 − 200π

r2
. (5.1.6)

When r = 3
√

50, the numerator in (5.1.6) is 0. When r < 3
√

50 the numerator
is negative and when r > 3

√
50 the numerator is positive. (The denominator is

always positive.) Since dS/dr < 0 for r < 3
√

50, and dS/dr > 0 for r > 3
√

50,
the function S(r) decreases for r < 3

√
50 and increases for r > 3

√
50. That

shows that a global minimum occurs at 3
√

50. (See Figure 5.1.12(a).)

(a) (b) (c)

Figure 5.1.12:

Let us instead use the second-derivative test. Differentiation of (5.1.5)
gives

d2S

dr2
= 4π +

400

r3
π. (5.1.7)

Inspection of (5.1.7) shows that for all meaningful values of r, that is
r in (0,∞), d2S/dr2 is positive. (The function is concave up as shown in
Figure 5.1.12(b).) Not only is P a relative minimum, it is a global minimum,
since the graph lies above its tangents, in particular, the tangent at P .
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The minimum of S(r) is shown in Figure 5.1.12(c).
To find the height of the most economical can, solve (5.1.7) for h:

h = 100
r2

= 100

π( 3√50)2

= 100

π( 3√50)2

3√50
3√50

rationalize the denominator

= 100
π(50)

3
√

50 = 2 3
√

50.

The height of the can is equal to twice its radius, that is, its diameter. The
total surface area of the can is

S = 2πr3 +
200π

r

∣∣∣∣
r=501/3

= (100 + 4 · 502/3) ≈ 154.288 square centimeters.

�

Summary

We showed how to use calculus to solve applied problems: experiment, set up
a function, find its domain, and its critical points. Then test the critical points
and endpoints of the domain to determine the extrema.

1. Draw and label appropriate diagrams.

2. Express the quantity to be optimized in terms of one other variable.

3. Determine the domain of the function.

4. Use the first or second derivative test to determine the maximum or
minimum of the function in its domain.

If the interval is closed, the maximum or minimum will occur at a critical
point or an endpoint. If the interval is not closed, a little more care is needed
to confirm that a critical number provides an extremum.

With practice this process becomes second nature.
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EXERCISES for Section 5.1 Key: R–routine,
M–moderate, C–challenging

1.[R] A gardener wants to make a rectangular garden
with 100 feet of fence. What is the largest area the
fence can enclose?

2.[R] Of all rectangles with area 100 square feet, find
the one with the shortest perimeter.

3.[R] Solve Example 1, expressing A in terms of y
instead of x.

4.[R] A gardener is going to put a rectangular garden
inside one arch of the cosine curve, as shown in Fig-
ure 5.1.13. What is the garden with the largest area.

Figure 5.1.13:

Exercises 5 to 8 are related to Example 2. In each case
find the length of the cut that maximizes the volume of
the tray. The dimensions of the cardboard are given.

5.[R] 5 inches by 5 inches

6.[R] 5 inches by 7 inches

7.[R] 4 inches by 8
inches,

8.[R] 6 inches by 10
inches,

(a) (b)

Figure 5.1.14:
9.[R] Starting with a square piece of paper 10′′ on
a side, Sam wants to make a paper holder with three
sides. The pattern he will use is shown in Figure 5.1.14
along with the tray. He will remove two squares and
fold up three flaps.

(a) What size square maximizes the volume of the
tray?

(b) What is that volume?

10.[C] A chef wants to make a cake pan out of a
circular piece of aluminum of radius 12 inches. To do
this he plans to cut the circular base from the center
of the piece and then cut the side from the remainder.
What should the radius and height be to maximize the
volume of the pan? (See Figure 5.1.15(a).)

(a) (b)

Figure 5.1.15:
11.[R] Solve Example 3, expressing S in terms of h
instead of r.

12.[R] Of all cylindrical tin cans without a top that
contains 100 cubic inches, which requires the least ma-
terial?

13.[R] Of all enclosed rectangular boxes with square
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bases that have a volume of 1000 cubic inches, which
uses the least material?

14.[R] Of all topless rectangular boxes with square
bases that have a volume of 1000 cubic inches, which
uses the least material?

15.[M] Find the dimensions of the rectangle of largest
area that can be inscribed in a circle of radius a.
The typical rectangle is shown in Figure 5.1.15(b).
Hint: Express the area in terms of the angle θ shown.

16.[M] Solve Exercise 15, expressing the area in terms
of half the width of the rectangle, x. Hint: Square the
area to avoid square roots.

17.[M] Find the dimensions of the rectangle of largest
perimeter that can be inscribed in a circle of radius a.

18.[M] Show that of all rectangles of a given area, the
square has the shortest perimeter. Suggestion: Call
the fixed area A and keep in mind that it is a constant.

19.[M] A rancher wants to construct a rectangular
corral. He also wants to divide the corral by a fence
parallel to one of the sides. He has 240 feet of fence.
What are the dimensions of the corral of largest area
he can enclose?

20.[M] A river has a 45◦ turn, as indicated in Fig-
ure 5.1.16(a). A rancher wants to construct a corral
bounded on two sides by the river and on two sides by
1 mile of fence ABC, as shown. Find the dimensions
of the corral of largest area.

(a) (b)

Figure 5.1.16:
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21.[M]

(a) How should one choose two nonnegative num-
bers whose sum is 1 in order to maximize the
sum of their squares?

(b) To minimize the sum of their squares?

22.[M] How should one choose two nonnegative num-
bers whose sum is 1 in order to maximize the product of
the square of one of them and the cube of the other?

23.[M] An irrigation channel made of concrete is
to have a cross section in the form of an isosceles
trapezoid, three of whose sides are 4 feet long. See
Figure 5.1.16(b). How should the trapezoid be shaped
if it is to have the maximum possible area? Hint: Con-
sider the area as a function of x and solve.

24.[R]

(a) Solve Exercise 23 expressing the area as a func-
tion of θ instead of x.

(b) Do the answers in (a) and Exercise 23 agree?
Explain.

In Exercises 25 to 28 use the fact that the combined
length and girth (distance around) of a package to be
sent through the mail by the United States Postal Ser-
vice (USPS) cannot exceed 108 inches. Note: The
combined length and girth of a packages sent as “parcel
post” is 130 inches. The United Parcel Service (UPS)
limit is 165 inches for combined length and girth with
the length not exceeding 108 inches. Why do you think
they have this restriction?

25.[R] Find the dimen-
sions of the right circular
cylinder of largest volume
that can be sent through
the mail.

26.[R] Find the dimen-
sions of the right circu-
lar cylinder of largest sur-
face area that can be sent
through the USPS.

27.[R] Find the dimen-

sions of the rectangular
box with square base of
largest volume that can be
sent through the USPS.

28.[R] Find the dimen-
sions of the rectangular
box with square base of
largest surface area that
can be sent through the
USPS.

Calculus October 22, 2010



312 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

29.[M]

(a) Repeat Exercise 25 with for a package sent by
UPS.

(b) Generalize your solutions to Exercise 25 for a
packages subject to a combined length and girth
that does not exceed M inches.

30.[M]

(a) Repeat Exercise 26 with for a package sent by
UPS.

(b) Generalize your solutions to Exercise 26 for a
packages subject to a combined length and girth
that does not exceed M inches.

Exercises 31 to 38 concern “minimal cost” problems.
31.[MR] A cylindrical can is to be made to hold 100
cubic inches. The material for its top and bottom costs
twice as much per square inch as the material for its
side. Find the radius and height of the most economi-
cal can. Warning: This is not the same as Example 3.

(a) Would you expect the most economical can in
this problem to be taller or shorter than the so-
lution to Example 3? (Use common sense, not
calculus.)

(b) For convenience, call the cost of 1 square inch of
the material for the side k cents. Thus the cost
of 1 square inch of the material for the top and
bottom is 2k cents. (The precise value of k will
not affect the answer.) Show that a can of radius
r and height h costs

C = 4kπr2 + 2kπrh cents.

(c) Find r that minimizes the functions C in (b).
Keep in mind during any differentiation that k
is constant.

(d) Find the corresponding h.

October 22, 2010 Calculus



§ 5.1 APPLIED MAXIMUM AND MINIMUM PROBLEMS 313

Figure 5.1.17: Sketch of situation in Exercise 32.
32.[M] A camper at A will walk to the river, put some
water in a pail at P , and take it to the campsite at B.

(a) Express ĀP + P̄B as a function of x.

(b) Where should P be located to minimize the
length of the walk, AP + PB? (See Fig-
ure 5.1.17.) Hint: Reflect B across the line L.

Note: This exercise was first encountered as Exer-
cise 34 in Section 1.1.

33.[M] Sam is at the edge of a circular lake of radius
one mile and Jane is at the edge, directly opposite.
Sam wants to visit Jane. He can walk 3 miles per hour
and he has a canoe. What mix of paddling and walking
should Sam use to minimize the time needed to reach
Jane if

(a) he paddles at least three miles an hour?

(b) he paddles at 1.5 miles per hour?

(c) he paddles at 2 miles per hour?

34.[M] Consider a right triangle ABC, with C being
at the right angle. There are two routes from A to B.
One is direct, along the hypotenuse. The other is along
the two legs, from A to C and then to B. Now, the
shortest path between two points is the straight one.
That raises this question: What is the largest percent-
age saving possible by walking along the hypotenuse
instead of along the two legs? For which shape right
triangle does this savings occur?

35.[M] A rectangular box with a square base is to
hold 100 cubic inches. Material for the top of the box
costs 2 cents per square inch; material for the sides
costs 3 cents per square inch; material for the bottom
costs 5 cents per square inch. Find the dimensions of
the most economical box.
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36.[M] The cost of operating a certain truck (for gaso-
line, oil, and depreciation) is (20 + s/2) cents per mile
when it travels at a speed of s miles per hour. A truck
driver earns $18 per hour. What is the most economi-
cal speed at which to operate the truck during a 600-
mile trip?

(a) If you considered only the truck, would you want
s to be small or large?

(b) If you, the employer, considered only the expense
of the driver’s wages, would you want s to be
small or large?

(c) Express cost as a function of s and solve. (Be
sure to put the costs all in terms of cents or all
in terms of dollars.)

(d) Would the answer be different for a 1000-mile
trip?

37.[R] A government contractor who is removing
earth from a large excavation can route trucks over
either of two roads. There are 10, 000 cubic yards of
earth to move. Each truck holds 10 cubic yards. On
one road the cost per truckload is 1 + 2x2 cents, when
x trucks use that raod; the function records the cost of
congestion. On the other road the cost is 2 + x2 cents
per truckload when x trucks use that road. How many
trucks should be dispatched to each of the two roads?

38.[R] On one side of a river 1 mile wide is an electric
power station; on the other side, s miles upstream, is
a factory. (See Figure 5.1.18.) It costs 3 dollars per
foot to run cable over land and 5 dollars per foot un-
der water. What is the most economical way to run
cable from the station to the factory?

(a) Using no calculus, what do you think would be
(approximately) the best route if s were very
small? if s were very large?

(b) Solve with the aid of calculus, and draw the
routes for s = 1

2 , 3
4 , 1, and 2.

(c) Solve for arbitrary s.

Warning: Minimizing the length of cable is not the
same as minimizing its cost.

October 22, 2010 Calculus



§ 5.1 APPLIED MAXIMUM AND MINIMUM PROBLEMS 315

Figure 5.1.18:
39.[R] (From a text on the dynamics of airplanes.)
“Recalling that

I = A cos2 θ + C sin2 θ − 2E cos θ sin θ,

we wish to find θ when I is a maximum or a minimum.”
Show that at an extremum of I,

tan 2θ =
2 E
C −A

. (assume thatA 6= C)

40.[R] (From a physics text.) “By differentiating the
equation for the horizontal range,

R =
v2

0 sin(2θ)
g

,

show that the initial elevation angle θ for maximum
range is 45◦.” In the formula for R, v0 and g are con-
stants. (R is the horizontal distance a baseball covers if
you throw it at an angle θ with speed v0. Air resistance
is disregarded.)

(a) Using calculus, show that the maximum range
occurs when θ = 45◦.

(b) Solve the same problem without calculus.

41.[R] A gardener has 10 feet of fence and wishes
to make a triangular garden next to two buildings, as
in Figure 5.1.19(a). How should he place the fence to
enclose the maximum area?

(a) (b)

Figure 5.1.19:
42.[R] Fencing is to be added to an existing wall
of length 20 feet, as shown in Figure 5.1.19(b). How
should the extra fence be added to maximum the area
of the enclosed rectangle if the additional fence is

(a) 40 feet long?

(b) 80 feet long?

(c) 60 feet long?

43.[R] Let A and B be constants. Find the maximum
and mimimum values of A cos t+B sin t.

44.[R] A spider at corner S of a cube of side 1 inch
wishes to capture a fly at the opposite corner F . (See
Figure 5.1.20(a).) The spider, who must walk on the
surface of the solid cube, wishes to find the shortest
path.

(a) Find a shortest path without the aid of calculus.

(b) Find a shortest path with calculus.

(a) (b)

Figure 5.1.20:
45.[R] A ladder of length b leans against a wall of
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height a, a < b. What is the maximal horizontal dis-
tance that the ladder can extend beyond the wall if its
base rests on the horizontal ground?

46.[R] A woman can walk 3 miles per hour on grass
and 5 miles per hour on sidewalk. She wishes to walk
from point A to point B, shown in Figure 5.1.20(b), in
the least time. What route should she follow if s is

(a) 1
2?

(b) 3
4?

(c) 1?

47.[R] The potential energy in a diatomic molecule is
given by the formula

U(r) = u0

((r0

r

)12
− 2

(r0

r

)6
)
,

where U0 and r0 are constants and r is the distance
between the atoms. For which value of r is U(r) a
minimum?

48.[R] What are the dimensions of the right circular
cylinder of largest volume that can be inscribed in a
sphere of radius a?

49.[R] The stiffness of a rectangular beam is pro-
portional to the product of the width and the cube
of the height of its cross section. What shape beam
should be cut from a log in the form of a right circular
cylinder of radius r in order to maximize its stiffness.

50.[R] A rectangular box-shaped house is to have a
square floor. Three times as much heat per square foot
enters through the roof as through the walls. What
shape should the house be if it is to enclose a volume
of 12, 000 cubic feet and minimize heat entry. (Assume
no heat enters through the floor.)

51.[R] (See Figure 5.1.21(a).) Find the coordinates
of the points P = (x, y), with y ≤ 1, on the parabola
y = x2, that

(a) minimize PA2 + PB
2,

(b) maximize PA2 + PB
2.

(a) (b)

Figure 5.1.21:
52.[R] The speed of traffic through the Lincoln Tun-
nel in New York City depends on the amount of traffic.
Let S be the speed in miles per hour and let D be the
amount of traffic measured in vehicles per mile. The
relation between S and D was seen to be approximated
closely, for D ≤ 100, by the formula

S = 42− D

3
.

(a) Express in terms of S and D the total number
of vehicles that enter the tunnel in an hour.

(b) What value of D will maximize the flow in (a)?
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53.[R] When a tract of timber is to be logged, a main
logging road is built from which small roads branch off
as feeders. The question of how many feeders to build
arises in practice. If too many are built, the cost of
construction would be prohibitive. If too few are built,
the time spent moving the logs to the roads would be
prohibitive. The formula for total cost,

y =
CS

4
+

R

V S
,

is used in a logger’s manual to find how many feeder
roads are to be built. R, C, and V are known con-
stants: R is the cost of road at “unit spacing”; C is
the cost of moving a log a unit distance; V is the value
of timber per acre. S denotes the distance between the
regularly spaced feeder roads. (See Figure 5.1.21(b).)
Thus the cost y is a function of S, and the object is
to find that value of S that minimizes y. The man-
ual says, “To find the desired S set the two summands
equal to each other and solve

CS

4
=

r

V S
.′′

Show that the method if valid.

54.[R] A delivery service is deciding how many ware-
houses to set up in a large city. The warehouses will
serve similarly shaped regions of equal area A and, let
us assume, an equal number of people.

(a) Why would transportation costs per item pre-
sumably be proportional to

√
A?

(b) Assuming that the warehouse cost per item is in-
versely proportional to A, show that C, the cost
of transportation and storage per item, is of the
form t

√
A+w/A, where t and w are appropraite

constants.

(c) Show that C is a minimum when A = (2w/t)2/3.
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Exercises 55 and 56 are related.
55.[R] A pipe of length b is carried down a long cor-
ridor of width a < b and then around corner C. (See
Figure 5.1.22.) During the turn y starts out at 0,
reaches a maximum, and then returns to 0. (Try this
with a short stick.) Find that maximum in terms of a
and b. Suggestion: Express y in terms of a, b, and θ; θ
is a variable, while a and b are constants.

(a) (b) (c)

Figure 5.1.22:
56.[M] Figure 5.1.22(c) shows two corridors meeting
at right angle. One has width 8; the other, width 27.
Find the length of the longest pipe that can be car-
ried horizontally from one hall, around the corner and
into the other hall. Suggestion: Do Exercise 55 first.

57.[M] Two houses, A and B, are a distance p apart.
They are distances q and r, respectively, from a straight
road, and on the same side of the road. Find the length
of the shortest path that goes from A to the road, and
then on to the other house B.

(a) Use calculus.

(b) Use only elementary geometry. Hint: Introduce
an imaginary house C such that the midpoint of
B and C is on the road and the segment BC is
perpendicular to the road; that is, “reflect” B
across the road to become C.

58.[R] The base of a painting on a wall is a feet above
the eye of an observer, as shown in Figure 5.1.23(a).
The vertical side of the painting is b feet long. How far
from the wall should the ovserver stand to maximize
the angle that the painting subtends? Hint: It is more
convenient to maximize tan θ than θ itself. Hint: Re-
call that tan(A−B) = tanA−tanB

1+tanA tanB .

(a) (b) (c)

Figure 5.1.23:

59.[R] Find the point P on the x-axis such that the
angle APB in Figure 5.1.23(b) is maximal. Hint: See
the hint in Exercise 58.

60.[R] (Economics) Let p denote the price of some
commodity and y the number sold at that price. To
be concrete, assume that y = 250− p for 0 ≤ p ≤ 250.
Assume that it costs the producer 100 + 10y dollars
to manufacture y units. What price p should the pro-
ducer choose in order to maximize total profit, that is,
“revenue minus cost”?

61.[R] (Leibniz on light) A ray of light travels from
point A to point B in Figure 5.1.23(c) in minimal time.
The point A is in one medium, such as air or a vac-
uum. The point B is in another medium, such as water
or glass. In the first medium, light travels at velocity
v1 and in the second at velocity v2. The media are
separated by line L. Show that for the path APB of
minimal time,

sinα
v1

=
sin(β)
v2

.

Leibniz solved this problem with calculus in a paper
published in 1684. (The result is called Snell’s law of
refraction.)
Leibniz then wrote, “other very learned men have
sought in many devious ways what someone versed
in this calculus can accomplish in these lines as by
magic.” (See C. H. Edwards Jr., The Historical Devel-
opment of the Calculus, p. 259, Springer-Verlag, New
York, 1979.)
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Exercises 62 to 65 concern the intensity of light.

(a) (b)

Figure 5.1.24:
62.[R] Why is it reasonable to assume that the inten-
sity of light from a lamp is inversely proportional to the
square of the distance from the lamp? Hint: Imagine
the light spreading out in all directions.

63.[R] A solar panel perpendicular to the sun’s rays
catches more light than when it is tilted at any other
angle, as shown in Figure 5.1.24(a). Let θ be the angle
the panel is tilted, as in Figure 5.1.24(b). Show that
it then receives cos(θ) times the light the panel would
receive when perpendicular to the sun’s rays.

64.[M] In view of the preceding introduction and ex-
ercises, the intensity of light on a small (flat) surface
is inversely proportional to the square of the distance
from the source and proportional to the angle between
the surface and a surface perpendicular to the source.

(a) A person wants to put a light at a horizontal dis-
tance of ten feet from his address, which is on a
wall (a vertical surface). At what height should
the lamp be placed to maximize the intensity of
light at the address? Hint: No calculus is needed
for this.

(b) Now the person paints the address on the hori-
zontal surface of the curb. Again the lamp will
be placed at a horizontal distance of ten feet
from the address. Without doing any calcula-
tions sketch what the graph of “intensity of light
on the address versus height of lamp” might look
like.

(c) Find the height the lamp should have to maxi-
mize the light on the address. Hint: Use height
as the independent variable.

65.[M] Solve Exercise 64(c) using an angle as the
independent variable.

66.[M] The following calculation occurs in an article
concerning the optimum size of new cities: “The net
utility to the total client-centered system is

U =
RLv

A
n1/2 − nK − ALc

v
n−1/2.

All symbols except U and n are constant; n is a mea-
sure of decentralization. Regarding U as a differen-
tiable function of n, we can determine when dU/dn =
0. This occurs when

RLv

2A
n−1/2 −K +

ALc

2v
n−3/2 = 0.

This is a cubic equation for n−1/2.”

(a) Check that the differentiation is correct.

(b) Of what cubic polynomial is n−1/2 a root?

67.[C] Consider the curve y = x−2 in the first quad-
rant. A tangent to this curve, together with axes, de-
termine a triangle.

(a) What is the largest area of such a triangle?

(b) The smallest area?

68.[C] Let f be a differentiable function that is never
zero on its domain. Let g(x) = (f(x))2. Show that
the functions f and g have the same critical numbers.
Note: This is useful for getting rid of square roots.

69.[C] Let f be a differentiable function. Define the
function g by g(x) = tan(f(x)). Show that the func-
tions f and g have the same critical numbers.
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5.2 Implicit Differentiation and Related Rates

Sometimes a function y = f(x) is given indirectly by an equation that links y
and x. This section shows how to differentiate y without solving for y explicitly
in terms of x.

We will apply this technique to determine how the rate at which one quan-
tity changes influences the rate at which another changes.

A Function Given Implicitly

The equation

x2 + y2 = 25 (5.2.1)

describes a circle of radius 5 and center at the origin, as in Figure 5.2.1(a).
This circle is not the graph of a function, since some vertical lines meet the

(a) (b) (c)

Figure 5.2.1:

circle in two points. However, the top half is the graph of a function and so is
the bottom half. To find these functions explicitly, solve (5.2.1) for y:

y2 = 25− x2

y = ±
√

25− x2.

So either y =
√

25− x2 or y = −
√

25− x2. The graph of y =
√

25− x2 is
the top semicircle (see Figure 5.2.1(b)); the graph of y = −

√
25− x2 is the

bottom semicircle (see Figure 5.2.1(c)). There are two continuous functions
that satisfy (5.2.1).

The equation x2 + y2 = 25 is said to describe the function y = f(x)
implicitly. The equations

y =
√

25− x2 and y = −
√

25− x2

describe the function y = f(x) explicitly.
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Differentiating an Implicit Function

It is possible to differentiate a function given implicitly without having to solve
for it and express it explicitly. An example will illustrate the method, which is
to differentiate both sides of the equation that defines the function implicitly.
This procedure is called implicit differentiation.

EXAMPLE 1 Let y = f(x) be the continuous function that satisfies the
equation

x2 + y2 = 25

such that y = 4 when x = 3. Find dy/dx when x = 3 and y = 4.
SOLUTION (We could, of course, solve for y, y =

√
25− x2, and differenti-

ate directly. However, the algebra would be more involved since square roots
would appear.) Differentiating both sides of the equation

x2 + y2 = 25

with respect to x yields

d

dx
(x2 + y2) =

d

dx
(25),

2x+
d(y2)

dx
= 0.

To differentiate y2 with respect to x, write w = y2, where y is a function of x.

By the chain rule
dw

dx
=

dw

dy

dy

dx
,

which gives us
d(y2)

dx
= 2y

dy

dx
.

Thus 2x+ 2y
dy

dx
= 0,

or x+ y
dy

dx
= 0.

In particular, when x = 3 and y = 4, 3 + 4
dy

dx
= 0,

and therefore,
dy

dx
= −3

4
.

Observe that the algebra
involves no square roots.

�
If you look back at Section 3.5, you will see that we already used implicit

differentiation to find derivatives of inverse functions. For instance, we dif-
ferentiated both sides of y = ex with respect to y, obtaining 1 = ex(dx/dy).
Then dx/dy = 1/ex = 1/y. In short, D(ln(y)) = 1/y.
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In the next example implicit differentiation is the only way to find the
derivative, for in this case there is no formula expressible in terms of trigono-
metric and algebraic functions giving y explicitly in terms of x.

EXAMPLE 2 Assume that the equation

2xy + π sin(y) = 2π

defines a function y = f(x). Find dy/dx when x = 1 and y = π/2.Verify that the point
(1, π/2) is on the graph of
y = f(x) by checking that

the equation is satisfied
when x = 1 and y = π/2.

SOLUTION Implicit differentiation yields

d

dx
(2xy + π sin y) =

d(2π)

dx
,(

2
dx

dx
y + 2x

dy

dx

)
+ π(cos y)

dy

dx
= 0,

by the formula for the derivative of a product and the chain rule. Hence

2y + 2x
dy

dx
+ π(cos y)

dy

dx
= 0.

Solving for the derivative, dy/dx, we get

dy

dx
=

−2y

2x+ π cos y
.

In particular, when x = 1 and y = π/2,

dy

dx
= −

2 · π
2

2 · 1 + π cos π
2

= − π

2 + π · 0
= −π

2
.

�

Implicit Differentiation and Extrema

Example 3 of Section 5.1 answered the question, “Of all the tin cans that
enclose a volume of 100 cubic inches, which requires the least metal?” The
radius of the most economical can is 3

√
50/π. From this and the fact that its

volume is 100 cubic inches, its height was found to be 2 3
√

50/π, exactly twice
the radius. In the next example implicit differentiation is used to answer the
same question. Not only will the algebra be simpler but it will provide the
shape – the proportion between height and radius – easily.

EXAMPLE 3 Of all the tin cans that enclose a volume of 100 cubic inches,
which requires the least metal?
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SOLUTION The height h and radius r of any can of volume 100 cubic inches
are related by the equation

πr2h = 100. (5.2.2)

The surface area S of the can is

S = 2πr2 + 2πrh (5.2.3)

Consider h, and hence S, as functions of r. It is not necessary to find h and
S explicitly in terms of r. Differentiation of (5.2.2) and (5.2.3) with respect
to r yields

πr2dh

dr
+ 2πrh =

d(100)

dr
= 0 (5.2.4)

and
dS

dr
= 4πr + 2πr

dh

dr
+ 2πh. (5.2.5)

When S is a minimum, dS/dr = 0, so we have

0 = 4πr + 2πr
dh

dr
+ 2πh. (5.2.6)

Equations (5.2.4) and (5.2.6) yield, with a little algebra, a relation between h
and r, as follows:

Factoring πr out of (5.2.4) and 2π out of (5.2.6) shows that

r
dh

dr
+ 2h = 0 and 2r + r

dh

dr
+ h = 0. (5.2.7)

Elimination of dh/dr from (5.2.7) yields

2r + r

(
−2h

r

)
+ h = 0,

which simplifies to
2r = h. (5.2.8)

We have obtained the shape before the specific dimensions. Equation
(5.2.8) asserts that the height of the most economical can is the same as its
diameter. Moreover, this is the ideal shape, no matter what the prescribed
volume happens to be.

The specific dimensions of the most economical can are found by eliminat-
ing h from equations (5.2.2) and (5.2.4). This shows that

πr2(2r) = 100 or r3 =
50

π
.
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Hence

r =
3

√
50

π
and h = 2r = 2

3

√
50

π
�

The procedure illustrated in Example 3 is quite general. It may be of
use when maximizing (or minimizing) a quantity that at first is expressed as
a function of two variable which are linked by an equation. The equation
that links them is called the constraint. In Example 3, the constraint is
πr2h = 100.

Using Implicit Differentiation in an Extremum Problem

1. Name the various quantities in the problem by letters, such as x, y, h,
r, A, V .

2. Identify the quantity to be maximized (or minimized).

3. Express that quantity in terms of other quantities, such as x and y.

4. Obtain an equation relating x and y.
(This equation is called a constraint.)

5. Differentiate implicitly both the constraint and the quantity to be max-
imized (or minimized), interpreting all quantities to be functions of a
single variable (which you choose).

6. Set the derivative of the quantity to be maximized (or minimized) equal
to 0 and combine with the derivative of the constraint to obtain an
equation relating x and y at a maximum (or minimum).

7. Step 6 gives only a relation between x and y at an extremum. If the
explicit values of x and y are desired, find them by using the fact that x
and y also satisfy the constraint.

Exercise 22 illustrates this
possibility. Warning: Sometimes an extremum occurs where a derivative, such as dy/dx,

is not defined.

Related Rates

Implicit differentiation also comes in handy when showing how the rate of
change of one quantity affects the rate of change of another.

EXAMPLE 4 An angler has a fish at the end of his line, which is reeled

Figure 5.2.2:

in at 2 feet per second from a bridge 30 feet above the water. At what speed
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is the fish moving through the water when the amount of line out is 50 feet?
31 feet? Assume the fish is at the surface of the water. (See Figure 5.2.2.)

SOLUTION Our first impression might be that since the line is reeled in at
a constant speed, the fish at the end of the line moves through the water at a
constant speed. As we will see, this is not the case.

Figure 5.2.3:

Let s be the length of the line and x the horizontal distance of the fish
from the bridge. (See Figure 5.2.3.)

Since the line is reeled in at the rate of 2 feet per second, s is shrinking,
and

ds

dt
= −2.

The rate at which the fish moves through the water is given by the derivative,
dx/dt. The problem is to find dx/dt when s = 50 and also when s = 31.

We need an equation that relates s and x at any time, not just when x = 50
or x = 31. If we consider only x = 50 or x = 31, there would be no motion,
and no chance to use derivatives.

The quantities x and s are related by the Pythagorean Theorem: This equation is the heart of
the example.

x2 + 302 = s2.

Both x and s are functions of time t. Thus both sides of the equation may be
differentiated with respect to t, yielding

d(x2)

dt
+
d(302)

dt
=

d(s2)

dt

or 2x
dx

dt
+ 0 = 2s

ds

dt
.

Hence x
dx

dt
= s

ds

dt
.

This last equation provides the tool for answering the questions.
Since ds/dt = −2,

x
dx

dt
= (s)(−2).

Hence
dx

dt
=
−2s

x
.

When s = 50, x2 + 302 = 502,

so x = 40. Thus when 50 feet of line is out, the speed is∣∣∣∣dxdt
∣∣∣∣ =

2s

x
=

2 · 50

40
= 2.5 feet per second.
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When s = 31, x2 + 302 = 312.

Hence x =
√

312 − 302 =
√

961− 900 =
√

61.

Thus when 31 feet of line is out, the fish is moving at the speed of

dx

dt
=

2s

x
=

2 · 31√
61

=
62√
61
≈ 7.9 feet per second.

Let us look at the situation from the fish’s point of view. When it is x feet
from the point in the water directly below the bridge, its speed is 2s/x feet
per second. Since s is larger than x, its speed is always greater than 2 feet
per second. When x is very large, s/x is near 1 so the fish is moving through
the water only a little faster than the line is reeled in. However, when the fish
is almost at the point under the bridge, x is very small; then 2s/x is huge,
and the fish finds itself moving at huge speeds, but according to Einstein, not
faster than the speed of light. �

In Example 4 it would be a tactical mistake to indicate in Figure 5.2.3 that
the hypotenuse of the triangle is 50 feet long, for if one leg is 30 feet and the
hypotenuse is 50 feet, the triangle is determined; there is nothing left free to
vary with time.

In general, label all the lengths or quantities that can change with letters
x, y, s, and so on, even if not all are needed in the solution. Only after you
finish differentiating do you determine what the rates are at a specified value
of the variable.

The General Procedure

The method used in Example 4 applies to many related rate problems. This
is the general procedure, broken into steps:

Procedure for Finding a Related Rate

1. Find an equation that relates the varying quantities.
(If the quantities are geometric, draw a picture and label the varying
quantities with letters.)

2. Differentiate both sides of the equation with respect to time, obtaining
an equation that relates the various rates of change.

3. Solve the equation obtained in Step 2 for the unknown rate.
(Only at this step do you substitute constants for variable.)
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WARNING Differentiate, then substitute the specific numbers
for the variables. If you reversed the order, you would just be
differentiating constants.

Finding an Acceleration

The method described in Example 4 for determining unknown rates from
known ones extends to finding an unknown acceleration. Just differentiate
another time. Example 5 illustrates the procedure.

EXAMPLE 5 Water flows into a conical tank at the constant rate of 3 cubic
meters per second. The radius of the cone is 5 meters and its height is 4 meters.
Let h(t) represent the height of the water above the bottom of the cone at time
t. Find dh/dt (the rate at which the water is rising in the tank) and d2h/dt2

(the rate at which that rate changes) when the tank is filled to a height of 2
meters. (See Figure 5.2.4.)

(a) (b)

Figure 5.2.4:

SOLUTION Let V (t) be the volume of water in the tank at time t. The fact
that water flows into the tank at 3 cubic meters per second is expressed as

dV

dt
= 3,

and, since this rate is constant,

d2V

dt2
= 0.

To find dh/dt and d2h/dt2, first obtain an equation relating V and h.

When the tank is filled to the height h, the water forms a cone of height h
and radius r. (See Figure 5.2.4(b).) By similar triangles,

r

h
=

5

4
or r =

5h

4
.
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Thus

V =
1

3
πr2h =

1

3
π

(
5

4
h

)2

h =
25

48
πh3.

So the equation relating V and h is

V =
25π

48
h3. (5.2.9)

From here on, just differentiate as often as needed.
Differentiating both sides of (5.2.9) once (using the chain rule) yields

dV

dt
=

25π

48

d(h3)

dh

dh

dt

or
dV

dt
=

25π

16
h2dh

dt
.

Since dV/dt = 3 all the time,

3 =
25πh2

16

dh

dt
,

from which it follows that

dh

dt
=

48

25πh2
meters per second. (5.2.10)

As (5.2.10) shows, the larger h is, the slower the water rises. (Why is this toEven though the water
enters the tank at a

constant rate, it does not
rise at a constant rate.

be expected?)
To find dh/dt when h = 2 meters, substitute 2 for h in (5.2.10), obtaining

dh

dt
=

48

25π22
=

12

25π
≈ 0.15279 meters per second.

Now we turn to the acceleration, d2h/dt2. We do not differentiate the
equation dh/dt = 12/(25π) since this equation holds only when h = 2. We
must go back to (5.2.10), which holds at any time.

Differentiating (5.2.10) with respect to t yields

d2h

dt2
=

48

25π

d

dt

(
1

h2

)
=

48

25π

−2

h3

dh

dt
=
−96

25πh3

dh

dt
. (5.2.11)

The last equation expresses the acceleration in terms of h and dh/dt. Sub-
stituting (5.2.10) into (5.2.11) gives

d2h

dt2
=
−96

25πh3

48

25πh2
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or
d2h

dt2
=
−(96)(48)

(25π)2h5
meters per second per second. (5.2.12)

Equation (5.2.12) tells us that, since d2h/dt2 is negative, the rate at which the
water rises in the tank is decreasing.

The problem also asked for the value of d2h/dt2 when h = 2. To find it,
replace h by 2 in (5.2.12), obtaining

d2h

dt2
=
−(96)(48)

(25π)225

or
d2h

dt2
=
−144

625π2
≈ −0.02334 meters per second per second.

�

Logarithmic Differentiation

If ln(f(x)) is simpler than f(x), there is a technique for finding f ′(x) that
saves labor. Example 6 illustrates this method, which depends on implicit
differentiation.

EXAMPLE 6 Let y = cos(3x)

( 3√x2+5)
4 . Find dy

dx
.

SOLUTION The solution to this problem by logarithmic differentiation
begins by simplifying ln(y) using the properties of logarithms:

ln(y) = ln (cos(3x))− ln
((

3
√
x2 + 5

)4
)

[ln(A/B) = ln(A)− ln(B)]

= ln (cos(3x))− 4
3

ln (x2 + 5) [ln(AB) = B ln(A)].

Next, since d
dx

(ln(y)) = 1
y
dy
dx

by the Chain Rule, we have

1

y

dy

dx
=

d

dx

(
ln (cos(3x))− 4

3
ln
(
x2 + 5

))
=
−3 sin(3x)

cos(3x)
− 4

3

2x

x2 + 5
.

Therefore
dy

dx
= (y)

(
−3 tan(3x)− 4

3

2x

x2 + 5

)
.

Finally, replace y by its formula, getting

dy

dx
=

cos(3x)(
3
√
x2 + 5

)4

(
−3 tan(3x)− 4

3

2x

x2 + 5

)
.
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To appreciate logarithmic differentiation, find the derivative directly, as re-
quested in Exercise 53. �

If you want to differentiate ln(f(x)) for some function f , first see if you
can simplify the expression by using the properties of a logarithm.

Properties of Logarithms

ln(AB) = ln(A) + ln(B) ln

(
A

B

)
= ln(A)− ln(B) ln

(
AB
)

= B ln(A)

Summary

We described “implicit differentiation,” in which you differentiate a function
without having an explicit formula for it. The function appears in an equation
linking it and another variable. To find its derivative, just differentiate both
sides of the equation, using the chain rule.

We applied these techniques in findng extrema and the relation between
the rates of change of quantities linked by an equation. We also saw how the
properties of logarithms can simplify finding the derivatives of some functions,
particularly those involving products, quotients, and powers.
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EXERCISES for Section 5.2 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4 find dy/dx at the indicated values
of x and y in two ways: explicitly (solving for y first)
and implicitly.

1.[R] xy = 4 at (1, 4)
2.[R] x2−y2 = 3 at (2, 1)

3.[R] x2y + xy2 = 12 at

(3, 1)
4.[R] x2 + y2 = 100 at
(6,−8)

In Exercises 5 to 8 find dy/dx at the given points by
implicit differentiation.

5.[R] 2xy
π + sin y = 2 at

(1, π/2)
6.[R] 2y3 + 4xy + x2 = 7
at (1, 1)
7.[R] x5+y3x+yx2+y5 =

4 at (1, 1)

8.[R] x + tan(xy) = 2 at
(1, π/4)

9.[R] Solve Example 3 by implicit differentiation, but
differentiate (5.2.2) and (5.2.3) with respect to h in-
stead of r.
10.[R] What is the shape of the cylindrical can of
largest volume that can be constructed with a given
surface area? Do not find the radius and height of the
largest can; find the ratio between them. Suggestion:
Call the surface area S and keep in mind that it is
constant.
11.[M] Using implicit differentiation, find
D(arctanx). Hint: Start with x = tan(y).
12.[M] Using implicit differentiation, findD(arcsinx).
Hint: Start with x = sin(y).

In Exercises 13 to 16 find dy/dx at a general point
(x, y) on the given curve.

13.[R] xy3 + tan(x+ y) =
1
14.[R] sec(x + 2y) +
cos(x− 2y) + y = 2
15.[R] −7x2 + 48xy +

7y2 = 25

16.[R] sin3(xy) + cos(x+
y) + x = 1
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In Exercises 17 to 20 implicit differentiation is used to
find a second derivative.
17.[R] Assume that y(x) is a differentiable function
of x and that x3y + y4 = 2. Assume that y(1) = 1.
Find y′′(1), following these steps.

(a) Show that x3y′ + 3x2y + 4y3y′ = 0.

(b) Use (a) to find y′(1).

(c) Differentiate the equation in (a) and show that
x3y′′ + 6x2y′ + 6xy + 4y3y′′ + 12y2(y′)2 = 0.

(d) Use the equation in (c) to find y′′(1). [Hint: y(1)
and y′(1) are known.]

18.[R] Find y′′(1) if y(1) = 2 and x5 + xy + y5 = 35.

19.[R] Find y′(1) and y′′(1) if y(1) = 0 and
sin y = x− x3.
20.[R] Find y′′(2) if y(2) = 1 and x3 +x2y−xy3 = 10.

21.[R] Use implicit differentiation to find the highest
and lowest points on the ellipse x2 + xy + y2 = 12.
Hint: What do you know about dy/dx at the highest
and lowest points on the graph of a function?

22.[M]

(a) What difficulty arises when you use implicit
differentiation to maximize x2 + y2 subject to
x2 + 4y2 = 16?

(b) Show that a maximum occurs when dy/dx is not
defined. What is the maximum of x2+y2 subject
to x2 + 4y2 = 16?

(c) The problem can be viewed geometrically as
“Maximize the square of the distance from the
origin for points on the ellipse x2 + 4y2 = 16.”
Sketch the ellipse and interpret (b) in terms of
it.

23.[R] How fast is the fish in Example 4 moving
through the water when it is 1 foot horizontally from
the bridge?

24.[R] The angler in Example 4 decides to let the
line out as the fish swims away. The fish swims away
at a constant speed of 5 feet per second relative to the
water. How fast is the angler paying out his line when
the horizontal distance from the bridge to the fish is

(a) 1 foot?

(b) 100 feet?

25.[R] A 10-foot ladder is leaning against a wall. A
person pulls the base of the ladder away from the wall
at the rate of 1 foot per second.

(a) Draw a neat picture of the situation and label the
varying lengths by letters and the fixed lengths
by numbers.

(b) Obtain an equation involving the variables in (a).

(c) Differentiate it with respect to time.

(d) How fast is the top going down the wall when
the base of the ladder is 6 feet from the wall? 8
feet from the wall? 9 feet from the wall?

26.[R] A kite is flying at a height of 300 feet in a
horizontal wind.

(a) Draw a neat picture of the situation of label the
varying lengths by letters and the fixed lengths
by numbers.

(b) When 500 feet of string is out, the kite is pulling
the string out at a rate of 20 feet per second.
What is the kite’s velocity? (Assume the string
remains straight.)
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Figure 5.2.5:
27.[R] A beachcomber walks 2 miles per hour along
the shore as the beam from a rotating light 3 miles
offshore follows him. (See Figure 5.2.5.)

(a) Intuitively, what do you think happens to the
rate at which the light rotates as the beach-
comber walks further and further along the shore
away from the lighthouse?

(b) Let x describe the distance of the beachcomber
from the point on the shore nearest the light and
θ the angle of the light, obtain an equation re-
lating θ and x.

(c) With the aid of (b), show that dθ/dt = 6/(9+x2)
(radians per hour).

(d) Does the formula in (c) agree with your guess in
(a)?

28.[R] A man 6 feet tall walks at the rate of 5 feet per
second away from a street lamp that is 20 feet high. At
what rate is his shadow lengthening when he is

(a) 10 feet from the lamp?

(b) 100 feet from the lamp?

29.[R] A large spherical balloon is being inflated at
the rate of 100 cubic feet per minute. At what rate is
the radius increasing when the radius is

(a) 10 feet?

(b) 20 feet?

(The volume of a sphere of radius r is V = 4πr3/3.)

30.[R] A shrinking spherical balloon loses air at the
rate of 1 cubic inch per second. At what rate is its
radius changing when the radius is

(a) 2 inches

(b) 1 inch?

31.[R] Bulldozers are moving earth at the rate of
1, 000 cubic yards per hour onto a conically shaped hill
whose height of the hill increasing when the hill is

(a) 20 yards high?

(b) 100 yards high?

(The volume of a cone of radius r and height h is
V = πr2h/3.)

32.[R] The lengths of the two legs of a right triangle
depend on time. One leg, whose length is x, increaes
at the rate of 5 feet per second, while the other, of
length y, decreases at the rate of 6 feet per second.
At what rate is the hypotenuse changing when x = 3
feet and y = 4 feet? Is the hypotenuse increasing or
decreasing then?
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33.[R] Two sides of a triangle and their included
angle are changing with respect to time. The angle
increases at the rate of 1 radian per second, one side
increases at the rate of 3 feet per second, and the other
side decrease at the rate of 2 feet per second. Find the
rate at which the area is changing when the angle is
π/4, the first side is 4 feet long, and the second side is
5 long. Is the area decreasing or increasing then?

34.[R] The length of a rectangle is increasing at the
rate of 7 feet per second, and the width is decreasing
at the rate of 3 feet per second. When the length is 12
feet and the width is 5 feet, find the rate of change of

(a) the area,

(b) the perimeter

(c) the length of the diagonal.

Exercises 35 to 39 concern acceleration.

35.[R] What is the ac-
celeration of the fish de-
scribed in Example 4
when the length of line is

(a) 300 feet?

(b) 31 feet?

Note: The notation ẋ for
dx/dt, θ̇ for dθ/dt, ẍ for
d2x/dt2, and θ̈ for d2θ/dt2

was introduced by New-
ton and is still common in
physics.
36.[R] A woman on the
ground is watching a jet
through a telescope as it
approaches at a speed of
10 miles per minute at an
altitude of 7 miles. At
what rate (in radians per
minute) is the angle of the
telescope changing when
the horizontal distance of
the jet from the woman

is 24 miles? When the
jet is directly above the
woman?

37.[R] Find θ̈ in Exam-
ple 36 when the horizontal
distance from the jet is

(a) 7 miles,

(b) 1 mile.

38.[R] A particle moves
on the parabola y = x2

in such a way that ẋ = 3
throughout the journey.
Find the formulas for (a)
ẏ and (b) ÿ.

39.[R] Call one acute
angle of a right triangle
θ. The adjacent leg has
length x and the opposite
leg has length y.
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40.[R] Call one acute angle of a right triangle θ. The
adjacent leg has length x and the opposite leg has
length y.

(a) Obtain an equation relating x, y and θ.

(b) Obtain an equation involving ẋ, ẏ, and θ̇ (and
other variables).

(c) Obtain an equation involving ẍ, ÿ, and θ̈ (and
other variables).

41.[R] A two-piece extension ladder leaning against
a wall is collapsing at the rate of 2 feet per sec-
ond and the base of the ladder is moving away
from the wall at the rate of 3 feet per second.
How fast is the top of the ladder moving down the
wall when it is 8 feet from the ground and the
foot is 6 feet from the wall? (See Figure 5.2.6.)

Figure 5.2.6:

42.[R] At an altitude of x kilometers, the atmospheric
pressure decreases at a rate of 128(0.88)x millibars per
kilometer. A rocket is rising at the rate of 5 kilometers
per second vertically. At what rate is the atmospheric
pressure changing (in millibars per second) when the
altitude of the rocket is (a) 1 kilometer? (b) 50 kilo-
meters?

43.[R] A woman is walking on a bridge that is 20 feet
above a river as a boat passes directly under the center

of the bridge (at a right angle to the bridge) at 10 feet
per second. At that moment the woman is 50 feet from
the center and approaching it at the rate of 5 feet per
second.

(a) At what rate is the distance between the boat
and woman changing at that moment?

(b) Is the rate at which they are approaching or sep-
arating increasing or is it decreasing?

44.[R] A spherical raindrop evaporates at a rate pro-
portional to its surface area. Show that the radius
shrinks at a constant rate.

45.[R] A couple is on a Ferris wheel when the sun
is directly overhead. The diameter of the wheel is 50
feet, and its speed is 0.01 revolution per second.

(a) What is the speed of their shadows on the ground
when they are at a two-o’clock position?

(b) A one-o’clock position?

(c) Show that the shadow is moving its fastest when
they are at the top or bottom, and its slowest
when they are at the three-o’clock or nine-o’clock
position.

46.[R] Does the tangent line to the curve x3 + xy2 +
x3y5 = 3 at the point (1, 1) pass through the point
(−2, 3)? (Explain.)

Exercises 47 and 48 obtain by implicit differentiation
the formulas for differentiating x1/n and xm/n with the
assumption that they are differentiable functions. Here
m and n are integers.

Calculus October 22, 2010



336 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

47.[M] Let n be a posi-
tive integer. Assume that
y = x1/n is a differentiable
function of x. From the
equation yn = x deduce
by implicit differentiation
that y′ = (1/n)x1/n−1.

48.[M] Let m be a

nonzero integer and n
a positive interger. As-
sume that y = xm/n is
a differentiable function
of x. From the equation
yn = xm deduce by im-
plicit differentiation that
y′ = (m/n)xm/n−1.

49.[R] Water is flowing into a hemispherical bowl of
radius 5 feet at the constant rate of 1 cubic foot per
minute.

(a) At what rate is the top surface of the water ris-
ing when it height above the bottom of the bowl
is 3 feet? 4 feet? 5 feet?

(b) If h(t) is the depth in feet at time t, find ḧ when
h = 3, 4, and 5.
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50.[R] A man in a hot-air balloon is ascending at the
rate of 10 feet per second. How fast is the distance
from the balloon to the horizon (that is, the distance
the man can see) increasing when the balloon is 1, 000
feet high? Assume that the earth is a ball of radius
4, 000 miles. (See Figure 5.2.7(a).)

(a) (b)

Figure 5.2.7:

51.[R] The Clean Waste company adds 100 cubic
yards of debris to a landfill each day. The operator
decides to keep piling it up in the form of a cone whose
base angle is π/4. See Figure 5.2.7(b). (He plans either
to turn it into a ski run or put an observation restau-
rant on top.) At what rate is the height of the cone
increasing when it is

(a) 10 yards?

(b) 20 yards ?

(c) 100 yards?

(d) How long will it take to make a cone 30 yards
high?

(e) How long to make one 300 yards high, which is
the operator’s goal?

52.[R] (Contributed by Keith Sollers, when an un-
dergraduate at the University of California at Davis.)
We quote from his note. “The numbers are ugly, but I
think it’s a good problem nevertheless. I didn’t think
it up myself. The Medical Center eye group gave me
the problem and asked me to solve it. They were going
to put a gas bubble in someone’s eye.”
The volume of a gas bubble changes from 0.4 cc to 1.6
cc in 74 hours. Assuming that the rate of change of
the radius is constant, find,

(a) The rate at which the radius changes;

(b) The rate at which the volume of the bubble is
increasing at any volume V ;

(c) The rate at which the volume is increasing when
the volume is 1 cc.

53.[R] Differentiate the function in Example 6 di-
rectly, without taking logarithms first.

In Exercises 54 to 59 differentiate the given function
by logarithmic differentiation.

54.[R] y = x3 sin2(2x)
55.[R] y =

√
sin(2x) 3

√
1 + x3

56.[R] y = x3 cos(2x)

(1+x2)4

57.[R] y = tan3(5x)
3
√
ex2 arcsin(5x)

58.[R] y = (x3+2x)(arctan(3x)
1+e2x

59.[R] y =

“√
ln(2x)

”3
(sin(3x))5

(x3+x)2

In Exercises 60 to 64 first simplify the formula for the
function with the aid of properties of logarithms. Then,
find dy/dx.

60.[M] y = ln


(√

1 + x2
)3 (

e3x + 1
)

1 + sin(2x)

.

61.[M] y = ln
((√

1 + sin(2x)
)3
)

62.[M] y = ln
(

(x3+2)5

(x2+5)2

)

63.[M] y = ln
(

(sin(2x))3
√

arctan(3x)
)

64.[M] y = ln
(

(ln(x2))5(arcsin(3x))5

(tan(5x)2

)

65.[M] Find D(xk), x > 0, by logarithmic differenti-
ation of y = xk.

66.[M] Let y = xx.

(a) Find y′ by logarithmic differentiation. That is,
first take the logarithm of both sides.

(b) Find y′ by first writing the base as eln(x). That
is, write y = xx =

(
eln(x)

)x
= ex ln(x).

67.[M] Find the first and second derivatives of
y = sec(x2) sin(x2)

x .
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5.3 Higher Derivatives and the Growth of a

Function

The only higher derivative we’ve used so far is the second derivative. In the
study of motion, if y denotes position then y′′ is acceleration. In the study
of graphs, the second derivative determines whether the graph is concave up
(y′′ > 0) or down (y′′ < 0). Later, in Section 9.6, the second derivative will
appear in a formula that measures the curviness of a curve.

Now we will see how the higher derivatives (including the second derivative)
influence the growth of a function. In the next section this will be applied to
estimate the error in approximating a function by a polynomial.

Introduction

Imagine that you are in a car motionless at the origin of the x-axis. Then you
put your foot to the gas pedal and accelerate. The greater the acceleration,
the faster the speed increases; the greater the speed, the further you travel in a
given time. So the acceleration, which is the second derivative of the position
function, influences the function itself. This illustrates how a higher derivative
of a function influences the growth of a function. In this section we examine
this influence in more detail.

The following lemma is the basis for our analysis. In terms of daily life, it
says, “The faster runner wins the race.”If a > b, then f(x) ≥ g(x).

See Exercise 31.

Lemma 5.3.1. Let f(x) and g(x) be differentiable functions on an interval I.
Let a be a number in I where f(a) = g(a). Assume that f ′(x) ≤ g′(x) for x in
I. Then f(x) ≤ g(x) for all x in I to the right of a and f(x) ≥ g(x) for all x
in I to the left of a.

Figure 5.3.1:

Figure 5.3.1 makes this plausible, when the graphs of f and g are straight
lines. To the right of x = a the steeper line lies above the other line. To the
left of x = a the steeper line lies below the other line.

Proof of Lemma 5.3.1

Consider the case when x > a. Let h(x) = f(x) − g(x). Then h(a) = 0 and
h′(x) = f ′(x)−g′(x) ≤ 0. Thus, h is a non-increasing function. Since h(a) = 0,
it follows that h(x) ≤ 0 for x ≥ a. That is, f(x)−g(x) ≤ 0, hence f(x) ≤ g(x)
for x > a. •

Repeated application of Lemma 5.3.1 will enable us to establish a connec-
tion between higher derivatives and the function itself.
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Higher Derivatives and the Growth of a Function

In the following theorem we name the function R(x) because that will be the
notation in the next section when R(x) is the “remainder” function. The 5! = 5 · 4 · 3 · 2 · 1 = 120.

notation n! (read: “n factorial”) for a positive integer n is shorthand for the
product of all integers from 1 through n: n! = n(n− 1) · · · 3 · 2 · 1. The symbol
0! is usually defined to be 1.

Theorem 5.3.2 (Growth Theorem). Assume that at a the function R and its
first n derivatives are zero,

R(a) = R′(a) = R′′(a) = R(3)(a) = · · · = R(n)(a) = 0.

Assume also that R(x) has continuous derivatives up through the derivative of
order n + 1 in some open interval I containing the numbers a and x. Then
there is a number cn in the interval [a, x] such that

R(x) = R(n+1)(cn)
(x− a)n+1

(n+ 1)!
. (5.3.1)

Before giving the straightforward proof, we illustrate the theorem by several
examples.

EXAMPLE 1 Assume that R(5) = R′(5) = R′′(5) = 0 and
∣∣R(3)(x))

∣∣ ≤ 4
for x in the interval (3, 7). Show that |R(x)| ≤ 2|x− 5|3/3 for x in (3, 7).
SOLUTION By the Growth Theorem, with a = 5 and n = 2,

R(x) = R(3)(c3)
(x− 5)3

3!
for some number c3 between 5 and x.

Though we do not know c3, we do know that |R(3)(c3)| ≤ 4. So

|R(x)| = |R(3)(c3)| |x− 5|3

3!
≤ 4
|x− 5|3

3!
=

2

3
|x− 5|3.

�

The Growth theorem with n = 1 and a = 0 describes the position of
an accelerating car. One has R(0) = 0 (at time 0 the car is at position 0),
R′(0) = 0 (at time 0 the car is not moving) and R′′ describes the acceleration.
If that acceleration is constant, equal to k, then (5.3.1) gives the car’s position
at time x as R(x) = k x

2

2!
. If the acceleration is not constant, it says that R(x)

equals the acceleration at some time multiplied by x2/2.

EXAMPLE 2 Show that |ex − 1− x| ≤ e
2
x2 for x in (−1, 1).

SOLUTION Let R(x) = ex− 1−x. Then R(0) = e0− 1− 0 = 0. And, since
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R′(x) = ex−1, R′(0) = e0−1 = 0 also. R′′(x) = ex. By the Growth Theorem,
with a = 0 and n = 1, there is a number c1 in (−1, 1) such that

ex − 1− x = ec1
(x− 0)2

2!
.

We do not know c1, but, since it is less than 1, ec1 < e. Thus

|ex − 1− x| ≤ e
x2

2
. (5.3.2)

�
The inequality (5.3.2) in the preceding example provides a way to estimate

ex when x is small. For instance, |e0.1 − 1 − 0.1| ≤ e
2
(0.1)2 = e/200. The

estimate 1.1 for e0.1 is off by at most e/200 ≈ 0.013591.

EXAMPLE 3 Let R(x) = cos(x)− 1 + x2

2
. Show that |R(x)| ≤ |x

3|
6

.
SOLUTION As in Example 2 we use the Growth Theorem with a = 0 and
x > 0. Since powers of x = (x − 0) appear in R(x), this suggests examining
R(x) at a = 0:

R(x) = cos(x)− 1− x2

2
, so R(0) = 1− 1 + 0 = 0;

R′(x) = − sin(x) + x, so R′(0) = 0 + 0 = 0;

R′′(x) = − cos(x) + 1, so R′′(0) = −1 + 1 = 0; and

R(3)(x) = sin(x).

By the Growth theorem, with a = 0 and n = 2,

R(x) = sin(c2)
x3

3!
for some number c2 between 0 and x.

Because | sin(x)| ≤ 1,

|R(x)| ≤
∣∣∣∣(1)

x3

6

∣∣∣∣ =
|x|3

6
.

�
Example 3 provides a good estimate for values of the cosine function for

small angles. For instance, if x = 0.1 radians, we have0.1 radians = 0.1180◦

π

◦ ≈
5.7◦ ∣∣∣∣cos(0.1)− 1 +

0.12

2

∣∣∣∣ ≤ 0.13

6
= 0.00016667 = 1.6667× 10−4.

Thus, 1 − 0.12

2
= 1 − 0.005 = 0.995 is an estimate of cos(0.1) ≈ 0.9950041653

with an error less than 0.00016667− 1
6
× 10−3.
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Remark: An even better bound on the growth of R(x) in Exam-
ple 3 is possible. In addition to R(0) = R′(0) = R′′(0) = 0, notice

that R(3)(0) = sin(0) = 0. This means that |R(x)| ≤
∣∣∣M4

(x−0)4

4!

∣∣∣
where M4 is the maximum value of R(4)(t) = cos(t) in the interval
[0, x]. As in Example 3, M ≤ 1. Thus,

|R(x)| ≤
∣∣∣∣(1)

x4

4!

∣∣∣∣ =
x4

24
.

This means the difference between the exact value of cos(0.1) and In fact, | cos(0.1)− 0.995| ≈
4.16528× 10−6.the estimate 1− 0.12

2
= 0.995 is no more than 0.14

24
= 4.16667×10−6.

This shows the estimate in Example 3 is accurate to five decimal
places.

In any case, 1− x2

2
is a good estimate of cos(x) for small values of x.

A Refinement of the Growth Theorem

When proving the Growth theorem we will establish something stronger:

Theorem 5.3.3. Refined Growth Theorem If m ≤ R(n+1)(t) ≤ M and all
earlier derivatives of R are 0 at a, then

R(x) is between m
(x− a)n+1

(n+ 1)!
and M

(x− a)n+1

(n+ 1)!
. (5.3.3)

This statement holds even if x is less than a and (x− a) is negative.

EXAMPLE 4 Let R(x) = ex − (1 + x + x2

2!
+ x3

3!
). Show that 1

1152
≤

R(1
2
) ≤ 1

128
. Use this estimate to obtain approximations, with error bounds,

for
√
e = e1/2 and e.

SOLUTION

R(0) = e0 − 1− 0.

R′(x) = ex − (1 + x+
x2

2!
), so R′(0) = 0.

R′′(x) = ex − (1 + x), so R′′(0) = 0.

R(3)(x) = ex − 1, so R(3)(0) = 0.

R(4)(x) = ex, and R(4)(0) = 1 6= 0.
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But, for x in I = (−1, 1), 1
3
≤ e−1 ≤ ex ≤ e1 < 3. Theorem 5.3.3, with a = 0,

n = 3, m = 1
3
, M = 3, and x = 1

2
gives

1
3

(1/2)4

4!
≤ R(1/2) ≤ 3 (1/2)4

4!

Then, 1
1152

≤
√
e−

(
1 + 1

2
+ (1/2)2

2!
+ (1/2)3

3!

)
≤ 1

128

or 79
48

+ 1
1152

≤
√
e ≤ 79

48
+ 1

128

so 1.64670 ≤
√
e ≤ 1.65365.

As you can check with your calculator,
√
e ≈ 1.64872 to five decimal places. �

As Example 4 shows, the Growth Theorem provides not only upper bounds
on the error in approximating a function by certain polynomials, but lower
bounds on that error as well.

Proof of the Growth Theorem

Proof of the Growth Theorem

We illustrate the proof in the case n = 2. For convenience, we take the case
x > a. The case with x < a is complicated by the fact that x − a is then
negative and the sign of (x− a)n depends on whether n is odd or even.

Assume R(a) = R′(a) = R′′(a) = 0 and R(3)(x) is continuous in the interval
[a, x]. We want to show there is a number c2 in [a, x] such that

R(x) = R(3)(c2)
(x− a)3

3!
.

Let M be the maximum of R(3)(t) and m be the minimum of R(3)(t) on
the closed interval [a, x]. Thus

m ≤ R(3)(t) ≤M for all t in [a, x].

We will see first what the inequality R(3)(t) ≤M implies about R(x).
We rewrite that inequality as

d

dt

(
R(2)(t)

)
≤ d

dt
(M(t− a)) . (5.3.4)

Now apply Lemma 5.3.1 with f(t) = R(2)(t) and g(t) = M(t − a). Note that
f(a) = 0 and g(a) = M(a − a) = 0. (That is why we used the antiderivative
M(t − a) rather than the expected Mt.) Also f ′′(a) = 0 = g′′(a). By the
lemma

R(2)(t) ≤M(t− a). (5.3.5)
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Next, rewrite (5.3.5) as

d

dt
(R′(t)) ≤ d

dt

(
M

(t− a)2

2

)
.

Applying the lemma again shows that

R′(t) ≤M
(t− a)2

2
. (5.3.6)

Finally, rewrite (5.3.6) as

d

dt
(R(t)) ≤ d

dt

(
M

(t− a)3

3 · 2

)
.

The lemma asserts that

R(t) ≤M
(t− a)3

3!
. (5.3.7)

Similar reasoning, starting with m ≤ R(3)(t) shows that

m
(t− a)3

3!
≤ R(t). (5.3.8)

Combining (5.3.7) and (5.3.8) gives two bounds on R(t); in particular on R(x):

m
(x− a)3

3!
≤ R(x) ≤M

(x− a)3

3!
.

Because R(3) is continuous on [a, x] it assumes all values between m and
M . Thus there is a number c2 in [a, x] such that

R(x) = R(3)(c2)
(x− a)3

3!
.

•

Summary

We showed that the bound on the size of the derivative of a function limits
the growth of the function itself. When this observation is applied repeatedly
we showed that if a function R(x) and its first n derivatives are all zero at a,
then

R(x) = R(n+1)(cn)
(x− a)n+1

(n+ 1)!
for some cn between a and x.

The number cn depends on n, not just on a, x, and the function R(x).
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EXERCISES for Section 5.3 Key: R–routine,
M–moderate, C–challenging

1.[R] If f ′(x) ≥ 3 for all x ∈ (−∞,∞) and f(0) = 0,
what can be said about f(2)? about f(−2)?

2.[R] If f ′(x) ≥ 2 for all x ∈ (−∞,∞) and f(1) = 0,
what can be said about f(3)? about f(−3)?

3.[R] What can be said about f(2) if f(1) = 0,
f ′(1) = 0, and 2.5 ≤ f ′′(x) ≤ 2.6 for all x?

4.[R] What can be said about f(4) if f(1) = 0,
f ′(1) = 0, and 2.9 ≤ f ′′(x) ≤ 3.1 for all x?

5.[R] A car starts from rest and travels for 4 hours.
Its acceleration is always at least 5 miles per hour per
hour, but never exceeds 12 miles per hour per hour.
What can you say about the distance traveled during
those 4 hours?

6.[R] A car starts from rest and travels for 6 hours.
Its acceleration is always at least 4.1 miles per hour
per hour, but never exceeds 15.5 miles per hour per
hour. What can you say about the distance traveled
during those 6 hours?

7.[R] State the Growth Theorem for x ≥ a in the
case where R has at least five continuous derivatives
and R(a) = R′(a) = R′′(a) = R(3)(a) = R(4)(a) = 0.

8.[R] State the Growth Theorem in words, using as
little math notation as possible.

9.[R] If R(1) = R′(1) = R′′(1) = 0 and R(3)(x) is con-
tinuous on an interval that includes 1 and R(3)(x) ≤ 2,
what can be said about R(4)?

10.[R] If R(3) = R′(3) = R′′(3) = R(3)(3) =
R(4)(3) = 0 and R(5)(x) ≤ 6, what can be said about
R(3.5)?

11.[R] Let R(x) = sin(x)−
(
x− x3

6

)
. Show that

(a) R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

(b) R(4)(x) = sin(x).

(c) |R(x)| ≤ x4

24 .

(d) Use x− x3

6 to approximate sin(x) for x = 1/2.

(e) Use (c) to estimate the difference between the
exact value for sin

(
1
2

)
and the approximation

obtained in (d).

(f) Explain why |R(x)| ≤ |x|5
120 . How can this be

used to obtain a better estimate of the differ-
ence between the exact value for sin

(
1
2

)
and the

approximation obtained in (d)?

(g) By how much does the estimate in (d) differ from
sin
(

1
2

)
?

Incidentally, an angle of 1
2 radian is about 29◦.

12.[R] Let R(x) = cos(x)−
(

1− x2

2! + x4

4!

)
. Show that

(a) R(0) = R′(0) = R′′(0) = R(3)(0) = R(4)(0) =
R(5)(0) = 0.

(b) R(6)(x) = − cos(x).

(c) |R(x)| ≤ x6

6! .

(d) Use 1− x2

2! + x4

4! to estimate cos(x) for x = 1.

(e) By how much does the estimate in (d) differ from
cos(1)?

Incidentally, an angle of 1 radian is about 57◦.

13.[R] Let R(x) = (1 + x)5 − (1 + 5x+ 10x2). Show
that

(a) R(0) = R′(0) = R′′(0) = 0.

(b) R(3)(x) = 60(1 + x)2.

(c) |R(x)| ≤ 80x3 (on [−1, 1])

(d) Use 1+5x+10x2 to estimate (1+x)5 for x = 0.2.
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(e) By how much does the estimate in (d) differ from
(1.2)5?

14.[M] If f(3) = 0 and f ′(x) ≥ 2 for all x ∈ (−∞,∞),
what can be said about f(1)? Explain.

15.[M] If f(0) = 3 and f ′(x) ≥ −1 for all
x ∈ (−∞,∞), what can be said about f(2) and about
f(−2)? Explain.
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In Example 3 the polynomial 1 − x2

2 was shown to be
a good approximation to cos(x) for x near 0. You may
wonder how that polynomial was chosen. Exercise 16
shows how.
16.[M] Let P (x) = a0 + a1x + a2x

2 be an arbitrary
quadratic polynomial. For which values of a0, a1, and
a2 is:

(a) cos(0)− P (0) = 0?

(b) cos′(0)− P ′(0) = 0?

(c) cos′′(0)− P ′′(0) = 0?

(d) Let R(x) = cos(x) − P (x). For which P (x) is
R(0) = R′(0) = R′′(0) = 0?

17.[M] Find constants a0, a1, a2, and a3 such that
if R(x) = tan(x) −

(
a0 + a1x+ a2x

2 + a3x
3
)

then
R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

18.[M] Find constants a0, a1, a2, and a3 such that
if R(x) =

√
1 + x −

(
a0 + a1x+ a2x

2 + a3x
3
)

then
R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

19.[M] Find constants a0, a1, a2, and a3 such that if

R(x) = sinx−
(
a0 + a1

(
x− π

6

)
+ a2

(
x− π

6

)2
+ a3

(
x− π

6

)3
)

then R
(
π
6

)
= R′

(
π
6

)
= R′′

(
π
6

)
= R(3)

(
π
6

)
= 0.

Exercises 20 to 24 are related.
20.[M] Because e > 1, it is known that ex ≥ 1 for
every x ≥ 0.

(a) Use Lemma 5.3.1 to deduce that ex > 1 + x, for
x > 0.

(b) Use (a) and Lemma 5.3.1 to deduce that, for
x > 0, ex > 1 + x+ x2

2! .

(c) Use (b) and Lemma 5.3.1 to deduce that, for
x > 0, ex > 1 + x+ x2

2! + x3

3! .

(d) In view of (a), (b), and (c), what is the general
inequality that can be proved by this approach?

21.[M] Let k be a fixed positive number. For x in
[0, k], ex ≤ ek.

(a) Deduce that ex ≤ 1 + ekx for x in [0, k].

(b) Deduce that ex ≤ 1 + x+ ek x
2

2! for x in [0, k].

(c) Deduce that ex ≤ 1+x+ x2

2! +ek x
3

3! for x in [0, k].

(d) In view of (a), (b), and (c), what is the general
inequality that can be proved by this approach?

22.[M] Combine the results of Exercises 20 and 21 to
estimate e = e1 to two decimal places. Note: Assume
e ≤ 3.

23.[M] What properties of ex did you use in Exer-
cises 20 and 21?

24.[M] Let E(x) be a function such that E(0) = 1
and E′(x) = E(x) for all x.

(a) Show that E(x) ≥ 1 for all x ≥ 0.

(b) Use (a) to show that E(x) is an increasing func-
tion for all x ≥ 0. Hint: Show that E′(x) ≥ 1,
for all x ≥ 0.

(c) Show E(x) ≥ 1 + x+ x2

2 for all x ≥ 0.

Exercises 25 to 30 show that limx→∞
x
ex , limx→∞

ln(y)
y ,

limx→0+ x ln(x), limx→∞
xk

bx (b > 1), and limx→0+ xx

are closely connected. (If you know one of them you
can deduce the other three.)
Exercises 25 to 26 use the fact that ex > 1 +x+ x2

2 for
all x > 0 (see Exercise 20).
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25.[M] Evaluate
limx→∞

x
ex .

26.[M] Evaluate

limy→∞
ln(y)
y . Hint: Let

y = ex and compare with
Exercise 25.

Exercise 27 provides a proof of the fact that the ex-
ponential function grows faster than any power of x.
27.[M]

(a) Let n be a positive integer. Write xn

ex =(
x

ex/n

)(
x

ex/n

)
· · ·
(

x
ex/n

)
. Let y = x/n so that

x
ex/n

= ny
ey . Use Exercise 25 (n times) to show

that limx→∞
xn

ex = 0.

(b) Deduce that for any fixed number k,
limx→∞

xk

ex = 0.

28.[M] Evaluate limx→0+ x ln(x) as follows: Let x =
1/t, where t → ∞. Then x ln(x) = 1

t ln
(

1
t

)
= − ln(t)

t .
and refer to Exercise 26.
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29.[M] Evaluate limx→0+ xx as follows: Let y = xx.
Then ln(y) = x ln(x), a limit that was evaluated in
Exercise 28. Explain why ln(y)→ 0 implies y → 1.

30.[M] Evaluate limx→∞
xk

bx for any b > 1 and k is
a positive integer, Hint: Use the result obtained in
Exercise 27.

31.[M] Explain why f(a) = g(a) and f ′(x) ≤ g′(x) on
[a, b] with a > b implies f(x) ≥ g(x) for all x in [a, b].

32.[M] In Example 2 it is shown that |ex − 1− x| ≤
e
2x

2 for all x in (−1, 1). Find a bound for

(a) R(x) = ex − 1− x− x2

2 on (−1, 1).

(b) R(x) = ex − 1− x on (−2, 1).

(c) R(x) = ex − 1− x on (−1, 2).

(d) R(x) = ex − 1− x− x2

2 on (−2, 1).

(e) R(x) = ex − 1− x− x2

2 on (−1, 2).

33.[C] Apply Lemma 5.3.1 for x > a to the case when
R(a) = R′′(a) = 0, R(3)(t) ≤M , (for all t in [a, x]) but
R′(a) = 5.

34.[C] Consider the following proposal by Sam: “As
usual, I can do things more simply than the text.
For instance, say R(a) = R′(a) = R′′(a) = 0 and
R(3)(x) ≤M . I’ll show how M affects the size of R(x),
for x > a.
By the Mean-Value Theorem, R(x) = R(x) − R(a) =
R′(c1)(x− a) for some c1 in [a, x]. Then I just use the
MVT again, this time finding R′(c1) = R′(c1)−R′(a) =
R′′(c2)(c1−a) for some c2 in [a, c1]. One more applica-
tion of this idea then gives R′′(c2) = R′′(c2)−R′′(a) =
R(3)(c3)(c3 − a).
Then I put these all together, getting

R(x) ≤M(x− a)(c2 − a)(c3 − a).

Since c1, c2, and c3 are in [a, x], I can certainly say that

R(x) ≤M(x− a)3.

I didn’t need that lemma about two functions.”
Is Sam correct? Is this a valid substitute for the text’s
treatment? Explain.

35.[C] The proof of the Growth Theorem when x is
less than a is slightly different than the proof when x is
greater than a. Prove it for the case n = 4. Note that
in this case (x− a)3 and (x− a) are negative x < a.
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5.4 Taylor Polynomials and Their Errors

We spend years learning how to add, subtract, multiply, and divide. These
same operations are built into any calculator or computer. Both we and ma-
chines can evaluate a polynomial, such as

a0 + a1x+ a2x
2 + · · ·+ anx

n,

when x and the coefficients a0, a1, a2, . . . , an are given. Only multiplication
and addition are needed. But how do we evaluate ex? We resort to our
calculators or look in a table that lists values of ex. If ex were a polynomial
in disguise, then it would be easy to evaluate it by finding the polynomial and
evaluating it instead. But ex cannot be a polynomial, as the reasons in the
margin show. Three different reasons:

1. Because ex equals its
own derivative and no
polynomial equals its own
derivative (other than the
polynomial that has
constant value 0).
2. When you differentiate a
non-constant polynomial,
you get a polynomial with a
lower degree.
3. Also, ex → 0 as
x→ −∞ and no
non-constant polynomial
has this property.

Since we cannot write ex as a polynomial, we settle for the next best thing.
Let’s look for a polynomial that closely approximates ex. However, no poly-
nomial can be a good approximation of ex for all x, since ex grows too fast as
x→∞. We search, instead, for a polynomial that is close to ex for x in some
short interval.

In this section we develop a method to construct polynomial approxima-
tions to functions. The accuracy of these approximations can be determined
using the Growth Theorem from the previous section. Higher derivatives play
a pivotal role.

Fitting a Polynomial, Near 0

Suppose we want to find a polynomial that closely approximates a function
y = f(x) for x near the input 0. For instance, what polynomial p(x) of the
form a0 + a1x+ a2x

2 + a3x
3 might produce a good fit?

First we insist that

p(0) = f(0) (5.4.1)

so the approximation is exact when x = 0.
Second, we would like the slope of the graph of p(x) to be the same as that

of f(x) when x is 0. Therefore, we require

p′(0) = f ′(0). (5.4.2)

There are many polynomials that satisfy these two conditions. To find the
best choices for the four numbers a0, a1, a2, and a3 we need four equations.
To get them we continue the pattern started by (5.4.1) and (5.4.2). So we also
insist that

p′′(0) = f ′′(0) (5.4.3)
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and
p(3))(0) = f (3)(0). (5.4.4)

Equation (5.4.3) forces the polynomial p(x) to have the same sense of concavity
as the function f(x) at x = 0. We expect the graphs of f(x) and such a
polynomial p(x) to resemble each other for x close to a.

To find the unknowns a0, a1, a2, and a3 we first compute p(x), p′(x),
p′′(x), and p(3)(x) at 0. Table 5.4.1 displays the computations that express
the unknowns, a0, a1, a2, and a3, in terms of f(x) and its derivatives. For
example, note how we compute p′′(x) = 2a2 + 3 · 2a3x and evaluate it at 0 to
obtain p′′(0) = 2a2 + 3 · 2a3 · 0 = 2a2. Then we obtain an equation for a2 by
equating p′′(0) and f ′′(0); that is, 2a2 = f ′′(0), so a2 = 1

2
f ′′(0).

p(x) and its derivatives Their values at 0 Equation for ak Formula for ak
p(x) = a0 + a1x+ a2x

2 + a3x
3 p(0) = a0 a0 = f(0) a0 = f(0)

p(1)(x) = a1 + 2a2x+ 3a3x
2 p(1)(0) = a1 a1 = f (1)(0) a1 = f (1)(0)

p(2)(x) = 2a2 + 3 · 2a3x p(2)(0) = 2a2 2a2 = f (2)(0) a2 = 1
2
f (2)(0)

p(3)(x) = 3 · 2a3 p(3)(0) = 3 · 2a3 3 · 2a3 = f (3)(0) a3 = 1
3·2f

(3)(0)

Table 5.4.1:

We can write a general formula for ak if we let f (0)(x) denote f(x) andFactorials appear in the
denominators. recall that 0! = 1 (by definition), 1! = 1, 2! = 2 · 1 = 2, and 3! = 3 · 2.

According to Table 5.4.1,

ak =
f (k)(0)

k!
, k = 0, 1, 2, 3.

Therefore

p(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f (3))(0)

3!
x3.

The coefficient of xk is completely determined by the kth derivative of f eval-
uated at 0. It equals the kth derivative of f at 0 divided by k!.

DEFINITION (Taylor Polynomials at 0) Let n be a non-negativeThe nth-order Taylor
polynomial has degree at

most n.
integer and let f be a function with derivatives at 0 of all orders
through n. Then the polynomial

f(0) + f (1)(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn (5.4.5)

is called the nth-order Taylor polynomial of f centered at 0
and is denoted Pn(x; 0). It is also called a Maclaurin polyno-
mial.
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Whether Pn(x; 0) approximates f(x) for x near 0 is not obvious. We will
show that the Macaurin polynomials for ex do provide good approximations
of the functions when x is not too large.

EXAMPLE 1 Find the Maclaurin polynomial P4(x; 0) that agrees with

at x at 0
f(x) = 1

1−x 1
f ′(x) = 1

(1−x)2
1

f ′′(x) = 2
(1−x)3

2
f (3)(x) = 3·2

(1−x)4
3 · 2

f (4)(x) = 4·3·2
(1−x)5

4 · 3 · 2

Table 5.4.2:

1/(1− x) and its first four derivatives at 0.
SOLUTION The first step is to compute 1/(1− x) and its first four deriva-
tives, then evaluate them at x = 0. Dividing them by suitable factorials gives
the coefficients of the Maclaurin polynomial. Table 5.4.2 records the compu-
tations.

So the fourth-degree Maclaurin polynomial is

P4(x; 0) = 1 +
1

1!
x+

2

2!
x2 +

3 · 2
3!

x3 +
4 · 3 · 2

4!
x4,

which simplifies to

P4(x; 0) = 1 + x+ x2 + x3 + x4.

Figure 5.4.1 suggests that P4(x; 0) does a fairly good job of approximating

Figure 5.4.1:

1/(1− x) for x near 0. �
The calculations in Example 1 suggest that

The Maclaurin polynomial Pn(x; 0) associated with 1/(1− x) is

1 + x+ x2 + x3 + · · ·+ xn.

Because all the derivatives of ex at 0 are 1,

The Maclaurin polynomial Pn(x; 0) associated with ex is

1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
.

EXAMPLE 2 Find the Maclaurin polynomial of degree 5 for f(x) = sin(x).

SOLUTION Again we make a table for computing the coefficients of the
Taylor polynomial centered at 0. (See Table 5.4.3.)

Figure 5.4.2:
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at x at 0

f (0)(x) = sin(x) f (0)(0) = sin(0) = 0
f (1)(x) = cos(x) f (1)(0) = cos(0) = 1
f (2)(x) = − sin(x) f (2)(0) = − sin(0) = 0
f (3)(x) = − cos(x) f (3)(0) = − cos(0) = −1
f (4)(x) = sin(x) f (4)(0) = sin(0) = 0
f (5)(x) = sin(x) f (5)(0) = sin(0) = 0

Table 5.4.3:

Thus

P4(x; 0) = f (0)(0) + f (1)(0)x+
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4f

(5)(0)

5!
x5

= 0 + (1)x+
0

2!
x2 +

−1

3!
x3 +

0

4!
x4 +

1

5!
x5

= x− x3

3!
+
x5

5!
.

Figure 5.4.2 illustrates the graphs of P5(x; 1) and sin(x) near 0. �

Having found the fifth-order Maclaruin polynomial for sin(x), let us see
how good an approximation it is of sin(x). Table 5.4.4 compares their values
to six-decimal-place accuracy for inputs both near 0 and far from 0. As we
see, the closer x is to 0, the better the Taylor approximation is. When x is
large, P5(x; 0) gets very large, but the value of sin(x) stays between −1 and 1.

x sin(x) P5(x; 0)
0.0 0.000000 0.000000
0.1 0.099833 0.099833
0.5 0.479426 0.479427
1.0 0.841471 0.841667
2.0 0.909297 0.933333
π 0.000000 0.524044
2π 0.000000 46.546732

Table 5.4.4:
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A Shorthand Notation
The Maclaurin polynomials associated with sin(x) have only odd powers and
its terms alternate in sign. For m odd,

Pm(x; 0) = x− x3

3!
+
x5

5!
− x7

7!
+ · · · ± xm

m!
.

The ± in front of xm/m! indicates the coefficient is either positive or negative.
For the terms involving x, x5, x9, . . . , the coefficient is +1. For x3, x7, x11,
. . . it is −1. Because m is odd, it can be written as 2n + 1. If n is even, the
coefficient of x2n+1 is +1. If n is odd, the coefficient of x2n+1 is −1. The
shorthand notation to write the typical summand is

(−1)n
x2n+1

(2n+ 1)!
.

So we may write

P2n+1(x; 0) = x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1!

.

Taylor Polynomials Centered at a

We may be interested in estimating a function f(x) near a number a, not just
near 0. In that case, we express the approximating polynomial in terms of
powers of x − a instead of powers of x = x − 0 and make the derivatives of
the approximating polynomial, evaluated at a, coincide with the derivatives of
the function at a. Calculuations similar to those that gave us the polynomial
(5.4.5) produce the polynomial called a “Taylor polynomial centered at a”. (If
a is not 0, it is not called a Maclaurin polynomial.)

DEFINITION (Taylor Polynomials of degree n, Pn(x; a)) If the The nth-order Taylor
polynomial of f centered at
a is denoted Pn(x; a). It’s
degree is at most n.

function f has derivatives through order n at a, then the nth-order
Taylor polynomial of f centered at a is defined as

f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

and is denoted Pn(x; a).

EXAMPLE 3 Find the nth-order Taylor polynomial centered at a for f(x) =
ex.
SOLUTION All the derivatives of ex evaluated at a are ea. Thus

Pn(x; a) = ea + ea(x− a) +
ea

2!
(x− a)2 +

ea

3!
(x− a)3 + · · ·+ ea

n!
(x− a)n.
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�

The Error in Using A Taylor Polynomial

There is no point using Pn(x; a) to estimate a function f(x) if we have no idea
how large the difference between f(x) and Pn(x; a) may be. So let us take a
look at the difference.

Define the remainder to be the difference between the function, f(x), and
the Taylor polynomial, Pn(x; a). Denote the remainder as Rn(x; a). Then,

f(x) = Pn(x; a) +Rn(x; a).

We will be interested in the absolute value of the remainder. We call |Rn(x; a)|
the error in using Pn(x; a) to approximate f(x). We do not care whether
Pn(x; a) is larger or smaller than the exact value.

Theorem 5.4.1 (The Lagrange Form of the Remainder). Assume that a func-
tion f(x) has continuous derivatives of orders through n+1 in an interval that
includes the numbers a and x. Let Pn(x; a) be the nth-order Taylor polynomial
associated with f(x) in powers of x− a. Then there is a number cn between a
and x such that

Rn(x; a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1.

Proof of Theorem 5.4.1

For simplicity, we denote the remainder Rn(x; a) = f(x) − Pn(x; a) by R(x).
Since Pn(a; a) = f(a),

R(a) = f(a)− Pn(a; a) = f(a)− f(a) = 0.

Similarly, repeated differentiation of R(x), leads to

R(k)(x) = f (k)(x)− P (k)
n (x; a), (5.4.6)

for each integer k, 1 ≤ k ≤ n. From the definition of Pn(x; a),P
(k)
n (a; a) = f (k)(a), k = 0,

1, . . . , n.

R(k)(a) = f (k)(a)− P (k)
n (a; a) = 0.

R(n+1)(x) = f (n+1)(x)
Since Pn(x; a) is a polynomial of degree at most n, its (n + 1)st derivative

is 0. As a result, the (n + 1)st derivative of R(x) is the same as the (n + 1)st

derivative of f(x). Thus, R(x) satisfies all the assumptions of the GrowthSee Theorem 5.3.2 in
Section 5.3. Theorem. Recalling (5.3.1) from Section 5.3, we see
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Lagrange Form of the Remainder
There is a number cn between a and x such that

Rn(x; a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1.

•

EXAMPLE 4 Discuss the error in using x− x3

3!
+ x5

5!
to estimate sin(x) for

x > 0.
SOLUTION Example 2 showed that x− x3

3!
+ x5

5!
is the Maclaurin polynomial,

P5(x; 0), associated with sin(x). In this case f(x) = sin(x) and each derivative
of f(x) is either ± sin(x) or ± cos(x). Therefore, |fn+1(cn)| is at most 1, and
we have

|f 5+1(c5)|
6!

x6 ≤ x6

6!
.

Then ∣∣∣∣sin(x)−
(
x− x3

6
+

x5

120

)∣∣∣∣ ≤ |x|6|6!
=

x6

720
.

For instance, with x = 1/2,∣∣∣∣∣sin
(

1

2

)
−

((
1

2

)
−
(

1
2

)3

6
+

(
1
2

)5

120

)∣∣∣∣∣ ≤
(

1
2

)6

720
=

1

(64)(720)
=

1

46, 080
≈ 0.0000217 = 2.17×10−5

So the approximation

P5(
1

2
; 0) =

1

2
− 1

3!

(
1

2

)3

+
1

5!

(
1

2

)5

=
1

2
− 1

48
+

1

3840
=

1841

3840
≈ 0.4794271

differs from sin(1/2) (the sine of half a radian) by less than 2.17 × 10−5; this
means at least the first four decimal places are correct. The exact value of
sin(1/2), to ten decimal places is 0.4794255386 and our estimate is correct to
five decimal places. By comparison, a calculator gives sin(1/2) ≈ 0.479426,
which is also correct to five decimal places. �

Figure 5.4.3: (Insert label
for point (a, f(a)).)

The Linear Approximation P1(x; a)

The graph of the Taylor polynomial P1(x; a) = f(a) + f ′(a)(x − a) is a line
that passes through the point (a, f(a)) and has the same slope as f does at
a. That means that the graph of P1(x; a) is the tangent line to the graph of f
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at (a, f(a)). It is customary to call P1(x; a) = f(a) + f ′(a)(x− a) the linear
approximation to f(x) for x near a. It is often denoted L(x). Figure 5.4.3
shows the graphs of f and L near the point (a, f(a)).

Let x be a number close to a and define ∆x = x−a and ∆y = f(a+∆x)−
f(a), quantities used in the definition of the derivative: f ′(a) = lim∆x→0

∆y
∆x

.
Often ∆x is denoted by dx and f ′(a)dx is defined to be “dy”, as shown in

Figure 5.4.4. Note that dy is an approximation to ∆y, and f(a) + dy is an
approximation to f(a+ ∆x) = f(a) + ∆y.

Figure 5.4.4:

In Section 8.2 we will use dy = f ′(x)dx and dx as bookkeeping tools to
simplify the search for antiderivatives.

The expressions “dx” and “dy” are called differentials. In the seventeenth
century, dx and dy referred to “infinitesimals”, infinitely small numbers. Leib-
niz viewed the derivative as the quotient dy

dx
, and that notation for the derivative

persists more than three centuries later.

WARNING (The derivative is not a quotient.) The derivative is
the limit of a quotient.

The next example uses the linear approximation to estimate
√
x near x = 1.

EXAMPLE 5 Use P1(x; 1) to estimate
√
x for x near 1. Then discuss the

error.
SOLUTION In this case f(x) =

√
x, f ′(x) = 1

2
√
x
, and f ′(1) = 1/2. The

linear approximation of f(x) near a = 1 is

P1(x; 1) = f(1) + f ′(1)(x− 1) = 1 +
1

2
(x− 1)

and the remainder is

R1(x; 1) =
√
x−

(
1 +

1

2
(x− 1)

)
.

Table 5.4.5 shows how rapidly R1(x; 1) approaches 0 as x → 1 and compares

x R1(x; 1) (x− 1)2 R1(x; 1)/(x− 1)2

2.0
√

2 −
(
1 + 1

2
(2− 1)

)
≈ −0.08578643 1 −0.08579

1.5
√

1.5 −
(
1 + 1

2
(1.5− 1)

)
≈ −0.02525512 0.25 −0.10102

1.1
√

1.1 −
(
1 + 1

2
(1.1− 1)

)
≈ −0.00119115 0.01 −0.11912

1.01
√

1.01 −
(
1 + 1

2
(1.01− 1)

)
≈ −0.00001243 0.0001 −0.12438

Table 5.4.5:
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this difference with (x− 1)2.

The final column in Table 5.4.5 shows that R1(x;1)
(x−1)2

is nearly constant. Be-

cause (x − 1)2 → 0 as x → 0, this means R1(x; 1) approaches 0 at the same
rate as the square of (x− 1).

Since the Lagrange form for R1(x; 1) is approximately 1
2
f ′′(1)(x−1)2 when

x is near 1, R1(x;1)
(x−1)2

should be near 1
2
f ′′(1) when x is near 1. Just as a check,

compute 1
2
f ′′(1). We have f ′′(x) = −1

4
x−3/2. Thus 1

2
f ′′(1) = 1

2

(−1
4

)
= −1

8
=

−0.125. This is consistent with the final column of Table 5.4.5. �

Summary
We define the “zeroth
derivative” of a function to
be the function itself and
start counting from 0. This
allows us to say simply that

the derivatives P
(k)
n (x; a)

coincide with f (k)(a) for
k = 0, 1, . . . , n.

Given a function f with n derivatives on an interval that contains the
number a we defined the nth-order Taylor polynomial at a, Pn(x; a). The first
n derivatives of the Taylor polynomial of degree n coincide with the first n
derivatives of the given function f at a. Also, Pn(x; a) has the same function
value at a that f does.

Pn(x; a) = f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

If a = 0, Pn(x; 0) is call a Maclaurin polynomial. The general Maclaurin
polynomial associated with

ex is 1 + x+ x2

2!
+ x3

3!
+ · · ·+ xn

n!

sin(x) is x− x3

3!
+ x5

5!
− · · ·+ (−1)n x

2n+1

(n+1)!

cos(x) is 1− x2

2!
+ x4

4!
− · · ·+ (−1)n x2n

(2n)!

1/(1− x) is 1 + x+ x2 + x3 + · · ·+ xn

The remainder in using the Taylor polynomial of degree n to estimate a
function involves the (n+ 1)st derivative of the function:

Rn(x; a) = f(x)− Pn(x; a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1

where cn is a number between a and x . The error is the absolute value of the
remainder, |Rn(x; a)|.

The linear approximation to a function near a is

L(x) = P1(x; a) = f(a) + f ′(a)(x− a).

The differentials are dx = x − a and dy = f ′(a)dx. While dx = ∆x, dy ≈
∆y = f(x+ ∆x)− f(x).
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EXERCISES for Section 5.4 Key: R–routine,
M–moderate, C–challenging
Use a graphing calculator or computer algebra com-

puter algebra system to assist with the computations
and with the graphing.
1.[R] Give at least three reasons sin(x) cannot be a
polynomial.

In Exercises 2 to 13 compute the Taylor polynomials.
Graph f(x) and Pn(x; a) on the same axes on a domain
centered at a. Keep in mind that the graph of P1(x; a)
is the tangent line at the point (a, f(a)).

2.[R] f(x) = 1/(1 + x),
P1(x; 0) and P2(x; 0)
3.[R] f(x) = 1/(1 + x),
P1(x; 1) and P2(x; 1)
4.[R] f(x) = ln(1 + x),
P1(x; 0), P2(x; 0) and
P3(x; 0)
5.[R] f(x) = ln(1 + x),
P1(x; 1), P2(x; 1) and
P3(x; 1)
6.[R] f(x) = ex, P1(x; 0),
P2(x; 0), P3(x; 0), and
P4(x; 0)
7.[R] f(x) = ex, P1(x; 2),
P2(x; 2), P3(x; 2), and
P4(x; 2)

8.[R] f(x) = arctan(x),
P1(x; 0), P2(x; 0), and
P3(x; 0)

9.[R] f(x) = arctan(x),
P1(x;−1), P2(x;−1), and
P3(x;−1)

10.[R] f(x) = cos(x),
P2(x; 0) and P4(x; 0)

11.[R] f(x) = sin(x),
P7(x; 0)

12.[R] f(x) = cos(x),
P6(x;π/4)

13.[R] f(x) = sin(x),
P7(x;π/4)

14.[R] Can there be a polynomial p(x) such that
sin(x) = p(x) for all x in the interval [1, 1.0001]? Ex-
plain.

15.[R] Can there be a polynomial p(x) such that
ln(x) = p(x) for all x in the interval [1, 1.0001]? Ex-
plain.

16.[R] State the Lagrange formula for the error in
using a Taylor polynomial as an estimate of the value
of a function. Use as little mathematical notation as
you can.

In Exercises 17 to 22 obtain the Maclaurin polynomial
of order n associated with the given function.

17.[R] 1/(1−x)

18.[R] ex

19.[R] e−x

20.[R] sin(x)
21.[R] cos(x)

22.[R] 1/(1+x)
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23.[R] Let f(x) =
√
x.

(a) What is the linear approximation, P1(x; 4), to√
x at x = 4?

(b) Fill in the following table.

x R1(x; 4) = f(x)− P1(x; 4) (x− 4)2 R1(x;4)
(x−4)2

5.0
4.1
4.01
3.99

(c) Compute f ′′(4)/2. Explain the relationship be-
tween this number and the entries in the fourth
column of the table in (b).

24.[R] Repeat Exercise 23 for the linear approxima-
tion to

√
x at a = 3. Use x = 4, 3.1, 3.01, and 2.99.

25.[R] Assume f(x) has continuous first and second
derivatives and that 4 ≤ f ′′(x) ≤ 5 for all x.

(a) What can be said in general about the error in
using f(2) + f ′(2)(x− 2) to approximate f(x)?

(b) How small should x − 2 be to be sure that the
error — the absolute value of the remainder — is
less than or equal to 0.005? Note: This ensures
the approximate value is correct to 2 decimal
places.

26.[R] Let f(x) = 2 + 3x+ 4x2.

(a) Find P2(x; 0).

(b) Find P3(x; 0).

(c) Find P2(x; 5).

(d) Find P3(x; 5).
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27.[R]

(a) What can be said about the degree of the poly-
nomial Pn(x; 0)?

(b) When is the degree of Pn(x; 0) less than n?

(c) When is the degree of Pn(x; a) less than n?
(a 6= 0)

28.[M] In the case of f(x) = 1/(1 − x) the error
Rn(x; 0) in using a Maclaurin polynomial Pn(x; 0) to
estimate the function can be calculated exactly. Show
that it equals

∣∣xn+1/(1− x)
∣∣.

Exercises 29 to 32 are related.

29.[R] Let f(x) = (1 +
x)3.

(a) Find P3(x; 0) and
R3(x; 0).

(b) Check that your an-
swer to (a) is cor-
rect by multiplying
out (1 + x)3.

30.[R] Let f(x) = (1 +
x)4.

(a) Find P4(x; 0) and
R4(x; 0).

(b) Check that your an-
swer to (a) is cor-
rect by multiplying
out (1 + x)4.

31.[R] Let f(x) = (1 +
x)5. Using P5(x; 0), show
that

(1+x)5 = 1+5x+
5 · 4
1 · 2

x2+
5 · 4 · 3
1 · 2 · 3

x3+
5 · 4 · 3 · 2
1 · 2 · 3 · 4

x4+
5 · 4 · 3 · 2 · 1
1 · 2 · 3 · 4 · 5

x5.

For a positive integer n
and a non-negative integer
k, with k ≤ n, the symbol(
n
k

)
denotes the bino-

mial coefficient:(
n
k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

1 · 2 · 3 · · · k
=

n!
k!(n− k)!

.

Thus

(1+x)5 =
(

5
0

)
+
(

5
1

)
x+
(

5
2

)
x2+

(
5
3

)
x3+

(
5
4

)
x4+

(
5
5

)
x5.

Using Pn(x; 0) one can
show that, for any positive
integer n,

(1+x)n =
(
n
0

)
+
(
n
1

)
x+
(
n
2

)
x2+· · ·+

(
n

n− 1

)
xn−1+

(
n
n

)
xn =

n∑
k=0

(
n
k

)
xk.

This is the basis for the
Binomial Theorem,

(a+b)n =
n∑
k=0

(
n
k

)
akbn−k.

Note: Recall that(
n
0

)
= n!

0!n! = 1 and(
n
n

)
= n!

n!0! = 1.

32.[M]

(a) Using algebra (no
calculus) derive the
binomial theorem
for (a + b)3 from
the binomial theo-
rem for (1 + x)3.

(b) Obtain the binomial
theorem for (a +
b)12 from the spe-
cial case (1 +x)12 =
12∑
k=0

(
12
k

)
xk.
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In Exercises 33 and 34, use a calculator or computer
to help evaluate the Taylor polynomials

33.[M] Let f(x) = ex.

(a) Find P10(x; 0).

(b) Compute f(x) and
P10(x; 0) at x = 1,
x = 2, and x = 4.

34.[M] Let f(x) = ln(x).

(a) Find P10(x; 1).

(b) Compute f(x) and
P10(x; 1) at x = 1,
x = 2, and x = 4.

Exercises 35 to 38 involve even and odd functions
Recall, from Section 2.6, that a function is even if
f(−x) = f(x) and is odd if f(−x) = −f(x).
35.[M] Show that if f is an odd function, f ′ is an
even function.

36.[M] Show that if f is an even function, f ′ is an
odd function.

37.[M]

(a) Which polynomials are even functions?

(b) If f is an even function, are its associated
Maclaurin polynomials necessarily even func-
tions? Explain.

38.[M]

(a) Which polynomials are odd functions?

(b) If f is an odd function, are its associated Maclau-
rin polynomials necessarily odd functions? Ex-
plain.

39.[C] This exercise constructs Maclaurin polynomi-
als that do not approximate the associated function.
Let f(x) = e−1/x2

if x 6= 0 and f(0) = 0.

(a) Find f ′(0).

(b) Find f ′′(0).

(c) Find P2(x; 0).

(d) What is P100(x; 0).

Hint: Recall the definition of the derivative.

40.[C] Show that in an open interval in which f ′′′ is
positive, that f(x) > f(a) + f ′(a)(x− a) + 1

2f
′′(a)(x−

a)2. Hint: Treat the cases a < x and x > a separately.
Note: See also Exercise 17 in Section 4.4.
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41.[C]

(a) Show that in an open interval in which f (n+1)

is positive (n a positive integer), that f(x) is
greater than Pn(x; 0).

(b) What additional information is needed to make
this a true statement for x < a?

Note: See also Exercise 40.

42.[C] The quantity
√

1− v2/c2 occurs often in the
theory of relativity. Here v is the velocity of an ob-
ject and c the velocity of light. Justify the following
approximations that physicists use:

(a)
√

1− v2

c2
≈ 1− 1

2
v2

c2

(b) 1q
1− v2

c2

≈ 1 + 1
2
v2

c2
g

Note: Even for a rocket v/c is very small.

43.[C] Using the formula for the sum of a finite ge-
ometric series, justify the factorization used in Sec-
tion 2.2. (See Exercise 41, Section 2.2. on page 81.)

xn−an = (x−a)(xn−1 +xn−2a+xn−3a2 + · · ·+an−1).

44.[C] If Pn(x; 0) is the Maclaurin polynomial associ-
ated with f(x), is Pn(−x; 0) the Maclaurin polynomial
associated with f(−x)? Explain.

45.[C] Let P (x) be the Maclaurin polynomial of the
second-order associated with f(x). Let Q(x) be the
Maclaurin polynomial of the second-order associated
with g(x). What part, if any, of P (x)Q(x) is a Maclau-
rin polynomial associated with f(x)g(x)? Explain.
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5.5 L’Hôpital’s Rule for Finding Certain Lim-

its

There are two types of limits in calculus: those that you can evaluate at
a glance, and those that require some work to evaluate. In Section 2.4 we
learned to call the limits that can be evaluated easily determinate and those
that require some work to evaluate are called indetermnate.

For instance limx→π/2
sin(x)
x

is clearly 1/(π/2) = 2/π. That’s easy. But
limx→0(sin(x))/x is not obvious. Back in Section 2.2 we used a diagram of
circles, sectors, and triangles, to show that this limit is 1.

In this section we describe a technique for evaluating more indeterminate
limits, for instance

lim
x→a

f(x)

g(x)

when both f(x) and g(x) approach 0 as x approaches a. The numerator is
trying to drag f(x)/g(x) toward 0, at the same time as the denominator is
trying to make the quotient large. L’Hôpital’s rule helps determine which L’Hôpital is pronounced

lope-ee-tall.term wins or whether there is a compromise.

Indeterminate Limits

The following limits are called indeterminate because you can’t determine
them without knowing more about the functions of f and g.

lim
x→a

f(x)

g(x)
, where lim

x→a
f(x) = 0 and lim

x→a
g(x) = 0

lim
x→a

f(x)

g(x)
, where lim

x→a
f(x) =∞ and lim

x→a
g(x) =∞

L’Hôpital’s Rule provides a way for dealing with these limits (and limits that
can be transformed to those forms.) In short, l’Hôpital’s rule applies only
when you need it.

Theorem 5.5.1 (L’Hôpital’s Rule (zero-over-zero case)). Let a be a number
and let f and g be differentiable over some open interval that contains a.
Assume also that g′(x) is not 0 for any x in that interval except perhaps at a.
If

lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, and lim
x→a

f ′(x)

g′(x)
= L,

then

lim
x→a

f ′(x)

g′(x)
= L.
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In short, “to evaluate the limit of a quotient that is indeterminant, evaluate
the limit of the quotient of their derivatives.” You evaluate the limit of the
quotient of the derivatives, not the derivative of the quotient. We will discuss
the proof after some examples.

EXAMPLE 1 Find limx→1(x5 − 1)/(x3 − 1).
SOLUTION In this case,

a = 1, f(x) = x5 − 1, and g(x) = x3 − 1.

All the assumptions of l’Hôpital’s rule are satisfied. In particular,Remember to check that
the hypotheses of l’Hôpital’s

Rule are satisfied. lim
x→1

(x5 − 1) = 0 and lim
x→1

(x3 − 1) = 0.

According to l’Hôpital’s rule,

lim
x→1

x5 − 1

x3 − 1
l’H
= lim

x→1

(x5 − 1)′

(x3 − 1)′

if the latter limit exists. Now,

limx→1
(x5−1)′

(x3−1)′
= limx→1

5x4

3x2 differentiation of numerator and dif-
ferentiation of denominator

= limx→1
5
3
x2 algebra

= 5
3
.

Thus

lim
x→1

x5 − 1

x3 − 1
=

5

3
.

�
Sometimes it may be necessary to apply l’Hôpital’s Rule more than once,

as in the next example.

EXAMPLE 2 Find limx→0(sin(x)− x)/x3.
SOLUTION As x → 0, both numerator and denominator approach 0. By
l’Hôpital’s Rule,

lim
x→0

sin(x)− x
x3

l’H
= lim

x→0

(sin(x)− x)′

(x3)′
= lim

x→0

cos(x)− 1

3x2
.

But as x → 0, both cos(x) − 1 → 0 and 3x2 → 0. So use l’Hôpital’s Rule
again:

lim
x→0

cos(x)− 1

3x2

l’H
= lim

x→0

(cos(x)− 1)′

(3x2)′
= lim

x→0

− sin(x)

6x
.
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Both sin(x) and 6x approach 0 as x → 0. Use l’Hôpital’s Rule yet another Or recall from Section 2.2

that limx→0
sinx
x = 1.time:

lim
x→0

− sin(x)

6x
l’H
= lim

x→0

(− sin(x))′

(6x)′
= lim

x→0

− cos(x)

6
=
−1

6
.

So after three applications of l’Hôpital’s Rule we find that

lim
x→0

sin(x)− x
x3

= −1

6
.

�
Sometimes a limit may be simplified before l’Hôpital’s Rule is applied. For

instance, consider

lim
x→0

(sin(x)− x) cos5(x)

x3
.

Since limx→0 cos5(x) = 1, we have

lim
x→0

(sin(x)− x) cos5(x)

x3
=

(
lim
x→0

sin(x)− x
x3

)
· 1,

which, by Example 2, is −1
6
. This shortcut saves a lot of work, as may be

checked by finding the limit using l’Hôpital’s Rule without separating cos5(x).
Theorem 5.5.1 concerns limits as x → a. L’Hôpital’s Rule also applies if

x → ∞, x → −∞, x → a+, or x → a−. In the first case, we would assume
that f(x) and g(x) are differentiable in some interval (c,∞) and g′(x) is not
zero there. In the case of x→ a+, assume that f(x) and g(x) are differentiable
in some open interval (a, b) and g′(x) is not 0 there.

Infinity-over-Infinity Limits
“Infinity-over-infinity” is
indeterminate.Theorem 5.5.1 concerns the limit of f(x)/g(x) when both f(x) and g(x)

approach 0. But a similar problem arises when both f(x) and g(x) get arbi-
trarily large as x → a or as x → ∞. The behavior of the quotient f(x)/g(x)
will be influenced by how rapidly f(x) and g(x) become large.

In short, if limx→a f(x) =∞ and limx→a g(x) =∞, then limx→a(f(x)/g(x))
is an indeterminate form.

The next theorem presents a form of l’Hôpital’s Rule that covers the case
in which f(x)→∞ and g(x)→∞.

Theorem 5.5.2 (L’Hôpital’s Rule (infinity-over-infinity case). Let f and g be
defined and differentiable for all x larger than some number. Then, if g′(x) is
not zero for all x larger

lim
x→∞

f(x) =∞, lim
x→∞

g(x) =∞, and lim
x→∞

f ′(x)

g′(x)
= L,
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it follows that

lim
x→∞

f(x)

g(x)
= L.

A similar result holds for x→ a, x→ a−, x→ a+, or x→ −∞. Moreover,
limx→∞ f(x) and limx→∞ g(x) could both be −∞, or one could be ∞ and the
other −∞.

EXAMPLE 3 Find limx→∞
ln(x)
x2 .

SOLUTION Since ln(x) → ∞ and x2 → ∞ as x → ∞, we may use
l’Hôpital’s Rule in the “infinity-over-infinity” form.

We have

lim
x→∞

ln(x)

x2

l’H
= lim

x→∞

(ln(x))′

(x2)′
= lim

x→∞

1/x

2x
= lim

x→∞

1

2x2
= 0.

Hence limx→∞ ((ln(x))/x2) = 0. This says that ln(x) grows much more
slowly than x2 does as x gets large. �

EXAMPLE 4 Find

lim
x→∞

x− cos(x)

x
. (5.5.1)

SOLUTION Both numerator and denominator approach ∞ and x → ∞.
Trying l’Hôpital’s Rule, we obtain

lim
x→∞

x− cos(x)

x
l’H
= lim

x→∞

(x− cos(x))′

x′
= lim

x→∞

1 + sin(x)

1
.

But limx→∞(1+sin(x)) does not exist, since sin(x) oscillates back and forthL’Hôpital’s Rule may fail to
provide an answer. from −1 to 1 as x→∞

What can we conclude about the limit in (5.5.1)? Nothing at all. L’Hôpital’s
Rule says that if limx→∞ f

′(x)/g′(x) exists, then limx→∞ f(x)/g(x) exists and
has the same value. It say nothing about the case when limx→∞ f

′(x)/g′(x)
does not exist.

It is not difficult to evaluate (5.5.1) directly, as follows:

lim
x→∞

x− cos(x)

x
= lim

x→∞

(
1− cos(x)

x

)
algebra

= 1− 0 since | cos(x)| ≤ 1
= 1.

�Moral: Look carefully at a
limit before you decide to

use l’Hôpital’s Rule.
Two cars can help make Theorem 5.5.2 plausible. Imagine that f(t) and

g(t) describe the locations on the x-axis of two cars at time t. Call the cars
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§ 5.5 L’HÔPITAL’S RULE FOR FINDING CERTAIN LIMITS 367

the f -car and the g-car. See Figure 5.5.1. Their velocities are therefore f ′(t)
and g′(t). These two cars are on endless journeys. But assume that as time
t → ∞ the f -car tends to travel at a speed closer and closer to L times the
speed of the g-car. That is, assume that

Figure 5.5.1:

lim
t→∞

f ′(t)

g′(t)
= L.

No matter how the two cars move in the short run, it seems reasonable that
in the long run the f -car will tend to travel about L times as far as the g-car;
that is,

lim
t→∞

f(t)

g(t)
= L.

Transforming Limits So You Can Use l’Hôpital’s Rule

Many limits can be transformed to limits to which l’Hôpital’s Rule applies.
For instance, the problem of finding “zero-times-infinity” is

indeterminate
lim
x→0+

x ln(x)

does not fit into l’Hôpital’s Rule, since it does not involve the quotient of two
functions. As x→ 0+, one factor, x, approaches 0 and the other factor ln(x),
approaches −∞. So this is another type of indeterminate limit, involving a
small number times a large number (“zero-times-infinity”). It is not obvious
how this product, x ln(x), behaves as x → 0+. (Such a limit can turn out to
be “zero, medium, large, or infinite”). A little algebra transforms the zero-
times-infinity case into a problem to which l’Hôpital’s Rule applies, as the next
example illustrates.

EXAMPLE 5 Find limx→0+ x ln(x).

SOLUTION Rewrite x ln(x) as a quotient, ln(x)
(1/x)

. Note that

lim
x→0+

ln(x) = −∞ and lim
x→0+

1

x
=∞.

By l’Hôpital’s Rule,

lim
x→0+

ln(x)

1/x
l’H
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0.

Thus The factor x, which
approaches 0, dominates the
factor ln(x) which “slowly
grows towards −∞.”

lim
x→0+

ln(x)

1/x
= 0,
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368 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

from which it follows that limx→0+ x ln(x) = 0. �
The final example illustrates another type of limit that can be found by

first relating it to limits to which l’Hôpital’s Rule applies.

EXAMPLE 6 limx→0+ xx.Try this on your calculator
first. SOLUTION Since this limit involves an exponential, not a quotient, it does

not fit directly into l’Hôpital’s Rule. But a little algebra changes the problem
to one covered by l’Hôpital’s Rule.

Let y = xx.
Then ln(y) = ln(xx) = x ln(x)
By Example 5, limx→0+ x ln(x) = 0.

Therefore, limx→0+ ln(y) = 0. By the definition of ln(y) and the continuity of
ex = exp(x),

lim
x→0+

y = lim
x→0+

exp(ln(y)) = exp( lim
x→0+

(ln(y) = e0 = 1.

Hence xx → 1 as x→ 0+. �

Concerning the Proof

A complete proof of Theorem 5.5.1 may be found in Exercises 71 to 73. The
following argument is intended to make the theorem plausible. To do so,
consider the special case where f , f ′, g, and g′ are all continuous throughout an
open interval containing a — in particular, all four functions are defined at a.
Assume that g′(x) 6= 0 throughout the interval. Since we have limx→a f(x) = 0
and limx→a g(x) = 0, it follows by continuity that f(a) = 0 and g(a) = 0.

Assume that limx→a
f ′(x)
g′(x)

= L. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)− f(a)

g(x)− g(a)
since f(a) = 0 and g(a) = 0

= lim
x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

algebra

=
limx→a

f(x)−f(a)
x−a

limx→a
g(x)−g(a)
x−a

limit of quotient equals quotient of
limits

=
f ′(a)

g′(a)
definitions of f ′(a) and g′(a)

=
limx→a f

′(x)

limx→a g′(x)
f ′ and g′ are continuous, by assump-
tion

= lim
x→a

f ′(x)

g′(x)
quotient of limits equals limit of quo-
tients

= L by assumption.
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§ 5.5 L’HÔPITAL’S RULE FOR FINDING CERTAIN LIMITS 369

Consequently,

lim
x→a

f(x)

g(x)
= L.

Summary

We described l’Hôpital’s Rule, which is a technique for dealing with limits of
the indeterminate form “zero-over-zero” and “infinity-over-infinity” . In both
of these cases

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

if the latter limit exists. Note that it concerns the quotient of two derivatives,
not the derivative of the quotient.

Table 5.5.1 shows how some limits of other indeterminate forms can be
converted into either of these two forms.

L’Hôpital’s rule comes in handy during our study of a uniform sprinkler in
the Calculus is Everywhere section at the end of this chapter.

Indeterminate Forms Name Conversion Method New Form

f(x)g(x); f(x)→ 0, g(x)→ 0 Zero-times-infinity (0 · ∞) Write as f(x)
1/g(x)

or g(x)
1/f(x)

0
0

or ∞∞

f(x)g(x); f(x)→ 1, g(x)→∞ One-to-infinity (1∞) Let y = f(x)g(x);
take ln(y), find limit
of ln(y), and then find
limit of y = eln(y)

ln(y) has form ∞ · 0

f(x)g(x); f(x)→ 0, g(x)→ 0 Zero-to-zero (00) Same as for 1∞ ln(y) has form 0 · ∞.

Table 5.5.1:
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370 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

EXERCISES for Section 5.5 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 16 check that l’Hôpital’s Rule ap-
plies and use it to find the limits. Identify all uses
of l’Hôpital’s Rule, including the type of indeterminant
form.

1.[R] lim
x→2

x3 − 8
x2 − 4

2.[R] lim
x→1

x7 − 1
x3 − 1

3.[R] lim
x→0

sin(3x)
sin(2x)

4.[R] lim
x→0

sin(x2)
(sin(x))2

5.[R] lim
x→0

sin(5x) cos(3x)
x

6.[R] lim
x→0

sin(5x) cos(3x)
x− π

2

7.[R] lim
x→π

2

sin(5x) cos(3x)
x

8.[R] lim
x→π

2

sin(5x) cos(3x)
x− π

2

9.[R] lim
x→∞

x3

ex

10.[R] lim
x→∞

x5

3x

11.[R] lim
x→0

1− cos(x)
x2

12.[R] lim
x→0

sin(x)− x
(sin(x))3

13.[R] lim
x→0

tan(3x)
ln(1 + x)

14.[R] lim
x→1

cos(πx/2)
ln(x)

15.[R] lim
x→2

(ln(x))2

x

16.[R] lim
x→0

arcsin(x)
e2x − 1
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In each of Exercises 17 to 22 transform the problem
into one to which l’Hôpital’s Rule applies; then find
the limit. Identify all uses of l’Hôpital’s Rule, includ-
ing the type of indeterminant form.

17.[R] lim
x→0

(1− 2x)1/x

18.[R] lim
x→0

(1 +

sin(2x))csc(x)

19.[R] lim
x→0+

(sin(x))(ex−1)

20.[R] lim
x→0+

x2 ln(x)

21.[R] lim
x→0+

(tan(x))tan(2x)

22.[R] lim
x→0+

(ex−1) ln(x)

WARNING (Do Not Overuse l’Hôpital’s
Rule) Remember that l’Hôpital’s Rule,
carelessly applied, may give a wrong an-
swer or no answer.

In Exercises 23 to 51 find the limits. Use l’Hôpital’s
Rule only if it applies. Identify all uses of l’Hôpital’s
Rule, including the type of indeterminant form.

23.[R] lim
x→∞

2x

3x

24.[R] lim
x→∞

2x + x

3x

25.[R] lim
x→∞

log2(x)
log3(x)

26.[R] lim
x→1

log2(x)
log3(x)

27.[R] lim
x→∞

(
1
x
− 1

sin(x)

)

28.[R] lim
x→∞

(√
x2 + 3−

√
x2 + 4x

)

29.[R] lim
x→∞

x2 + 3 cos(5x)
x2 − 2 sin(4x)

30.[R] lim
x→∞

ex − 1/x
ex − 1/x

31.[R] lim
x→0

3x3 + x2 − x
5x3 + x2 + x

32.[R] lim
x→∞

3x3 + x2 − x
5x3 + x2 + x

33.[R] lim
x→∞

sin(x)
4 + sin(x)

34.[R] lim
x→∞

x sin(3x)

35.[R] lim
x→1+

(x−1) ln(x−
1)

36.[R] lim
x→π/2

tan(x)
x− (π/2)

37.[R] lim
x→0

(cos(x))1/x

38.[R] lim
x→0+

x1/x

39.[R] lim
x→0

(1 + x)1/x

40.[R] lim
x→0

(
1 + x2

)x
41.[R] lim

x→1

x2 − 1
x3 − 1

42.[R] lim
x→0

xex(1 + x)3

ex − 1

43.[R] lim
x→0

xex cos2(6x)
e2x − 1

44.[R] lim
x→0

(csc(x) −
cot(x))

45.[R] lim
x→0

csc(x)− cot(x)
sin(x)

46.[R] lim
x→0

5x − 3x

sin(x)

47.[R] lim
x→0

(tan(x))5 − (tan(x))3

1− cos(x)

48.[R] lim
x→2

x3 + 8
x2 + 5

49.[R] lim
x→π/4

sin(5x)
sin(3x)

50.[R] lim
x→0

(
1

1− cos(x)
− 2
x2

)

51.[R] lim
x→0

arcsin(x)
arctan(2x)

52.[M] In Figure 5.5.2(a) the unit circle is centered
at O, BQ is a vertical tangent line, and the length of
BP is the same as the length of BQ. What happens
to the point E as Q→ B?
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53.[M] In Figure 5.5.2(b) the unit circle is centered
at the origin, BQ is a vertical tangent line, and the

length of BQ is the same as the arc length
_
BP . Show

that the x-coordinate of R approaches −2 as P → B.

(a) (b) (c)

Figure 5.5.2:
54.[M] Exercise 43 of Section 2.2 asked you to guess
a certain limit. Now that limit will be computed.

WARNING (Common Sense) As Albert
Einstein observed, “Common sense is the
deposit of prejudice laid down in the mind
before the age of 18.”

In Figure 5.5.2(c), which shows a circle, let f(θ) be
the area of triangle ABC and g(θ) be the area of the
shaded region formed by deleting triangle OAC from
sector OBC.

(a) Why is f(θ) smaller than g(θ)?

(b) What would you guess is the value of
limθ→0 f(θ)/g(θ)?

(c) Find limθ→0 f(θ)/g(θ).

55.[M] The following argument appears in an eco-
nomics text:
“Consider the production function

y = k
(
αx−ρ1 + (1− α)x−ρ2

)−1/ρ
,

where k, α, x1, and x2 are positive constants and
α < 1. Taking the limit as ρ→ 0+, we find that

lim
ρ→0+

y = kxα1x
1−α
2 ,

which is the Cobb-Douglas function, as expected.”
Fill in the details.

56.[M] Sam proposes the following proof for Theo-
rem 5.5.1: “Since

lim
x→a+

f(x) = 0 and lim
x→a+

g(x) = 0,

I will define f(a) = 0 and g(a) = 0. Next I consider
x > a but near a. I now have continuous functions
f and g defined on the closed interval [a, x] and dif-
ferentiable on the open interval (a, x). So, using the
Mean-Value Theorem, I conclude that there is a num-
ber c, a < c < x, such that

f(x)− f(a)
x− a

= f ′(c) and
g(x)− g(a)
x− a

= g′(c).

Since f(a) = 0 and g(a) = 0, these equations tell me
that

f(x) = (x−a)f ′(c) and g(x) = (x−a)g′(c)

Thus f(x)
g(x) = f ′(c)

g′(c)

Hence lim
x→a+

f(x)
g(x)

= lim
x→a+

f ′(c)
g′(c)

.

Sam made one error. What is it?

57.[C] Find limx→0

(
1+2x

x

)1/x.

58.[C] R. P. Feynman, in Lectures in Physics, wrote:
“Here is the quantitative answer of what is right in-
stead of kT . This expression

h̄ω

eh̄ω/kT − 1

should, of course, approach kT as ω → 0. . . . . See
if you can prove that it does — learn how to do the
mathematics.”
Do the mathematics. Note: All symbols, except T ,
denote constants.

59.[M] Graph y = xx for 0 < x ≤ 1, showing its
minimum point.

In Exercises 60 to 62 graph the specified function, be-
ing sure to show (a) where the function is increasing
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and decreasing, (b) where the function has any asymp-
totes, and (c) how the function behaves for x near 0.

60.[M] f(x) = (1 + x)1/x

for x > −1, x 6= 0

61.[M] y = x ln(x)

62.[M] y = x2 ln(x)

63.[M] In which cases below is it possible to determine
limx→a f(x)g(x) without further information about the
functions?

(a) limx→a f(x) = 0; limx→a g(x) = 7

(b) limx→a f(x) = 2; limx→a g(x) = 0

(c) limx→a f(x) = 0; limx→a g(x) = 0

(d) limx→a f(x) = 0; limx→a g(x) =∞

(e) limx→a f(x) =∞; limx→a g(x) = 0

(f) limx→a f(x) =∞; limx→a g(x) = −∞

64.[M] In which cases below is it possible to determine
limx→a f(x)/g(x) without further information about
the functions?

(a) limx→a f(x) = 0; limx→a g(x) =∞

(b) limx→a f(x) = 0; limx→a g(x) = 1

(c) limx→a f(x) = 0; limx→a g(x) = 0

(d) limx→a f(x) =∞; limx→a g(x) = −∞

65.[M] Sam is angry. “Now I know why calculus
books are so long. They spend all of page 72 show-
ing that limx→0

sin(x)
x is 1. They could have saved

space (and me a lot of trouble) if they had just used
l’Hôpital’s approach.”
Is Sam right, for once?

66.[M] Jane says, “I can get limx→0
ex−1
x easily. It’s

just the derivative of ex evaluated at 0. I don’t need

l’Hôpital’s Rule.” Is Jane right, or has Sam’s influence
affected her ability to reason?

67.[M]

If limt→∞ f(t) = ∞ = limt→∞ g(t)
and limt→∞

f(t)
g(t) = 3,

what can be said about

lim
t→∞

ln(f(t))
ln(g(t))

?

Note: Do not assume f and g are differentiable.

68.[C] Give an example of a pair of functions f and g
such that we have limx→0 f(x) = 1, limx→0 g(x) = ∞,
and limx→0 f(x)g(x) = 2.

69.[C] Obtain l’Hôpital’s Rule for limx→∞
f(x)
g(x) from

the case limt→0+
f(t)
g(t) .

Hint: Let t = 1/x.

70.[C] Find the limit of (1x + 2x + 3x)1/x as

(a) x→ 0

(b) x→∞

(c) x→ −∞.

The proof of Theorem 5.5.1, to be outlined in Exer-
cise 73, depends on the following generalized mean-
value theorem.
Generalized Mean-Value Theorem. Let f and g be
two functions that are continuous on [a, b] and differ-
entiable on (a, b). Furthermore, assume that g′(x) is
never 0 for x in (a, b). Then there is a number c in
(a, b) such that

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

.

71.[M] During a given time interval one car trav-
els twice as far as another car. Use the Generalized
Mean-Value Theorem to show that there is at least one
instant when the first car is traveling exactly twice as
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fast as the second car.

72.[C] To prove the Generalized Mean-Value Theo-
rem, introduce a function h defined by

h(x) = f(x)−f(a)− f(b)− f(a)
g(b)− g(a)

(g(x)−g(a)). (5.5.2)

Show that h(b) = 0 and h(a) = 0. Then apply Rolle’s
Theorem to h on (a, b). Note: Rolle’s Theorem is
Theorem 4.1.2 in Section 4.1.

Remark: The function h in (5.5.2) is
similar to the function h used in the
proof of the Mean-Value Theorem (The-
orem 4.1.3 in Section 4.1). Check that
h(x) is the vertical distance between the
point (g(x), f(x)) and the line through
(g(a), f(a)) and (g(b), f(b)).
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73.[C] Assume the hypotheses of Theorem 5.5.1. De-
fine f(a) = 0 and g(a) = 0, so that f and g are contin-
uous at a. Note that

f(x)
g(x)

=
f(x)− f(a)
g(x)− g(a)

,

and apply the Generalized Mean-Value Theorem from
Exercise 71. Note: This Exercise proves Theo-
rem 5.5.1, l’Hôpital’s Rule in the zero-over-zero case.

74.[C]

If limt→∞ f(t) = ∞ = limt→∞ g(t)
and limt→∞

ln(f(t))
ln(g(t)) = 1,

must limt→∞
f(t)
g(t) = 1?

Explain.

75.[C] Assume that f , f ′, and f ′′ are defined in [−1, 1]
and are continuous. Also, f(0) = 0, f ′(0) = 0, and
f ′′(0) > 0.

(a) Sketch what the graph of f may look like for x
in [0, a], where a is a small positive number.

(b) Interpret the quotient

Q(a) =

∫ a
0 f(x) dx

af(a)−
∫ a

0 f(x) dx

in terms of the graph in (a).

(c) What do you think happens to Q(a) as a→ 0?

(d) Find lima→0Q(a).

Hint: Because f ′′′ might not be continuous at 0, you
need to use lima→0

f ′(a)
a = f ′′(0).

76.[C]

Sam: I bet I can find limx→0
ex−1−x−x

2

2
x3 by using the

Taylor polynomial P2(x; 0) for ex and paying at-
tention to the error.

Is Sam right?
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5.6 Natural Growth and Decay

In 2009 the population of the United States was about 306 million and growing
at a rate of about 1% (roughly 3 million people) a year. The world population
was about 6.79 billion and growing at a rate of about 1.5% (roughly 100 million
people) a year.

The United States population has been increasing at about 1% a year for
years. It is an example of natural growth.

Natural Growth

Let P (t) be the size of a population at time t. If its rate of growth is propor-
tional to its size, there is a positive constant k such that

dP (t)

dt
= kP (t). (5.6.1)

To find an explicit formula for P (t) as a function of t, rewrite (5.6.1) as

dP (t)
dt

P (t)
= k. (5.6.2)

The left-hand side can be rewritten as the derivative of ln(P (t)) and so (5.6.2)
can be rewritten as

d(ln(P (t))

dt
=
d(kt)

dt
.

Therefore there is a constant C such that

ln(P (t)) = kt+ C. (5.6.3)

From (5.6.3) it follows, by the definition of a logarithm, that

P (t) = ekt+C ,

hence
P (t) = eCekt.

Since C is a constant, so is eC , which we give a simpler name: A. We have the
following simple explicit formula for P (t):

The equation for natural growth is

P (t) = Aekt

where k is a positive constant. Because P (0) = Aek(0) = A, the coefficient A
is the initial population.
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Because of the presence of the exponential ekt, natural growth is also called
exponential growth.

EXAMPLE 1 The size of the world population at the beginning of 1988
was approximately 5.14 billion. At the beginning of 1989 it was 5.23 billion.
Assume that the growth rate remains constant.

(a) What is the growth constant k?

(b) What would the population be in 2009?

(c) When will the population double is size?

SOLUTION Let P (t) be the population in billions at time t. For conve-
nience, measure time starting in the year 1988; that is, t = 0 corresponds to
1988 and t = 1 to 1989. Thus P (0) = 5.14 and P (1) = 5.23. The natural
growth equation describing the population in billions at time is

P (t) = 5.14ekt. (5.6.4)

(a) To find k, we note that
P (1) = 5.14ek·1,

so

5.14ek = 5.23

ek =
5.23

5.14

k = ln

(
5.23

5.14

)
≈ 0.174.

Hence (5.6.4) takes the form

P (t) = 5.14e0.174t.

This equation is all that we need to answer the remaining questions.

(b) The year 2009 corresponds to t = 21, so in the year 2009 the population,
in billions, would be

P (21) = 5.14e0.174·21 = 5.14e0.3654 ≈ 5.14(1.441) ≈ 7.41.

The population would be approximately 7.41 billion in 2009. (Recall
from the introduction of this section that the actual estimate of the
world population in 2009 is about 6.79 billion. This suggests that the
actual growth rate has not been constant; it has increased during the
past 21 years.)
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(c) The population will double when it reaches 2(5.14) = 10.28 billion. We
need to solve for t in the equation P (t) = 10.28. We have

5.14ekt = 10.28

ekt = 2

kt = ln(2)

t =
ln(2)

k
≈ 0.6931

0.0174
≈ 39.8360.

The world population will double approximately 40 years after 1988,
which corresponds to the year 2028.

�

The time it takes for a population to double is called the doubling time
and is denoted t2. Exponential growth is often described by its doubling time
t2 rather than by its growth constant k. However, if you know either t2 or k
you can figure out the other, as they are related by the equation

t2 =
ln(2)

k

which appeared during part (c) of the solution to Example 1.
Exponential growth may also be described in terms of an annual percentage

increase, such as “The population is growing 6 percent per year.” That is, each
year the population is multiplied by the factor 1.06: P (t+ 1) = P (t)(1.06).

On the other hand, from the exponential growth function, we see that

P (t+ 1) = P (0)ek(t+1) = P (0)ektek = P (t)ek.

That is, during each unit of time the population increases by a factor of ek.
Now, when k is small, ek ≈ 1+k. Consequently we can approximate 6 percent
annual growth by letting k = 0.06. This approximation is valid whenever the
growth rate is only a few percent. Since population figures are themselves
only an approximation, setting the growth constant k equal to the annual
percentage rate is a reasonable tactic.

EXAMPLE 2 Find the doubling time if the growth rate is 2 percent per
year.
SOLUTION The growth rate is 2 percent, so we set k = 0.02. Then

t2 =
ln(2)

k
≈ 0.693

0.02
= 34.65 years.

�
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The Mathematics of Natural Decay

As Glen Seaberg observes in the conversation given on page 381, some radioac-
tive elements decay at a rate proportional to the amount present. The time
it takes for half the initial amount to decay is denoted t1/2 and is called the
element’s half-life.

Similarly, in medicine one speaks of the half-life of a drug administered to a
patient: the time required for half the drug to be removed from the body. This
half-life depends both on the drug and the patient, and can from 20 minutes
for penicillin to 2 weeks for quinacrine, an antimalarial drug. This half-life
is critical to determining how frequently a drug can be administered. Some
elderly patients died from overdoses before it was realized that the half-life of
some drugs is longer in the elderly than in the young.

Letting P (t) again represent the amount present at time t, we have Now k is negative.

P ′(t) = kP (t) k < 0

where k is the decay constant. This is the same equation as (5.6.1), so

P (t) = P (0)ekt,

as before, except now k is a negative number. Since k is negative, the factor
ekt is a decreasing function of t.

Just as the doubling time is related to (positive) k by the equation t2 =
(ln(2))/k, the half-life is related to (negative) k by the equation t1/2 = (ln(1/2))/k,
which can be rewritten as t1/2 = −(ln(2))/k.

EXAMPLE 3 The Chernobyl nuclear reactor accident, in April 1986, re-
leased radioactive cesium 137 into the air. The half-life of 137Cs is 27.9 years.

(a) Find the decay constant k of 137Cs.

(b) When will only one-fourth of an initial amount remain?

(c) When will only 20 percent of an initial amount remain?

SOLUTION

(a) The formula for the half-life can be solved for k to give:

k =
− ln(2)

t1/2
≈ −0.693

27.9
≈ −0.0248.
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(b) This can be done without the aid of any formulas. Since 1
4

= 1
2
· 1

2
, in two

half-lives only one-quarter of an initial amount remains. The answer is
2(27.9) = 55.8 years.

(c) We want to find t such that only 20 percent remains. While we know the
answer is greater than 55.8 years (since 20% is less than 25%), finding
the exact time requires using the formula for P (t).

We want
P (t) = 0.20P (0).

That is, we want to solve

P (0)ekt = 0.20P (0).

Then ekt = 0.20

kt = ln(0.20)

t =
ln(0.20)

k
.

Since k ≈ −0.0248, this gives

t ≈ −1.609

−0.0248
= 64.9 years.

After 64.9 years (that is, 2051) only 20% of the original amount remains.

�

Summary

We developed the mathematics of growth or decay that is proportional to the
amount present. This required solving the differential equation

dP

dt
= kP

where k is a constant, positive in the case of growth and negative in the case
of decay. The solution is

P (t) = Aekt

where A is P (0), the amount of the substance present when t = 0.
In the case of growth, the time for the quantity to double (the “doubling

time”) is denoted t2. In the case of decay, the time when only half the original
amount survives is denoted t1/2, the “half-life.” One has

t2 =
ln(2)

k
and t1/2 =

ln(1/2)

k
= − ln(2)

k
.
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The Scientist, The Senator, and Half-Life
During the hearings in 1963 before the Senate Foreign Relations Committee
on the nuclear test ban treaty, this exchange took place between Glen Sol-
borg, winner of the Nobel prize for chemistry in 1951, and Senator James W.
Fulbright.

Seaborg: Tritium is used in a weapon, and it decays with a half-life of about
12 years. But the plutonium and uranium have such long half-lives that
there is no detectable change in a human lifetime.

Fulbright: I am sure this seems to be a very naive question, but why do
you refer to half-life rather than whole life? Why do you measure by
half-lives?

Seaborg: Here is something that I could go into a very long discussion on.

Fulbright: I probably wouldn’t benefit adequately from a long discussion. It
seems rather odd that you should call it a half-life rather than its whole
life.

Seaborg: Well, I will try. If we have, let us say, one million atoms of a
material like tritium, in 12 years half of those will be transformed into a
decay product and you will have 500,000 atoms.

Then, in another 12 years, half of what remains transforms, so you have
250,000 atoms left. And so forth.

On that basis it never all decays, because half is always left, but of course
you finally get down to where your last atom is gone.
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EXERCISES for Section 5.6 Key: R–routine,
M–moderate, C–challenging

1.[R]

(a) Show that exponential growth can be expressed
as P = Abt for some constants A and b.

(b) What can be said about b?

2.[R]

(a) Show that exponential decay can be expressed
as P = Abt for some constants A and b.

(b) What can be said about b?

3.[R] If P (t) = 30e0.2t what are the initial size and
the doubling time?

4.[R] If P (t) = 30e−0.2t what are the initial size and
the half life?

5.[R] What is the doubling time for a population
always growing at 1% a year?

6.[R] What is the half life for a population always
shrinking at 1% a year?

7.[R] A quantity is increasing according to the law of
natural growth. The amount present at time t = 0 is
A. It will double when t = 10.

(a) Express the amount at time t in the form Aekt

for a suitable k.

(b) Express the amount at time t in the form Abt for
a suitable b.

8.[R] The mass of a certain bacterial culture after
t hours is 10 · 3t grams.

(a) What is the initial amount?

(b) What is the growth constant k?

(c) What is the percent increase in any period of
1 hour?

9.[R] Let f(t) = 3 · 2t.

(a) Solve the equation f(t) = 12.

(b) Solve the equation f(t) = 5.

(c) Find k such that f(t) = 3ekt.

10.[R] In 1988 the world population was about 5.1 bil-
lion and was increasing at the rate of 1.7 percent per
year. If it continues to grow at that rate, when will it
(a) double? (b) quadruple? (c) reach 100 billion?

11.[R] The population of Latin America has a dou-
bling time of 27 years. Estimate the percent it grows
per year.

12.[R] At 1:00 p.m. a bacterial culture weighed
100 grams. At 4:30 p.m. it weighed 250 grams. As-
suming that it grows at a rate proportional to the
amount present, find (a) at what time it will grow to
400 grams, (b) its growth constant.

13.[R] A bacterial culture grows from 100 to
400 grams in 10 hours according to the law of natu-
ral growth.

(a) How much was present after 3 hours?

(b) How long will it take the mass to double?
quadruple? triple?

14.[R] A radioactive substance disintegrates at the
rate of 0.05 grams per day when its mass is 10 grams.

(a) How much of the substance will remain after
t days if the initial amount is A?
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(b) What is its half-life?

15.[R] In 2009 the population of Mexico was 111
million and of the United States 308 million. If the
population of Mexico increases at 1.15% per year and
the population of the United States at 1.0% per year,
when would the two nations have the same size popu-
lation?
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16.[R] The size of the population in India was 689
million in 1980 and 1,027 million in 2007. What is its
doubling time t2?

Figure 5.6.1:
17.[R] The newspaper article shown in Figure 5.6.1
illustrates the rapidity of exponential growth.

(a) Is the figure of $14 billion correct? Assume that
the interest is compounded annually.

(b) What interest rate would be required to produce
an account of $14 billion if interest were com-
pounded once a year?

(c) Answer (b) for “continuous compounding,”
which is another term for natural growth (a bank
account increases at a rate proportional to the
amount in the account at any instant).

Figure 5.6.2:
18.[R] The headline shown in Figure 5.6.2 appeared
in 2002. Is the number 69,315 correct? Explain.
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19.[R] Carbon 14 (chemical symbol 14C), an isotope
of carbon, is radioactive and has a half-life of approxi-
mately 5,730 years. If the 14C concentration in a piece
of wood of unknown age is half of the concentration
in a present-day live specimen, then it is about 5,730
years old. (This assumes that 14C concentrations in
living objects remain about the same.) This gives a
way of estimating the age of an undated specimen.
Show that if AC is the concentration of 14C in a live
(contemporary) specimen and Au is the concentration
of 14C in a specimen of unknown age, then the age of
the undated material is about 8, 300 ln(AC/Au) years.
Note: This method, called radiocarbon dating is
reliable up to about 70,000 years.

20.[R] From a letter to an editor in a newspaper:

I’ve been hearing bankers and in-
vestment advisers talk about some-
thing called the “rule of 72.” Could
you explain what it means?

How quickly would you like to double
your money? That’s what the “rule of 72”
will tell you. To find out how fast your
money will double at any given interest
rate or yield, simply divide that yield into
72. This will tell you how many years dou-
bling will take.

Let’s say you have a long-term certifi-
cate of deposit paying 12 percent [annu-
ally]. At that rate your money would dou-
ble in six years. A money-market fund
paying 10 percent would take 7.2 years to
double your investment.

(a) Explain the rule of 72 and what number should
be used instead of 72.

(b) Why do you think 72 is used?

21.[R] Benjamin Franklin conjectured that the popu-
lation of the United States would double every 20 years,
beginning in 1751, when the population was 1.3 mil-
lion.

(a) If Franklin’s conjecture were right, what would
the population of the United States be in 2010?

(b) In 2010 the population was 310 million. As-
suming natural growth, what would the doubling
time be?

22.[M] (Doomsday equation) A differential equation
of the form dP/dt = kP 1.01 is called a doomsday
equation. The rate of growth is just slightly higher
than that for natural growth. Solve the differential
equation to find P (t). How does P (t) behave as t in-
creases? Does P (t) increase forever?

23.[M] The following situations are all mathemati-
cally the same:

1. A drug is administered in a dose of A grams to a
patient and gradually leaves the system through
excretion.

2. Initially there is an amount A of smoke in a
room. The air conditioner is turned on and grad-
ually the smoke is removed.

3. Initially there is an amount A of some pollutant
in a lake, when further dumping of toxic materi-
als is prohibited. The rate at which water enters
the lake equals the rate at which it leaves. (As-
sume the pollution is thoroughly mixed.)

In each case, let P (t) be the amount present at time t
(whether drug, smoke, or pollution).

(a) Why is it reasonable to assume that there is a
constant k such that for small intervals of time,
∆t, ∆P ≈ kP (t)∆t?

(b) From (a) deduce that P (t) = Aekt.

(c) Is k positive or negative?

24.[M] Newton’s law of cooling assumes that an
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object cools at a rate proportional to the difference be-
tween its temperature and the room temperature. De-
note the room temperature as A. The differential equa-
tion for Newton’s law of cooling is dy/dt = k(y − A)
where k and A are constants.

(a) Explain why k is negative.

(b) Draw the slope field for this differential equation
when k = −1/2.

(c) Use (b) to conjecture the behavior of y(t) as
t→∞.

(d) Solve for y as a function of t.

(e) Draw the graph of y(t) on the slope field pro-
duced in (b).

(f) Find limt→∞ y(t).

25.[M] Let I(x) be the intensity of sunlight at a depth
of x meters in the ocean. As x increases, I(x) de-
creases.

(a) Why is it reasonable to assume that there is a
constant k (negative) such that ∆I ≈ kI(x)∆x
for small ∆x?

(b) Deduce that I(x) = I(0)ekx, where I(0) is the
intensity of sunlight at the surface. Incidentally,
sunlight at a depth of 1 meter is only one-fourth
as intense as at the surface.

26.[M] A particle moving through a liquid meets a
“drag” force proportional to the velocity; that is, its
acceleration is proportional to its velocity. Let x de-
note its position and v its velocity at time t. Assume
v > 0.

(a) Show that there is a positive constant k such
that dv/dt = −kv.

(b) Show that there is a constant A such that v =
Ae−kt.

(c) Show that there is a constant B such that x =
− 1
kAe

−kt +B.

(d) How far does the particle travel as t goes from 0
to ∞? (Is this a finite or infinite distance?)

27.[M]

(a) Show that the natural growth function P (t) =
Aekt can be written in terms of A and t2 as
P (t) = A · 2t/t2 .

(b) Check that the function found in (a) is correct
when t = 0 and t = t2.

28.[M]

(a) Express the natural decay function P (t) = Aekt

in terms of A and t1/2.

(b) Check that the function found in (a) is correct
when t = 0 and t = t1/2.

29.[M] A population is growing exponentially. Ini-
tially, at time 0, it is P0. Later, at time u it is Pu.

(a) Show that at time t it is P0(Pu/P0)t/u.

(b) Check that the formula in (a) gives the correct
population when t = 0 and t = u.

30.[M] Let P (t) = Aekt. Then P (t+1)−P (t)
P (t) = ek − 1.

Show that when k is small, ek−1 ≈ k. That means the
relative change in one unit of time is approximately k.
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31.[C] A certain fish population increases in number
at a rate proportional to the size of the population. In
addition, it is being harvested at a constant rate. Let
P (t) be the size of the fish population at time t.

(a) Show that there are positive constants h and k
such that for small ∆t, ∆P ≈ kP∆t− h∆t.

(b) Find a formula for P (t) in terms of P (0), h, and
k. Hint: First divide by ∆t in (a) and then take
limits as ∆t→ 0.

(c) Describe the behavior of P (t) in the three cases
h = kP (0), h > kP (0), and h < kP (0)

32.[C] The half-life of a drug administered to a cer-
tain patient is 8 hours. It is given in a 1-gram dose
every 8 hours.

(a) How much is there in the patient just after the
second dose is administered?

(b) How much is there in the patient just after the
third dose? The fourth dose?

(c) Let P (t) be the amount in the patient at t hours
after the first dose. Graph P (t) for a period of
48 hours. Note: P (t) has meaning for all values
of t, not just at the integers.

(d) Does the amount in the patient get arbitrarily
large as time goes on?

33.[C] The half-life of the drug in Exercise 32 is 16
hours when administered to a different patient. An-
swer, for this patient, the questions in Exercise 32.

34.[C] The half-life of a drug in a certain patient is
t1/2 hours. It is administered every h hours. Can it
happen that the concentration of the drug gets arbi-
trarily high? Explain your answer.

Exercises 35 to 37 introduce and analyze the inhib-
ited or logistic growth model. This model will be
encountered in the CIE for Chapter 10.
35.[C] In many cases of growth there is obviously a
finite upper bound M which the population cannot ex-
ceed. Why is it reasonable to assume (or to take as a
model) that

dP

dt
= kP (t)(M − P (t)) 0 < P (t) < M (5.6.5)

for some constant k?

Calculus October 22, 2010



388 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

36.[C]

(a) Solve the differential equation in Exercise 35.
Hint: You will need the partial fraction identity

1
P (M − P )

=
1
M

(
1
P

+
1

M − P

)
and the property of logarithms: ln(A)− ln(B) =
ln
(
A
B

)
. After simplification, your answer should

have the form

P (t) =
M

1 + ae−Mkt

for a suitable constant a.

(b) Find limt→∞ P (t). Is this reasonable?

(c) Express a in terms of P (0), M , and k.

37.[C] By considering (5.6.5) in Exercise 35 directly
(not the explicit formula in Exercise 36), show that

(a) P is an increasing function.

(b) The maximum rate of change of P occurs when
P (t) = M/2.

(c) The graph of P (t) has an inflection point.
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38.[C] A salesman, trying to persuade a tycoon to in-
vest in Standard Coagulated Mutual Fund, shows him
the accompanying graph which records the value of a
similar investment made in the fund in 1965. “Look!
In the first 5 years the investment increased $1,000,”
the salesman observed, “but in the past 5 years it in-
creased by $2,000. It’s really improving. Look at the
graph of the graph from 1985 to 1990, which you can
see clearly in Figure 5.6.3.”

Figure 5.6.3:

The tycoon replied, “Hogwash. Though your graph is
steeper from 1985 to 1990, in fact, the rate of return
is less than from 1965 to 1970. Indeed, that was your

best period.”

(a) If the percentage return on the accumulated in-
vestment remains the same over each 5-year pe-
riod as the first 5-year period, sketch the graph.

(b) Explain the tycoon’s reasoning.

39.[C] Each of two countries is growing exponentially
but at different rates. One is describe by the function
A1e

k1t, the other by A2e
k2t, and k1 is not equal to k2.

Is their total population growing exponentially? That
is, are there constants A and k such that the formula
describing their total population has the form Aekt.
Explain your answer.

40.[C] Assume c1, c2, and c3 are distinct constants.
Can there be constants A1, A2, and A3, not all 0, such
that A1e

c1x +A2e
c2x +A3e

c3x = 0 for all x?

41.[C] If each of two functions describes natural
growth does their (a) product? (b) quotient? (c) sum?

Calculus October 22, 2010



390 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

5.7 The Hyperbolic Functions and Their In-

verses

Certain combinations of the exponential functions ex and e−x occur often in
differential equations and engineering — for instance, in the study of the shape
of electrical transmission or suspension cables — to be given names. This
section defines these hyperbolic functions and obtains their basic properties.
Since the letter x will be needed later for another purpose, we will use the letter
t when writing the two preceding exponentials, namely, et and e−t.

The Hyperbolic Functions

Figure 5.7.1:

DEFINITION (The hyperbolic cosine.) Let t be a real number.
The hyperbolic cosine of t, denoted cosh(t), is given by the for-
mula

cosh(t) =
et + e−t

2
.

To graph cosh(t), note first that

cosh(−t) =
e−t + e−(−t)

2
=
et + e−t

2
= cosh(t).

Since cosh(−t) = cosh(t), the cosh function is even, and so its graph isPronounced as written,
“cosh,” rhyming with

“gosh.”
symmetric with respect to the vertical axis. Furthermore, cosh(t) is the sum
of the two terms

cosh(t) =
et

2
+
e−t

2
.

As t → ∞, the second term, e−t/2, is positive and approaches 0. Thus, forFor |t| → ∞, the graph of
y = cosh(t) is asymptotic to

the graph of y = et/2 or
y = e−t/2.

t > 0 and large, the graph of cosh(t) is just a little above the graph of et/2.
This information, together with the fact that cosh(0) = (e0 + e−0)/2 = 1, is
the basis for Figure 5.7.1.

The curve y = cosh(t) in Figure 5.7.1 is called a catenary (from the Latin
catena meaning “chain”). It describes the shape of a free-hanging chain. (See
the CIE on the Suspension Bridge and the Hanging Cable for Chapter 15.)

DEFINITION (The hyperbolic sine.) Let t be a real number.“sinh” is pronounced
“sinch,” rhyming with

“pinch.”
The hyperbolic sine of t, denoted sinh(t), is given by the formula
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Figure 5.7.2:

sinh(t) =
et − e−t

2
.

It is a simple matter to check that sinh(0)−0 and sinh(−t) = − sinh(t), so
that the graph of sinh(t) is symmetric with respect to the origin. Moreover, it
lies below the graph of et/2. However, the graphs of sinh(t) and et/2 approach
each other since e−t/2→ 0 as t→∞. Figure 5.7.2 shows the graph of sinh(t).

Note the contrast between sinh(t) and sin(t). As |t| becomes large, the hy-
perbolic sine becomes large, limt→∞ sinh(t) = ∞ and limt→−∞ sinh(t) = −∞.
There is a similar contrast between cosh(t) and cos(t). While the trigonometric
functions are periodic, the hyperbolic functions are not.

Example 1 shows why the functions (et + e−t)/2 and (et− e−t)/2 are called
hyperbolic.

EXAMPLE 1 Show that for any real number t the point with coordinates

Figure 5.7.3:

x = cosh(t), y = sinh(t)

lie on the hyperbola x2 − y2 = 1.
SOLUTION Compute x2 − y2 = cosh2(t)− sinh2(t) and see whether it sim-
plifies to 1. We have

cosh2(t)− sinh2(t) =
(
et+e−t

2

)2

−
(
et−e−t

2

)2

= e2t+2ete−t+e−2t

4
− e2t−2ete−t+e−2t

4

= 2+2
4

cancellation
= 1.

Observe that since cosh(t) ≥ 1, the point (cosh(t), sinh(t)) is on the right half
of the hyperbola x2 − y2 = 1, as shown in Figure 5.7.3. � Example 1 proves a

fundamental identity for
hyperbolic functions:
cosh2(t)− sinh2(t) = 1

By contrast, (cos(θ), sin(θ)) lies on the circle x2 + y2 = 1, so the trigono-
metric functions are also called circular functions.

There are four more hyperbolic functions, namely, the hyperbolic tangent,
hyperbolic secant, hyperbolic cotangent, and hyperbolic cosecant. They are
defined as follows:

tanh(t) =
sinh(t)

cosh(t)
sech(t) =

1

cosh(t)
coth(t) =

cosh(t)

sinh(t)
csch(t) =

1

sinh(t)
.

Each can be expressed explicitly in terms of exponentials. For instance,

Figure 5.7.4:

tanh(t) =
(et − e−t)/2
(et + e−t)/2

=
et − e−t

et + e−t
.
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As t → ∞, et → ∞ and e−t → 0. Thus limt→∞ tanh(t) = 1. Similarly,
limt→−∞ tanh(t) = −1. Figure 5.7.4 is a graph of y = tanh(t).

The Derivatives of the Hyperbolic Functions

The derivatives of the six hyperbolic functions can be computed directly. For
instance,

(cosh(t))′ =

(
et + e−t

2

)′
=
et − e−t

2
= sinh(t).

Table 5.7.1 lists the derivatives of the six hyperbolic functions. Notice that

Function Derivative
cosh(t) sinh(t)
sinh(t) cosh(t)
tanh(t) sech2(t)
coth(t) − csch2(t)
sech(t) − sech(t) tanh(t)
csch(t) − csch(t) coth(t)

Table 5.7.1:

the formulas, except for the signs, are like those for the derivatives of the
trigonometric functions.

The Inverses of the Hyperbolic Functions

Inverse hyperbolic functions appear on some calculators and in tables of
mathematical functions. Just as the hyperbolic functions are expressed in
terms of the exponential function, each inverse hyperbolic function can be
expressed in terms of a logarithm. They provide useful antiderivatives as well
as solutions to some differential equations.

Consider the inverse of sinh(t) first. Since sinh(t) is increasing, it is one-to-
one; there is no need to restrict its domain. To find its inverse, it is necessary
to solve the equation

x = sinh(t)

for t as a function of x. The steps are straightforward:Finding the inverse of the
hyperbolic sine

x = et−e−t
2

, definition of sinh(t)
2x = et − 1

et
, e−t = 1/et

2xet = (et)2 − 1, multiply by et

or (et)2 − 2xet − 1 = 0.

Equation (5.7) is quadratic in the unknown et. By the quadratic formula,

et =
2x±

√
(2x)2 + 4

2
= x±

√
x2 + 1.

Since et > 0 and
√
x2 + 1 > x, the plus sign is kept and the minus sign is

rejected. Thus

et = x+
√
x2 + 1 and t = ln

(
x+
√
x2 + 1

)
.

Consequently, the inverse of the function sinh(t) is given by the formula
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arcsinh(x) = sinh−1(x) = ln
(
x+
√
x2 + 1

)
. Formula for arcsinh(x)

Computation of arctanh(x) is a little different. Since the derivative of
tanh(t) is sech2(t), the function tanh(t) is increasing and has an inverse. How-
ever, | tanh(t)| < 1, and so the inverse function will be defined only for |x| < 1.
Computations similar to those for arcsinh(x) show that

arctanh(x) = tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
|x| < 1.

Formula for arctanh(x)

Inverses of the other four hyperbolic functions are computed similarly. The
functions arccosh(x) and arcsech(x) are chosen to be positive. Their formulas
are included in Table 5.7.2.

Function Formula Derivative Domain

arccosh(x) ln(x+
√
x2 − 1) 1√

x2−1
x ≥ 1

arcsinh(x) ln(x+
√
x2 + 1) 1√

x2+1
x-axis

arctanh(x) 1
2

ln
(

1+x
1−x

)
1

1−x2 |x| < 1

arccoth(x) 1
2

ln
(
x+1
x−1

)
1

1−x2 |x| > 1

arcsech(x) ln
(

1+
√

1−x2

x

)
−1

x
√

1−x2 0 < x ≤ 1

arccsch(x) ln
(

1
x

+
√

1 + 1
x2

)
−1

|x|
√

1+x2 x 6= 0
The derivatives are found by
differentiating the formulas
in the second column.Table 5.7.2:

Summary

We introduced the six hyperbolic functions and their inverses, including sinh(x)
(pronounced sinch), cosh(x) (pronounced cosh), tanh(x) (pronounced tanch
or rhymes with “ranch”) and their inverses arcsinh(x), arccosh, and arctanh.
Because they are all expressible in terms of exponentials, square roots, and
logarithms, they do not add to the collection of elementary functions. However,
some of them are especially convenient.

The points (cosh(t), sinh(t)) lie on the graph of the hyperbola x2− y2 = 1.
(See Example 1.) The parameter t, which can be any number, has a geometric
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interpretation: it is the area of the shaded region in Figure 5.7.5(a). This
corresponds to the fact that a sector of the unit circle with angle 2θ has area
θ, as shown in Figure 5.7.5(b). (See Exercise 78.)

(a) (b)

Figure 5.7.5:
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EXERCISES for Section 5.7 Key: R–routine,
M–moderate, C–challenging

1.[R]

(a) Compute cosh(t) and et/2 for t = 0, 1, 2, 3, and
4.

(b) Using the data in (a), graph y = cosh(t) and
y = et/2 relative to the same axes.

2.[R]

(a) Compute tanh(t) for t = 0, 1, 2, and 3.

(b) Using the data in (a), and the fact that
tanh(−t) = tanh(t), graph y = tanh(t).

In Exercises 3 to 5 obtain the derivatives of the given
functions and express them in terms of hyperbolic func-
tions.

3.[R] tanh(x)
4.[R] sinh(x)

5.[R] cosh(x)

6.[R]

(a) Compute sinh(t) and cosh(t) for t = −3, −2, −1,
0, 1, 2, and 3.

(b) Plot the seven points (x, y) = (cosh(t), sinh(t))
found in (a).

(c) Explain why the point plotted in (b) lie on the
hyperbola x2 − y2 = 1.

7.[R]

(a) Show that sech2(x) + tanh2(x) = 1.

(b) What equation links sec(θ) and tan(θ)?
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In Exercises 8 to 16 use the definitions of the hyper-
bolic functions to verify the given identities. Notice
how they differ from the corresponding identities for
the trigonometric functions. In Section 12.6, with the
aid of complex numbers, the hyperbolic functions are
expressed in terms of the trigonometric functions.
8.[R] cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y)

9.[R] sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y)

10.[R] tanh(x+ y) = tanh(x)+tanh(y)
1+tanh(x) tanh(y)

11.[R] cosh(x−y) = cosh(x) cosh(y)−sinh(x) sinh(y)

12.[R] sinh(x−y) = sinh(x) cosh(y)−cosh(x) sinh(y)

13.[R] cosh(2x) = cosh2(x) + sinh2(x)
14.[R] sinh(2x) = 2 sinh(x) cosh(x)
15.[R] 2 sinh2(x/2) = cosh(x)− 1
16.[R] 2 cosh2(x/2) = cosh(x) + 1

In Exercises 17 to 19 obtain a formula for the given
function.
17.[M] arctanh(x)
18.[M] arcsech(x)
19.[M] arccosh(x)

In Exercises 20 to 23 show that the derivative of the
first function is the second function.
20.[M] arccosh(x); 1/

√
x2 − 1

21.[M] arcsinh(x); 1/
√
x2 + 1

22.[M] arcsech(x); 1/(x
√

1− x2)
23.[M] arccsch(x); 1/(x

√
1 + x2)

24.[M] Find the inflection points on the curve
y = tanh(x).

25.[M] Graph y = sinh(x) and y = arcsinh(x) relative
to the same axes. Show any inflection points.
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26.[C] One of the applications of hyperbolic functions
is to the study of motion in which the resistance of the
medium is proportional to the square of the velocity.
Suppose that a body starts from rest and falls x me-
ters in t seconds. Let g (a constant) be the acceleration
due to gravity. It can be shown that there is a constant
V > 0 such that

x =
V 2

g
ln
(

cosh
(
gt

V

))
.

(a) Find the velocity v(t) = dx/dt as a function of t.

(b) Show that limt→∞ v(t) = V .

(c) Compute the acceleration a(t) = dv/dt as a func-
tion of t.

(d) Show that the acceleration equals g − g(v/V )2.

(e) What is the limit of the acceleration as t→∞?

27.[C] In this exercise you will discover two different
formulas for an antiderivative of f(x) = 1√

ax+b
√
cx+d

.
The correct formula to use depends on the signs of a
and c.

(a) Show that 2√
−ac arctan

√
−c(ax+b)
a(cx+d) is an an-

tiderivative of f(x) when a > 0 and c < 0.

(b) Show that 2√
ac

arctanh
√

c(ax+b)
a(cx+d) is an antideriva-

tive of f(x) when a > 0 and c > 0.
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5.S Chapter Summary

This chapter shows the derivative at work; applying it to practical problems,
estimating errors, and evaluating some limits.

To determine the extrema of some quantity one must determine a function
that represents how the quantity depends on other quantities. Then, finding
the extrema is like finding the highest or lowest points on the graph of the
function.

When two varying quantities are related by an equation, the derivative
can tell the relation between the rates at which they change: just differentiate
both sides of the equation that relates them. That differentiation depends on
the chain rule and is called implicit differentiation because one differentiates
a function without having an explicit formula for it.

The next two sections form a unit that rests one of the main uses of higher
derivatives: to estimate errors when approximating a function by a polynomial
and later, in Section 6.5, to estimate errors in approximating area under a curve
by trapezoids and parabolas.

The key to the Growth Theorem is that if R is a function such that

0 = R(a) = R′(a) = R′′(a) = R(n)(a)

and in some interval around a we know R(n+1)(x) is continuous, then there is
a number cn in [a, x] such that

|R(x)| ≤ R(n+1)(cn)
(x− a)n+1

(n+ 1)!
for all x in that interval.

That means we have information on how rapidly R(x) can grow for x near
a. This information was used to control the error when using a polynomial to
approximate a function.

A likely candidate for the polynomial of degree n that closely resembles
a given function f near x = a is the one whose derivatives at a, up through
order n, agree with those of f there. That polynomial is

P (x) = Pn(x; a) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Because the polynomial was chosen so that P (k)(a) = f (k)(a) for all k up
through n, the remainder function function R(x) = f(x) − P (x) has all its
derivatives up through order n at a equal to 0. Moreover, since the (n + 1)st

derivative of any polynomial of degree at most n is identically 0, R(n+1)(x) =

f (n+1)(x). Thus the error |f(x)−P (x)| is at most M |x−a|n+1

(n+1)!
, if |f (n+1)(t)| stays

less than or equal to M for t between a and x. A similar conclusion holds if
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|fn+1(t)| stays larger than a fixed number. Using these facts we obtained
Lagrange’s formula for the error:

f (n+1)(cn)

(n+ 1)!
(x− a)n+1 for some cn between a and x.

The case n = 1 reduces to the linear approximation of a curve by the
tangent line at (a, f(a)). In this case the error is controlled by the second
derivative.

We return to Taylor polynomials in Chapter 12, where we express ex, sin(x),
and cos(x) as “polynomials of infinite degree,” and use them and complex
numbers to express sin(x) and cos(x) in terms of exponential functions.

Section 5.5 concerns l’Hôpital’s rule, a tool for computing certain limits,
such as the limit of a quotient whose numerator and denominator both ap-
proach zero.

The final two sections, on natural growth and decay and the hyperbolic
functions, conclude the chapter. While these sections are not needed in future
chapters of this book, they are important applications in a wide variety of
disciplines, including biology and engineering.

EXERCISES for 5.S Key: R–routine, M–moderate, C–challenging

1.[R] Arrange the following numbers by order of in-
creasing size as x→∞.

(a) 1000x

(b) log2(x)

(c)
√
x

(d) (1.0001)x

(e) log1000(x)

(f) 0.01x3

In Exercises 2 to 28 find the limits, if they exist.

2.[R] limu→∞
(
u+1
u

)u+1 1√
u

3.[R] limx→∞

(
x+2
x+1

)x+3

4.[R] limx→∞

(
x
x+1

)x+1

5.[R] limx→3
x−2

cos(πx)

6.[R] limx→3
x−2

sin(πx)

7.[R] limx→∞
√

1+x2

x

8.[R] limx→∞
√

1+x2√
2+x2

9.[R] limx→∞
(1+x2)1/2

(2+x2)1/3

10.[R] limx→∞
1+x+x2

2+3x+4x2

11.[R] limx→1
ln(x) tan(πx4 )

cos(πx2 )

12.[R] limx→0
f(3+x)−f(3)

x
where f(x) = (x2 +
5) sin2(3x).

13.[R] limx→∞
ln(6x)−ln(5x)
ln(7x)−ln(6x)

14.[R] limx→∞
ln(6x)−ln(5x)

x ln(7x)−x ln(6x)

15.[R] limx→π
e−x

2
sin(x)

x2−π2

16.[R] limx→π
ln(x3−sin(x))−3 ln(π)

x−π

17.[R] limx→0
(x+2)
(x+3)

(cos(5x)−1)
cos(7x)−1)

18.[R] limx→∞

(
x+2
x+1

)2x

19.[R] limx→π
sin4(x)

(π4−x4)2

20.[R] limx→∞
sec4(x) tan(3x)

sin(2x)

21.[R] limx→1
e3x(x2−1)

cos(
√

2x) tan(3x−3)

22.[R] limx→0(1 +
0.005x)20x

23.[R] limt→0
e3(x+t)−e3x

5t

24.[R] limt→0
e3(x+t)−e3x

5t

25.[R] limx→0

(
1+2x

2

)1/x
26.[R] limx→0

(
1+2x

1+3x

)1/x

27.[R] limx→∞(1 +
0.003x)20/x

28.[R] limx→∞(1 +
0.003x)20/x
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In Exercises 29 to 36 find the derivative of the given
function.

29.[R] (cos(x))1/x2

30.[R] ln
(

sec2(3x)
√

1 + x2
)

31.[R] ln
(√

ex3
)

32.[R] 5+3x+7x2

58−4x+x2

33.[R] tan2(2x)
(1+cos(2x))4

34.[R] (cos2(3x))cos2(2x)

35.[R] f(x) ={
x2 sin(π/x) if x 6= 0

0 if x = 0
Hint: Use the definition
of the derivative to find
f ′(0).

36.[R] f(x) ={
sin(πx)
x if x 6= 0
π if x = 0

37.[R]

(a) Find P1(x; 64) for f(x) =
√
x.

(b) Use P1(x; 64) to estimate
√

67.

(c) Put bounds on the error in the estimate in (b).

38.[R]

(a) Show that when x is small 3
√

1 + x is approxi-
mately 1 + x/3.

(b) Use (a) to estimate 3
√

0.94 and 3
√

1.06.

39.[R]

(a) Show that when x is small 1/ 3
√

1 + x is approxi-
mately 1− x/3.

(b) Use (a) to estimate 3
√

0.94 and 3
√

1.06.

40.[R]

(a) Find the Maclaurin polynomial of degree 6 asso-
ciated with cos(x).

(b) Use (a) to estimate cos(π/4).

(c) What is the error between the estimate found in
(b) and the exact value,

√
2/2.

(d) What is the Lagrange bound for the error?

In Exercises 41 to 52, examine the limit, determine
whether it exists, and, if it does exist, find its value.

41.[R] lim
x→1

1− ex

1− e2x

42.[R] lim
x→0

x√
1 + x2

43.[R] lim
x→0

1− ex

1− e2x

44.[R] lim
x→∞

x2

(1 + x3)2/3

45.[R] lim
x→∞

x2 sin(x)

46.[R] lim
x→8

2x − 28

x− 8

47.[R] lim
x→1

ex
2 − ex

x− 1

48.[R] lim
x→4

2x + 24

x+ 4

49.[R] lim
x→0

sin(x)− e2x

x

50.[R] lim
x→0

e3x sin(2x)
tan(3x)

51.[R] lim
x→0

√
1 + x2 − 1

3
√

1 + x2 − 1

52.[R] lim
x→π/2

sin 9x) cos(x)
x− π/2

53.[R] If limx→∞ f
′(x) = 3 and limx→∞ g

′(x) = 3,
what, if anything, can be said about

(a) limx→∞
f(x)
3x

(b) limx→∞(g(x)− f(x))

(c) limx→∞
f(x)
g(x)

(d) limx→∞(f(x)− 3x)

(e) limx→∞
(f(x))3

(g(x))3
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54.[M] The point P = (c, d) lies in the first quadrant.
Each line through P of negative slope determines a tri-
angle whose vertices are the intercepts of the line on
the axes, and the origin.

(a) Find the slope of the line that minimizes the
area.

(b) Find the minimum area.

55.[M] Figure 5.S.1(a) shows a typical rectangle
whose base is the x-axis, inscribed in the parabola
y = 1− x2.

(a) Find the rectangle of largest perimeter.

(b) Find the rectangle of largest area.

(a)

(b)

Figure 5.S.1:
56.[M] A rectangle of perimeter 12 inches is spun
around one of its edges to produce a circular cylinder.

(a) For which rectangle is the area of the curved sur-
face of the cylinder a maximum?

(b) For which rectangle is the volume of the cylinder
a maximum?

57.[M] Consider isosceles triangles whose equal sides
have length a and the angle where these two sides meet
is θ. For which angle θ is the area of the triangle a
maximum?

(a) Solve this problem using calculus.

(b) Solve the same problem without calculus.

58.[M] A farmer has 200 feet of fence which he wants
to use to enclose a rectangle divided into six congruent
rectangles, as shown in Figure 5.S.1(b). He wishes to
enclose a maximum area.

(a) If x is near 0, what is the area, approximately?

(b) How large can x be?

(c) In the case that produces the maximum area,
which do you think will be larger x or y? Why?

(d) Find the dimensions x and y that maximizes the
area.

59.[M] A semicircle of radius a < r ≤ 1 rests upon
a semicircle of radius 1, as shown in Figure 5.S.2(a).
The length of PQ, the segment from the origin of the
lower circle to the top of the upper circle is a function
of r, f(r).

(a) Find f(0) and f(1).

(b) Find f(r).

(c) Maximize f(r), testing the maximum by the sec-
ond derivative.
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(a)

(b)

Figure 5.S.2:
Exercises 60 to 62 are independent, but related. They
contain a surprise.
60.[M] Figure 5.S.2(b) shows the unit circle x2 +y2 =
1, the line L whose equation is y = 1/3, and a typical
rectangle with base on L, inscribed in the circle. Find
the rectangle with base on L that has (a) minimum
perimeter and (b) maximum perimeter.

61.[M] Like Exercise 60 but this time the line L has
the equation y = 1/2.

62.[M] The analyses in Exercises 60 to 61 are differ-
ent. Let the line L have the equation y = c, 0 < c < 1.
For which values of c is the analysis like that for (a)
Exercise 60? (b) Exercise 61?

63.[M] A. Bellemans, in “Power Demand in Walking
and Pace Optimization,” Amer. J. Physics 49(1981)
pp. 25–27, modeling the work spent on walking writes

“H = L(1 − cos(γ) or, to a sufficient approximation
for the present purpose, H = Lγ2/2.” Justify this
approximation.

64.[C] Let k be a constant. Determine
limx→∞ x

(
e−k −

(
1− k

x

)x)
.

65.[C] Let k be a constant. Determine
limx→∞ x

(
ek −

(
1 + k

x

)x)
.

66.[M] Let pn(x) be the Maclaurin polynomial of de-
gree n associated with ex. Because ex · e−x = 1, we
might expect that pn(x)pn(−x) would also be 1. But
that cannot be because the degree of the product is 2n.

(a) Compute p2(x)p2(−x) and p3(x)p3(−x).

(b) Make a conjecture about pn(ex)pn(e−x) based on
(a).

67.[M] Let pn(x) be the Maclaurin polynomial of de-
gree n associated with ex. Because e2x = ex · ex, we
might expect that p2n(x) = pn(x)pn(x).

(a) Why is that equation false for n ≥ 1?

(b) To what extent does p2(x)p2(x) resemble p2(2x)
and p3(x)p3(x) resemble p3(2x)?

(c) Make a conjecture based on (a) and (b).

68.[M] Let pn(x) be the Maclaurin polynomial of de-
gree n associated with ex. The equation ex+y = ex · ey
suggests that pn(x+ y) might equal pn(x)pn(y).

(a) Why is that hope not realistic?

(b) To what extent does p2(x)p2(y) resemble p2(x+
y)?

69.[M] What can be said about f(10) if f(1) = 5,
f ′(1) = 3 and 2, f ′′(x) < 4 for x in (−10, 20)?
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70.[M] The demand for a product is influenced by
its price. In one example an economics text links
the amount sold (x) to the price (P ) by the equation
x = b − aP , where b and a are positive constants. As
the price increases the sales go down. The cost of pro-
ducing x items is an increasing function C(x) = c+kx,
where c and k are positive constants.

(a) Express P in terms of x.

(b) Express the total revenue R(x) in terms of x.

(c) Note that C(0) = c. So what is the economic
significance of c?

(d) What is the economic significance of k?

(e) Let E(x) be the profit, that is, the revenue minus
the cost. Express E(x) as a function of x.

(f) Which value of x produces the maximum profit?

(g) The marginal revenue is defined as dR/dx and
the marginal cost as dC/dx. Show that for the
value of x that produces the maximum profit,
dR/dx = dC/dx.

(h) What is the economic significance of dR/dx =
dC/dx in (g)?

71.[M] This exercise concerns a function used to de-
scribe the consumption of a finite resource, such as
petroleum. Let Q be the amount initially available.
Let a be a positive constant and b be a negative con-
stant. Let y(t) be the amount used up by the time t.
The function Q/(1 + aebt) is often used to represent
y(t).

(a) Show that limt→∞ y(t) = Q and limt→−∞ y(t) =
0. Why are these realistic?

(b) Show that y(t) has an inflection point when
t = − ln(a)/b.

(c) Show that at the inflection point, y(t) = Q/2,
that is, half the resource has been used up.

(d) Sketch the graph of y(t).

(e) Where is y′(t), the rate of using the resource,
greatest?

Note: The same function describes limited growth
that is bounded by Q, so called logistic growth.
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72.[M] About 100 cubic yards are added to a land
fill every day. The operator decides to pile the debris
up in the form of a cone whose base angle is π/4. (He
hopes to make a ski run where it never snows.) At
what rate is the height of the cone increasing when the
height is (a) 10 yards? (b) 20 yards? (c) 100 yards?
(d) How long will it take to make a cone 100 yards
high? 300 yards high? Note: The volume of a circu-
lar cone is one third the product of its height and the
area of its base.

73.[M] A wine dealer has a case of wine that he could
sell today for $100. Or, he could decide to store it,
letting it mellow, and sell later for a higher price. As-
sume he could sell in t years for $ 100e

√
t. In order to

decide which option to choose he computes the present
value of the sale. If the interest rate is r, the present
value of one dollar t years hence is e−rt. When should
he sell the wine?

74.[M]

(a) Estimate
∫ 1

0
sin(x)
x dx by using the Maclaurin

polynomial P6(x; 0) associated with sin(x) to ap-
proximate sin(x).

(b) Use the Lagrange form of the error to put an
upper bound on the error in (a).

75.[M] A differentiable function is defined throughout
(−∞,∞). Its derivative is 0 at exactly two inputs.

(a) Can there be exactly one relative extremum?

(b) Could it have two relative maxima?

(c) What is the maximum number of relative ex-
trema possible?

(d) What is the minimum number?

Hint: Sketch graphs, then explain.

76.[M] A differentiable function is defined throughout
(−∞,∞). Its derivative is 0 at exactly three inputs.
and the function approaches 0 as x approaches ∞

(a) Can there be exactly two relative extremum?

(b) Could it have three relative maxima?

(c) What is the maximum number of relative ex-
trema possible?

(d) What is the minimum number?

Hint: Sketch graphs, then explain.
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77.[M] A differentiable function is defined through-
out (−∞,∞). Its derivative is 0 at exactly two inputs.
and the function approaches the same finite limit as x
approaches ∞ and −∞.

(a) Can there be exactly one relative extremum?

(b) Could it have two relative maxima?

(c) What is the greatest number of relative extrema
possible?

(d) What is the least number?

Hint: Sketch graphs, then explain.

78.[C] In the paper cited in the Exercise 63, Belle-
mans writes “The total mechanical power required for
walking is P (v, a) = αMv3/a+ (βMgv)/L)a. Enlarg-
ing the pace, a, at a constant speed v, lowers the first
term and increases the second one so that the formula
predicts an optimal pace a∗(v), minimizing P (v, a).”
In the formula, α, M , v, β, g, and L are constants.

(a) Show that a∗(v) =
(
α
β

)1/2 (
L
g

)1/2
v

(b) Verify that the “corresponding minimum power”
is

P (v, a∗(v)) = 2(αβ)1/2
( g
L

)1/2
Mv2.

“One would therefore expect that, when walking nat-
urally on the flat at a fixed velocity, a subject will
adjust its pace automatically to the optimum value
corresponding to the minimum work expenditure. This
has indeed been verified experimentally.”

79.[C] Figure 5.S.3(a) shows two points A and B a
mile apart and both at a distance a from the river CD.
Sam is at A. He will walk in a straight line to the river
at 4 mph, fill a pail, then continue on to B at 3 mph.
He wishes to do this in the shortest time.

(a) For the fastest route which angle in Figure 5.S.3
do you expect to be larger, α or β?

(b) Show that for the fastest route sin(α)/ sin(β)
equals 4/3.

(a)

(b)

Figure 5.S.3:
80.[C] A fence b feet high is a feet from a tall building,
whose wall contains BC. as shown in Figure 5.S.3(b).
Find the angle θ that minimizes the length of AB.
(That angle produces the shortest ladder to reach the
building and stay above the fence.)

81.[C]

(a) Show that if a differentiable function f is even,
then f ′ is odd, by differentiating both sides of
the equation f(−x) = f(x).

(b) Explain why the conclusion in (a) is to be ex-
pected by interpreting it in terms of the graph
of f .

82.[C] Show that if a differentiable function is odd,
then its derivative is even.

83.[C] What do the previous two exercises imply
about a Maclaurin polynomial associated with an odd
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function? associated with an even function?

84.[C] Show that

(a) If pn(x) is a Maclaurin polynomial associated
with f(x), then p′n(x) is a Maclaurin polynomial
associated with f ′(x).

(b) Use (a) to find the 6th-order Maclaurin polyno-
mial for 1/(1− x)2.

85.[C] (Assume e < 3.) Let P1(x) be P1(x; 0) for ex.
For how large an x can you be sure that

(a) |ex − P1(x)| < 0.01?

(b) |ex − P2(x)| < 0.01?

(c) |ex − P3(x)| < 0.01?

86.[C] A number b is algebraic if there is a non-zero
polynomial

∑n
i=0 aix

i = a0 + a1x+ a2x
2 + · · ·+ anx

n,
with coefficients ai that are rational numbers, such that∑n

i=0 aib
i = 0. In other words, b is algebraic if there is

a function f that satisfies (a) f(b) = 0, (b) all deriva-
tives of f at 0 are rational, but not all zero, and (c)
there is a positive integer m such that Dm(f) = 0.
(Recall that D is the differentiation operator.)
We call a number b almost algebraic if (a) b is not
algebraic and there is a function f with (b) f(b) = 0,
(c) all derivatives of f at 0 are rational, but not all
zero, and (d) there is a non-zero polynomial p(D) such
that p(D)(f) = 0. For example, if p(x) = x2 + 1 then
p(D)(f) = D2(f) + f = f ′′ + f .
Show that π is almost algebraic. (Assume it is not
algebraic.)

Figure 5.S.4: ARTIST: Show wine level inside the
barrel.
87.[M] Kepler, the astrologer and astronomer, to cel-
ebrate his wedding in 1613, ordered some wine, which
was available in cylindrical barrels of various shapes.
He was surprised by the way the merchant measure
the volume of a barrel. A ruler was pushed through
the opening in the side of the barrel (used to fill the
barrel) until it came to a stop at the edge of a circular
base. The merchant used the length of the part of the
ruler inside the barrel to determine the volume of the
barrel. Figure 5.S.4 shows the method.
The barrel in Figure 5.S.4 has radius r, height h, and
volume V . The length of the ruler inside the barrel is
d.

(a) Using common sense, show that d does not de-
termine V .

(b) How small can V be for a given value of d?

(c) Using calculus, show that the maximum volume
for a given d occurs when h = 2

√
2d/
√

6 and
r = d/

√
6.

(d) Show that to maximize the volume the height
must be

√
2 times the diameter. (This is what

Kepler showed.)

Note: Try to solve this problem two different ways.
One without implicit differentiation and the other with
implicit differentiation.

88.[M] Let m and n be positive numbers. Find the
maximum and minimum values of m sin(x) + n cos(x).
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89.[M] Let m and n be positive integers. Let f(x) =
sinm(x) cosn(x) for x in [0, π/2].

(a) For which x is f(x) a minimum?

(b) For which x is f(x) a maximum?

(c) What is the maximum value of f(x)?

90.[M]

(a) Let P (x) be a polynomial such that
D2(x2P (x)) = 0. Show that P (x) = 0.

(b) Does the same conclusion follow if instead we
assume D2(xP (x)) = 0?

Hint: If P (x) has degree n, what are the degrees of
xP (x) and x2P (x)?

91.[M] Translate this news item into the language
of calculus: “The one positive sign during the quarter
was a slowing in the rate of increase in home foreclo-
sures.”

92.[M] In May 2009 it was reported that “the na-
tion’s industrial production fell in April by the small-
est amount in six months, fresh evidence that the pace
of the economy’s decline is slowing.”
Let P (t) denote the total production up to time t with t
representing the number of months since January 2000
(t = 0).

(a) Translate the above statement into the language
of calculus, that is, in terms of P (t) and its
derivatives (evaluated at appropriate values of
t).

(b) Sketch a possible graph of P (t) for November
2008 through April 2009.

Figure 5.S.5:
93.[M] (A challenge to your intuition.) In Figure 5.S.5
AB is tangent to an arc of a circle, OA is a radius and
DC is parallel to AB.

(a) What do you think happens to the ratio of the
area of ABC to the area of ADC as θ → 0?

(b) Using calculus, find the limit of that ratio as
θ → 0.

(c) In view of (b), which provides a better estimate
of the area of a disk, the circumscribed regular
n-gon or the inscribed regular n-gon?

(d) In view of the limit in (b), what combination of
the estimates by the inscribed regular n-gon and
the circumscribed regular n-gon, would likely
provide a very good estimate of the area of the
disk?

94.[M] Let f(x) be a function having a second deriva-
tive at a. Supply all the steps to show that the
second-order polynomial g(x) such that g(a) = f(a),
g′(a) = f ′(a), and g′′(a) = f ′′(a) is given by
g(x) = f(a) + f ′(a)(x− a) + f ′′(a)

2! (x− a)2.

95.[M] Let f and g be differentiable.

(a) If limx→∞
f(x)
g(x) = 3, must limx→∞

f ′(x)
g′(x) exist and

be 3?

(b) If the second limit in (a) exists, can it have a
value other than 3?
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96.[M] Use Taylor polynomials, and their errors,
to show that in an open interval in which f ′′ is
positive, tangents to the graph of f lie below the
curve. As in Exercise 49 in Section 4.4, you want
to show that if a and x are in the interval, then
f(x) > f(a) + f ′(a)(x− a). It is necessary to treat the
cases x > a and x < a separately.

97.[M] Evaluate each limit, indicating the indetermi-
nate form each time l’Hôpital’s Rule is applied.

(a) lim
x→0

(
1 + 2x

2

)1/x

(b) lim
x→0

(
1 + 2x

1 + 3x

)1/x

98.[C]

Sam: I can use Taylor polynomials to get l’Hôpital’s
theorem.

Jane: How so?

Sam: I write f(x) = f(0) + f ′(0)x + f ′′(c)x2/2 and
g(x) = g(0) + g′(0)x+ g′′(d)x2/2.

Jane: O.K.

Sam: Since limx→0 f(x) and limx→0 g(x) are both zero
I have f(0) = g(0) = 0. I can write, after can-
celing some x’s

f(x)
g(x)

=
f ′(0) + f ′′(c)x/2
g′(0) + g′′(d)x/2

.

Jane: But you don’t know the second derivatives.

Sam: It doesn’t matter. I just take limits and get

lim
x→0

f(x)
g(x)

= lim
x→0

f ′(0) + f ′′(c)x/2
g′(0) + g′′(d)x/2

.

So

lim
x→0

f(x)
g(x)

=
f ′(0)
g′(0)

= lim
x→0

f ′(x)
g′(x)

.

There you have it.

Jane: Let me check your steps.

Check the steps and comment on Sam’s proof.

October 22, 2010 Calculus



§ 5.S CHAPTER SUMMARY 409

When you throw a fair six-sided die many times, you
would expect a 5 to show about 1/6 of the times. That
is, if you throw it n times and get k 5’s, you would ex-
pect k/n to be near 1/6.
More generally, if a certain trial has probability p of
success and q = 1 − p of failure, and is repeated n
times, with k successes, you would expect k/n to be
near p. That means that if n is large you would expect
(k/n)−p to be small. In other words, let ε = (k/n)−p,
where ε approaches 0 as n → ∞. This means that in
most cases = np + εn, or k = np + z, where z/n → 0
as n→∞.
The probability of exactly k successes (and n− k fail-
ures) in n trials is

n!
k!(n− k)!

pkqn−k. (5.S.1)

Exercises 99 to 103 show that for large n (and k) (5.S.1)
is approximately

1√
2πnpq

exp
(
−z2

2npq

)
. (5.S.2)

Note that (5.S.2) involves exp(−x2), whose graph has
the shape of the famous bell curve associated with the
normal (or Gaussian) distribution in probability and
statistics.
99.[C] In Exercise 9 in Section 11.6 we will derive
Stirling’s formula for an approximation to n!:

n! ≈
√

2πn
(n
e

)n
.

Use Stirling’s formula to show that (5.S.1) is approxi-
mately(

n

2πk(n− k)

)1/2 (np
k

)k ( nq

n− k

)n−k
(5.S.3)

in the sense that (5.S.2) divided by (5.S.3) approaches
1 as n→∞.

100.[M] Show that as n → ∞, the first factor in
(5.S.3) is asymptotic to(

1
2πpqn

)1/2

(5.S.4)

in the sense that the ratio between it and (5.S.4) ap-
proaches 1 as n→∞.

101.[M] To relate the rest of (5.S.3) to the exponen-
tial function, exp(x), we take its logarithm. Show that

ln

((np
k

)k ( nq

n− k

)n−k)
= −(np+z) ln

(
1 +

z

np

)
−(nq−z) ln

(
1− z

nq

)
.

(5.S.5)

102.[M] Using the Maclaurin polynomial of degree
two to approximate ln(1 + t), show that for large n,
(5.S.5) is approximately

−z2

2pqn
.

103.[M] Conclude that for large n, (5.S.1) is approx-
imately (5.S.2).

104.[M] When studying the normal distribution in
statistics one will meet an equation that amounts to∫∞

−∞ x exp(−(x− µ)2) dx∫∞
−∞ exp(−(x− µ)2) dx

= µ,

where µ is a constant. Show that the equation is cor-
rect. Hint: Make the substitution t = x− µ.

105.[M] Show that
∫∞

1 x exp(−x2) dx is less than∫ 1
0 x exp(−x2) dx. This implies that the area in the

”tail” of the bell curve is fairly small in spite of the
growth of the coefficient x. As a result, economic pre-
dictions based on the bell curve may downplay the
likelihood of rare events. This bias may have been one
of the several factors that combined to produce the
credit crisis and recession that began in 2007.

106.[M] If P (x) is a Maclaurin polynomial associated
with f(x), is P (−x) a Maclaurin polynomial associ-
ated with f(−x)?
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107.[M] If P (x) is a Maclaurin polynomial associated
with f(x), what is the Maclaurin polynomial of the
same degree associated with f(2x)?

108.[M] Find the Maclaurin polynomial of degree 6
associated with 1/ex.

109.[M] Find the Maclaurin polynomial of degree 6
associated with sin(x) cos(x).

110.[M] The center (x, 0), x > 0, of a circle C1 of
radius 1 is at a distance x from the center (0, 0) of a
circle C2 of radius 2. AB is the chord joining their two
points in common. Let A1 be the area within C1 to
the left of that chord and A2 the area within C2 to the
right of that chord.

(a) Which is larger, A1 or A2? Hint: Sketch a dia-
gram of these circles and the chord.

(b) If limx→3− A2/A1 exists, what do you think it is?

(c) Determine whether the limit in (b) exists. If it
does, find it.

111.[M] In the setup of Exercise 110, let O1 be the
center of C1 and O2 the center of C2. What happens
to the ratio of the area common to the two disks and
the area of the quadrilateral AO1BO2 as x→ 3−?

112.[M] Let g(x) = f(x2).

(a) Express the Maclaurin polynomial for g(x) up
through the term of degree 4 in terms of f and
its derivatives.

(b) How is the answer in (a) related to a Maclaurin
polynomial associated with f?

113.[M] Find limx→π/2−(sec(x)− tan(x))

(a) Using l’Hôpital’s rule

(b) Without using l’Hôpital’s rule

114.[M] Assume that limx→∞ f(x) = ∞ and
limx→∞ g(x) =∞.

(a) If limx→∞
f(x)
g(x) = 1, what, if anything, can be

said about limx→∞
ln(f(x))
ln(g(x)) ?

(b) If limx→∞
ln(f(x))
ln(g(x)) = 1, what, if anything, can be

said about limx→∞
f(x)
g(x) ?

115.[C] Assume that the function f(x) is defined on
[0,∞), has a continuous positive second derivative and
limx→∞ f(x) = 0.

(a) Can f(x) ever be negative?

(b) Can f ′(x) ever be positive?

(c) What are the possible general shapes for the
graph of f?

(d) Give an explicit formula for an example of such
a function.

Figure 5.S.6:
116.[C] Let c and d be fixed positive numbers. Con-
sider line segments through P = (c, d) whose ends are
on the positive x- and y-axes, as in Figure 5.S.6.
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Let θ be the acute angle between the line and the x-
axis. Show that the angle α that produces the shortest
line segment through P has tan3(α) = d/c.

117.[C] (See Exercise 116.)

(a) Show that for the angle β such that the the area
of the triangle determined by the line segment
and the two axes is a minimum, tan(β) = d/c.

(b) Show that for β as in (a), OP bisects the line
into two parts of equal length.

118.[C] An adventurous bank decides to compound
interest twice a year, at time x (0 < x < 1) and at time
1 (instead of at the usual 1/2 and 1). Assume that
the annual interest rate is r. Is there a time, x, such
that the account grows to more than if the interest was
computed at 1/2 and 1?

119.[C] Every six hours a patient takes an amount A
of a medicine. Once in the patient, the medicine decays
exponentially. In six hours the amount declines from
A to kA, where k is less than 1 (and positive). Thus,
in 12 hours, the amount in the system is kA+k2A. At
exactly 12 hours, the patient takes another pill and the
amount in her system is A+ kA+ k2A.

(a) Graph the general shape of the sketch showing
the amount of medicine in the patient as a func-
tion of time.

(b) When a pill is taken at the end of n six-hour
periods how much is in the system?

(c) Does the amount in the system become arbitrar-
ily large? (If so, this could be dangerous.)

The constant k depends on many factors, such as the
age of the patient. For this reason, a dosage tested on
a 20-year old may be lethal on a 70-year.

Skill Drill: Derivatives

The remaining exercises offer an opportunity to prac-
tice differentiating. In each case show that the deriva-
tive of the first function is the second function.

120.[M] arctan
(
x
a

)
;

a
x2+a2 .

121.[M] 2(3ax−2b)
15a2

√
(ax+ b)3;

x
√
ax+ b.

122.[M] sin(ax) −

1
3 sin3(ax); a cos3(ax).

123.[M] eax(a cos(bx) +
b sin(bx)); (a2 +
b2)eax cos(bx).

124.[M] Let f(x) = (5x3 +x+ 2)20. Find (a) f (60)(4)
and (b) f (61)(2).
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Calculus is Everywhere # 6

The Uniform Sprinkler

One day one of the authors (S.S.) realized that the sprinkler did not water
his lawn evenly. Placing empty cans throughout the lawn, he discovered that
some places received as much as nine times as much water as other places.
That meant some parts of the lawn were getting too much water and other
parts not enough water.

Figure C.6.1:

The sprinkler, which had no moving parts, consisted of a hemisphere, with
holes distributed uniformly on its surface, as in Figure C.6.1. Even though
the holes were uniformly spaced, the water was not supplied uniformly to the
lawn. Why not?

A little calculus answered that question and advised how the holes should
be placed to have an equitable distribution. For convenience, it was assumed
that the radius of the spherical head was 1, that the speed of the water as it
left the head was the same at any hole, and air resistance was disregarded.

Figure C.6.2:

Consider the water contributed to the lawn by the uniformly spaced holes
in a narrow band of width dφ near the angle φ, as shown in Figure C.6.2. To
be sure the jet was not blocked by the grass, the angle φ is assumed to be no
more than π/4.

Water from this band wets the ring shown in Figure C.6.3.
The area of the band on the sprinkler is roughly 2π sin(φ) dφ. As shown in

Section 9.3, see Exercises 25 and 26, water from this band lands at a distance
from the sprinkler of about

x = kv2 sin(2φ).

Here k is a constant and v is the speed of the water as it leaves the sprinkler.
The width of the corresponding ring on the lawn is roughly

dx = 2kv2 cos(2φ)dφ.

Since its radius is approximately kv2 sin(2φ), its area is approximately

2π
(
kv2 sin(2φ)

) (
2kv2 cos(2φ) dφ

)
,

which is proportional to sin(2φ) cos(2φ), hence to sin(4φ).

Figure C.6.3:

Thus the water supplied by the band was proportional to sin(φ) but the
area watered by that band was proportional to sin(4φ). The ratio

sin(4φ)

sin(φ)
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is the key to understanding both why the distribution was not uniform and to
finding out how the holes should be placed to water the lawn uniformly.

By l’Hôpital’s rule, this fraction approaches 4 as φ approaches zero:

lim
φ→0

sin(4φ)

sin(φ)
= 4. (C.6.1)

This means that for angles φ near 0 that ratio is near 4. When φ is π/4, that

ratio is
sin(π)

sin(π/4)
= 0, and water was supplied much more heavily far from the

sprinkler than near it. To compensate for this bias the number of holes in the
band should be proportional to sin(4φ)/ sin(φ). Then the amount of water is
proportional to the area watered, and watering is therefore uniform.

Professor Anthony Wexler of the Mechanical Engineering Department of
UC-Davis calculated where to drill the holes and made a prototype, which pro-
duced a beautiful fountain and a much more even supply of water. Moreover,
if some of the holes were removed, it would water a rectangular lawn.

We offered the idea to the firm that made the biased sprinkler. After
keeping the prototype for half a year, it turned it down because “it would
compete with the product we have.”

Perhaps, when water becomes more expensive our uniform sprinkler may
eventually water many a lawn.

EXERCISES

1.[R] Show that the limit (C.6.1) is 4

(a) using only trigonometric identities.

(b) using l’Hôpital’s rule.

2.[R] Show that sin(4x)/ sin(x) is a decreasing func-
tion for x in the interval [0, π/4]. Hint: Use trigono-
metric identities and no calculus. (However, you may
be amused if you also do this by calculus.)

3.[R] An oscillating sprinkler goes back and forth at
a fixed angular speed.

(a) Does it water a lawn uniformly?

(b) If not, how would you modify it to provide more
uniform coverage?
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