
Chapter 4

Derivatives and Curve Sketching

When you graph a function you typically plot a few points and connect them
with (generally) straight line segments. Most electronic graphing devices use
the same approach, and obtain better results by plotting more points and using
shorter segments. The more points used, the smoother the graph will appear.
This chapter will show you how to choose key points when sketching a graph.

Three properties of the derivative developed in Section 4.1, and proved in
Section 4.4, will be used in Section 4.2 to help graph a function. In Section 4.3
we see what the second derivative tells about a graph.
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246 CHAPTER 4 DERIVATIVES AND CURVE SKETCHING

4.1 Three Theorems about the Derivative

This section is based on plausible observations about the graphs of differ-
entiable functions, which we restate as theorems. These ideas will then be
combined, in Section 4.2, to sketch graphs of functions.

An effective approach to sketching graphs of functions is to find the extreme
values of the function, that is, where the function takes on its largest and
smallest values.

OBSERVATION (Tangent Line at an Extreme Value) Suppose
that a function f(x) attains its largest value when x = c, that is,
f(c) is the largest value of f(x) over a given open interval that
contains c. Figure 4.1.1 illustrates this. The maximum occurs at a

Figure 4.1.1:

point (c, f(c)), which we call P . If f(x) is differentiable, at c, then
the tangent line at P will exist. What can we say about it?

(a) (b) (c)

Figure 4.1.2:

If the tangent at P were not horizontal (that is, not parallel to
the x-axis), then it would be tilted. So a small piece of the graph
around P which appears to be almost straight — would look as
shown in Figure 4.1.2(a) or (b).

In the first case P could not be the highest point on the curve
because there would be higher points to the right of P . In the
second case P could not be the highest point because there would
be higher points to the left of P . Therefore the tangent at P must
be horizontal, as shown in Figure 4.1.2(c). That is, f ′(c) = 0.

This observation is the foundation for a simple criterion for identifying local
extrema.

Theorem of the Interior Extremum

Theorem 4.1.1 (Theorem of the Interior Extremum). Let f be a function
defined at least on the open interval (a, b). If f takes on an extreme value at
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§ 4.1 THREE THEOREMS ABOUT THE DERIVATIVE 247

a number c in this interval, then either

1. f ′(c) = 0 or

2. f ′(c) does not exist.

If an extreme value occurs within an open interval and the derivative exists
there, the derivative must be 0 there. This idea will be used in Section 4.2 to
find the maximum and minimum values of a function.

WARNING (Two Cautions about Theorem 4.1.1)

1. If in Theorem 4.1.1 the open interval (a, b) is replaced by a
closed interval [a, b] the conclusion may not hold. A glance at
Figure 4.1.3(a) shows why — the extreme value could occur
at an endpoint (x = a or x = b).

(a) (b)

Figure 4.1.3:

2. The converse of Theorem 4.1.1 is not true. Having the deriva-
tive equal to 0 at a point does not guarantee that there is an
extremum at this point. The graph of y = x3, Figure 4.1.3(b),
shows why. Since f ′(x) = 3x2, f ′(0) = 0. While the tangent
line is indeed horizontal at (0, 0), it crosses the curve at this
point. The graph has neither a maximum nor a minimum at
the origin.

Though the next observation is phrased in terms of slopes, we will see that
it has implications for velocity and any changing quantity.
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248 CHAPTER 4 DERIVATIVES AND CURVE SKETCHING

OBSERVATION (Chord and Tangent Line with Same Slope) LetA line segment that joins
two points on the graph of

a function f is called a
chord of f .

A = (a, f(a)) and B = (b, f(b)) be two points on the graph of a
differentiable function f defined at least on the interval [a, b], as
shown in Figure 4.1.4(a). Draw the line segment AB joining A
and B. Assume part of the graph lies above that line. Imagine
holding a ruler parallel to AB and lowering it until it just touches
the graph of y = f(x), as in Figure 4.1.4(b). The ruler touches the

(a) (b)

Figure 4.1.4:

curve at a point P and lies along the tangent at P . At that point
f ′(c) is equal to the slope of AB. (In Figure 4.1.4(b) there are two
such numbers between a and b.)

It is customary to state two separate theorems based on the observation
about chords and tangent lines. The first, Rolle’s Theorem, is a special case
of the second, the Mean-Value Theorem.

Rolle’s Theorem

The next theorem is suggested by a special case of the second observation.
When the points A and B in Figure 4.1.4(a) have the same y coordinate,
the chord AB has slope 0. (See Figure 4.1.5.) In this case, the observation
tells us there must a horizontal tangent to the graph. Expressed in terms of
derivatives, this gives us Rolle’s Theorem1

1Michel Rolle (1652–1719) was a French mathematician. and an early critic of calculus
before later changing his opinion. In addition to his discovery of Rolle’s Theorem in 1691,
he is the first person known to have placed the index in the opening of a radical to denote
the nth root of a number: n

√
x. Source: Cajori, A History of Mathematical Notation, Dover

Publ., 1993 and http://en.wikipedia.org/wiki/Michel_Rolle.
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§ 4.1 THREE THEOREMS ABOUT THE DERIVATIVE 249

(a) (b)

Figure 4.1.5:

Theorem 4.1.2 (Rolle’s Theorem). Let f be a continuous function on the
closed interval [a, b] and have a derivative at all x in the open interval (a, b).
If f(a) = f(b), then there is at least one number c in (a, b) such that f ′(c) = 0.

c

10.0

5

2.5

420

7.5

0.0

−2.5

1 3

5.0

Figure 4.1.6: Graph of y =
f(t) (black) and y = f ′(t)
(blue).

EXAMPLE 1 Verify Rolle’s Theorem for the case with f(t) = (t2−1) ln
(
t
π

)
on [1, π].
SOLUTION The function f(t) is defined for t > 0 and is differentiable.
In particular, f(t) is differentiable on the closed interval [1, π]. Notice that
f(1) = 0 and, because ln(1) = 0, f(π) = 0. Therefore, by Rolle’s Theorem,
there must be a value of c between 1 and π where f ′(c) = 0.

The derivative f ′(t) = 2t ln
(
t
π

)
+ t2−1

t
is a pretty complicated function.

Even though it is not possible to find the exact value of c with f ′(c) = 0, Rolle’s
Theorem guarantees that there is at least one such value of c. Figure 4.1.6
confirms that there is only one solution to f ′(c) = 0 on [1, π]. In Exercise 6
(at the end of Chapter 10 on page 783) you will find that this critical number
is approximately 2.128. �

Remark: Assume that f(x) is a differentiable function such that

Figure 4.1.7:

f ′(x) is never 0 for x in an interval. Then the equation f(x) = 0 can
have at most one solution in that interval. (If it had two solutions,
a and b, then f(a) = 0 and f(b) = 0, and we could apply Rolle’s
Theorem on [a, b]. (See Figure 4.1.7.)

This justifies the observation:

In an interval in which the derivative f ′(x) is never 0, the graph of y = f(x)
can have no more than one x-intercept.
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250 CHAPTER 4 DERIVATIVES AND CURVE SKETCHING

Example 2 applies this.

EXAMPLE 2 Use Rolle’s Theorem to determine how many real roots there
are for the equation

x3 − 6x2 + 15x+ 3 = 0. (4.1.1)

SOLUTION Recall that the Intermediate Value Theorem guarantees that an
odd degree polynomial, such as f(x) = x3 − 6x2 + 15x + 3, has at least one
real solution to f(x) = 0. Call it r. Could there be another root, s? If so,
by Rolle’s Theorem, there would be a number c (between r and s) at which
f ′(c) = 0.

To check, we compute the derivative of f(x) and see if it is ever equal to
0. We have f ′(x) = 3x2 − 12x + 15. To find when f ′(x) is 0, we solve the
equation 3x2 − 12x+ 15 = 0 by the quadratic formula, obtaining

x =
−(−12)±

√
(−12)2 − 4(3)(15)

6
=

12±
√
−36

6
= 2±

√
−1.

Thus the equation x3 − 6x2 + 15x + 3 has only one real root. In Exercise 7
(at the end of Chapter 10) you will find that the sole real solution to (4.1.1)
in approximately −0.186. �

Figure 4.1.8:

Mean-Value Theorem

The “mean-value” theorem, is a generalization of Rolle’s Theorem in that it
applies to any chord, not just horizontal chords.

In geometric terms, the theorem asserts that if you draw a chord for the
graph of a well-behaved function (as in Figure 4.1.8), then somewhere above
or below that chord the graph has at least one tangent line parallel to the
chord. (See Figure 4.1.4(a).) Let us translate this geometric statement into
the language of functions. Call the ends of the chord (a, f(a)) and (b, f(b)).
The slope of the chord is

f(b)− f(a)

b− a
.

Since the tangent line and the chord are parallel, they have the same slopes.
If the tangent line is at the point (c, f(c)), then

f ′(c) =
f(b)− f(a)

b− a
.

Specifically, we have
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§ 4.1 THREE THEOREMS ABOUT THE DERIVATIVE 251

Theorem 4.1.3 (Mean-Value Theorem). Let f be a continuous function on
the closed interval [a, b] and have a derivative at every x in the open interval
(a, b). Then there is at least one number c in the open interval (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

EXAMPLE 3 Verify the Mean-Value Theorem for f(t) =
√

4− t2 on the
interval [0, 2].
SOLUTION Because 4− t2 ≥ 0 for t between −2 and 2 (including these two
endpoints), f is continuous on [0, 2] and is differentiable on (0, 2). The slope
of the chord through (a, f(a)) = (0, 2) and (b, f(b)) = (2, 0) is

f(b)− f(a)

b− a
=

0− 2

2− 0
= −1.

According to the Mean-Value Theorem, there is at least one number c between
0 and 2 where f ′(c) is −1.

Let us try to find c. Since f ′(t) =
−2t

2
√

4− t2
, we need to solve the equation

−c√
4− c2

= −1

−c = −
√

4− c2 multiply both sides by
√

4− t2
c2 = 4− c2 square both sides

2c2 = 4
c2 = 2.

There are two solutions: c =
√

2 and c = −
√

2. Only c =
√

2 is in (0, 2). This
is the number whose existence is guaranteed by the Mean-Value Theorem.
(The MVT says nothing about the existence of other numbers satisfying the
MVT.) �

The interpretation of the derivative as slope suggested the Mean-Value
Theorem. What does the Mean-Value Theorem say when the function de-
scribes the position of a moving object, and the derivative, its velocity? This
is answered in Example 4.

EXAMPLE 4 A car moving on the x-axis has the x-coordinate x = f(t)
at time t. At time a its position is f(a). At some later time b its position is
f(b). What does the Mean-Value Theorem assert for this car?
SOLUTION In this case the quotient

f(b)− f(a)

b− a
equals

Change in position

Change in time
.
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252 CHAPTER 4 DERIVATIVES AND CURVE SKETCHING

The Mean-Value Theorem asserts that at some time c, f ′(c) is equal to the

quotient
f(b)− f(a)

b− a
. This says that the velocity at time c is the same as the

average velocity during the time interval [a, b]. To be specific, if a car travels
210 miles in 5 hours, then at some time its speedometer must read 42 miles
per hour. �

Consequences of the Mean-Value Theorem

There are several ways of writing the Mean-Value Theorem. For example, the
equation

f ′(c) =
f(b)− f(a)

b− a
is equivalent to

f(b)− f(a) = (b− a)f ′(c)

and hence to

f(b) = f(a) + (b− a)f ′(c).

In this last form, the Mean-Value Theorem asserts that f(b) is equal to f(a)
plus a quantity that involves the derivative f ′ at some number c between a and
b. The following important corollaries are based on this alternative view of
the Mean-Value Theorem.

Corollary 4.1.4. If the derivative of a function is 0 throughout an interval I,
then the function is constant on the interval.

Proof

Let a and b be any two numbers in the interval I and let the function be
denoted by f . To prove this corollary, it suffices to prove that f(a) = f(b), for
that is the defining property of a constant function.

By the Mean-Value Theorem in the form (1), there is a number c between
a and b such that

f(b) = f(a) + (b− a)f ′(c).

But f ′(c) = 0, since f ′(x) = 0 for all x in I. Hence

f(b) = f(a) + (b− a)(0)

which proves that f(b) = f(a).

•
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When Corollary 4.1.4 is interpreted in terms of motion, it is quite plausible.
It asserts that if an object has zero velocity for a period of time, then it does
not move during that time.

EXAMPLE 5 Use calculus to show that f(x) = (ex + e−x)2− e2x− e−2x is
a constant. Find the constant.
SOLUTION The function f is differentiable for all numbers x. Its derivative
is

f ′(x) = 2(ex + e−x)(ex − e−x)− 2e2x + 2e−2x

= 2(e2x − e−2x)− 2e2x + 2e−2x

= 0

Because f ′(x) is always zero, f must be a constant.
To find the constant, just evaluate f(x) for any convenient value of x. For

simplicity we choose x = 0: f(0) = (e0 + e0)2 − e0 − e0 = 22 − 2 = 2. Thus,

(ex + e−x)2 − e2x − e−2x = 2 for all numbers x.

This result can also be obtained by squaring ex + e−x. �

Corollary 4.1.5. If two functions have the same derivatives throughout an
interval, then they differ by a constant. That is, if F ′(x) = G′(x) for all x in
an interval, then there is a constant C such that F (x) = G(x) + C.

Figure 4.1.9:

Proof

Define a third function h by the equation h(x) = F (x)−G(x). Then

h′(x) = F ′(x)−G′(x) = 0. since F ′(x) = G′(x)

Since the derivative if h is 0, Corollary 4.1.4 implies that h is constant, that
is, h(x) = C for some fixed number C. Thus

F (x)−G(x) = C or F (x) = G(x) + C,

and Corollary 4.1.5 is proved. •
Is Corollary 4.1.5 plausible when the derivative is interpreted as slope?

In this case, the corollary asserts that if the graphs of two functions have
the property that their tangent lines at points with the same x coordinate are
parallel, then one graph can be obtained from the other by raising (or lowering)
it by a constant amount C. If you sketch two such graphs (as in Figure 4.1.9,
you will see that the corollary is reasonable.

EXAMPLE 6 What functions have a derivative equal to 2x everywhere? In the language of
Section 3.5, any
antiderivative of 2x must be
of the form x2 + C.

SOLUTION One such solution is x2; another is x2 + 25. For any constant
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254 CHAPTER 4 DERIVATIVES AND CURVE SKETCHING

C, D(x2 +C) = 2x. Are there any other possibilities? Corollary 4.1.5 tells us
there are not, for if F is a function such that F ′(x) = 2x, then F ′(x) = (x2)′

for all x. Thus the functions F and x2 differ by a constant, say C, that is,

F (x) = x2 + C.

The only antiderivatives of 2x are of the form x2 + C. �

Figure 4.1.10:

Corollary 4.1.4 asserts that if f ′(x) = 0 for all x, then f is a constant. What
can be said about f if f ′(x) is positive for all x in an interval? In terms of the
graph of f , this assumption implies that all the tangent lines slope upward.
It is reasonable to expect that as we move from left to right on the graph in
Figure 4.1.10, the y-coordinate increases, that is, the function is increasing.
(See Section 1.1).)

Corollary 4.1.6. If f is continuous on the closed interval [a, b] and has a pos-
itive derivative on the open interval (a, b), then f is increasing on the interval
[a, b].

If f is continuous on the closed interval [a, b] and has a negative derivative
on the open interval (a, b), then f is decreasing on the interval [a, b].

Proof

We prove the “increasing” case; the other case is handled in Exercise 44. Take
two numbers x1 and x2 such that

a ≤ x1 < x2 ≤ b.

The goal is to show that f(x2) > f(x1).
By the Mean-Value Theorem, there is some number c between x1 and x2

such that
f(x2) = f(x1) + (x2 − x1)f ′(c).

Now, since x2 > x1, we know x2 − x1 is positive. Since f ′(c) is assumed to be
positive, and the product of two positive numbers is positive, it follows that

(x2 − x1)f ′(c) > 0.

Thus, f(x2) > f(x1), and so f(x) is an increasing function. •

EXAMPLE 7 Determine whether 2x + sin(x) is an increasing function, a
decreasing function, or neither.
SOLUTION The funcion 2x + sin(x) is the sum of two simpler functions:
2x and sin(x). The “2x” part is an increasing function. The second term,
“sin(x)”, increases for x between 0 and π/2 and decreases for x between π/2
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and π. It is not clear what type of function you will get when you add 2x and
sin(x). Let’s see what Corollary 4.1.6 tells us.

y=2x y=sin(x) y=2x+sin(x)

x
K4 K2 0 2 4

K8

K6

K4

K2

2

4

6

8

Figure 4.1.11:

The derivative of 2x+ sin(x) is 2 + cos(x). Since cos(x) ≥ −1 for all x,

(2x+ sin(x))′ = 2 + cos(x) ≥ 2 + (−1) = 1.

Because (2x+sin(x))′ is positive for all numbers x, 2x+sin(x) is an increasing
function. Figure 4.1.11 shows the graph of 2x+sin(x) together with the graphs
of 2x and sin(x). �

Remark: Increasing/Decreasing at a Point

1. Corollary 4.1.6, and the definitions of increasing and decreas-
ing, are stated in terms of intervals. When we talk about a
function f increasing (or decreasing) “at a point c,” here is
what we mean: there is an interval (a, b) with a < c < b where
f is increasing. “A function is increasing at

c” is shorthand for “a
function is increasing in an
interval that contains c.”

2. When f ′(c) > 0 and f ′ is continuous, the Permanence Prop-
erty in Section 2.5) tells us there is an interval (a, b) contain-
ing c where f ′(x) remains positive for all numbers x in (a, b).
Thus, f is increasing on (a, b), and hence increasing at c.

More generally, if f ′(x) is never negative, that is f ′(x) ≥ 0 for all inputs
x, then f is non-decreasing. In the same manner, if f ′(x) ≤ 0 for all inputs x,
then f is a non-increasing function.

Summary

This section focused on three theorems, which we state informally. For the
assumptions on the functions, see the formal statements in this section.

The Theorem of the Interior Extremum says that at a local extreme the
derivative must be zero. (The converse is not true.)

Rolle’s Theorem aserts that if a function has equal values at two inputs, its
derivative must equal zero at least at one number between them. The Mean-
Value Theorem, a generalization of Rolle’s Theorem, asserts that for any chord
on the graph of a function, there is a tangent line parallel to it. This means
that for a < b there is c in (a, b) such that f ′(c) = f(b)−f(a)

b−a , or in a more useful
form f(b) = f(a) + f ′(c)(b− a).

From the Mean-Value Theorem it follows that where a derivative is positive,
a function is increasing; where it is negative it is decreasing; and where it
stays at the value zero, it is constant. The last assertion implies that two
antiderivatives of the same function differ by a constant (which may be zero).
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EXERCISES for Section 4.1 Key: R–routine,
M–moderate, C–challenging

1.[R] State Rolle’s Theorem in words, using as few
mathematical symbols as you can.

2.[R] Draw a graph illustrating Rolle’s Theorem. Be
sure to identify the critical parts of the graph.

3.[R] Draw a graph illustrating the Mean-Value The-
orem. Be sure to identify the critical parts of the
graph.

4.[R] Express the Mean-Value Theorem in words, us-
ing no symbols to denote the function or the interval.

5.[R] Express the Mean-Value Theorem in symbols,
where the function is denoted g and the interval is
[e, f ].

6.[R] Which of the corollaries to the Mean-Value The-
orem implies that

(a) if two cars on a straight road have the same ve-
locity at every instant, they remain a fixed dis-
tance apart?

(b) If all tangents to a curve are horizontal, the curve
is a horizontal line.

Explain each answer.

Exercises 7 to 12 concern the Theorem of the Interior
Extremum.
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7.[R] Consider the func-
tion f(x) = x2 only for x
in [−1, 2].

(a) Graph the function
f(x) for x in [−1, 2].

(b) What is the maxi-
mum value of f(x)
for x in the interval
[−1, 2]?

(c) Does f ′(x) exist at
the maximum?

(d) Does f ′(x) equal
zero at the maxi-
mum?

(e) Does f ′(x) equal
zero at the mini-
mum?

8.[R] Consider the func-
tion f(x) = sin(x) only for
x in [0, π].

(a) Graph the function
f(x) for x in [0, π].

(b) What is the maxi-
mum value of f(x)
for x in the interval
[0, π]?

(c) Does f ′(x) exist at
the maximum?

(d) Does f ′(x) equal
zero at the maxi-
mum?

(e) Does f ′(x) equal
zero at the mini-
mum?

9.[R]

(a) Repeat Exercise 7
on the interval [1, 2].

(b) Repeat Exercise 7
on the interval
(−1, 2).

(c) Repeat Exercise 7
on the interval
(1, 2).

(d) Repeat Exercise 8
on the interval
[0, 2π].

(e) Repeat Exercise 8
on the interval
(0, π).

(f) Repeat Exercise 8
on the interval
(0, 2π).

10.[R]

(a) Graph y = −x2 +
3x+ 2 for x in [0, 2].

(b) Looking at the
graph, estimate the
x coordinate where
the maximum value
of y occurs for x in
[0, 2].

(c) Find where
dy/dx = 0.

(d) Using (c), deter-
mine exactly where
the maximum oc-
curs.

11.[R]

(a) Graph y = 2x2 −
3x+ 1 for x in [0, 1].

(b) Looking at the
graph, estimate the
x coordinate where
the maximum value
of y occurs for x
in [0, 1]. At which
value of x does it
occur?

(c) Looking at the
graph, estimate the
x coordinate where
the minimum value
of y occurs for x in
[0, 12].

(d) Find where
dy/dx = 0.

(e) Using (d), deter-
mine exactly where
the minimum oc-
curs.

12.[R] For each of the following functions, (a) show
that the derivative of the given function is 0 when x = 0
and (b) decide whether the function has an extremum
at x = 0.

(a) x2 sin(x)

(b) 1− cos(x)

(c) ex − x

(d) x2 − x3

Exercises 13 to 21 concern Rolle’s Theorem.
13.[R]

(a) Graph f(x) = x2/3 for x in [−1, 1].

(b) Show that f(−1) = f(1).

(c) Is there a number c in (−1, 1) such that f ′(c) =
0?

(d) Why does this not contradict Rolle’s Theorem?

14.[R]

(a) Graph f(x) = 1/x2 for x in [−1, 1].

(b) Show that f(−1) = f(1).

(c) Is there a number c in (−1, 1) such that f ′(c) =
0?
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(d) Why does this not contradict Rolle’s Theorem?

In Exercises 15 to 20, verify that the given function sat-
isfies Rolle’s Theorem for the given interval. Find all
numbers c that satisfy the conclusion of the theorem.

15.[R] f(x) = x2−2x−3
and [0, 2]
16.[R] f(x) = x3−x and
[−1, 1]
17.[R] f(x) = x4−2x2+1
and [−2, 2]
18.[R] f(x) = sin(x) +

cos(x) and [0, 4π]

19.[R] f(x) = ex + e−x

and [−2, 2]

20.[R] f(x) = x2e−x
2

and [−2, 2]

21.[M] Let f(x) = ln(x2). Note that f(−1) = f(1).
Is there a number c in (−1, 1) such that f ′(c) = 0? If
so, find at least one such number. If not, why is this
not a contradiction of Rolle’s Theorem?

Exercises 22 to 27 concern the Mean-Value Theorem.
In Exercises 22 to 25, find explicitly all values of c
which satisfy the Mean-Value Theorem for the given
functions and intervals.

22.[R] f(x) = x2 − 3x
and [1, 4]
23.[R] f(x) = 2x2 +x+1
and [−2, 3]
24.[R] f(x) = 3x+5 and

[1, 3]

25.[R] f(x) = 5x−7 and
[0, 4]

26.[R]

(a) Graph y = sin(x) for x in [π/2, 7π/2].

(b) Draw the chord joining (π/2, f(π/2)) and
(7π/2, f(7π/2)).

(c) Draw all tangents to the graph parallel to the
chord drawn in (b).

(d) Using (c), determine how many numbers c there
are in (π, 7π/2) such that

f ′(c) =
f(7π/2)− f(π/2)

7π/2− π/2
.

(e) Use the graph to estimate the values of the c’s.

27.[R]

(a) Graph y = cos(x) for x in [0, 9π/2].

(b) Draw the chord joining (0, f(0)) and
(9π/2, f(9π/2)).

(c) Draw all tangents to the graph that are parallel
to the chord drawn in (b).

(d) Using (c), determine how many numbers c there
are in (0, 9π/2) such that

f ′(c) =
f(9π/2)− f(0)

9π/2− 0
.

(e) Use the graph to estimate the values of the c’s.
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28.[R] At time t seconds a thrown ball has the height
f(t) = −16t2 + 32t+ 40 feet.

(a) What is the initial height? That is, the height
when t is zero.

(b) Show that after 2 seconds it returns to its initial
height.

(c) What does Rolle’s Theorem imply about the ve-
locity of the ball?

(d) Verify Rolle’s Theorem in this case by computing
the numbers c which it asserts exist.

29.[R] Find all points where f(x) = 2x3(x − 1) can
have an extreme value on the following intervals

(a) (−1/2, 1)

(b) [−1/2, 1]

(c) [−1/2, 1/2]

(d) (−1/2, 1/2)

30.[R] Let f(x) = |2x− 1|.

(a) Explain why f ′(1/2) does not exist.

(b) Find f ′(x). Hint: Write the absolute value in
two parts, one for x < 1/2 and the other for
x > 1/2.

(c) Does the Mean-Value Theorem apply on the in-
terval [−1, 2]?

31.[R] The year is 2015. Because a gallon of gas costs
six dollars and Highway 80 is full of tire-wrecking pot-
holes, the California Highway Patrol no longer patrols
the 77 miles between Sacramento and Berkeley. In-
stead it uses two cameras. One, in Sacramento, records
the license number and time of a car on the freeway,

and another does the same in Berkeley. A computer
processes the data instantly. Assume that the two cam-
eras show that a car that was in Sacramento at 10:45
reached Berkeley at 11:40. Show that the Mean-Value
Theorem justifies giving the driver a ticket for exceed-
ing the 70 mile-per-hour speed limit. (Of course, in-
tuition justifies the ticket, but mentioning the Mean-
Value Theorem is likely to impress a judge who studied
calculus.)
Note: While it makes a nice story to suggest that
mentioning the Mean-Value Theorem will impress a
judge who studied calculus, reality is that the Califor-
nia Vehicle Code forbids this way to catch speeders.
It reads, “No speed trap shall be used in securing evi-
dence as to the speed of any vehicle. A ‘speed trap’ is
a particlar section of highway measured as to distance
in order that the speed of a vehicle may be calculated
by securing the time it takes the vehicle to travel the
known distance.” It sounds as though the lawmakers
who wrote this law studied calculus.

32.[M] What is the shortest time for the trip from
Berkeley to Sacramento for which the Mean-Value
Theorem does not convict the driver of speeding?
Note: See Exercise 31.

33.[R] Verify the Mean-Value Theorem for f(t) =
x2e−x/3 on [1, 10]. Note: See Example 1.

34.[R] Find all antiderivatives of each of the following
functions. Check your answer by differentiation.

(a) 3x2

(b) sin(x)

(c) 1
1+x2

(d) ex

35.[R] Find all antiderivatives of each of the following
functions. Check your answer by differentiation.

(a) cos(x)
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(b) sec(x) tan(x)

(c) 1/x (x > 0)

(d)
√
x (x > 0)

36.[R]

(a) Differentiate sec2(x) and tan2(x).

(b) The derivatives in (a) are equal. Corollary 4.1.5
then asserts that there exists a constant C such
that sec2(x) = tan2(x) + C. Find the constant.

37.[R] Show by differentiation that f(x) = ln(x/5)−
ln(5x) is a constant for all values of x. Find the con-
stant.

38.[M] Find all functions whose second derivative is
0 for all x in (−∞,∞).

39.[M] Use Rolle’s Theorem to determine how many
real roots there are for the equation x3−6x2+15x+3 =
0.

40.[M] Use Rolle’s Theorem to determine how many
real roots there are for the equation 3x4 +4x3−12x2 +
4 = 0. Give intervals on which there is exactly one
root.

41.[M] Use Rolle’s Theorem to determine how
many real roots there are for the polynomial f(x) =
3x4 + 4x3 − 12x2 + A. That number may depend on
A. For which A is there exactly one root? Are there
any values of A for which there is an odd number of
real roots? Note: Exercise 40 uses this equation with
A = 4.

42.[M] Consider the equation x3−ax2 + 15x+ 3 = 0.
The number of real roots to this equation depends on
the value of a.

(a) Find all values of a when the equation has 3 real
roots.

(b) Find all values of a when the equation has 1 real
root.

(c) Are there any values of a with exactly two real
roots?

Note: Exercise 39 uses this equation with a = 6.

43.[M] If f is differentiable for all real numbers and
f ′(x) = 0 has three solutions, what can be said about
the number of solutions of f(x) = 0? of f(x) = 5?

44.[M] Prove the “decreasing” case of Corollary 4.1.6.

45.[M] For which values of the constant k is the func-
tion 7x+ k sin(2x) always increasing?

46.[C] If two functions have the same second deriva-
tive for all x in (−∞,∞), what can be said about the
relation between them?

47.[C] If a function f is differentiable for all x and c
is a number, is there necessarily a chord of the graph
of f that is parallel to the tangent line at (c, f(c))?
Explain.

48.[C] Sketch a graph of a continuous function f(x)
defined for all numbers such that f ′(1) is 2, yet there
is no open interval around 1 on which f is increasing.

Exercises 49 to 52 involve the hyperbolic functions.
The hyperbolic sine function is sinh(x) = ex−e−x

2 and
the hyperbolic cosine function is cosh(x) = ex+e−x

2 .
Hyperbolic functions are discussed in greater detail in
Section 5.7.
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49.[R]

(a) Show that d
dx sinh(x) =

cosh(x).

(b) Show that d
dx cosh(x) =

sinh(x).

50.[M] Define sech(x) =
1

cosh(x)
=

2
ex + e−x

and

tanh(x) =
sinh(x)
cosh(x)

=

ex − e−x

ex + e−x
.

(a) Show that d
dx tanh(x) =

(sech(x))2.

(b) Show that d
dx sech(x) =

− sech(x) tanh(x).

51.[M] Use calculus to
show that (cosh(x))2 −
(sinh(x))2 is a constant.
Find the constant.

52.[M] Use calculus to
show that (sech(x))2 +
(tanh(x))2 is a constant.
Find the constant.
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4.2 The First-Derivative and Graphing

Section 4.1 showed the connection between extrema and the places where the
derivative is zero. In this section we use this connection to find high and low
points on a graph.

S

R

Q

P

x

y

Figure 4.2.1:

The graph of a differentiable function f defined for all real numbers x is
shown in Figure 4.2.1. The points P , Q, R, and S are of special interest. S
is the highest point on the graph for all x in the domain. We call it a global
maximum or absolute maximum. The point P is higher than all points near
it on the graph; it is called a local maximum or relative maximum. Similarly,
Q is called a local minimum or relative minimum. The point R is neither a
relative maximum nor a relative minimum.

A point that is either a maximum or minimum is called an extremum.
The plural of extremum is extrema.

If you were to walk left to right along the graph in Figure 4.2.1, you would
call P the top of a hill, Q the bottom of a valley, and S the highest point
on your walk (it is also a top of a hill). You might notice R, for you get a
momentary break from climbing from Q to S. For just this one instant it
would be like walking along a horizontal path.

These important aspects of a function and its graph are made precise in
the following definitions. These definitions are phrased in terms of a general
domain. In most cases the domain of the function will be an interval — open,
closed, or half-open.

Figure 4.2.2:

DEFINITION (Relative Maximum (Local Maximum)) The func-
tion f has a relative maximum (or local maximum) at a num-
ber c if there is an open interval around c such that f(c) ≥ f(x)
for all x in that interval that lie in the domain of f .

Figure 4.2.3:

DEFINITION (Relative Minimum (Local Minimum)) The func-
tion f has a relative minimum (or local minimum) at a number
c if there is an open interval around c such that f(c) ≤ f(x) for all
x in that interval that lie in the domain of f .
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Each global extremum is
also a local extremum.

DEFINITION (Absolute Maximum (Global Maximum)) The
function f has a absolute maximum (or global maximum)
at a number c if f(c) ≥ f(x) for all x in the domain of f .

DEFINITION (Absolute Minimum (Global Minimum)) The
function f has a absolute minimum (or global minimum) at
a number c if f(c) ≤ f(x) for all x in the domain of f .

A local extremum is like the summit of a single mountain or an individual
valley. A global maximum corresponds to Mt. Everest at more than 29,000
feet above sea level; a global minimum corresponds to the Mariana Trench in
the Pacific Ocean 36,000 feet below sea level, the lowest point on the Earth’s
crust.

In this section it is assumed that the functions are differentiable. If a
function is not differentiable at an isolated point, this point will need to be
considered separately.

DEFINITION (Critical Number and Critical Point) A number c
at which f ′(c) = 0 is called a critical number for the function f .
The corresponding point (c, f(c)) on the graph of f is a critical
point.

Remark: Some texts define a critical number as a number where
the derivative is 0 or else is not defined. Since we emphasize dif-
ferentiable functions, a critical number is defined to be a number
where the derivative is 0.

The Theorem of the Interior Extremum, in Section 4.1, says that every
local maximum and minimum of a function f occurs where the tangent line to
the curve either is horizontal or does not exist.

Some functions have extreme values, and others do not. The following
theorem gives simple conditions under which both a global maximum and a
global minimum are guaranteed to exist. To convince yourself that this is
plausible, imagine drawing the graph of the function. At some point your
pencil will reach a highest point and at another point a lowest point.
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Theorem 4.2.1 (Extreme Value Theorem). Let f be a continuous function on
a closed interval [a, b]. Then f attains an absolute maximum value M = f(c)
and an absolute minimum value m = f(d) at some numbers c and d in [a, b].

210

y

2

1

0

x

−1

Figure 4.2.4:

EXAMPLE 1 Find the absolute extrema on the interval [0, 2] of the func-
tion whose graph is shown in Figure 4.2.4.
SOLUTION The function has an absolute maximum value of 2 but no abso-
lute minimum value. The range is (−1, 2]. This function takes on values that
are arbitrarily close to -1, but -1 is not in the range of this function. This can
occur only because the function is not continuous at x = 1. �

Recall that Corollary 4.1.6 provides a convenient test to determine if a
function is increasing or decreasing at a point: if f ′(c) > 0 then f is increasing
at x = c and if f ′(c) < 0 then f is decreasing at x = c.

WARNING D ifferentiable implies continuous, so “not continu-
ous” implies “not differentiable.”

EXAMPLE 2 Let f(x) = x ln(x) for all x > 0. Determine the intervals on
which f is increasing, decreasing, or neither.
SOLUTION The function is increasing at numbers x where f ′(x) > 0 and
decreasing where f ′(x) < 0. More effort is needed to determine the behavior at
points where f ′(x) = 0 (or does not exist). (Observe that the natural domain
of f is x > 0.) The Product Rule allows us to find

f ′(x) = ln(x) + x

(
1

x

)
= ln(x) + 1.

In order to find where f ′(x) is positive or is negative, we first find where it is
zero. At such numbers the derivative may switch sign, and the function switch
between increasing and decreasing. So we solve the equation:

f ′(x) = 0
ln(x) + 1 = 0

ln(x) = −1
eln(x) = e−1

x = e−1.

When x is larger than e−1, ln(x) is larger than −1 so that f ′(x) = ln(x)+1 is

Figure 4.2.5:

e−1 ≈ 0.367879
positive and f is increasing. Finally, f is decreasing when x is between 0 and
e−1 because ln(x) < −1, which makes f ′(x) = ln(x)+1 negative. The graph of
y = x ln(x) in Figure 4.2.5 confirms these findings. In addition, observe that
x = e−1 is a minimum of this function. �
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Using Critical Numbers to Identify Local Extrema

The previous examples show there is a close connection between critical points
and local extrema. Notice that, generally, just to the left of a local maximum
the function is increasing, while just to the right it is decreasing. The opposite
holds for a local minimum. The First-Derivative Test for a Local Extreme
Value at x = c gives a precise statement of this result.

First-Derivative Test for a
Local Extreme Value at
x = c

Theorem 4.2.2. Let f be a function and let c be a number in its domain.
Suppose f is continuous on an open interval that contains c and is differentiable
on that interval, except possibly at c. Then:

1. If f ′ changes from positive to negative as x moves from left to right
through the value c,
then f has a local maximum at c.

2. If f ′ changes from negative to positive as x moves from left to right
through the value c,
then f has a local minimum at c.

3. If f ′ does not change sign at c,
then f does not have a local extremum at x = c.

EXAMPLE 3 Classify all critical numbers of f(x) = 3x5 − 20x3 + 10 as a
local maximum, local minimum, or neither.
SOLUTION To identify the critical numbers of f , we find and factor the
derivative:

f ′(x) = 15x4 − 60x2 = 15x2(x2 − 4) = 15x2(x− 2)(x+ 2).

The critical numbers of f are x = 0, x = 2, and x = −2. To determine if
any of these numbers provide local extrema it is necessary to know where f is
increasing and where it is decreasing.

Because f ′ is continuous the three critical numbers are the only places
the sign of f ′ can possibly change. All that remains is to determine if f is
increasing or decreasing on the intervals (−∞,−2), (−2, 0), (0, 2), and (2,∞).
This is easily answered from table of function values shown in the first two
rows of Table 4.2.1. Observe that f(−2) = 74 > 10 = f(0); this means f
is decreasing on (−2, 0). Likewise, f must be decreasing on (0, 2) because
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x → −∞ −2 0 2 →∞
f(x) −∞ 74 10 −54 ∞
f ′(x) 0 0 0

Table 4.2.1:

f(0) = 10 > −54 = f(2). For the two unbounded intervals, limits at ±∞
must be used but the overall idea is the same. Since limx→−∞ f(x) = −∞,
the function must be increasing on (−∞,−2). Likewise, in order to have
limx→∞ f(x) = +∞, f must be increasing on (2,∞). (See Figure 4.2.6.)

Figure 4.2.6:

To conclude, because the graph of f changes from increasing to decreasing
at x = −2, there is a local maximum at (−2, 74). At x = 2 the graph changes
from decreasing to increasing, so a local minimum occurs at (2,−54). Because
the derivative does not change sign at x = 0, this critical number is not a local
extreme. �

EXAMPLE 4 Find all local extrema of f(x) = (x+ 1)2/7e−x.
SOLUTION (Observe that the domain of f is (−∞,∞).) The Product and
Chain Rules for derivatives can be used to obtain

f ′(x) = 2
7
(x+ 1)−5/7e−x + (x+ 1)2/7e−x(−1)

= 2
7
(x+ 1)−5/7e−x − (x+ 1)2/7e−x

= (x+ 1)−5/7e−x
(

2
7
− (x+ 1)

)
= (x+ 1)−5/7e−x

(
−x− 5

7

)
=

−x− 5
7

(x+1)5/7ex
.

The only solution to f ′(x) = 0 is x = −5/7, so c = −5/7 is the only critical
number. In addition, because the denominator of f ′(x) is zero when x = −1,
f is not differentiable for x = −1. Using the information in Table 4.2.2, we

x → −∞ −1 −5/7 →∞
f(x) ∞ 0 (2/7)(2/7)e5/7 ≈ 1.42811 0
f ′(x) dne 0

Table 4.2.2: Note that dne means the limit does not exist.

conclude f is decreasing on (−∞,−1), increasing on (−1,−5/7), and decreas-
ing on (−5/7,∞). By the First-Derivative Test, f has a local minimum at
(−1, 0) and a local maximum at (−5/7, (2/7)(2/7)e5/7) ≈ (−0.71429, 1.42811).
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Notice that the First-Derivative Test applies at x = −1 even though f is
not differentiable for x = −1. A graph of y = f(x) is shown in Figure 4.2.7.
(See also Exercise 27 in Section 4.3.) �

2

x

1

6

4

3

7

5

2

1

−1 0−2

Figure 4.2.7:

Extreme Values on a Closed Interval

Many applied problems involve a continuous function only on a closed interval
[a, b]. (See Section 4.1.)

The Extreme Value Theorem guarantees the function attains both a maxi-
mum and a minimum at some point in the interval. The extreme values occur
either at

1. an endpoint (x = a or x = b),

2. a critical number (x = c where f ′(c) = 0), or

3. where f is not differentiable (x = c where f ′(c) is not defined).

EXAMPLE 5 Find the absolute maximum and minimum values of f(x) =
x4 − 8x2 + 1 on the interval [−1, 3].
SOLUTION The function is continuous on a closed and bounded interval.
The absolute maximum and minimum values occur either at a critical point
or at an endpoint of the interval. The endpoints are x = −1 and x = 3. To
find the critical points we solve f ′(x) = 0:

f ′(x) = 4x3 − 16x = 4x(x2 − 4) = 4x(x− 2)(x+ 2) = 0.

There are three critical numbers, x = 0, 2, and −2, but only x = 0 and x = 2
are in the interval. The intervals where the graph of y = f(x) is increasing
and decreasing can be determined from the information in Table 4.2.3.

Figure 4.2.8:

x −1 0 2 3
f(x) −6 1 −15 10
f ′(x) 0 0 0

Table 4.2.3:

Since we are looking only for global extrema on a closed interval, it is
unnecessary to determine these intervals or to classify critical points as local
extrema. Instead, we simply scan the list of function values at the endpoints
and at the critical numbers – row 2 of Table 4.2.3 – for the largest and smallest
values of f(x). The largest value is 10, so the global maximum occurs at
x = 3. The smallest value is −15, so the global minimum occurs at x = 2.
(See Figure 4.2.8.) �
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In Example 5 it was not necessary to determine the intervals on which the
function is increasing and decreasing, nor did we need to identify the local
extreme values. (See also Exercise 5.)

Summary

This section shows how to use the first derivative to find extreme values of a
function. Namely, identify when the derivative is zero, positive, and negative,
and where it changes sign.

A continuous function on a closed and bounded interval always has a max-
imum and a minimum. All extrema occur either at an endpoint, a critical
number (where f ′(c) = 0), or where f is not differentiable.
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EXERCISES for Section 4.2 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 28, sketch the graph of the given func-
tion. Find all intercepts and critical points, determine
the intervals where the function is increasing and where
it is decreasing, and identify all local extreme values.

1.[R] f(x) = x5

2.[R] f(x) = (x− 1)4

3.[R] f(x) = 3x4 + x3

4.[R] f(x) = 2x3 + 3x2

5.[R] f(x) = x4−8x2 +1

6.[R] f(x) = x3−3x2+3x

7.[R] f(x) = x4 − 4x+ 3

8.[R] f(x) = 2x2 +3x+5

9.[R] f(x) = x4 + 2x3 −
3x2

10.[R] f(x) = 2x3+3x2−
6x
11.[R] f(x) = xe−x/2

12.[R] f(x) = xex/3

13.[R] f(x) = e−x
2

14.[R] f(x) = xe−x
2/2

15.[R] f(x) = x sin(x) +
cos(x)

16.[R] f(x) = x cos(x)−
sin(x)

17.[R] f(x) = cos(x)−1
x2

18.[R] f(x) = x ln(x)

19.[R] f(x) = ln(x)
x

20.[R] f(x) = ex−1
x

21.[R] f(x) = e−x

x

22.[R] f(x) = x−arctan(x)
x3

23.[R] f(x) =
3x+ 1
3x− 1

24.[R] f(x) =
x

x2 + 1

25.[R] f(x) =
x

x2 − 1

26.[R] f(x) =
1

2x2 − x
27.[R] f(x) =

1
x2 − 3x+ 2

28.[R] f(x) =
√
x2 + 1
x

In Exercises 29 to 36 sketch the general shape of the
graph, using the given information. Assume the func-
tion and its derivative are defined for all x and are
continuous. Explain your reasoning.

29.[R] Critical point
(1, 2), f ′(x) < 0 for x < 1
and f ′(x) > 0 for x > 1.

30.[R] Critical point
(1, 2) and f ′(x) < 0 for
all x except x = 1.

31.[R] x intercept −1,
critical points (1, 3) and
(2, 1), lim

x→∞
f(x) = 4,

lim
x→−∞

f(x) = −1.

32.[R] y inter-
cept 3, critical point
(1, 2), lim

x→∞
f(x) = ∞,

lim
x→−∞

f(x) = 4.

33.[R] x intercept −1,
critical points (1, 5) and

(2, 4), lim
x→∞

f(x) = 5,

lim
x→−∞

f(x) = −∞.

34.[R] x intercept
1, y intercept 2, crit-
ical points (1, 0) and
(4, 4), lim

x→∞
f(x) = 3,

lim
x→−∞

f(x) =∞.

35.[R] x intercepts 2
and 4, y intercept 2,
critical points (1, 3) and
(3,−1), lim

x→∞
f(x) = ∞,

lim
x→−∞

f(x) = 1.

36.[R] No x intercepts,
y intercept 1, no criti-
cal points, lim

x→∞
f(x) = 2,

lim
x→−∞

f(x) = 0.

Exercises 37 to 52 concern functions whose domains are
restricted to closed intervals. In each, find the maxi-
mum and minimum values for the given function on
the given interval.

37.[R] f(x) = x2−x4 on
[0, 1]
38.[R] f(x) = 4x−x2 on
[0, 5]
39.[R] f(x) = 2x2 − 5x
on [−1, 1]
40.[R] f(x) = x3−2x2 +
5x on [−1, 3]

41.[R] f(x) =
x

x2 + 1
on

[0, 3]
42.[R] f(x) = x2 +x4 on
[0, 1]

43.[R] f(x) =
x+ 1√
x2 + 1

on [0, 3]
44.[R] f(x) = sin(x) +
cos(x) on [0, π]

45.[R] f(x) = sin(x) −
cos(x) on [0, π]
46.[R] f(x) = x+ sin(x)
on [−π/2, π/2]
47.[R] f(x) = x+ sin(x)
on [−π, 2π]
48.[R] f(x) = x/2 +
sin(x) on [−π, 2π]
49.[R] f(x) = 2 sin(x) −
sin(2x) on [−π, π]
50.[R] f(x) = sin(x2) +
cos(x2) on [0,

√
2π]

51.[R] f(x) = sin(x) −
cos(x) on [−2π, 2π]
52.[R] f(x) = sin2(x) −
cos2(x) on [−2π, 2π]

In Exercises 53 to 59 graph the function.
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53.[R] f(x) =
sin(x)

1 + 2 cos(x)

54.[R] f(x) =
√
x2 − 1
x

55.[R] f(x) =
1

(x− 1)2(x− 2)

56.[R] f(x) =
3x2 + 5
x2 − 1

57.[R] f(x) = 2x1/3 +
x4/3

58.[R] f(x) =
3x2 + 5
x2 + 1

59.[R] f(x) =√
3 sin(x) + cos(x)

60.[M] Graph f(x) = (x2 − 9)1/3e−x. Hint: This
function is difficult to graph in one picture. Instead,
create separate sketches for x > 0 and for x < 0.
Watch out for the points where f is not differentiable.

61.[M] A certain differentiable function has f ′(x) < 0
for x < 1 and f ′(x) > 0 for x > 1. Moreover, f(0) = 3,
f(1) = 1, and f(2) = 2.

(a) What is the minimum value of f(x) for x in
[0, 2]? Why?

(b) What is the maximum value of f(x) for x in
[0, 2]? Why?

In Exercises 62 to 64 decide if there is a function that
meets all of the stated conditions. If you think there
is such a function, sketch its possible graph. Other-
wise, explain why a function cannot meet all of the
conditions.
62.[M] f(x) > 0 for all x, f ′(x) < 0 for all x

63.[M] f(3) = 1, f(5) = 1, f ′(x) > 0 for x in [3, 5]

64.[M] f ′(x) 6= 0 for all x except x = 3 and 5, when
f ′(x) = 0 and f(x) = 0 for x = −2, 4, and 5

65.[M] What is the minimum value of y = (x3 −
x)/(x2 − 4) for x > 2?
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4.3 The Second Derivative and Graphing

The sign of the first derivative tells whether a function is increasing or decreas-
ing. In this section we examine what the sign of the second derivative tells us
about a function and its graph. This information will be used to help graph
functions and also to provide an additional way to test whether a critical point
is a maximum or minimum.

Concavity and Points of Inflection

The second derivative is the derivative of the first derivative. Thus, the sign
of the second derivative determines if the first derivative is increasing or de-
creasing. For example, if f ′′(x) is positive for all x in an interval (a, b), then
f ′ is an increasing function throughout the interval (a, b). In other words, the
slope of the graph of y = f(x) increases as x increases from left to right on
that part of the graph corresponding to (a, b). The slope may increase from

(a) (b) (c)

Figure 4.3.1:
As you drive along it, going
from left to right, you keep
turning the steering wheel
counterclockwise.

negative values to zero to positive values, as in Figure 4.3.1(a). Or the slope
may be positive throughout (a, b), as in Figure 4.3.1(b). Or the slope may be
negative throughout (a, b), as in Figure 4.3.1(c).

In the same way, if f ′′(x) is negative on the interval (a, b) then f ′ is de-
creasing on (a, b). The slope of the graph of y = f(x) decreases as x increases
from left to right on that part of the graph corresponding to (a, b).

DEFINITION (Concave Up and Concave Down)

A function f whose first derivative is increasing throughout the
open interval (a, b) is called concave up in that interval.

A function f whose first derivative is decreasing throughout the
open interval (a, b) is called concave down in that interval.
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Figure 4.3.2:

When a curve is concave up, it lies above its tangent lines and below
its chords. The graph of a concave up function is shaped like a cup. See
Figure 4.3.2.

When a curve is concave down, it lies below its tangent lines and above
its chords. The graph of a concave down function is shaped like a frown. See
Figure 4.3.3.

Convex and Concave Sets
In more advanced courses “concave up” is called “convex.” This is because the
set in the xy-plane above this part of a graph is a convex set. (A convex set is a

Figure 4.3.3:

set with the property that any two points P and Q in the set the line segment
joining them also lies in the set. See also Exercises 26 to 32 in Section 2.5.)
In the same way “concave down” is called “concave.” For instance, the part
of the graph of y = x3 to the right of the x-axis is convex and the part to the
left is concave.

EXAMPLE 1 Where is the graph of f(x) = x3 concave up? concave
down?
SOLUTION First, compute the second derivative: f ′′(x) = 6x. Clearly, 6x

Figure 4.3.4:

is positive when x is positive and negative when x is negative. Thus, the graph
is concave up for x > 0 and is concave down for x < 0. Note that the sense of
concavity changes at x = 0, where f ′′(x) = 0. (See Figure 4.3.4.) �

In an interval where f ′′(x) is positive, the function f ′(x) is increasing, and
so the function f is concave up. However, if a function is concave up, f ′′(x)
need not be positive for all x in the interval. For instance, consider y = x4.
Even though the second derivative 12x2 is zero for x = 0, the first derivative
4x3 is increasing on any interval, so the graph is concave up over any interval.

Any point where the graph of a function changes concavity is important.

DEFINITION (Inflection Number and Inflection Point) Let f be
a function and let a be a number. Assume there are numbers b and
c such that b < a < c and

1. f is continuous on the open interval (b, c)

2. f is concave up on (b, a) and concave down on (a, c)
or
f is concave down on (b, a) and concave up on (a, c).

Then, the point (a, f(a)) is called an inflection point or point
of inflection of f . The number a is called an inflection number
of f .
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Notice that having f ′′(a) = 0 does not automatically make a an inflection
number of f . To be an inflection number, the concavity has to change at a.

Observe that if the second derivative changes sign at the number a, then a
is an inflection number. If the second derivative exists at an inflection number,
it must be 0. But there can be an inflection point if f ′′(a) is not defined. This
is illustrated in the next example.

EXAMPLE 2 Examine the concavity of the graph of y = x1/3.
SOLUTION Here y′ = 1

3
x−2/3 and y′′ = 1

3

(−2
9

)
x−5/3. Althought x = 0 is in

Figure 4.3.5:

the domain of this function, neither y′ nor y′′ is defined for x = 0. When x is
negative, y′′ is positive; when x is positive, y′′ is negative. Thus, the concavity
changes from concave up to concave down at x = 0. This means x = 0 is an
inflection number and (0, 0) is an inflection point. See Figure 4.3.5. �

The simplest way to look for inflection points is to use both the first and
second derivatives:

To find inflection points of y = f(x):

1. Compute f ′(x) and f ′′(x).

2. Look for numbers a such that f ′′ is not defined at a.

3. Look for numbers a such that f ′′(a) = 0

4. For each interval defined by the numbers found in Steps 2 and 3, deter-
mine the sign of f ′′(x).

This process can be implemented using the same ideas used in Section 4.2
to identify critical points, as Example 3 shows.

EXAMPLE 3 Find the inflection point(s) of f(x) = x4 − 8x3 + 18x2.
SOLUTION First, f ′(x) = 4x3 − 24x2 + 36x and

f ′′(x) = 12x2 − 48x+ 36 = 12(x2 − 4x+ 3) = 12(x− 1)(x− 3).

Because f ′′ is defined for all real numbers, the only candidate for inflection
numbers are the solutions to f ′′(x) = 0. Solving f ′′(x) = 0 yields:

0 = 12(x− 1)(x− 3).

Hence x− 1 = 0 or x− 3 = 0, and x = 1 or x = 3.
To decide whether 1 or 3 are inflection numbers of f , look at the sign of

f ′′(x) = 12(x−1)(x−3). For x > 3 both x−1 and x−3 are positive, so f ′′(x)
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is positive. For x in (1, 3), x− 1 is positive and x− 3 is negative, so f ′′(x) is
negative. For x < 1, both x − 1 and x − 3 are negative, so f ′′(x) is positive.
This is recorded in Table 4.3.1. Since sign changes in f ′′(x) correspond to

x (−∞, 1) 1 (1, 3) 3 (3,∞)
f ′′(x) + 0 − 0 +

Table 4.3.1:

Figure 4.3.6:

changes in concavity of the graph of f , this function has two inflection points:
(1, 11) and (3, 27). (See Figure 4.3.6.)

�

Using Concavity in Graphing

The second derivative, together with the first derivative and the other tools
of graphing, can help us sketch the graph of a function. Example 4 continues
Example 3.

EXAMPLE 4 Graph f(x) = x4 − 8x3 + 18x2.
SOLUTION Because f is defined for all real numbers and limx→∞ f(x) =
limx→−∞ f(x) = +∞, it has no asymptotes. Since f(0) = 04 − 8(03) + 18(02),
its y intercept is 0. To find its x intercepts we look for solutions to the equation

x4 − 8x3 + 18x2 = 0

x2(x2 − 8x+ 18) = 0.

Thus x = 0 or x2 − 8x + 18 = 0. The quadratic equation can be solved by
the quadratic formula. The discriminant is (−8)2 − 4(1)(18) = −8 which isThe discriminant of

ax2 + bx+ c is b2 − 4ac. negative, so there are no real solutions of x2−8x+18 = 0. The only x intercept
of y = f(x) is x = 0.

In Example 3 the first derivative was found:Analysis based on f ′(x)

f ′(x) = 4x3 − 24x2 + 36x = 4x(x2 − 6x+ 9) = 4x(x− 3)2.

Thus, f ′(x) = 0 only when x = 0 and x = 3. The two critical points are
(0, f(0)) = (0, 0) and (3, f(3)) = (3, 27). The information in Table 4.3.2 allows
us to conclude that the function f is decreasing on (−∞, 0) and increasing on
(0,∞) with a local minimum at (0, 0).

x (−∞, 0) 0 (0, 3) 3 (3,∞)
f ′(x) − 0 + 0 +
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Table 4.3.2:
By Example 3, the graph is concave up on (−∞, 1) and (3,∞) and concave

down on (1, 3).
To begin to sketch the graph of y = f(x), plot the three points (0, f(0)) =

(0, 0), (1, f(1)) = (1, 11), and (3, f(3)) = (3, 27). These three points divide
the domain into four intervals. On (−∞, 0) the function is decreasing and
concave up; on (0, 1) it is increasing and concave up; on (1, 3) it is increasing
and concave down; and on (3,∞) it is once again increasing and concave up.
The final graph is shown in Figure 4.3.7. �

x
K2 K1 0 1 2 3 4 5

10

20

30

40

50

Figure 4.3.7:

(a) (b) (c) (d)

Figure 4.3.8: The general shape of a function that is (a) increasing and concave
up, (b) increasing and concave down, (c) decreasing and concave up, and (d)
decreasing and concave down

The procedure demonstrated in Example 4 has several advantages. Note
that it was necessary to evaluate f(x) only at a few “important” inputs x.
These inputs cut the domain into intervals where neither the first derivative
nor the second derivative changes sign. On each of these intervals the graph of
the function will have one of the four shapes shown in Figure 4.3.8. A graph
usually is made up of these four shapes.

Local Extrema and the Second-Derivative Test

The second derivative is also useful in testing whether a critical number corre-
sponds to a relative minimum or relative maximum. For this, we will use the
relationships between concavity and tangent lines shown in Figures 4.3.2 and
4.3.3.

Figure 4.3.9:

Let a be a critical number for the function f . Assume, for instance, that
f ′′(a) is negative. If f ′′ is continuous in some open interval that contains
a, then (by the Permanence Property) f ′′(x) remains negative for a suitably
small open interval that contains a. This means the graph of f is concave
down near (a, f(a)), hence it lies below its tangent lines. In particular, it lies
below the horizontal tangent line at the critical point (a, f(a)), as illustrated
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in Figure 4.3.9. Thus the function f has a relative maximum at the critical
number a. Similarly, if f ′(a) = 0 and f ′′(a) > 0, the critical point (a, f(a)) is
a relative minimum because the graph of f is concave up and lies above the
horizontal tangent line at (a, f(a)). These observations suggest the following
test for a relative extremum.

Theorem 4.3.1. Second-Derivative Test for Relative Extrema Let f be a func-
tion such that f ′(x) is defined at least on some open interval containing the
number a. Assume that f ′′(x) is continuous and f ′′(a) is defined.

If f ′(a) = 0 and f ′′(a) < 0, then f has a relative minimum at (a, f(a)).

If f ′(a) = 0 and f ′′(a) > 0, then f has a relative maximum at (a, f(a)).

EXAMPLE 5 Use the Second-Derivative Test to classify all local extremaCompare with Examples 3
and 4. of the function f(x) = x4 − 8x3 + 18x2.

SOLUTION This is the same function analyzed in Examples 3 and 4. The
two critical points are (0, 0) and (3, 27). The second derivative is f ′′(x) =
12x2 − 48x+ 36. At x = 0 we have

f ′′(0) = 12(02)− 48(0) + 36 = 36,

which is positive. Since f ′(0) = 0 and f ′′(0) > 0, f has a local minimum at
(0, 0). At x = 3 we have

f ′′(3) = 12(32)− 48(3) + 36 = 0.

Since f ′′(3) = 0, the Second-Derivative Test tells us nothing about the critical
number 3.

This is consistent with our previous findings. The point at (3, 27) is an
inflection point and not a local extreme point. �

Summary

Table 4.3.3 shows the meaning of the signs of f(x), f ′(x), and f ′′(x) in terms
of the graph of y = f(x).

The graph has a critical point at (a, f(a)) whenever f ′(a) = 0 (or f ′(a)
does not exist). This critical point is an extremem of f if the first derivative
changes sign at x = a; a maximum if the first derivative changes from positive
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is positive (> 0). is negative (< 0). changes sign. is zero (= 0).
Where the or-
dinate f(x)

the graph is above
the x-axis.

the graph is below
the x-axis.

the graph crosses the
x-axis.

there is an x inter-
cept.

Where the
slope f ′(x)

the graph slopes up-
ward.

the graph slopes
downward.

the graph has a hori-
zontal tangent and a
relative extremum.

there is a critical
point.

Where f ′′(x) the graph is concave
up (like a cup).

the graph is concave
down (like a frown).

the graph has an in-
flection point.

there may be an in-
flection point.

Table 4.3.3: EDITOR: This table should appear after the first, short, para-
graph of the Summary.

to negative and a minimum if the first derivative changes from negative to
positive.

Keep in mind that the graph has an inflection point at (a, f(a)) when the
sign of f ′′(x) changes at x = a. This can occur when either f ′′(a) = 0 or when
f ′′(a) is not defined. Similarly, a graph can have a maximum or minimum at
(a, f(a)) when either f ′(a) = 0 or f ′(a) is not defined.
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EXERCISES for Section 4.3 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 16 describe the intervals where the
function is concave up and concave down and give any
inflection points.

1.[R] f(x) = x3−3x2 +2

2.[R] f(x) = x3−6x2 +1

3.[R] f(x) = x2 + x + 1

4.[R] f(x) = 2x2 − 5x
5.[R] f(x) = x4 − 4x3

6.[R] f(x) = 3x5− 5x4

7.[R] f(x) = 1
1+x2

8.[R] f(x) = 1
1+x4

9.[R] f(x) = x3 + 6x2 −

15x

10.[R] f(x) = x2

2 + 1
x

11.[R] f(x) = e−x
2

12.[R] f(x) = xex

13.[R] f(x) = tan(x)

14.[R] f(x) = sin(x) +√
3 cos(x)

15.[R] f(x) = cos(x)

16.[R] f(x) = cos(x) +
sin(x)

In Exercises 17 to 29 graph the polynomials, showing
critical points, inflection points, and intercepts.

17.[R] f(x) = x3 + 3x2

18.[R] f(x) = 2x3 + 9x2

19.[R] f(x) = x4−4x3 +
6x2

20.[R] f(x) = x4 + 4x3 +
6x2 − 2
21.[R] f(x) = x4−6x3 +
12x2

22.[R] f(x) = 2x6 −
10x4 + 10
23.[R] f(x) = 2x6+3x5−
10x4

24.[R] f(x) = 3x4+4x3−
12x2 + 4

25.[R] f(x) = xe−x

26.[R] f(x) = ex
3

27.[R] f(x) = 3x5 −
20x3 + 10 Note: This
function was first encoun-
tered in Example 3 in Sec-
tion 4.2.
28.[R] f(x) = 3x4+4x3−
12x2 + 4

29.[R] f(x) = 2x6 −
15x4 + 20x3 − 20x + 10

In each of Exercises 30 to 37 sketch the general appear-
ance of the graph of the given function near (1, 1) on
the basis of the information given. Assume that f , f ′,
and f ′′ are continuous.

30.[R] f(1) = 1, f ′(1) =
0, f ′′(1) = 1
31.[R] f(1) = 1, f ′(1) =
0, f ′′(1) = −1
32.[R] f(1) = 1,
f ′(1) = 0, f ′′(1) = 0
Note: Sketch four quite
different possibilities.
33.[R] f(1) = 1, f ′(1) =
0, f ′′(1) = 0, f ′′(x) < 0
for x < 1 and f ′′(x) > 0
for x > 1
34.[R] f(1) = 1, f ′(1) =

0, f ′′(1) = 1 and f ′′(x) <
0 for x near 1

35.[R] f(1) = 1, f ′(1) =
1, f ′′(1) = −1

36.[R] f(1) = 1, f ′(1) =
1, f ′′(1) = 0, f ′′(x) < 0
for x < 1 and f ′′(x) > 0
for x > 1

37.[R] f(1) = 1, f ′(1) =
1, f ′′(1) = 0 and f ′′(x) >
0 for x near 1

38.[R] Find all inflection points of f(x) = x ln(x).
On what intervals is the graph of y = f(x) concave
up? concave down? Graph y = f(x) on an interval
large enough to clearly show all interesting features of
the graph. On what intervals is the graph increasing?
decreasing? Note: This graph was first encountered
in Example 2.

39.[R] Find all inflection points of f(x) = x + ln(x).
On what intervals is the graph of y = f(x) concave
up? concave down? Graph y = f(x) on an interval
large enough to show all interesting features of the
graph. On what intervals is the function increasing?
decreasing?

40.[R] Find all inflection points of f(x) = (x +
1)2/7e−x. On what intervals is the graph of y = f(x)
concave up? concave down? On what intervals is the
function increasing? decreasing? Note: This function
was first encountered in Example 4.

41.[R] Find the critical points and inflection points
of f(x) = x2e−x/3. Note: See Example 1.

In Exercises 42 to 43 sketch a graph of a hypothetical
function that meets the given conditions. Assume f ′

and f ′′ are continuous. Explain your reasoning.
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42.[R] Critical point
(2, 4); inflection points
(3, 1) and (1, 1);
lim
x→∞

f(x) = 0 and

lim
x→−∞

f(x) = 0

43.[R] Critical points

(−1, 1) and (3, 2); in-
flection point (4, 1);
lim
x→0+

f(x) = −∞
and lim

x→0−
f(x) = ∞

lim
x→∞

f(x) = 0 and

lim
x→−∞

f(x) =∞

Figure 4.3.10:
44.[M] (Contributed by David Hayes) Let f be a func-
tion that is continuous for all x and differentiable for
all x other than 0. Figure 4.3.10 is the graph of its
derivative f ′(x) as a function of x.

(a) Answer the following questions about f (not
about f ′). Where is f increasing? decreasing?
concave up? concave down? What are the crit-
ical numbers? Where do any relative extrema
occur? Explain.

(b) Assuming that f(0) = 1, graph a hypothetical
function f that satisfies the conditions given.

(c) Graph f ′′(x).

45.[M] Graph y = 2(x − 1)5/3 + 5(x − 1)2/3, paying
particular attention to points where y′ does not exist.

46.[M] Graph y = x+ (x+ 1)1/3.

47.[M] Find the critical points and inflection points
in [0, 2π] of f(x) = sin2(x) cos(x).

48.[M] Can a polynomial of degree 6 have (a) no
inflection points? (b) exactly one inflection point? Ex-
plain.

49.[M] Can a polynomial of degree 5 have (a) no
inflection points? (b) exactly one inflection point? Ex-
plain.
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50.[C] In the theory of inhibited growth it is as-
sumed that the growing quantity y approaches some
limiting size M . Specifically, one assumes that the rate
of growth is proportional both to the amount present
and to the amount left to grow:

dy

dt
= ky(M − y),

where k is a positive number. Prove that the graph of
y as a function of time has an inflection point when
the amount y is exactly half the limiting amount M .

51.[M] Let f be a function such that f ′′(x) = (x −
1)(x− 2).

(a) For which x is f concave up?

(b) For which x is f concave down?

(c) List its inflection number(s).

(d) Find a specific function f whose second deriva-
tive is (x− 1)(x− 2).

52.[C] A certain function y = f(x) has the property
that

y′ = sin(y) + 2y + x.

Show that at a critical number the function has a local
minimum.

53.[C] Assume that the domain of f(x) is the entire x-
axis, and f ′(x) and f ′′(x) are continuous. Assume that
(1, 1) is the only critical point and that lim

x→∞
f(x) = 0.

(a) Can f(x) be negative for some x > 1?

(b) Must f(x) be decreasing for x > 1?

(c) Must f(x) have an inflection point?
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4.4 Proofs of the Three Theorems

In Section 4.1 two observations about tangent lines led to the Theorem of the
Interior Extremum, Rolle’s Theorem, and the Mean-Value Theorem. Now,
using the definition of the derivative, and no pictures, we prove them. That
the proofs go through based only on the definition of the derivative as a limit
reassures us that this definition is suitable to serve as part of the foundation
of calculus. Proof of Theorem 4.1.1:

Proof of the Theorem of the Interior Extremum

Suppose the maximum of f on the open interval (a, b) occurs at the number
c. This means that f(c) ≥ f(x) for each number x between a and b. f ′(c) = 0 at the maximum

or minimum on an open
interval.

Our challenge is to use only this information and the definition of the
derivative as a limit to show that f ′(c) = 0.

Assume that f is differentiable at c. We will show that f ′(c) ≥ 0 and
f ′(c) ≤ 0, forcing f ′(c) to be zero.

Recall that

f ′(c) = lim
∆x→0

f(c+ ∆x)− f(c)

∆x
.

The assumption that f is differentiable on (a, b) means that f ′(c) exists. Con-
sider the difference quotient

f(c+ ∆x)− f(c)

∆x
. (4.4.1)

when ∆x is so small that c+∆x is in the interval (a, b). Then f(c+∆x) ≤ f(c).
Hence f(c + ∆x) − f(c) ≤ 0. Therefore, when ∆x is positive, the difference
quotient in (4.4.1) will be negative, or 0. Consequently, as ∆x → 0 through
positive values, negative

positive = negative

f ′(c) = lim
∆x→0+

f(c+ ∆x)− f(c)

∆x
≤ 0. (4.4.2)

If, on the other hand, ∆x is negative, then the difference quotient in (4.4.3)
will be positive, or 0. Hence, as ∆x→ 0 through negative values, negative

negative = positive

f ′(c) = lim
∆x→0−

f(c+ ∆x)− f(c)

∆x
≥ 0. (4.4.3)

The only way f ′(c) ≤ 0 and f ′(c) ≥ 0 can both hold is when f ′(c) = 0.
This proves that if f has a maximum on (a, b), then f ′(c) = 0. See Exercise 12.

The proof for the case when f has a minimum on (a, b) is essentially the
same. •

The proofs of Rolle’s Theorem and the Mean-Value Theorem are related.
Suppose f is continuous on [a, b] and differentiable on (a, b).
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Proof of Rolle’s Theorem

The goal here is to use the facts that f is continuous on [a, b], differentiable onProof of Theorem 4.1.2:

(a, b) and f(a) = f(b) to conclude that there must a number c in (a, b) with
f ′(c) = 0.If f(a) = f(b), then

f ′(c) = 0 for at least one
number between a and b.

Since f is continuous on the closed interval [a, b], it has a maximum value
M and a minimum value m on that interval. There are two cases to consider:
m < M and m = M .

Case 1: If m = M , f is constant and f ′(x) = 0 for all x in [a, b]. Then any
number in (a, b) will serve as the desired number c.

Case 2: Suppose m < M . Because f(a) = f(b) the minimum and maxi-
mum cannot both occur at the ends of the interval. At least one of the extrema
occurs at a number c strictly between a and b. By assumption, f is differen-
tiable at c, so f ′(c) exists. Thus, by the Theorem of the Interior Extremum,
f ′(c) = 0. This completes the proof of Rolle’s Theorem. •

The idea behind the proof of the Mean-Value Theorem is to define a func-
tion to which Rolle’s Theorem can be applied.

Proof of the Mean-Value Theorem

Let y = L(x) be the equation of the chord through the two points (a, f(a))Proof of Theorem 4.1.3:

and (b, f(b)). The slope of this line is L′(x) =
f(b)− f(a)

b− a
. Define h(x) =

f(x)−L(x). Note that h(a) = h(b) = 0 because f(a) = L(a) and f(b) = L(b).

f ′(c) = f(b)−f(a)
b−a for at

least one number between a
and b.

By assumption, f is continuous on the closed interval [a, b] and differen-
tiable on the open interval (a, b). So h, being the difference of f and L, is also
continuous on [a, b] and differentiable on (a, b).

Rolle’s Theorem applies to h on the interval [a, b]. Therefore, there is at
least one number c in (a, b) where h′(c) = 0. Now, h′(c) = f ′(c) − L′(c), so
that

f ′(c) = L′(c) =
f(b)− f(a)

b− a
.

•

Summary

Using only the definition of the derivative and the assumption that a contin-
uous function defined on a closed interval assumes maximum and minimum
values, we proved the Theorem of the Interior Extremum, Rolle’s Theorem,
and the Mean-Value Theorem. Note that we did not appeal to any pictures
or to our geometric intuition.
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EXERCISES for Section 4.4 Key: R–routine,
M–moderate, C–challenging

In each of Exercises 1 to 3 sketch a graph of a differen-
tiable function that meets the given conditions. (Just
draw the graph; there is no need to come up with a
formula for the function.)

1.[R] f ′(x) < 0 for all x

2.[R] f ′(3) = 0 and
f ′(x) < 0 for x not equal
to 3

3.[R] f ′(x) = 0 only
when x = 1 or 4; f(1) = 3,
f(4) = 1; f ′(x) > 0 for
x < 1 and for x > 4

In Exercises 4 to 5 explain why no differentiable func-
tion satisfies all the conditions.

4.[M] f(1) = 3, f(2) = 4,
f ′(x) < 0 for all x
5.[M] f(x) = 2 only
when x = 0, 1, and 3;

f ′(x) = 0 only when
x = 1

4 , 3
4 , and 4.

6.[M] In “Surely You’re Joking, Mr. Feynmann!,”
Norton, New York, 1985, Nobel laureate Richard P.
Feynmann writes:

I often liked to play tricks on people
when I was at MIT. One time, in mechan-
ical drawing class, some joker picked up a
French curve (a piece of plastic for draw-
ing smooth curves — a curly funny-looking
thing) and said, “I wonder if the curves on
that thing have some special formula?”

I thought for a moment and said, “Sure
they do. The curves are very special
curves. Lemme show ya,” and I picked
up my French curve and began to turn it
slowly. “The French curve is made so that
at the lowest point on each curve, no mat-
ter how you turn it, the tangent is hori-
zontal.”

All the guys in the class were holding
their French curve up at different angles,
holding their pencil up to it at the lowest
point and laying it down, and discovering

that, sure enough, the tangent is horizon-
tal.

How was Feynmann playing a trick on his classmates?

7.[M] What can be said about the number of solutions
of the equation f(x) = 3 for a differentiable function if

(a) f ′(x) > 0 for all x?

(b) f ′(x) > 0 for x < 7 and f ′(x) < 0 for x > 7?

8.[M] Consider the function f(x) = x3 + ax2 + c.
Show that if a < 0 and c > 0, then f has exactly one
negative root.
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9.[M] With the book closed, obtain the Mean-Value
Theorem from Rolle’s Theorem.

10.[M]

(a) Recall the definition of L(x) in the proof of the
Mean-Value Theorem, and show that

L(x) = f(a) +
x− a
b− a

(f(b)− f(a)) .

(b) Using (a), show that

L′(x) =
f(b)− f(a)

b− a
.

11.[M] Show that Rolle’s Theorem is a special case
of the Mean-Value Theorem.

12.[C] Prove the Theorem of the Interior Extremum
when the minimum of f on (a, b) occurs at c.

13.[C] Show that a polynomial f(x) of degree n,
n ≥ 1, can have at most n distinct real roots, that
is, solutions to the equation f(x) = 0.

(a) Use algebra to show that the statement holds for
n = 1 and n = 2.

(b) Use calculus to show that the statement then
holds for n = 3.

(c) Use calculus to show that the statement contin-
ues to hold for n = 4 and n = 5.

(d) Why does it hold for all positive integers n?

14.[C] Is this proposed proof of the Mean-Value The-
orem correct?
Proof
Tilt the x and y axes and the graph of the function
until the x-axis is parallel to the given chord. The
chord is now “horizontal,” and we may apply Rolle’s

Theorem. •

15.[C] Is there a differentiable function f whose do-
main is the x-axis such that f is increasing and yet the
derivative is not positive for all x?

16.[C] Prove: If f has a negative derivative on (a, b)
then f is decreasing on the interval [a, b].

October 22, 2010 Calculus



§ 4.4 PROOFS OF THE THREE THEOREMS 285

Exercises 17 to 19 provide analytic justification for the
statement in Section 4.3 that “[W]hen a curve is con-
cave up, it lies above its tangent lines and below its
chords.”
17.[C] Show that in an open interval in which f ′′ is
positive, tangents to the graph of f lie below the curve.
Hint: Why do you want to show that if a and x are
in the interval, then f(x) > f(a) + f ′(a)(x− a)? Treat
the cases a < x and x > a separately.

18.[C] Assume that f ′′(x) is positive for x in an open
interval. Let a < b be two numbers in the interval.
Show that the chord joining (a, f(a)) and (b, f(b)) lies
above the graph of f . Hint: Consider the following
three questions:

1. Why does one want to prove that f(x) < f(a) +
f(b)− f(a)

b− a
(x− a)?

2. How does it help to know that
f(b)− f(a)

b− a
<

f(x)− f(a)
x− a

?

3. Show that the function on the right-hand side of
the inequality in (b) is increasing for a < x < b.
Why does this show that the chords lie above the
curve?

19.[C]

Sam: I can do Exercise 18 more easily. I’ll show that
(b) is true. By the Mean-Value Theorem, I can
write the left side as f ′(c) where c is in [a, b] and
the right side as f ′(d) where d is in [a, x]. Since
b > x, I know c > d, hence f ′(c) > f ′(d). Noth-
ing to it.

Is Sam’s reasoning correct?

20.[C] We stated, in Section 4.3, that if f(x) is defined
in an open interval around the critical number a and
f ′′(a) is negative, then f(x) has a relative maximum
at a. Explain why this is so, following these steps.

(a) Why is lim
∆x→0

f ′(a+ ∆x)− f ′(a)
∆x

negative?

(b) Deduce that if ∆x is small and positive, then
f ′(a+ ∆x) is negative.

(c) Show that if ∆x is small and negative, then
f ′(a+ ∆x) is positive.

(d) Show that f ′(x) changes sign from positive to
negative at a. By the First-Derivative Test for
a Relative Maximum, f(x) has a relative maxi-
mum at a.
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Skill Drill

21.[M] To keep your differentiation skills sharp, dif-
ferentiate each of the following expressions:

(a)
√

1− x2 sin(3x)

(b)
3
√
x

x2 + 1

(c) tan
(

1
(2x+ 1)2

)

(d) ln

(
(x2 + 1)3

√
1− x2

sec2(x)

)

(e) ex
4
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4.S Chapter Summary

In this chapter we saw that the sign of the function and of its first and second
derivatives influenced the shape of its graph. In particular the derivatives show
where the function is increasing or decreasing and is concave up or down. That
enabled us to find extreme points and inflection points. (See Table 4.3.3 on
page 277.)

We state here the main ideas informally for a function with continuous first
and second derivatives.

If a function has an extremum at a number, then the derivative there is
zero, or is not defined, or the number may be an end point of the domain.
This narrows the search for extrema. If the derivative is zero and the second
derivative is not zero, the function has an extremum there.

The rationale for these tests rests on Rolle’s theorem, which says that if a
differentiable function vanishes at two inputs on an interval in its domain, its
derivative must be zero somewhere between them.

The Mean Value Theorem generalizes this idea. It says that between any
two points on its graph there is a point on the graph where the tangent is
parallel to the chord through those two points. We used this to show that: If
a and b are two numbers, then f(b) = f(a) + f ′(c)(b − a) for some number c
between a and b.

If f ′(a) is positive and if f ′ is continuous in some open interval containing
a, then, by the permanence principle, f ′(x) remains positive for some open
interval containing a. Typically, if the derivative is positive at some num-
ber, then the function is increasing for inputs near that number. (A similar
statement holds when f ′(a) is negative.)
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Sam: Why bother me with limits? The authors say we need them to define
derivatives.

Jane: Aren’t you curious about why the formula for the derivative of a product
is what it is?

Sam: No. It’s been true for over three centuries. Just tell me what it is. If
someone says the speed of light is 186,000 miles per second am I supposed
to find a meter stick and clock and check it out?

Jane: But what if you forget the formula during a test?

Sam: That’s not much of a reason.

Jane: But my physics class uses derivatives and limits to define basic concepts.

Sam: Oh?

Jane: Density of mass at a point or density of electric charge are defined as
limits. And it uses derivatives all over the place. You will be lost if you
don’t know their definitions. Just look at the applications in Chapter 5.

Sam: O.K., O.K. enough. I’ll look.

EXERCISES for 4.S Key: R–routine, M–moderate, C–challenging

In each of Exercises 1 to 13 decide if it is possible for
a single function to have all of the properties listed. If
it is possible, sketch a graph of a differentiable func-
tion that meets the given conditions. (Just draw the
graph; there is no need to come up with a formula for
the function.) If it is not possible, explain why no dif-
ferentiable function satisfies all of the conditions. 1.[R]
f(0) = 1, f(x) > 0, and f ′(x) < 0 for all positive x

2.[R] f(0) = −1, f ′(x) < 0 for all x in [0, 2], and
f(2) = 0

3.[R] x intercepts at 1 and 5; y intercept at 2;
f ′(x) < 0 for x < 4; f ′(x) > 0 for x > 4

4.[R] x intercepts at 2 and 5; y intercept at 3;
f ′(x) > 0 for x < 1 and for x > 3; f ′(x) < 0 for
x in (1, 3)

5.[R] f(0) = 1, f ′(x) < 0 for all positive x, and
limx→∞ f(x) = 1/2
6.[R] f(2) = 5, f(3) = −1, f ′(x) ≥ 0 for all x
7.[R] x intercepts only at 1 and 2; f(3) = −1,
f(4) = 2
8.[R] f ′(x) = 0 only when x = 1 or 4; f(1) = 3,
f(4) = 1; f ′(x) < 0 for x < 1; f ′(x) > 0 for x > 4
9.[R] f(0) = f(1) = 1 and f ′(0) = f ′(1) = 1
10.[R] f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and
f(x) 6= 0 for all x in [0, 1]
11.[R] f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and
f(x) = 0 for exactly one number x in [0, 1]
12.[R] f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and f(x)
has exactly two inflection numbers in [0, 1]
13.[R] f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and f(x)
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has exactly two extrema in [0, 1]
14.[R] State the assumptions and conclusions of the
Theorem of the Interior Extremum for a function F
defined on (a, b).

15.[R] State the assumptions and conclusions of the
Mean-Value Theorem for a function g defined on [c, d].

16.[R] The following discussion on higher derivatives
in economics appears on page 124 of the College Math-
ematics Journal 37 (2006):

Charlie Marion of Shrub Oak, NY, submitted this excerpt from “Curses! The Second
Derivative” by Jeremy J. Siegel in the October 2004 issue of Kiplinger’s (p. 73):
“... I think what is bugging the market is something that I have seen happen many
times before: the Curse of the Second Derivative. The second derivative, for all
those readers who are a few years away from their college calculus class, is the rate
of change of the rate of change — or, in this case, whether corporate earnings, which
are still rising, are rising at a faster or slower pace.”
In the October 1996 issue of the Notices of the American Mathematical Society,
Hugo Rossi wrote, “IN the fall of 1972 President Nixon announced that the rate of
increase of inflation was decreasing. This was the first time a sitting president used
the third derivative to advance his case for reelection.”

Explain why the third derivative is involved in Presi-
dent Nixon’s statement.

17.[M] If you watch the tide come in and go out,
you will notice at high tide and at low tide, the height
of the tide seems to change very slowly. The same
holds when you watch an outdoor thermometer: the
temperature seems to change the slowest when it is at
its highest or at its lowest. Why is that?
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18.[R]

(a) Graph y = sin2(2θ) cos(2θ) for θ in [−π/2, π/2].

(b) What is the maximum value of y?

Exercises 19 to 22 display the graph of a function f
with continuous f ′ and f ′′. Sketch a possible graph of
f ′ and a possible graph of f ′′.

19.[R] Figure 4.S.1(a)
20.[R] Figure 4.S.1(b)
21.[R] Figure 4.S.1(c)

22.[R] Figure 4.S.1(d)

(a) (b)

(c) (d)

Figure 4.S.1:

In Exercises 23 and 24 sketch the graphs of two pos-
sible functions f whose derivative f ′ is graphed in the
given figure.

23.[R] Fig-
ure 4.S.2(a)

24.[R] Fig-
ure 4.S.2(b)

(a)

(b)

Figure 4.S.2:
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25.[R] Sketch the graph of a function f whose second
derivative is graphed in Figure 4.S.3.

Figure 4.S.3:
26.[R] Figure 4.S.4(a) shows the only x-intercepts of
a function f . Sketch the graph of possible f ′ and f ′′.

27.[R] Figure 4.S.4(b) shows the only arguments at
which f ′(x) = 0. Sketch the graph of possible f and
f ′′.

28.[R] Figure 4.S.4(c) shows the only arguments at
which f ′′(x) = 0. Sketch the graph of possible f and
f ′.

(a) (b)

(c)

Figure 4.S.4:
In Exercises 29 to 36 graph the given functions, show-
ing extrema, inflection points, and asymptotes. 29.[R]
e−2x sin(x), x in [0, 4π]

30.[R] ex

1−ex

31.[R] x3 − 9x2

32.[R] x
√

3− x
33.[R] x−1

x−2

34.[R] cos(x)− sin(x), x in [0, 2π]
35.[R] x1/2 − x1/4

36.[R] x
4−x2
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37.[R] Figure 4.S.5 shows the graph of a function f .
Estimate the arguments where

(a) f changes sign,

(b) f ′ changes sign,

(c) f ′′ changes sign.

Figure 4.S.5:
38.[R] Assume the function f has continuous f ′ and
f ′′ defined on an open interval.

(a) If f ′(a) = 0 and f ′′(a) = 0, does f necessarily
have an extrema at a? Explain.

(b) If f ′′(a) = 0, does f necessarily have an inflec-
tion point at x = a?

(c) If f ′(a) = 0 and f ′′(a) = 3, does f necessarily
have an extremum at a?

39.[R] Find the maximum value of e2
√

3x cos(2x) for
x in [0, π/4].

40.[M]

(a) Show that the equation 5x− cos(x) = 0 has ex-
actly one solution.

(b) Find a specific interval which contains the solu-
tion.

41.[M] Consider the function f given by the formula
f(x) = x3 − 3x.

(a) At which numbers x is f ′(x) = 0?

(b) Use the theorem of the Interior Extremum to
show that the maximum value of x3 − 3x for x
in [1, 5] occurs either at 1 or at 5.

42.[M] Let f and g be polynomials without a common
root.

(a) Show that if the degree of g is odd, the graph of
f/g has a vertical asymptote.

(b) Show that if the degree of f is less than or equal
to the degree of g, then f/g has a horizontal
asymptote.

43.[M] If limx→∞ f
′(x) = 0, does it follow that f has

a horizontal asymptote? Explain.

44.[M] Let f be a positive function on (0,∞) with f ′

and f ′′ both continuous. Let g = f2.

(a) If f is increasing, is g?

(b) If f is concave up, is g?

45.[M] Give an example of a positive function on
(0,∞) that is concave down but f2 is concave up.

46.[M] Graph cos(2θ) + 4 sin(θ) for θ in [0, 2π].

47.[M] Graph cos(2θ) + 2 sin(θ) for θ in [0, 2π].

48.[M] Figure 4.S.3(b) shows part of a unit circle.
The line segment CD is tangent to the circle and has
length x. This exercise uses calculus to show that
AB < BC < CD. (BC is the length of arc joining
B and C.)
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(a) Express AB and BC in terms of x.

(b) Using (a) and calculus, show that for x > 0,
AB < BC < CD.

49.[M] Show that in an open interval in which f ′′

is positive, tangents to the graph of f lie below the
curve. Hint: Why do you want to show that if a and
x are in the interval, then f(x) > f(a) + f ′(a)(x− a)?
It is still necessary to treat the cases x > a and x < a
separately. Note: This problem appears again as Ex-
ercise 96 in Section 5.7, when you have more tools to
solve it.

50.[M] Assume that f ′′(x) is positive for x in an open
interval. Let a < b be in the interval. In this exer-
cise you will show that the chord joining (a, f(a)) to
(b, f(b))) lies above the graph of f . (“A concave up
curve has chords that lie above the curve.”)

(a) Why does one want to prove that

f(a)+
f(b)− f(a)

b− a
(x−a) > f(x), for a < x < b?

(b) Why does one want to prove that

f(b)− f(a)
b− a

>
f(x)− f(a)

x− a
?

(c) Show that the function on the right-hand side of
the inequality in (b) is increasing for a < x < b.
Why does this show that chords lie above the
curve?

51.[M]

(a) Graph y = sin(x)
x showing intercepts and asymp-

totes.

(b) Graph y = x and y = tan(x) relative to the same
axes.

(c) Use (b) to find how many solutions there are to
the equation x = tan(x).

(d) Write a short commentary on the critical points
of sin(x)/x. Hint: Part (c) may come in handy.

(e) Refine the graph produced in (a) to show several
critical points.

52.[M] Let f(x) = ax3 + bx2 + cx+ d, where a 6= 0.

(a) Show that the graph of y = f(x) always has ex-
actly one inflection point.

(b) Show that the inflection point separates the
graph of the cubic polynomial into two parts
that are congruent. Hint: Show the graph is
symmetric with respect to the inflection point.
Note: Why can one assume it is enough to show
this for a = 1 and d = 0?

53.[M] Find all functions f(x) such that f ′(x) = 2
for all x and f(1) = 4.
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54.[M] Find all differentiable functions such that
f(1) = 3, f ′(1) = −1, and f ′′(1) = ex.

55.[C]

(a) Graph y = 1/(1 + 2−x).

(b) The point (0, 1/2) is on the graph and divides it
into two pieces. Are the two pieces congruent?

(Curves of this type model the depletion of a finite
resource; x is time and y is the fraction used up to
time x. See also Exercise 71 in Section 5.7.)

56.[C]

(a) If the graph of f has a horizontal asymptote
(say, limx→∞ f(x) = L), does it follow that
limx→∞ f

′(x) exists?

(b) If limx→∞ f
′(x) exists in (a), most it be 0?

57.[C] Assume that f is continuous on [1, 3], f(1) = 5,
f(2) = 4, and f(3) = 5. Show that the graph of f has
a horizontal chord of length 1.

58.[C] A function f defined on the whole x-axis has
continuous first- and second-derivatives and exactly
one inflection point. In at most how many points can
a straight line intersect the graph of f? Explain. (xn,
n an odd integer greater than 1, are examples of such
functions.)

59.[C] Let f be an increasing function with continu-
ous f ′ and f ′′. What, if anything, can be said about
the concavity of f ◦ f if

(a) f is concave up?

(b) f is concave down?

60.[C] Assume f has continuous f ′ and f ′′. Show
that if f and g = f2 have inflection points at the same
argument a, then f ′(a) = 0.

61.[C] Graph y = x2 ln(x), showing extrema

and inflection points. Note: Use the fact that
limx→0+ x2 ln(x) = 0; see Exercise 20 of Section 5.5.

62.[C] Assume lim
x→∞

f ′(x) = 3. Show that for x suf-

ficiently large, f(x) is greater than 2x. Hint: Review
the Mean-Value Theorem.

63.[C] Assume that f is differentiable for all numbers
x.

(a) If f is an even function, what, if anything, can
be said about f ′(0)?

(b) If f is an odd function, what, if anything, can be
said about f ′(0)?

Explain your answers.

64.[M] Graph y = sin(x2) on the interval [−
√
π,
√
π].

Identify the extreme points and the inflection points.

65.[M] Assume that f(x) is a continuous function not
identically 0 defined on (−∞,∞) and that f(x+ y) =
f(x) · f(y) for all x and y.

(a) Show that f(0)=1.

(b) Show that f(x) is never 0.

(c) Show that f(x) is positive for all x.

(d) Letting f(1) = a, find f(2), f(1/2), and f(−1).

(e) Show that f(x) = ax for all x.

66.[C] Can a straight line meet the curve y = x5 four
times?

67.[C] Assume y = f(x) is a twice differentiable
function with f(0) = 1 and f ′′(x) < −1 for all x. Is it
possible that f(x) > 0 for all x in (1,∞)?

68.[C] If limx→∞ f
′(x) = 3, does it follow that the

graph of y = f(x) is asymptotic to some line of the
form y = a+ 3x for some constant a?
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Calculus is Everywhere # 4

Calculus Reassures a Bicyclist

Both authors enjoy bicycling for pleasure and running errands in our flat towns.
One of the authors (SS) often bicycles to campus through a parking lot. On
each side of his route is a row of parked cars. At any moment a car can back
into his path. Wanting to avoid a collision, he wonders where he should ride.
The farther he rides from a row, the safer he is. However, the farther he rides
from one row, the closer he is to the other row. Where should he ride?

Instinct tells him to ride midway between the two rows, an equal distance
from both. But he has second thoughts. Maybe it’s better to ride, say, one-

Figure C.4.1:
ARTIST:picture of two
rows of parked cars, with
bicycle

third of the way from one row to the other, which is the same as two-thirds
of the way from the other row. That would mean he has two safest routes,
depending on which row he is nearer. Wanting a definite answer, he resorted
to calculus.

He introduced a function, f(x), which is the probability that he gets
through safely when his distance from one row is x, considering only cars
in that row. Then he calls the distance between the two rows be d. When
he was at a distance x from one row, he was at a distance d − x from the
other row. The probability that he did not collide with a car backing out from
either row is then the product, f(x)f(d − x). His intuition says that this is
maximized when x = d/2, putting him midway between the two rows.

What did he know about f? First of all, the farther he rode from one line
of cars, the safer he is. So f is an increasing function; thus f ′ is positive.
Moreover, when he was very far from the cars, the probability of riding safely
through the lot approached 1. So he assumed limx→∞ f(x) = 1 (which it
turned out he did not need).

The derivative of f ′ measured the rate at which he gained safety as he
increased his distance from the cars. When x is small, and he rode near the
cars, f ′(x) was large: he gained a great deal of safety by increasing x. However,
when he was far from the cars, he gained very little. That means that f was
a decreasing function. In other words f ′ is negative.

Does that information about f imply that midway is the safest route?
In other words, does the maximum of f(x)f(d − x) occur when x = d/2?

Symbolically, is
f(d/2)f(d/2) ≥ f(x)f(d− x)?

To begin, he took the logarithm of that expression, in order to replace a
product by something easier, a sum. He wanted to see if

2 ln(f(d/2)) ≥ ln(f(x)) + ln(f(d− x)).
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Letting g(x) denote the composite function ln(f(x)), he faced the inequality,

2g(d/2) ≥ g(x) + g(d− x),

or g(d/2) ≥ 1

2
(g(x) + g(d− x)).

This inequality asserts that the point (d/2, g(d/2)) on the graph of g is at least

(a) (b)

Figure C.4.2:

as high as the midpoint of the chord joining (x, g(x)) to (d−x, g(d−x)). This
would be the case if the second derivative of g were negative, and the graph
of g were concave down. He had to compute g′′ and hope it is negative. First
of all, g′(x) is f ′(x)/f(x). Then g′′(x) is

f(x)f ′′(x)− (f ′(x))2

f(x)2
.

The denominator is positive. Because f(x) is positive and concave down, the
numerator is negative. So the quotient is negative. That means that the safest
path is midway between the two rows. The bicyclist continues to follow that
route, but, after these calculations, with more confidence that it is indeed the
safest way.
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Calculus is Everywhere # 5

Graphs in Economics

Elementary economics texts are full of graphs. They provide visual images of
a variety of concepts, such as production, revenue, cost, supply, and demand.
Here we show how economists use graphs to help analyze production as a
function of the amount of labor, that is, the number of workers.

Let P (L) be the amount of some product, such as cell phones, produced
by a firm employing L workers. Since both workers and wireless network cards
come in integer amounts, the graph of P (L) is just a bunch of dots. In practice,
these dots suggest a curve, and the economists use that curve in their analysis.
So P (L) is viewed as a differentiable function defined for some interval of the
form [0, b].

If there are no workers, there is no production, so P (0) = 0. When the
first few workers are added, production may increase rapidly, but as more
are hired, production may still increase, but not as rapidly. Figure C.5.1 is
a typical production curve. It seems to have an inflection point when the
gain from adding more workers begins to decline. The inflection point of P (L)

Figure C.5.1:

occurs at L2 in Figure C.5.2.
When the firm employs L workers and adds one more, production increases

by P (L + 1) − P (L), the marginal production. Economists manage to relate
this to the derivative by a simple trick:

P (L+ 1)− P (L) =
P (L+ 1)− P (L)

(L+ 1)− L
(C.5.1)

The right-hand side of (C.5.1) is “change in output” divided by “change in
input”, which is, by the definition of the derivative, an approximation to the
derivative, P ′(L). For this reason economists define the marginal produc-
tion as P ′(L), and think of it as the extra product produced by the L plus
first worker. We denote the marginal product as m(L), that is, m(L) = P ′(L).

The average production per worker when there are L workers is defined
as the quotient P (L)/L, which we denote a(L). We have three functions:
P (L), m(L) = P ′(L), and a(L) = P (L)/L.

Now the fun begins.
At what point on the graph of the production function is the average pro-

duction a maximum?
Since a(L) = P (L)/L, it is the slope of the line from the origin to the

point (L, P (L)) on the graph. Therefore we are looking for the point on the
graph where the slope is a maximum. One way to find that point is to rotate
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a straightedge around the origin, clockwise, starting at the vertical axis until
it meets the graph, as in Figure C.5.2. Call the point of tangency (L1, P (L1)).

Figure C.5.2:

For L less than L1 or greater than Lq, average productivity is less than a(L1).
Note that at L1 the average product is the same as the marginal product,

for the slope of the tangent at (L1, P (L1)) is both the quotient P (L1)/L1 and
the derivative P ′(L1). We can use calculus to obtain the same conclusion:

Since a(L) has a maximum when the input is L1, its derivative is 0 then.
The derivative of a(L) is

d

dL

(
P (L)

L

)
=
LP ′(L)− P (L)

L2
. (C.5.2)

At L1 the quotient in (C.5.2) is 0. Therefore, its numerator is 0, from which
it follows that P ′(L1) = P (L1)/L1. (You might take a few minutes to see why
this equation should hold, without using graphs or calculus.)

In any case, the graphs of m(L) and a(L) cross when L is L1. For smaller
values of L, the graph of m(L) is above that of a(L), and for larger values it
is below, as shown in Figure C.5.3.

Figure C.5.3:

What does the maximum point on the marginal product graph tell about
the production graph?

Assume that m(L) has a maximum at L2. For smaller L than L2 the
derivative of m(L) is positive. For L larger than L2 the derivative of m(L)
is negative. Since m(L) is defined as P ′(L), the second derivative of P (L)
switches from positive to negative at L2, showing that the production curve
has an inflection point at (L2, P (L2)).

Economists use similar techniques to deal with a variety of concepts, such as
marginal and average cost or marginal and average revenue, viewed as functions
of labor or of capital.
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