
Chapter 3

The Derivative

In this chapter we meet one of the two main concepts of calculus, the deriva-
tive of a function. The derivative tells how rapidly or slowly a function
changes. For instance, if the function describes the position of a moving par-
ticle, the derivative tells us its velocity.

The definition of a derivative rests on the notion of a limit. The particular
limits examined in Chapter 2 are the basis for finding the derivatives of all
functions of interest.

The goal of this chapter is twofold: to develop those techniques and also
an understanding of the meaning of a derivative.
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142 CHAPTER 3 THE DERIVATIVE

3.1 Velocity and Slope: Two Problems with

One Theme

This section discusses two problems which at first glance may seem unrelated.
The first one concerns the slope of a tangent line to a curve. The second
involves velocity. A little arithmetic will show that they are both just different
versions of one mathematical idea: the derivative.

Figure 3.1.1:

Slope

Our first problem is important because it is related to finding the straight line
that most closely resembles a given graph near a point on the graph.

EXAMPLE 1 What is the slope of the tangent line to the graph of y = x2

at the point P = (2, 4), as shown in Figure 3.1.1

In Section 2.1 we used a point Q on the curve near P to determine a line
that closely resembles the tangent line at (2, 4). Using Q = (2.01, 2.012) and
also Q = (1.99, 1.992), we found that the slope of the tangent line is between
4.01 and 3.99. We did not find the slope of the tangent at (2, 4). Rather
than making more estimates by choosing specific points nearer (2, 4), such as
(2.00001, 2.000012), it is simpler to consider a typical point.

(a) (b)

Figure 3.1.2:

SOLUTION Consider the line through P = (2, 4) and Q = (x, x2) when x is
close to 2 — but not equal to 2. (See Figures 3.1.2(a) and (b).) This line has
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§ 3.1 VELOCITY AND SLOPE: TWO PROBLEMS WITH ONE THEME 143

(a) (b) (c)

Figure 3.1.3:

slope
x2 − 22

x− 2
.

To find out what happens to this quotient as Q moves closer to P (and x moves
closer to 2) apply the techniques of limits developed in Chapter 2. We have Recall

a2 − b2 = (a+ b)(a− b).

lim
x→2

x2 − 22

x− 2
= lim

x→2

(x+ 2)(x− 2)

x− 2
= lim

x→2
(x+ 2) = 4.

Thus, we expect the tangent line to y = x2 at (2, 4) to have slope 4.
Figure 3.1.3(c) shows how secant lines approximate the tangent line. It

suggests a blowup of a small part of the curve y = x2. �

Note that we never had to make any estimates with specific choices of the
nearby point Q. We did not even have to draw the curve.

Velocity

If an airplane or automobile is moving at a constant velocity, we know that
“distance traveled equals velocity times time.” Thus

velocity =
distance traveled

elapsed time
.

If the velocity is not constant, we still may speak of its “average velocity,”
which is defined as

average velocity =
distance traveled

elapsed time
.
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144 CHAPTER 3 THE DERIVATIVE

For instance, if you drive from San Francisco to Los Angeles, a distance of
400 miles, in 8 hours, the average velocity is 400/8 or 50 miles per hour.

Suppose that up to time t1 you have traveled a distance D1, while up to
time t2 you have traveled a distance D2, where t2 > t1. Then during the time
interval [t1, t2] the distance traveled is D2 − D1. Thus the average velocity
during the time interval [t1, t2], which has duration t2 − t1, is

average velocity =
D2 −D1

t2 − t1
.

The arithmetic of average velocity is the same as that for the slope of a line.
The next problem shows how to find the velocity at any instant for an

object whose velocity is not constant.

EXAMPLE 2 A rock initially at rest falls 16t2 feet in t seconds. What is its
velocity after 2 seconds? Whatever it is, it will be called the instantaneous
velocity.

(a) (b)

Figure 3.1.4: Note: (b) needs to have 2.01 replaced by t.

SOLUTION
To start, make an estimate by finding the average velocity of the rock

during a short time interval, say from 2 to 2.01 seconds. At the start of
this interval the rock has fallen 16(22) = 64 feet. By the end it has fallen
16(2.012) = 16(4.0401) = 64.6416 feet. So, during this interval of 0.01 seconds
the rock fell 0.6416 feet. Its average velocity during this time interval is

average velocity =
64.6416− 64

2.01− 2
=

0.6416

0.01
= 64.16 feet per second.

This is an estimate of the velocity at time t = 2 seconds. (See Figure 3.1.4(a).)
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§ 3.1 VELOCITY AND SLOPE: TWO PROBLEMS WITH ONE THEME 145

Rather than make another estimate with the aid of a still shorter interval
of time, let us consider the typical time interval from 2 to t seconds, t > 2.
(Although we will keep t > 2, estimates could just as well be made with t < 2.)
During this short time of t − 2 seconds the rock travels 16(t2) − 16(22) =
16(t2 − 22) feet, as shown in Figure 3.1.4(b). The average velocity of the rock
during this period is

average velocity =
16t2 − 16(22)

t− 2
=

16(t2 − 22)

t− 2
feet per second.

When t is close to 2, what happens to the average velocity? It approaches

lim
t→2

16(t2 − 22)

t− 2
= 16 lim

t→2

t2 − 22

t− 2
= 16 lim

t→2
(t+ 2) = 16 · 4 = 64 feet per second.

We say that the (instantaneous) velocity at time t = 2 is 64 feet per second.
�

Even though Examples 1 and 2 seem unrelated, their solutions turn out
to be practically identical: The slope in Example 1 is approximated by the
quotient

x2 − 22

x− 2

and the velocity in Example 2 is approximated by the quotient

16t2 − 16(22)

t− 2
= 16 · t

2 − 22

t− 2
.

The only difference between the solutions is that the second quotient has an
extra factor of 16 and x is replaced with t. This may not be too surprising,
since the functions involved, x2 and 16t2 differ by a factor of 16. (That the A variable by any name is a

variable.independent variable is named t in one case and x in the other does not affect
the computations.)

The Derivative of a Function

In both the slope and velocity problems we were lead to studying similar limits.
For the function x2 it was

x2 − 22

x− 2
as x approaches 2.

For the function 16t2 it was

16t2 − 16(22)

t− 2
as t approaches 2.
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146 CHAPTER 3 THE DERIVATIVE

In both cases we formed “change in outputs divided by change in inputs” and
then found the limit as the change in inputs became smaller and smaller. This
can be done for other functions, and brings us to one of the two key ideas in
calculus, the derivative of a function.

DEFINITION (Derivative of a function at a number a) Let f
be a function that is defined at least in some open interval that
contains the number a. If

lim
x→a

f(x)− f(a)

x− a
exists, it is called the derivative of f at a, and is denoted f ′(a).
In this case the function f is said to be differentiable at a.Read f ′(a) as “f prime at

a” or “the derivative of f at
a.” EXAMPLE 3 Find the derivative of f(x) = 16x2 at 2.

SOLUTION In this case, f(x) = 16x2 for any input x. By definition, the
derivative of this function at 2 is

lim
x→2

f(x)− f(2)

x− 2
= lim

x→2

16x2 − 16(22)

x− 2
= 16 lim

x→2

x2 − 22

x− 2
= 16 lim

x→2
(x+ 2) = 64.

We say that “the derivative of the function f(x) at 2 is 64” and write f ′(2) =
64. �

Now that we have the derivative of f , we can define the slope of its graph
at a point (a, f(a)) as the value of the derivative, f ′(a). Then we define the
tangent line at (a, f(a)) as the line through (a, f(a)) whose slope is f ′(a).

EXAMPLE 4 Find the derivative of ex at a.
SOLUTION We must find

lim
x→a

ex − ea

x− a
. (3.1.1)

The limit is hard to see. However, it is easy to calculate if we write x as a+h,
and find what happens as h approaches 0. The denominator x − a is just h.
Then (3.1.1) now reads

lim
h→0

ea+h − ea

h
.

This form of the limit is more convenient:

lim
h→0

ea+h − ea

h
= lim

h→0

eaeh − ea

h
law of exponents

= ea lim
h→0

eh − 1

h
factor out a constant

= ea · 1 Section 2.2
= ea.

So the limit is ea. In short, “the derivative of ex is ex itself.” �
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§ 3.1 VELOCITY AND SLOPE: TWO PROBLEMS WITH ONE THEME 147

Differentiability and Continuity

If a function is differentiable at each point in its domain the function is said
to be differentiable.

A small piece of the graph of a differentiable function at a looks like part
of a straight line. You can check this by zooming in on the graph of a function
of your choice. Differential calculus can be described as the study of functions
whose graphs locally look almost like a line.

It is no surprise that a differentiable function is always continuous. To show
that a function is continuous at an argument a in its domain We must show
that limx→ af(x) equals f(a), which amounts to showing limx→a(f(x)−f(a))
equals 0. To relate this limit to f ′(a) we rewrite the limit as

lim
x→a

(f(x)− f(a)) = lim
x→a

(
f(x)− f(a)

x− a
(x− a)

)
= lim

x→a

(
f(x)− f(a)

x− a

)
lim
x→a

(x− a)

= f ′(a) · 0 definition of the derivative
= 0.

So, f is continuous at a.
A function can be continuous yet not differentiable. For instance, f(x) =

|x| is continuous but not differentiable at 0, as Figure 3.1.5 suggests.

1

1.0

2

2.0

1.5

0.5

0

0.0

−1−2

Figure 3.1.5:

Summary

From a mathematical point of view, the problems of finding the slope of the
tangent line and the velocity of the rock are the same. In each case estimates
lead to the same type of quotient, f(x)−f(a)

x−a . The behavior of this difference
quotient is studied as x approaches a. In each case the answer is a limit, called
the derivative of the function at the given number, a. Finding the derivative
of a function is called “differentiating” the function.
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148 CHAPTER 3 THE DERIVATIVE

EXERCISES for Section 3.1 Key: R–routine,
M–moderate, C–challenging

1.[R] Let g be a function and b a number. Define the
“derivative of g at b”.

2.[R] How is the tangent line to the graph of f at
(a, f(a)) defined?

3.[R]

(a) Find the slope of the tangent line to y = x2 at
(4, 16).

(b) Use it to draw the tangent line to the curve at
(4, 16).

4.[R]

(a) Find the slope of the tangent line to y = x2 at
(−1, 1).

(b) Use it to draw the tangent line to the curve at
(−1, 1).

Exercises 5 to 17 concern slope. In each case use the
technique of Example 1 to find the slope of the tangent
line to the curve at the point.

5.[R] y = x2 at the point
(3, 32) = (3, 9)
6.[R] y = x2 at the point
(1

2 ,
(

1
2

)2) = (1
2 ,

1
4)

7.[R] y = x3 at the point
(2, 23) = (2, 8)
8.[R] y = x3 at the point
(−2, (−2)3) = (−2,−8)
9.[R] y = sin(x) at the
point (0, sin(0)) = (0, 0)
10.[R] y = sin(x) at the
point (0, cos(0)) = (0, 1)
11.[R] y = cos(x) at the
point (π/4, cos(π/4)) =
(π/4,

√
2/2)

12.[R] y = cos(x) at the
point (π/6, sin(π/6)) =
(π/6, 1/2)
13.[R] y = 2x at the
point (1, 21) = (1, 2)
14.[R] y = 4x at
the point (1/2, 41/2) =
(1/2, 2)
15.[R]

(a) Graph y = 1/x and,
by eye, draw the
tangent at the point
(2, 1/2).

(b) Using a ruler, mea-
sure a rise-run tri-
angle to estimate
the slope of the tan-
gent line drawn in
(a).

(c) Using no pictures at
all, find the slope of
the tangent line to
the curve y = 1/x
at (2, 1/2).

16.[R]

(a) Sketch the graph of
y = x3 and the tan-
gent line at (0, 0).

(b) Find the slope of
the tangent line to
the curve y = x3 at
the point (0, 0)

Note: Be particularly
careful when sketching
the graph near (0, 0). In
this case the tangent line
crosses the curve.

17.[R]

(a) Sketch the graph of
y = x2 and the tan-
gent line at (1, 1).

(b) Find the slope of
the tangent line to
the curve y = x2 at
the point (0, 0)

In Exercises 18 to 21 use the method of Example 2 to
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find the velocity of the rock after

18.[R] 3 seconds
19.[R] 1

2 second
20.[R] 1 second

21.[R] 1
4 second

22.[R] A certain object travels t3 feet in the first t
seconds.

(a) How far does it travel during the time interval
from 2 to 2.1 seconds?

(b) What is the average velocity during that time
interval?

(c) Let h be any positive number. Find the average
velocity of the object from time 2 to 2 + h sec-
onds. Hint: To find (2 + h)3, just multiply out
the product (2 + h)(2 + h)(2 + h).

(d) Find the velocity of the object at 2 seconds by
letting h approach 0 in the result found in (c).

23.[R] A certain object travels t3 feet in the first t
seconds.

(a) Find the average velocity during the time inter-
val from 3 to 3.01 seconds?

(b) Find its average velocity during the time interval
from 3 to t seconds, t > 3.

(c) By letting t approach 3 in the result found in
(b), find the velocity of the object at 3 seconds.

Exercises 24 and 25 illustrate a different notation to
find the slope of the tangent.
24.[R] Consider the parabola y = x2.

(a) Find the slope of the line through P = (2, 4) and
Q = (2 + h, (2 + h)2), where h 6= 0.

(b) Show that as h approaches 0, the slope in (a)
approaches 4.

25.[R] Consider the curve y = x3.

(a) Find the slope of the line through P = (2, 8) and
Q = (1.9, 1.93).

(b) Find the slope of the line through P = (2, 8) and
Q = (2.01, 2.013).

(c) Find the slope of the line through P = (2, 8) and
Q = (2 + h, (2 + h)3), where h 6= 0.

(d) Show that as h approaches 0, the slope in (a)
approaches 12.

26.[R] Consider the curve y = sin(x).

(a) Find the slope of the line through P = (0, 0) and
Q = (−0.1, sin(−0.1)).

(b) Find the slope of the line through P = (0, 0) and
Q = (0.01, sin(0.01)).

(c) Find the slope of the line through P = (0, 0) and
Q = (h, sin(h)), where h 6= 0.

(d) Show that as h approaches 0, the slope in (c)
approaches 1.

(e) Use (d) to draw the tangent line to y = sin(x)
at (0, 0).

27.[R] Consider the curve y = cos(x).

(a) Find the slope of the line through P = (0, 1) and
Q = (−0.1, cos(−0.1)).

(b) Find the slope of the line through P = (0, 1) and
Q = (0.01, cos(0.01)).

(c) Find the slope of the line through P = (0, 1) and
Q = (h, cos(h)), where h 6= 0.

(d) Show that as h approaches 0, the slope in (c)
approaches 0.

(e) Use (d) to draw the tangent line to y = cos(x)
at (0, 1).
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28.[R] Consider the curve y = 2x.

(a) Find the slope of the line through P = (2, 22)
and Q = (1.9, 21.9).

(b) Find the slope of the line through P = (2, 22)
and Q = (2.1, 22.1).

(c) Find the slope of the line through P = (2, 22)
and Q = (2 + h, 22+h), where h 6= 0.

(d) Show that the slope of the curve y = 2x at (2, 22)
is approximately 4(0.693) = 2.772.

(e) Use (d) to draw the tangent line to y = 2x at
(2, 4).

29.[R] Consider the curve y = ex.

(a) Find the slope of the line through P =
(−0.5, e−0.5) and Q = (−0.6, e−0.6).

(b) Find the slope of the line through P =
(−0.5, e−0.5) and Q = (−0.49, e−0.49).

(c) Find the slope of the line through P =
(−0.5, e−0.5) and Q = (−0.5 +h, e−0.5+h), where
h 6= 0.

(d) Show that as h approaches 0, the slope in (c)
approaches e−0.5.

30.[R] Show that the slope of the curve y = 2x at
(3, 8) is approximately 8(0.693) = 5.544.

31.[R]

(a) Use the method of this section to find the slope
of the curve y = x3 at (1, 1).

(b) What does the graph of y = x3 look like near
(1, 1)?

32.[R]

(a) Use the method of this section to find the slope
of the curve y = x3 at (−1,−1).

(b) What does the graph of y = x3 look like near
(−1,−1)?

33.[R]

(a) Draw the curve y = ex for x in the interval
[−2, 1].

(b) Draw as well as you can, using a straightedge,
the tangent line at (1, e).

(c) Estimate the slope of the tangent line by mea-
suring its “rise” and its “run.”

(d) Using the derivative of ex, find the slope of the
curve at (1, e).

34.[R]

(a) Sketch the curve y = ex for x in [−1, 1].

(b) Where does the curve in (a) cross the y-axis?

(c) What is the (smaller) angle between the graph
of y = ex and the y-axis at the point found in
(b)?

35.[R] With the aid of a calculator, estimate the slope
of y = 2x at x = 1, using the intervals

(a) [1, 1.1]

(b) [1, 1.01]

(c) [0.9, 1]

(d) [0.99, 1]
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36.[R] With the aid of a calculator, estimate the slope
of y = x+1

x+2 at x = 2, using the intervals

(a) [2, 2.1]

(b) [2, 2.01]

(c) [2, 2.001]

(d) [1.999, 2]

37.[M] Estimate the derivative of sin(x) at x = π/3

(a) to two decimal places.

(b) to three decimal places.

38.[M] Estimate the derivative of ln(x) at x = 2

(a) to two decimal places.

(b) to three decimal places.

The ideas common to both slope and velocity also ap-
pear in other applications. Exercises 39 to 42 present
the same ideas in biology, economics, and physics.

39.[M] A certain bacte-
rial culture has a mass of
t2 grams after t minutes of
growth.

(a) How much does
it grow during
the time interval
[2, 2.01]?

(b) What is the average
rate of growth dur-
ing the time interval
[2, 2.01]?

(c) What is the “in-
stantaneous” rate of
growth when t = 2?

40.[M] A thriving busi-
ness has a profit of t2 mil-
lion dollars in its first t
years. Thus from time t =
3 to time t = 3.5 (the

first half of its fourth year)
it has a profit of (3.5)2 −
32 million dollars, giving
an annual rate of

(3.5)2 − 32

0.5
= 6.5 million dollars per year.

(a) What is its annual
rate of profit dur-
ing the time interval
[3, 3.1]?

(b) What is its annual
rate of profit dur-
ing the time interval
[3, 3.01]?

(c) What is its in-
stantaneous rate of
profit after 3 years?

Exercises 41 and 42 concern density.
41.[M] The mass of the left-hand x centimeters of
a nonhomogeneous string 10 centimeters long is x2

grams, as shown in Figure 3.1.6. For instance, the
string in the interval [0, 5] has a mass of 52 = 25
grams and the string in the interval [5, 6] has mass
62 − 52 = 11 grams. The average density of any
part of the string is its mass divided by its length.
( total mass

length grams per centimeter)

(a) Consider the leftmost 5 centimeters of the string,
the middle 2 centimeters of the string, and the
rightmost 2 centimeters of the string. Which
piece of the string has the largest mass?

(b) Of the three pieces of the string in (a), which
part of the string is densest?

(c) What is the mass of the string in the interval
[3, 3.01]?
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152 CHAPTER 3 THE DERIVATIVE

(d) Using the interval [3, 3.01], estimate the density
at 3.

(e) Using the interval [2.99, 3], estimate the density
at 3.

(f) By considering intervals of the form [3, 3 + h], h
positive, find the density at the point 3 centime-
ters from the left end.

(g) By considering intervals of the form [3 + h, 3], h
negative, find the density at the point 3 centime-
ters from the left end.

Figure 3.1.6:
42.[M] The left x centimeters of a string have a mass
of x2 grams.

(a) What is the mass of the string in the interval
[2, 2.01]?

(b) Using the interval [2, 2.01], estimate the density
at 2.

(c) Using the interval [1.99, 2], estimate the density
at 2.

(d) By considering intervals of the form [2, 2 + h], h
positive, find the density at the point 2 centime-
ters from the left end.

(e) By considering intervals of the form [2 + h, 2], h
negative, find the density at the point 2 centime-
ters from the left end.

43.[M]

(a) Graph the curve y = 2x2 + x.

(b) By eye, draw the tangent line to the curve at the
point (1, 3). Using a ruler, estimate its slope.

(c) Sketch the line that passes through the point
(1, 3) and the point (x, 2x2 + x).

(d) Find the slope of the line in (c).

(e) Letting x get closer and closer to 1, find the slope
of the tangent line at (1, 3).

(f) How close was your estimate in (b)?

44.[M] An object travels 2t2 + t feet in t seconds.

(a) Find its average velocity during the interval of
time [1, x], where x is positive.

(b) Letting x get closer and closer to 1, find the ve-
locity at time 1.

(c) How close was your estimate in (a)?

45.[M] Find the slope of the tangent line to the curve
y = x2 of Example 1 at the typical point P = (x, x2).
To do this, consider the slope of the line through P
and the nearby point Q = (x + h, (x + h)2) and let h
approach 0.

46.[M] Find the velocity of the falling rock of Exam-
ple 2 at any time t. To do this, consider the average
velocity during the time interval [t, t+ h] and then let
h approach 0.

47.[M] Does the tangent line to the curve y = x2 at
the point (1, 1) pass through the point (6, 12)?

48.[M]

(a) Graph the curve y = 2x as well as you can for
−2 ≤ x ≤ 3.
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(b) Using a straight edge, draw as well as you can
a tangent to the curve at (2, 4). Estimate the
slope of this tangent by using a ruler to draw
and measure a “rise-and-run” triangle.

(c) Using a secant through (2, 4) and (x, 2x), for x
near 2, estimate the slope of the tangent to the
curve at (2, 4). Hint: Choose particular values
of x and use your calculator to create a table of
your results.

49.[C]

(a) Using your calculator estimate the slope of the
tangent line to the graph of f(x) = sin(x) at
(0, 0).

(b) At what (famous) angle do you think the curve
crosses the x-axis at (0, 0)?

50.[C]

(a) Sketch the curve y = x3 − x2.

(b) Using the method of the nearby point, find the
slope of the tangent line to the curve at the point
(a, a3 − a2).

(c) Find all points on the curve where the tangent
line is horizontal.

(d) Find all points on the curve where the tangent
line has slope 1.

51.[C] Repeat Exercise 50 for the curve y = x3−x.

52.[C] An astronaut is traveling from left to right
along the curve y = x2. When she shuts off the engine,
she will fly off along the line tangent to the curve at
the point where she is at the moment the engines turn
off. At what point should she shut off the engine in
order to reach the point

(a) (4, 9)?

(b) (4,−9)?

53.[C] See Exercise 52. Where can an astronaut
who is traveling from left to right along y = x3 − x
shut off the engine and pass through the point (2, 2)?

54.[C]

Sam: I don’t like the book’s definition of the deriva-
tive.

Jane: Why not?

Sam: I can do it without limits, and more easily.

Jane: How?

Sam: Just define the derivative off at a as the slope of
the tangent line at (a, f(a)) on the graph of f .

Jane: Something must be wrong with that.

Who is right, Sam or Jane?
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3.2 The Derivatives of the Basic Functions

In this section we use the definition of the derivative to find the derivatives of
the important functions xa (a rational), ex, sinx, and cos x. We also introduce
some of the standard notations for the derivative. For convenience, we begin
by repeating the definition of the derivative.

DEFINITION (Derivative of a function at a number) Assume
that the function f is defined at least in an open interval containing
a. If

lim
x→a

f(x)− f(a)

x− a
(3.2.1)

exists, it is called the derivative of f at a.

There are several notations for the quotient that appears in (3.2.1) and
also for the derivative. Sometimes it is convenient to use a + h instead of x
and let h approach 0. Then, (3.2.1) reads

lim
h→0

f(a+ h)− f(a)

h
. (3.2.2)

Expression (3.2.2) says the same thing as (3.2.1). See how the quotient,
“change in output” divided by “change in input”, behaves as the change in
input gets smaller and smaller.

Sometimes it is useful to call the change in output “∆f” and the changeThe symbol ∆ is Greek for
“D”; it is pronounced

“delta”. So ∆f is read
‘delta eff.” In mathematics,

“∆” generally indicates
difference or change.

in input “∆x.” That is, ∆f = f(x)− f(a) and ∆x = x− a. Then

f ′(a) = lim
∆x→0

∆f

∆x
. (3.2.3)

There is nothing sacred about the letters a, x, and h. One could say

f ′(x) = lim
t→x

f(t)− f(x)

t− x
(3.2.4)

or

f ′(x) = lim
u→x

f(u)− f(x)

u− x
. (3.2.5)

The symbol “f ′(a)” is read aloud as “f prime at a” or “the derivative of f
at a.” The symbol f ′(x) is read similarly. However, the notation f ′(x) reminds
us that f ′, like f , is a function. For each input x the derivative, f ′(x), is the
output. The derivative of the function f is also written as D(f).

The derivative of a specific function, such as x2, is denoted (x2)′ or D(x2).
Then, D(x2) = 2x is read aloud as “the derivative of x2 is 2x.” This is
shorthand for “the derivative of the function that assigns x2 to x is the function

October 22, 2010 Calculus



§ 3.2 THE DERIVATIVES OF THE BASIC FUNCTIONS 155

that assigns 2x to x.” Since the value of derivative depends on x, the derivative
is a function.

EXAMPLE 1 Find the derivative of x3 at a.

0

x

10

y

0

−5

−1 1 2

5

−2

y=x^3                   

y=3x^2                  

Figure 3.2.1:

SOLUTION

(x3)′ = lim
x→a

x3 − a3

x− a
= 3a2.

This limit was evaluated by noticing that it is one of the four limits in Sec-
tion 2.2 (page 67). Using (2.2.6), we can write (x3)′ = 3x2 or D(x3) = 3x2. �

In the same manner, lim
x→a

xn − an

x− a
= n · an−1 implies that for any positive

integer n, the derivative of xn is nxn−1. The exponent n becomes the coefficient
and the exponent of x shrinks from n to n− 1:

Derivative of xn

(xn)′ = nxn−1 where n is a positive integer.

The next example treats an exponential function with a fixed base.
EXAMPLE 2 Find the derivative of 2x.

SOLUTION

D(2x) = lim
h→0

2(x+h) − 2x

h

= lim
h→0

2x2h − 2x

h

= lim
h→0

2x
2h − 1

h

= 2x lim
h→0

2h − 1

h
.

In Section 2.2, page 67, we found that limh→0
2h−1
h
≈ 0.693. Thus,

D(2x) ≈ (0.693)2x.

�
No one wants to remember the (approximate) constant 0.693, which ap-

pears when we use base 2. Recall that in Section 3.1 we found that the deriva-
tive of ex is ex. There is no need to memorize some fancy constant, such as
0.693.

We emphasize this important, and simple, formula
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Derivative of ex

D(ex) = ex.

The function ex has the remarkable property that it equals its derivative.
Next, we turn to trigonometric functions.

EXAMPLE 3 Find the derivative of sin(x).
SOLUTIONRecall that sin(A+B) =

sin(A) cos(B) +
cos(A) sin(B). D(sinx) = lim

h→0

sin(x+ h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= lim
h→0

sin(x)(cos(h)− 1) + cos(x) sin(h)

h

= lim
h→0

sinx
cos(h)− 1

h
+ cos(x)

sin(h)

h
.

In Section 2.2 we found that: limh→0
sin(h)
h

= 1 and limh→0
1−cos(h)

h
= 0. Thus

limh→0
cos(h)−1

h
= 0 and

D(sinx) = (sin x)(0) + (cos x)(1) = cos(x).

�
We have the important formula

Derivative of sin(x)

D(sin(x)) = cos(x).

If we graph y = sin(x) (see Figure 3.2.2), and consider its shape, the
formula D(sin(x)) = cos(x) is not a surprise. For instance, for x in (−π/2, π/2)

3p/2pp/2-p/2

x

1

5p/22p-1

y=sin(x)                

y=cos(x)                

Figure 3.2.2:

the slope is positive. So is cos(x). For x in (π/2, 3π/2) the slope of the sine
curve is negative. So is cos(x). Since sin(x) has period 2π, we would expect
its derivatve also to have period 2π. Indeed, cos(x) does have period 2π.

In a similar manner, using the definition of the derivative and the identity
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), one can show that

Derivative of cos(x)

D(cos(x)) = − sin(x).
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Derivatives of Other Power Functions

We showed that if n is a positive integer, D(xn) = nxn−1. Now let us find the
derivative of power functions xn where n is not a positive integer.

EXAMPLE 4 Find the derivative of x−1 = 1
x
.

SOLUTION Before we calculate the necessary limit, let’s pause to see how
the slope of y = 1/x behaves. A glance at Figure 3.2.3 shows that the slope

Figure 3.2.3:

is always negative. Also, for x near 0, the absolute value of the slope is large,
but when |x| is large, the slope is near 0.

Now, let’s find the derivative of 1/x:

D(1/x) = lim
t→x

1/t− 1/x

t− x
= lim

t→x

1

t− x

(
x− t
xt

)
= lim

t→x

−1

xt
= − 1

x2 .

As a check, note that −1/x2 is always negative, has large absolute value when
x is near 0, and is near 0 when |x| is large. �

It is worth memorizing that

Derivative of x−1

D

(
1

x

)
= − 1

x2
.

Or, written in exponential notation,

D(x−1) = −x−2.

The second form fits into the pattern established for positive integers n, D(xn) =
nxn−1.

EXAMPLE 5 Find the derivative of x2/3.
SOLUTION Once again we use the definition of the derivative:

D(x2/3) = lim
t→x

t2/3 − x2/3

t− x
.

A bit of algebra will help us find that limit. We write the four terms t2/3, x2/3,
t, and x as powers of t1/3 and x1/3. Thus

D(x2/3) = lim
t→x

(
t1/3
)2 −

(
x1/3

)2

(t1/3)
3 − (x1/3)

3 .
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Recalling that a2− b2 = (a− b)(a+ b) and a3− b3 = (a− b)(a2 + ab+ b2), weIf you don’t recall these
formulas, multiply out

(a− b)(a+ b) and
(a− b)(a2 + ab+ b2).

find

D(x2/3) = lim
t→x

((
t1/3
)
−
(
x1/3

)) ((
t1/3
)

+
(
x1/3

))
((t1/3)− (x1/3))

(
(t1/3)

2
+ (t1/3) (x1/3) + (x1/3)

2
)

= lim
t→x

(
t1/3
)

+
(
x1/3

)
(t1/3)

2
+ (t1/3) (x1/3) + (x1/3)

2

=

(
x1/3

)
+
(
x1/3

)
(x1/3)

2
+ (x1/3) (x1/3) + (x1/3)

2

= 2x1/3

3x2/3 = 2
3
x−1/3.

In short,

D(x2/3) =
2

3
x−1/3.

Note that this formula follows the pattern we found for D(xn) for n = 1, 2, 3,
. . . and −1. The exponent of x becomes the coefficient and the exponent of x
is lowered by 1. �

The method used in Example 5 applies to any positive rational exponent.
In the next two sections we will show how this result extends first to negative
rational exponents (Section 3.3) and then to irrational exponents (Section 3.5).
In all three cases the formula will be the same. We state the general result
here, but remember that — so far — we have justified it only for positive
rational exponents and −1.

Derivative of Power Functions xa

For any fixed number a, D(xa) = axa−1. (3.2.6)

This formula holds for values of x where both xa and xa−1 are defined. For
instance, x1/2 =

√
x is defined for x ≥ 0, but its derivative 1

2
x−1/2 is defined

only for x > 0.
The derivative of the square root function occurs so often, we emphasize

its formula

Derivative of Square Root Function (as Power Function)

D(x1/2) =
1

2
x−1/2

or, in terms of the usual square root sign,
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Derivative of Square Root Function (Square Root Sign)

D(
√
x) =

1

2
√
x
.

Another Notation for the Derivative

We have used the notations f ′ and D(f) for the derivative of a function f .
There is another notation that is also convenient.

If y = f(x), the derivative is denoted by the symbols

dy

dx
or

df

dx
.

The symbol dy
dx

is read as “the derivative of y with respect to x” or “dee y, dee
x.”

In this notation the derivative of x3, for instance, is written

d (x3)

dx
.

If the function is expressed in terms of another letter, such as t, we would write

d (t3)

dt
.

In Section 5.4 a meaning
will be given to dx and dy.Keep in mind that in the notations df/dx and dy/dx, the symbols df , dy,

and dx have no meaning by themselves. The symbol dy/dx should be thought
of as a signle entity, just like the numeral 8, which we do not think of as formed
of two 0’s.

In the study of motion, Newton’s dot notation is often used. If x is a
function of time t, then ẋ denotes the derivative dx/dt.

Summary

In this section we see why limits are important in calculus. We need them
to define the derivative of a function. The definition can be stated in several
ways, but each one says, informally, “look at how a small change in input
changes the output.” Here is the formal definition, in various costumes:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
f ′(x) = lim

x→0

f(x+ h)− f(x)

h

f ′(x) = lim
t→x

f(t)− f(x)

t− x
f ′(x) = lim

∆x→0

∆f

∆x
.
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The following derivatives should be memorized. However, if you forget
a formula, you should be able to return to the definition and evaluate the
necessary limit.

Function Derivative
f(x) f ′(x)
xa axa−1

ex ex

sin(x) cos(x)
cos(x) − sin(x)

October 22, 2010 Calculus



§ 3.2 THE DERIVATIVES OF THE BASIC FUNCTIONS 161

EXERCISES for Section 3.2 Key: R–routine,
M–moderate, C–challenging

1.[R] Show that D(cos(x)) = − sin(x). Hint: cos(A+
B) = cos(a) cos(b)− sin(a) sin(b)

Using the definition of the derivative, compute the ap-
propriate limit to find the derivatives of the functions
in Exercises 2 to 12.

2.[R] 1/(x + 2)

3.[R] 2x− x2

4.[R] 3x.
Hint: use your
calculator to es-
timate the messy

coefficient that
appears
5.[R] 6x3

6.[R] x4/3

7.[R] 5x2

8.[R] 4 sin(x)
9.[R] 2ex +

sin(x)
10.[R] x2 + x3

11.[R] 1/(2x +
1)
12.[R] 1/x2

13.[R] Use the formulas obtained for the derivatives
of ex, xa, sin(x), and cos(x) to evaluate the derivatives
of the given function at the given input.

(a) ex at −1

(b) x1/3 at −8

(c) 3
√
x at 27

(d) cos(x) at π/4

(e) sin(x) at 2π/3

14.[R] Use the formulas obtained for the derivatives
of ex, xa, sin(x), and cos(x) to evaluate the derivatives
of the given function at the given input.

(a) ex at 0

(b) x2/3 at −1

(c)
√
x at 25

(d) cos(x) at −π

(e) sin(x) at π/3

15.[R] State the definition of the derivative of a func-
tion in words, using no mathematical symbols.

16.[R] State the definition of the derivative of g(t) at
b as a mathematical formula, with no words.

In Exercises 17 to 22 use the definition of the deriva-
tive to show that the given equation is correct. Later in
this chapter we will develop shortcuts for finding these
derivatives.

17.[M] D (e−x) = −e−x

18.[M] D
(
e3x
)

= 3e3x

19.[M] D(1/ cos(x)) =
sin(x)/ cos2(x)
20.[M] D(tan(x)) =
1 + tan2(x) = sec2(x)
Hint: use the iden-

tity tan(A + B) =
tan(A)+tan(B)

1−tan(A) tan(B)

21.[M] D(sin(2x)) =
2 cos(2x)

22.[M] D(cos(x/2) =
−1/2 sin(x/2)

23.[M] This Exercise shows why, in calculus, angles
are measured in radians. Let Sin(x) denote the sine of
an angle of x degrees and let Cos(x) denote the cosine
of an angle of x degrees.

(a) Graph y = Sin(x) on the interval [−180, 360],
using the same scale on both the x- and y-axes.

(b) Find lim
x→0

Sin(x)
x

.

(c) Find lim
x→0

1− Cos(x)
x

.

(d) Using the definition of the derivative, differenti-
ate Sin(x).

24.[C] Use the limit process to show that D
(
(x−5

)
=

−5x−6.
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Figure 3.2.4:
Let f be a differentiable function and a a number such

that f ′(a) is not zero. The tangent to the graph of f
at A = (a, f(a)) meets the x-axis at a point B = (b, 0),
see Figure 3.2.4. The subtangent of f is the line AB.
Its length is |a− b|.
Exercises 25 and 26 involve the subtangent of a func-
tion.
25.[C] Show that for the function ex the length of the
subtangent is the same for all values of a.

26.[C] Find the length of the subtangent at (a, f(a))
for any differentiable function f . Hint: Assume f ′(a)
is not zero.
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3.3 Shortcuts for Computing Derivatives

This section develops methods for finding the derivative of a function, or what
is called differentiating a function. With these methods it will he a routine The verb is “differentiate.”

matter to find, for instance, the derivative of

(3 + 4x+ 5x2)ex

sin(x)

without going back to the definition of the derivative and (at great effort)
finding the limit of a complicated quotient.

Before developing the methods in this and the next two sections, it will be
useful to find the derivative of any constant function.

The Derivative of a Constant Function
In other symbols, d(C)

dx = 0
and D(C) = 0.

Constant Rule
The derivative of a constant function f(x) = C is 0.

(C)′ = 0

Proof

Let C be a fixed number and let f be the constant function, f(x) = C for all
inputs x. By the definition of a derivative,

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

Since the function f has the same output C for all inputs, ∆x is another name for h

f(x+ ∆x) = C and f(x) = C.

Thus

f ′(x) = lim
∆x→0

C − C
∆x

= lim
∆x→0

0

∆x

= lim
∆x→0

0 since ∆x 6= 0

= 0.
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This shows the derivative of any constant function is 0 for all x. •
From two points of view, the Constant Rule is no surprise: Since the graph

(0,c)y

x

Figure 3.3.1:

of f(x) = C is a horizontal line, it coincides with each of its tangent lines, as
can be seen in Figure 3.3.1. Also, if we think of x as time and f(x) as the
position of a particle at time x, the Constant Rule implies that a stationary
particle has zero velocity.

Derivatives of f + g and f − g
The next theorem asserts that if the functions, f and g have derivatives at a
certain number, so does their sum f + g and

d

dx
(f + g) =

df

dx
+
dg

dx

In other words, “the derivative of the sum is the sum of the derivatives.”
Equivalently, (f + g)′ = f ′ + g′ and D(f + g) = D(f) + D(g). A similar
formula holds for the derivative of f − g.

Sum Rule and Difference Rule
If f and g are differentiable functions, then so are f + g and f − g. The Sum
Rule and Difference Rule for computing their derivatives are

(f + g)′ = f ′ + g′ Sum Rule
(f − g)′ = f ′ − g′ Difference Rule

Proof

To justify this we must go back to the definition of the derivative. To begin,
we give the function f + g the name u, that is, u(x) = f(x) + g(x). We have
to examine

lim
∆x→0

u(x+ ∆x)− u(x)

∆x
(3.3.1)

or, equivalently,

lim
∆x→0

∆u

∆x
. (3.3.2)

In order to evaluate (3.3.2), we will express ∆u in terms of ∆f and ∆g. Here
are the details:

∆u = u(x+ ∆x)− u(x)
= (f(x+ ∆x) + g(x+ ∆x))− (f(x) + g(x)) definition of u
= (f(x) + ∆f) + (g(x) + ∆g)− (f(x) + g(x)) definition of ∆f and ∆g
= ∆f + ∆g
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All told, ∆u = ∆f + ∆g. The change in u is the change in f plus the change
in g.

The hard work is over. We can now evaluate (3.3.2):

lim
∆x→0

∆u

∆x
= lim

∆x→0

∆f + ∆g

∆x
= lim

∆x→0

∆f

∆x
+ lim

∆x→0

∆g

∆x
= f ′(x) + g′(x).

Thus, u = f + g is differentiable and

u′(x) = f ′(x) + g′(x).

A similar argument applies to f − g. •

The Sum and Difference Rules extend to any finite number of differentiable
functions. For example.

(f + g + h)′ = f ′ + g′ + h′

(f − g + h)′ = f ′ − g′ + h′

EXAMPLE 1 Using the Sum Rule, differentiate x2 + x3 + cos(x) + 3.
SOLUTION

D (x2 + x3 + cos(x) + 3) = D(x2) +D(x3) +D(cos(x)) +D(3)
= 2x2−1 + 3x3−1 + (− sin(x)) + 0
= 2x+ 3x2 − sin(x).

�

EXAMPLE 2 Differentiate x4 −
√
x− ex.

SOLUTION

d
dx

(x4 −
√
x− ex) = d

dx
(x4)− d

dx
(
√
x)− d

dx
(ex)

= 4x3 − 1
2
√
x
− ex

�

The Derivative of fg

The following theorem, concerning the derivative of the product of two func-
tions, may be surprising, for it turns out that the derivative of the product is
not the product of the derivatives. The formula is more complicated than the
one for the derivative of the sum. It asserts that “the derivative of the product
is the derivative of the first function times the second plus the first function
times the derivative of the second.”
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Product Rule
If f and g are differentiable functions, then so is their product fg. Its derivative
is given by the formula

(fg)′ = f ′g + fg′

Proof

The proof is similar to that for the Sum and Difference Rules. This time we
give the product fg the name u. Then we express ∆u in terms of ∆f and
∆g. Finally, we determine u′(x) by examining lim∆x→0

∆u
∆x

. These steps are
practically forced upon us.

We have

u(x) = f(x)g(x) and u(x+ ∆x) = f(x+ ∆x)g(x+ ∆x).

Rather than subtract u(x) from u(x+ ∆x) directly, first write

f(x+ ∆x) = f(x) + ∆f and g(x+ ∆x) = g(x) + ∆g.

Then

u(x+ ∆x) = (f(x+ ∆x)) (g(x+ ∆x))
= (f(x) + ∆f) (g(x) + ∆g)
= f(x)g(x) + (∆f)g(x) + f(x)∆g + (∆f)(∆g).

Hence

∆u = u(x+ ∆x)− u(x)
= f(x)g(x) + (∆f)g(x) + f(x)(∆g) + (∆f)(∆g)− f(x)g(x)
= (∆f)g(x) + f(x)(∆g) + (∆f)(∆g)

and
∆u

∆x
=

(∆f)g(x) + f(x)(∆g) + (∆f)(∆g)

∆x

=
∆f

∆x
g(x) + f(x)

∆g

∆x
+ ∆f

∆g

∆x
As ∆x → 0, ∆g/∆x → g′(x) and ∆f/∆x → f ′(x). Furthermore, because

f is differentiable, hence continuous, ∆f → 0 as x→ 0. It follows that

lim
∆x→0

∆u

∆x
= f ′(x)g(x) + f(x)g′(x) + 0 · g′(x).

Therefore, u is differentiable andThe formula for (fg)′ was
discovered by Leibniz in

1676. His first guess was
wrong.

u′ = f ′g + fg′.

•
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Remark: Figure 3.3.2 illustrates the Product Rule and its proof.

Figure 3.3.2:

With f , ∆f , g, and ∆g taken to be positive, the inner rectangle
has area u = fg and the whole rectangle has area u + ∆u =
(f +∆f)(g+∆g). The shaded region whose area is ∆u is made up
of rectangles of areas f · (∆g), (∆f) · g, and (∆f) · (∆g). The little
corner rectangle, of area (∆f) · (∆g), is negligible in comparison
with the other two rectangles. Thus, ∆u ≈ (∆f)g + f(∆g), which
suggests the formula for the derivative of a product.

EXAMPLE 3 Find D ((x2 + x3 + cos(x) + 3) (x4 −
√
x− ex)). Note that the function to

be differentiated is the
product of the functions
differentiated in Examples 1
and 2.

SOLUTION By the Product Rule,

D
((
x2 + x3 + cos(x) + 3

) (
x4 −

√
x− ex

))
= (D (x2 + x3 + cos(x) + 3)) (x4 −

√
x− ex)

+ (x2 + x3 + cos(x) + 3) (D (x4 −
√
x− ex))

= (2x+ 3x2 − sin(x)) (x4 −
√
x− ex)

+ (x2 + x3 + cos(x) + 3)
(

4x3 − 1
2
√
x
− ex

)
�

Derivative of Constant Times f

A special case of the formula for the product rule occurs so frequently that it
is singled out in the Constant Multiple Rule.

Constant Multiple Rule
If C is a constant function and f is a differentiable function, the Cf is differ-
entiable and its derivative is given by the formula

(Cf)′ = C(f ′).

In other notations, d(Cf)
dx

= C df
dx

and D(Cf) = CD(f).

The derivative of a constant times a function is the constant times the
derivative of the function.

Proof

Because we are dealing with a product of two differentiable functions, C and
f , we may use the Product Rule. We have

(Cf)′ = (C ′)f + C(f ′) derivative of a product
= 0 · f + Cf ′ derivative of constant is 0
= C(f ′).
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•
The Constant Multiple Rule asserts that that “it is legal to move a constant

factor outside the derivative symbol.”

EXAMPLE 4 Find D(6x3).
SOLUTION

D(6x3) = 6D(x3) 6 is a constant
= 6 · 3x2 D(xn) = nxn−1

= 18x2.

With a little practice, one would simply write D(6x3) = 18x2. �

EXAMPLE 5 Find D (
√
x/11).

SOLUTION

D
(√

x
11

)
= D

(
1
11

√
x
)

= 1
11
D(
√
x) = 1

11
1

2
√
x

= 1
22
x−1/2

�
Example 5 generalizes to the fact that for a nonzero C,

Constant Division Rule(
f

C

)′
=
f ′

C
C 6= 0.

The formula for the derivative of the product extends to the product of
several differentiable functions. For instance,

(fgh)′ = (f ′)gh+ f(g′)h+ fg(h′)

In each summand only one derivative appears. The next example illustratesSee Exercise 45.

the use of this formula.

EXAMPLE 6 Differentiate
√
xex sin(x).

SOLUTION(√
xex sin(x)

)′
= (
√
x)′ex sin(x) +

√
x(ex)′ sin(x) +

√
xex(sin(x))′

=
(

1
2
√
x

)
ex sin(x) +

√
xex sin(x) +

√
xex cos(x)
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�

Any polynomial can be differentiated by the methods already developed.

EXAMPLE 7 Differentiate 6t8 − t3 + 5t2 + π3.
SOLUTION Notice that the independent variable in this polynomial is t,
and the polynomial is to be differentiated with respect to t. Differentiate a polynomial

“term-by-term”. Note that
π3 is a constant.d

dt
(6t8 − t3 + 5t2 + π3) = d

dt
(6t8)− d

dt
(t3) + d

dt
(5t2) + d

dt
(π3)

= 48t7 − 3t2 + 10t+ 0
= 48t7 − 3t2 + 10t

�

Derivative of 1/g

Often one needs the derivative of the reciprocal of a function g, that is, (1/g)′.

Reciprocal Rule
If g is a differentiable function, then(

1
g

)′
= − g′

g2
, where g(x) 6= 0

Proof

Again we must go back to the definition of the derivative.

Assume g(x) 6= 0 and let u(x) = 1/g(x). Then u(x+∆x) = 1/g(x+∆x) =
1/(g(x) + ∆g). Thus

∆u = u(x+ ∆x)− u(x)

=
1

g(x) + ∆g
− 1

g(x)

=
g(x)− (g(x) + ∆g)

g(x)(g(x) + ∆g)
common denominator

=
−∆g

g(x)(g(x) + ∆g)
cancellation.
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Then

u′(x) = lim
∆x→0

∆u

∆x
= lim

∆x→0

−∆g/ (g(x)(g(x) + ∆g))

∆x

= lim
∆x→0

−∆g/∆x

g(x)(g(x) + ∆g)
algebra: (a/b)

c = (a/c)
b

=

lim
∆x→0

(
−∆g

∆x

)
lim

∆x→0
(g(x)(g(x) + ∆g))

quotient rule for limits

=
−g′(x)

g(x)2
because g(x) is continuous and
lim

∆x→0
∆g = 0.

•

EXAMPLE 8 Find D
(

1
cos(x)

)
.

SOLUTION In this case, g(x) = cos(x) and g′(x) = − sin(x). Therefore,

D

(
1

cos(x)

)
=
−(− sin(x))

(cos(x))2

=
sin(x)

cos2(x)
for all x with cos(x) 6= 0

�
Example 8 gives a formula for the derivative of sec(x), which is defined as

1/ cos(x).

D(sec(x)) = D
(

1
cos(x)

)
=

sin(x)

cos2(x)
=

sin(x)

cos(x)

1

cos(x)
= tan(x) sec(x)

Therefore,

Derivative of sec(x)Memorize this formula.

D(sec(x)) = sec(x) tan(x)

The reciprocal rule allows us to complete the justification of the power rule
for exponents that are negative rational numbers.

EXAMPLE 9 Show that the Power Rule, (3.2.6) in Section 3.2, is valid
when a is a negative rational number. That is, show thatD(x−p/q) = (−p/q)x(−p/q)−1

for any integers p and q, with q 6= 0.
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SOLUTION The key is to notice that the Reciprocal Rule can be applied to
find the derivative of x−p/q = 1/xp/q.

D
(
x−p/q

)
= D

(
1

xp/q

)
=
−D(xp/q)

(xp/q)2
=
−p
q
x
p
q
−1

x2 p
q

= −p
q
x( pq )−1−2( pq ) = −p

q
x−(p/q)−1.

�

The Derivative of f/g

EXAMPLE 10 Derive a formula for the derivative of the quotient f/g.
SOLUTION The quotient f/g can be written as a product f · 1

g
. Assuming

f and g are differentiable functions, we may use the product and reciprocal
rules to find(

f(x)
g(x)

)′
=

(
f(x) 1

g(x)

)′
rewrite quotient as product

= f ′(x)
(

1
g(x)

)
+ f(x)

(
1

g(x)

)′
product rule

= f ′(x)
(

1
g(x)

)
+ f(x)

(
−g′(x)
g(x)2

)
reciprocal rule, assuming g(x) 6= 0

= f ′(x)
g(x)
− f(x)g′(x)

g(x)2
algebra

= g(x)f ′(x)−f(x)g′(x)
g(x)2

algebra: common denominator.

�

Example 10 is the proof of the quotient rule. The quotient rule should
be committed to memory. A simple case of the quotient rule has already been
used to find the derivative of sec(x) = 1

cos(x)
(Example 8). The full quotient

rule will be used to find the derivative of tan(x) = sin(x)
cos(x)

(Example 11). Because
the quotient rule is used so often, it should be memorized.

Quotient Rule
Let f and g be differentiable functions at x, and assume g(x) 6= 0. Then the
quotient f/g is differentiable at x, and

d

dx

(
f(x)

g(x)

)
=

g(x)f ′(x)− f(x)g′(x)

g(x)2
where g(x) 6= 0.
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Remark: Because the numerator in the quotient rule is a differ-A memory device for (f/g)′

ence, it is important to get the terms in the numerator in the
correct order. Here is an easy way to remember the quotient rule.

Step 1. Write down the parts where g2 and g appear:

g

g2
.

This ensures that you get the denominator correct and have
a good start on the numerator.

Step 2. To complete the numerator, remember that it has a minus
sign:

gf ′ − fg′

g2
.

EXAMPLE 11 Find the derivative of the tangent function.
SOLUTION

(tan(x))′ =

(
sin(x)

cos(x)

)′
=

cos(x)(sin(x))′ − sin(x)(cos(x))′

(cos(x))2
quotient rule

=
(cos(x)) cos(x)− sin(x)(− sin(x))

(cos(x))2

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
sin2(x) + cos2(x) = 1

= sec2(x) sec(x) = 1/ cos(x)

This result is valid whenever cos(x) 6= 0, and should be memorized. �

Derivative of tan(x)

D(tan(x)) = sec2(x) for all x in the domain of tan(x).
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EXAMPLE 12 Compute (x2/(x3 + 1))
′
, showing each step.

SOLUTION(
x2

x3 + 1

)′
=

(x3 + 1) · · ·
(x3 + 1)2

write denominator and start numera-
tor

=
(x3 + 1)(x2)′ − (x2)(x3 + 1)′

(x3 + 1)2
complete numerator, remembering the
minus sign

=
(x3 + 1)(2x)− (x2)(3x2)

(x3 + 1)2
compute derivatives

=
2x4 + 2x− 3x4

(x3 + 1)2
algebra

=
2x− x4

(x3 + 1)2
algebra: collecting

�
As Example 12 illustrates, the techniques for differentiating polynomials

and quotients can be combined to differentiate any rational function, that
is, any quotient of polynomials.

Summary

Let f and g be two differentiable functions and let C be a constant function.
We obtained formulas for differentiating f + g, f − g, fg, Cf , 1/f , and f/g.

Rule Formula Comment
Constant Rule C ′ = 0 C a constant

Sum Rule (f + g)′ = f ′ + g′

Difference Rule (f − g)′ = f ′ − g′
Product Rule (fg)′ = f ′g + fg′

Constant Multiple Rule (Cf)′ = Cf ′

Reciprocal Rule
(

1
g

)′
= −g′

g2
g(x) 6= 0

Quotient Rule
(
f
g

)′
= gf ′−fg′

g2
g(x) 6= 0

Table 3.3.1:

With the aid of the formulas in Table 3.3.1, we can differentiate sec(x),
csc(x), tan(x), and cot(x) using (sin(x))′ = cos(x) and (cos(x))′ = − sin(x).
We also have shown that D(xa) = axa−1 for any fixed rational number a. (In
Section 3.5 we will show it holds for any fixed exponent a.)
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Function Derivative Comment
xa axa−1 a is a fixed number

tan(x) sec2(x) for all x except odd multiples of π/2
sec(x) sec(x) tan(x) for all x except odd multiples of π/2

Table 3.3.2:
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EXERCISES for Section 3.3 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 15 differentiate the given function.
Use only the formulas presented in this and earlier sec-
tions.

1.[R] 5x3

2.[R] 5x3−7x+
23

3.[R] 3
√
x− 3
√
x

4.[R] 1/
√
x

5.[R] (5 +
x)(x2 − x + 7)

6.[R] sin(x) cos(x)

7.[R] 3 tan(x)
8.[R] 3(tan(x))2

Hint: Write
(tan(x))2 as
tan(x) tan(x)

9.[R]
x3 − 1
2x+ 1

10.[R]
sin(x)
ex

11.[R]

3x2 + x+
√

2
cos(x)

12.[R]
2
x3

+
3
x4

13.[R]
x2 sin(x)ex

14.[R]√
x sin(x)

15.[R]
√
x/ex

16.[R] Differentiate the following functions:

(a)
(1 +

√
x)(x3 + sin(x))

x2 + 5x+ 3ex
(b)

(3 + 4x+ 5x2)ex

sin(x)

17.[R] Use the quotient rule to obtain the following
derivatives.

(a) D(tan(x)) = (sec(x))2

(b) D(cot(x)) = −(csc(x))2

(c) D(sec(x)) = sec(x) tan(x)

(d) D(csc(x)) = − csc(x) cot(x)

Note: There is a pattern here. The minus sign goes
with each “co” function (cos, cot, csc).

18.[R] Find
(
e2x
)′ by writing e2x as exex.

19.[R] Find
(
e3x
)′ by writing e3x as exexex.

20.[R] Find (e−x)′ by writing e−x as 1
ex .

21.[R] Find
(
e−2x

)′ by writing e−2x = e−x · e−x. (See
Exercise 20.)

22.[R] Find
(
e−2x

)′ by writing e−2x = 1
e2x

. (See Ex-
ercise 18.)

In Exercises 23 to 41 find the derivative of the function
using formulas from this section.

23.[R] 23 −
√
π

24.[R] (x −
x−1)2

25.[R]
3 sin(9x) −
5 cos(x)
26.[R] 5 tan(x)

27.[R] u5 −
6u3 + u− 7
28.[R] t8/8
29.[R]
s−7/(−7)

30.[R]
√
t(t+4)

31.[R] 5/u5

32.[R] (x3)1/2

33.[R] 6 tan(x)

34.[R]
3 sec(x) −
4 cos(x)
35.[R] sec2(θ)−
tan2(θ)
Note: remem-
ber to simplify

your answer

36.[R] (3x)4

37.[R] u2eu

38.[R]
et sin(t)/

√
t

39.[R] (3 +
x5)e−x tan(x)

40.[R] (x−x2)3

Hint: multiply
it out first

41.[R] 3
√
x/ 5
√
x

42.[R] In Section 3.1 we showed that D(1/x) =
−1/x2. Obtain this same formula by using the Quo-
tient Rule.

43.[R] If you had lots of time, how would you dif-
ferentiate (1 + 2x)100 using the formulas developed so
far? Note: In Section 3.5 we will obtain a shortcut
for differentiating (1 + 2x)100.

44.[M] At what point on the graph of y = xe−x is
the tangent horizontal?

45.[M] Using the formula for the derivative of a prod-
uct, obtain the formula for (fgh)′. Hint: First write
fgh as (f)(gh). Then use the Product Rule twice.

46.[M] Obtain the formula for (f−g)′ by first writing
f − g as f + (−1)g.

47.[M] Using the definition of the derivative, show
that (f − g)′ = f ′ − g′.
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48.[M] Using the version of the definition of the
derivative that makes use of both x and x+ h, obtain
the formula for differentiating the sum of two func-
tions.

49.[C] Using the version of the definition of the

derivative in the form lim
x→a

f(x)− f(a)
x− a

, obtain the for-

mula for differentiating the product of two functions.

Exercises 50 to 52 are examples of proof by math-
ematical induction. In this technique the truth of
the statement for n is used to prove the truth of the
statement of n+ 1.
50.[C] In Section 3.2 we show that D(xn) = nxn−1,
when n is a positive integer. Now that we have the for-
mula for the derivative of a product of two functions
we can obtain this result much more easily.

(a) Show, using the definition of the derivative, that
the formula D(xn) = nxn−1 holds when n = 1.

(b) Using (a) and the formula for the derivative of
a product, show that the formula holds when
n = 2. Hint: x2 = x · x.

(c) Using (b) and the formula for the derivative of a
product, show that it holds when n = 3.

(d) Show that if it holds for some positive integer n,
it also holds for the integer n+ 1.

(e) Combine (c) and (d) to show that the formula
holds for n = 4.

(f) Why must it hold for n = 5?

(g) Why must it hold for all positive integers?

51.[C] Using induction, as in Exercise 50, show that
for each positive integer n, D (x−n) = −nx−n−1.

52.[C] Using induction, as in Exercise 50, show
that for each positive integer n, D(sinn(x)) =
n sinn−1(x) cos(x).

53.[C] We obtained the formula for (f/g)′ by writing
f/g as the product of f and 1/g. Obtain (f/g)′ di-
rectly from the definition of the derivative. Hint: First
review how we obtained the formula for the derivative
of a product.
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3.4 The Chain Rule

We come now to the most frequently used formula for computing derivatives.
For example, it will help us to find the derivative of (1 +x2)100 without having
to multiply out one hundred copies of (1+x2). You might be tempted to guess
that the derivative of (1 +x2)100 would be 100(1 +x2)99. This cannot be right.
After all, when you expand (1 + x2)100 you get a polynomial of degree 200, so
its derivative is a polynomial of degree 199. But when you expand (1 + x2)99

you get a polynomial of degree 198. Something is wrong.
At this point we know the derivative of sin(x), but what is the derivative

of sin(x2)? It is not the cosine of x2. In this section we obtain a way to
differentiate these functions easily — and correctly.

Figure 3.4.1:

The key is that both (1 + x2)100 and sin(x2) are composite functions. This
section shows how to differentiate composite functions.

How to Differentiate a Composite Function

Recall that y = (f ◦ g)(x) = f(g(x)) can be built up by setting u = g(x) and
y = f(u). The derivative of y with respect to x is the limit of ∆y/∆x as ∆x
approaches 0. Now, the change in ∆x causes a change ∆u in u, which, in turn,
causes the change ∆y in y. (See Figure 3.4.1.) If ∆u is not zero, then we may
write It could happen that

∆u = 0, as it would, for
instance, if g were a
constant function. This
special case is treated in
Exercise 75.

∆y

∆x
=

∆y

∆u

∆u

∆x
. (3.4.1)

Then,

(f ◦ g)′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x
= lim

∆x→0

∆y

∆u
lim

∆x→0

∆u

∆x
.

Since g is continuous, ∆u→ 0 as ∆x→ 0. So we have

(f ◦ g)′(x) = lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x
= f ′(u)g′(x).

Which gives us

Chain Rule The Chain Rule is the
technique most frequently
used in finding derivatives.

Let g be differentiable at x and f be differentiable at g(x), then

(f ◦ g)′(x) = f ′(g(x))g′(x).

This formula tells us how to differentiate a composite function, f ◦ g:
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Step 1. Compute the derivative of the outer function f , evaluated at the inner
function. This is f ′(g(x)).

Step 2. Compute the derivative of the inner function, g′(x).

Step 3. Multiply the derivatives found in Steps 1. and 2., obtaining f ′(g(x))g′(x).

In short, to differentiate f(g(x)), think of g as the “inner function” and f
as the “outer function.” Then the derivative of f ◦ g is

f ′(g(x))︸ ︷︷ ︸
derivative of
outer function
evaluated at inner
function

times g′(x)︸︷︷︸
derivative of in-
side function

Examples

EXAMPLE 1 Find D ((1 + x2)100).
SOLUTION Here g(x) = 1 + x2 (the inside function) and f(u) = u100 (the
outside function). The first step is to compute f ′(u) = 100u99, which gives us
f ′(g(x)) = 100(1 + x2)99. The second step is to find g′(x) = 2x. Then,

(f ◦g)′(x) = f ′( u︸︷︷︸
u=g(x)

)g′(x) = 100u99︸ ︷︷ ︸
f ′(g(x))

· 2x︸︷︷︸
g′(x)

= 100(1+x2)99 ·2x = 200x(1+x2)99.

The answer is not just 100(1+x2)99. There is an extra factor of 2x that comes
from the derivative of the inner function, so its degree is 199, as expected. �

The same example, done with Leibniz notation, looks like this:

y = (1 + x2)100 = u100, u = 1 + x2.

Then the Chain Rule reads simply

dy

dx
=

dy

du

du

dx︸ ︷︷ ︸
Chain Rule

= 100u99 · 2x = 100(1 + x2)99(2x)︸ ︷︷ ︸
Using u = 1 + x2

= 200x(1 + x2)99.

WARNING (Notation) We avoided using Leibniz notation ear-George Berkeley, 1734, The
Analyst: A Discourse

Addressed to an Infidel
Mathematician. See also
http://muse.jhu.edu/

journals/
configurations/v004/4.

1paxson.html.

lier, in particular, during the derivation of the Chain Rule, because
it tempts the reader to cancel the du’s in (3.4.1). However, the ex-
pressions dy, du, and dx are meaningless — in themselves. In
Leibniz’s time in the late seventeenth century their meaning was
fuzzy, standing for a quantity that was zero and also vanishingly
small at the same time. Bishop Berkeley poked fun at this, asking
“may we not call them the ghosts of departed quantities?”

With practice, you will be able to do the whole calculation without intro-
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ducing extra symbols, such as u, which do not apear in the final answer. You
will be writing just

D
(
(1 + x2)100

)
= 100(1 + x2)99 · 2x = 200x(1 + x2)99.

But this skill, like playing the guitar, takes practice, which the exercises at the
end of this section (and chapter) provide.

When we write dy
du

and du
dx

, the u serves two rolls. In dy
du

it denotes an
independent variable while in du

dx
, u is a dependent variable. This double role

usually causes no problem in computing derivatives.

EXAMPLE 2 If y = sin(x2), find dy
dx

.
SOLUTION Starting from the outside, let y = sin(u) and u = x2. Then, be
the Chain Rule,(

sin(x2)
)′

=
dy

dx
=

dy

du

du

dx︸ ︷︷ ︸
Chain Rule

= cos(u) · 2x = cos(x2) · 2x = 2x cos(x2).

In this case the outside function is the sine and the inside function is x2.
So we have

( sin︸︷︷︸
outside

(x2)︸︷︷︸
inside

)′ = cos(x2)︸ ︷︷ ︸
derivative of out-
side function eval-
uated at inside
function

times 2x︸︷︷︸
derivative of in-
side function

= 2x cos(x2).

�
The Chain Rule holds for compositions of more than two functions. We

illustrate this in the next example.

EXAMPLE 3 Differentiate y =
√

sin(x2).
SOLUTION In this case the function is the composition of three functions:

u = x2 v = sin(u) y =
√
v (provided v ≥ 0).

Then Do this example yourself
without introducing any
auxiliary symbols (u, v, and
y).

dy

dx
=

dy

dv

dv

dx︸ ︷︷ ︸
Chain Rule

=
dy

dv

dv

du

du

dx︸ ︷︷ ︸
Chain Rule, again

=
1

2
√
v
· cos(u) · 2x

=
1

2
√

sin(x2)
· cos(x2) · 2x =

x cos(x2)√
sin(x2)
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�

EXAMPLE 4 Let y = 2x. Find y′.
SOLUTION As it stands, 2x is not a composite function. However, we canb = eln(b) for any b > 0
write 2 = eln(2) and then 2x equals (eln(2))x = eln(2)x. Now we see that 2x can
be expressed as the composite function:

y = eu, where u = (ln(2))x.

Then

y′ =
dy

dx
=
dy

du

du

dx
= eu · ln(2) = eln(2)x ln(2) = 2x ln(2).

In Example 2 (Section 3.2), using a calculator, we found D(2x) ≈ (0.693)2x.
We have just seen that the exact formula for this derivative is D(2x) = 2x ln(2).
This means that 0.693 is an approximation of ln(2). Does your calculator agree
that ln(2) ≈ 0.693? �

Sometimes it is convenient to introduce an intermediate variable when using
the Chain Rule. The next Example illustrates this idea, which will be used
extensively in the next section.

The next Example shows how the Chain Rule can be combined with other
differentiation rules such as the Product and Quotient Rules.

EXAMPLE 5 Find D (x3 tan(x2)).
SOLUTION The function x3 tan(x2) is the product of two functions. We
first apply the Product Rule to obtain:Product Rule:

(fg)′ = f ′ · g + f · g′

D (x3 tan(x2)) = (x3)
′
tan(x2) + x3 (tan(x2))

′

= 3x2 tan(x2) + x3 (tan(x2))
′
.

Since “the derivative of the tangent is the square of the secant,” the Chain(tan(x))′ = sec2(x)
Rule tells us that (

tan(x2)
)′

= sec2(x2)(x2)′ = 2x sec2(x2).

Thus,

D (x3 tan(x2)) = 3x2 tan(x2) + x3 (tan(x2))
′

= 3x2 tan(x2) + x3 (2x sec2(x2))
= 3x2 tan(x2) + 2x4 sec2(x2).

�
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In the computation of D(tan(x2)) we did not introduce any new symbols.
That is how your computations will look, once you get the rhythm of the Chain
Rule.

Famous Composite Functions

Certain types of composite functions occur so often that it is worthwhile mem-
orizing their derivatives. Here is a list:

Function Derivative Example

(g(x))n ng(x)n−1g′(x) ((1 + x2)100)
′
= 100(1 + x2)99(2x)

1
g(x)

−g′(x)
(g(x))2

D
(

1
cos(x)

)
= −(− sin(x))

(cos(x))2√
g(x) g′(x)

2
√
g(x)

(√
tan(x)

)′
= (sec(x))2

2
√

tan(x)

eg(x) eg(x)g′(x)
(
ex

2
)′

= ex
2
(2x)

Table 3.4.1:

Summary

This section presented the single most important tool for computing deriva-
tives: the Chain Rule, which says that the derivative of f ◦ g at x is

f ′(g(x))︸ ︷︷ ︸
derivative of outer
function evalu-
ated at the inner
function

times g′(x)︸︷︷︸
derivative of inner
function

Introducing the symbol u, we described the Chain Rule for y = f(u) and
u = g(x) with the brief notation

dy

dx
=
dy

du

du

dx
.

When the function is built up from more than two functions, such as y = f(u),
u = g(v), and v = h(x). Then we have

dy

dx
=
dy

du

du

dv

dv

dx
,

a chain of more derivatives.
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With practice, applying the chain rule can become second nature.
All that remains to describe how to differentiate ln(x) and the inverse

trigonometric functions. The next section, with the aid of the chain rule,
determines their derivatives.

@ With practice, applying the Chain Rule can become second nature.
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EXERCISES for Section 3.4 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4, repeat the specified example from
this section without introducing an extra variable (such
as u).

1.[R] Ex-
ample 1.
2.[R] Ex-

ample 2.
3.[R] Ex-
ample 3.

4.[R] Ex-
ample 4.

In Exercises 5 to 18 find the derivative of each func-
tion.

5.[R] (x3 + 2)5

6.[R] (x2 +3x+
1)4

7.[R]
√

cos(x3)

8.[R]
√

tan(x2)

9.[R]
(

1
x

)10

10.[R]

cos(3x) sin(2x)

11.[R]
x2 tan(x3)

12.[R] (1 +
2x) sin(x4)

13.[R]
5(tan(x3))2

14.[R] cos3(2x)
x5

15.[R]
sin(2 exp(x))

16.[R] ecos(x)

17.[R] (1+2x)2

x3

18.[R]
(sec(5x))(cos(5x))
Hint: simplify
your answer

In Exercises 19 to 40 differentiate the given function.

19.[R] (5x2 +
3)10

20.[R]
(sin(3x))3

21.[R] 1
5t2+t+2

22.[R] 1
e5s+s

23.[R]
√

4 + u2

24.[R]
(
√

cos(2θ))3

25.[R] e5x3

26.[R] sin2(3x)

27.[R] etan(3t)

28.[R]√
tan(2u)

29.[R]
3
√

tan(s2)

30.[R]
v3 tan(2v)

31.[R]
e2r sin(3r)

32.[R] sec(2x)
x2

33.[R]
exp(sin(2x))

34.[R] (3t+2)4

sin(2t)

35.[R]
e−5s tan(3s)

36.[R] ex
2

37.[R]
(sin(2u))5(cos(3u))6

38.[R](
x+ 33x

)2 (sin(
√
x))3

39.[R]
t3

(t+sin2(3t))
40.[R]

(3x+2)4

(x3+x+1)2

Learning to use the chain rule takes practice. Exer-
cises 41 to 68 offer more opportunities to practice that

skill. They also show that sometimes the derivative of
a function can be much simpler than the function. In
each case show that the derivative of the first function
is the second function. (The two functions are sepa-
rated by a semi-colon.) The letters a, b, and c denote
constants.

41.[M] b
2a2(ax+b)2

−
1

a2(ax+b)
; x

(ax+b)2

42.[M] −1
2a(ax+b)2

; 1
(ax+b)3

43.[M] 2
3a

√
(ax+ b)3;√

ax+ b

44.[M] 2(3ax−2b)
15a2

√
(ax+ b)3;

x
√
ax+ b

45.[M] −
√
ax2+c
cx ;

1
x2
√
ax2+c

46.[M] x
c
√
ax2+c

; (ax2 +

c)−3/2

47.[M] 1
a sin(ax) −

1
3a sin3(ax); cos3(ax)
48.[M] 1

a(n+1) sinn+1(ax);
sinn(ax) cos(ax)

49.[M] 2(ax−2b)
3a2

√
ax+ b;

x√
ax+b

50.[M] 2(3a2x2−4abx+8b2)
15a3

√
ax+ b;

x2
√
ax+b

51.[M] −
√
ax2+c
cx ;

1
x2
√
ax2+c

52.[M] −x2

a
√
ax2+c

+
2
a2

√
ax2 + c; x3

(ax2+c)3/2

53.[M] −1
a cos(ax) +

1
3a cos3(ax); sin3(ax)

54.[M] 3x
8 −

3 sin(2ax)
16a −

sin3(ax) cos(ax)
4a ; sin4(ax)

55.[M] sin((a−b)x)
2(a−b) −

sin((a+b)x)
2(a+b) ; sin(ax) sin(bx)

(Assume a2 6= b2.)

56.[M] x
2 + sin(2ax)

3a ;
cos3(ax)
57.[M] 1

a tan(ax);
1

cos2(ax)

58.[M] 1
a tan

(
ax
2

)
;

1
1+cos(ax)

59.[M] 2
√

2 sin
(
x
2

)
;√

1 + cos(x) Note: You
will need to use a trigono-
metric identity.
60.[M] sin((a−b)x

2(a−b) +
sin((a+b)x)

2(a+b) ; cos(ax) cos(bx)
(Assume a2 6= b2.)
61.[M] 1

a (tan(ax)− cot(ax));
1

sin2(ax) cos2(ax)

62.[M] 1
a tan(ax) − 1;

tan2(ax)

63.[M] secn(ax)
an ;

tan(ax) secn(ax) (Assume
n 6= 0.)

64.[M] sin(ax)
a2 − x cos(ax)

a ;
x sin(ax)

65.[M] cos(ax)
a2 + x sin(ax)

a ;
x cos(ax)
66.[M] 1

a2 e
ax(ax − 1);

xeax

67.[M] 1
a3 e

ax(a2x62 −
2ax+ 2); x2eax

68.[M] eax(a sin(bx)−b cos(bx))
a2+b2

;
eax sin(bx)

Exercises 69 and 70 illustrate how differentiation can
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be used to obtain one trigonometry identity from an-
other.

69.[M]

(a) Differentiate both
sides of the iden-
tity sin2(x) = 1

2(1−
cos(2x)). What
trigonometric iden-
tity do you get?

(b) Differentiate the
identity found in (a)
to obtain another
trigonometric iden-
tity. What identity
is obtained?

(c) Does this process

continued forever
produce new iden-
tities?

70.[M] Let k be
a constant. Differ-
entiate both sides of
the identity sin(x +
k) = sin(x) cos(k) +
cos(x) sin(k) to obtain the
corresponding identity for
cos(x+ k).

71.[M] Differentiate (ex)3

(a) directly, by the Chain Rule

(b) after writing the function as ex · ex · ex and using
the product rule

(c) after writing the function as e3x and using the
chain rule

(d) Which of these approaches to you prefer? Why?

72.[M] In Section 3.3 we obtain the derivative of
1/g(x) by using the definition of the derivative. Ob-
tain that formula for the Reciprocal Rule by using the
Chain Rule.

73.[C] In our proof of the Chain Rule we had to
assume that ∆u is not 0 when ∆x is sufficiently small.
Show that if the derivative of g is not 0 at the argu-
ment x, then the proof is valid.

74.[C] Here is an example of a differentiable g not
covered by the proof of the Chain Rule given in the
text. Define g(x) to be x2 sin

(
1
x

)
for x different from

0 and g(0) to be 0.

(a) Sketch the part of the graph of g near the origin.

(b) Show that there are arbitrarily small values of
∆x such that ∆u = g(∆x)− g(0) = 0.

(c) Show that g is differentiable at 0.

75.[C] Here is a proof of the Chain Rule that man-
ages to avoid division by ∆u = 0. Let f(u) be dif-
ferentiable at g(a), where g is differentiable at a. Let
∆f = f(g(a) + ∆u) − f(g(a)). Then ∆f

∆u − f
′(g(a)) is

a function of ∆u, which we call p(∆u). This function
is defined for ∆u 6= 0. By the definition of f ′, p(∆u)
tends to 0 as ∆u approaches 0. Define p(0) to be 0.
Note that p is continuous at 0.

(a) Show that ∆f = f ′(g(a))∆u + p(∆u)∆u when
∆u is different than 0, and also when ∆u = 0.

(b) Define q(∆x) = ∆u
∆x − g

′(a). Observe that q(∆x)
approaches 0 as ∆x approaches 0. Show that
∆u = g′(a)∆x+ q(∆x)∆x when ∆x is not 0.

(c) Combine (a) and (b) to show that

∆f = f ′(g(a))
(
g′(a)∆x+ q(∆x)∆x

)
+p(∆u)∆u.

(d) Using (c), show that

lim
∆x→0

∆f
∆x

= f ′(g(a))g′(a).

(e) Why did we have to define p(0) but not q(0)?
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3.5 Derivative of an Inverse Function

In this section we obtain the derivatives of the inverse functions of ex and
of the six trigonometric functions. This will complete the inventory of basic
derivatives. The Chain Rule will be our main tool.

Differentiability of Inverse Functions

As mentioned in Section 1.1, the graph of an inverse function is an exact copy
of the graph of the original function. One graph is obtained from the other
by reflection across the line y = x. If the original function, f , is differentiable
at a point (a, b), b = f(a), then the graph of y = f(x) has a tangent line at
(a, b). In particular, the reflection of the tangent line to the graph of f is the
tangent line to the inverse function at (b, a). Thus, we expect that the inverse
function, f−1, is differentiable at (b, a), and we will assume it is. b = f(a) means a = f−1(b)

First, the Chain Rule will be used to find the derivative of loge(x).

The Derivative of loge(x)

(a,log_e(a))

(log_e(a),a)

6

0

−2

2−2

x

4

40

2

6

Figure 3.5.1:

Let y = loge(x). Figure 3.5.1 shows the graphs of y = ex and inverse
function y = loge(x). We want to find y′ = dy

dx
. By the definition of logarithm

as the inverse of the exponential function

x = ey. (3.5.1)

We differentiate both sides of (3.5.1) with respect to x:

d(x)
dx

= d(ey)
dx

ey is a function of x, since y is a func-
tion of x

1 = d(ey)
dx

observe that dx
dx = 1

1 = ey dy
dx

Chain Rule.

Solving for dy
dx

, we obtain
dy

dx
=

1

ey
=

1

x
.

This is another differentiation rule that should be memorized.

Derivative of ex

(loge(x))′ =
1

x
, x > 0.
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It may come as a surprise that such a “complicated” function has such a
simple derivative. It may also be a surprise that loge(x) is one of the most
important functions in calculus, mainly because it has the derivative 1/x.

EXAMPLE 1 Find (logb)
′ for any b > 0.

SOLUTION The function logb x is just a constant times loge(x):

logb(x) = (logb(e)) loge(x).

Therefore

(logb(x))′ = (logb(e))
1

x
. (3.5.2)

If b is not e, then logb(e) is not 1. If e is chosen as the base for logarithms,
then the coefficient in front of the 1

x
becomes loge(e) = 1. That is why we

prefer e as the base for logarithms in calculus �

We call loge(x) the natural logarithm, denoted ln(x).

WARNING (Logarithm Notation) ln(x) is often written simply
as log(x), with the base understood to be e. All references to the
base-10 logarithm will use the notation log10.

The Derivative of arcsin(x)
Inverse trigonometric

functions are introduced in
Section 1.2.

For x in [−π/2, π/2] sin(x) is one-to-one and therefore has an inverse
function, arcsin(x). This function gives the angle, in radians, if you know
the sine of the angle. For instance, arcsin(1) = π/2, arcsin(

√
2/2) = π/4,

arcsin(−1/2) = −π/6, and arcsin(−1) = −π/2. The domain of arcsin(x) is
[−1, 1]; its range is [−π/2, π/2]. For convenience we include the graphs of
y = sin(x) and y = arcsin(x) in Figure 3.5.2, but will not need them as we
find (arcsin(x))′.

(a,arcsin(a))

(arcsin(a),a)

1.0

0.0

−1.0

x

1.5

1.5

0.5

0.5

0.0

−0.5

−1.5

−0.5−1.0−1.5 1.0

Figure 3.5.2:

To find (arcsin(x))′, we proceed exactly we did when finding (loge(x))′. Let
y = arcsin(x), then

x = sin(y). (3.5.3)

x = sin(y).
d(x)

dx
=

d(sin(y))

dx
differentiate with respect to x

1 = (cos(y)) y′ Chain Rule

y′ =
1

cos(y)
algebra

y′ =
1

1 + tan2(y)
trigonometric identity

y′ =
1

1 + x2
x = tan(y).
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The relationship sin(y) = x can be used to express cos(y) in terms of x.

Figure 3.5.3 displays the diagram that defines the sine of an angle. The
line segment AB represents cos(y) and the line segment BC represents sin(y).
Observe that the cosine is positive for angles y in

(−π
2
, π

2

)
, the first and fourth

quadrants. When x = sin(y), x2 + cos2(y) = 1 gives cos(y) = ±
√

1− x2.
We use the positive value: cos(y) =

√
1− x2 because arcsin is an increasing

function. Consequently, we find

C

BA

1 sin(y)

cos(y)

y

1

0

1

−1 0

−1

Figure 3.5.3:

Derivative of arcsin(x)

d

dx
(arcsin(x)) =

1√
1− x2

, |x| < 1.

The formula for the derivative of the inverse sine should be memorized.

Note at x = 1 or at x = −1, the derivative is not defined. However, for
x near 1 or -1 the derivative is very large (in absolute value), telling us that
the graph of the arcsine function is very steep near its two ends. That is a
reflection of the fact that the graph of sin(x) is horizontal at x = −π/2 and
x = π/2.

Functions such as x3−x, x2/7, and 1√
1−x2 that can be written in terms of the

algebraic operations of addition, subtraction, multiplication, division, raising
to a power, and extracting a root are called algebraic functions. Functions
that cannot be written in this way, including ex, cos(x), and arcsin(x), are
known as transcendental functions. The derivative of arcsin(x) shows that An algebraic function always

has an algebraic derivative.the derivative of a transcendental function can be an algebraic function. But
the derivative of an algebraic function will always be algebraic.

EXAMPLE 2 Differentiate arcsin (x2).
SOLUTION This Chain Rule is used to find this derivative:

d

dx

(
arcsin

(
x2
))

=
1√

1− (x2)2
· d
dx

(
x2
)

=
2x√

1− x4
.

�

EXAMPLE 3 Differentiate 1
2

(
x
√
a2 − x2 + a2 arcsin

(
x
a

))
where a is a con-

stant.
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SOLUTION

D

(
1

2

(
x
√
a2 − x2 + a2 arcsin

(x
a

)))
= 1

2
D
((
x
√
a2 − x2 + a2 arcsin

(
x
a

)))
= 1

2

(
D
(
x
√
a2 − x2

)
+ a2D

(
arcsin

(
x
a

)))
= 1

2

((
(1)
√
a2 − x2

)
+

(
x

(
( 1

2)(−2x)
√
a2−x2

))
Product and Chain Rules

+a2

(
1
aq

1−(xa)
2

))
D(arcsin(x)) = 1√

1−x2

= 1
2

(√
a2 − x2 + −x2

√
a2−x2 + a2

√
a2−x2

)
algebra

= 1
2

(
a2−x2−x2+a2
√
x2−a2

)
common denominator

=
√
a2 − x2

Note that a rather complicated-looking function can have a simple derivative.
�

(a,arctan(a))

(arctan(a),a)

4

4

2

0

−2

0

−4

x

5

5

3

3

2

1

−1
1

−3

−5

−1−2−3−4−5

Figure 3.5.4:

The Derivative of arctan(x)

For x in (−π/2, π/2) tan(x) is one-to-one and has an inverse function, arctan(x).
This inverse function tells us the angle, in radians, if we know the tangent of the
angle. For instance, arctan(1) = π/4, arctan(0) = 0, and arctan(−1) = −π/4.
When x is a large positive number, arctan(x) is near, and smaller than, π/2.
When x is a large negative number, arctan(x) is near, and larger than, −π/2.
Figure 3.5.4 shows the graph of y = arctan(x) and y = tan(x). We will not
need this graph when differentiating arctan(x), but it serves as a check on the
formula.See Exercise 82.

To find (arctan(x))′, we again call on the Chain Rule. Starting with

y = arctan(x),

we proceed as before:

x = tan(y).
d(x)

dx
=

d(tan(y))

dx
differentiate with respect to x

1 =
(
sec2(y)

)
y′ Chain Rule

y′ =
1

sec2(y)
algebra

y′ =
1

1 + tan2(y)
trigonometric identity

y′ =
1

1 + x2
x = tan(y).

October 22, 2010 Calculus



§ 3.5 DERIVATIVE OF AN INVERSE FUNCTION 189

This derivation is summarized by a simple formula, which should be mem-
orized.

Derivative of arctan(x)

D(arctan(x)) =
1

1 + x2
for all inputs x

EXAMPLE 4 Find D (arctan(3x)).
SOLUTION By the Chain Rule

D (arctan(3x)) =
1

1 + (3x)2

d(3x)

dx
=

3

1 + 9x2
.

�

EXAMPLE 5 Find D
(
x tan−1(x)− 1

2
ln (1 + x2)

)
.

SOLUTION

D
(
x tan−1(x)− 1

2
ln (1 + x2)

)
= D (x tan−1(x))− 1

2
D (ln (1 + x2))

=

(
tan−1(x) +

x

1 + x2

)
− 1

2

2x

1 + x2

= tan−1(x).

�

More on ln(x)

An antiderivative of a function, f(x), is another function, F (x), whose
derivative is equal to f(x). That is, F ′(x) = f(x), and so ln(x) is an an-
tiderivative of 1/x. We showed that for x > 0, ln(x) is an antiderivative of
1/x. But what if we needed an antiderivative of 1/x for negative x? The next Recall that ln(x) is not

defined for x < 0.example answers this question.

EXAMPLE 6 Show that for negative x, ln(−x) is an antiderivative of 1/x.
SOLUTION Let y = ln(−x). By the Chain Rule,

dy

dx
=

(
1

−x

)
d(−x)

dx
=

1

−x
(−1) =

1

x
.

So ln(−x) is an antiderivative of 1/x when x is negative. �
In view of Example 6, ln |x| is an antiderivative of 1/x, whether x is positive

or negative.

Calculus October 22, 2010



190 CHAPTER 3 THE DERIVATIVE

Derivative of ln |x|

D(ln |x|) =
1

x
for x 6= 0.

We know the derivative of xa for any rational number a. To extend this
result to xk for any number k, and positive x, we write x as eln(x).

EXAMPLE 7 Find D(xk) for x > 0 and any constant k 6= 0, rational or
irrational.
SOLUTION For x > 0 we can write x = eln(x). Then

xk =
(
eln(x)

)k
= ek ln(x).

Now, y = ek ln(x) is a composite function, y = eu where u = k ln(x). Thus,

dy

dx
=
dy

du

du

dx
= eu

k

x
= xk

k

x
= kxk−1.

�

The preceding example shows that for positive x and any fixed exponent
k,
(
xk
)′

= kxk−1. It probably does not come as a surprise. In fact you
may wonder why we worked so hard to get the derivative of xa when a is an
integer or rational number when this example covers all exponents. We had
two reasons for treating the special cases. First, they include cases when x is
negative. Second, they were simpler and helped introduce the derivative.

The Derivatives of the Six Inverse Trigonometric Func-
tions

Of the six inverse trigonometric functions, the most important are arcsin and
arctan. The other four are treated in Exercises 71 to 74. Table 3.5.1 sum-
marizes all six derivatives. There is no reason to memorize all six of these
formulas. If we need, say, an antiderivative of −1

1+x2 , we do not have to use
arccot(x). Instead, − arctan(x) would do. So, for finding antiderivatives, we
don’t need arccot — or any of the inverse co-functions. You should memorize
the formulas for the derivatives of arcsin, arctan, and arcsec.Note that the negative signs

go with the “co-” functions.
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D(arcsin(x)) =
1√

1− x2
D(arccos(x)) = − 1√

1− x2
(−1 < x < 1)

D(arctan(x)) =
1

1 + x2
D(arccot(x)) = − 1

1 + x2
(−∞ < x <∞)

D(arcsec(x)) =
1

x
√
x2 − 1

D(arccsc(x)) = − 1

x
√
x2 − 1

(x > 1 or x < −1)

Table 3.5.1: Derivatives of the six inverse trigonometric functions.

Another View of e

For each choice of the base b (b > 0), we obtain a certain value for lim
x→0

bx − 1

x
.

We defined e to be the base for which that limit is as simple as possible, namely

1: lim
x→0

ex − 1

x
= 1.

Now that we know that the derivative of ln x = loge x is 1/x, we can obtain a
new view of e.
We know that the derivative of ln(x) at 1 is 1/1 = 1. By the definition of the
derivative, that means

lim
h→0

ln(1 + h)− ln(1)

h
= 1.

Since ln(1) = 0, we have

lim
h→0

ln(1 + h)

h
= 1.

By a property of logarithms, we may rewrite the limit as

lim
h→0

ln
(
(1 + h)1/h

)
= 1.

Writing ex as exp(x) for convenience, we conclude that

exp
(

lim
h→0

ln
(
(1 + h)1/h

))
= exp(1) = e.

Since exp is a continuous function, we may switch the order of exp and lim,
getting

lim
h→0

(
exp

(
ln
(
(1 + h)1/h

)))
= e.

But, exp(ln(p)) = p for any positive number, by the very definition of a loga-
rithm. That tells us that

lim
h→0

(1 + h)1/h = e.

This is a much more direct view of e than the one we had in Section 2.2. As a
check, let h = 1/1000 = 0.001. Then (1 + 1/1000)1000 ≈ 2.717, and values of h
that are closer to 0 give even better estimates for e, whose decimal expansion
begins 2.718.
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Summary

A geometric argument suggests that the inverse of every differentiable function
is differentiable. The Chain Rule then helps find the derivatives of ln(x),
arcsin(x), and arctan(x) and of the other four inverse trigonometric functions.
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EXERCISES for Section 3.5 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 6 evaluate the function and its deriva-
tive at the given argument.

1.[R] arcsin(x); 1/2
2.[R] arcsin(x); −1/2
3.[R] arctan(x); −1
4.[R] arctan(x);

√
3

5.[R] ln(x); e

6.[R] ln(x); 1

In Exercises 7 to 28 differentiate the function.

7.[R] arcsin(3x) sin(3x)

8.[R] arctan(5x) tan(5x)

9.[R] e2x ln(3x)

10.[R] e

“
ln(3x)x

√
2
”

11.[R] x2 arcsin(x2)
12.[R] (arcsin(3x))2

13.[R] arctan(2x)
1+x2

14.[R] x3

arctan(6x)

15.[R] log10(x)
Hint: Express log10 in
terms of the natural loga-
rithm.
16.[R] logx(10)
Hint: Express logx in

terms of the natural loga-
rithm.
17.[R] arcsin(x3)
18.[R] arctan(x2)
19.[R] (arctan(3x))2

20.[R] (arccos(5x))3

21.[R] arcsin(1+x2)
1+3x

22.[R] arcsec(x3)
23.[R] x2 arcsin(3x)

24.[R] arctan(3x)
tan(2x)

25.[R] arctan(x3)
arctan(x)

26.[R] ln(sin(3x))
27.[R] ln(sin(x)3)
28.[R] ln(exp(4x))

In Exercises 29 to 65 check that the derivative of the
first function is the second. (A semi-colon separates
the two functions.) The letters a, b, and c denote con-
stants.
29.[R] 1

cn ln
(

xn

axn+c

)
; 1
x(axn+c)

Hint: To simplify the calculation, first use the fact
that ln(p/q) = ln(p)− ln(q).

30.[R] 1
nc ln

(√
axn+c−

√
c√

axn+c+
√
c

)
; 1
x
√
axn+c

(Assume c > 0.)

31.[R] 2
n
√
−c arcsec

(√
axn

−c

)
; 1
x
√
axn+c

(Assume c <

0.)

32.[R]
√
ax2 + c +

√
c ln

(√
ax2+c−

√
c

x

)
;
√
ax2+c
x (As-

sume c > 0.)

33.[R]
√
ax2 + c−

√
−c arctan

(√
ax2+c√
−c

)
;
√
ax2+c
x (As-

sume c < 0.)

34.[R] 2√
4ac−b2 arctan

(
2ax+b√
4ac−b2

)
; 1
ax2+bx+c

(Assume

b2 < 4ac.)
35.[R] −2

2ax+b ;
1

ax2+bx+c
(Assume b2 = 4ac.)

36.[R] 1√
b2−4ac

ln
(

2ax+b−
√
b2−4ac

2ax+b+
√
b2−4ac

)
; 1
ax2+bx+c

(Assume

b2 > 4ac)
Hint: Use properties of ln before differentiating.

37.[R] 1
2

(
(x− a)

√
2ax− x2 + a2 arcsin

(
x−a
a

))
;

√
2ax− x2

38.[R] arccos
(
a−x
a

)
; 1√

2ax−x2

39.[R] arcsin(x)−
√

1− x2;
√

1+x
1−x

40.[R] 2 arcsin
(√

x−b
a−b

)
; 1√

x−b
√
x−a

41.[R] 1
a ln

(
tan

(
ax
2

))
; 1

sin(ax)

42.[R] ln(ln(ax)); 1
x ln(ax)

43.[R] −1
(n−1)(ln(ax))n−1 ; 1

x(ln(ax))n

44.[R] x arcsin(ax) + 1
a

√
1− a2x2; arcsin(ax)

45.[R] x (arcsin(ax))2 − 2x+ 2
a

√
1− a2x2 arcsin(ax);

(arcsin(ax))2

46.[R] 1
ab (ax− ln (b+ ceax)); 1

b+ceax

47.[R] 1
a
√
bc

arctan
(
eax
√

b
c

)
; 1
beax+ce−ax (Assume b,

c > 0.)
48.[R] x (ln(ax))2−2x ln(ax)+2x; ln2(ax) = (ln(ax))2

49.[R] −1
2 ln

(
1+cos(x)
1−cos(x)

)
; 1

sin(x) = csc(x)

50.[R] 1
b2

(a+ bx− a ln(a+ bx)); x
ax+b (Assume

a+ bx > 0.)

51.[R] 1
b3

(
a+ bx− 2a ln(a+ bx)− a2

a+bx

)
; x2

(a+bx)2
,

(Assume a+ bx > 0.)

52.[R] 1
ab arctan

(
bx
a

)
; 1
a2+b2x2
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53.[R] x
2a2(a2+x2)

+ 1
2a2 arctan

(
x
a

)
; 1

(a2+x2)2

54.[R] 1
2a2 arctan

(
x2

a2

)
; x
a4+x4

55.[R] 2
√
x
b − 2 a

b3
arctan

(
b
√
x
a

)
;
√
x

a2+b2x

56.[R] x arcsec(ax) − 1
a ln

(
ax+

√
a2x2 − 1

)
;

arcsec(ax)
57.[R] x arctan(ax)− 1

2a ln
(
1 + a2x2

)
; arctan(ax)

58.[R] x arccos(ax)− 1
a

√
1− a2x2; arccos(ax)

59.[R] x2

2 arcsin(ax)− 1
4a2 arcsin(ax) + x

2a

√
1− a2x2;

x arcsin(ax)
60.[R] x (arcsin(ax))2 − 2x+ 2

a

√
1− a2x2 arcsin(ax);

(arcsin(ax))2

61.[R] 1
a2 cos(ax) + x

a sin(ax); x cos(ax)
62.[R] 1

a3 e
ax
(
a2x2 − 2ax+ 2

)
; x2eax

63.[R] 1
ab (ax− ln (b+ ceax)); 1

b+ceax

64.[R] 1
a2+b2

eax (a sin(bx)− b cos(bx)); eax sin(bx)
65.[R] ln (sec(x) + tan(x)); sec(x)

66.[M] Find D(ln3(x))

(a) by the Chain Rule and

(b) by first writing ln3(x) as ln(x) · ln(x) · ln(x).

Which method do you prefer? Why?
67.[M] We have used the equation sec2(x) = 1 +
tan2(x).

(a) Derive this equation from the equation cos2(x)+
sin2(x) = 1.

(b) Derive the equation cos2(x) + sin2(x) = 1 from
the Pythagorean Theorem.

68.[M] Find two antiderivatives of each of the follow-
ing functions:

(a) 2x

(b) x2

(c) 1/x

(d)
√
x

69.[M] Find two antiderivatives of each of the follow-
ing functions:

(a) e3x

(b) cos(x)

(c) sin(x)

(d) 1/(1 + x2)

70.[M] This problem provides some additional expe-
rience with the development of the formula logb(x) =
logb(e) loge(x). Let b > 0. Recall that logb(a) = loge(a)

loge(b)
.

(a) Show that logb(e) = 1/ loge(b).

(b) Conclude that logb(x) = logb(e) loge(x).

Note: This result is used in Example 1.

In Exercises 71 to 74 use the Chain Rule to obtain the
given derivative.

71.[M] (arccos(x))′ =
−1√
1−x2

72.[M] (arcsec(x))′ =
1

x
√
x2−1

73.[M] (arccot(x))′ =
−1

1+x2

74.[M] (arccsc(x))′ =
−1

x
√
x2−1

75.[M] Verify that D
(

2(
√
x− 1)e

√
x
)

= e
√
x.

76.[M]

Sam: I say that D(logb(x)) = 1
x ln(b) . It’s simple. Let

y = logb(x). That tells me x = by. I differen-
tiate both sides of that, getting 1 = by(ln(b))y′.
So y′ = 1

by ln(b) = 1
x ln(b) .

Jane: Well, not so fast. I start with the equa-
tion logb(x) = (logb(e)) ln(x). So D(logb(x)) =
logb(e)
x .
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Sam: Something is wrong. Where did you get that
equation you started with?

Jane: Just take logb of both sides of x = eln(x).

Sam: I hope this won’t be on the next midterm.

Settle this argument.
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We did not need the Chain Rule to find the derivatives
of inverse functions. Instead, we could have taken a ge-
ometric approach, using the “slope of the tangent line”
interpretation of the derivative. When we reflect the
graph of f around the line y = x to obtain the graph
of f−1, the reflection of the tangent line to the graph
of f with slope m is the tangent line to the graph of
f−1 with slope 1/m. (See Section 1.1.) Exercises 77 to
81 use this approach to develop formulas obtained in
this section.
77.[C] Let f(x) = ln(x). The slope of the graph of
y = ln(x) at (a, ln(a)), a > 0, is the reciprocal of the
slope of the graph of y = ex at (ln(a), a). Use this fact
to show that the slope of the graph of y = ln(x) when
x = a is 1/a.

In Exercises 78 to 81 use the technique illustrated in
Exercise 77 to differentiate the given function.

78.[C]
f(x) =
arctan(x).

79.[C]

f(x) =
arcsin(x).

80.[C]
f(x) =

arcsec(x).

81.[C]
f(x) =
arccos(x).

82.[M]

(a) Evaluate lim
x→∞

1
1 + x2

and lim
x→−∞

1
1 + x2

.

(b) What do these results tell you about the graph
of the arctangent function?

83.[C] Use the assumptions and methods in Exer-
cise 85 to find D(f/g).

84.[C] Use the approach described before Exercise 77
to find D(xa) for positive x.

85.[C]

Sam: I can get the formula for (fg)′ real easy.

Jane: How?

Sam: Start with ln(fg) = ln(f) + ln(g). Then differ-
entiate like mad, using the chain rule:

1
fg

(fg)′ =
f ′

f
+
g′

g
.

Jane: So?

Sam: Then solve for (fg)′ and out pops (fg)′ =
fg′ + gf ′.

Jane: I wonder why the book used all those ∆s in-
stead.

Why didn’t the book use Sam’s approach?
Hint: There are two problems with Sam’s approach.

86.[C]

Sam: In Exercise 85 they assumed that fg is differen-
tiable if f and g are. I can get around that by
using the fact that exp and ln are differentiable.

Jane: How so?

Sam: I write fg as exp(ln(fg)).

Jane: So?

Sam: But ln(fg) = ln(f) + ln(g), and that does it.

Jane: I’m lost.

Sam: Well, fg = exp(ln(f) + ln(g)) and just use the
chain rule. It’s good for more than grinding out
derivatives. In fact, when you differentiate both
sides of my equation, you get that fg is differen-
tiable and (fg)′ is f ′g + fg′.

Jane: Why wouldn’t the authors use this approach?

Sam: It would make things too easy and reveal that
calculus is all about e, exponentials, and loga-
rithms. (I peeked at Chapter 12 and saw that
you can even get sine and cosine out of ex.)

Is Sam’s argument correct? If not, identify where it is
incorrect.
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3.6 Antiderivatives and Slope Fields

So far in this chapter we have started with a function and found its derivative.
In this section we will go in the opposite direction: Given a function f , we will
be interested in finding a function F whose derivative is f . Why? Because
this procedure of going from the derivative back to the function plays a central
role in integral calculus, as we will see in Chapter 5. Chapter 6 describes
several ways to find antiderivatives.

Some Antiderivatives

EXAMPLE 1 Find an antiderivative of x6.
SOLUTION When we differentiate xa we get axa−1. The exponent in the
derivative, a − 1, is one less than the original exponent, a. So we expect an
antiderivative of x6 to involve x7.

Now, (x7)
′
= 7x6. This means x7 is an antiderivative of 7x6, not of x6. We

must get rid of that coefficient of 7 in front of x6. To accomplish this, divide
x7 by 7. We then have(

x7

7

)′
= 7x6

7
because

(
f
C

)′
= f ′

C

= x6 canceling common factor 7 from nu-
merator and denominator.

We can state that 1
7
x7 is an antiderivative of x6.

However, 1
7
x7 is not the only antiderivative of x6. For instance,

(
1

7
x7 + 2011

)′
=

1

7
7x6 + 0 = x6.

We can add any constant to 1
7
x7 and the result is always an antiderivative of A constant added to any

antiderivative of a function
f gives another
antiderivative of f .

x6. �

As Example 1 suggests, if F (x) is an antiderivative of f(x) so is F (x) +C
for any constant C.

The reasoning in this example suggests that 1
a+1

xa+1 is an antiderivative
of xa. This formula is meaningless when a + 1 = 0. We have to expect
a different formula for antiderivatives of x−1 = 1

x
. In Section 3.5 we saw

that (ln(x))′ = 1/x. That’s one reason the function ln(x) is so important: it
provides an antiderivative for 1/x.
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Power Rule for Antiderivatives
For any number a, except −1, the antiderivatives of xa are

1

a+ 1
xa+1 + C for any constant C.

The antiderivatives of x−1 = 1
x

are, when x > 0,

ln(x) + C for any constant C.

Every time you compute a derivative, you are also finding an antiderivative.
For instance, since D(sin(x)) = cos(x), sin(x) is an antiderivative of cos(x).
So is sin(x)+C for any constant C. There are tables of antiderivatives that go
on for hundreds of pages. Here is a miniature table with entries correspondingSearch Google for

“antiderivative table”. to the derivatives that we have found so far.

Function (f) Antiderivative (F ) Comment
xa 1

a+1
xa+1 for a 6= −1

x−1 = 1
x

ln(x)
ex ex

cos(x) sin(x)
sin(x) − cos(x)
sec2(x) tan(x) see Example 8 in Section 3.3

sec(x) tan(x) sec(x) see Example 11 in Section 3.3
1√

1−x2 arcsin(x) see Section 3.4
1

1+x2 arctan(x) see Section 3.4

Table 3.6.1: Miniature table of antiderivatives (F ′ = f).

An elementary function is a function that can be expressed in terms of
polynomials, powers, trigonometric functions, exponentials, logarithms, and
compositions. The derivative of an elementary function is elementary. We
might expect that every elementary function would have an antiderivative
that is also elementary.Joseph Liouville

(1809–1882) In 1833 Joseph Liouville proved beyond a shadow of a doubt that there are
elementary functions that do not have elementary antiderivatives. Here are
five examples of such functions:e−x

2
is important in

statisticians’ bell curve

ex
2 sin(x)

x
x tan(x)

√
x 3
√

1 + x
4
√

1 + x2

There are two types of elementary functions: the algebraic and the tran-
scendental. Algebraic functions, defined in Section 3.5, consist of polynomi-
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als, quotients of polynomials (the rational functions), and all functions that
can be built up by the four operations of algebra and taking roots. For in- The four operations of

algebra are +, −, × and /.
stance,

√
x+ 3
√
x+ x2

(1 + 2x)5
is algebraic; while functions such as sin(x) and 2x are

not algebraic. These functions are called transcendental.
It is difficult to tell whether a given elementary function has an elemen-

tary antiderivative. For instance, x sin(x) does, namely −x cos(x) + sin(x), as
you may readily check; but x tan(x) does not. The function ex

2
does not, as

mentioned earlier. However, e
√
x, which looks more frightening, doaes have an

elementary antiderivative. (See Exercise 75.)
The table of antiderivatives will continue to expand as more derivatives are

obtained in the rest of Chapter 3. The importance of antiderivatives will be
revealed in Chapter 5. Specific techniques for finding them are developed in
Chapter 8. (See Exercise 1.)

Picturing Antiderivatives

If it is not possible to find an explicit formula for the antiderivative of many
(most) elementary functions, why do we believe that these functions have
antiderivatives? This section puts the answer directly in front of your eyes.

The slope field for a function f(x) is made of short line segments with
slope f(x) at a few points whose x-coordinate is x. By drawing a slope field
you will not only convince yourself that an antiderivative exists, but will see
the shape of its graph.

EXAMPLE 2 Imagine that you are looking for an antiderivative F (x) of√
1 + x3. You want F ′(x) to be

√
1 + x3. Or, to put it geometrically, you

want the slope of the curve y = F (x) to be
√

1 + x3. For instance, when
x = 2, you want the slope to be

√
1 + x3 = 3. We do not know what F (2)

is, but at least we can draw a short piece of the tangent line at all points
for which x = 2; they all have slope 3. (See Figure 3.6.1(a).) When x = 1,√

1 + x3 =
√

2 ≈ 1.4. So we draw short lines with slope
√

2 on the vertical
line x = 1. When x = 0,

√
1 + x3 = 1; the tangent lines for x = 0 all have

slope 1. When x = −1, the slopes are
√

1 + x3 = 0 so the tangent lines are all
horizontal. (See Figure 3.6.1(b).)

The plot of a slope field is most commonly made with the aid of a specialized
software on a graphing calculator or computer. A typical slope field, showing For a sample of available

resources, search Google for
“calculus slope field plot”.

more segments of tangent curves than we have the patience to draw by hand, is
shown in Figure 3.6.2(a) shows a computer-generated direction field for f(x) =√

1 + x3, which has many more segments of tangent lines than Figure 3.6.1(a).
You can almost see the curves that follow the slope field for f(x) =

√
1 + x3.

Start at a point, say (−1, 0). At this point the slope is F ′(−1) = f(−1) = 0,
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G’(2)=3

y 3

1

−1

0

6

5

4

2

0

1

x

2−1

(a)

G’(−1)=0 G’(0)=1 G’(1)=sqrt(2) G’(2)=3

4

5

y(x)

1

6

3

0

2

−1

10−1

x

2

(b)

Figure 3.6.1: ARTIST: All references to G should be changed to F.

4

0−1

5

6

−1

2

x

0

1

y(x) 3

2

1

(a)

0

y(x)

1

2

x

3

−1

6

−1

2

5

4

0

1

(b)

y(x)

5

1

0

4

x

6

3

2

2−1

−1

10

(c)

Figure 3.6.2: (a) Slope field for f(x) =
√

1 + x3. (b) Includes the antiderivative
with F (−1) = 0. (c) Shows three more antiderivatives of f(x).
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and the curve starts moving horizontally to the right. As soon as the curve
leaves this initial point the slope, as given by F ′(x) = f(x), becomes slightly
positive. This pushes the curve upward. The slope continues to increase as
x increases. The curve in Figure 3.6.2(b) is the graph of the antiderivative of
f(x) =

√
1 + x3 which equals 0 when x is -1.

If you start from a different initial point, you will obtain a different an-
tiderivative. Three antiderivatives are shown in Figure 3.6.2(c). Many other
antiderivatives for f(x) =

√
1 + x3 are visible in the slope field. None of these

functions is elementary. �

Example 2 suggests that different antiderivatives of a function differ by a
constant: the graph of one is simply the graph of the other raised or lowered
by their constant difference. The next example reinforces the idea that the
constant functions are the only antiderivatives of the zero function.

EXAMPLE 3 Draw the slope field for dy
dx

= 0.
SOLUTION Since the slope is 0 everywhere, each of the tangent lines is rep-
resented by a horizontal line segment, as in Figure 3.6.3(a). In Figure 3.6.3(b)

−1

32

x

10−1

3

−3

5

0

−2

4

y

2

1

(a)

−1

321

5

0−1

3

4

−3

2

y

0

−2

1

x

(b)

Figure 3.6.3:

two possible antiderivatives of 0 are shown, namely the constant functions
f(x) = 2 and g(x) = 4. �

We will assume from now on that
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• Every antiderivative of the zero function on an interval is constant. That
is, if f ′(x) = 0 for all x in an interval, then f(x) = C for some constant
C.

• Two antiderivatives of a function on an interval differ by a constant.
That is, if F ′(x) = G′(x) for all x in an interval, then F (x) = G(x) + C
for some constant C.

These basic results will be established using the definitions and theorems
of calculus in Section 3.7.

How computers find antiderivatives
There are algorithms implemented in software on computers, hand-held de-
vices, and calculators that can determine if a given elementary function has
an elementary antiderivative. The most well-known is the Risch algorithm,
developed in 1968, based on differential equations and abstract algebra. A
Google search for “risch antiderivative elementary symbolic” produces links
related to the Risch algorithm.

Reference:
http:

//en.wikipedia.org/
wiki/Risch_algorithm

Summary

The antiderivative was introduced as the inverse operation of differentiation.
If F ′ = f , then F is an antiderivative of f ; so is F + C for any constant C.
Alternatively, if F and G are antiderivatives of the same function, then their
difference, F −G, is constant.

We introduced the notion of an elementary function. Such a function is
built up from polynomials, logarithms, exponentials, and the trigonometric
functions by the four operations +, −, ×, /, and the most important operation,
composition. While the derivative of an elementary function is elementary, its
antiderivative does not need to be elementary. Each elementary function is
either algebraic or transcendental.

We showed how a slope field can help analyze an antiderivative even though
we may not know a formula for it. Slope fields appear later, in Section 6.4
when we discover one of the most important theorems of calculus and when
we study differential equations in Chapter 13.
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EXERCISES for Section 3.6 Key: R–routine,
M–moderate, C–challenging

1.[R]

(a) Verify that −x cos(x)+sin(x) is an antiderivative
of x sin(x).

(b) Spend at least one minute and at most ten min-
utes trying to find an antiderivative of x tan(x).

In Exercises 2 to 11 give two antiderivatives for each
given function.

2.[R] x3

3.[R] x4

4.[R] x−2

5.[R] 1
x3

6.[R] 3
√
x

7.[R] 2
x

8.[R]
sec(x) tan(x)

9.[R]
sin(x)

10.[R] e−x

11.[R]
sin(2x)

In Exercises 12 to 20

(a) draw the slope field for the given derivative,

(b) then use it to draw the graphs of two possible
antiderivatives F (x).

12.[R] F ′(x) =
2
13.[R] F ′(x) =
x

14.[R] F ′(x) =
−x
2

15.[R] F ′(x) =

1
x , x > 0
16.[R] F ′(x) =
cos(x)
17.[R] F ′(x) =√
x

18.[R] F ′(x) =
e−x, x > 0

19.[R] F ′(x) =
1/x2, x 6= 0
20.[R] F ′(x) =
1/(x−1), x 6= 1
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In Exercises 21 to 30 use differentiation to check that
the first function is an antiderivative of the second
function.

21.[R] 2x sin(x) − (x2 −
2) cos(x); x2 sin(x)

22.[R] (4x3 −
24x) sin(x)− (x4− 12x2 +
24) cos(x); x4 sin(x)

23.[R] −1
2x2 ; 1

x3

24.[R] −2√
x
; 1
x3/2

25.[R] (x− 1)ex; xex

26.[R] (x2 − 2x + 2)ex;

x2ex

27.[R] 1
2e
u(sin(u) −

cos(u)); eu sin(u)

28.[R] 1
2e
u(sin(u) +

cos(u)); eu cos(u)

29.[R] x
2 −

sin(x) cos(x)
2 ;

sin2(x)

30.[R] 2x cos(x) − (x2 −
2) sin(x); x2 cos(x)

31.[M]

(a) Draw the slope field for dy
dx = e−x

2
.

(b) Draw the graph of the antiderivative of e−x
2

that
passes through the point (0, 1).

32.[M]

(a) Draw the slope field for dy
dx = sin(x)

x , x 6= 0, and
dy
dx = 1 for x = 0.

(b) What is the slope for any point on the y-axis?

(c) Draw the graph of the antiderivative of f(x) that
passes through the point (0, 1).
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33.[C] A table of antiderivatives lists two antideriva-
tives of 1

x2(a+bx)
, where a and b are constants, namely

−1
a2

(
a+ bx

x
− b ln

(
a+ bx

x

))
and − 1

ax
+
b

a2
ln
(
a+ bx

x

)
.

Assume a+bx
x > 0.

(a) By differentiating both expressions, show that
both are correct.

(b) Show that the two expressions differ by a con-
stant, by finding their difference.

34.[C] If F (x) is an antiderivative of f(x), find a
function that is an antiderivative of

(a) g(x) = 2f(x),

(b) h(x) = f(2x).

35.[C]

(a) Draw the slope field for dy/dx = −y.

(b) Draw the graph of the function y = f(x) such
that f(0) = 1 and dy/dx = −y.

(c) What do you think limx→∞ f(x) is?
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3.7 Motion and the Second Derivative

In an official drag race Melanie Troxel reached a speed of 324 miles per hour,
which is about 475 feet per second, in a mere 4.539 seconds. By comparison, a
1968 Fiat 850 Idromatic could reach a speed of 60 miles per hour in 25 seconds
and a 1997 Porsche 911 Turbo S in a mere 3.6 seconds.Source:

http://web.missouri.
edu/~apcb20/times.html.
Numerical acceleration data
for other cars can be found

with a web search for
“automobile acceleration.”

Since Troxel increased her speed from 0 feet per second to 475 feet per
second in 4.539 seconds her speed was increasing at the rate of 475

4.539
≈ 105

feet per second per second, assuming she kept the motor at maximum power
throughout the time interval. That acceleration is more than three times
the acceleration due to gravity at sea level (32 feet per second per second).
Ms. Troxel must have felt quite a force as her seat pressed against her back.

This brings us to the formal definition of acceleration and an introduction
to higher derivatives.

In Sections 3.1 and 3.2 we saw that the velocity of an object moving on a
line is represented by a derivative. In this section we examine the acceleration
mathematically.

Acceleration
The sign of the velocity

indicates direction. Speed,
the absolute value of

velocity, does not indicate
direction.

Velocity is the rate at which position changes. The rate at which velocity
changes is called acceleration, denoted a. Thus if y = f(t) denotes position
on a line at time t, then the derivative dy

dt
equals the velocity, and the derivative

of the derivative equals the acceleration. That is,

v =
dy

dt
and a =

dv

dt
=

d

dt

(
dy

dt

)
The derivative of the derivative of a function y = f(x) is called the second

derivative. It is denoted many different ways, including:

d2y

dx2
, D2y, y′′, f ′′, D2f, f (2), or

d2f

dx2
.

If y = f(t), where t denotes the time, the first and second derivatives dy/dt,

y dy
dx

d2y
dx2

x3 3x2 6x
1
x

−1
x2

2
x3

sin(5x) 5 cos(5x) −25 sin(5x)

and d2y/dt2 are sometimes denoted ẏ and ÿ, respectively.
For instance, if y = x3,

dy

dx
= 3x2 and

d2y

dx2
= 6x.

Other ways of denoting the second derivative of this function are

D2(x3) = 6x,
d2(x3)

dx2
= 6x, and (x3)′′ = 6x.
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The table in the margin lists dy/dx, the first derivative, and d2y/dx2, the
second derivative, for a few functions.

Most functions f met in applications of calculus can be differentiated re-
peatedly in the sense that Df exists, the derivative of Df , namely, D2f , exists,
the derivative of D2f exists, and so on.

The derivative of the second derivative is called the third derivative and
is denoted many ways, such as

d3y

dx3
, D3y, y′′′, f ′′′, f (3), or

d3f

dx3
.

The fourth derivative is defined similarly, as the derivative of the third deriva-
tive. In the same way we can define the nth derivative for any positive integer
n and denote this by such symbols as

dny

dxn
, Dny, f (n), or

dnf

dxn
.

It is read as “the nth derivative with respect to x.” For instance, if f(x) =
2x3 + x2 − x+ 5, we have

f (1)(x) = 6x2 + 2x− 1
f (2)(x) = 12x+ 2
f (3)(x) = 12
f (4)(x) = 0
f (n)(x) = 0 for n ≥ 5.

EXAMPLE 1 Find Dn(e−2x) for each positive integer n.
SOLUTION

D1 (e−2x) = D (e−2x) = −2e−2x

D2 (e−2x) = D (−2e−2x) = (−2)2e−2x

D3 (e−2x) = D ((−2)2e−2x) = (−2)3e−2x

At each differentiation another (−2) becomes part of the coefficient. Thus

Dn
(
e−2x

)
= (−2)ne−2x.

This can also be written The power (−1)n records a
“plus” if n is even and a
“minus” if n is odd.Dn

(
e−2x

)
= (−1)n2ne−2x.

�
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Finding Velocity and Acceleration from Position

EXAMPLE 2 A falling rock drops 16t2 feet in the first t seconds. Find its
velocity and acceleration.

Figure 3.7.1:

SOLUTION Place the y-axis in the usual position, with 0 at the beginning
of the fall and the part with positive values above 0, as in Figure 3.7.1. At
time t the object has the y coordinate

y = −16t2.

The velocity is v = (−16t2)′ = −32t feet per second, and the acceleration is
a = (−32t)′ = −32 feet per second per second. The velocity changes at a
constant rate. That is, the acceleration is constant. �

Finding Position from Velocity and Acceleration

To calculate the position of a moving object at any time it is enough to know
the object’s acceleration at all times, its initial position, and its initial velocity.
This will be demonstrated in the next two examples in the special case that
the acceleration is constant. In the first example, the acceleration is 0.

EXAMPLE 3 In the simplest motion, no forces act on a moving particle,

Figure 3.7.2:

hence its acceleration is 0. Assume that a particle is moving on the x-axis and
no forces act on it. Let its location at time t seconds be x = f(t) feet. See
Figure 3.7.2. If at time t = 0, x = 3 feet and the velocity is 5 feet per second,
determine f(t).

SOLUTION The assumption that no force operates on the particle tells us
that there is no acceleration: d2x/dt2 = 0. Call the velocity v. Then

dv

dt
=

d

dt

(
dx

dt

)
=
d2x

dt2
= 0

Now, v is a function of time whose derivative is 0. At the end of Section 3.6
we saw that constant functions are the antiderivatives of 0. Thus, v must be
constant:

v(t) = C for some constant C.

Since v(0) = 5, the constant C must be 5.
To find the position x as a function of time, note that its derivative is the

velocity. Hence
dx

dt
= 5
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Similar reasoning tells us that x = f(t) has the form

x = 5t+K for some constant K.

Now, when t = 0, x = 3. Thus K = 3. In short, at time t seconds, the particle
is at x = 5t+ 3 feet. �

The next example concerns the case in which the acceleration is constant,
but not zero.

EXAMPLE 4 A ball is thrown straight up, with an initial speed of 64 feet

Figure 3.7.3:

per second, from a cliff 96 feet above a beach. Where is the ball t seconds
later? When does it reach its maximum height? How high above the beach
does the ball rise? When does the ball hit the beach? Assume that there is no
air resistance and that the acceleration due to gravity is constant.

SOLUTION Introduce a vertical coordinate axis to describe the position of
the ball. It is more natural to call it the y-axis, and so the velocity is dy/dt and
acceleration is d2y/dt2. Place the origin at ground level and let the positive
part of the y-axis be above the ground, as in Figure 3.7.3. At time t = 0,
the velocity dy/dt is 64, since the ball is thrown up at a speed of 64 feet per
second. As time increases, dy/dt decreases from 64 to 0 (when the ball reaches If it had been thrown down

dy/dt would be −64.the top of it path and begins its descent) and continues to decrease through
larger and larger negative values as the ball falls to the ground. Since v is
decreasing, the acceleration dv/dt is negative. The (constant) value of dv/dt,
gravitational acceleration, is approximately −32 feet per second per second.

From the equation

a =
dv

dt
= −32,

it follows that Velocity is an antiderivative
of acceleration.v = −32t+ C,

where C is some constant. To find C, recall that v = 64 when t = 0. Thus

64 = −32 · 0 + C,

and C = 64. Hence v = −32t+ 64 for any time t until the ball hits the beach.
So we have

dy

dt
= v = −32t+ 64.

Since the position function y is an antiderivative of the velocity, −32t+ 64,
we have

y(t) = −16t2 + 64t+K,
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where K is a constant. To find K, make use of the fact that y = 96 when
t = 0. Thus

96 = −16 · 02 + 64 · 0 +K,

and K = 96.
We have obtained a complete description of the position of the ball at any

time t while it is in the air:

y = −16t2 + 64t+ 96.

This, together with v = −32t+ 64, provides answers to many questions about
the ball’s flight. (As a check, note that when t = 0, y = 96, the initial height.)

Figure 3.7.4:

When does it reach its maximum height? When it is neither rising nor
falling. In other words, the velocity is neither positive nor negative, but must
be 0. The velocity is zero when −32t+ 64 = 0, which is when t = 2 seconds.

How high above the ground does the ball rise? Compute y when t = 2.
This gives −16 · 22 + 64 · 2 + 96 = 160 feet. (See Figure 3.7.4.)

When does the ball hit the beach? When y = 0. Find t such that

y = −16t2 + 64t+ 96 = 0

Division by -16 yields the simpler equation t2 − 4t − 6 = 0, which has the
solutions

t =
4±
√

16 + 24

2
= 2±

√
10.

Since 2−
√

10 is negative and the ball cannot hit the beach before it is thrown,
the only physically meaningful solution is 2+

√
10. The ball lands 2+

√
10 sec-

onds after it is thrown; it is in the air for about 5.2 seconds.
The graphs of position, velocity, and acceleration as functions of time pro-

vide another perspective on the motion of the ball, as shown in Figure 3.7.4.
�

Reasoning like that in Examples 3 and 4 establishes the following descrip-
tion of motion in all cases where the acceleration is constant.

OBSERVATION Motion Under Constant Acceleration Assume
that a particle moving on the y-axis has a constant acceleration a
at any time. Assume that at time t = 0 it has the initial change
v0 and has the initial y-coordinate y0. Then at any time t ≥ 0 its
y-coordinate is

y =
a

2
t2 + v0t+ y0.

In Example 3, a = 0, v0 = 5, and y0 = 3; in Example 4, a = −32 v0 = 64,
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(a) (b) (c)

Figure 3.7.5: (a) Position, (b) velocity, and (c) acceleration for the object in
Example 4.

and y0 = 96. Note that the data must be given in consistent units, for instance,
all in meters or all in feet.

Summary

We defined the higher derivatives of a function. They are obtained by repeat-
edly differentiating. The second derivative is the derivative of the derivative,
the third derivative being the derivative of the second derivative, and so on.
The first and second derivatives, D(f) and D2(f), are used in many appli-
cations. We used these two derivatives to analyze motion under constant
acceleration. Higher-order derivatives will be used to estimate the error when
approximating a function by a polynomial and when approximating an area
of by the areas of rectangles or sections of parabolas.
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EXERCISES for Section 3.7 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 16 find the first and second derivatives
of the given functions.

1.[R] y = 2x+ 3
2.[R] y = e−x

3

3.[R] y = x5

4.[R] y = ln(6x+ 1)
5.[R] y = sin(πx)
6.[R] y = 4x3 − x2 + x

7.[R] y = x
x+1

8.[R] y = x2

x−1

9.[R] y = x cos(x2)

10.[R] y = x
tan(3x)

11.[R] y = (x− 2)4

12.[R] y = (x+ 1)3

13.[R] y = e3x

14.[R] y = tan(x2)

15.[R] y = x2 arctan(3x)

16.[R] y = −arcsin(2x)
x2

17.[R] Use calculus, specifically derivatives, to restate
the following reports about the Leaning Tower of Pisa.

(a) “Until 2001, the tower’s angle from the vertical
was increasing more rapidly.”

(b) “Since 2001, the tower’s angle from the vertical
has not changed.”

Hint: Let θ = f(t) be the angle of deviation from
the vertical at time t. Note: Incidently, the tower,
begun in 1174 and completed in 1350, is 179 feet tall
and leans about 14 feet from the vertical. Each day
it leaned on the average, another 1

5000 inch until the
tower was propped up in 2001.

Exercises 18 to 20 concern Example 4.

18.[R]

(a) How long after the
ball in Example 4 is
thrown does it pass
by the top of the
hill?

(b) What are its speed
and velocity at this
instant?

19.[R] Suppose the ball
in Example 4 had simply
been dropped from the
cliff. Find the position y
as a function of time. How
long would it take the ball
to reach the beach?

20.[R] In view of the re-
sult of Exercise 19, pro-
vide a physical interpreta-
tion of the three terms on
the right-hand side of the
formula y = −16t2 +64t+
96.

21.[R] At time t = 0 a particle is at y = 3 feet and
has a velocity of -3 feet per second; it has a constant
acceleration of 6 feet per second per second. Find its
position at any time t.

22.[R] At time t = 0 a particle is at y = 10 feet and
has a velocity of 8 feet per second; it has a constant
acceleration of -8 feet per second per second.

(a) Find its position at any time t.

(b) What is its maximum y coordinate.

23.[R] At time t = 0 a particle is at y = 0 feet and
has a velocity of 0 feet per second. Find its position
at any time t if its acceleration is always -32 feet per
second per second.

24.[R] At time t = 0 a particle is at y = −4 feet and
has a velocity of 6 feet per second; it has a constant
acceleration of -32 feet per second per second.

(a) Find its position at any time t.

(b) What is its largest y coordinate.
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In Exercises 25 to 34 find the given derivatives.
25.[R] D3

(
5x2 − 2x+ 7

)
.

26.[R] D4 (sin(2x)).
27.[R] Dn (ex).
28.[R] D(sin(x)), D2(sin(x)), D3(sin(x)), and
D4(sin(x)).
29.[R] D(cos(x)), D2(cos(x)), D3(cos(x)), and
D4(cos(x)).
30.[R] D(ln(x)), D2(ln(x)), D3(ln(x)), and
D4(ln(x)).
31.[R] D4(x4) and D5(x4).
32.[M] D200(sin(x))
33.[M] D200(ex)
34.[M] D2(5x)

35.[M] Find all functions f such that D2(f) = 0 for
all x.
36.[M] Find all functions f such that D3(f) = 0 for
all x.

37.[M] A jetliner begins its descent 120 miles from
the airport. Its velocity when the descent begins is
500 miles per hour and its landing velocity is 180 miles
per hour. Assuming a constant deceleration, how long
does the descent take?

38.[M] Let y = f(t) describe the motion on the y-axis
of an object whose acceleration has the constant value
a. Show that

y =
a

2
t2 + v0t+ y0

where v0 is the velocity when t = 0 and y0 is the posi-
tion when t = 0.

39.[M] Which has the highest acceleration? Melanie
Troxel’s dragster, a 1997 Porsche 911 Turbo S, or an
airplane being launched from an aircraft carrier? The
plane reaches a velocity of 180 miles per hour in 2.5
seconds, within a distance of 300 feet. Hint: Assume
each acceleration is constant.

40.[M] Why do engineers call the third derivative of
position with respect to time the jerk?

41.[C] Give two functions f such that D2(f) = 9f .
Neither should be a constant multiple of the other.

42.[C] Give two functions f such that D2(f) = −4f .
Neither should be a constant multiple of the other.

43.[C] A car accelerates with constant acceleration
from 0 (rest) to 60 miles per hour in 15 seconds. How
far does it travel in this period? Note: Be sure to do
your computations either all in seconds, or all in hours;
for instance, 60 miles per hour is 88 feet per second.

44.[C] Show that a ball thrown straight up from the
ground takes as long to rise as to fall back to its initial
position. How does the velocity with which it strikes
the ground compare with its initial velocity? How do
the initial and landing speeds compare?
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3.8 Precise Definition of Limits at Infinity: lim
x→∞

f (x) =

L

One day a teacher drew on the board the graph of y = x/2 + sin(x), shown in
Figure 3.8.1. Then the class was asked whether they thought that

lim
x→∞

f(x) =∞.

A third of the class voted “No” because “it keeps going up and down.” A third

Figure 3.8.1:

voted ”Yes” because ”the function tends to get very large as x increases.” A
third didn’t vote. Such a variety of views on such a fundamental concept sug-
gests that we need a more precise definition of a limit than the ones developed
in Sections 2.2 and 2.3. (How would you vote?)

The definitions of the limits considered in Chapter 2 used such phrases as
“x approaches a,” “f(x) approaches a specific number,” “as x gets larger,”
and “f(x) becomes and remains arbitrarily large.” Such phrases, although
appealing to the intuition and conveying the sense of a limit, are not precise.
The definitions seem to suggest moving objects and call to mind the motion
of a pencil point as it traces out the graph of a function.

This informal approach was adequate during the early development of
calculus, from Leibniz and Newton in the seventeenth century through the
Bernoullis, Euler, and Gauss in the eighteenth and early nineteenth centuries.
But by the mid-nineteenth century, mathematicians, facing more complicated
functions and more difficult theorems, no longer could depend solely on intu-
ition. They realized that glancing at a graph was no longer adequate to un-
derstand the behavior of functions — especially if theorems covering a broad
class of functions were needed.

It was Weierstrass who developed, over the period 1841–1856, a way to
define limits without any hint of motion or pencils tracing out graphs. His
approach, on which he lectured after joining the faculty at the University of
Berlin in 1859, has since been followed by pure and applied mathematicians
throughout the world. Even an undergraduate advanced calculus course de-
pends on Weierstrass’s approach.

In this section we examine how Weierstrass would define the “limits at
infinity:”

lim
x→∞

f(x) =∞ and lim
x→∞

f(x) = L.

In the next section we consider limits at finite points:

lim
x→a

f(x) = L.

The Precise Definition of limx→∞ f(x) =∞
Recall the definition of limx→∞ f(x) =∞ given in Section 2.2.

October 22, 2010 Calculus



§ 3.8 PRECISE DEFINITION OF LIMITS AT INFINITY: lim
x→∞

f(x) = L 215

Informal definition of limx→∞ f(x) =∞

1. f(x) is defined for all x beyond some number

2. As x gets large through positive values, f(x) becomes and
remains arbitrarily large and positive.

To take us part way to the precise definition, let us reword the informal defi-
nition, paraphrasing it in the following definition, which is still informal.

Reworded informal definition of limx→∞ f(x) =∞

1. Assume that f(x) is defined for all x greater than the number
c.

2. If x is sufficiently large and positive, then f(x) is necessarily
large and positive.

The precise definition parallels the reworded definition.

DEFINITION (Precise definition of limx→∞ f(x) =∞)

1. Assume the f(x) is defined for all x greater than some number
c.

2. For each number E there is a number D such that for all
x > D it is true that f(x) > E.

The “challenge and reply”
approach to limits. Think of
E as the “enemy” and D as
the “defense.”

Think of the number E as a challenge and D as the reply. The larger E is,
the larger D must usually be. Only if a number D (which depends on E) can
he found for every number E can we make the claim that limx→∞ f(x) =∞.
In other words, D could be expressed as a function of E. To picture the idea

(a) (b)

Figure 3.8.2:

behind the precise definition, consider the graph in Figure 3.8.2(a) of a function
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f for which limx→∞ f(x) = ∞. For each possible choice of a horizontal line,
say, at height E, if you are far enough to the right on the graph of f , you stay
above that horizontal line. That is, there is a number D such that if x > D,
then f(x) > E, as illustrated in Figure 3.8.2(b).

Figure 3.8.3:

The number D in Figure 3.8.3 is not a suitable reply. It is too small since
there are some values of x > D such that f(x) ≤ E.

Examples 1 and 2 illustrate how the precise definition is used.

EXAMPLE 1 Using the precise definition, show that limx→∞ 2x =∞.
SOLUTION Let E be any positive number. We must show that there is a
number D such that whenever x > D it follows that 2x > E. (For example, if
E = 100, then D = 50 would do because it is indeed the case that if x > 50,
then 2x > 100.) The number D will depend on E. Our goal is find a formula
for D for any value of E.

Now, the inequality 2x > E is equivalent to

x >
E

2
.

In other words, if x > E/2, then 2x > E. So choosing D = E/2 will suffice.D depends on E

To verify this: when x > D (= E/2), 2x > 2D = 2E
2

= E. This allows us to
conclude that

lim
x→∞

2x =∞.

�

Figure 3.8.4:

In Example 1 a formula was provided for a suitableD in terms of E, namely,
D = E/2 (see Figure 3.8.4. For instance, when challenged with E = 1000, the
response D = 500 suffices. In fact, any larger value of D also is suitable. If
x > 600, it is still the case that 2x > 1000 (since 2x > 1200). If one value of
D is a satisfactory response to a given challenge E, then any larger value of
D also is a satisfactory response.

Now that we have a precise definition of limx→∞ f(x) = ∞ we can settle
the question, “Is limx→∞(x/2 + sin(x)) =∞?”

EXAMPLE 2 Using the precise definition, show that lim
x→∞

x

2
+sin(x) =∞.

SOLUTION Let E be any number. We must exhibit a number D, depending
on E, such that x > D forces

x

2
+ sin(x) > E. (3.8.1)

Now, sin(x) ≥ −1 for all x. So, if we can force

x

2
+ (−1) > E (3.8.2)
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then it will follow that
x

2
+ sin(x) > E.

The smallest value of x that satisfies inequality (3.8.1) can be found as follows:

x
2

> E + 1 add 1 to both sides
x > 2(E + 1) multiply by a positive constant.

Thus D = 2(E + 1) will suffice. That is, D depends on E

If x > 2(E + 1), then
x

2
+ sin(x) > E.

To verify this assertion we must check that D = 2(E + 1) is a satisfactory
reply to E. Assume that x > D = 2(E + 1). Then

x
2

> E + 1
and sin(x) ≥ −1.

Adding these last two inequalities gives If a > b and c ≥ d, then
a+ c > b+ d.

x
2

+ sin(x) > (E + 1) + (−1)
or simply x

2
+ sin(x) > E,

which is inequality (3.8.1). Therefore we can conclude that

lim
x→∞

(x
2

+ sin(x)
)

=∞.

As x increases, the function does become and remain large, despite the
small dips downward. �

The Precise Definition of limx→∞ f(x) = L

Next, recall the definition of limx→∞ f(x) = L given in Section 2.2. L is a finite number.

Informal definition of limx→∞ f(x) = L

1. f(x) is defined for all x beyond some number

2. As x gets large through positive values, f(x) approaches L.

Again we reword this definition before offering the precise definition.
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Reworded informal definition of limx→∞ f(x) = L

1. Assume that f(x) is defined for all x greater than some num-
ber c.

2. If x is sufficiently large, then f(x) is necessarily near L.

Once again, the precise definition parallels the reworded definition. In
order to make precise the phrase “f(x) is necessarily near L,” we shall use
the absolute value of f(x) − L to measure the distance from f(x) to L. The
following definition says that “if x is large enough, then |f(x)− L| is as small
as we please”.

DEFINITION (Precise definition of limx→∞ f(x) = L)

1. Assume the f(x) is defined for all x beyond some number c.

2. For each positive number ε there is a number D such that for
all x > D it is true that

|f(x)− L| < ε.
The number ε is the

challenge. The number D is
a reply.

Figure 3.8.5:

Draw two lines parallel to the x-axis, one of height L + ε and one of height
L− ε. They are the two edges of an endless band of width 2ε and centered at
y = L. Assume that for each positive ε, a number D can be found such that
the part of the graph to the right of x = D lies within the band. Then we say
that “as x approaches ∞, f(x) approaches L” and write

lim
x→∞

f(x) = L.

The positive number ε is the challenge, and D is a reply. The smaller ε
is, the narrower the band is, and the larger D usually must be chosen. The
geometric meaning of the precise definition of limx→∞ f(x) = L is shown in
Figure 3.8.5.“ε” (epsilon) is the Greek

letter corresponding to the
English letter “e”. Because

mathematicians think of ε
as being small, the number
theorist, Paul Erdös, called

children “epsilons.”

EXAMPLE 3 Use the precise definition of “limx→∞ f(x) = L” to show
that

lim
x→∞

(
1 +

1

x

)
= 1.

SOLUTION Here f(x) = 1+1/x, which is defined for all x 6= 0. The number
L is 1. We must show that for each positive number ε, however small, there is
a number D such that, for all x > D,∣∣∣∣(1 +

1

x

)
− 1

∣∣∣∣ < ε. (3.8.3)
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Inequality (3.8.3) reduces to ∣∣∣∣1x
∣∣∣∣ < ε.

Since we may consider only x > 0, this inequality is equivalent to

1

x
< ε. (3.8.4)

Multiplying inequality (3.8.4) by the positive number x yields the equivalent
inequality

1 < xε. (3.8.5)

Division of inequality (3.8.5) by the positive number ε yields

1

ε
< x or x >

1

ε
.

D depends on ε.

These steps are reversible. This shows that D = 1/ε is a suitable reply to
the challenge ε. If x > 1/ε, then∣∣∣∣(1 +

1

x

)
− 1

∣∣∣∣ < ε.

That is, inequality (3.8.3) is satisfied.

Figure 3.8.6:

According to the precise definition of “limx→∞ f(x) = L”, we conclude that

lim
x→∞

(
1 +

1

x

)
= 1.

�
The graph of f(x) = 1+1/x, shown in Figure 3.8.6, reinforces the argument.

It seems plausible that no matter how narrow a band someone may place
around the line y = 1, it will always be possible to find a number D such
that the part of the graph to the right of x = D stays within that band. In
Figure 3.8.6 the typical band is shown shaded.

The precise definitions can also be used to show that some claim about an
alleged limit is false. The next example illustrates how this is done.

EXAMPLE 4 Show that the claim that limx→∞ sin(x) = 0 is false.
SOLUTION To show that the claim is false, we must exhibit a challenge
ε > 0 for which no response D can be found. That is, we must exhibit a
positive number ε such that no D exists for which | sin(x) − 0| < ε for all
x > D.

Recall that sin(π/2) = 1 and that sin(x) = 1 whenever x = π/2 + 2nπ for
any integer n. This means that there are arbitrarily large values of x for which
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sin(x) = 1. This suggests how to exhibit an ε > 0 for which no response D can
be found. Simply pick the challenge ε to be some positive number less than or
equal to 1. For instance, ε = 0.7 will do.

For any number D there is always a number x∗ > D such that we have
sin(x∗) = 1. This means that | sin(x∗)− 0| = 1 > 0.7. Hence no response can
he found for ε = 0.7. Thus the claim that limx→∞ sin(x) = 0 is false. �

To conclude this section, we show how the precise definition of the limit
can be used to obtain information about new limits.

EXAMPLE 5 Use the precise definition of “limx→∞ f(x) = L” to show that
if f and g are defined everywhere and limx→∞ f(x) = 2 and limx→∞ g(x) = 3,
then limx→∞(f(x) + g(x)) = 5.
SOLUTION The objective is to show that for each positive number ε, how-
ever small, there is a number D such that, for all x > D,

|(f(x) + g(x))− 5| < ε.

Observe that |(f(x) + g(x))− 5| can be written as |(f(x)− 2) + (g(x)− 3))|,
and this is no larger than the sum |f(x)− 2|+ |g(x)− 3|. If we can show that
for all x sufficiently large that both |f(x)−2| < ε/2 and |g(x)−3| < ε/2, then
there sum will be no larger than ε/2 + ε/2 = ε.

Here is how this plan can be implemented.
The fact that limx→∞ f(x) = 2 implies for any given ε > 0 there exists a

number D1 with the property that |f(x)− 2| < ε/2 for all x > D1. Likewise,
the fact that limc→∞ g(x) = 3 implies for any given ε > 0 there exists a number
D2 with the property that |g(x)− 2| < ε/2 for all x > D2.

Let D refer to the larger of D1 and D2. For any x greater than D we know
thatD = max{D1, D2}

|f(x) + g(x)− 5| < |f(x)− 2|+ |g(x)− 3| < ε/2 + ε/2 = ε.

According to the precise definition of a limit at infinity, we conclude that

lim
x→∞

(f(x) + g(x)) = 2 + 3 = 5.

�

Summary

We developed a precise definition of the limit of a function as the argument
becomes arbitrarily large: limx→∞ f(x). The definition involves being able to
respond to a challenge. In the case of an infinite limit, the challenge is a large
number. In the case of a finite limit, the challenge is a small number used to
describe a narrow horizontal band.
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EXERCISES for Section 3.8 Key: R–routine,
M–moderate, C–challenging

1.[R] Let f(x) = 3x.

(a) Find a number D such that, for x > D, it follows
that f(x) > 600.

(b) Find another number D such that, for x > D, it
follows that f(x) > 600.

(c) What is the smallest number D such that, for all
x > D, it follows that f(x) > 600?

2.[R] Let f(x) = 4x.

(a) Find a number D such that, for x > D, it follows
that f(x) > 1000.

(b) Find another number D such that, for x > D, it
follows that f(x) > 1000.

(c) What is the smallest number D such that, for all
x > D, it follows that f(x) > 1000?

3.[R] Let f(x) = 5x. Find a number D such that, for
all x > D,

(a) f(x) > 2000,

(b) f(x) > 10, 000.

4.[R] Let f(x) = 6x. Find a number D such that, for
all x > D,

(a) f(x) > 1200,

(b) f(x) > 1800.

In Exercises 5 to 12 use the precise definition of the
assertion “ lim

x→∞
f(x) =∞” to establish each limit.

5.[R] lim
x→∞

3x =∞

6.[R] lim
x→∞

4x =∞

7.[R] lim
x→∞

(x+ 5) =∞

8.[R] lim
x→∞

(x− 600) =∞

9.[R] lim
x→∞

(2x + 4) = ∞

10.[R] lim
x→∞

(3x−1200) =
∞
11.[R] lim

x→∞
(4x +

100 cos(x)) =∞
12.[R] lim

x→∞
(2x −

300 cos(x)) =∞

13.[R] Let f(x) = x2.

(a) Find a number D such that, for all x > D,
f(x) > 100.

(b) Let E be any nonnegative number. Find a num-
ber D such that, for all x > D, it follows that
f(x) > E.

(c) Let E be any negative number. Find a num-
ber D such that, for all x > D, it follows that
f(x) > E.

(d) Using the precise definition of “ lim
x→∞

f(x) =∞”,

show that lim
x→∞

x2 =∞.

14.[R] Using the precise definition of “ lim
x→∞

f(x) =

∞”, show that lim
x→∞

x3 =∞. Hint: See Exercise 13.

Exercises 15 to 22 concern the precise definition of
“ lim
x→∞

f(x) = L”.

15.[R] Let f(x) = 3 + 1/x if x 6= 0.

(a) Find a number D such that, for all x > D, it
follows that |f(x)− 3| < 1

10 .

(b) Find another number D such that, for all x > D,
it follows that |f(x)− 3| < 1

10 .

(c) What is the smallest number D such that, for all
x > D, it follows that |f(x)− 3| < 1

10?

(d) Using the precise definition of “ lim
x→∞

f(x) = L”,

show that lim
x→∞

(3 + 1/x) = 3.

16.[R] Let f(x) = 2/x if x 6= 0.
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(a) Find a number D such that, for all x > D, it
follows that |f(x)− 0| < 1

100 .

(b) Find another number D such that, for all x > D,
it follows that |f(x)− 0| < 1

100 .

(c) What is the smallest number D such that, for all
x > D, it follows that |f(x)− 0| < 1

100?

(d) Using the precise definition of “ lim
x→∞

f(x) = L”,

show that lim
x→∞

(2/x) = 0.

In Exercises 17 to 22 use the precise definition of
“ lim
x→∞

f(x) = L” to establish each limit.

17.[M] lim
x→∞

sin(x)
x

= 0

Hint: | sin(x)| ≤ 1 for all
x.

18.[M] lim
x→∞

x+ cos(x)
x

=
1

19.[M] lim
x→∞

4
x2

= 0

20.[M] lim
x→∞

2x+ 3
x

= 2

21.[M] lim
x→∞

1
x− 100

= 0

22.[M] lim
x→∞

2x+ 10
3x− 5

=
2
3

23.[M] Using the precise definition of “ lim
x→∞

f(x) =

∞,” show that the claim that lim
x→∞

x/(x + 1) = ∞ is
false.

24.[M] Using the precise definition of “ lim
x→∞

f(x) =

L,” show that the claim that lim
x→∞

sin(x) =
1
2

is false.

25.[M] Using the precise definition of “ lim
x→∞

f(x) =
L,” show that the claim that lim

x→∞
3x = 6 is false.

26.[M] Using the precise definition of “ lim
x→∞

f(x) =
L,” show that for every number L the assertion that
lim
x→∞

2x = L is false.

In Exercises 27 to 30 develop precise definitions of the
given limits. Phrase your definitions in terms of a chal-
lenge number E or ε and a replyD. Show the geometric
meaning of your definition on a graph.

27.[M] lim
x→∞

f(x) = −∞

28.[M] lim
x→−∞

f(x) = ∞

29.[M] lim
x→−∞

f(x) =
−∞
30.[M] lim

x→−∞
f(x) = L

31.[M] Let f(x) = 5 for all x. (See Exercise 30

(a) Using the precise definition of “ lim
x→∞

f(x) = L,”

show that lim
x→∞

f(x) = 5.

(b) Using the precise definition of “ lim
x→−∞

f(x) = L,”

show that lim
x→−∞

f(x) = 5.

32.[C] Is this argument correct? “I will prove that
lim
x→∞

(2x+ cos(x)) =∞. Let E be given. I want

2x+ cos(x) > E
or 2x > E − cos(x)
so x > E−cos(x)

2 .

Thus, if D = E−cos(x)
2 , then 2x+ cos(x) > E.”

33.[M] Use the precise definition of “ lim
x→∞

f(x) = L,”
to prove this version of the sum law for limits: if
limx→∞ f(x) = A and limx→∞ g(x) = B, then
limx→∞(f(x) + g(x)) = A + B. Hint: See Exam-
ple 5.

34.[C] Use the precise definition of “ lim
x→∞

f(x) = L,”
to prove this version of the product law for limits:
if limx→∞ f(x) = A, then limx→∞(f(x)2) = A2.
Hint: f(x)2−A2 = (f(x)−A)(f(x) +A), and control
the size of each factor.

35.[C] Use the precise definition of “ lim
x→∞

f(x) = L,”
to prove this version of the product law for limits:
if limx→∞ f(x) = A and limx→∞ g(x) = B, then
limx→∞(f(x)g(x)) = AB. Hint: To make use of the
two given limits, write f(x) as A+(f(x)−A) and g(x)
as B + (g(x)−B).

36.[C] Assume that limx→∞ f(x) = 5. Is there nec-
essarily a number c such that for x > c, f(x) stays in
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the closed interval [4.5, 5]? Explain in detail.

37.[C] Assume that limx→∞ f(x) = 5. Is there nec-
essarily a number c such that for x > c, f(x) stays in
the open interval (4, 5.5)? Explain in detail.

38.[C]

Sam: I got lost in Example 5 when ε/2 came out of
nowhere.

Jane: It’s just another ε.

Sam: Now I’m more confused.

Explain Jane’s explanation for Sam’s benefit.
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3.9 Precise Definition of Limits at a Finite

Point: lim
x→a

f (x) = L

To conclude the discussion of limits, we extend the ideas developed in Sec-
tion 3.8 to limits of a function at a number a.

Informal definition of limx→a f(x) = L

Figure 3.9.1:

Let f be a function and a some fixed number. (See Figure 3.9.1.)

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some number c < a and some number b > a.

2. If, as x approaches a, either from the left or from the right,
f(x) approaches a specific number L, then L is called the
limit of f(x) as x approaches a. This is written

lim
x→a

f(x) = L.

Keep in mind that a need not be in the domain of f . Even if it happens to
be in the domain of f , the value of f(a) plays no role in determining whether
limx→a f(x) = L.

Reworded informal definition of limx→a f(x) = L

Let f be a function and a some fixed number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some number c < a and some number b > a.

2. If x is is sufficiently close to a but not equal to a, then f(x)
is necessarily near L.

The following precise definition parallels the reworded informal definition.“δ” (delta) is the lower case
version of the Greek letter
“∆”; it corresponds to the

English letter “d.” DEFINITION (Precise definition of limx→a f(x) = L) Let f be
a function and a some fixed number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some number c < a and some number b > a.
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2. For each positive number ε there is a positive number δ such
that

for all x that satisfy the inequality 0 < |x− a| < δ
it is true that |f(x)− L| < ε.

The meaning of
0 < |x− a| < δThe inequality 0 < |x−a| that appears in the definition is just a fancy way

of saying “x is not a.” The inequality |x − a| < δ asserts that x is within a
distance δ of a. The two inequalities may be combined as the single statement
0 < |x− a| < δ, which describes the open interval (a− δ, a+ δ) from which a
is deleted. This deletion is made since the f(a) pIays no role in the definition
of limx→a f(x).

Once again ε is the challenge. The reply is δ. Usually, the smaller ε is, the
smaller δ will have to be.

(a) (b) (c)

Figure 3.9.2: (a) The number ε is the challenge. (b) δ is not small enough. (c)
δ is small enough.

The geometric significance of the precise definition of “limx→a f(x) = L”
is shown in Figure 3.9. The narrow horizontal band of width 2ε is again the
challenge (see Figure 3.9(a)). The desired response is a sufficiently narrow
vertical band, of width 2δ, such that the part of the graph within that vertical
band (except perhaps at x = a) also lies in the horizontal band of width
2ε. In Figure 3.9(b) the vertical band shown is not narrow enough to meet
the challenge of the horizontal band shown. But the vertical band shown in
Figure 3.9(c) is sufficiently narrow.

Assume that for each positive number ε it is possible to find a positive
number δ such that the parts of the graph between x = a− δ and x = a and
between x = a and x = a + δ lie within the given horizontal band. Then we
say that “as x approaches a, f(x) approaches L”. The narrower the horizontal
band around the line y = L, the smaller δ usually must be.

EXAMPLE 1 Use the precise definition of “lim
x→a

f(x) = L” to show that

lim
x→2

(3x+ 5) = 11.

SOLUTION Here f(x) = 3x + 5, a = 2, and L = 11. Let ε be a positive
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number. We wish to find a number δ > 0 such that for 0 < |x − 2| < δ we
have |(3x+ 5)− 11| < ε.

So let us find out for which x it is true that |(3x + 5) − 11| < ε. This
inequality is equivalent to

|3x− 6| < ε
or 3|x− 2| < ε
or |x− 2| < ε

3
.

Thus δ = ε/3 is a suitable response. If 0 < |x−2| < ε/3, then |(3x+5)−11| < ε.Any positive number less
than ε/3 is also a suitable

response.
�

The algebra of finding a response δ can be much more involved for other
functions, such as f(x) = x2. The precise definition of limit can actually
be easier to apply in more general situations where f and a are not given
explicitly. To illustrate, we present a proof of the Permanence Property.

When the Permanence Property was introduced in Section 2.5, the only
justification we provided was a picture and an appeal to your intuition that
a continuous function cannot jump instantaneously from a positive value to
zero or a negative value — the function has to remain positive on some open
interval. Mathematicians call this a “proof by handwaving”.

EXAMPLE 2 Prove the Permanence Property: Assume that f is continu-
ous in an open interval that contains a and that f(a) = p > 0. Then for any
number q < p, there is an open interval I containing a such that f(x) > q for
all x in I.
SOLUTION Let p = f(a) > 0 and let q be any positive number less than p.
Pick ε = p− q. Because f is continuous at a there is a positive number δ suchThe reason for this choice

for ε will become clear in a
moment.

that
|f(a)− f(x)| < p− q for a− δ < x < a+ δ.

Thus
−(p− q) < f(a)− f(x) < p− q.

In particular,
f(a)− f(x) < p− q (3.9.1)

Because f(a) = p, (3.9.1) can be rewritten as

p− f(x) < p− q

or
f(x) > q.

Thus f(x) is greater than q if x is in the interval I = (a− δ, a+ δ).
�
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One of the common uses of the Permanence Property is to say that if
a continuous function is positive at a number, a, then there is an interval
containing a on which the function is strictly positive. (This corresponds to
p = f(a) > 0 and q = 0.)

Summary

This section developed a precise definition of the limit of a function as the
argument approaches a fixed number: limx→a f(x). This definition involves
being able to respond to an arbitrary challenge number. In the case of a finite
limit, the challenge is a small positive number. The smaller that number, the
harder it is to meet the challenge.

In addition, it also gave a rigorous proof of the permanence principle.
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EXERCISES for Section 3.9 Key: R–routine,
M–moderate, C–challenging

In Exercises 1 to 4 use the precise definition of
“ lim
x→a

f(x) = L” to justify each statement.

1.[R] lim
x→2

3x = 6

2.[R] lim
x→3

(4x− 1) = 11

3.[R] lim
x→1

(x+ 2) = 3

4.[R] lim
x→5

(2x− 3) = 7

In Exercises 5 and 8 find a number δ such that the
point (x, f(x)) lies in the shaded band for all x in the
interval (a − δ, a + δ). Hint: Draw suitable vertical
band for the given value of ε.

5.[R]

6.[R]

7.[R]

8.[R]

In Exercises 9 and 12 use the precise definition of
“limx→a f(x) = L” to justify each statement.

9.[R] lim
x→1

(3x+ 5) = 8

10.[R] lim
x→1

5x+ 3
4

= 2

11.[M] lim
x→0

x2

4
= 0

12.[M] lim
x→0

4x2 = 0

13.[M] Give an example of a number δ > 0 such that
|x2 − 4| < 1 if 0 < |x− 2| < δ.

14.[M] Give an example of a number δ > 0 such that
|x2 + x− 2| < 0.5 if 0 < |x− 1| < δ.

Develop precise definitions of the given limits in Exer-
cises 15 to 20. Phrase your definitions in terms of a
challenge, E or ε, and a response, δ.

15.[M] lim
x→a+

f(x) = L

16.[M] lim
x→a−

f(x) = L

17.[M] lim
x→a

f(x) =∞

18.[M] lim
x→a

f(x) = −∞

19.[M] lim
x→a+

f(x) =∞

20.[M] lim
x→a−

f(x) =∞

21.[M] Let f(x) = 9x2.

(a) Find δ > 0 such that, for 0 < |x − 0| < δ, it
follows that |9x2 − 0| < 1

100 .

(b) Let ε be any positive number. Find a positive
number δ such that, for 0 < |x− 0| < δ we have
|9x2 − 0| < ε.

(c) Show that limx→0 9x2 = 0.

22.[M] Let f(x) = x3.

(a) Find δ > 0 such that, for 0 < |x − 0| < δ, it
follows that |x3 − 0| < 1

1000 .

(b) Show that limx→0 x
3 = 0.

23.[M] Show that the assertion “limx→2 3x = 5” is
false. To do this, it is necessary to exhibit a positive
number ε such that there is no response number δ > 0.
Hint: Draw a picture.
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24.[M] Show that the assertion“limx→2 x
2 = 3” is

false.

25.[C] Review the proof of the Permanence Property
given in Example 2. Recall that p = f(a) > 0 and q is
chosen so that p > q > 0.

(a) Would the argument have worked if we had used
ε = 2(p− q)?

(b) Would the argument have worked if we had used
ε = 1

2(p− q)?

(c) Would the argument have worked if we had used
ε = q?

(d) What is the largest value of ε for which the proof
of the Permanence Property works?

26.[C] The Permanence Property discussed in Ex-
ample 2 and Exercise 25 pertains to limits at a finite
point a. State, and prove, a version of the Permanence
Property that is valid “at ∞.”
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27.[M]

(a) Show that, if 0 < δ < 1 and |x − 3| < δ, then
|x2 − 9| < 7δ. Hint: Factor x2 − 9.

(b) Use (a) to deduce that limx→3 x
2 = 9.

28.[C]

(a) Show that, if 0 < δ < 1 and |x− 4| < δ, then

|
√
x− 2| < δ√

3 + 2
.

(b) Use (a) to deduce that limx→4
√
x = 2.

29.[C]

(a) Show that, if 0 < δ < 1 and |x − 3| < δ, then
|x2 + 5x− 24| < 12δ.
Hint: Factor x2 + 5x− 24.

(b) Use (a) to deduce that limx→3(x2 + 5x) = 24.

30.[C]

(a) Show that, if 0 < δ < 1 and |x− 2| < δ, then∣∣∣∣1x − 1
2

∣∣∣∣ < δ

2
.

(b) Use (a) to deduce that limx→2
1
x = 1

2 .

31.[C] Use the precise definitions of limits to prove:
if f is defined in an open interval including a and f is
continuous at a, so is 3f .

32.[C] Use the precise definitions of limits to prove: if
f and g are both defined in an open interval including
a and both functions are continuous at a, so is f+g.
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33.[C] Use the precise definitions of limits to prove:
if f and g are both continuous at a, then their prod-
uct, fg, is also continuous at a. Note: Assume that
both functions are defined at least in an open interval
around a.

34.[C] Assume that f(x) is continuous at a and is
defined at least on an open interval containing a. As-
sume that f(x) = p > 0. Using the precise definition
of a limit, show that there is an open interval, I, con-
taining a such that f(x) > 2

11p for all x in I.
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3.S Chapter Summary

In this chapter we defined the derivative of a function, developed ways to
compute derivatives, and applied them to graphs and motion.

The derivative of a function f at a number x = a is defined as the limit
of the slopes of secant lines through the points (a, f(a)) and (b, f(b)) as the
input b is taken closer and closer to the input a.

Algebraically, the derivative is the limit of a quotient, “the change in the
output divided by the change in the input”. The limit is usually written in
one of the following forms:

lim
x→a

f(x)− f(a)

x− a
, lim

h→0

f(a+ h)− f(a)

h
, lim

∆x→0

∆y

∆x
.G

The derivative is denoted in several ways, such as f ′, f ′(x), df
dx

, dy
dx

, and
D(f).

For the functions most frequently encountered in applications, this limit
exists. Geometrically speaking, the derivative exists whenever the graph of
the function on a very small interval looks almost like a straight line.

The derivative records how fast something changes. For instance, the veloc-
ity of a moving object is defined as the derivative of the object’s position. Also,
the derivative gives the slope of the tangent line to the graph of a function.

We then developed ways to compute the derivative of functions expressible
in terms of the functions met in algebra and trigonometry, including exponen-
tials with a fixed base and logarithms; the so-called “elementary functions”.
That development was based on three limits:

lim
x→a

xn − an

x− a
= nan−1, n a positive integer

lim
x→0

ex − 1

x
= 1

lim
x→0

sin(x)

x
= 1.

Using these limits, we obtained the derivatives of xn, ex, and sin(x). We
showed, if we knew the derivatives of two functions, how to compute the deriva-
tives of their sum, difference, product, and quotient. Naturally, this was based
on the definition of the derivative as a limit.

The next step was the development of the most important computational
tool: the Chain Rule. This enables us to differentiate a composite function,
such as cos3(x2). It tells us that its derivative is 3 cos2(x2)(− sin(x2))(2x).

Differentiating inverse functions enabled us to show that the derivative
of ln |x| is 1

x
and the derivative of arcsin(x) is 1√

1−x2 . The following list of
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derivatives of key functions should be memorized.

function derivative
xa (a constant) axa−1

sin(x) cos(x)
cos(x) − sin(x)
ex ex

ax (a constant) write ax = ex(ln(a))

ln(x) (x > 0) 1/x
ln |x| (x 6= 0) 1/x

tan(x) sec2(x)
sec(x) sec(x) tan(x)

arcsin(x) 1√
1−x2

arctan(x) 1
1+x2√

x 1
2
√
x

= 1
2
x−1/2

1
x

−1/x2

Figure 3.S.1: Table of Common Functions and Derivatives.
As you work with derivatives you may begin to think of them as slope or

velocity or rate of change, and forget their underlying definition as a limit.
However, we will from time to time return to the definition in terms of limits
as we develop more applications of the derivative.

We also introduced the antiderivative and, closely related to it, the slope
field. While the derivative of an elementary function is again elementary, an
antiderivative often is not. For instance,

√
1 + x3 does not have an elemen-

tary antiderivative. However, as we will see in Chapter 6, it does have an
antiderivative. Chapter 8 will present a few ways to find antiderivatives.

The derivative of the derivative is the second derivative. In the case of
motion, the second derivative describes acceleration. It is denoted several ways,
such as D2f , d2f

dx2 , f ′′, and f (2). While the first and second derivatives suffice
for most applications, higher derivatives of all orders are used in Chapter 5,
where we estimate the error when approximating a function by a polynomial.

The final two sections returned to the notion of a limit, providing a precise
definition of that concept.
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EXERCISES for 3.S Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 19 find the derivative of the given
function.

1.[R] exp(x2)
2.[R] 2x

2

3.[R] x3 sin(4x)

4.[R] 1+x2

1+x3

5.[R] ln(x3)
6.[R] ln(x3 + 1)
7.[R] cos4(x2) tan(2x)
8.[R]

√
5x2 + x

9.[R] arcsin(
√

3 + 2x)
10.[R] x2 arctan(2x)e3x

11.[R] sec2(3x)

12.[R] sec2(3x) −
tan2(3x)

13.[R]
(

3+2x
4+5x

)3

14.[R] 1
1+2e−x

15.[R] x√
x2+1

16.[R] (arcsin(3x))2

17.[R] x2 arctan(3x)

18.[R] sin5(3x2)

19.[R] 1
(2x+3x)20

In Exercises 20 to 29 give an antiderivative for the
given function. Use differentiation to check each an-
swer. (Chapter 8 presents techniques for finding an-
tiderivatives, but the ones below do not require these
methods.)

20.[R] 4x3

21.[R] x3

22.[R] 3/x2

23.[R] cos(x)
24.[R] cos(2x)
25.[R] sin100(x) cos(x)

26.[R] 1/(x+ 1)

27.[R] 5e4x

28.[R] 1/ex

29.[R] 2x

In Exercises 30 to 51 carry out the differentiation to
check each equation. The letters a, b, and c denote
constants. Note: These problems provide good prac-
tice in differentiation and algebra. Each differentiation
formula has a corresponding antiderivative formula. In
fact, these exercises are based on several tables of an-
tiderivatives.

30.[R] d
dx

(
1
a tan−1

(
x
a

))
=

1
a2+x2

31.[R] D
(

1
2a ln

(
a+x
a−x

))
=

1
a2−x2

32.[R]
(

ln
(
x+
√
a2 + x2

))′
=

1√
a2+x2

33.[R] d
dx

(
1
a ln

(
x+
√
a2−x2

x

))
=

1
x
√
a2+x2

34.[R] D
(

−1
b(a+bx)

)
=

1
(a+bx)2

35.[R]
(

1
b2

(a+ bx− a ln(a+ bx))
)′ =

x
a+bx

36.[R] d
dx

(
1
b2

(
a

2(a+bx)2
− 1

a+bx

))
=

x
(a+bx)3

37.[R] D
(

1
ab′−a′b ln

(
a′+b′x
a+bx

))
=

1
(a+bx)(a′+b′x) (a, b, a′, b′

constants)

38.[R]
(

2√
4ac−b2 arctan

(
2cx+b√
4ac−b2

))′
=

1
a+bx+cx2 (4ac > b2)

39.[R] d
dx

(
−2√
b2−4ac

ln
(

2cx+b−
√
b2−4ac

2cx+b+
√
b2−4ac

))
=

1
a+bx+cx2 (4ac < b2)

40.[R] D
(

1
a cos−1

(
a
x

))
=

1
x
√
x2−a2

41.[R]
(

1
2

(
x
√
a2 − x2 + a2 arcsin

(
x
a

)))′
=

√
a2 − x2 (|x| < |a|)

42.[R] d
dx

(
−x
2

√
a2 − x2 + a2

2 arcsin
(
x
a

))
=

x2
√
a2−x2

(|x| < |a|)

43.[R] D
(
−
√
a2−x2

x − arcsin
(
x
a

))
=

√
a2−x2

x2 (|x| < |a|)

44.[R]
(

arcsin(x)−
√

1− x2
)′

=√
1+x
1−x (|x| < 1)

45.[R] d
dx

(
x
2 −

1
2 cos(x) sin(x)

)
=

sin2(x)

46.[R] D
(
x arcsinx+

√
1− x2

)
=

arcsin(x) (|x| < 1)

47.[R]
(
x tan−1(x)− 1

2 ln(1 + x2)
)′ =

arctan(x)

48.[R] d
dx

(
eax

a2

(
a2 − 1

))
=

xeax

49.[R] D (x− ln(1 + ex)) =
1

1+ex

50.[R]
(
x
2 (sin(ln(ax))− cos(ln(ax)))

)′ =
sin(ln(ax))

51.[R]
(
eax(a sin(bx)−b cos(bx))

a2+b2

)′
=

eax sin(bx)
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In Exercises 52 to 55 give two antiderivatives for each
given function.

52.[M] xex
2

53.[M] (x2 + x)ex
3+3x

54.[M] cos3(x) sin(x)

55.[M] sin(2x)

56.[M] Verify that 2(
√
x− 1)e

√
x is an antiderivative

of e
√
x.

In Exercises 57 to 60 (a) sketch the slope field and (b)
draw the solution curve through the point (0, 1).

57.[R] dy/dx = 1/(x+1)

58.[R] dy/dx = e−x
2

59.[R] dy/dx = −y
60.[R] dy/dx = y − x

61.[R] Sam threw a baseball straight up and caught
it 6 seconds later.

(a) How high above his head did it rise?

(b) How fast was it going as it left his hand?

(c) How fast was it going when he caught it?

(d) Translate the answers in (b) and (c) to miles per
hour. (Recall: 60 mph = 88 fps.)

62.[M] Assuming that D(x4) = 4x3 and D(x7) = 7x6,
you could find D(x3) directly by viewing x3 as x7/x4

and using the formula for differentiating a quotient.
Show how you could find directly D(x11), D(x−4),
D(x28), and D(x8).

63.[M] Let y = xm/n, where x > 0 and m and
n 6= 0 are integers. Assuming that y is differentiable,
show that dy

dx = m
n x

m
n
−1 by starting with yn = xm

and differentiating both yn and xm with respect to x.
Hint: Think of y as y(x) and remember to use the
chain rule when differentiating yn with respect to x.

64.[M] A spherical balloon is being filled with helium
at the rate of 3 cubic feet per minute. At what rate

is the radius increasing when the radius is (a) 2 feet?
(b) 3 feet? Hint: The volume of a ball of radius r is
4
3πr

3.
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65.[M] An object at the end of a vertical spring is
at rest. When you pull it down it goes up and down
for a while. With the origin of the y-axis at the rest
position, the position of the object t seconds later is
3e−2t cos(2πt) inches.

(a) What is the physical significance of 3 in the for-
mula?

(b) What does e−2t tell us?

(c) What does cos(2πt) tell us?

(d) How long does it take the object to complete a
full cycle (go from its rest position, down, up,
then down to its rest position)?

(e) What happens to the object after a long time?

66.[M] The motor on a moving motor boat is turned
off. It then coasts along the x-axis. Its position, in
meters, at time t (seconds) is 500− 50e−3t.

(a) Where is it at time t = 0?

(b) What is its velocity at time t?

(c) What is its acceleration at time t?

(d) How far does it coast?

(e) Show that its acceleration is proportional to its
velocity. Note: This means the force of the wa-
ter slowing the boat is proportional to the veloc-
ity of the boat. (See also Exercise 78.)

67.[M] It is safe to switch the “sin” and “lim” in
sin
(
limx→0

ex−1
x

)
= limx→0

(
sin
(
ex−1
x

))
. However,

such a switch sometimes is not correct. Consider f
defined by f(x) = 2 for x 6= 1 and f(1) = 0.

(a) Show that f

(
lim
x→0

ex − 1
x

)
is not equal to

limx→0 f
(
ex−1
x

)
.

(b) What property of the function sin(x) permits us
to switch it with “lim”?
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The preceding exercises offered an opportunity to prac-
tice computing derivatives. However, it is important to
keep in mind the definition of a derivative as a limit.
Exercises 68 to 72 will help to reinforce this definition.
68.[R] Define the derivative of the function g(x) at
x = a in (a) the x and x+ h notation, (b) the x and a
notation, and (c) the ∆y and ∆x notation.

69.[M] We obtained the derivative of sin(x) using
the x and x+ h notation and the addition identity for
sin(x+h). Instead, obtain the derivative of sin(x) using
the x and a notation. That is, find

lim
x→a

sin(x)− sin(a)
x− a

.

(a) Show that sin(x)−sin(a) = 2 sin
(

1
2(x− y)

)
cos
(

1
2(x+ y)

)
.

(b) Use the identity in (a) to find the limit.

70.[M] We obtained the derivative for tan(x) by writ-
ing it as sin(x)/ cos(x). Instead, obtain the derivative
directly by finding

lim
h→0

tan(x+ h)− tan(x)
h

.

Hint: The identity tan(a+b) = tan(a)+tan(b)
1−tan(a) tan(b) will help.

71.[C] Show that tan(a)
tan(b) > a

b >
sin(a)
sin(b) for all angles

a and b in the first quadrant with a > b. Hint: Be
ready to make use of the two inequalities that squeezed
sin(x)/x toward 1.

72.[C] We obtained the derivative of ln(x), x > 0, by
viewing it as the inverse of exp(x). Instead, find the
derivative directly from the definition. Hint: Use the
x and h notation.
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Exercises 73 and 74 show how we could have predicted
that ln(x) would provide an antiderivative for 1/x.
73.[C] The antiderivative of 1/x that passes through
(1, 0) is ln(x). One would expect that for t near 1, the
antiderivative of 1/xt that passes through (1, 0) would
look much like ln(x) when x is near 1. To verify that
this is true

(a) graph the slope field for 1/xt with t = 1.1

(b) graph the antiderivative of 1/xt that passes
through (1, 0) for t = 1.1

(c) repeat (a) and (b) for t = 0.9

(d) repeat (a) and (b) for t = 1.01

(e) repeat (a) and (b) for t = 0.99

0.0

y(x)

−2.0

−0.5

−1.5

x

0.5

0.5

1.0

−1.0

2.01.00.0 1.5

Figure 3.S.2:
The slope field for 1/x and the antiderivative of 1/x
passing through (1, 0) are shown in Figure 3.S.2.

74.[C] (See Exercise 73.)

(a) Verify that for t 6= 1 the antiderivative of 1/xt

that passes through (1, 0) is x1−t−1
1−t .

(b) Holding x fixed and letting t approach 1, show
that

lim
t→1

x1−t − 1
1− t

= ln(x).

Hint: Recognize the limit as the derivative of
a certain function at a certain input. Keep in
mind that x is constant in this limit.
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75.[C] Define f as follows:

f(x) =
{

x if x is rational,
−x if x is irrational.

(a) What does the graph of f look like? Note: A
dotted curve would indicate that points are miss-
ing.

(b) Does lim
x→0

f(x) exist?

(c) Does lim
x→1

f(x) exist?

(d) Does lim
x→
√

2
f(x) exist?

(e) For which numbers a does lim
x→a

f(x) exist?

76.[C] Define f as follows:

f(x) =
{
x2 if x is rational,
x3 if x is irrational.

(a) What does the graph of f look like? Note: A
dotted curve may be used to indicate that points
are missing.

(b) Does lim
x→0

f(x) exist?

(c) Does lim
x→1

f(x) exist?

(d) Does lim
x→
√

2
f(x) exist?

(e) For which numbers a does lim
x→a

f(x) exist?
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77.[C] A heavy block rests on a horizontal table cov-
ered with thick oil. The block, which is at the origin of
the x-axis is given an initial velocity v0 at time t = 0.
It then coasts along the positive x-axis.
Assume that its acceleration is of the form −k

√
v(t),

where v(t) is the velocity at time t and k is a constant.
(That means it meets a resistance force proportional
to the square root of its velocity.)

(a) Show that
dv

dt
= −kv1/2.

(b) Is k positive or negative? Explain.

(c) Show that 2v1/2 and −kt have the same deriva-
tive with respect to t.

(d) Show that 2v1/2 = −kt+ 2v1/2
0 .

(e) When does the block come to a rest? (Express
that time in terms of v0 and k.)

(f) How far does the block slide? (Express that dis-
tance in terms of v0 and k.)

78.[C] A motorboat traveling along the x-axis at the
speed v0 stops its motor at time t = 0 when it is at the
origin. It then coasts along the positive x-aixis.
Assuming the resistance force of the water is propor-
tional to the velocity. That implies the acceleration of
the boat is proportional to its velocity, v(t). (See also
Exercise 66.)

(a) Show that there is a constant k such that
dv

dt
=

−kv(t).

(b) Is k positive or negative? Explain.

(c) Deduce that ln(v) and −kt have the same deriva-
tive with respect to t.

(d) Deduce that ln(v(t)) = −kt+ ln(v0).

(e) Deduce that v(t) = v0e
−kt.

(f) According to (e), how long does the boat con-
tinue to move? (Express that time in terms of
v0 and k.)

(g) How far does it move during that time? (Express
that distance in terms of v0 and k.)

79.[C] Archimedes used the following property of a
parabola in his study of the equilibrium of floating
bodies. Let P be any point on the parabola y = x2

other than the origin. The normal to the parabola at
P meets the y-axis in a point Q. The line through P
and parallel to the x-axis meets the y-axis in a point R.
Show that the length of QR is constant, independent
of the choice of P . Note: This problem introduces
the subnormal of the graph; compare this with Exer-
cises 25 and 26 in Section 3.2.
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Calculus is Everywhere # 3

Solar Cookers

Figure C.3.1:

A satellite dish is parabolic in shape. It is formed by rotating a parabola
about its axis The reason is that all radio waves parallel to the axis of the
parabola, after bouncing off the parabola, pass through a common point. This
point is called the focus of the parabola. (See Figure C.3.1.) Similarly, the
reflector behind a flashlight bulb is parabolic.

An ellipse also has a reflection property. Light, or sound, or heat radiating
off one focus, after bouncing off the ellipse, goes through the other focus.
This is applied, for instance, in the construction of computer chips where it is
necessary to bake a photomask onto the surface of a silicon wafer. The heat
is focused at the mask by placing a heat source at one focus of an ellipse and
positioning the wafer at the other focus, as in Figure C.3.2.

Figure C.3.2:

The reflection property is used in wind tunnel tests of aircraft noise. The
test is run in an elliptical chamber, with the aircraft model at one focus and a
microphone at the other.

Whispering rooms, such as the rotunda in the Capitol in Washington, D.C.,
are based on the same principle. A person talking quietly at one focus can be
heard easily at the other focus and not at other points between the foci. (The
whisper would be unintelligible except for the additional property that all the
paths of the sound from one focus to the other have the same length.)

An ellipsoidal reflector cup is used for crushing kidney stones. (An ellipsoid
is formed by rotating an ellipse about the line through its foci.) An electrode
is placed at one focus and an ellipsoid positioned so that the stone is at the
other focus. Shock waves generated at the electrode bounce off the ellipsoid,
concentrate on the other focus, and pulverize the stones without damaging
other parts of the body. The patient recovers in three to four days instead of
the two to three weeks required after surgery. This advance also reduced the
mortality rate from kidney stones from 1 in 50 to 1 in 10,000.

The reflecting property of the ellipse also is used in the study of air pollu-
tion. One way to detect air pollution is by light scattering. A laser is aimed
through one focus of a shiny ellipsoid. When a particle passes through this
focus, the light is reflected to the other focus where a light detector is located.
The number of particles detected is used to determine the amount of pollution
in the air.
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The Angle Between Two Lines

Figure C.3.3:

To establish the reflection properies just mentioned we will use the principle
that the angle of reflection equals the angle of incidence, as in Figure C.3.3,
and work with the angle between two lines, given their slopes.

Consider a line L in the xy-plane. It forms an angle of inclination
α, 0 ≤ α < π, with the positive x-axis. The slope of L is tan(α). (See
Figure C.3.4(a).) If α = π/2, the slope is not defined.

(a) (b)

Figure C.3.4:

Consider two lines L and L′ with angles of inclination α and α′ and slopes
m and m′, respectively, as in Figure C.3.4(b). There are two (supplementary)
angles between the two lines. The following definition serves distinguishes one
of these two angles as the angle between L and L′.

DEFINITION (Angle between two lines.) Let L and L′ be two
lines in the xy-plane, named so that L has the larger angle of
inclination, α > α′. The angle θ between L and L′ is defined to be

θ = α− α′.

If L and L′ are parallel, define θ to be 0.

Note that θ is the counterclockwise angle from L′ to L and that 0 ≤ θ < π.
The tangent of θ is easily expressed in terms of the slopes m of L and m′ of
L′. We have

tan(θ) = tan(α− α′) definition of θ
= tan(α)−tan(α′)

1+tan(α) tan(α′)
by the identity for tan(A−B)

= m−m′
1+mm′

.

Thus
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tan(θ) =
m−m′

1 +mm′
. (C.3.1)

The Reflection Property of a Parabola

Consider the parabola y = x2. (The geometric description of this parabola is
the set of all points whose distance from the point (0, 1

4
) equals its distance

from the line y = −1
4

, but this information is not needed here.)

Figure C.3.5:

In Figure C.3.5 we wish to show that angles A and B at the typical point
(a, a2) on the parabola are equal. We will do this by showing that tan(A) =
tan(B).

First of all, tan(C) = 2a, the slope of the parabola at (a, a2). Since A is
the complement of C, tan(A) = 1/(2a).

The slope of the line through the focus (0, 1
4
) and a point on the parabola

(a, a2) is
a2 − 1

4

a− 0
=

4a2 − 1

4a
.

Therefore,

tan(B) =
2a− 4a2−1

4a

1 + 2a
(

4a2−1
4a

) .
Exercise 1 asks you to supply the algebraic steps to complete the proof that
tan(B) = tan(A).

The Reflection Property of an Ellipse

An ellipse consists of every point such that the sum of the distances from the
point to two fixed points is constant. Let the two fixed points, called the foci
of the ellipse, be a distance 2c apart, and the fixed sum of the distances be 2a,
where a > c. If the foci are at (c, 0) and (−c, 0) and b2 = a2− c2, the equation
of the ellipse is

Figure C.3.6:

x2

a2
+
y2

b2
= 1,

where b2 = a2 − c2. (See Figure C.3.6.)
As in the case of the parabola, one shows tan(A) = tan(B).
One reason to do Exercise 2 is to appreciate more fully the power of vector

calculus, developed later in Chapter 14, for with that tool you can establish
the reflection property of either the parabola or the ellipse in one line. Diocles, On Burning

Mirrors, edited by
G. J. Toomer, Springer,
New York, 1976.Calculus October 22, 2010
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Diocles, in his book On Burning Mirrors, written around 190 b.c., studied
spherical and parabolic reflectors, both of which had been considered by earlier
scientists. Some had thought that a spherical reflector focuses incoming light
at a single point. This is false, and Diocles showed that a spherical reflector
subtending an angle of 60◦ reflects light that is parallel to its axis of symmetry
to points on this axis that occupy about one-thirteenth of the radius. He
proposed an experiment, “Perhaps you would like to make two examples of
a burning-mirror, one spherical, one parabolic, so that you can measure the
burning power of each.” Though the reflection property of a parabola was
already known, On Burning Mirrors contains the first known proof of this
property.

Exercise 3 shows that a spherical oven is fairly effective. After all, a potato
or hamburger is not a point.

EXERCISES

1.[R] Do the algebra to complete the proof that
tan(A) = tan(B).

2.[R] This exercise establishes the reflection property
of an ellipse. Refer to Figure C.3.6 for a description of
the notation.

(a) Find the slope of the tangent line at (x, y).

(b) Find the slope of the line through F = (c, 0) and
(x, y).

(c) Find tan(B).

(d) Find the slope of the line through F ′ = (c′, 0)
and (x, y).

(e) Find tan(A).

(f) Check that tan(A) = tan(B).

3.[M] Use trigonometry to show that a spherical mir-
ror of radius r and subtending an angle of 60◦ causes
light parallel to its axis of symmetry to reflect and meet
the axis in an interval of length

(
1√
3
− 1

2

)
r ≈ r/12.9.
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