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1098 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.1 Modeling and Differential Equations

We are now familiar with computing and interpreting derivatives of functions.
The derivative of a function at a point gives the slope of the graph of the func-
tion at that point (assuming the derivative exists). Points where the derivative
is zero (or does not exist) are the only possible locations for local extrema of
a function.

In this section we will see another use of derivatives: differential equations.
A differential equation is an equation that provides a relationship between
the derivatives of a function, the function, and the independent variables (input
to the function). Differential equations describe many physical situations, in
fact, differential equations are often referred to as the “language of science and
engineering”.

EXAMPLE 1 The radioactive substance Uranium-238 decays into Thorium-Get some specific
substances and decay rates. 234 with a half-life of 4.5× 109 years. The rate of change of the concentration

of Uranium-238 is always proportional to the current concentration. Let U(t)
denote the concentration of U-239 at time t. ThenNote that k > 0 and U > 0,

so that dU
dt < 0.

dU

dt
= −kU (13.1.1)

with k = ln(2)
4.5×109 . �

EXAMPLE 2 One model for a population subject that grows proportionalGet specifics from Ledder.

to its size but is also subject to a constant rate of reductions due to harvesting
is given by

dP

dt
= kP − h (13.1.2)

where P = P (t) is the size of the unknown population at time t, k is a positive
growth rate, and h is a positive constant reflecting the harvesting rate. �

EXAMPLE 3 A model for the temperature of an object is

dT

dt
= −k(T − S) (13.1.3)

where T = T (t) is the temperature of the object at time t, k > 0 is a constant
reflecting the rate at which heat leaves the object and S is the temperature of
the surrounding air. �

EXAMPLE 4 Newton’s Second Law of Motion states that the total force

Figure 13.1.1:

on a moving object is equal to the product of the object’s maas and accelera-
tion: F = ma. For an object with height y = y(t), the accelaration is a = y′′.
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§ 13.1 MODELING AND DIFFERENTIAL EQUATIONS 1099

If this object has mass m and is under the influence of both gravity and the
resistance of the air F = Fgrav + Fair. Let the object’s height be measured y = 0 is on the ground;

y > 0 is above the groundfrom the ground. The force of gravity is constant and works to pull the object g ≈ 9.8ft/sec2 ≈ 32m/sec2

back to the ground, so Fgrav = −mg. The force of air resistance is proportional
to velocity and works to retard the current motion, thus Fair = −ky′. The
differential equation that expresses Newton’s Second Law of Motion is

my′′ = −mg − ky′. (13.1.4)

�
The first three examples, (13.1.1), (13.1.2), and (13.1.3), are all first-order

differential equations. The fourth example (13.1.4) is a second-order differen-
tial equation. In general, the order of a differential equation is the order of
the highest derivative in the differential equation.

Differential equation (13.1.2) is a nonlinear differential equation because it
involves N2; the other three examples are all linear differential equations. More
generally, a linear differential equation is a differential equation that is
linear in the unknown function and its derivatives. A nonlinear differential
equation involves nonlinear terms such as y2, ey

′
, or cos(y).

Our current interest in differential equations is to recognize a differential
equation and to be able to make some basic classifications of the equation
(order, linear / nonlinear). We also want to begin to develop the ability to
write differential equations as a model of a real-world situation.

Absolute and Relative Rates of Change

When y(t) is the size of an object at time t, the absolute rate of change of
y is dy

dt
. The relateive rate of change of y, 1

y
dy
dt

, reflects the overall size of
the object.

EXAMPLE 5 Find the differential equation for the size of a population
that is growing at a constant absolute rate of change. Classify the differential
equation. Find all solutions that satisfy this equation.
SOLUTION Let the size of the population at time t be denoted by N =
N(t). The assumption that the population grows at a constant absolute rate
of change is expressed by

dN

dt
= k (13.1.5)

where k is a positive constant.
The differential equation (13.1.5) is both first-order and linear.
Any function whose first derivative is the constant k is a solution to (13.1.5).

In other words, any antiderivative of k is a solution to this differential equation.
Thus, N(t) = kt+ C for any choice of the constant C. �
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1100 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

The size of any population with constant absolute rate of change is a linear
function. The slope of the solution is the constant k. The value of C is the
size of the population at time t = 0.

EXAMPLE 6 Find the differential equation for the size of a population
that is growing at a constant relative rate of change. Classify the differential
equation. Find all solutions that satisfy this equation.
SOLUTION When a population grows with a constant relative rate of change
k, 1

N
dN
dt

= k so thatNotice that the absolute
rate of change is not

constant — the larger N is,
the faster N changes.

dN

dt
= kN. (13.1.6)

The differential equation in (13.1.6) is also linear and first-order.
An explicit formula for the solutions to (13.1.6) can be found by noticing

that
1

N

dN

dt
=

d

dt
(ln |N(t)|) .

Thus, d
dt

(ln |N(t)|) = k so that ln |N(t)| must be an antiderivative of k. This
means ln |N(t)| = kt+C. Taking the exponential of both sides of this equation
yields

eln |N(t)| = ekt+C

|N(t)| = eCekt

N(t) = ±eCekt

N(t) = Aekt

where A = ±eC can be any real number. �

Any function whose relative rate of change is constant is an exponential
function. When the relative rate of change, k, is positive the population grows
exponentially; when k is negative the population decays exponentially.EXERCISE: Half-life,

doubling time

Summary
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§ 13.1 MODELING AND DIFFERENTIAL EQUATIONS 1101

EXERCISES for Section 13.1 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]
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1102 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.2 Using Slope Fields to Analyze Differen-

tial Equations

• Use presentation and examples from ODE PowerTool

Summary
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§ 13.2 USING SLOPE FIELDS TO ANALYZE DIFFERENTIAL EQUATIONS 1103

EXERCISES for Section 13.2 Key: R–routine, M–moderate, C–challenging

1.[C] A

2.[C] B?

Calculus December 4, 2010



1104 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.3 Separable Differential Equations

Summary
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§ 13.3 SEPARABLE DIFFERENTIAL EQUATIONS 1105

EXERCISES for Section 13.3 Key: R–routine, M–moderate, C–challenging

Exercises in other sections
that involve separable ODEs
include: Exercise 22 in
Section 5.6

1.[C]

2.[C]
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1106 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.4 Euler’s Method

Summary
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§ 13.4 EULER’S METHOD 1107

EXERCISES for Section 13.4 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]

Calculus December 4, 2010



1108 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.5 Numerical Solutions to Differential Equa-

tions

This section will be written later.

Summary
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§ 13.5 NUMERICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS 1109

EXERCISES for Section 13.5 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]

Calculus December 4, 2010



1110 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.6 Picard’s Method

Summary
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EXERCISES for Section 13.6 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]

Calculus December 4, 2010



1112 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.S Chapter Summary

The text and exercises for the summary will be written after the organization
of the chapters is firmly settled.

EXERCISES for 13.S Key: R–routine, M–moderate, C–challenging

1.[M] Assume that the outdoors temperature increases linearly, h(t) = t + 1, for
simplicity. The temperature of the house starts at time t = 0 to be c < 0. Then it
warms up by Newton’s law. If that temperature is T (t), then T ′(t) = k(t− T (t)).

(a) Find T (t).

(b) Is the graph of T (t) asymptotic to the graph of the outdoor temperature?

2.[C] Consider the differential equation (y′)2 = 1 − y2 with −1 < y(0) < 0 and
y′(0) > 0.

(a) Explain why y is never decreasing.

(b) Explain why y is bounded.

(c) What is the largest value y can be? (Call this value L.)

(d) Is it possible that limt→∞ y(t) < L?

(e) Explain why y must cross the t-axis.

(f) What can be said about the angle where y crosses the t-axis?

(g) When is the curve concave up? concave down? Hint: Differentiate the ode.

(h) What might the graph of the solution look like?

(i) Give an example of a specific function that satisfies the equation. Hint: Think
trigonometry.

3.[C] In CIE 20 (Chapter 15) we found that the equation of a tractrix, which is the
path of the rear wheel in the preceding exercise. That analysis depends on showing
that (

dy

dx

)2

=
y2

a2 − y2
. (13.S.1)

Obtain the equation by differentiating both sides of the equation

y(s) = ke−s/a

with respect to x.
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Summary of Calculus II

Calculus December 4, 2010



1114 OVERVIEW OF CALCULUS III

Overview of Calculus III

The first two parts of this book have focused on calculus of a single variable.
The final third of this book extends the basic calculus ideas — limit, derivative,
and integral — to two- and three-dimensions.

December 4, 2010 Calculus



Chapter 14

Vectors

Vectors are sometimes
represented as arrows.Section 14.1 introduces vectors and their arithmetic. Section 14.2 examines

the dot product, which is a number. This includes the geometry of the dot
product and its role in projections. (A projection is related to the shadow cast
by parallel rays of light.)

Section 14.3 examines the cross product, which is a vector. Determinants
are reviewed, and the scalar triple product (a number) is introduced and used
to find the volume of a parallelepiped.

Section 14.4 develops a number of fundamental properties of lines and
planes, in terms of vectors. The distance from a point to a line or plane is
developed, a parametric description of a line is given, using the dot and cross
product. These ideas are used to talk about flows.

This algebra was developed primarily in response to James Clerk Maxwell’s
Treatise on Electricity and Magnetism, published in 1873. Josiah Gibbs, who
in 1863 earned the first doctorate in engineering awarded in the United States
and became a mathematical physicist, put vector analysis in its present form.
His Elements of Vector Analysis, published in 1881, introduced the notation
used in this chapter. Maxwell’s contributions will be studied in greater detail
in Chapter 18.

1115



1116 CHAPTER 14 VECTORS

14.1 The Algebra of Vectors

You have lived with vectors all your life. When you hanged a picture on wire
you dealt with three vectors: one describes the downward force of gravity
and two describe the force of the wires pulling up to oppose gravity, as in
Figure 14.1.1(a)

(a) (b)

Figure 14.1.1:

When you pull a wagon the force you use is represented by a vector, as in
Figure 14.1.1(b). The harder you pull, the larger the vector.

Figure 14.1.2:

A vector has a direction and a magnitude. You may think of it as an
arrow, whose length and direction carry information. Vectors are of use in
describing the flow of a fluid, as in Figure 14.1.2, or the wind, or the strength
and direction of a magnetic field.

Vectors in the Plane

A vector in the xy plane is an ordered pair of numbers x and y, denoted 〈x, y〉.
Its magnitude, or length, is

√
x2 + y2. Though the notation resembles that for
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§ 14.1 THE ALGEBRA OF VECTORS 1117

a point, (x, y), we treat vectors quite differently. We can add them, subtract
them and multiply them by a number. Two additional products of vectors are
introduced in Sections 14.2 and 14.3.

Figure 14.1.3: The ar-
row represents the vector
〈x, y〉.

We represent a vector by an arrow whose tail is at (0, 0) and whose head
(or “tip”) is at (x, y), as in Figure 14.1.3.

Figure 14.1.4:

More generally, we represent 〈x, y〉 by any pair of points P = (a1, a2) and
Q = (b1, b2) if b1 − a1 = x and b2 − a2 = y, as in Figure 14.1.4.

We speak then of “the vector from P to Q” and denote it
−→
PQ. A vector

〈x, y〉 will be denoted by bold face letters, such as A, B, r, v, and a. In
handwriting or on the blackboard they are decorated with a bar or arrow on

top, for instance
−→
A or A. A vector of length 1 is called a unit vector and is

topped with a little hat, as in r̂, which is read aloud as “r hat”.

Here is how we operate on vectors. Let A = 〈a1, a2〉 and B = 〈b1, b2〉 be
vectors and let c be a number.

(a) (b) (c) (d)

Figure 14.1.5:

(a) (b) (c) (d)

Figure 14.1.6:

Calculus December 4, 2010



1118 CHAPTER 14 VECTORS

Operation Definition Geometry Comment
A + B 〈a1 + b1, a2 + b2〉 Figure 14.1.5 The tail of B is placed at the

head of A
−A 〈−a1,−a2〉 Figure 14.1.6(a) −A points in opposite direc-

tion of A
A−B 〈a1 − b1, a2 − b2〉 Figure 14.1.6(b) What you add to B to get A
cA 〈ca1, ca2〉 Figure 14.1.6(c) Parallel to A and |c| times

as long as A
A
c

〈
a1

c
, a2

c

〉
Figure 14.1.6(d) Parallel to A and 1

c
times as

long as A (c 6= 0)

(a) (b) (c)

Figure 14.1.7:

The operation of addition obeys the usual rules of addition of numbers.
For instance, A + B = B + A and A + (B + C) = (A + B) + C. Also
A−B = A +−B. This is easy to establish using the definitions. In terms of
arrows it makes sense; see Figure 14.1.7(a).

A − B and A + (−B) appears as opposite sides of a parallelogram. Fig-
ure 14.1.7(a) shows both A + B and B + A; they are equal.

The magnitude of 〈x, y〉 is
√

(cx)2 + (cy)2 =
√
c2
√
x2 + y2, that is, |c|

times the magnitude of 〈x, y〉. If c is positive 〈cx, cy〉 and 〈x, y〉 point in the
same direction. If c is negative they point in opposite direction, as the arrows
in Figure 14.1.7(c) illustrate for c = 2 or −2.

When talking about numbers, such as c, x, and y, in the context of vectors,

we call them scalars. Thus in c
−→
A the scalar c is multiplying the vector A.

The vector 〈0, 0〉 is denoted 0 and is called the zero vector.

EXAMPLE 1 Let A = 〈1, 2〉, B = 〈3,−1〉 and c = −2. Complete A + B,
A−B and cA. Then draw the corresponding arrows.
SOLUTION

A+B = 〈1, 2〉+ 〈3,−1〉 = 〈1 + 3, 2 + (−1)〉 = 〈4, 1〉
A−B = 〈1, 2〉 − 〈3,−1〉 = 〈1− 3, 2− (−1)〉 = 〈−2, 3〉

cA = −2〈1, 2〉 = 〈−2, (1),−2(2)〉 = 〈−2,−4〉

December 4, 2010 Calculus



§ 14.1 THE ALGEBRA OF VECTORS 1119

(a) (b) (c)

Figure 14.1.8:

Note that A−B and A + B lie on the two diagonals of a parallelogram. (See
Figure 14.1.8.) �

Before we can make the similar definition for vectors in space, we must
introduce an appropriate coordinate system.

Coordinates in Space

Figure 14.1.9: ARTIST:
A “right hand” should be
added to this figure.

First, pick a pair of perpendicular intersecting lines to serve as the x and y
axes. The positive parts of these axes are indicated by arrows. These two lines
determine the xy plane. The line perpendicular to the xy plane and meeting
the x and y axes will be called the z-axis. The point where the three axes
meet is called the orgin. The 0 of the z-axis will be put at the origin. But
which half of the z-axis will have positive numbers and which half will have
the negative numbers? It is customary to determine this by the right-hand
rule. Moving in the xy plane through a right angle from the positive x-axis
to the positive y-axis determines a sense of rotation around the z-axis. If the
fingers of the right hand curl in that sense, the thumb points in the direction
of the positive z-axis, as shown in Figure 14.1.9.

Figure 14.1.10:

Any point Q in space is now described by three numbers: First, two num-
bers specify the x and y coordinates of the point P in the xy plane directly
below (or above) Q; then the height of Q above (or below) the xy plane is
recorded by the z coordinate of the point R where the plane through Q and
parallel to the xy plane meets the z-axis. The point Q is then denoted (x, y, z).
See Figure 14.1.10.

The points (x, y, z) for which z = 0 lie in the xy plane. There are an infinite
number of these points. The points (x, y, z) for which x = 0 lie entirely in the
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1120 CHAPTER 14 VECTORS

plane determined by the y and x axes, which is called the yz plane. Similarly,
the equation y−0 describe the xz plane. The xy, xz and yz planes are called
the coordinate planes.

EXAMPLE 2 Plot the point (1, 2, 3).

(a) (b)

Figure 14.1.11:

SOLUTION One way is to first plot the point (1, 2) in the xy plane. Then,
on a line perpendicular to the xy plane at that point, show the point (1, 2, 3)
as done in Figure 14.1.11(a).

Another way is to draw a box whose edges are parallel to the axes and
which has the origin (0, 0, 0) and (1, 2, 3) as done in Figure 14.1.11(b). (This
time, the y and z axes make a right angle.) �

Just as the axes in the xy plane divide the plane with four quadrants, the
three coordinate planes divide space with eight octants.

Vectors in Space

The only difference between a vector in space and a vector in the xy plane is
that it has three components, x, y, and z, and is written 〈x, y, z〉. Its length or
magnitude is defined as

√
x2 + y2 + z2. The definition of the sum and differ-

ence of such vectors is so similar to the definition for planar vectors that we will
not list them. For instance, 〈a1, a2, a3〉+〈b1, b2, b3〉 is 〈a1 + b1, a2 + b2, a3 + b3〉.
The biggest difference is that they are harder to draw, even though each can
be suggested by our arrow. It may help visualize such a vector by drawing a
box in which it is a main diagonal. For instance, to draw the vector 〈2, 3,−1〉
you may draw the box shown in Figure 14.1.12

Figure 14.1.12:
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§ 14.1 THE ALGEBRA OF VECTORS 1121

This representation of A has its tail at the arrow. Of course the arrow and
box could be drawn with the tail of the arrow anywhere else.

The Standard Unit Vectors

The three most important unit vectors indicate the positive directions of the
positive x, y, and z axes. They will be denoted i, j and k, respectively. For
instance, i = 〈1, 0, 0〉. The vectors 〈x, y, z〉 can also be written xi + yj + zk.

EXAMPLE 3 Draw i, j, k and i + 2j + 3k.
SOLUTION Figure 14.1.13(a) shows i, j, k and Figure 14.1.13(b) shows

(a) (b)

Figure 14.1.13:

i + 2j + 3k. �

The magnitude of A is indicated by ‖A‖. ‖A‖ is a scalar and A/‖A‖ is a
vector.

The vector A
‖A‖ is a unit vector for any non-zero vector A. To see this, we

let A = 〈x, y, z〉 and compute A/‖A‖:

A

‖A‖
=

〈x, y, z〉√
x2 + y2 + z2

= 〈 x√
x2 + y2 + z2

,
y√

x2 + y2 + z2
,

z√
x2 + y2 + z2

〉.

The square of the length of A/‖A‖ is(
x√

x2 + y2 + z2

)2

+

(
y√

x2 + y2 + z2

)2

+

(
z√

x2 + y2 + z2

)2

=
x2 + y2 + z2

x2 + y2 + z2
= 1.

Thus A/‖A‖ is a unit vector.
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1122 CHAPTER 14 VECTORS

Example 4 shows how vectors can be used to establish geometric properties.

EXAMPLE 4 Prove that the line which joins the midpoints of two sides

Figure 14.1.14:
Figure 14.1.15:

of a triangle is parallel to the third side and half as long.
SOLUTION Let the triangle have vertices P , Q, and R. Let the midpoint
of side PQ be M and the midpoint of side PR be N as in Figure 14.1.14.

Introduce an xy coordinate system in the plane of the triangle. Through
its origin could be anywhere in the plane, we should put it at P in order to
simplify the calculations. (See Figure 14.1.15.)

We wish to show that the vector
−−→
MN is 1

2

−→
QR. To do so, we compute

−−→
MN

and
−→
QR in terms of vectors involving P , Q, and R.

First of all,
−−→
PM = 1

2

−→
PQ and

−−→
PN = 1

2

−→
PR. Thus

−−→
MN =

1

2

−→
PR− 1

2

−→
PQ =

1

2
(
−→
PR−

−→
PQ) =

1

2
(
−→
QR).

�

The next example shows the importance of thinking vectorally. Not think-
ing that way, one of the other had a picture fall and break a vase.

EXAMPLE 5 A picture weighing 10 pounds has a wire on the back, which
rests on a picture hook, as shown in Figure 14.1.16(a). Find the force (tension)
on the wire.
SOLUTION There are three vectors involved. One is straight down, with
magnitude 10 lbs. and two are along the wire, with unknown magnitude F :
‖v1‖ = F = ‖v2‖.

(a) (b)

Figure 14.1.16:

To balance the downward force of gravity, each end of the wire must have a
vertical component of 5 lbs. Since the angle with the horizontal is 10◦ we must
have F sin(10◦) = 5 or F = 5/ sin(10◦) ≈ 29 pounds. That is much greater
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than the weight of the painting and creates quite a pull on the screws at the
bases of the wire. This force can (sadly, we learned) eventually pull a screw
out of the wall. �

Summary

We introduced the notion of a vector 〈x, y〉 in the xy plane or 〈x, y, z〉 in
space and defined their addition and subtraction. Furthermore we defined the
operation of a scalar c as a vector 〈x, y, z〉, as 〈cx, cy, cz〉.

We visualized vectors with the aid of arrows, which could be drawn any-
where in the xy plane or in space.

Each vector in the xy-plane can be written as xi + yj. Vector in space can
be written as xi + yj + zk.
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1124 CHAPTER 14 VECTORS

EXERCISES for Section 14.1 Key: R–routine, M–moderate, C–challenging

In Exercises 1 and 2 use the plane of your paper as the xy plane.
1.[R] Draw the vector 2i + 3j, placing its tail at (a) (0, 0), (b) (−1, 2), (c) (1, 1).

2.[R] Draw the vector −i+ 2j, placing its tail at (a) (0, 0), (b) (3, 0), (c) (−2, 2).

In Exercises 3 to 6 draw the vector A and enough extra lines to show how it is
situated in space.
3.[R] A = 2i + j + 3k,

(a) tail at (0, 0, 0),

(b) tail at (1, 1, 1).

4.[R] A = i + j + k,

(a) tail at (0, 0, 0),

(b) tail at (2, 3, 4).

5.[R] A = −i− 2j + 2k,

(a) tail at (0, 0, 0),

(b) tail at (1, 1,−1).

6.[R] A = j + k,

(a) tail at (0, 0, 0),

(b) tail at (−1,−1,−1).

In Exercises 7 to 10 plot the points P and Q, draw the vector
−−→
PQ, express it in the

form xi + yj + zk, and find its length.
7.[R] P = (0, 0, 0), Q = (1, 3, 4)

8.[R] P = (1, 2, 3), Q = (2, 5, 4)

9.[R] P = (2, 5, 4), Q = (1, 2, 2)
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10.[R] P = (1, 1, 1), Q = (−1, 3,−2)

In Exercises 11 and 12 express the vector A in the form xi + yj. North is along the
positive y-axis and east is along the positive x-axis.
11.[R]

(a) ‖A‖ = 10 and A points northwest;

(b) ‖A‖ = 6 and A points south;

(c) ‖A‖ = 9 and A points southeast;

(d) ‖A‖ = 5 and A points east.

12.[R]

(a) ‖A‖ = 1 and A points southwest;

(b) ‖A‖ = 2 and A points west;

(c) ‖A‖ =
√

8 and A points northeast;

(d) ‖A‖ = 1/2 and A points south.

13.[M] The wind is 30 miles per hour to the northeast. An airplane is traveling
100 miles per hour relative to the air, and the vector from the tail of the plane to
its front tip points to the southeast. (See Figure 14.1.17.)

(a) What is the speed of the plane relative to the ground?

(b) What is the direction of the flight relative to the ground?
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1126 CHAPTER 14 VECTORS

Figure 14.1.17:
14.[M] (See Exercise 13.) The jet stream is moving 200 miles per hour to the
southeast. A plane with a speed of 550 miles per hour relative to the air is aimed
to the northwest.

(a) Draw the vectors representing the wind and the plane relative to the air.
(Choose a scale and make an accurate drawing.)

(b) Using your drawing, estimate the speed of the plane relative to the ground.

(c) Compute the speed in (b) exactly.

15.[R] Compute A + B and A−B if

(a) A = 〈−1, 2, 3〉 and B = 〈7, 0, 2〉.

(b) A = 3j + 4k and B = 6i + 7j.

16.[R] Compute A + B and A−B if

(a) A = 〈1/2, 1/3, 1/6〉 and B = 〈2, 3,−1/3〉.

(b) A = 2i + 3j + 4k and B = −i + 5j + 6k.

17.[R] Compute and sketch cA if A− 2i + 3j + k and c is

(a) 2,

(b) −2,

(c) 1
2 ,

(d) −1
2 .

18.[R] Express each of the following vectors in the form c(2i + 3j + 4k) for suitable
c:

(a) 〈4, 6, 8〉

(b) −2i− 3j− 4k

(c) 0
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(d) 2
11 i + 3

11 j + 4
11k

19.[R] If ‖A‖ = 6, find the length of the following vectors

(a) −2A

(b) A/3

(c) A/‖A‖

(d) −A

(e) A + 2A.

20.[R] If ‖A‖ = 3, find the length of the following vecrps

(a) −4A

(b) 13A− 7A

(c) A/‖A‖

(d) A/0.05

(e) A−A.

21.[R]

(a) Find a unit vector u that has the same direction as A = i + 2j + 3k.

(b) Draw A and u, with their tails at the origin.

22.[R]

(a) Find a unit vector u that has the same direction as A = 2i− 2j + 3k.

(b) Draw A and u, with their tails at the origin.

23.[R] Using the definition of addition of vectors A = 〈a1, a2, a3〉 and B =
〈b1, b2, b3〉, show the A + B = B + A and A−B = A + (−B).
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24.[R] Using the definition of addition of vectors show that A + (B + C) =
(A + B) + C.

25.[R] Which unit vector points in the same direction as 2i + 3j + 4k?

26.[R] Sketch a unit vector pointing in the same direction as 3i + 4j.

27.[M] (Midpoint formula) Let A and B be two points in space. Let M be their
midpoint. Let A =

−→
OA, B =

−−→
OB, and M =

−−→
OM .

(a) Show that M = A + 1
2(B−A).

(b) Deduce that M = (A + B)/2. Hint: Draw a picture.

28.[M] Let A and B be two distinct points in space. Let C be the point on the
line segment AB that is twice as far from A as it is from B. Let A =

−→
OA, B =

−−→
OB,

and C =
−−→
OC. Show that C = 1

3A + 2
3B. Hint: Draw a picture.

29.[M] Show that 2i + 3j + 4k and 6i + 9j + 12k are parallel.

30.[M] Show that i− 3j + 6k and −2i + 6j− 12k are parallel.

31.[M] This exercise outlines a proof of the distributive rule: c(A+B) = cA+ cB.
Write A and B in components, and obtain the rule by expressing both c(A + B)
and cA + cB in components.

32.[M]

(a) Show that the vectors u1 = 1
2 i + (

√
3/2j and u2 = (

√
3/2i− 1

2 j are perpendic-
ular unit vectors. Hint: What angles do they make with the x-axis?

(b) Find scalars x and y such that i = xu1 + yu2.

33.[M]

(a) Show that the vectors u1 = (
√

2/2i) + (
√

2/2j) and u2 = (−
√

2/2i) + (
√

2/2j)
are perpendicular unit vectors. Hint: Draw them.

(b) Express i in the form of xu1 + yu2. Hint: Draw i,u1, and u2.

(c) Express j in the form xu1 + yu2.

(d) Express −2i + 3j in the form xu1 + yu2.
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34.[M]

(a) Draw a unit vector u tangent to the curve y = sinx at (0, 0).

(b) Express u in the form xi + yj.

35.[M]

(a) Draw a unit vector u tangent to the curve y = x3 at (1, 1).

(b) Express u in the form xi + yj.

36.[M]

(a) What is the sum of the five vectors shown in Figure 14.1.18?

(b) Sketch the figure corresponding to the sum A + C + D + E + B.

Figure 14.1.18:
37.[M] A rectangular box has sides of length x, y, and z. Show that the length
of a longest diagonal (arc joining opposite corner) is

√
x2 + y2 + z2. Hint: Use the

Pythogorean Theorem, twice.

38.[M] See Example 5 concerning hanging a picture. What would be the tension
in the wire if it were at an angle of

(a) 60◦ instead of 10◦ to the horizontal,

(b) 5◦ instead of 10◦ to the horizontal?
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39.[C]

(a) Draw the vectors A = 2i + j, B = 4i− j, and C = 5i + 2j.

(b) With the aid of the drawing show that there are scalars x and y such that
C = xA + yB.

(c) Using the drawing in (a), estimate x and y.

(d) Find x and y exactly.

40.[C] (See Exercise 13.) Let A and B be two nonzero and nonparallel vectors in
the xy plane. Let C be any vector in the xy plane. Show with the aid of a sketch
that there are scalars x and y such that C = xA + yB.

41.[C] Let A, B and C be three vectors that do not all lie in one plane. Let D be
any vector in space. Show with the aid of a sketch that there are scalars x, y, and
z such that D = xA + yB + zC.

42.[C] Let A, B and C be the vertices of a triangle. Let A =
−→
OA, B =

−−→
OB, and

C =
−−→
OC.

(a) Let P be the point that is on the line segment joining A to the midpoint
of the edge BC and twice as far from A as from the midpoint. Show that−−→
OP = (A + B + C)/3.

(b) Use (a) to show that the three medians of a triangle are concurrent.

43.[C] The midpoints of a quadrilateral in space are joined to form another quadri-
lateral. Prove that this second quadrilateral is a parallelogram.

44.[C]

(a) Using an appropriate diagram, explain why ‖A + B‖ ≤ ‖A‖+ ‖B‖. (This is
called the triangle inequality.

(b) For which pairs of vectors A and B is ‖A + B‖ = ‖A‖+ ‖B‖?

45.[C] From Exercise 44 deduce that for any four real numbers x1, y1, x2, and y2,
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x1x2 + y1y2 ≤
√
x2

1 + y2
1

√
x2

2 + y2
2.

When does equality hold?
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14.2 The Dot Product of Two Vectors
The dot product is a

number, or scalar. The “dot product” or “scalar product” is a number that is defined for
every pair of vectors. Consider a rock being pulled along level ground by a

(a) (b)

Figure 14.2.1:

rope inclined at at fixed angle to the ground. Let the force applied to the rock
be represented by the vector F. The force F can be expressed as the sum of a
vertical force F2 and a horizontal force F1, as shown in Figure 14.2.1(b).

Figure 14.2.2:

How much work is done by the force F in moving the rock along the ground?
The physicist defines the work accomplished by a constant force F (whatever
direction it may have) as the product of the component of F in the direction
of motion and the distance traveled. Say that the force F, as shown in Fig-
ure 14.2.2, moves an object along a straight line from the tail to the head of
R.

By definition

Work = ‖F‖ cos(θ)︸ ︷︷ ︸
Force in Direction of R

· ‖R‖︸︷︷︸
Distance traveled

where θ is the angle between R and F.

The force F2 in Figure 14.2.1 accomplishes no work. The work accom-
plished by F in pulling the rock is the same as that accomplished by F1.
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The Dot Product

This important physical concept illustrates the dot product of two vectors,
which will be introduced after the following definition.

DEFINITION (Angle between two nonzero vectors.) Let A and

Figure 14.2.3:

B be two nonparallel and nonzero vectors. They determine a tri-
angle and an angle θ, shown in Figure 14.2.3. The angle between
A and B is θ. Note that

0 < θ < π

If A and B are parallel, the angle between them is 0 (if they have
the same direction) or π (if they have opposite directions). The
angle between 0 and any other vector is not defined.

Figure 14.2.4:

The angle between i and j is π/2. The angle between A = −i − j and
B = 3i is 3π/4, as Figure 14.2.4 shows. The angle between k and −k is π; the
angle between 2i and 5i is 0.

DEFINITION (Dot product) Let A and B be two nonzero vec- In the next section we
define another product of A
and B; it will be a vector

tors. Their dot product is the number Sometimes we write
cos(A,B) instead of cos(θ).

‖A‖‖B‖ cos(θ),

where θ is the angle between A and B. If A or B is 0, their dot
product is 0. The dot product is denoted A ·B. It is a scalar and
is also called the scalar product of A and B.

The dot product satisfies several useful identities, which follow from the defi-
nition:

A ·B = B ·A (the dot product is commutative)
A ·A = ‖A‖2

(cA) ·B = c(A ·B) = A · (cB) (c is a scalar)
and 0 ·A = 0.

For instance, to establish that A ·A = ‖A‖2, we calculate A ·A:

A ·A = ‖A‖‖A‖ cos(θ) = ‖A‖2,

since the angle θ between A and A is 0, and cos(0) = 1.

EXAMPLE 1 Find the dot product A ·B if A = 3i + 3j and B = −5i.
SOLUTION Inspection of Figure 14.2.5 shows that θ, the angle between A

Figure 14.2.5:

and B, is 3π/4. Also,

‖A‖ =
√

32 + 32 =
√

18 and ‖B‖ =
√

52 + 02 = 5.
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Thus

A ·B = ‖A‖‖B‖ cos θ =
√

18 ·

(
−
√

2

2

)
= −15.

�

EXAMPLE 2 Find

1. i · j,

2. i · i,

3. 2k · (−3k).

SOLUTIONRecall that i and j are
perpendicular, be definition.

1. The angle between i and j is π/2. Thus

i · j = ‖i‖‖j‖ cos
(π

2

)
= 1 · 1 · 0 = 0.

This is a special case of the
fact that A ·A = ‖A‖2.

2. The angle between i and i is 0. Thus

i · i = ‖i‖‖i‖ cos(0) = 1 · 1 · 1 = 1.

3. The angle between 2k and −3k is π. Thus

2k · (−3k) = ‖2k‖‖ − 3k‖ cos(π) = 2 · 3 · (−1) = −6.

� Computations like those in Example 2 show that ai · bi = ab, aj · bj = ab,

and ak · bk = ab, while ai · bj = 0, ai · bk = 0, and aj · bk = 0.
In particular, i · i = j · j = k · k = 1, while i · j = i · k = j · k = 0.

The Geometry of the Dot Product

Let A and B be nonzero vectors and θ the angle between them. Their dot
product isObserve that, by definition,

the zero vector, 0, is
perpendicular to every

vector in the xy plane.

A ·B = ‖A‖‖B‖ cos(θ).

The quantities ‖A‖ and ‖B‖, being the lengths of vectors, are positive.
However, cos(θ) can be positive, zero, or negative. Note that cos(θ) = 0 only
when θ = π/2, that is when A and B are perpendicular. So the dot product
provides a way of telling whether A and B are perpendicular:A test for perpendicularity

December 4, 2010 Calculus



§ 14.2 THE DOT PRODUCT OF TWO VECTORS 1135

Let A and B be nonzero vectors. If A·B = 0, then A and B are perpendicular.
Conversely, if A and B are perpendicular, then A ·B = 0.

Figure 14.2.6:

As Figure 14.2.6 shows, A can be expressed as the sum of a vector parallel
to B and a vector perpendicular to B.

The vector parallel to B we call the projection of A on B, denoted
projB A. The vector perpendicular to B is then A− projB A.

The length of projB A is ‖A‖| cos θ|, which equals |A·B|‖B‖ . If θ is less than

π/2, projB A points in the same direction as B.
If π/2 < θ ≤ π, then projB A points in the direction opposite to that of B.

In either case, since B/‖B‖ is the unit vector in the direction of B, we have

Let A and B be vectors. projB A = A·B
‖B‖

B
‖B‖

• If A ·B is positive, then the angle between the vectors is less than π/2.
In this case projB A points in the same direction as B.

• If A · B is negative, then the angle between the vectors is greater than
π/2. In this case projB A points in the opposite direction as B.

Figure 14.2.7:

If A · B is negative, then the angle between A and B is obtuse (greater
than π/2). Figure 14.2.7 shows this situation. As Figure 14.2.7 illustrates,
projB A points in the direction opposite that of B.

Computing A ·B in Terms of Their Components

We defined A · B, using the geometric interpretation of A and B. But what
if A and B are given in terms of their components, A = 〈a1, a2, a3〉 and
B = 〈b1, b2, b3〉? How would we find A ·B in that case?

The answer turns out to be quite simple:

If A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉, then A ·B = a1b1 + a2b2 + a3b3.

The dot product is the sum of three numbers. Each number is a product of
corresponding components.

For vectors in the xy-plane, the result is a bit shorter:
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If A = 〈a1, a2〉 and B = 〈b1, b2〉, then A ·B = a1b1 + a2b2.

A proof of the Law of
Cosines is defined in

Exercise 45

(a) (b)

Figure 14.2.8:

For convenience we establish the second result. Our reasoning rests on
the Law of Cosines. It says that in a triangle where sides have lengths a, b,
and c, and angle θ opposite the side with length c, as in Figure 14.2.8(b),
c2 = a2 + b2 − 2ab cos(θ).

Then

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2‖A‖‖B‖ cos(θ),

which tells us that

‖A−B‖2 = ‖A‖2 + ‖B‖2 − 2A ·B, (14.2.1)

All that’s left is to complete the three squares and solve for A ·B.

Translating (14.2.1) into components, we have

(a1 − b1)2 + (a2 − b2)2 = a2
1 + a2

2 + b2
1 + b2

2 − 2A ·B

or

a2
1 − 2a1b1 + b2

1 + a2
2 − 2a2b2 + b2

2 = a2
1 + a2

2 + b2
1 + b2

2 − 2A ·B.

Thus

−2(a1b1 + a2b2) = −2A ·B,

from which it follows, as the night follows the day, that

A ·B = a1b1 + a2b2.
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The argument in the case of space vectors is practically the same, as doing
Exercise 38 will show.

EXAMPLE 3 Find cos(A,B) when A = 〈6, 3〉 and B = 〈−1, 1〉.
SOLUTION We know that A ·B = ‖A‖‖B‖ cos(A,B). Thus

6 · (−1) + 3 · (1) =
√

22 + 32
√

(−1) + 12 cos(A,B)

or − 3 =
√

26 cos(A,B),

from which we conclude that cos(A,B) = −3/
√

26.

�

Figure 14.2.9:

Clearly θ is an obtuse angle. A calculator would estimate θ, if we were
curious. Figure 14.2.9 shows that the answer is reasonable.

As Example 3 illustrates

cos(θ) = A·B
‖A‖‖B‖

EXAMPLE 4

1. Find the projection of A = 2i + j on B = −3i + 2j.

2. Express A as the sum of a vector parallel to B and a vector perpendicular
to B.

SOLUTION

1. In this case

projB A =
A ·B
‖B‖

B

‖B‖

=
(2i + j) · (−3i + 2j)

| − 3i + 2j|
−3i + 2j

| − 2i + 2j|

=
(−6 + 2)√

13

(−3i + 2j)√
13

=
−4

13
(−3i + 2j) =

12

13
i− 8

13
j.

Figure 14.2.10 shows the vector A, B, and projB A.

Figure 14.2.10:

In this case A ·B is negative, the angle between A and B is obtuse, and
projB A points in the direction opposite to the direction of B.
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2. The vector A− projB A is perpendicular to B and we have

A = (projB A) + (A− projB A)

=

(
12

13
i− 8

13
j

)
+

(
2i + j−

(
12

13
i− 8

13
j

))
=

(
12

13
i− 8

13
j

)
︸ ︷︷ ︸

parallel to B

+

(
14

13
i +

21

13
j

)
︸ ︷︷ ︸
perpendicular to B

.

�

The scalar A · (B/‖B‖) is the component of A in the direction of B,
denoted compB(A). It can be positive, negative, or zero. Its absolute value is
the length of projB(A).

EXAMPLE 5 Find projB(A) and compB(A) when A = i+3j and B = i−j.

Figure 14.2.11:

SOLUTION Since ‖B‖ =
√

12 + 12 =
√

2 and A ·B = 1− 3 = −2,

projB(A) =
A ·B
‖B‖

B

‖B‖
=
−2√

2

i− j√
2

= −i + j

and compB(A) = (A · B)/‖B‖ = −2/
√

2 = −
√

2. This agrees with Fig-
ure 14.2.11. �

Properties of the Dot Product

With the aid of the formula for the dot product in terms of components, it is
easy to establish the following properties:

A ·B = B ·A commutative

A · (B + C) = A ·B + A ·C distributive

cA ·B = c(A ·B) c a scalar.

cos(θ) = cos(A,B) =
A ·B
‖A‖‖B‖

. (14.2.2)
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Equation (14.2.2) tells us how to find the cosine of the angle between two
vectors. With the aid of a calculator, we then can find the angle itself. Note
that if cos(θ) > 0, then 0 < θ < π/2, and when cos(θ) < 0, then π/2 < θ ≤ π.

EXAMPLE 6 Show that the vectors 〈2,−3, 4〉 and 〈1, 2, 1〉 are perpendic-
ular.

SOLUTION We want to show that the angle θ between the vector in π/2.
To do this we show cos(θ) = 0. Now,

cos(θ) =
A ·B
|A||B|

=
(1 · 2) + 2(−3) + 1 · 4

|A||B|
=

2− 6 + 4

|A||B|
= 0.

Therefore the vectors are perpendicular. �

Example 6 illustrates this test for two vectors being perpendicular to each
other.

Two nonzero vectors are perpendicular if their dot product is 0.
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The Dot Product in Business and Statistics
Imagine that a fast food restaurant sells 30 hamburgers, 20 salads, 15 soft
drinks, and 13 orders of french fries. This is recorded by the four-dimensional
“vector” 〈30, 20, 15, 13〉. A hamburger sells for $1.99, a salad for $1.50, a soft
drink for $1.00, and an order of french fries for $1.10. The “price vector”
is 〈1.99, 1.50, 1.00, 1.10〉. The dot product of these two vectors, 30(1.99) +
20(1.50) + 15(1.00) + 13(1.10), would be the total amount paid for all items.
Descriptions of the economy use “production vectors,” “cost vectors,” “price
vectors,” and “profit vectors” with many more than the four componenets of
our restaurant example.
In statistics the coefficient of correlation is defined in terms of a dot prod-
uct. For instance, you may determine the height and weight of n persons.
Let the height of the ith person be hi and the weight be wi. Let h be
the average of the n heights and w be the average of the n weights. Let
H = 〈h1 − h, h2 − h, · · · , hn − h〉 and W = 〈w1 − w,w2 − w, · · · , wn − w〉.
Then coefficient of correlation between the heights and weights is defined to
be

H ·W
‖H‖‖W‖

.

In analogy with vectors in the plane or space,

HW =
n∑
i=1

(hi − h)(wi − w), ‖H‖ =

√√√√ n∑
i=1

(hi − h)2, ‖W‖ =

√√√√ n∑
i=1

(wi − w)2.

It turns out that the coefficient of correlation is simply the cosine
of the angle between the points H = 〈h1 − h, h2 − h, · · · , hn − h〉 and
W〈w1 − w,w2 − w, · · · , wn − w〉 in n-dimensional space.

Summary

We defined the dot (scalar) product of two vectors A and B geometrically
as ‖A‖‖B‖ cos(θ), where θ is the angle between them. We then obtained a
formula for A ·B in terms of their components, as 〈a1, a2〉·〈b1, b2〉 = a1b1 +a2b2

and a similar formula for the dot product of two space vectors.
The dot product enabled us to express a vector A as the sum of a vector

parallel to B (projB A) and a vector perpendicular to B (A− projB A).
When their dot product is 0, two non-zero vectors are perpendicular.
The zero-vector, 0, is considered to be perpendicular to every vector.
More generally, we can use the dot product to find the angle θ between two

vectors:
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cos(θ) = cos(A,B) =
A ·B
|A||B|

.
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EXERCISES for Section 14.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4 compute A ·B.
1.[R] A has length 3, B has length 4, and the angle between A and B is π/4.

2.[R] A has length 2, B has length 3, and the angle between A and B is 3π/4.

3.[R] A has length 5, B has length 1
2 , and the angle between A and B is π/2.

4.[R] A is the zero vector 0, and B has length 5.

In Exercises 5 to 8 compute A ·B using the formula in terms of components.
5.[R] A = −2i + 3j, B = 4i + 4j

6.[R] A = 0.3i + 0.5j, B = 2i− 1.5j

7.[R] A = 2i− 3j− k, B = 3i + 4j− k

8.[R] A = i + j + k,B = 2i + +3j− 5k

9.[R]

(a) Draw the vectors 7i + 12j and 9i− 5j.

(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by examining their dot product.

10.[R]

(a) Draw the vectors i + 2j + 3k and i + j− k.

(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by examining their dot product.

11.[R]

(a) Estimate the angle between A = 3i + 4j and B = 5i + 12j by drawing them.

(b) Find the angle between A and B.

December 4, 2010 Calculus



§ 14.2 THE DOT PRODUCT OF TWO VECTORS 1143

12.[R] Let P = (6, 1), Q = (3, 2), R = (1, 3), and S = (4, 5).

(a) Draw the vectors
−−→
PQ and

−→
RS.

(b) Using the diagram in (a) estimate the angle between
−−→
PQ and

−→
RS.

(c) Using the dot product, find the cos(
−−→
PQ,

−→
RS), that is, the cosine of the angle

between
−−→
PQ and

−→
RS.

(d) Using (c) and a calculator, find the angle in (b).

13.[R] Find the angle between 2i− 4j + 6k and i + 2j + 3k.

14.[R] Find the angle betwen i + j + 3k and 3i + 6j− 3k.

15.[R] Find the angle between
−−→
AB and

−−→
CD if A = (1, 3), B = (7, 4), C = (2, 8),

and D = (1,−5).

16.[R] Find the angle between
−−→
AB and

−−→
CD if A = (1, 2,−5), B = (1, 0, 1),

C = (0,−1, 3), and D = (2, 1, 4).

17.[R] Find the length of the projection of −4i + 5j on the line through (2,−1)
and (6, 1).

(a) By making a drawing and estimating the length by eye.

(b) By using the dot product.

18.[R]

(a) Find a vector C parallel to i + 2j and a vector D perpendicular to i + 2j such
that −3i + 4j = C + D.

(b) Draw the vectors in (a) to check that your answer is reasonable.

19.[R]

(a) Find a vector C parallel to 2i− j and a vector D perpendicular to 2i− j such
that 3i + 4j = C + D.
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(b) Draw the vectors in (a) to check that your answer is reasonable.

20.[M] Give an example of a vector in the xy plane that is perpendicular to 3i−2j.

21.[M] Give an example of a vector that is perpendicular to 5i− 3j + 4k.

Exercises 22 to 26 refer to the cube in Figure 14.2.12.

Figure 14.2.12:

22.[M] Find cos(
−→
AC,
−−→
BD), the cosine of the angle between

−→
AC and

−−→
BD.

23.[M] Find cos(
−→
AF,
−−→
BD), the cosine of the angle between

−→
AF and

−−→
BD.

24.[M] Find cos(
−→
AC,
−−→
AM), the cosine of the angle between

−→
AC and

−−→
AM .

25.[M] Find cos(
−−→
MD,

−−→
MF ), the cosine of the angle between

−−→
MD and

−−→
MF .

26.[M] Find cos(
−−→
EF,

−−→
BD), the cosine of the angle between

−−→
EF and

−−→
BD.

27.[R] How far is the point (1, 2, 3) from the line through the points (1, 4, 2) and
(2, 1,−4)?

28.[M] If A ·B = A ·C and A is not 0, must B = C?

29.[C] If ‖A‖ = 3 and ‖B‖ = 5,

(a) how large can ‖A +B‖ be?

(b) how small?

30.[C] By considering the dot product of the two unit vectors u1 = cos θ1i+ sin θ1j
and u2 = cos θ2i + sin θ2j, prove that

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2.
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31.[C] Consider a tetrahedron (not necessarily regular). It has six edges. Show
that the line segment joining the midpoints of two opposite edges is perpendicular to
the line segment joining another pair of opposite edges if anly only if the remaining
two edges are of the same length.

32.[C] The output of a firm that manufactures x1 washing machines, x2 refrig-
erators, x3 dishwashers, x4 stoves, and x5 clothes dryers is recorded by the five-
dimensional production vector P = 〈x1, x2, x3, x4, x5〉. Similarly, the cost vector
C = 〈y1, y2, y3, y4, y5〉 records the cost of producing each item; for instance, each
refrigerator costs the firm y2 dollars.

(a) What is the economic significance of P·C = 〈20, 0, 7, 9, 15〉·〈50, 70, 30, 20, 10〉?

(b) If the firm doubles the production of all items in (a), what is its new production
vector?

33.[C] Let P1 be the profit from selling a washing machine and P2, P3, P4, and P5

be defined analogously for the firm of Exercise 32. (Some of the P ’s may be nega-
tive.) What does it mean to the firm to have 〈P1, P2, P3, P4, P5〉 “perpendicular” to
〈x1, x2, x3, x4, x5〉?

SHERMAN: This exercise is
also #46 in 14.1. Keep only
one. In Chapter Summary?
Your thoughts?

34.[C] If a1, a2, b1, b2 are four numbers, explain why

|a1b1 + a2b2| ≤
√
a2

1 + a2
2

√
b21 + b22.

35.[R] Prove that A ·B = B ·A

(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms of components.

36.[R] Prove that A · (B + C) = A ·B + A ·C

(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms of components.
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37.[C] Don’t try to obtain the equation A · (B + C) = A ·B + A ·C geometrically.
If you use the geometric definition of the dot product, what does that distributive
law say? Picture B and C in a horizontal plane and A not in that plane, as in Fig-

ure 14.2.13.

Figure 14.2.13:
It’s not so obvious is it?

38.[R] Prove that 〈a1, a2, a3〉 · 〈b1, b2, b3〉 = a1b1 +a2b2 +a3b3 Hint: Read the proof
in the case of planar vectors on page 1136.

39.[C] Let u1, u2, and u3 be unit vectors such that each two are perpendicular.
Let A be a vector.

(a) Draw a picture that shows that there are scalars x, y, and z such that A =
xu1 + yu2 + zu3.

(b) Express x as a dot product.

(c) Express x− z as a dot product.

40.[M]

(a) Let A be a vector in the xy plane and u1 and u2 perpendicular unit vectors
in that plane. If A · u1 = 0 and A · u2 = 0, must A = 0?

(b) Let v1 and v2 be nonparallel unit vectors in the xy plane. If A · v1 and
A · v2 = 0, must A = 0?

41.[C] A firm sells x chairs at C dollars per chair and y desks at D dollars per
week. It costs the firm c dollars to make a chair and d dollars to make a desk. What
is the economic interpretation of
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(a) Cx?

(b) (xi + yj) · (Ci +Dj)?

(c) (xi + yj) · (ci + dj)?

(d) (xi + yj) · (Ci +Dj) > (xi + yj) · (ci + dj)?

42.[C] A force F of 10 newtons has the direction of the vector 2i + 3j + k. This
force pushes an object on a ramp in a straight line from the point (3, 1, 5) to the
point (4, 3, 7), where coordinates are measured in meters. How much work does the
force accomplish?

43.[C] Show that if the two diagonals of the parallelogram are perpendicular, then
the four sides have the same length (forming a rhombus). Hint: Use the dot prod-
uct.

44.[C] Some molecules consist of 4 atoms arranged as the vertices of a regular
tetrahedron, for instance at the points labeled A, B, C, and D in Figure 14.2.14.

Figure 14.2.14:

(a) Show that A, B, C, and D are vertices of a regular tetrahedron. Hint: Show
that the four faces are equilateral triangles.

(b) Chemists are interested in the angle θ = AEB. Show that cos(θ) = −1/3.

(c) Find θ (approximately).

45.[M] The key to obtaining the expression for the dot product in terms of compo-
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nents is from trigonometry: the Law of Cosines. In view of this, it makes sense to see
why the Law of Cosines is true. The proof is quite easy, since it consists just of two
applications of the Pythagorean Theorem. Figure 14.2.15 shows a triangle with sides
a, b, c, with angle θ opposite side c. (We are concerned, for the moment, in the case

when θ is less than π
2 .

Figure 14.2.15:

(a) Show that h2 = a2 − a2 cos2(θ).

(b) Show that h2 = c2 − (b− a cos(theta))2.

(c) By equating the two expressions for h2 found in (a) and (b), obtain the Law
of Cosines.

46.[C] In the Exercise 45 the altitude of length h meets the side of length b. If
θ > π/2, that altitude has its base outside of side b. Prove the Law of Cosines in
this case.

47.[R] What is projB A if A = 2i + j− 3k and B = i + j + k?

48.[C] How far is the point (2, 3, 5) from the line through the origin and (1,−1, 2)?

49.[R] Express the vector i + j + k as the sum of a vector parallel to i− j + 2k and
a vector perpendicular to i− j + 2k.

50.[M]

Jane: I don’t like the way the author found how to express A as the sum of a vector
parallel to B and a vector perpendicular to B.

Sam: It was O.K. for me. But I had to memorize a formula.
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Jane: My goal is to memorize nothing. I simply write A = xB + C, when C is
perpendicular to A. Then I dot with B, getting

A ·B = xB ·B + C ·B.

Since C is perpendicular to B, C ·B = 0, and lo and behold, I have

x =
A ·B
B ·B

.

So the vector parallel to B is A·B
B·BB.

Sam: Cool. So why did the author go through all that stuff?

Jane: Maybe they wanted to reinforce the definition of the dot product and the
rule of the angle.

Sam: O.K. But how do I get the vector C perpendicular to B?

Jane: Simple...

Complete Jane’s reply.
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14.3 The Cross Product of Two Vectors

The dot product of two vectors is a scalar. The product of two vectors we define
in this section is a vector. This vector has the property that it is perpendicular
to each of the given vector.

Definition of the Cross Product

Let A = a1i + a2j + a3k and B = b1i + b2j + b3k be two non-zero vectors that
are not parallel. We will construct a vector C that is perpendicular to both
A and B. Of course C is not unique since any vector parallel to C is also
perpendicular to A and B.

Let C = xi + yj + zk. We want C ·A and C ·B to be 0. This gives us the
equations

a1x+ a2y + a3z = 0 (14.3.1)

b1x+ b2y + b3z = 0 (14.3.2)

We eliminate x by subtracting b1 times (14.3.1) from a1 times (14.3.2), as
follows.

a1 times (14.3.2) a1b1x+ a1b2y + a1b3z = 0 (14.3.3)

b1 times (14.3.1) b1a1x+ b1a2y + b1a3z = 0 (14.3.4)

Subtracting the bottom equation (14.3.4) from the top equation (14.3.3) gives
us

(a1b2 − a2b1)y + (a1b3 − a3b1)z = 0 (14.3.5)

A simple non-zero solution of (14.3.5) isThis is like solving
2y + 3z = 0 by letting

y = −3 and z = 2. y = −(a1b3 − a3b1), z = a1b2 − a2b1

To find the corresponding x, substitute the value found for y and z into
(14.3.1). As Exercise 39 shows, the straightforward algebra yields

x = a2b3 − a3b2.

So the vector

(a2b2 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k (14.3.6)

is perpendicular to A and B. It is denoted A × B and is called the vector
product of A and B or the cross product of A and B. This vector is defined
even if A and B are parallel or if one of them is 0.
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Determinants and the Cross Product

The expression (14.3.6) for the cross product is not easy to memorize. Fortu-
nately, determinants provide a convenient memory aid.

Four numbers arranged in a square from a matrix of order 2, for instance(
a1 a2

b1 b2

)
The determinant of this matrix is the number a1b2 − a2b1, denoted∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ or det

(
cca1 a2

b1 b2

)
.

Each term in the cross product, (14.3.6), is itself the determinant of a matrix
of order 2, namely∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ , ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ , and

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
Nine numbers arranged in a square for a matrix of order 3, for instance c1 c2 c3

a1 a2 a3

b1 b2 b3


Its determinant is defined with the aid of determinants of order 2:

c1

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− c2

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ c3

∣∣∣∣ a1 a2

b1 b2.

∣∣∣∣
The coefficient of each ci is plus or minus the determinant of the matrix of
order 2 that remains when the row and column in which ci appears are deleted,
as shown in Figure 14.3.1 for the coefficient of ci.

Figure 14.3.1:

Therefore we can write (14.3.6) as a determinant of a matrix, and we have

A×B =

 i j k
a1 a2 a3

b1 b2 b3

 (14.3.7)

DEFINITION (Cross product (vector product).) Let

A = a1i + a2k + a3k and B = b1i + b2j + b3k.

The vector∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ = i

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣− j

∣∣∣∣ a1 a3

b1 b3

∣∣∣∣+ k

∣∣∣∣ a1 a2

b1 b2

∣∣∣∣
= (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k.
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is called the cross product (or vector product) of A and B. It
is denoted A×B.

The determinant for A×B is expanded along its first row:

Delete the two lines
through i. The

determinant of the
remaining square is
the coefficient of i in

A×B.

Delete the two lines
through j. The

determinant of the
remaining square is

the coefficient of j in
A×B.

Delete the two lines
through k. The

determinant of the
remaining square is

the coefficient of k in
A×B.

EXAMPLE 1 Compute A×B if A = 2i− j + 3k and B = 3i + 4j + k.
SOLUTION By definition,

A×B =

∣∣∣∣∣∣
i j k
2 −1 3
3 4 1

∣∣∣∣∣∣ = i

∣∣∣∣ −1 3
4 1

∣∣∣∣− j

∣∣∣∣ 2 3
3 1

∣∣∣∣+ k

∣∣∣∣ 2 −1
3 4

∣∣∣∣
= −13i + 7j + 11k

�
The cross cross product has these properties:Recall: The zero vector is,

by definition, perpendicular
to every vector.

1. A×B is perpendicular to both A and B.

2. A×B = −(B×A).

3. A×B = 0 if A and B are parallel or at least one of them is 0.

4. A× (B + C) = A×B + A×C.
See Exercises 27 and 28.

The first property holds because that is how we constructed the cross prod-
uct. The second and third are established by straightforward computations,
using (14.3.7). Exercises 16 and 17 take care of property 4.

Figure 14.3.2:
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The Direction of A×B?

We know that A×B is perpendicular to A and B, but there are two possible
directions, as Figure 14.3.2 shows,

To find out, take a specific case and we compute i× j:

i× j =

∣∣∣∣∣∣
i j k
1 0 0
0 1 0

∣∣∣∣∣∣ = 0i− 0j + k = k.

This suggests the general situation. The direction of A × B is given by the Left-handed people must
use their right hand here.right hand rule:

Curl the fingers of the right hand to go from A and B. The thumb points
in the direction of A×B.

Figure 14.3.3:

EXAMPLE 2 Check that the right hand rule is correct in the case for j×i.
SOLUTION

j× i =

∣∣∣∣∣∣
i j k
0 1 0
1 0 0

∣∣∣∣∣∣ = 0i− 0j− k = −k.

In this case, j× i, points downward, the opposite of i× j.

Figure 14.3.4:

The right hand rule is illustrated in Figure 14.3.4.
The thumb indeed points downward. �

How Long is A×B

To find a geometric meaning for ‖A ×B‖ we will find |A ×B|2 with the aid
of (4). That is, we will compute (A×B)× (A×B) and interpret the results.
By (4) Check these steps by

multiplying everything out.
‖A×B‖2 = (a2b3 − a3b2)2 + (a3b1 − a1b3)2 + (a1b2 − a2b1)2

= a2
2b

2
3 + a2

3b
2
3 + a2

3b
2
1 + a2

1b
2
2 + a2

1b
2
2 + a2

2b
2
1 − 2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

= (a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3)− (a1b1 + a2b2 + a3b3)2

= ‖A‖2‖B‖2 − (A ·B)2

= ‖A‖2‖B‖2 − (‖A‖‖B‖ cos(θ))2 θ is the angle between A and B
= ‖A‖2‖B‖2(1− cos2(θ))
= ‖A‖2‖B‖2 sin2(θ).

Then

‖A×B‖ = ‖A‖‖B‖ sin(θ) sin(θ) is not negative since 0 ≤ θ ≤
π.

(14.3.8)
We then have
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Let A and B be nonzero vectors and θ the angle between them. Then ‖A ×
B‖ = ‖A‖‖B‖ sin(θ).

Figure 14.3.5: This figure
shows the area of a paral-
lelogram is its base times
its height.

With the aid of this fact we now give a simple geometric meaning for the length
of A ×B. A glance at the parallelogram spanned by A and B shows that it
area is

‖A‖︸︷︷︸
base

‖B‖ sin(θ)︸ ︷︷ ︸
height

= area of parallelogram

So now we have a simple geometric description of the length of A×B.

Figure 14.3.6:

The length of A×B is the area of the parallelogram spanned by A and B.
In some texts the cross

product is defined
geometrically: It is the

vector where length is the
area of the parallelogram

mentioned above and where
direction is given by the
right and rule. Then the

author must obtain its
formula in terms of

components.

EXAMPLE 3 Find the area of the parallelogram spanned by A = a1i+a2j
and B = b1i + b2j.
SOLUTION First write A as a1i + a2j + 0k and bi + b2j + 0k. Then the area
of this parallelogram is the length of A×B. So we compute A×B.

A×B =

∣∣∣∣∣∣
i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ = (a1b2 − a2b1)k.

The area is therefore |a1b2 − a2b1|. In other words, it is the absolute value of
the determinant ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ .
� The next example is typical of the geometric applications of the cross

Figure 14.3.7:

product.

EXAMPLE 4 Find a vector perpendicular to the plane determined by the
three points P = (1, 3, 2), Q = (4,−1, 1), and R = (3, 0, 2).

SOLUTION The vectors
−→
PQ and

−→
PR lie in a plane (see Figure 14.3.7). The

vector N =
−→
PQ×

−→
PR being perpendicular to both

−→
PQ and

−→
PR, is perpendic-

ular to the plane. Now,
−→
PQ = 3i− 4j− k and

−→
PR = 2i− 3j + 0k.

Thus

N =

∣∣∣∣∣∣
i j k
3 −4 −1
2 −3 0

∣∣∣∣∣∣ = −3i− 2j− k.

�
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The Scalar Triple Product

The scalar A·(B×C) is called the scalar triple product. It has an important
geometric meaning. (The vector A× (B×C) is also called the vector triple
product.)

Figure 14.3.8:

The vectors A, B, and C span a parallelepiped, as shown in Figure 14.3.8.
The angle between B × C and A is θ (which could be greater than π/2).
The area of the base of the parallelogram is ‖B × C‖. The height of the
parallelepiped is ‖A|| cos(θ)|. Thus its volume is the absolute value of

|A| cos θ︸ ︷︷ ︸
height

|B×C|︸ ︷︷ ︸
area of base

.

This is the definition of the dot of product of A and (B×C).

A · (B×C) is plus or minus the volume of the parallelepiped spanned by A,
B, and C.

The scalar triple product can also be expressed as a determinant. To see
why, note that the dot product of A and B×C is

A · (B×C) = a1

∣∣∣∣ b2 b3

c2 c3

∣∣∣∣+ a2(−
∣∣∣∣ b1 b3

c1 c3

∣∣∣∣) + a3

∣∣∣∣ b1 b2

c1 c2

∣∣∣∣ . (14.3.9)

Comparison of Dot Product and Vector Product
A ·B A×B

B ·B = B ·A A×B = −B×A
|A ·B| = ‖A‖‖B‖| cos(θ)| ‖A×B‖ = ‖A‖‖B‖ sin(θ)

A ·B = 0 is a test for perpendicularity A×B = 0 is a test for parallel vectors
formula in components involves aibi (same indices) formula in components involves aibj (unequal indices)

What do you get when you
cross a rock climber with a
mosquito? Answer: You
can’t cross a “scaler” with a
vector. [Move to Chapter
Summary?]

Figure 14.3.9:

Equation (14.3.9) can now be recognized the determinant of a matrix of
order 3:

A · (B×C) =

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
So this determinant is plus or minus the volume of the parallelepiped

spanned by A, B, and C.
This should not be a surprise. As Example 3 showed, the determinant∣∣∣∣ a1 a2

v1 b2

∣∣∣∣ is plus or minus the area of the parallelogram spanned by the vectors

〈a1, a2〉 and 〈b1, b2〉.
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Summary

We constructed a vector C perpendicular to vectors A and B by demanding
that C ·A = 0 and C ·B = 0. A convenient formula for such a vector∣∣∣∣∣∣

i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
It is denoted A × B and called the vector product or cross product of A

and B. It also may be described as the vector whose length is the area of
the parallelogram spanned by A and B and whose direction is given by the
right-hand rule (the finger curling from A and B). These are some of its
properties:

1. A×B = −(B×A) (anticommunitive)

2. A× (B×C) is not usually equal to (A×B)×C) (not associative)

3. A× (B×C) = (C ·A)B− (B ·A)C (See Exercise 17.)Item 5 appeared in finding
the length of A×B. It will

be used in the next
chapters.

4. (A×B) · (A×B) = (A ·A)(B ·B)− (A ·B)(A ·B)

5. A · (B×C) = ± volume of parallelepiped spanned by A, B, and C.
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EXERCISES for Section 14.3 Key: R–routine, M–moderate, C–challenging
In Exercises 1 to 4 compute and sketch A ·B. SHERMAN: Move some

exercises about lines,
planes, etc. to Section 14.4
or to Chapter Summary for
Chapter 14.

1.[R] A = k, B = j

2.[R] A = i + j, B = i− j

3.[R] A = i + j + k, B = i + j

4.[R] A = k, B = i + j

In Exercises 5 and 6, find A×B and check that it is perpendicular to both A and
B.
5.[R] A = 2i− 3j + k, B = i + j + 2k

6.[R] A = i− j, B = j + 4k

In Exercises 7 to 10 use the cross product to find the area of each region.
7.[R] The parallelogram three of whose vertices are (0, 0, 0), (1, 5, 4), and (2,−1, 3).

8.[R] The parallelogram three of whose vertices are (1, 2,−1), (2, 1, 4), and (3, 5, 2).

9.[R] The triangle two of whose sides are i + j and 3i− j.

10.[R] The triangle two of whose sides are i + 2j + 3k and 2i− j + 2k.

In Exercises 11 to 14 find the volumes of the parallelepipeds spanned by the given
vectors.
11.[R] 〈2, 1, 3〉, 〈3,−1, 2〉, 〈4, 0, 3〉
12.[R] 3i + 4j + 3k, 2i + 3j + 4k, i− j− k.

13.[R]
−−→
PQ,

−→
PR,

−→
PS, where P = (1, 1, 1), Q = (2, 1,−2), R = (3, 5, 2), and

S = (1,−1, 2).

14.[R]
−−→
PQ,

−→
PR,

−→
PS, where P = (0, 0, 0), Q = (3, 3, 2), R = (1, 4,−1), and

S = (1, 2, 3).

15.[R] Evaluate A · (A×B).

16.[R] Prove that B×A = −(A×B) in two ways:

(a) using the algebraic definition of the cross product;

(b) using the geometric description of the cross product.

17.[R] Show that if B = cA, then A×B = 0:

(a) using the algebraic definition of the cross product;
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(b) using the geometric description of the cross product.

18.[M] Show that the points (0, 0, 0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) lie on
a plane if and only if ∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ = 0.

19.[M]

(a) If B is parallel to C, is A×B parallel to A×C?

(b) If B is perpendicular to C, is A×B perpendicular to A×C?

20.[M] Let A be a nonzero vector. If A×B = 0 and A ·B = 0, must B = 0?

21.[R] Show that A× (A×B) = (A ·B)A− (A ·A)B.

22.[R] Show that (A×B)×(C×D) = ((A×B)·D)C−((A×B)·C)D. Hint: Think
of A×B as a single vector, E.

23.[M]

(a) Give an example of a vector perpendicular to the vector 3i− j + k.

(b) Give an example of a unit vector perpendicular to the vector 3i− j + k.

24.[M] Let u be a unit vector and B be a vector. What happens as you keep
“crossing by u,” that is, as you form the sequence B, u × B, u × (u × B) and so
on? (See Exercise 21)

25.[C] (Crystallography) A crystal is described by three vectors v1, v2, and v3.

December 4, 2010 Calculus



§ 14.3 THE CROSS PRODUCT OF TWO VECTORS 1159

They span a “fundamental” parallelepiped, whose copies fill out the crystal lattice.
(See Figure 14.3.10.) The atoms are at the corners. In order to study the diffraction
of x-rays and light through a crystal, crystallographers work with the “reciprocal lat-
tice,” as follows. Its fundamental parallelepiped is spanned by three vectors, k1, k2,
and k3. The vector k1 is perpendicular to the parallelogram spanned by v2 and v3

and has a length equal to the reciprocal of the distance between that parallelogram
and the opposite parallelogram of the fundamental parallelepiped. The vectors k2

and k3 are defined similarly in terms of the other four faces of the fundamental paral-

lelepiped.

Figure 14.3.10:

(a) Show that k1, k2, and k3 may be chosen to be

k1 =
v2 × v3

v1 · (v2 × v3)
, k2 =

v3 × v1

v1 · (v2 × v3)
, k3 =

v1 × v2

v1 · (v2 × v3)

(b) Show that the volume of the fundamental parallelopiped determined by k1,
k2, and k3 is the reciprocal of the volume of the one determined by v1, v2,
and v3.

(c) Is the reciprocal of the reciprocal lattice the original lattice? For instance, is

v1 =
k2 × k3

k1 · (k2 × k3)
?

26.[M] Let B and C be nonzero, nonparallel vectors and A a vector that is per-
pendicular neither to B nor C.

(a) Why are their scalars x and y such that

A× (B×C) = xB + yC?

(b) Why is 0 = x(A ·B) + y(A ·C)?
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(c) Using (b), show that there is a scalar z such that

A× (B×C) = z[(A ·C)B− (A ·B)C].

(d) It would be nice if there were a simple geometric way to show that z is a
constant and equals 1. Of course we could show that z = 1 by writing A, B,
and C in components and grinding out a tedious calculation. But that would
hardly be instructive. Can you figure out why z = 1 in a simpler way?

(This identity, known as Jacobi’s Identity, will come in handy in Chapter 18 when
dealing with electric currents and magnetic fields.)

OMIT? In this section A × B was defined in terms of components, and then its
geometric description was obtained. This is the opposite of the way we dealt with
the dot product. Exercises 27 to 29 outline a different approach to the cross product.
We define A×B as follows. If A or B is 0 or if A is parallel to B, we define A×B
to be 0. Otherwise, A×B is the vector whose direction is given by the right-hand
rule.
27.[R] Let A be a nonzero vector and B be a vector. Let B1 be the projection
of B on a plane perpendicular to A. Let B2 be obtained by rotating B1 90◦ in the
direction given by the right-hand rule with thumb pointing in the same direction as
A

(a) Show that A×B = A×B1. (Draw a clear diagram.)

(b) Show that A×B = ‖A‖B2.

28.[R] Using Exercise 27(b), show that for A not 0, A×(B+C) = A×B+A×C.
Hint: Draw a large, clear picture.

29.[R]

(a) From the distributive law A× (B + C) = A×B + A×C, and the fact that
D×E = −E×D, deduce the distributive law (B+C)×A = B×A+C×A.

(b) From the distributive law A × (B + C) = A × B + A × C, deduce that
A × (B + C + D) = A ×B + A ×C + A ×D. Hint: Think of B + C as a
single vector E.

30.[R] Check that −13i + 7j + 11k in Example 1 is perpendicular to A and to B.

31.[R] Show, using (14.3.7), that 0×B = 0.
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32.[R] Show, using (14.3.7), that B×A = −A×B.

33.[M] Using (14.3.7), show that if B is parallel to A, then A×B = 0. Suggestion:
If B is parallel to A, there is a scalar t such that B = tA.

34.[M] In finding |A×B|2 we stated that

a2
2b

2
3 + a2

3b
2
2 + a2

3b
2
1 + a2

1b
2
3 + a2

1b
2
2 + a2

2b
2
1 − 2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

equals
a2

1 + a2
2 + a2

3b
2
1 + b22 + b23 − (a1b1 + a2b2 + a3b3).

Take nothing as faith. Check that the claim is correct.

35.[C] We showed that the direction of i× j is given by the right hand rule. Then
we said that the right hand rule hold for any non-zero vector A and B. Why is
such a leap justified? Hint: Imagine moving a gradually changing pair of vectors
through space, starting with i and j and ending with the pair A and B.

36.[C]

(a) Thinking in terms of parallelograms, explain why A · (B × C) is + or −
B · (C×A).

(b) Using properties of 3 by 3 determents, decide which it’s + or −.

37.[C] In some expositions of the cross product, a × b is simply defined as the
determinant of a matrix of order 3. If we start with this definition, use a property
of determents to show that a×b is perpendicular to both a and b. (This approach
bypasses the need to consider simultaneous equations. On the other hand, it may
appear unmotivated.)

38.[M]

(a) How could you use cross products to produce a vector perpendicular to 2i +
3j + 4k? Give an example.

(b) How could you use cross product to produce two vectors perpendicular to
2i + 3j + 4k and to each other? Give an example.

39.[R] Use the exhibited values for y and z when solving equations (14.3.3) and
(14.3.4). Substitute these values into (14.3.1) and solve for x.

Calculus December 4, 2010



1162 CHAPTER 14 VECTORS

40.[R] By carrying out the necessary calculations, show that A × (B + C) =
A×B + A×C. If you wish, you may use properties of determinants.

41.[M] Let A and B be non zero, nonparallel vectors. Show that A× (A×B) is
never equal to (A ×A ×B). This shows that the cross product is not associative.
You cannot omit the parentheses in A× (B×C).
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14.4 Lines, Planes and Components

This section uses the dot product and cross product to deal with lines, planes
and projections (“shadows”) of a vector or a line or on a plane.

Equation of a Plane

Figure 14.4.1:

We find an equation of the plane through the point P0 = (x0, y0, z0) and
perpendicular to the vector Ai +Bj + Ck, shown in Figure 14.4.1.

Let P = (x, y, z) be any point on the plane. The vector
−−→
P0P is perpendic-

ular to Ai +Bj +Ck. (Imagine sliding it so that P0 coincides with the tail of
Ai +Bj + Ck.) Thus

(Ai +Bj + Ck) · ((x− x0)i + (y − y0)j + (z − z0)k) = 0.

So
A(x− x0) +B(y − y0) + C(z − z0) = 0. (14.4.1)

In (14.4.1) we have an equation for the plane. The vector Ai + Bj + Ck is
called a normal to the plane.

EXAMPLE 1 Find an equation of the plane through (2,−3, 4) and per-
pendicular to i + 2j + 3k.
SOLUTION An equation for the plane is

1(x− 2) + 2(x− (−3)) + 3(z − 4) = 0

which simplifies to
x+ 2y + 3z − 8 = 0

�
The graph of an equation of the form Ax + By + Cz + D = 0, where not

all of A, B, and C are 0 is a plane perpendicular to the vector Ai +Bj +Ck.
To show this, first pick any point (x0, y0, z0) that satisfies the equation: Ax0 +
Bv0 + C0 +D = 0. Subtracting this from the original equation gives

A(x− x0) +B(y − y0) + C(z − z0) = 0,

which is an equation of the plane through (x0, y0, z0) perpendicular to Ai +
Bj + Ck.

Similarly, we have

An equation for the line through (x0, y0) and perpendicular to the vector Ai +
Bj is A(x− x0) +B(y − y0) = 0.
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Distance From a Point to the Line Ax + By + C = 0 or
Plane Ax+By + Cz +D = 0

(a) (b)

Figure 14.4.2:

Let us find the distance from P = (c, d) to the line whose equation is
Ax+By + C = 0, shown in Figure 14.4.2(a).

Pick any point P0 = (x0, y0) on the line and place Ai + Bj with its tail at
P0, as in Figure 14.4.2(b).

Let θ be the angle between
−−→
P0P and Ai + Bj. Then the distance from P

to the line iscos(θ) could be negative

‖
−−→
P0P‖| cos(θ)| = ‖

−−→
P0P‖

(Ai +Bj) · ((c− x0)i + (d− y0)j)

‖P0P‖‖Ai +Bj‖

=
A(c− x0) +B(d− y0)√

A2 +B2

=
Ac+Bd− (Ax0 +By0)√

A2 +B2
.

Since Ax0 +By0 + C = 0, we have

Distance from (c, d) to the line Ax+By + C = 0 is

|Ac+Bd+ C|√
A2 +B2

In short, to find that distance simply substitute the coordinates of the point
(c, d) into the expression Ax + By + C and divide by

√
A2 +B2 and take its

absolute value.

EXAMPLE 2 How far is the point (1, 3) from the line 2x− 4y = 5?
SOLUTION First, write the equation in the form 2x− 4y− 5 = 0. Then the
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distance is
|2(1)− 4(3)− 5|√

22 + 42
=
| − 15|√

20
=

3
√

5

2
.

� A similar result holds for the distance from a point P = (x0, y0, z0) to a

plane:

The distance from (x0, y0, z0) to the plane Ax+By + C = 0 is

|Ax0 +By0 + C0 +D|√
A2 +B2 + C2

Using Vectors to Parameterize a Line

Let L be the line through the point P0 = (x0, y0, z0) parallel to the vector B,
shown in Figure 14.4.3(a).

(a) (b)

Figure 14.4.3:

Let P be any point on L. Then the vector
−−→
P0P which is parallel to B, is

of the form tB for some scalar t. See Figure 14.4.3(b).

The
−→
OP =

−−→
OP0 +

−−→
P0P =

−−→
OP0 + tB. As t varies the vector from 0 to P

varies, thus parameterizing the line L.

EXAMPLE 3 The line L passes through the point (1, 1, 2) and is parallel
to the vector 3i + 4j + 5k. Use this information to parameterize the line.

SOLUTION In this case
−−→
OP0 = i + j + 2k and B = 3i + 4j + 5k. Thus

−→
OP = i + j + 2k + f(3i + 4j + 5k)

= (3t+ 1)i + (4t+ 1)j + (5t+ 2)k.
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If P is the point (x, y, z), then
−→
OP is the vector xi + yj + zk.One vector equation does

the work of three scalar
equation.

Thus 
x = 3t+ 1
y = 4t+ 1
z = 5t+ 2.

�

Describing the Direction of Vectors and Lines

The direction of a vector in the plane is described by a single angle, the angle
it makes with the positive x-axis. The direction of a vector in space involves
three angles, two of which almost determine the third.

DEFINITION (Direction of a vector.) Let A be a nonzero vector

Figure 14.4.4:

in space. The angle between

A and i is denoted α,

A and j is denoted β,

A and k is denoted γ.

The angles α, β and γ are called the direction angles of A. (See
Figure 14.4.4.)

DEFINITION (Direction cosines of a vector) The direction
cosines of a vector are the cosines of its direction angles, cos(α),
cos(β), and cos(γ).

EXAMPLE 4 The angle between a vector A and k is π/6. Find γ and
cos(γ) for

1. A,

2. −A.

SOLUTION

Figure 14.4.5:

1. By definition, the direction angle γ for A is π/6. It follows that cos(γ) =
cos(π/6) =

√
3/2.

2. To find γ and cos(γ) for −A, we draw Figure 14.4.5. For −A, γ = 5π/6
and cos(γ) = cos(5π/6) = −

√
3/2.
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�

As Example 4 illustrates, if the direction angles of A are α, β, γ, then the
direction angles of −A are π − α, π − β, and π − γ. The direction cosines of
−A are the negatives of the direction cosines of A.

The three direction angles are not independent of each other, as is shown
by the next theorem. Two of them determine the third up to sign.

Theorem 14.4.1. If α, β, γ are the direction angles of the vector A, then
cos2(α) + cos2(β) + cos2(γ) = 1.

Figure 14.4.6:

Proof

It is no loss of generality to assume that A is a unit vector. Its component on
the y-axis, for instance, is cos(β), as the right triangle OPQ in Figure 14.4.6
shows. A lies along the hypotenuse.

Since A is a unit vector, |A|2 = 1, and we have cos2(α)+cos2(β)+cos2(γ) =
12 = 1. •

EXAMPLE 5 The vector A makes an angle of 60◦ with the x and y axes.
What angle does it make with the z-axis?
SOLUTION Here α = 60◦ and β = 60◦; hence

cos(α) =
1

2
and cos(β) =

1

2
.

Since

cos2(α) + cos2(β) + cos2(γ) = 1,

it follows that

(
1

2
)2 + (

1

2
)2 + cos2(γ) = 1,

cos2(γ) =
1

2
.

Thus

cos(γ) =

√
2

2
or cos(γ) = −

√
2

2
.

Hence

γ = 45◦ or γ = 135◦.

Figures 14.4.7(a) and (b) show the two possibilities for A. �
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(a) (b)

Figure 14.4.7:

(a) (b) (c)

Figure 14.4.8:
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Dot Products and Flow

Let the vector v whose magnitude is v describe the velocity of a river, as
in Figure 14.4.8(a). Place an imaginary horizontal stick of length L in the SHERMAN: what word did

you intend to go between
imaginary and stick? My
best guess is horizontal, but
this makes no sense to me.

water. The amount of water crossing the stick depends on the position of the
stick. If the stick is parallel to v, no water crosses the stick. If the stick is
perpendicular to v water crosses it. The question then arises, “How does the
angle at which we place the stick affect the amount of water that crosses in a
given time?

To answer this question, we begin by introducing a unit vector n perpen-
dicular to the stick, and record its position, as in Figure 14.4.8(b). Let the
angle between n and v be θ.

The amount of water that crosses the stick during time ∆t is proportional to
the area of the parallelogram in Figure 14.4.8(c). The base of the parallelogram
has length v∆t (speed times time). The height is L cos(θ). The area of the
parallelogram is therefore

vL cos(θ)

.

But vL cos(θ) is equal to v · n. So v · n measures the tendency of water to
cross the stick.

As a check, when the stick is parallel to v, θ = π/2 and cos(π/2) = 0.
Then v ·n = 0 and no water crosses the stick. When the stick is perpendicular
to v, θ = 0, and v · n = v. For any angle θ < π/2, v · n = v cos(θ) which is
less than v. For any unit vector n and vector A the scalar A · n is called the

(a) (b)

Figure 14.4.9:

scalar component of A along n. It equals ‖vA‖ cos(θ), where θ is the angle
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between A and n. It can be positive or negative, as shown in Figure 14.4.9.

EXAMPLE 6 When a stick is perpendicular to v, water crosses it at the
rate of 100 cubic feet per second. When the stick is placed at an angle of π/6
to v at what rate does water cross it?
SOLUTION Figure 14.4.10 shows the position of the stick PQ.

Figure 14.4.10:

The angle between the normal to the stick, n, and v is π/2 − π/6 = π/3.
Let x be the rate at which the water crosses the stick. Since the rate of flow
across the stick is proportional to v cos(θ), where θ is the angle between the
normal n and v, we have

100

v cos(0)
=

x

v cos(π/3)
.

this tells us that
100

v
=

x

(v)(1/2)
,

have x = 50. The flow is half the maximum possible. �

Summary

We used the dot product to obtain an equation of a plane (or line in the xy
plane) and to find the distance from a point to a line or plane. We also showed
how to parameterize a line with the aid of a vector parallel to the line.

Direction angles and cosines of a vector were defined. Finally, we showed
how the dot product describes the rate of flow across a line segment, a concept
that will be needed in Chapters 17 and 18, where we deal with flows across
curves and surfaces.

December 4, 2010 Calculus



§ 14.4 LINES, PLANES AND COMPONENTS 1171

EXERCISES for Section 14.4 Key: R–routine, M–moderate, C–challenging

SHERMAN: These exercises
need to be reordered. Some
could move to the Chapter
Summary.

In each of Exercises 1 to 4 find an equation of the line through the given point and
perpendicular to the given vector.
1.[R] (2, 3), 4i + 5j

2.[R] (1, 0), 2i− j

3.[R] (4, 5), 1i + 3j

4.[R] (2,−1), i + 3j

In each of Exercises 5 to 8 find a vector in the xy plane that is perpendicular to the
given line.
5.[R] 2x− 3y + 8 = 0

6.[R] πx−
√

2y = 7

7.[R] y = 3x+ 7

8.[R] 2(x− 1) + 5(y + 2) = 0

9.[M] Find an equation of the plane through (1, 2, 3) that contains the line given
parametrically as

−−→
OP = 2i− j + 3k + t(3i + 2j + k).

10.[M] Is the point (21,−3, 28) on the line given parametrically as
−−→
OP = i + 2j +

3k + t(4i− j + 5k)?

11.[M] A line segment has projections of lengths a, b, and c on the coordinates
axes. What, if anything, can be said about its length, L?

12.[C] A line segment has projections of lengths d, e, and f on the coordinates
planes. What, if anything, can be said about its length, L?

13.[C] Explain why the projection of a circle is an ellipse. Hint: Set up coordinate
systems in the plane of the circle and in the plane of its shadow (which might as
well be taken to be the xy plane). Choose the axes for these coordinate systems to
be as convenient as possible. Then express the equation of the shadow in terms of
x and y by utilizing the equation of the circle.

14.[R] Find a vector perpendicular to the plane through (2, 1, 3), (4, 5, 1) and
(−2, 2, 3).

15.[R] How far is the point (1, 2, 2) from the plane through (0, 0, 0), (3, 5,−2), and
(2,−1, 3)?

16.[R] How far is the point (1, 2, 3) from the line through (−2,−1, 3), and (4, 1, 2)?

17.[R] Find the parametric equations of the line through (1, 1, 2) and perpendicular
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to the plane 3x− y + z = 6.
18.[R] How far apart are the lines whose vector equations are 2i+4j+k+t(i+j+k)
and i + 3j + 2k + s(2i− j− k)?
19.[R] Find the point on the line through (1, 2, 1) and (2,−1, 3) that is closest to
the line through (3, 0, 3) and parallel to the vector i + 2j + 5k.

20.[R]

(a) Describe how you would find an equation for the plane through points P1 =
(x1, y1, z1), P2 = (x2, y2, z2), and P3 = (x3, y3, z3)?

(b) Find an equation for the plane through (2, 2, 1), (0, 1, 5) and (2,−1, 0).

21.[R]

(a) Describe how you would decide whether the line through P1 = (x1, y1, z1)
and P2 = (x2, y2, z2), is parallel to the line through P3 = (x3, y3, z3) and
P4 = (x4, y4, z4)?

(b) Is the line through (1, 2,−3) and (5, 9, 4) parallel to the line through (−1,−1, 2)
and (1, 3, 5)?

22.[R]

(a) Describe how you would decide whether the line through P1 = (x1, y1, z1) and
P2 = (x2, y2, z2) is parallel to the plane Ax+By + Cz +D = 0?

(b) Is the line through (1,−2, 3) and (5, 3, 0) parallel to the plane 2x−y+z+3 = 0?

23.[R]

(a) Describe how you would decide whether the line through P1 and P2 is parallel
to the plane through Q1, Q2, and Q3?

(b) Is the line through (0, 0, 0) and (1, 1,−1) parallel to the plane through (1, 0, 1),
(2, 1, 0), and (1, 3, 4)?

24.[R]

(a) How would you decide whether the plane through P1, P2 and P3 is parallel to
the plane through Q1, Q2, and Q3?
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(b) Is the plane through (1, 2, 3), (4, 1,−1), and (2, 0, 1) parallel to the plane
through (2, 3, 4), (5, 2, 0), and (3, 1, 2)?

25.[M]

(a) How would you find the angle between the planes A1x+B1y+C1z +D1 = 0
and A2x+B2y + C2z +D2 = 0?

(b) Find the angle between x− y − z − 1 = 0 and x+ y + z + 2 = 0.

26.[C] Assume that the planes A1x+B1y+C1z+D1 = 0 and A2x+B2y+C2z+D2 =
0 met in a line L.

(a) How would you find a vector parallel to L?

(b) How would you find a point on L?

(c) Find parametric equations for the line that is the intersection of the planes
2x− y + 3z + 4 = 0 and 3x+ 2y + 5z + 2 = 0.

27.[C]

(a) How would you decide whether the four points P1 = (x1, y1, z1), P2 = (x2, y2, z2),
P3 = (x3, y3, z3) and P4 = (x4, y4, z4) lie in a plane?

(b) Do the points (1, 2, 3), (4, 1,−5), (2, 1, 6), and (3, 5, 3) lie in a plane?

28.[C] What is the angle between the line through (1, 2, 1) and (−1, 3, 0) and the
plane x+ y − 2z = 0?

29.[M]

(a) If you know the coordinates of point P and parametric equations of line L,
how would you find an equation of the plane that contains P and L? (Assume
P is not on L.)

(b) Find an equation for the plane through (1, 1, 1) that contains the line
x = 2 + t
y = 3− t
z = 4 + 2t.
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30.[R]

(a) How many unit vectors are perpendicular to the plane Ax+By+Cz+D = 0?

(b) How would you find one of them?

(c) Find a unit vector perpendicular to the plane 3x− 2y + 4z + 6 = 0.

31.[R]

(a) How would you go about producing a specific point on the plane Ax+By +
Cz +D = 0?

(b) Give the coordinates of a specific point that lies on the plane 3x−y+z+10 = 0.

32.[R]

(a) How would you go about producing a specific point that lies on both planes
A1x+B1y + C1z +D1 = 0 and A2x+B2y + C2z +D2 = 0?

(b) Find a point that lies on both planes 3x+ z + 2 = 0 and x− y − z + 5 = 0.

33.[C] The planes A1x + B1y + C1z + D1 = 0 and A2x + B2y + C2z + D2 = 0
intersect in a line L. Find the direction cosines of a vector parallel to L.

34.[R]

(a) Let A and B be vectors in space. How would you find the area of the paral-
lelogram they span?

(b) Find the area of the parallelogram spanned by (2, 3, 1) and (4,−1, 5).

35.[C] How far is the point (2, 1, 3) from the line through (1, 5, 2) and (2, 3, 4)?

36.[C] How far is the point P from the line through Q and R.

37.[C] How far apart are the lines given parametrically as 2i+j−3k+t(3i−5j+2k)
and 3i+j+5k+s(2i+6j+7k)? (We use different letters, s and t, for the parameters
because they are independent of each other.)

38.[M]
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(a) Sketch four points P , Q, R, and S, not all in one plane, such that
−−→
PQ and

−→
RS are not parallel. Explain way there is a unique pair of parallel planes one
of which contains P and Q and are of which contains R and S.

(b) Express a normal vector to these planes in terms of P , Q, R, and S.

39.[M] Find an equation for the plane through P1 that is parallel to the non-parallel
segments P2P3 and P4P5.

40.[C]

(a) Using properties of determinents, show that∣∣∣∣∣∣
x y 1
a1 a2 1
b1 b2 1

∣∣∣∣∣∣ = 0

is the equation of a line through the points (a1, a2) and (b1, b2).

(b) What determinant of order 4 would give an angular equation for the plane
through these given points?

41.[C]

(a) Review the Folium of Descartes in Section 9.3 on page 816.

(b) Show that the part in the fourth quadrant is asymptotic to the line x+y+1 =
0.

42.[M] Find where the line L through P0 = (2, 1, 3) and P1 = (4,−2, 5) meets the
plane whose equation is 2x+ y − 4z + 5 = 0.

43.[M]

(a) Graph the line and the parabola. Identify, graphically, the point on the
parabola closest to the line.

(b) Find, analytically, the point on the parabola y = x2 closest to the line y =
x− 3.

(c) The tangent to the parabola at the point found in (b) looks as if it might be
parallel to the line. Is it?
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44.[C] Let f be a differential function and L a line that does not meet the graph
of F . Assume that P0 is the point as the graph that is nearest the line.

(a) Using calculus, show that the tangent there is parallel to L.

(b) Why is the result in (a) to be expected?

In Exercises 45 and 46, find the distance from the given point to the given line.
45.[R] The point (0, 0) to 3x+ 4y − 10 = 0
46.[R] The point (3/2, 2/3) to 2x− y + 5 = 0

In Exercises 47 and 48 find a normal and a unit normal to the given planes.
47.[R] 2x− 3y + 4z + 11 = 0
48.[R] z = 2x− 3y + 4

In Exercises 49 to 52 find the distance from the given point to the given plane.
49.[R] The point (0, 0, 0) to the plane 2x− 4y + 3z + 2 = 0

50.[R] The point (1, 2, 3) to the plane x+ 2y − 3z + 5 = 0.

51.[R] The point (2, 2,−1) to the plane that passes through (1, 4, 3) and has a
normal 2i− 7j + 2k.

52.[R] The point (0, 0, 0) to the plane that passes through (4, 1, 0) and is perpen-
dicular to the vector i + j + k.

53.[R] Find the direction cosines of the vector 2i + 3j + 4k.

54.[R] Find the direction cosines of the vector from (1, 3, 2) to (4,−1, 5).

55.[R] Let P0 = (2, 1, 5) and P1 = (3, 0, 4). Find the direction cosines and direction
angles of

(a)
−−−→
P0P1 and

(b)
−−−→
P1P0.

56.[R] Give parametric equations for the line through (1/2, 1/3, 1/2) with direction
numbers 2, −5 and 8 in
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(a) scalar form,

(b) vector form.

57.[R] Give parametric equations for the line through (1, 2, 3) and (4, 5, 7) in

(a) scalar form,

(b) vector form.

58.[R] Give symmetric equations for the line through the points (7,−1, 5) and
(4, 3, 2).

59.[R] A vector A has direction angles α = 70◦ and β = 80◦. Find the third
direction angle γ and show the possibile angles for γ on a diagram.

60.[M] Suppose that the three direction angles of a vector are equal. What can
they be? Draw the cases.

61.[R] Find the angle between the line through (3, 2, 2) and (4, 3, 1) and the line
through (3, 2, 2) and (5, 2, 7).

62.[R] Find the angle between the planes 2x+ 3y+ 4z = 11 and 3x− y+ 2z = 13.
The angle between two planes is the angle between their normals.

63.[R] Find where the line through (1, 2) and (3, 5) meets the line through (1,−1)
and (2, 3).

64.[M] Find where the line through (1, 2, 1) and (2, 1, 3) meets the plane that is
perpendicular to the vector 2i + 5j + 7k and passes through the point (1,−2,−3).

65.[M] Are the three points (1, 2,−3), (1, 6, 2), and (7, 14, 11) on a single line?

66.[R] Where does the line through (1, 2, 4) and (2, 1,−1) meet the plane x+ 2y+
5z = 0?

67.[R] Give parametric equations for the line through (1, 3,−5) that is perpendic-
ular to the plane 2x− 3y + 4z = 11.
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68.[R] Give parametric equations for the line through (1, 3, 4) that is parallel to
the line through (2, 4, 6) and (5, 3,−2).

69.[C] A square of a side a lies in the plane 2x+ 3y + 2z = 8. What is the area of
its projection

(a) on the xy plane?

(b) on the yz plane?

(c) on the xz plane?

70.[M] If α, β, and γ are direction angles of a vector, what is sin2(α) + sin2(β) +
sin2(γ)?

71.[M] Find the angle between the line through (1, 3, 2) and (4, 1, 5) and the plane
x− y − 2z + 15 = 0.

72.[C] A disk of radius a is situated in the plane x+ 3y+ 4z = 5. What is the area
of its projection in the plane 2x+ y − z = 6?

73.[M] What point on the line through (1, 2, 5) and (3, 1, 1) is closest to the point
(2,−1, 5)?

74.[C] Does the line through (5, 7, 10) and (3, 4, 5) meet the line through (1, 4, 0)
and (3, 6, 4)? If so, where?

WARNING (Do Not Confuse Parameters from Different Curves) Use
parametric equations but give the parameters of the lines different names,
such as t and s.

75.[C] Develop a general formula for determining the distance from the point
P1 = (x1, y1, z1) to the line through the point P0 = (x0, y0, z0) and parallel to the
vector A = a1i+ z2j+a3k. The formula should be expressed in terms of the vectors−−−→
P0P1 and A.

76.[C] How far is the point (1, 2,−1) from the line through (1, 3, 5) and (2, 1,−3)?

(a) Solve by calculus, minimizing a certain function.

(b) Solve by vectors.
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77.[R] Find the direction cosines of the vector A shown in Figure 14.4.11. Hint: First

draw a large diagram.

Figure 14.4.11:

78.[C] How small can the largest of three direction angles ever be?

79.[C] A plane π is tilted at an angle θ to a horizontal plane. A convex region R in π
has area A. Show that the area of its shadow (“projection”) on the horizontal plane
is A cos(θ). Assume that the rays of light are perpendicular to the horizontal plane.

(See Figure 14.4.12.)

Figure 14.4.12:

80.[M]

(a) Find the point on the curve y = sin(x), 0 ≤ x ≤ π, nearest the line y = x/2+2.

(b) Check your answer by sketching the curve to the line.

81.[M]
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(a) Find the point on the curve y = sinx, 0 ≤ x ≤ π, nearest the line y = 2x+ 4.

(b) Check your answer by drawing the curve and the line.

82.[R] Three points P1 = (x1, y1, z1), P2 = (x2, y2, z2), and P3 = (x3, y3, z3) are
the vertices of a triangle.

(a) What is the area of that triangle?

(b) What is the area of the projection of that triangle on the xy plane?

83.[M] How can you decide whether the line through P and Q is parallel to the
plane Ax+By + Cz +D = 0?

84.[M] Find where the line through (1, 1) and (2, 3) meets the line x+2y+3 = 0.

85.[R] Show that the line through (1, 1, 1) and (2, 3, 4) is perpendicular to the plane
x1 + 2y + 3z + 4 = 0.

86.[C] How would you decide whether the angle and a point P = (x0, y0, z0) are
on the same side or opposite sides of the plane Ax+Bx+ Cz +D = 0?

87.[M]

(a) Give an example of a vector perpendicular to the plane 2x+ 3y − z + 4 = 0.

(b) Give an example of a vector parallel to that plane.

88.[C] How would you decide whether the points P and Q are on the same side,
or opposite sides, of the plane Ax+By + Cz +D = 0?

89.[R] A plane contains the points P0, P1, and P2, which do not lie on a line. Find
a vector perpendicular to the plane

90.[C] Devise a procedure for determining whether the point P = (x, y) is inside
the triangle whose three vertices are P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3).

91.[C] Devise a procedure for determining whether the point P = (x, y, x) is in-
side the four vertices are P1 = (x1, y1, z1), P2 = (x2, y2, z2) P3 = (x3, y3, z3) and
P4 = (x4, y4, z4).
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92.[M] How far apart are the planesAx+By+Cz+D = 0 andAx+By+Cz+E = 0?
Explain.

93.[R] We showed that the distance from (c, d) to the line Ax + By + C = 0 is
|Ac+Bd+C|√

A2+B2
. Show, following a similar argument, that the distance from (c, d, e) to

the plane Ax+By + Cx+D = 0 is |Ac+Bd+Ce+D|√
A2+B2+C2

.

94.[M] What is the ratio of the flows across the two sticks in Figure 14.4.13(a) and
(b)?

(a) (b)

Figure 14.4.13:

95.[R] Why is the angle θ shown in Figure 14.4.13 the same as the angle between
−→v and n̂.

96.[R] How far is the point (1, 5) from the line through (4, 2) and (3, 7)? Hint: Draw
a picture and think in terms of vectors.

97.[R] How far is the point (1, 2,−3) from the line through (2, 1, 4) and (1, 5,−2)?

98.[C] (Contributed by Melvyn Kopald Stein.) An industrial hopper is shaped as
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shown in Figure 14.4.14. Its top and bottom are squares of different sizes. The angle
between the plane ABD and the plane BDC is 70◦. The angle between the plane
ABD and the plane ABC is 80◦. What is the angle between plane ABC and plane
BCD? Note: The angle is needed during the fabrication of the hopper, since the
planes ABC and BCD are made from a single piece of heavy-gauge sheet metal bent

along the edgeBC.

Figure 14.4.14:

99.[C]

(a) Let L1 be the line through P1 and Q1 and let L2 be the line through P2 and
Q2. Assume that L1 and L2 are skew lines. How would you find the point R1

on L1 and point R2 on L2 such that
−−−→
R1R2 is perpendicular to both L1 and

L2?

(b) Find R1 and R2 when P1 = (3, 2, 1), Q1 = (1, 1, 1), P2 = (0, 2, 0), R2 =
(2, 1,−1).
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14.S Chapter Summary
DOUG/SHERMAN:
Mention cos(A,B) in text.Because there are no limits in this chapter, it is, strictly speaking, not part

of calculus. In the next chapter, which concern derivatives of functions whose
inputs are scalars and whose outputs are vectors, we return to calculus. For plane vectors, disregard

the third component.The following table summarizes the basic concepts of vectors in space. Assume
A = a1i + a2j + a3k,
B = b1i + b2j + b3k, and
C = c1i + c2j + c3k.Symbol Name Geometric Descriptions Algebraic Formula

A Vector Direction and magnitude
(Figure)

a1i + a2j + a3k or 〈a1, a2, a3〉

‖A‖ Length (norm,
magnitude)

Length of A
√
a2

1 + a2
2 + a2

3

−A Negative, or op-
posite, of A

Figure −a1i− a2j− a3k or 〈−a1,−a2,−a3〉

A + B Sum of A and B Figure (a1 + b1)i + (a2 + b2)j + (a3 + b3)k or 〈a1 + b1, a2 + b2, a3 + b3〉
A−B Difference of A

and B
Figure (a1 − b1)i + (a2 − b2)j + (a3 − b3)k or 〈a1 − b1, a2 − b2, a3 − b3〉

cA Scalar multiple of
A

Figure ca1i + ca2j + ca3k or 〈ca1, ca2, ca3〉

A ·B Dot, or scalar,
product

‖A‖‖B‖ cos(θ) a1b1 + a2b2 + a3b3

A×B Cross, or vector,
product

Magnitude: area of paral-
lelogram spanned by A and
B, ‖A‖‖B‖ sin(θ) Direction:
perpendicular to A and B,
direction by right-hand rule

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b+ 3

∣∣∣∣∣∣

projB A (Vector) Projec-
tion of A on B

Figure (A · u)u,where u = B/‖B‖

A · (B×C) Scalar triple
product

± volume of parallelepiped
spanned by A, B, and C

∣∣∣∣∣∣
a1 a2 a3

b1 b2 b+ 3
c1 c2 c+ 3

∣∣∣∣∣∣
A× (B×C) Vector triple

product

Table 14.S.1:

Some Common Applications and Definitions
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A ·B = 0 A is perpendicular to B (assuming neither A nor B is 0)
A · 〈x− x0, y − y0, z − z0〉 = 0 plane through (x0, y0, z0) perpendicular to A

|D|√
A2+B2+C2 distance from the plane Ax+By + Cz +D = 0 to the origin

|Ax1+By1+Cz1+D|√
A2+B2+C2 distance from the plane Ax+By+Cz+D = 0 to the (x1, y1, z1)

A·B
‖A‖‖B‖ = cos(θ) θ is the angle between A and B, 0 < θ < π

When the angles between a vector A and i, j, vk are respectively α, β, and
γ, the numbers cos(α), cos(β), and cos(γ) are called the direction cosines of
A. They are linked by the equation cos(α)2 + cos(β)2 + cos(γ)2 = 1.

The line through P0 = (x0, y0, z0) parallel to A = a1i + a2j + a3k is given
parametrically as 

x = x0 + a1t
y = y0 + a2t
z = z0 + a3t,

or vectorially as
−→
OP =

−−→
OP0 + tA.

Also, the line has the description in the symmetric formAssuming none of a1, a2,
and a3 are zero.

x− x0

a1

=
y − y0

a2

=
z − z0

a3

.

EXERCISES for 14.S Key: R–routine, M–moderate, C–challenging

1.[R] Find a vector perpendicular to the plane determined by the points (1, 2, 1),
(2, 1,−3), and (0, 1, 5).

2.[R] Find a vector perpendicular to the plane determined by the points (1, 3,−1),
(2, 1, 1), and (1, 3, 4).

3.[R] Find a vector that is perpendicular to the line through the points (3, 6, 1)
and (2, 7, 2) and also to the line through the points (2, 1, 4) and (1,−2, 3).

4.[R] Find a vector perpendicular to the line through (1, 2, 1) and (4, 1, 0) and also
to the line through (3, 5, 2) and (2, 6,−3).

5.[C] Figure 14.S.1 shows a tetrahedron OABC with three edges of the indicated
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lengths.

Figure 14.S.1:

(a) Find the coordinates of A, B, and C.

(b) Find the volume of the tetrahedron.

(c) Find the area of triangle ABC.

(d) Find the distance from O to the plane in which triangle ABC lies.

(e) Find the cosine of angle ABC.
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Calculus is Everywhere # 16

Space Flight: The Gravitational Slingshot
For vector-algebra chapter

In a “slingshot” or “gravitational assist” a spacecraft picks up speed as
it passes near a planet and exploits the planet’s gravity. For instance, New
Horizons, launched on January 19, 2006, enjoys a gravitational assist as it
passed by Jupiter, February 27, 2007 on its long journey to Pluto. With
the aid of that slingshot the speed of the spacecraft increased from 47,000 to
50,000 miles per hour (mph). As a result, it will arrive near Pluto in 2015,
instead of 2018.

Before we see how this technique works, let’s look at a simple situation on
earth that illustrates the idea. Later we will replace the truck with a planet’s
gravitational field.

A playful lad throws a perfectly elastic tiny ball at 30 mph directly at a
truck approaching him at 70 miles per hour, as shown in Figure C.16.1.

Figure C.16.1:

The truck driver sees the ball coming toward her at 70 + 30 = 100 mph.
The balls hits the windshield and, because the ball is perfectly elastic, the
driver sees it bounce off at 100 mph in the opposite direction.

However, because the truck is moving in the same direction as the ball, the
ball is moving through the air at 100 + 70 = 170 mph as it returns to the boy.
The ball has gained 140 mph, twice the speed of the truck.

Now, instead of picturing a truck, think of a planet whose velocity relative
to the solar system is represented by the vector P. A spacecraft, moving in
the opposite direction with the velocity v relative to the solar system comes
close to the planet.

An observer on the planet sees the spacecraft approaching with velocity
−vP + v. The spacecraft swings around the planet as gravity controls its
orbit and sends it off in the opposite direction. Whatever speed it gained as it
arrived, it loses as it exits. Its velocity vector when it exits is −(−vP + v) =
P − v, as viewed by the observer on the planet. Since the planet is moving
through the solar system with velocity vector P, the spacecraft is now moving
through the solar system with velocity P+(P−v) = 2P−v. See Figure C.16.2.If P = 70i and v = −30i,

we have the vector
2(70i)− (−30i) = 170i, the

case of the ball and truck.
But the direction of the spacecraft as it arrives may not be exactly opposite

the direction of the planet. To treat the more general case, assume that P = pi,
where p is positive and v makes an angle θ, 0 ≤ θ ≤ π/2, with −i, as shown
in Figure C.16.3(a). Let v = |v| be the speed of the spacecraft relative to
the solar system. We will assume that the spacecraft’s speed (relative to the
planet) as it exits is the same as its speed relative to the planet on its arrival.
(Figure C.16.3(b)) shows the arrival and exit vectors. Note that E and v−P
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(a) (b)

Figure C.16.2: (a) The velocity vector relative to the solar system. (b) The
velocity vector relative to the planet.

(a) (b) (c)

Figure C.16.3:
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have the same y-components, but the x-component of E is the negative of the
x-component of v −P.

Figure C.16.3(c) shows the arrival vector relative to the solar system. So,
v = −w cos(θ)i + v sin(θ)j.

Relative to the planet we have

Arrival Vector: v −P = −pi + (−v cos(θ)i + v sin(θ)j)
Exit Vector: E = pi + v cos(theta)i + v sin(θ)j

The exit vector relative to the solar system, E, is therefore

E = (2p+ v cos(θ))i + v sin(theta)j.

The magnitude of E is√
(2p+ v cos(θ))2 + (v sin(theta))2 =

√
v2 + 2pv cos(θ) + 4p2.

When θ = 0, we have the case of the truck and ball or the planet and
spacecraft in Figure C.16.2. Then cos(θ) = 1 and |E| =

√
v2 + 2pv + 4p2 =

v + 2p, in agreement with our earlier observations.
The scientists controlling a slingshot carry out much more extensive cal-

culations, which take into consideration the masses of the spacecraft and the
planet, and involve an integration while the spacecraft is near the planet.
Incidentally, the diameter of Jupiter is 86,000 miles.“Near” in the case of the

slingshot around Jupiter
means 1.4 million miles. If

the spacecraft gets too
close, the atmosphere slows
down or destroys the craft.

The gravity assist was proposed by Michael Minovitch in 1963 when he
was still a graduate student at UCLA. Before then it was felt that to send a
spacecraft to the outer solar system and beyond would require launch vehicles
with nuclear reactors to achieve the necessary thrust.
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Calculus is Everywhere # 17

How to Find Planets around Stars

Astronomers have discovered that other stars than the sun have planets circling
them. How do they do this, given that the planets are too small to be seen?
It turns out that they combine some vector calculus with observations of the
star. Let us see what they do.

Imagine a star S and a planet P in orbit around S. To describe the sit-
uation, we are tempted to choose a coordinate system attached to the star.
In that case the star would appear motionless, hence having no acceleration.
However, the planet exerts a gravitational force F on the star and the equa-
tion force = mass × acceleration would be violated. After introducing the
appropriate mathematical tools, we will choose a proper coordinate system. SHERMAN: Do we need to

define “inertial system”?

Figure C.17.1:

Let X be the position vector of the planet P and Y be the position vector
of the star S, relative to our inertial system. Let M be the mass of the sun
and m the mass of planet P . Let r = X −Y be the vector from the star to
the planet, as shown in Figure C.17.1.

The gravitational pull of the star on the planet is proportional to the prod-
uct between them:

F =
−GmMr

r3
.

HereG is a universal constant, that depends on the units used to measure mass,
length, time, and force. Equating the force with mass times acceleration, we
have

MX′′ = −GmMr
r3

.
Thus X′′ = −Gmr

r3
.

Similarly, by calculating the force that the planet exerts on the star, we
have

Y′′ =
Gmr

r3
.

Figure C.17.2:

The center of gravity of the system consisting of the planet and the star,
which we will denote C (see Figure C.17.2), is given by

C =
MY +mX

M +m
.

The center of gravity is much closer to the start than to the planet. In the
case of our sun and Earth, the center of gravity is a mere 300 miles from the
center of the sun.
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The acceleration of the center of gravity is

C′′ =
MY′′ +mX′′

M +m
=

1

M +m

(
M

(
Gmr

r3

)
+m

(
−Gmr

r3

))
= 0.

Because the center of gravity has 0-acceleration, it is moving at a constant
velocity relative to the coordinate system we started with. Therefore a coor-
dinate system rigidly attached to the center of gravity may also serve as an
inertial system in which the laws of physics still hold.

Figure C.17.3:

We now describe the position of the star and planet to this new coordinate
system. Star S has the vector x from C to it and planet P has the vector y
from C to it, as shown in Figure C.17.3. Note that r = x− y.

To obtain a relation between x and y, we first express each in terms of r.
We have

y = Y − ~OC = Y − MY −mX

M +m
=

m

M +m
Y +

m

M +m
X.

Letting k = m/M , a very small quantity, we have

y =
k

1 + k
(Y −X) =

−k
1 + k

r. (C.17.1)

Since r = x− y, it follows that x = r + y, hence

x = r +

(
−k

1 + k

)
r =

1

1 + k
r. (C.17.2)

Combining (C.17.1) and (C.17.2) shows that

y = −kx. (C.17.3)

SHERMAN: First use of
“second inertial system;”

what is the first?
Equation (C.17.3) tells us a good deal about the relation between the orbits

of the star and planet in terms of the second inertial system:

1. The star and planet remain on opposite sides of C on a straight line
through C.

2. The star is always much closer to C than the planet is.

3. The orbit of the star is similar in shape to the orbit of the planet, but
smaller and reflected through C.
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4. If the orbit of the star is periodic so is the orbit of the planet, and both
have the same period.

Equation (C.17.3) is the key to the discover of planets around stars. The
astronomers look for a star that “wobbles” a bit. That wobble is the sign
that the star is in orbit around the center of gravity of it and some planet.
Moveover, the time it takes for the planet to orbit the star is simply the time
it takes for the star to oscillate back and forth once.

The reference cited below shows that the star and the planet sweep out
elliptical orbits in the second coordinate system (the one relative to C).

Astronomers have found over two hundred stars with planets, some with
several planets. A registry of these exoplanets is maintained at http://

exoplanets.org/.
Reference: Robert Osserman, Kepler’s Laws, Newton’s Laws, and the Search

for New Planets, Am. Math. Monthly 108 (2001), pp. 813–820.

EXERCISES 1.[R] The mass of the sun is about 330,000 times that of Earth.

The closest Earth gets to the sun is about 91,341,000 miles, and the farthest from
it is about 94,448,000 miles. What is the closest the center of the sun gets to the
center of gravity of the sun-Earth system? What is the farthest it gets from it?
Hint: It lies within the sun itself.

2.[M] Find the condition that must be satisfied if the center of gravity of a sun-
planet system will lie outside the sun.

SHERMAN: See http:
//en.wikipedia.org/
wiki/Center_of_mass,
particularly the animations
at the end of the section on
“Barycenter in astrophysics
and astronomy”.
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Chapter 15

Derivatives and Integrals of
Vector Functions

In Section 9.3 we studied parametric curves in the plane. With the aid of
calculus we saw how to compute arc length, speed and curvature. For instance,
we defined curvature as the rate at which a certain angle changes as a function
of arc length.

In this chapter we examine curves in the plane or in space. Of particular
interest will be velocity and acceleration. For a particle moving along a straight
line, say, the x-axis, these were simply the derivatives dx/dt and d2x/dt2. For
a particle moving in space, velocity and acceleration involve both magnitude
and direction. How should we calculate them?

How can we define curvature for a curve that does not lie in a plane? While
arc length still makes sense, there is no angle to differentiate with respect to
arc length.

While we could answer these questions using the cumbersome component
notation for parameterization 〈x(t), y(t)〉 or 〈x(t), y(t), x(t)〉, we will emphasize
the efficient vector notation, where a vector-valued concept is denoted by one
letter. We will resort to the component notation to carry out computations
or a proof. This point of view becomes increasingly important in the final
chapters, particularly in Chapter 18.
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1194 CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

15.1 The Derivative of a Vector Function: Ve-

locity and Acceleration
In the case of motion on a

horizontal line the derivative
of position with respect to

time is sufficient to describe
the motion of the particle.

If the derivative is positive,
the particle is moving to the

right. If the derivative is
negative, the particle is
moving to the left. The

speed is simply the absolute
value of the derivative. But

the study of motion in the
plane or in space depends

on the concept of the
derivative of a vector

function.

In this section we introduce the calculus of a vector function and apply it
to motion along a curve in a plane or in space.

Assume that a curve in the plane is parameterized as 〈x(t), y(t)〉 or, in
space, by 〈x(t), y(t), z(t)〉. Let P = P (t) be the point corresponding to t,
which we may think of as “time,” though it can be any parameter, such as arc
length.

We introduce the position vector, r = r(t), whose tail is at the origin O

and whose tip is at P . Then r =
−→
OP , as shown in Figure 15.1.1

We will assume that r(t) is continuous, in that each of its components is
continuous. The limit of r(t) as t approaches a we define as the vector

〈lim
t→a

x(t), lim
t→a

y(t), lim
t→a

z(t)〉.

We denote this as limt→a r(t). Figure 15.1.2 shows this geometrically. As t
approaches a, the vector r(t)− r(a) gets shorter and shorter as it approaches
the zero vector 0.

Figure 15.1.1:

We will say that r(t) is differentiable at t = a if its components are differ-
entiable at t = a. Then the derivative of r(t) is defined as the vector.

〈x′(a), y′(a), z′(a)〉.

In vector notation,

r′(a) = lim
t→a

r(t)− r(a)

t− a
or r′(a) = lim

∆t→0

r(a+ ∆t)− r(a)

∆t
.

and, if ∆r = r(r + ∆t) − r(r), r′(α) = lim∆t→0
∆r
∆t

. When t is near a (or ∆t
is near 0) the vector in the numerator will be short. However, it is divided by
t− a (or ∆t), which is small, so the quotient could be a vector of any size.

Figure 15.1.2:

Some Derivative Formulas

In order to exploit the efficient vector notation when computing, we state some
of the useful identities:

If r and s are differentiable vector functions, and f is a differentiable scalar,
then

(r + s)′ = r′ + s′

(r× s)′ = r′ × s + r× s′ differentiate a cross product
(r · s)′ = (r′ · s) + (r · s′) differentiate a dot product

(fr)′ = f ′r + fr′ product rule (f is a scalar function)
(r(f(t)))′ = r(f(t))f ′(t) Chain Rule.
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§ 15.1 THE DERIVATIVE OF A VECTOR FUNCTION: VELOCITY AND ACCELERATION 1195

The proofs are straightforward calculations. We prove the formula for (r · s)′

in both the component notation and vector notation. For convenience, as-
sume r(t) and s(t) are vectors in the xy plane: r(t) = 〈x(t), y(t)〉 and s(t) =
〈u(t), v(t)〉.

Proof in components language:

(r · s)′ = (x(t)u(t) + y(t)v(t))′ = x′u+ xu′ + y′v + yv′

= (x′u+ y′v) + (u′x+ v′y) = r′ · s + r · s′.

Now, the same proof, but in vector language:

(r · s)′ = lim
∆t→0

r(a+ ∆t) · s(a+ ∆t)− r(a) · s(a)

∆t

= lim
∆t→0

(r(a) + ∆r) · (s(a) + ∆s)− r(a) · s(a)

∆t

= lim
∆t→0

r(a) · s(a) + ∆r · s(a) + r(a)∆s + ∆r ·∆s− r(a) · s(a)

∆t

= lim
∆t→0

∆r

∆t
· s(a) + r(a)

∆s

∆t
+ ∆r · ∆s

∆t
= r′(a) · s′(a) + r(a) · s′(a) + 0 · s′(a)

= r′(a) · s(a) + r(a) · s′(a).

This is almost the same as the proof for the derivative of the product in
Section 4.3. •

Figure 15.1.3:

EXAMPLE 1 At the time t, a particle has the position vector r(t) =
3 cos(2πt)i + 3 sin(2πt)j + 5tk. Describe its path.
SOLUTION At time t the particle is at the point

x = 3 cos(2πt)
y = 3 sin(2πt)
z = 5t.

Notice that x2 + y2 = (3 cos(2πt))2 + (3 sin(2πt))2 = 9. Thus the point is
always above or below the circle

x2 + y2 = 9.

Moreover, as t increases, z = 5t increases. A biology building on the
University of California at
Davis campus contains a
large exact-to-scale model
of the DNA molecule,
18 inches in diameter and
48 feet long. For additional
information, please visit
http://biosci.ucdavis.
edu/sculpture.html.

The path is thus the spiral spring sketched in Figure 15.1.3. When t in-
creases by 1, the angle 2πt increases by 2π, and the particle goes once around
the spiral. This type of corkscrew path is called a helix. You see it in the
spiral on the cardboard tube inside a roll of kitchen paper towels and in a
DNA molecule. �
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The Meaning of r′ and r′′

Figure 15.1.4:

The vector r′(a) is the limit of

r(a+ ∆t)− r(a)

∆t

as ∆t→ 0. The numerator r(a+ ∆t)− r(a) = ∆r is shown in Figure 15.1.4.
Since ∆r coincides with a chord, it points almost along the tangent line at

the head of r(a) when ∆t is small. Dividing a vector by a scalar (in this case,
by ∆t) produces a parallel vector. The corresponding position vector is r(t),
so the vector

r(a+ ∆t)− r(a)

∆t

approximates a vector tangent to the curve at a. We conclude that

r′(a) = lim
∆t→0

r(t+ ∆t)− r(a)

∆t

is a vector tangent to the curve at r(a). That is the geometric meaning of the
derivative r′:

r′ is tangent to the curve.

To see what r′ means when we interpret the parameter t as time, we com-
pute the length of r′(t).

Since r′(t) = 〈x′(t), y′(t), z′(t)〉, its length is√
(x′(t)2) + (y′(t)2) + (z′(t)2).

As we saw in Section 9.3, this is the speed of the moving particle.

The length of r′(t), ‖r′(t)‖, is the speed.

Since r′(t) points in the direction of motion and its length is the speed, we call
r′(t) the velocity vector. Note that velocity is a vector, while speed is a
scalar. That is a big distinction. The velocity carries much more information
than speed: it also tells the direction of the motion.

The velocity r′(t) is also denoted v or v(t). The speed is ‖v‖, denoted v or
v(t).
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§ 15.1 THE DERIVATIVE OF A VECTOR FUNCTION: VELOCITY AND ACCELERATION 1197

The acceleration vector, a(t) is the derivative of the velocity vector:

The acceleration is a(t) = v′(t) = dv
dt

= r′′(t) = d2r
dt2

.

EXAMPLE 2 Let r(t) = 〈t, t3〉.

(a) Draw, and label, r, v, and a at t = 1.

(b) Draw v(1.1).

SOLUTION

Figure 15.1.5:

(a) r(t) = 〈t, t3〉, v(t) = 〈1, 3t2〉 and a = 〈0, 6t〉. So r(1) = 〈1, 1〉, v(1) =
〈1, 3〉 and a(1) = 〈0, 6〉. We show these in Figure 15.1.5.

(b) Before we compute v(1.1), let us predict how it may change from v(1).
We think of the acceleration vector as representing a force. Since it’s
almost in the direction of v(1), we would expect it to be speeding up the
moving particle. That is, v(1, 1) should be longer than v(1).

Also, it would tend to rotate the velocity vector counterclockwise. So the
direction of v(1, 1) should be a bit counterclockwise from that of v(1).
To check, we compute v(1, 1) = 〈1, 3(1.1)2〉 = 〈1, 3.63〉.

Figure 15.1.6:

It is longer than v(1) = 〈1, 3〉 since
√

1 + (3.63)2 is larger than
√

1 + 32.
Figure 15.1.6 shows that it is turned a bit counterclockwise, as expected.
Its tail is placed at

r(1.1) = 〈1.1, 1.331〉 = 1.1i + 1.331j.

�

EXAMPLE 3 Find the speed at time t of the particle described in Exam-
ple 1.
SOLUTION

Speed = ‖r′(t)‖ =
√

(−6π sin 2πt)2 + (6π cos 2πt)2 + 52

=
√

36π2(sin2 2πt+ cos2 2πt) + 25 =
√

36π2 + 25.

The particle travels at a constant speed along it helical path. In t units of
time it travels the distance

√
36π2 + 25t.
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Note that the velocity vector is not constant ; its direction always changes.
However, its length remains constant, and so the speed is constant. �

EXAMPLE 4 Sketch the path of a particle whose position vector at time
t ≥ 0 is r(t) = cos(t2)i + sin(t2)j. Find its speed at time t.

SOLUTION Note that

‖r(t)‖ =
√

cos2(t2) + sin2(t2) = 1.

So the path of the particle is on the circle of radius 1 and center (0, 0). The
speed of the particle is

‖v(t)‖ = ‖r′(t)‖ = ‖ − 2t sin(t2)i + 2t cos(t2)j‖
=

√
(−2t sin(t2))2 + (2t cos(t2))2

= |2t|
√

sin2(t2) + cos2(t2) = 2t.

The particle travels faster and faster around a circle of radius 1. �

EXAMPLE 5 If the acceleration vector is always perpendicular to the ve-
locity vector, show that the speed is constant.

SOLUTION The speed is ‖v‖. Rather than writing this in terms of com-
ponents and showing that its derivative is zero, let’s use a trick that will be
useful later.

We will show that the square of the speed, ‖v‖2, is constant by showing
that its derivative, with respect to time, is zero. Since ‖v‖2 = v · v, we have

d

dt

(
‖v‖2

)
=

d

dt
(v · v) = v′ · v + v · v′ = 2v · v′ = 2v · a.

Since a is perpendicular to v: v · a = 0.

Thus v · v is constant. This implies that the speed is constant. �

The force of a magnetic field on a moving electron is perpendicular to the
velocity vector that describes the motion of the electron. Since the acceleration
vector is parallel to the vector representing the force, the speed of the electron
remains constant (unless affected by other forces). Its direction, however,
changes.

The calculation in Example 5 implies that if r(t) is always perpendicular
to r′(t), then the length of r(t) is constant. The converse of this is also true:
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If the length of r(t) is constant, then its derivative r′(t) is perpendicular to
r(t).

This is not surprising. When r(t) lies on a sphere of radius c (centered at
the origin), the length of r(t) always has the same value, c. A tangent to the
curve at the typical point P is tangent to the sphere. The tangent vector at P
is perpendicular to the radius to P , as indicated in Figure 15.1.7(a), and the
result follows.

(a) (b) (c)

Figure 15.1.7:

EXAMPLE 6 Is the particle shown in Figure 15.1.7(b) speeding up or
slowing down? Is its direction turning clockwise or counterclockwise?

SOLUTION Think of a as the sum of two vectors, one parallel to v, and the
other perpendicular to v, as shown in Figure 15.1.7(c). Since b is in the same
direction as v, the particle is speeding up. The direction of c indicates that
the direction is shifting counterclockwise. �

Summary

Instead of parameterizing a curve by displaying the varying components (x(t), y(t))

or (x(t), y(t), z(t)), we introduced the position vector
−→
OP = r(t). If r(t) de-

scribes the position of a moving particle at “time” t, then r′(t) is the velocity
of the particle and ‖r′(t)‖ is its speed. The acceleration a(t) is the second
derivative of r(t): a = r′′. One may think of it as being proportional to the
force operating in the particle.

Also, we showed that if r(t) and r′(t) are perpendicular, then the length of
r(t), ‖r(t)‖, is constant. The converse holds: If r(t) has constant length, then
r′(t) is perpendicular to r(t), and r(t) · r′(t) = 0.
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EXERCISES for Section 15.1 Key: R–routine, M–moderate, C–challenging

1.[R] At time t a particle has the position vector r(t) = ti + r2j.

(a) Compute and draw r(1), r(2) and r(3).

(b) Show that the path is a parabola.

2.[R] At time t a particle has the position vector r(t) = (2t+ 1)i + 4tj.

(a) Compute and draw r(0), r(1) and r(2).

(b) Show that the path is a straight line.

3.[R] Let r(t) = 2ti + t2j.

(a) Compute and draw r(1.1), r(1) and their difference ∆r = r(1.1)− r(1).

(b) Compute and draw ∆r/0.1, where ∆r is defined in part (a).

(c) Compute and draw r′(1). Note: Use one set of axes for all of the graphs.

4.[R] Let r(t) = 3ti + t2j.

(a) Compute and draw ∆r = r(2.01)− r(2).

(b) Compute and draw ∆r/0.01.

(c) Compute and draw r′(2). Note: Use one set of axes for all the graphs.

5.[R] At time t the position vector of a thrown ball is r(t) = 32ti− 16t2j.

(a) Draw r(1) and r(2).

(b) Sketch the path.

(c) Compute and draw v(0), v(1), and v(2). In each case place the tail of the
vector at the head of the corresponding position vector.

6.[R] At the time t ≥ 0 a particle is at the point x = 2t, y = 4t2.
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(a) What is the position vector r(t) at time t?

(b) Sketch the path.

(c) How fast is the particle moving when t = 1?

(d) Draw v(1) with its tail at the head of r(1).

7.[R] Let r(t) describe the path of a particle moving in the xy plane. If r(1) =
2.3i + 4.1j and r(1.2) = 2.31i + 4.05j, estimate

(a) how much does the position of the particle change during the time interval
[1, 1.2].

(b) the slope of the tangent vector to the path at r(1).

(c) the velocity vector r′(1).

(d) the speed of the particle at time t = 1.

8.[R] Let r(t) describe the path of a particle moving in space. If r(2) = 1.7i +
3.6j + 8k and r(2.01) = 1.73i + 3.59j + 8.02k, estimate

(a) how far the particle moves during the time interval [2, 2.01].

(b) the velocity vector r′(2).

(c) the speed of the particle at time t = 1.

In Exercises 9 and 12 compute the velocity vectors and speeds for the given paths.
9.[R] r(t) = cos 3ti + sin 3tj + 6tk.

10.[R] r(t) = 3 cos 5ti + 2 sin 5tj + t2k.

11.[R] r(t) = ln(1 + t2)i + e3tj + tan t
1+2tk.

12.[R] r(t) = sec2 3ti +
√

1 + t2j.

13.[R] At time t the position vector of a particle is

r(t) = 2 cos(4πt)i + 2 sin(4πt)j + tk.

(a) Sketch its path.
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(b) Find its speed.

(c) Find a unit tangent vector to the path at time t.

In each of Exercises 14 to 21 the figure shows a velocity vector and an acceleration
vector. Decide whether (a) the particle is speeding up, slowing down, or neither,
(b) the velocity vector is turning clockwise, counter-clockwise, or neither, at the
moment.
14.[R] Figure 15.1.8(a)
15.[R] Figure 15.1.8(b)
16.[R] Figure 15.1.8(c)
17.[R] Figure 15.1.8(d)
18.[R] Figure 15.1.9(a)
19.[R] Figure 15.1.9(b)
20.[R] Figure 15.1.9(c)
21.[R] Figure 15.1.9(d)

(a) (b) (c) (d)

Figure 15.1.8:

(a) (b) (c) (d)

Figure 15.1.9:
22.[R] At time t a particle is at (4t, 16t2).

(a) Show that the particle moves on the curve y = x2.

(b) Draw r(t) and v(t) for t = 0, 1/4, 1/2.

(c) What happens to ‖v(t)‖ and the direction of v(t) for large t?

23.[R] At time t ≥ 1 a particle is at the point (x, y) = (t, t−1).
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(a) Draw the path of the particle.

(b) Draw r(1), r(2), and r(3).

(c) Draw v(1), v(2) and v(3).

(d) As times go on, what happens to dx/dt, dy/dt, ‖v‖, and v?

24.[R] At time t a particle is at (2 cos(t2), sin(t2)).

(a) Show that it moves on an ellipse.

(b) Compute v(t).

(c) How does ‖v(t)‖ behave for large t? What does this say about the particle?

25.[R] An electron travels at constant speed clockwise in a circle of radius 100 feet
200 times a second. At time t = 0 it is at (100, 0).

(a) Compute r(t) and v(t).

(b) Draw r(0), r(1/800), v(0), v(1/800).

(c) How do ‖r(t)‖ and ‖v(t)‖ behave as time goes on?

26.[R] A ball is thrown up at an initial speed of 200 feet per second and at an
angle of 50◦ from the horizontal. If we disregard air resistance, then at time t it is
at (100t, 100

√
3t− 16t2), as long as it is in flight. Compute and draw r(t) and v(t)

(a) when t = 0, (b) when the ball reaches its maximum height, and (c) when the
ball strikes the ground.

27.[R] A particle moves in a circular orbit of radius a. At time t its position vector
is

r(t) = a cos(2πt)i + a sin(2πt)j.

(a) Draw its position vector when t = 0 and when t = 1
4 .

(b) Draw its velocity when t = 0 and when t = 1
4 .

(c) Show that its velocity vector is always perpendicular to its position vector.
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28.[R] Use a computer or graphing calculator to graph r = r(t) = (2 cos(t) +
cos(3t))i + (3 sin(t) + sin(3t))j; 0 ≤ t ≤ 2π.

29.[R] If r(t) is the position vector, v the velocity vector, and a the acceleration
vector, show that d

dt(r× v) = r× a.

30.[M] Let r(t) = t2i + t3j.

(a) Sketch the vector ∆r = r(1.1)− r(1).

(b) Sketch the vector ∆r/∆t, where ∆r is given in (a) and ∆t = 0.1.

(c) Sketch r′(1).

(d) Find ‖∆r/∆t− r′(1)‖, where ∆r is given in (a) and ∆t− 0.1.

31.[M] Instead of time t, use the arc length s along the path as a parameter,
r = r(s).

(a) Show that dr/ds is a unit vector.

(b) Sketch ∆r and the arc of length ∆s. Why is it reasonable that ‖∆r/∆s‖ is
near 1 when ∆s is small?

32.[M] A particle at time t = 0 is at the point (x0, y0, z0). It moves on the line
through that point in the direction of the unit vector u = cos(α)i+cos(β)j+cos(γ)k.
It travels at the constant speed of 3 feet per second.

(a) Give a formula for its position vector r = r(t).

(b) Find its velocity vector v = r′(t).

33.[M] A rock is thrown up at an angle θ from the horizontal and at a speed v0.

(a) Show that
r(t) = (v0 cos(θ))ti + ((v0 sin(θ))t− 16t2))j.

Note: At time t = 0, the rock is at (90, 0); the x-axis is horizontal. Time is
in seconds and distance is in feet.
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(b) Show that the horizontal distance that the rock travels by the time it returns
to its initial height is the same whether the angle is θ or its complement
(π/2)− θ.

(c) What value of θ maximizes the horizontal distance traveled?

(This is similar to Exercise 25 in Section 9.3, but this version uses vector ideas.)

34.[M]

(a) Solve Example 5 by writing the speed as

√(
dx
dt

)2
+
(
dy
dt

)2
+
(
dz
dt

)2
and differ-

entiating.

(b) Which way do you prefer? The vector method in Example 5 or the component
method in (a)?

35.[C] At time t the position vector of a particle is

r(t) = t cos(2πt)i + t sin(2πt)j + tk.

Sketch the path of the particle.

36.[C] A spaceship outside any gravitational field is on the path r(t) = t2i + 3tj +
4t3k. At time t = 1 it shuts off it rockets and coasts along the tangent line to the
curve at that point.

(a) Where is it at time t > 1?

(b) Does it pass through the point (9, 15, 50)?

(c) If not, how close does it get to that point? (At what time?)

37.[C] A particle traveling on the curve r(t) = ln(t)i + cos(3t)j, t ≥ 1, leaves the
curve when t = 2 and travels through space along the tangent to the curve at r(2).
Where is it when t = 3?

38.[C] Drawing a picture of r(t), r(t+ ∆t), and r(t+ ∆t), explain why
∥∥∆r

∆t

∥∥ is an
estimate of the speed of a particle moving on the curve r(t).

39.[C] The moment a ball is dropped straight down from a tall tree, you shoot an
arrow directly at it. Assume that there is no air resistance. Show that the arrow
will hit the ball. (Assume that the ball does not hit the ground first.)
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(a) Solve with the aid of the formulas in Exercise 33.

(b) Solve with a maximum of intuition and a minimum of computation.

40.[C]

(a) At time t a particle has the position vector r(t). Show that for small ∆t the
area swept out by the position vector is approximately 1

2‖r(t)×v(t)‖∆t. (See
Figure 15.1.10.) Hint: v(t) is approximated by ∆r/∆t.

(b) Assume that the curve in (a) is parameterized over the time interval [a, b].
Show that the arc length swept out is 1

2

∫ b
a ‖r× v‖ dt.

(c) Must the curve in (a) and (b) lie in a plane for the formula in (b) to hold?

Figure 15.1.10:
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Skill Drill

In Exercises 41 to 47 v(t) is the velocity vector at time t for a moving particle and
r(0) is the particle’s position at time t = 0. Find v(t), the position vector of the
particle at time t. (These review the integration techniques of Chapter 8.)

41.[C] v(t) = sin2(3t)i +
t

3t2 + 1
j; r(0) = j

42.[C] v(t) =
t

t2 + t+ 1
i + tan−1(3t)j; r(0 = i + j

43.[C] v(t) =
t3

t4 + 1
i + ln(t+ 1)j; r(0) = 0

44.[C] v(t) = e2t sin(3t)i +
t3

3t+ 2
j; r(0) = i + 3j

45.[C] v(t) =
t

(t+ 1)(t+ 2)(t+ 3)
i +

t2

(t+ 2)3
j; r(0) = i− j

46.[C] v(t) =
(ln(t+ 1))3

t+ 1
i +

1√
1− 4t2

j + sec2(3t)k; r(0) = i + j + k

47.[C] v(t) = t3e−ti + (1 + t)(2 + t)j; r(0) = 2i− j
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15.2 Curvature and Components of Accelera-

tion

In Section 9.3 we defined the curvature of a plane curve as the absolute value
of the derivative dφ/ds, where φ is the angle the tangent makes with the x-axis
and s is the arc length. This definition does not work for a curve that does not
lie in a plane. Why not? In this section we use vectors to define the curvature
of a curve, whether it lies in a plane or not. Curvature is then used to analyze
the acceleration vector.

Definition of Curvature

A particle whose position vector at the time t is r(t) has velocity v(t). When
v(t) is not the zero vector, the unit vector in the direction of v(t) is

T(t) =
v(t)

‖v‖
=

r′(t)

‖r′(t)‖
.

To save writing so many “t”s’ we will just say

T =
v

‖v‖
=

r′

‖r′‖
(assuming v 6= 0)

All that T does is record the direction of motion.
As the particle moves along the curve the direction of T changes most

rapidly where the curve is curviest. This suggests the following definition of
curvature for any curve in the plane or in space:

Let s denote the length of arc of a curve, measured from a fixed starting point.

Then, curvature, κ, is the length of dT
ds

, κ =

∥∥∥∥dTds
∥∥∥∥.

We first check that this definition of curvature agrees with the definition
for curvature given in the case of a plane curve in Section 9.3. We carry out
this check in Example 1.

EXAMPLE 1 Show that the definition of curvature as ‖dT/ds‖ agrees with
the definition |dφ/ds| given earlier for plane curve.
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SOLUTION As Figure 15.2.1 shows, φ is the angle that T makes with the

Figure 15.2.1:

x-axis. Since T is a unit vector, T = cos(φ)i + sin(φ)j. Thus

κ =

∥∥∥∥dTds
∥∥∥∥ =

∥∥∥∥d(cosφi + sinφj

ds

∥∥∥∥ =

∥∥∥∥d(cosφi + sinφj)

dφ

dφ

ds

∥∥∥∥
=

∣∣∣∣(− sinφi + cosφj)
dφ

ds

∣∣∣∣ = ‖(− sinφi + cosφj)‖
∣∣∣∣dφds

∣∣∣∣ =

∣∣∣∣dφds
∣∣∣∣

so that

∥∥∥∥dTds
∥∥∥∥ =

∣∣∣∣dφds
∣∣∣∣. �

Define the radius of curvature, r, as the reciprocal of κ as in Section 9.6.

EXAMPLE 2 Compute the curvature of the helical path

r(t) = cos(t)i + sin(t)j + 3tk.

SOLUTION To find T we first must compute v = − sin(t)i + cos(t)j + 3k
and ‖v‖ =

√
(− sin(t))2 + (cos(t))2 + 32 =

√
10. Thus T = 1√

10
(− sin(t)i +

cos(t)j + 3k).

Figure 15.2.2:

Using the fact that speed is both v = ‖v‖ and the rate of change of arc
length, the curvature equals

∥∥∥∥dTds
∣∣∣∣ =

∥∥dT
dt

∥∥∣∣ds
dt

∣∣ =

∥∥dT
dt

∥∥
v

=

∥∥∥ 1√
10

(− cos(t)i− sin(t)j)
∥∥∥

√
10

The curvature is 1/10 and the radius of curvature is 10. For a helix the
curvature and radius of curvature are both constant. For this particular helix,
κ = 1/10 and r = 1/κ = 10. �

The Unit Normal N

Since T(t) is a constant length, dT/ds is perpendicular to T. By considering
small ∆s and ∆T, as in Figure 15.2.2, we see that dT/ds points in the direction
in which T is turning. Since the length of dT/ds is the curvature κ, we may

Figure 15.2.3:

write
dT

ds
= κN

where N is a unit normal called the “principal normal.” That κ is positive
reminds us that dT/ds and N point in the same direction. The vectors T and
N, if placed with their tails at a point P on the curve, determine a plane. The
part of the curve near P stays close to that plane. (See Figure 15.2.3.)
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The Acceleration Vector and T and N

The acceleration vector, a, is defined as the second derivative of the position
vector, r. We will show that a is parallel to the plane determined by T and N.
That is, a can be written in the form c1T + c2N, where c1 and c2 are scalars,
which we will express in terms of the motion of the particle.

Since a = dv
dt

, we begin by computing v in terms of T and N. This is easy:
by the definition of T, v = vT, where v = ‖v‖, the speed. N is not needed to
express the velocity vector v.

Thus

a = dv
dt

= d(vT)
dt

= dv
dt

T + v dT
dt

product rule

= d2s
dt2

T + v dT
ds

ds
dt

v = ds
dt

and chain rule

= d2s
dt2

T + v2 dT
ds

Thus, replacing dT
ds

with κN, we find

Acceleration in terms of T, N, and curvature (κ)

a =
d2s

dt2
T + v2κN (15.2.1)

r = 1/κ (κ 6= 0)

If κ is not 0, then we have

Acceleration in terms of T, N, and radius of curvature (r)

a =
d2s

dt2
T +

v2

r
N. (15.2.2)

Tangential component of

acceleration: a ·T = d2s
dt2

The tangential component of acceleration, d2s
dt2

, is positive if the particle
is speeding up and is negative if the particle is slowing down. The normalNormal component of

acceleration: a ·N = v2

r
component of acceleration, v2/r, is always positive.

Figure 15.2.4 indicates how a may look relative to T and N. In both cases
T turns in the direction indicated by N. In Figure 15.2.4 that means that T
is turning counterclockwise.

Computing Curvature, κ

We can compute the curvature directly from its definition. There is also a
shorter formula for κ. To develop this formula, we compute

T× a = T×
(
d2s

dt2
T + v2κN

)
. (15.2.3)
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(a) (b)

Figure 15.2.4: The tangential and normal components of acceleration: (a)
d2s/dt2 > 0 and (b) d2s/dt2 < 0.

We do this for two reasons. First, T×T = 0. Second ‖T×N‖ = 1, since T
and N span a unit square. By (15.2.3), then, we have

T× a = κv2(T×N).

Thus
‖T× a‖ = κv2.

Recalling that T = v/v, we have

‖v × a‖
v

= κv2

and finally

Curvature in terms of speed, velocity and acceleration

κ =
‖v × a‖
v3

. (15.2.4)

We illustrate (15.2.4) by applying it to the helical path of Example 2.

EXAMPLE 3 Compute the curvature of the helical path r(t) = cos(t)i +
sin(t)j + 3tk using (15.2.4).
SOLUTION We compute v, v and a. First, v = − sin ti + cos tj + 3k, so
v =

√
(− sin(t))2 + (cos(t))2 + 32 =

√
10. Then

a =
dv

dt
= − cos(t)i− sin(t)j.
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Next we compute v × a:

det

 i j k
− sin(t) cos(t) 3
− cos(t) − sin(t) 0

 = 3 sin(t)i− 3 cos(t)j + (sin2(t) + cos2(t))k

= 3 sin(t)i− 3 cos(t)j + k.

Finally,

k =
|v × a|
v3

=
|3 sin(t)i− 3 cos(t)j + k|

(
√

10)3

=

√
(3 sin(t))2 + (−3 cos(t))2 + 12

√
10

3

=

√
10

(
√

10)3
=

1

10
.

�

Though curvature is defined as a derivative with respect to arc length s,
we seldom use that definition in computations.

First of all, we seldom can obtain a formula for the arc length. Second, if
the curve is described in terms of a parameter t, such as time or angle, then
we can use the chain rule to express dT/ds as the directly calculable

dT
dt
ds
dt

.

The Meaning of the Components of a

If no force acts as a moving particle, it would move in a line at a constant
speed. But if there is a force F, then, according to Newton, it is related to the
acceleration vector a by the equation F = ma (when the mass m is constant.)
So we can think of a as a representative of the force F.

Figure 15.2.5:

If F is parallel to T, the particle moves in a line with an acceleration
dv/dt = d2s/dt2. So we would expect a to equal d2s/dt2T.

If F is perpendicular to T, it would not change the speed, but it would
push the particle away from a straight path, as shown in Figure 15.2.5

If you spin a pail of water at the end of a rope (or a discus at the end
of your arm) you can feel this force. It is proportional to the square of the
speed and inversely proportional to the length of the rope. No wonder driving
a car around a sharp curve too fast can cause it to skid: the friction of the tire
against road cannot supply the necessary force (whose magnitude is the speed
squared divided by the radius of the turn) to prevent skidding.
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The Third Unit Vector, B
The plane that contains the
point P and the two vectors
T and N is called the
osculating plane. See also
Section 9.6.

The vector T×N has length 1 and is perpendicular to both T and N. We
may think of it as a normal to the plane through a given point P on the curve
parallel to T and N. The unit vector T ×N is denoted B and is called the
binormal. It is shown in Figure 15.2.6

Figure 15.2.6:

The three vectors, T, N, and B, may change direction as the point P
moves along the curve. However, they remain a rigid frame, where T indicates
the direction of motion, N the direction of turning, and B the tilt of the plane
through T and N if their tails are at P . Several different formulas

for the curvature were found
in this section. More
formulas for κ are found in
Exercises 21, 22, and 23. In
reality when given explicit
formulas for a curve, it is
often easiest to use a
computer algebra system
such as Mathematica or
Maple to find the curvature
and the vectors T, N, and
B.

Summary

We defined the curvature of a curve in space (or in the xy-plane) using vectors.
This definition agrees with the definition of curvature for curves in the xy-
plane given in Section 9.6. The curvature, or its reciprocal, the radius of the
curvature, appears in the normal component of the acceleration vector.

The section concluded with the definition of the binormal, B = T × N,
which records the tilt of the plane determined by T and N.
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EXERCISES for Section 15.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4, v denotes the velocity and a denotes the acceleration. Evaluate
the indicated scalar component.
1.[R] What is v ·T?

2.[R] What is a ·T?

3.[R] What is v ·N?

4.[R] What is a ·N?

5.[R]

(a) Why is T×N a unit vector?

(b) Why is N perpendicular to T?

In Exercises 6 and 7, v and a are given at a certain instant. In each case, find the
(i) curvature, (ii) radius of curvature, and (iii) d2s/dt2.
6.[R] v = 2i + 3j + 4k, a = i− j + k

7.[R] v = i + j + k, a = −i + j + k

In Exercises 8 and 9 compute the curvature using the formula κ = |dT/dt|/v.
8.[R] r(t) = ti + t2j + t3k

9.[R] r(t) = 3 cos(2t)i + 3 sin(2t)j + 4t

In Exercises 10 and 11, compute the curvature using the speed, velocity, and accel-
eration, that is, with the formula κ = ‖v×a‖

v3
.

10.[R] r(t) = ti + t2j + t3k

11.[R] r(t) = 3 cos(2t)i + 3 sin(2t)j + 4tk

12.[R] We showed that d|v|/dt = v · a/|v|, using vectors. To emphasize the value
of the vector approach, derive the same result starting with the fact that

‖v‖ =

√(
dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

.

13.[R] Let a and b be constants. A particle moves in a helical path described by

r(t) = 3 cos(at)i + 3 sin(at)j + btk
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(a) Compute its curvature.

(b) As b→∞ what happens to the curvature?

(c) Why is the answer to (b) reasonable?

(d) As a→∞, what happens to the curvature?

(e) Why is the answer to (d) reasonable?

14.[M] Show that the formula ‖(v×a)‖
v3

in the case r(x) = xi + f(x)j + 0k, gives the
formula in Section 9.6 for curvature of the curve y = f(x).

15.[M] Show that dr
ds is a unit vector,

(a) by drawing r(s+ ∆s) and r(s) and considering r(s+∆s)−r(s)
∆s

(b) by writing it as (dr/dt)/(ds/dt).

16.[M] Express the area of the parallelogram spanned by v and a in terms of the
curvature and speed.

17.[M] If a particle reaches a maximum speed at time t0, must d2s/dt2 be 0 at t0?
Must d2r/dt2 be 0 at t0? Assume the time interval is (−∞,∞).

18.[M] If r(t) is the position vector, is d2r/dt2 parallel to d2r/ds2, where s denotes
arc length?

In Exercises 19 and 20 the figures show the velocity and acceleration vectors at a
point P and a curve. Use that information to find (i) v, (ii) d2s/dt2, (iii) κv2. Then
(iv) find r, the radius of the curvature, (v) draw the osculating circle, and (vi) using
the osculating circle, draw an approximation of a short piece of the path near P .
19.[M] Figure 15.2.7(a)
20.[M] Figure 15.2.7(b)

(a) (b)
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Figure 15.2.7:
21.[M]

Jane: After doing Exercises 19 and 20, I have a simpler way to get a formula for
curvature. Just look at the right triangle whose hypotenuse has length ‖a‖
and its component along v. By trigonometry,

κv2 = ‖a‖| sin(a,v)|. (15.2.5)

All that’s left is getting sin(a,v) out and cos(a,v) in because we know how
to express cos(a,v) in terms of a dot product. Squaring (15.2.5) gives

κ2v4 = ‖a‖2
(
1− cos2(a,v)

)
.

If you use the fact that

cos(a,v) =
a · v
‖a‖(v)

.

and a little algebra, you get

κ2 =
(v · v)(a · a)− (a · v)2

v6

My way is simpler than using the cross product. I guess the authors don’t
understand trigonometry.

(a) Fill in the missing steps.

(b) Check that Jane’s formula agrees with (15.2.4).

22.[M]

Sam: You used trigonometry. I can do it with just the Pythagorean Theorem. Look
at that triangle with hypotenuse |a|. Its two legs have lengths |d2s/dt2| and
κv2. So

‖a‖2 =
(
d2s

dt2

)2

+ (κv2)2.

Solve this for κ. JANE But you have to express everything in vectors. We’re
in the chapter on vectors.

Sam: O.K. First ‖a‖2 = a · a and v2 = ‖v‖2 = v · v.

Jane: But d2s/dt2?
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Sam: That’s dv/dt. So I just differentiate both sides of v2 = v · v, getting 2v dvdt =
2v · a. So dv/dt = (v · a)/v. So (dv/dt)2 = (v · a)2/v2. So

a · a =
(v · a)2

v2
+ κ2(v2)2.

Then solve for κ2.

I get the same result that you got in Exercise 21. It seems quite straightfor-
ward. The authors should have used my formula.

Find the formula for curvature that is obtained from this line of reasoning.

23.[M] This equation provides yet another way to find a formula for curvature.
Consider the right triangle whose hypotenuse is |a| and whose legs are parallel to T
and N. Show that

κ2v4 = (ẍ)2 + (ÿ)2 + (z̈)2 − (s̈)2.

Note: Two dots over a variable denotes the second derivative of the variable with
respect to t.

24.[M] Assume that you are prone to car sickness on curvy roads such as Highway
1 north of San Francisco or the small state highways in southern Ohio. Which mat-
ters more to you, |dT/ds| where s is arc length or |dT/dt| where t is time? Explain
the difference in the two quantities.

25.[M] Let r = r(s), where s is arc length. Show that the curvature is κ =
∥∥∥d2rds2

∥∥∥.

26.[M] Consider curves situated on the surface of a sphere S of radius a. (Recall
that a sphere is the surface of a ball.)

(a) Show that there are curves on S that have very large curvature.

(b) Exhibit a curve whose curvature is as small as 1/a.

(c) Show that there are no curves with curvature smaller than 1/a. Hint: See
Exercise 25 and start with r · r = a2.

The Frenet formulas concern the derivatives of T, B, and N with respect to arc
length s:

dT
ds

= κN,
dB
ds

= τN,
dN
ds

= −κT + τB.

Here κ is curvature and τ is “torsion,” the measure of the tendency of the plane
through T and N to turn.

Exercises 27 and 28 develop the formulas for dB/ds and dN/ds.
27.[M] This exercise develops dB/ds.
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(a) Why is dB/ds perpendicular to B?

(b) Why are there scalars p and q such that dB
ds = pT + qN?

(c) Using the fact that B and T are always perpendicular show that

(pT + qN)−T = 0.

(d) From (c) show that p = 0. Thus dB/ds = qN. The scalar function q is usually
denoted τ (“tau”). Thus dB/ds = τN.

28.[M] This exercise develops dN/ds.

(a) Why are there scalars c and d such that dN
ds = cT + dB?

(b) Using the fact that B and N are always perpendicular, show that τN ·N +
B · (cT + dB) = 0.

(c) From (b) show that d = −τ .

(d) Similarly, starting with T ·N = 0, show that c = −κ. Thus dN
ds = −κT− τN.

29.[M] You are swinging a pail of water at the end of a rope. You slowly increase
the amount of rope until the radius of the circle the pail sweeps out doubles. Does
the force of your pull remain the same? Increase? Decrease? Explain.

30.[M] In Example 1 we used calculus to show that for a plane curve |dT/ds| =
|dφ/ds|, when φ is the angle that T makes with the x-axis. This suggests that for
small values of ∆s, |∆φ| = |φ(s + ∆s) − φ(s)| is a good approximate of |∆T| =
|T(s+ ∆s)−T(s)|.

(a) Draw T(s+ ∆s) and T(s) with their tails at the origin.

(b) Using the diagram in (a), show why you would expect |∆T| and |∆φ| to be
close to each other in the sense that |∆T/∆φ| would be near 1.

31.[C] Show that a curve that has a constant curvature κ = 0 is a line. Hint: Start
with the definition, κ = |dT/ds|. Note: Don’t say, “Oh, it’s a curve with infinite
radius of curvature. So it must be a line”.

32.[C] Express dT/ds in terms of the curvature and N.

33.[C]
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Sarah: I don’t like the way the authors got the formula for curvature. I’m sure
they didn’t need to drag in the components of the acceleration vector. It’s
not elegant.

Sam: They’re trying to save space. Calculus books are too long.

Sarah: My way is neat and short: just calculate∥∥∥∥dTds
∥∥∥∥ =
‖dTdt ‖
‖v‖

.

To begin I write T as v/‖v‖. Then I just differentiate the quotient v/‖v‖.
Along the way I’ll need d‖v‖/dt, but I get that by differentiating ‖v‖2 = v ·v.
That will give me

dT
ds

=
v2a− (a · v)v

|v|3
(15.2.6)

Sam: That’s a nice formula but its not got the cross product.

Sarah: If you like cross products, then use (15.2.6) to find (dT)/ds ·dT/ds and call
on that identity that appeared when getting the length of the cross product
‖A×B‖ (page 1153). I’ll let you fill in the steps. I don’t want to deprive you
of a little fun.

Fill in all the missing steps.
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15.3 Line Integrals and Conservative Vector

Fields

In Section 6.2, we defined the integral of a function f(x) over an interval [a, b]
as the limit of sums of the form

∑n
i=1 f(ci)∆xi. Now we use similar definitions

for integrals over curves. In the next section we apply these concepts to work,
fluid flow, and geometry.

The Integral with Respect to Arc Length s

Let r(t) be the position vector corresponding to a parameter value t in [a, b].
Assume that r(t) sweeps out a curve C with a continuous unit tangent vector
T(t). Let f be a scalar-valued function defined at least on C. We will define
the integral of f over C with respect to arc length.

Figure 15.3.1:

Partition [a, b] by t0 = a, t1, . . . , tn = b and let r(t0) =
−−→
OP0, r(t1) =

−−→
OP1,

r(tn) =
−−→
OPn be the corresponding position vector as shown in Figure 15.3.1.

The points P0, P1, . . . , Pn break the curve into n shorter curves of lengths
∆s1, ∆s2, . . . , ∆sn. Then form the Riemann sum

n∑
i=1

f(Pi)∆si (15.3.1)

The limit of sums of the form (15.3.1) as all the lengths ∆si are chosen smaller
and smaller is denoted

∫
C
f(P )ds. That is,∫

C

f(P ) ds = lim
∆s→0

n∑
i=1

f(Pi)∆si.

This limit does not depend on the particular parameterization. In particular
it does not depend on the direction in which the curve is swept out. For
computational purposes we have

∫
C

f(P ) ds =

b∫
a

f(P )

∣∣∣∣dsdt
∣∣∣∣ dt

EXAMPLE 1 A fence is built as a semi-circle of radius a with center at
the origin. At the point on the circle of angle θ, its height is sin2(θ). What is
the area of one side of the fence?
SOLUTION Let f(P ) be the height of the fence at P = (r, θ) in polar
coordinates. (See Figure 15.3.2(a). Then f(r, θ) = sin2(θ). Let θ be the
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(a) (b)

Figure 15.3.2:

parameter, θ in [0, π]. Let s = aθ be the arc length subtended by the angle θ,
as in Figure 15.3.2(b). Then ds = adθ and we have

Area =

∫
C

sin2(θ) ds =

π∫
0

sin2(θ)a dθ = 2

π/2∫
0

sin2(θ)a dθ = 2a
π

4
=
πa

2
.

�

The Integrals with Respect to x, y, or z

The integral with respect to arc length is so similar to the integral over an
interval that it presents little novelty. However, the integrals with respect to
x, y, or z are quite different.

As before, we start with a parameterized curve C and a scalar function
f defined at least on C. We divide the interval [a, b] into n sections by t0 =
a, t1, · · · , tn = b. For convenience, take the sections to be of equal lengths.

Let r(ti) = 〈x(ti), y(ti), z(ti)〉.
Instead of considering the arc lengths ∆si of each short interval we consider

instead the change in the x coordinate, xi+1 − xi = ∆xi. This change can be
positive or negative. We then make the following definition.
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The integral of f over the curve C with respect to x is the limit of sums of the
form

n∑
i=1

f(x(ti), y(ti), z(ti))∆xi

as n approaches infinity. It is denoted∫
C

f dx or

∫
C

f(x, y, z) dx or

∫
C

f(P ) dx

For computational purposes, when C is parameterized,
∫
C
f dx is expressed as∫ b

a
f(x(t), y(t), z(t))dx

dt
dt.

In contrast to an integral with respect to arc length, the value of
∫
C
f(P ) dx

depends on the orientation in which the curve is swept out. If we reverse the
orientation, the expression xi+1 − xi changes sign. For instance, if x is an
increasing function of the parameter in one parameterization, then ∆xi =
xi+1 − xi is positive; but in the reverse orientation x is a decreasing function
of the parameter, so ∆xi = xi+1 − xi is negative.

If −C denotes the curve C swept out in the opposite orientation, then∫
−C

f(P ) dx = −
∫
C

f(P ) dx

In any case, it is necessary to pay attention to the orientation of C.

If r(a) = r(b), that is, the finish is the same as the start, the curve is called
closed. If the curve does not intersect itself except, perhaps, at its endpoints,closed curve

we call the curve simple. These ideas are independent. A curve can be neithersimple curve

closed nor simple, closed but not simple, simple but not closed, or both simple
and closed. (See Figure 15.3.3.)

(a) (b) (c) (d)

Figure 15.3.3: ARTIST: Please replace G with r, throughout.
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When C is a closed curve we will usually use the notation
∮
C

F · dr for a
line integral.

EXAMPLE 2 A smooth closed convex curve C is situated in the first
quadrant, as shown in Figure 15.3.4. Find

∮
C
y dx if the curve is oriented

counterclockwise.

Figure 15.3.4:

SOLUTION Let A and B be the contact points of the two vertical tangents
to C. Break C into a lower curve C1 from A to B and an upper curve C2 from
B to A, both swept out counterclockwise.

First we interpret
∫
C1
y dx. On C1, ∆xi = xi+1 − xi is positive. Let yi be

the y-coordinate of some point on C1 above [xi, xi+1]. Then (xi+1 − xi)yi ap-
proximates the area under C1 and above [xi, xi+1], as shown in Figure 15.3.5(a)

(a) (b)

Figure 15.3.5:

We may think of “y dx” as the local approximation to the area under C1.
Thus ∫

C1

y dx = area below C1 and above the x-axis.

On C2, x is a decreasing function of the parameter. Now ∆xi = xi+1 − xi
is negative, as Figure 15.3.5(b) suggests.

Again let yi be the y-coordinate of a point on the curve C2 above the
interval whose ends are xi and xi+1. Now (xi+1 − xi)yi is the negative of an
approximation of the area below C2 and above the x-axis. We conclude that∫

C1

y dx = negative of the area below C2 and above the x-axis.
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Since
∫
C
y dx =

∫
C1
y dx +

∫
C2
y dx, it follows that when C is oriented coun-

terclockwise ∫
C

y dx = negative of the area inside C.

�

The integrals of f over a curve C with respect to y or z are defined similarly
and denoted ∫

C

f(x, y, z) dy and

∫
C

f(x, y, z) dz.

The integrals with respect to x, y, or z are called line integrals. It is
more natural to call them curve integrals, but by tradition, they are known as
line integrals.

The most general line integral is the sum of the three types,∫
C

(P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz) . (15.3.2)

The “integrand” for this line integral, Pdx+Qdy+Rdz = F ·dr, is sometimes
referred to as a differential form. This language will be encountered again
in Chapter 18.

Of course, it we are dealing only with curves in the xy-plane, then the most
general line integral would be∫

C

(P (x, y, z) dx+Q(x, y, z) dy) . (15.3.3)

Both (15.3.2) and (15.3.3) are easily expressed in the compact language of
vectors.

A vector field assigns a vector to each point in some region of space (or
the plane). The use of the term “field” instead of “function” is in deference
to physicists and engineers, who speak of “magnetic field” and “electric field,”
both of which are examples of vector fields.

By comparison, a function that assigns a scalar (real number) to each point
in a region in space (or the plane) is called a scalar field. The function that
assigns the temperature at a point in space is a scalar function; so is the
function that describes the density at a point.

The typical vector field in space is F(x, y, z) = P (x, y, z)i + Q(x, y, z)j +
R(x, y, z)k where P (x, y, z), Q(x, y, z), and R(x, y, z) are scalar fields. A vector
field F in the plane is described by two scalar fields: F(x, y) = P (x, y)i +
Q(x, y)j.
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To take advantage of vector notation, we write the formal vector dr =
dxi + dyj + dzk. Then (15.3.2) becomes simply∫

C

F(x, y, z) · dr or

∫
C

F(r) · dr.

Or, even simpler yet, ∫
C

F · dr.

In this setting, the dot product F · dr is called a differential term.
For computational purposes, this may be written as

b∫
a

F(x(t), y(t), z(t)) · dr
dt

dt

or simply
b∫

a

F · dr
dt
dt.

Line integrals in the plane, such as (15.3.3), would be expressed in exactly the
same way.

Another standard notation uses the unit vector T = dr
ds

. Writing dr as Tds
we rewrite

∫
C

F · dr as
∫
C

F ·T ds. (Why is dr
ds

= T?)
The integrand depends on the orientation of the curve because switching

the orientation changes T to −T.
The next example shows that different paths with the same initial point

and terminal point may yield different integrals.

EXAMPLE 3 Let C1 be the path from (1, 0) to (0, 1) along the unit circle
with center at the origin. Let C2 be the path that starts at (1, 0), goes to (1, 1)
on the line x = 1, and then to (0, 1) on the line y = 1. Compute

∫
C1
xy dx

and
∫
C2
xy dx.

Figure 15.3.6:

SOLUTION Figure 15.3.6 shows the two paths C1 and C2, together with two
more curves, C3 and C4, that also will be used.

To compute
∫
C1
xy dx, we parameterize the circle by angle θ in [0, π/2].

Thus x = cos(θ) and y = sin(θ) and dx = dx
dθ
dθ = − sin(θ) dθ∫

C1

xy dx =

π/2∫
0

(cos(θ))(sin(θ))(− sin(θ)) dθ

= −
π/2∫
0

sin2(θ) cos(θ) dθ = −sin3(θ)

3

∣∣∣∣π/2
0

= −1

3
.

Calculus December 4, 2010



1226 CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

We used u = sin(θ) to find
an antiderivative of

sin2(θ) cos(θ).
To calculate

∫
C2
xy dx we break C2 into two straight paths: C3 from (1, 0)

to (1, 1) and C4 from (1, 1) to (0, 1). (See Figure 15.3.6.)
On C3, x = 1 and dx = 0. Thus

∫
C3
xy dx = 0.

On C4, y = 1 and x begins at 1 and ends at 0. A standard parameterization
of C4 is x = 1− t, y = 1 for 0 ≤ t ≤ 1. Then

∫
C4

xy dx =

1∫
0

(1− t)(1)(−dt) =

1∫
0

(t− 1) =
t2

2
− t
∣∣∣∣1
0

= −1

2
.

On C4 we could have used the parameter x itself, which starts at 1 and

goes down to 0. In that case we would have
∫
C4
xy dx =

∫ 0

1
x dx = x2

2

∣∣∣0
1

= −1
2
.

Thus on the path C2 made up of C3 followed by C4 we have
∫
C2
xy dx =

0 + (−1/2) = −1/2.
The line integrals

∫
C1
xy dx and

∫
C2
xy dx are not equal even though they

start at the same point (1, 0) and end at the same point (0, 1) and have the
same integrand. �

As Example 3 shows,
∫
C
xy dx is not determined by the end points of the

curve C. This raises a question: Which line integrals
∫
C

(P dx+Q dy+R dz)
depend only on the end points of C?

EXAMPLE 4 Compute
∫
C
x dx+y dy
x2+y2

on the two paths, C1 and C2 in Ex-
ample 3.
SOLUTION On the circular path C1 we use θ as a parameter and have

∫
C1

x dx+ y dy

x2 + y2
=

π/2∫
0

(cos(θ))(− sin(θ) dθ) + sin(θ)(cos(θ)) dθ

cos2(θ) + sin2(θ)
=

π/2∫
0

0

1
dθ = 0.

Next we compute the integral on the linear path from (1, 0) to (1, 1) to
(0, 1). The path from (1, 0) to (1, 1) is C3. There x = 1, so dx = 0. Therefore,
using y itself as the parameter, we find that∫

C3

x dx+ y dy

x2 + y2
=

∫
C3

1 · 0 + y dy

1 + y2
=

∫
C3

y

1 + y2
dy

=

1∫
0

y dy

1 + y2
=

ln(1 + y2)

2

∣∣∣∣1
0

=
ln 2

2
.

On the path C4, from (1, 1) to (0, 1), we use x as the parameter starting at
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x = 1 and y = 1, so dy = 0 and we have

∫
C4

x dx+ y dy

x2 + y2
=

0∫
1

x dx

x2 + 1
=

ln(x2 + 1)

2

∣∣∣∣0
1

= − ln 2

2
.

Thus
∫
C2

x dx+y dy
x2+y2

= − ln 2
2

+ ln 2
2

= 0. This is the same value as the integral
over the circular arc C1. �

In Section 18.1 we will show that
∫
C
x dx+y dy
x2+y2

depends only on the end
points of C. That is, if C1 and C2 are any two curves from point A to point
B then ∫

C1

x dx+ y dy

x2 + y2
=

∫
C2

x dx+ y dy

x2 + y2
.

However, as Example 3 shows,
∫
C
xy dx does depend on the particular

curve C joining two points.
An expression of the form P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz is

called conservative if its line integrals depend only on the endpoints of the
curves over which the integration takes place. For instance,

x

x2 + y2
dx+

y

x2 + y2
dy + 0 dz

is conservative. Better yet, in Section 18.6 we will develop a simple criterion
for determining whether a form P dx + Q dy + R dz is conservative. In
applications, such as gravity, conservative expressions are much easier to work
with.

Summary

We defined four integrals for curves in space (three for curves in the xy plane).
The first,

∫
C

(f(P )ds, is the limit of sums of the form
∑n

i=1 f(Pi)∆si, which
is an integral defined in Chapter 6. The other three integrals

∫
C
f(P ) dx,∫

C
f(P ) dy,

∫
C
f(P ) dz are quite different. For instance, the first is the limit

of sums of the form
∑n

i=1 f(Pi)∆xi, where x is the x-coordinate of a point on
the curve. Putting these three together we have the general line integral∫
C

(P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz) =

∫
C

(P dx+Q dy +R dz).

Introducing the vector field F(x, y, z) = P i + Qj + Rk, we developed three
compact notations for a line integral

∫
C

F · dr,
∫
C

F · r′dt , and
∫
C

F ·T ds.

Calculus December 4, 2010



1228 CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

EXERCISES for Section 15.3 Key: R–routine, M–moderate, C–challenging

1.[R] Following the approach in Example 2, show that if C were oriented clockwise,
then

∮
C y dx would equal the area inside C.

2.[R] Let C in Example 2 be oriented counterclockwise. Show why
∮
C x dy equals

the area inside C.

3.[R] Show that the area within a convex curve C is 1
2

∮
C(x dy − y dx) if C is

oriented counterclockwise.

4.[R] (See Example 3.) Compute
∫
C xy dx on the path that goes from (1, 0) di-

rectly to (0, 0), and then directly on to (0, 1).

5.[R] If F(P ) is perpendicular to the curve C at every point P on C, what is∫
C F · dr?

6.[R] If F(P ) equals T(P ) for P on the curve C, what is
∫
C F · dr?

7.[R] Let a and b be positive numbers. Let C be the curve bounding the rectangle
with vertices (0, 0), (a, 0), (a, b), and (0, b), where a and b are positive numbers. By
calculating

∮
C x dy with C oriented counterclockwise, confirm the result of Exam-

ple 2. That is, check that the line integral over the closed curve C equals the area
of the rectangle.

8.[R] Let a and b be positive numbers. Let C be the curve bounding the triangle
with vertices (0, 0), (a, 0), and (0, b). By calculating

∮
C y dx with C oriented clock-

wise, show that the integral equals the area of the triangle.

9.[R] Let C be the curve bounding the circle of radius a with center at the origin.
By calculating

∫
C x dy counterclockwise, check that the integral equals the area of

the circle.

10.[R] Let F(x, y, z) = xi + yj + zk = r. Let C be any curve starting at (x0, y0, z0)
and ending at (x1, y1, z1). Calculate

∫
C F · dr by rewriting it as

∫ b
a (F · r′) dt. Note

that
∫
C F · dr depends only on the endpoints of C.

In Exercises 11 to 14, sketch the curve described by the given parameterization and
label its start and finish.
11.[R] r(t) = ti + t2j, t in [0, 1].
12.[R] r(t) = (1− t)i + (1− t)2j, t in [0, 1].
13.[R] r(t) = (2t+ 1)i + 3tj, t in [0, 2].
14.[R] r(t) = 4 cos ti + 5 sin tj, t in [0, 1].
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In Exercises 15 to 18, parameterize the given curve with the indicated orientation.
15.[R] Figure 15.3.7(a)

16.[R] Figure 15.3.7(b)

17.[R] Figure 15.3.7(c)

18.[R] Figure 15.3.7(d)

(a) (b) (c) (d)

Figure 15.3.7:
In Exercises 19 to 22, evaluate the given line integrals.
19.[R]

∫
C xy dx, where C is the straight line from (1, 1) to (3, 3).

20.[R]
∫
C x

2 dy, where C is the straight line from (2, 0) to (2, 5).

21.[R]
∫
C x

2 dy, where C is the straight line from (3, 2) to (7, 2).

22.[R]
∫
C(xy dx+ x2 dy), where C is the straight line from (1, 0) to (0, 1).

In Exercises 23 to 26 evaluate with minimum effort. C is a counterclockwise curve
bounding a region of area 5.
23.[R]

∮
C 3y dx

24.[R]
∮
C(2y dx+ 6x dy)

25.[R]
∮
C [2x dx+ (x+ y) dy]

26.[R]
∮
C [(x+ 2y + 3) dx+ (2x− 3y + 4) dy]

In Exercises 10, the value of the line integral depends only on the endpoints, not on
the particular path that joins them. Exercises 27 and 28 are examples where the
path matters.
27.[R] Evaluate

∫
C(xy dx+ 7 dy) on

(a) the straight path from (1, 1) to (2, 4);

(b) the path from (1, 1) to (2, 4) that lies on the parabola y = x2.

28.[R] Evaluate
∫
C x dy on

(a) the straight path from (0, 0) to (π/2, 1);

(b) the path from (0, 0) to (π/2, 1) that lies on the curve y = sin(x).
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In Exercises 29 and 30, the values of certain line integrals are given for curves ori-
ented as shown. Use this information to find

∫
C f dy. Hint: Pay attention to the

orientations. carefully.)
29.[R] Figure 15.3.8(a)
30.[R] Figure 15.3.8(b)

(a) (b)

Figure 15.3.8:
31.[M] Let the closed curve C bound the region R, which is broken into regions Ri,
i ≤ i ≤ n, and each Ri is bounded by its own Ci. Let F be a vector field in R. If all
the n+1 curves are swept out counterclockwise, show that

∮
C F·dr =

∑n
i=1

∮
Ci

F·dr.

32.[M] Show that
∫
C

x dx
s2+y2

is not conservative by calculating
∫
C

x dx
s2+y2

on two paths
joining (1, 0) to (1, 1) for which the integrals are not equal.

33.[M] Let k be a constant. Show that
∮
C k dy = 0.

34.[C] Let r = r(t) describe a curve C in the plane or in space. What is the
geometric interpretation of

1
2

∫
C

‖r×T‖ ds?

Note: See also CIE 18.

35.[C] If t represents time and r(t) describes a curve C, what is the meaning of∫
C T · dr? Hint: Draw a picture of a small section of the curve.
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15.4 Four Applications of Line Integrals

In the previous section we defined line integrals and showed that
∮
C
y dx and∮

C
x dy in the plane are related to the area of the region bounded by the closed

curve C. In this section we show how line integrals occur in the study of work,
fluid flow, and in the angle subtended by a planar curve.

Each application will be developed by following the same basic idea as we
used when defining definite integrals: divide the domain into smaller pieces,
approximate the quantity on each piece, add the contribution form each piece,
and take a limit as the pieces get smaller and smaller.

Work Along a Curve

Consider a force F that remains constant (in direction and magnitude) and

pushes a particle in a straight line from A to B. Let R =
−→
AB. The work

accomplished by F is defined as F ·R:

Work = F ·R.
This is the product of the scalar component of F in the direction of R and the
distance the particle moves. (See Figure 15.4.1)

Figure 15.4.1:

But what if the force F varies and pushes the particle along a curve that
is not straight? (See Figure 15.4.2(a).)

(a) (b)

Figure 15.4.2:

Let’s follow the process used in Section 15.3 that led to line integrals.
Assume the curve, C, is parameterized by r(t) for t in [a, b]. Partition [a, b] by

t0 = a, t1, . . . , tn = b and let r(t0) =
−−→
OP0, r(t1) =

−−→
OP1, . . . , r(tn) =

−−→
OPn, be

the corresponding position vectors. (See Figure 15.4.2(b).) The points P0, P1,
. . . , Pn break the curve into n shorter curves. The work done by F along C

between Pi and Pi+1 is approximately F(r(ti)) ·∆ri where ∆ri =
−−−−→
PiPi+1. The

total work done by F along C is approximated by
n∑
i=1

F(r(ti)) ·∆ri. (15.4.1)
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Taking the limit as maxi ‖∆ri‖ approaches 0, we conclude

Work done by F along C is

∫
C

F · dr. (15.4.2)

If F = P i +Qj, where P and Q are functions of x and y, and dr = dxi + dyj,
then

Work done by F = P i +Qj along C is

∫
C

(P dx+Q dy).

Physicists and engineers commonly use (15.4.2) as a starting point when ex-
pressing work.

The vector notation F · dr is far more suggestive than the scalar notation
P dx + Q dy. It reminds us that “work is the dot product of force and
displacement.” That implies that only the component of the force in the
direction of motion accomplishes work.

EXAMPLE 1 How much work is accomplished by the force F(x, y) = xyi+
yj in pushing a particle from (0, 0) to (3, 9) along the parabola y = x2?
SOLUTION

Figure 15.4.3:

Figure 15.4.3 shows the path of the particle. Call this path C. Then

Work =

∫
C

F · dr =

∫
C

(xyi + yj) · (dxi + dyj) =

∫
C

(xy dx+ y dy).

To evaluate this line integral, let us use x as the parameter, with x in [0, 3].
Then y = x2 and dy = 2x dx, so

∫
C

(xy dx+ y dy) =

3∫
0

(
x · x2 dx+ x2(2x dx)

)
=

3∫
0

3x3 dx =
243

4
.

�
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Circulation of a Fluid

Figure 15.4.4:

Consider a fluid (liquid or gas) flowing on a portion of the xy plane. Let its
density and velocity at the point P be given by σ(P ) and v(P ), respectively.
The product

F(P ) = σ(P )v(P )

represents the rate and direction of the flow of the fluid at P . Now put an
imaginary closed wire loop C on the fluid as in Figure 15.4.4 or Figure 15.4.5
and keep it fixed. In Figure 15.4.4, C surrounds a whirlpool and there is a
tendency for fluid to flow along C rather than across it. The opposite case is

Figure 15.4.5:

shown in Figure 15.4.5, where most of the fluid flow is across C rather than
parallel to it. The component of F parallel to the tangent vector determines
the tendency of the fluid to flow along C. Now, F · dr represents flow in the
direction of dr, a small section of the curve C. Thus∮

C

F · dr

represents the tendency of the fluid to flow along C. If C is counterclockwise
and

∮
C

F · dr is positive, the flow of F would be counterclockwise as well. If∮
C

F · dr is negative, the flow would tend to be clockwise. The line integral circulation∮
C

F · dr is called the circulation of F along C.

Note that the very same integral,
∮
C

F ·dr, occurs in the study of work and
in the study of fluids.

EXAMPLE 2 Find the circulation of the planar flow F(x, y) = xyi + yj
around closed curve that follows y = x2 from (0, 0) to (3, 9), then horizontally
to (0, 9) and straight down to (0, 0).

SOLUTION The closed curve C comes in three parts: C = C1 + C2 + C3

where C1 is y = x2 for 0 ≤ x ≤ 3, −C2 is y = 9, 0 ≤ x ≤ 3, and −C3 is x = 0,
0 ≤ y ≤ 9.

The circulation is∮
C

F · dr =

∮
C1

F · dr +

∮
C2

F · dr +

∮
C3

F · dr

=

∮
C1

F · dr−
∮
−C2

F · dr−
∮
−C3

F · dr.

Notice that we work with−C2 and−C3 because they are easier to parameterize
than C2 and C3.
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By Example 1,
∮
C1

F · dr = 243
4

. And, by direct calculations:

∮
−C2

F · dr =

3∫
0

〈9x, 9〉 · 〈dx, 0〉 =

3∫
0

9x dx =
81

2

and ∮
−C3

F · dr =

9∫
0

〈0, y〉· < 0, dy〉 =

9∫
0

y dy =
81

2
.

The circulation of F around C is
∮
C

F · dr = 243
4
− 81

2
− 81

2
= −81

4
. �

Loss or Gain of a Fluid (Flux)

Imagine again that we place an imaginary wire loop C on the surface of a
stream.

We raise the question: At what rate is fluid escaping or entering the region
R whose boundary is C?

If the fluid tends to escape, then it is thinning out in R, becoming less
dense at some points. If the fluid tends to accumulate, it is becoming denser
at some points. (Think of this ideal fluid as resembling a gas rather than a
liquid; gases can vary widely in density while liquids tend to have constant
density.)

Figure 15.4.6:

Since the fluid is escaping or entering R only along its boundary, it suffices
to consider the total loss or gain across C. Where v, the fluid velocity, is
tangent to C, fluid neither enters nor leaves. Where v is not tangent to C,
fluid is either entering or leaving across C, as indicated in

The vector n is a unit vector perpendicular to the curve C and pointing
away from the region it bounds. It is called the exterior normal or outward
normal. Recall that F = σv, the product of density and velocity, so F and v
have the same direction.

To find the total loss or gain of fluid past C, let us look at a very short
section of C, which we will vew as a vector dr. How much fluid crosses dr in
a short interval of time ∆t.

Figure 15.4.7:

During time ∆t the fluid moves a distance ‖v‖∆t across dr. The fluid that
crosses dr during the time ∆t forms approximately the parallelogram shown
in Figure 15.4.7.

The area of the parallelogram is the product of its height h and its base
‖dr‖. That is,

Area of parallelogram = ‖ projn(v∆t)‖‖dr‖ = (v∆t) · n‖dr‖.(15.4.3)
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Since the density of the fluid is σ,

Mass in parallelogram = σ(v∆t) · n‖dr‖ = (σv) · n‖dr‖∆t = F · n‖dr‖∆t

Thus the rate at which fluid crosses dr per unit time is approximately

F · n‖dr‖∆t
∆t

= F · n‖dr‖. (15.4.4)

Since dr approximates a short piece of the curve, its length ‖dr‖ approximates
the length ds of a short piece of the curve. Therefore, the rate at which the
fluid crosses a short part of C, of length ds, is approximately

F · n ds.

Hence the line integral ∮
C

F · n ds

represents the rate of net loss or gain of fluid inside R. It it is positive, fluid
tends to leave R, and the mass of fluid in R decreases. If it is negative, fluid
tends to enter R, and the mass of fluid in R increases. In short,

Net loss or gain of fluid inside the region bounded by C is

∮
R

F · n ds.

“Flux” comes from the
Latin fluxus (flow), from
which we also get “influx,”
“reflux” and “fluctuate,”
but, oddly, not “flow,”
which comes from the Latin
pluere (to rain).

The quantity
∮
C

F · n ds is called the flux of F across C. So flux is “the
integral of the normal component of F.” Circulation,

∮
C

F · dr, on the other
hand, can be written as

∮
C

F · (T ds), where T is the unit tangent vector in
the direction of C. (T ds and dr have the same direction and same length ds,
so they may be used interchangeably.) Hence

The circulation across C is

∮
R

F ·T ds.
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Figure 15.4.8:

Flux is the “integral of the normal component of F.” Circulation is “the
integral of the tangential component of F.”

EXAMPLE 3 Let F = (2 +x)i describe the flow of a fluid in the xy plane.
Does the amount of fluid within the circle C of radius 2 and center (0, 0) tend
to increase or decrease?Stop! Before doing any

calculations, what is your
answer?

SOLUTION Figure 15.4.8 shows the circle and a few of the vectors of F,
calculated by the formula F(x, y) = (2 + x)i. Since the flow increases as we
move to the right, there appears to be more fluid leaving the disk than entering.
We expect the flux

∫
C

F ·n ds to be positive. To compute
∫
C

F ·n ds, introduce
angle θ as the parameter. Then

x = 2 cos(θ), y = 2 sin(θ) for 0 ≤ θ ≤ 2π.

Since the circle has radius 2, s = 2θ and therefore

ds = 2dθ.

The unit normal is parallel to the radius vector xi + yj. Therefore,

n =
xi + yj

‖xi + yj‖
=

2 cos(θ)i + 2 sin(θ)j

2
= cos(θ)i + sin(θ)j,
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which leads to the following calculation for the flux: You can evaluate these
definite integrals in your
head. Why is∫ 2π

0 cos θdθ = 0 and∫ 2π
0 cos2 θdθ = π

2 ?

Hint:
∫ 2π

0 cos2(θ) dθ =∫ 2π
0 sin2(θ) dθ.

Flux =

∫
C

F · n ds =

2π∫
0

[(2 + x)i · n]︸ ︷︷ ︸
F·n

2dθ︸︷︷︸
ds

=

2π∫
0

(2 + 2 cos(θ))i · (cos(θ)i + sin(θ)j)2 dθ =

2π∫
0

(4 cos(θ) + 4 cos2(θ))dθ

=

2π∫
0

(4 cos(θ) + 2 + 2 cos(2θ))dθ = (4 sin(θ) + 2θ + sin(2θ))|2π0 = 4π.

As expected, the flux is positive since there is a net flow out of the disk. �

The Angle Subtended by a Curve

Our fourth illustration of a line integral concerns the angle subtended at a
point O by a curve C in the plane. (We assume that each ray from O meets C
in at most one point.) We include this example as background for “the solid
angle subtended by a surface,” an important concept in Chapter 18.

The curve C in Figure 15.4.9(a) subtends an angle θ at the point O. We
will show that θ can be expressed as a line integral of a suitable function. Of
course, we do not need such an integral to find θ. Just knowing the points A,
O, and B is enough. What is important is that θ can be expressed as a line
integral. It is this idea that generalizes from a curve to a surface.

(a) (b) (c)

Figure 15.4.9:

First, recall the definition of radian measure of an angle whose vertex is at
O, as in Figure 15.4.9(b). One draws a circle of any radius, say, a, with center
at O. The angle intercepts an arc of length ` on the circle. The ratio `/a is
the radian measure of the angle.

To express θ in Figure 15.4.9(a) as an integral over the curve C we develop
the “local estimate,” dθ, of the radians subtended by a short part of the curve,
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of length ds, as shown in Figure 15.4.9(c). Here, DF is part of the curve, and
DE is part of the circle of radius r. Treating them as being almost straight,
we have

DE ≈ DF cos(r̂,n) = DF
r̂ · n
‖r̂‖‖n‖

= DF r̂ · n ≈ r̂ · n ds.

Thus

dθ =
DE

r
≈ r̂ · n

r
ds.

From this local estimate we conclude that

The angle θ subtended by arc C is

∫
C

r̂ · n
r

ds. (15.4.5)

Therefore, the angle subtended by C is the integral with respect to arclength
of the normal component of the vector function r̂/‖r‖. In short, it is the flux
of the vector field r̂/r (in the plane).

EXAMPLE 4 Verify (15.4.5) for the angle subtended at the origin by the
line segment that joins (1, 0) and (1, 1).
SOLUTION The subtended angle θ is shown in Figure 15.4.10(a); obviously
θ = π/4.

(a) (b)

Figure 15.4.10:
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Now let us evaluate the integral in (15.4.5) in this instance. Figure 15.4.10(b)
shows that n = i and r = i + yj. Using s = y,

θ =

∫
C

n · r̂
‖r‖

ds =

∫
C

i ·
(

i+yj√
1+y2

)
√

1 + y2
ds =

∫
C

1

1 + y2
ds

=

1∫
0

1

1 + y2
dy = tan−1(y)

∣∣1
0

=
π

4
.

This agrees with our observation. �

Summary

Application Work Circulation Flux Angle Subtended

Integral

∫
C

F ·T ds =

∫
C

F · dr
∮
C

F ·T ds

∮
C

F · n ds

∫
C

r̂ · n
r

ds

Description integral of tangen-
tial component of
force F along C

integral of tangential
component of flow F
around closed curve
C

integral of nor-
mal component
of flow F along
closed curve C

integral of nor-
mal component
of r̂/r along C

Common
Notations

∫
C

(P dx+Q dy)

if F = P i +Qj

∫
C

(Pdx+Qdy+Rdz)

if F = P i +Qj +Rk

∮
C

(−Q dx+P dy)

if F = P i + Qj
(and C is oriented
counterclockwise)
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EXERCISES for Section 15.4 Key: R–routine, M–moderate, C–challenging
In Exercises 1 to 4 decide whether the work accomplished by the indicated vector
field in moving a particle along the curve from A to B is positive, negative, or zero.
1.[R] Figure 15.4.11(a)
2.[R] Figure 15.4.11(b)
3.[R] Figure 15.4.11(c)
4.[R] Figure 15.4.11(d)

(a) (b) (c) (d)

Figure 15.4.11:
In Exercises 5 to 8 decide whether fluid is tending to leave, or enter or neither.
5.[R] Figure 15.4.12(a)
6.[R] Figure 15.4.12(b)
7.[R] Figure 15.4.12(c)
8.[R] Figure 15.4.12(d)

(a) (b) (c) (d)

Figure 15.4.12:
In Exercises 9 to 12 compute the work accomplished by the force F = x2yi + yj
along the given curve.
9.[R] From (0, 0) to (2, 4) along the parabola y = x2.
10.[R] From (0, 0) to (2, 4) along the line y = 2x.
11.[R] From (0, 0) to (2, 4) along the path in Figure 15.4.13(a).
12.[R] From (0, 0) to (2, 4) along the path in Figure 15.4.13(b).

(a) (b)
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Figure 15.4.13:
13.[R] Verify (15.4.5) for the angle subtended at the origin by the line segment
that joins (2, 0) to (2, 3).

14.[R] Verify (15.4.5) for the angle subtended at the origin by the line segment
that joins (1, 0) to (0, 1).

15.[R] Find the work done by the force −3j in moving a particle from (0, 3) to
(3, 0) along

(a) The circle of radius 3 with center at the origin.

(b) The straight path from (0, 3) to (3, 0).

(c) The answers to (a) and (b) are the same. Will they by the same for all curves
from (0, 3) to (3, 0)?

16.[R] Figure 15.4.14(a) shows some representative vectors for the vector field F
and curve C. Use this information to estimate

(a) the circulation of F along the boundary curve C and

(b) the flux of F across C.

(Since you have no formula for F, there is a range of “correct” answers.)

(a) (b)

Figure 15.4.14:
17.[M] Repeat Exercise 16 for the vector field represented in Figure 15.4.14(b).

18.[M] The gravitational force F of the earth, which is located at the origin (0, 0)
of a rectangular coordinate system, on a particle at the point (x, y) is

−xi

(
√
x2 + y2)3

+
−yj

(
√
x2 + y2)3

=
−r
‖r‖3

=
−r̂
r2
.

Compute the total work done by F if the particles goes from (2, 0) to (0, 1) along
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(a) the portion of the ellipse x = 2 cos(t), y = sin(t) in the first quadrant;

(b) the line parameterized as x = 2− 2t, y = t.

19.[M]

(a) Let W (b) be the work done by the force in Exercise 18 in moving a particle
along the straight line from (1, 0) to (b, 0).

(b) What is limb→∞W (b)?

20.[M] Let the vector field describing a fluid flow have at the point (x, y) the value
(x + 1)2i + yj. Let C be the unit circle described parametrically as x = cos(t),
y = sin(t), for t in [0, 2π].

(a) Draw F at eight convenient, equally spaced points on the circle.

(b) Is fluid tending to leave or enter the region bounded by C; that is, is the
net outward flow positive or negative? Note: Answer on the basis of your
diagram in (a).

(c) Compute the net outward flow with the aid of a line integral.

21.[M] Like Exercise 20 where F(x, y) = (2 − x)i + yj and C is the square with
vertices (0, 0), (1, 0), (1, 1), and (0, 1).

22.[M] Let F(x, y) = σv, the fluid flow, and C be a closed curve in the xy plane.
If
∮
C F · dr is positive and C is counterclockwise, does the motion along C tend to

be clockwise or counterclockwise?

23.[M] Let F(x, y) = σv, the fluid flow, and C be a closed curve in the xy plane.
If
∮
C F · n ds is positive, is fluid tending to leave the region bounded by C or to

enter it?

24.[M] Let C be a closed convex curve that encloses the point O. Let r be the
position vector

−−→
OP for points P on the curve. Determine the value of

∮
C(r̂ ·n)/r ds,

where n is the outward unit normal to C.

25.[M] Let C be a closed convex curve. Let O be a point not on C and not in
the region C bounds. Let r be the position vector

−−→
OP for points P on the curve.

Determine the value of
∮
C(r̂ · n)/r ds, where n denotes the external unit normal to

December 4, 2010 Calculus



§ 15.4 FOUR APPLICATIONS OF LINE INTEGRALS 1243

C. Hint: Draw a picture and pay attention to the angle between n and r.

26.[C] Write up in your own words and diagrams why
∫
C F ·dr represents the work

done by force F along the curve C.

27.[C] Write up in your own words and diagrams why
∫
C F · n ds represents the

net loss of fluid across C if F is the fluid flow and n is a unit external normal to C.
Include the definition of F.

28.[C] Explain why
∫
C F · dr represents the tendency of a fluid to move along C,

if F is the fluid flow.

29.[C] Explain why
∫
C(r̂ · n)/r ds represents the angle subtended by a curve C at

the origin. (Assume that each ray from the origin meets C at most once.)

30.[C] Let C be a curve in space and C∗ its projection on the xy plane. Assume
that distinct points of C project onto distinct points of C∗. The line integral

∫
C 1 ds

equals the arc length of C. What integral over C equals the arc length of C∗?

31.[C] Sam, Jane, and Sarah are debating a delicate issue.

Sam: Let C be the circle in the xy-plane whose polar equation is r = 2 cos(θ). It
is a unit circle that passes through the origin O. Let F be the inverse first
power central field r̂/r. What is the flux of F across C?

Jane: The field blows up at O, so the flux is an improper integral.

Sam: Yes, but if I move C rigidly just a tiny bit so O is inside it, the flux is 2π. So
I say the flux across C is 2π.

Sarah: I say it’s π. Just draw a figure 8 made of two copies of C joined smoothly
to form one curve, as in Figure 15.4.15(a).

(a) (b)

Figure 15.4.15:

The flux across the curve is 2π. Each half must have flux π. Since each half
looks like C, the flux across C must be π.

Settle the issue by
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(a) Evaluating the integral
∮
C F ·n ds by the Fundamental Theorem of Calculus.

(b) Considering the flux across the curve C∗ obtained from C by replacing the
small part of C near O by a semicircle C, as in Figure 15.4.15(b).

(c) By considering the angle the curve C subtends at O.

32.[C] Let F(P ) = σ(P )v(P ) represent the flow of a fluid as described in the
discussion of circulation and flux. Let C by a closed curve that bounds the region
R. Let Q(t) be the total mass of the fluid in R at time t. Express dQ/dt in terms
of a line integral.

Skill Drill

33.[R] Differentiate for practice.

(a) 1
2a ln

∣∣ax2 + c
∣∣

(b) 2(3ax−2b)
15a2

√
(ax+ b)3

(c) 1
a sin(ax)− 1

3a sin3(ax)

(d) 1
a tan(ax)− x

(e) 1
a2 cos(ax) + x

a sin(ax)

(f) x arctan(ax)− 1
2a ln(1 + a2x2)
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15.S Chapter Summary

This chapter concerns the derivatives of vector functions and integrals over
curves.

Let r(t) = 〈x(t), y(t), z(t)〉 be the position vector from the origin to a
point on a curve. We defined its derivative, r′(t), in terms of the derivatives
of the components. But, we could just as well define it without mentioning
components:

r′(t) = lim
∆t→0

r(t+ ∆t)− r(t)

∆t
= lim

∆t→0

∆r

∆t
. (15.S.1)

This definition reveals the underlying geometry, as Figure 15.S.1 shows. For

Figure 15.S.1:

small ∆t, the direction of ∆r is almost along the tangent. The length of ∆r
is almost the same as the scalar length ∆s along the curve. Thus, ∆r/∆t
is a vector pointing almost in the direction of motion and with a magnitude
approximating the instantaneous speed.

The limit in (15.S.1) is called the derivative of the function r(t). If we think
of t as time, then r′ is called the velocity vector, denoted v. The derivative of
v is the acceleration vector: v′ = a.

The vector T = r′/‖r′‖ is a unit tangent vector. The magnitude of its
derivative with respect to arclength, s, is the curvature, κ, of the path, as
suggested by Figure 15.S.2. Keep in mind that the curve may not lie in a
plane. Nevertheless, this figure resembles Figure 15.2.6 in Section 15.2.

(a) (b)

Figure 15.S.2: Checking that this follows
from the definition of
curvature provides a good
review of the derivative of a
vector function.

It was shown that curvature equals ‖v × a‖/‖v‖3.
The vector dT/ds is perpendicular to T. (Why?) The unit vector N =

dT/ds
‖dT/ds‖ is called the principal normal to the curve at the given point. The
vector T ×N = B is the third unit vector forming a frame that moves along
the curve, with T and N indicating the plane in which the curve locally “almost
lies.”
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The acceleration vector a, even for space curves, can be expressed relative
to T and N (B is not involved):

a =
d2s

dt2
T +

v2

r
N

where r = 1/κ is the radius of curvature. The first coefficient is to be expected.
The second is more complicated, indicating the force needed to keep the par-
ticle in the path is proportional to the square of the velocity and inversely
proportional to the radius of curvature.

This chapter then introduced four types of integrals involving a curve C:∫
C

f(P ) ds,

∫
C

f(P ) dx,

∫
C

f(P ) dy, and

∫
C

f(P ) dz,

whose definitions resemble those in Chapter 6 for definite integrals. In the last
three the orientation of the curve matters: switching the direction in which
the curve is swept out changes the sign of dx, dy, and dz, and thus puts a
minus sign in front of the integral.

In particular, for a closed curve taken counterclockwise
∮
C
y dx is the neg-

ative of the area enclosed by the curve. (Why?) On the other hand,
∫
C
x dy

taken counterclockwise is the area enclosed.
The most general integral considered is∫

C

(P (x, y, z) dx+Q(x, y, z) dy +R(x, y, z) dz) .

The integrand in this form is called a differential form. For F = 〈P,Q,R〉,
this can be written much more compactly as

∫
C

F · dr. However, in proofs or
computations one must often return to the longer differential form.

If
∫
C

F ·dr depends only on the ends of C, F is called a conservative vector
field, a concept that will be important in Chapter 18.

Line integrals were applied to work, circulation, flux, and the angle sub-
tended by a curve (the last in preparation for the “solid angle” subtended by
a surface).

EXERCISES for 15.S Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 6, evaluate
∫
C F · dr for the given vector field F and given curve

C.
1.[R] F(x, y) = 2xi and C is a semicircle, r(θ) = 3 cos θi + 3 sin θj, 0 ≤ θ ≤ π.
2.[R] F(x, y) = x2i + 2xyj and C is a line segment, r(t) = 2t2i + 3t2j, 1 ≤ t ≤ 2.
3.[R] F(x, y, z) = xi+yj+zk and C is a helix, r(t) = cos ti+sin tj+3tk, 0 ≤ t ≤ 4π.
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4.[R] F(x, y, z) = x2i+xyj+3k and C is a line segment, r(t) = 2ti+(3t+1)j+ tk,
1 ≤ t ≤ 2.

5.[R] F(r) = r̂/‖r‖2 and C is a line, r(t) = 2ti + 3tj + 4tk, 0 ≤ t ≤ 2.

6.[R] F(r) = r and C is the circle, r(t) = cos θi + sin θj + 2k, 0 ≤ θ ≤ 2π.

7.[R] Figure 15.S.3(a) shows T and N for one point P on a curve C. The curve is
not shown. Sketch what a short part of C may look like.

(a) (b)

Figure 15.S.3:
8.[M]

(a) Express the area under the hyperbola x2 − y2 = 1 and above the interval
[1, cosh(t)] as a line integral.

(b) Evaluate the line integral found in (a).

(c) What is the area of the shaded region in Figure 15.S.3(b)?

Note: See also Exercises 64 in Section 6.5 and 77 in Section 8.6.

The CIE at the end of Chapter 3 developed the reflection properties of parabolas
and ellipses. Exercises 9 and 10 show how vectors provide a much shorter way to
obtain those results.
9.[C] A parabola consists of the points P equidistant from a fixed point F and
fixed line L, as in Figure 15.S.4.
Let O be some point on L and let u be a unit vector perpendicular to L aimed
toward P . Let r =

−−→
OP and F =

−−→
OF . (We assume the curve is parameterized in

such a manner that there is a well-defined tangent vector, r′.)

(a) Show that ‖r− F‖ = r · u.
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Figure 15.S.4:

(b) From (a) deduce that
r− F
‖r− F‖

· r′ = r′ · u.

(c) From (b) deduce that

‖r′‖ cos(r′, r− F) = ‖r‖ cos(r′,u).

(d) From (c) deduce the reflection principle of a parabola.

This proof, which starts with the geometric definition of a parabola rather than
the equation y = x2, appears in Harley Flanders’, “The Optical Properties of the
Conics,” American Mathematics Monthly, 1968, p. 399.

10.[C] This exercise develops the reflection property of an ellipse. Start with its
geometric definition as the locus of points such that the sum of its distances from two
fixed points is constant. Let p and q be the position vectors of the two fixed points
and r the position vector for a typical point P on the ellipse, which is parameterized
so we may speak of r′, a tangent vector.

(a) Differentiate both sides of ‖r− p‖+ ‖r− q‖ = c, a constant.

(b) Let u1 be the unit vector in the direction of ‖r−p‖ and u2 be the unit vector
in the direction of ‖r− q‖. Show that u1 · r′ + u2 · r′ = 0.

(c) Show that u1 + u2 is normal to the curve at P .

(d) Show that u1 and u2 make equal angles with u1 + u2.

(e) From (d) deduce the reflection property of an ellipse.
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Skill Drill

In Exercises 11 to 13, a(t) is the acceleration vector at time t for a moving particle
and r(t0) and a(t0) are the particle’s position and acceleration at time t = t0. Find
the velocity and position vectors, v(t) and r(t), of the particle at time t. (These
review the integration techniques of Chapter 8.)
11.[C] a(t) = t108 (ln(t))2 i + ln(1 + t2)j + t arctan(t)k; r(1) = 19i− j + 4(π − 2−
ln(2))k, v(1) = 27i− 2j + 6(π − 2)k

12.[C] a(t) =
tan(t) + sin(t)

sec(t)
i +

t4

t2 + 4
j +

2t− 4
t2 + 2t+ 1

k; r(0) = 1
4 i + j − 8k,

v(0) = −3
2 i + 4j + 6k

13.[C] a(t) = (t2 + 4t+ 5)−1i + t2 cos(t)j +
1

t2 + 4
k; r(0) = 6j, v(0) = arctan(2)i
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Calculus is Everywhere # 18

Newton’s Law Implies Kepler’s Three Laws

After hundreds of pages of computation based on observations by the as-
tronomer Tycho Brahe (1546—1601) in the last 30 years of the sixteenth cen-
tury, plus lengthy detours and lucky guesses, Kepler (1571–1630) arrived at
these three laws of planetary motion:

Kepler’s Three Laws

1. Every planet travels around the sun in an elliptical orbit such that the
sun is situated at one focus (discovered in 1605, published in 1609).

2. The velocity of a planet varies in such a way that the line joining the
planet to the sun sweeps out equal areas in equal times (discovered 1602,
published 1609).

3. The square of the time required by a planet for one revolution around
the sun is proportional to the cube of its mean distance from the sun
(discovered 1618, published 1619).

The work of Kepler shattered the crystal spheres which for 2,000 years had
carried the planets. Before him astronomers admitted only circular motion
and motion compounded of circular motions. Copernicus (1473–1543), for
instance, used five circles to describe the motion of Mars.The ellipse got a cold

reception. The ellipse was not welcomed. In 1605 Kepler complained to a skeptical
astronomer:

You have disparaged my oval orbit . . . . If you are enraged because I
cannot take away oval flight how much more you should be enraged
by the motions assigned by the ancients, which I did take away . . . .
You disdain my oval, a single cart of dung, while you endure the
whole stable. (If indeed my oval is a cart of dung.)

But the astronomical tables that Kepler based on his theories, and pub-
lished in 1627, proved to be more accurate than any other, and the ellipse
gradually gained acceptance.

The three laws stood as mysteries alongside a related question: If there
are no crystal spheres, what propels the planets? Bullialdus (1605–1694), a
French astronomer and mathematician, suggested in 1645:The inverse square law was

conjectured.
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The force with which the sun seizes or pulls the planets, a physical
force which serves as hands for it, is sent out in straight lines into all
the world’s space . . . ; since it is physical it is decreased in greater
space; . . . the ratio of this distance is the same as that for light,
namely as the reciprocal of the square of the distance.

In 1666, Hooke (1635–1703), more of an experimental scientist than a math-
ematician, wondered:

why the planets should move about the sun . . . being not included
in any solid orbs . . . nor tied to it . . . by any visible strings . . . . I
cannot imagine any other likely cause besides these two: The first
may be from an unequal density of the medium . . . ; if we suppose
that part of the medium, which is farthest from the centre, or sun,
to be more dense outward, than that which is more near, it will
follow, that the direct motion will be always deflected inwards, by
the easier yielding of the inwards . . . .

But the second cause of inflecting a direct motion into a curve may
be from an attractive property of the body placed in the center;
whereby it continually endeavours to attract or draw it to itself.
For if such a principle be supposed all the phenomena of the planets
seem possible to be explained by the common principle of mechanic
motions. . . . By this hypothesis, the phenomena of the comets as
well as of the planets may be solved.

In 1675, Hooke, in an announcement to the Royal Society, went further:

All celestial bodies have an attraction towards their own centres,
whereby they attract not only their own parts but also other ce-
lestial bodies that are within the sphere of their activity . . . . All
bodies that are put into direct simple motion will so continue to
move forward in a single line till they are, by some other effectual
powers, deflected and bent into a motion describing a circle, ellipse,
or some other more compound curve . . . . These attractive pow-
ers are much more powerful in operating by how much the nearer
the body wrought upon is to their own centers . . . . It is a notion
which if fully prosecuted as it ought to be, will mightily assist the
astronomer to reduce all the celestial motions to a certain rule . . . .

Hooke pressed Newton to
work on the problem.Trying to interest Newton in the question, Hooke wrote on November 24,

1679: “I shall take it as a great favor if . . . you will let me know your thoughts
of that of compounding the celestial motion of planets of a direct motion by
the tangent and an attractive motion toward the central body.” But four days
later Newton replied:
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My affection to philosophy [science] being worn out, so that I am
almost as little concerned about it as one tradesman used to be
about another man’s trade or a countryman about learning. I
must acknowledge myself averse from spending that time in writing
about it which I think I can spend otherwise more to my own
content and the good of others . . . .

In a letter to Newton on January 17, 1680, Hooke returned to the problem
of planetary motion:

It now remains to know the properties of a curved line (not circular
. . . ) made by a central attractive power which makes the velocities
of descent from the tangent line or equal straight motion at all
distances in a duplicate proportion to the distances reciprocally
taken. I doubt not that by your excellent method you will easily
find out what that curve must be, and its properties, and suggest
a physical reason for this proportion.

Hooke succeeded in drawing Newton back to science, as Newton himself
admitted in his Principia, published in 1687: “I am beholden to him only for
the diversion he gave me from the other studies to think on these things and
for his dogmaticalness in writing as if he had found the motion in the ellipse,
which inclined me to try it.”

It seems that Newton then obtained a proof — perhaps containing a mis-
take (the history is not clear) — that if the motion is elliptical, the force varies
as the inverse square. In 1684, at the request of the astronomer Halley, New-
ton provided a correct proof. With Halley’s encouragement, Newton spent theHalley, of Halley’s comet,

paid for publication of the
Principia.

next year and a half writing the Principia.
In the Principia, which develops the science of mechanics and applies it to

celestial motions, Newton begins with two laws:

1. Every body continues in its state of rest, or of uniform motion in a
straight line, unless it is compelled to change this state by forces im-
pressed upon it.

2. The change of momentum is proportional to the motive force impressed,
and is made in the direction of the straight line in which that force is
impressed.

To state these in the language of vectors, let v be the velocity of the body,
F the impressed force, and m the mass of the body. The first law asserts that
v is constant if F is 0. Momentum is defined as mv; the second law asserts
that

F =
d

dt
(mv).
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If m is constant, this reduces to

F = ma,

where a is the acceleration vector.
Newton assumed a universal law of gravitation. Any particle P exerts

an attractive force on any other particle Q, and the direction of the force is
from Q toward P . Then assuming that the orbit of a planet moving about the
sun (both treated as points) is an ellipse, he deduced that this force is inversely
proportional to the square of the distance between the particles P and Q.

Nowhere in the Principia does he deduce from the inverse-square law of
gravity that the planets’ orbits are ellipses. (However, there are general theo-
rems in Principia on the basis of which this deduction could have been made.)
In the Principia he showed that Kepler’s second law (concerning areas) was
equivalent to the assumption that the force acting on a planet is directed
toward the sun. Finally, he deduced Kepler’s third law.

Newton’s universal law of gravitation asserts that any particle, of mass
M , exerts a force on any other particle, of mass m, and that the magnitude
of this force is proportional to the product of the two masses, mM , inversely
proportional to the square of the distance between them, and is directed toward
the particle with the larger mass. (Here, we assume M > m.) We will assume that the sun

is fixed at O.Assume that the sun has mass M and is located at point O and that the
planet has mass m and is located at point P . (See Figure C.18.1.) Let r = ~OP
and r = ‖r‖. Then the sun exerts a force F on the planet given by the formula

F = −GmM
r3

r, (C.18.1)

where G is a universal constant. It is convenient to introduce the unit vector
u = r/r, which points in the direction of r. Then (C.18.1) reads

F = −GmM
r2

u.

Figure C.18.1:

Now, F = ma, where a is the acceleration vector of the planet. Thus

ma = −GmM
r2

u,

from which it follows that
a = −qu

r2
, (C.18.2)

where q = GM is independent of the planet.
The vectors u, r, and a are indicated in Figure C.18.1.
The following exercises show how to obtain Kepler’s three laws from the

single law of Newton, a = −qu/r2.
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EXERCISES

Exercises 1 to 3 obtain Kepler’s “area” law.
1.[R] Let r(t) be the position vector of a given planet at time t. Let ∆r =
r(t+ ∆t)− r(t). Show that for small ∆t,

1
2
‖r×∆r‖

approximates the area swept out by the position vector during the small interval of
time ∆t. Hint: Draw a picture.

Figure C.18.2:
2.[R] From Exercise 1 deduce that 1

2

∥∥r× dr
dt

∥∥ is the rate at which the position
vector r sweeps out area. (See Figure C.18.2.)

Let v = dr/dt. The vector r× v will play a central role in the argument leading to
Kepler’s area law. (See also Exercise 34 in Section 15.3.)
3.[R] With the aid of (C.18.2), show that the vector r×v is constant, independent
of time.

Since r× v is constant, 1
2 ‖r× v‖ is constant. In view of Exercise 2, it follows that

the radius vector of a given planet sweeps out area at a constant rate. To put
it another way, the radius vector sweeps out equal areas in equal times.
This is Kepler’s second law.
Introduce an xyz-coordinate system such that the unit vector k, which points in the
direction of the positive z axis, has the same direction as the constant vector r× v.
Thus there is a positive constant h such that

r× v = hk. (C.18.3)

Exercises 4 to 13 obtain Kepler’s “ellipse” law.
4.[R] Show that h in (C.18.3) is twice the rate at which the position vector of the
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planet sweeps out area.

5.[R] Show that the planet remains in the plane perpendicular to k that passes
through the sun.

By Exercise 5, the orbit of the planet is planar. We may assume that the orbit lies
in the xy plane; for convenience, locate the origin of the xy coordinates at the sun.
Also introduce polar coordinates in this plane, with the pole at the sun and the
polar axis along the positive x axis, as in Figure C.18.3.

Figure C.18.3:
6.[R]

(a) Show that during the time interval [t0, t] the position vector of the planet
sweeps out the area

1
2

t∫
t0

r2dθ

dt
dt.

(b) From (a) deduce that the radius vector sweeps out area at the rate 1
2r

2 dθ
dt .

Henceforth use the dot notation for differentiation with respect to time. Thus ṙ = v,
v̇ = a, and θ̇ = dθ

dt .
7.[R] Show that r× v = r2θ̇k.

8.[R] Show that u̇ = du
dθ θ̇ and is perpendicular to u. Recall that u is defined as

r/‖r‖.

9.[R] Recalling that r = ru, show that hk = r2(u× u̇).

10.[R] Using (C.18.2) and Exercise 9, show that a× hk = qu̇. Hint: What is the
vector identity for A× (B×C)?
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11.[R] Deduce from Exercise 10 that v× hk and qu differ by a constant vector.

By Exercise 11, there is a constant vector C such that

v × hk = qu + C. (C.18.4)

Then the angle between r and C is the angle θ of polar coordinates.
The next exercise requires the vector identity (A×B) ·C = A · (B×C), which is
valid for any three vectors A, B, and C.
12.[R]

(a) Show that (r× v) · hk = h2.

(b) Show that r · (v × hk) = rq + r ·C.

(c) Combining (a) and (b), deduce that h2 = rq + rc cos(θ), where c = ‖C‖

It follows from Exercise 12 that the polar equation for the orbit of the planet is
given by

r(θ) =
h2

q + c cos(θ)
. (C.18.5)

13.[R] By expressing (C.18.5) in rectangular coordinates, show that it describes a
conic section.

Since the orbit of a planet is bounded and is also a conic section, it must
be an ellipse. This establishes Kepler’s first law.

Kepler’s third law asserts that the square of the time required for a planet to com-
plete one orbit is proportional to the cube of its mean distance from the sun.
First the term mean distance must be defined. For Kepler this meant the average
of the shortest distance and the longest distance from the planet to the sun in its
orbit. Let us compute this average for the ellipse of semimajor axis a and semiminor
axes b, shown in Figure C.18.4. The sun is at the focus F , which is also the pole
of the polar coordinate system we are using. The line through the two foci contains
the polar axis.
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Figure C.18.4:
Recall that an ellipse is the set of points P such that the sum of the distances from
P to the two foci F and F ′ is constant, 2a. The shortest distance from the planet
to the sun is FQ = a − d and the longest distance is EF = a + d. Thus Kepler’s
mean distance is

(a− d) + (a+ d)
2

= a.

Now let T be the time required by the given planet to complete one orbit. Kepler’s
third law asserts that T 2 is proportional to a3. Exercises 14 to 18 establish this law
by showing that T 2/a3 is the same for all planets.
14.[R] Using the fact that the area of the ellipse in Figure C.18.4 is πab, show that
Th/2 = πab, hence that

T =
2πab
h

. (C.18.6)

The rest of the argument depends only on (C.18.5) and (C.18.6) and the “fixed sum
of two distances” property of an ellipse.
15.[R] Using (C.18.5), show that f in Figure C.18.4 equals h2/q.

16.[R] Show that b2 = af , as follows:

(a) From the fact that ¯F ′A+ F̄A = 2a, deduce that a2 = b2 + d2.

(b) From the fact that ¯F ′B + F̄B = 2a, deduce that d2 = a2 − af .

(c) From (a) and (b), deduce that b2 = af .

17.[R] From Exercises 15 and 16, deduce that b2 = ah2/q.

18.[R] Combining (C.18.6) and Exercise 17, show that
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T 2

a3
=

4π2

q
.

Since 4π2/q is a constant, the same for all points, Kepler’s third law is
established.
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Calculus is Everywhere # 19

The Suspension Bridge and the Hanging Cable

In a suspension bridge the roadway hangs from a cable, as shown in Fig-
ure C.19.1. We will use calculus to find the shape of the cable. To begin, we

Figure C.19.1:

assume that the weight of any section of the roadway is proportional to its
length. That is, there is a constant k such that x feet of the roadway weighs
kx pounds. We will assume that the cable itself is weightless. That is justified
for it weighs little in comparison to the roadway.

We introduce an xy-coordinate system with origin at the lowest point of
the cable, and consider a typical section of the cable, which goes from (0, 0)
to (x, y), as shown in Figure C.19.2(a). Three forces act on this section. The

(a) (b)

Figure C.19.2:

force at (0, 0) is horizontal and pulls the cable to the left. Call its magnitude
T . Gravity pulls the cable down with the force kx (the weight of the roadway
beneath the cable). At the top of the section, at (x, y) the cable above it pulls
the cable to the right and upward, along the tangent line to the cable.

The section does not move, neither up nor down, neither to the left nor
to the right. That means the horizontal part of the force at (x, y) must have
magnitude T and the vertical part of the force must have magnitude kx, as
shown in Figure C.19.2(b). (Think of one person pulling horizontally at (x, y)
and another pulling vertically to duplicate the effect of the part of the cable
above (x, y) that is pulling on the section.)

Since the force at the point (x, y) is directed along the tangent line there,
we have

dy

dx
=
kx

T
. (C.19.1)
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Therefore,

y =
kx2

T
+ C.

for some constant C. Since (0, 0) is on the curve, C = 0, and the cable has
the equation

y =
kx2

tT
.

The cable forms a parabola.
But what if, instead, we have the cable but no roadway? That is the case

with a laundry line or a telephone wire or a hanging chain. In this case the
downward force is due to the weight of the cable. If s feet of cable weighs ks
pounds, reasoning almost identical to the case of the suspension bridge leads
to the equation

dy

dx
=
ks

T
. (C.19.2)

Since

s =

x∫
0

√
1 +

(
dy

dx

)2

dx

we have the equation

dy

dx
=
k
∫ x

0

√
1 +

(
dy
dx

)2
dx

T
. (C.19.3)

We get rid of the integral by differentiating both sides of (C.19.3), and using
part of the fundamental theorem of calculus, obtaining

d2y

dx2
=
k

T

√
1 +

(
dy

dx

)2

. (C.19.4)

This equation is solved in a differential equations course, where it is shown
that

y =
k

T

(
e
kx
T + e

−kx
T

)
− 2

k

T
. (C.19.5)

This curve is called a catenary, after the Latin “catena,” meaning “chain.”
(Hence the word “concatenation,” referring to a chain of events.) It may look
like a parabola, but it isn’t. The 630-foot tall Gateway Arch in St. Louis,
completed October 28, 1965, is the most famous catenary.

EXERCISES

1.[M] Check that the solution to
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d2y

dx2
=
k

T

√
1 +

(
dy

dx

)2

that passes through (0, 0) is

y =
k

T

(
e
kx
T + e

−kx
T

)
− 2

k

T
. (C.19.6)
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Calculus is Everywhere # 20

The Path of the Rear Wheel of a Scooter

When the front wheel of a scooter follows a certain path, what is the path of
the rear wheel? This question could be phrased in terms of a bicycle or car,
but the scooter is more convenient for carrying out real-life experiments.

In 13 we considered the special case when the front wheel moves in a
straight line, as may occur when parking a car. Now, using vectors, we will
look at the case when the front wheel sweeps out a circular path.

The Basic Equation

/
 

D 

o 

Figure C.20.1:

Figure C.20.1 shows the geometry at any instant. Let s denote the arc
length of the path swept out by the rear wheel as measured from its starting
point. Let a be the length of the wheel base, that is, the distance between the
front and rear axels. The vector r(s) records the position of the rear wheel
and f(s) records the position of the front wheel. Because the rear wheel is
parallel to f(s) − r(s), the vector r′(s) points directly toward the front wheel
or directly away from it. Note that r′(s) is a unit vector.

Thus

f(s) = r(s) + ar′(s) (C.20.1)

or

f(s) = r(s)− ar′(s). (C.20.2)

In short, we will write f(s) = r(s)± ar′(s).
Assume that the front wheel moving, say, counterclockwise traces out a

circular path with center O and radius c. Because

f(s) · f(s) = c2,

we have

(r(s)± ar′(s)) · (r(s)± ar′(s)) = c2.

By distributivity of the dot product,

r(s) · r(s) + a2r′(s) · r′(s)± 2ar(s) · r′(s) = c2. (C.20.3)

Letting r(s) = ‖r(s)‖, we may rewrite (C.20.3) as

(r(s))2 + a2 ± 2ar(s) · r′(s) = c2. (C.20.4)
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Differentiating r(s) · r(s) = r(s)2 to obtain, r(s) · r′(s) = r(s)r′(s), which
changes (C.20.3) to an equation involving the scalar function r(s). For sim-
plicity, we write r(s) as r and r′(s) as r′, obtaining

r2 + a2 ± 2arr′ = c2. (C.20.5)

This is the basic equation we will use to analyze the path of the rear wheel of
a scooter.

The Direction of r′

Before going further we examine when r′ points towards the front wheel and
when it points away from the front wheel.

The movement of the back wheel is determined by the projection of f ′ on
the line of the scooter. That projection is the same as r′.

Thus, when the angle θ between the front wheel and the line of the scooter
is obtuse, as in Figure C.20.2(a), r′ points towards the front wheel. When θ is
acute, the scooter backs up and r′ points away from the front wheel, as shown
in Figure C.20.2(b).

/
 

D 

o 
(a)

/
 

D 

o 

(b)

Figure C.20.2: The direction of r′ depends on the angle θ between the front
wheel and the line of the scooter. (a) θ is obtuse, (b) θ is acute.

Figure C.20.3:

When the direction of r′ abruptly shifts from pointing towards the front
wheel to pointing away from the front wheel, the path of the rear wheel also
abruptly changes, as shown in Figure C.20.3.

The path of the rear wheel is continuous but the unit tangent vector r′ is
not defined at the point where its direction suddenly shifts. The path is said
to contain a “cusp” and the point at which r′(s) shifts direction by the angle
π is the “vertex” of the cusp.

Calculus December 4, 2010



1264 CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

The Path of the Rear Wheel for a Short Scooter

Assume that the wheel base, a, is less than the radius of the circle, c, that,
initially, θ is obtuse, and that r2 is less than c2 − a2. Thus, c2 − a2 − r2 is
positive. (Exercise 1 shows the special significance of c2 − a2.)

We rewrite the equation c2 = a2 + r2 + 2rr′a in the form

−2rr′

c2 − a2 − r2
=
−1

a
. (C.20.6)

Integration of both sides of (C.20.6) with respect to arc length s shows that
there is a constant k such that

ln(c2 − a2 − r2) =
−s
a

+ k,

hence
c2 − a2 − r2 = eke−s/a. (C.20.7)

Equation (C.20.7) tells us that r2 increases but remains less than c2− a2, and
approaches c2 − a2 as s increases. Thus the rear wheel traces a spiral path
that gets arbitrarily close to the circle of radius

√
c2 − a2 and center O, as in

Figure C.20.4.

The Path of the Rear Wheel for a Long Scooter

Assume that the wheel base is longer than the radius of the circle on which
the front wheel moves, that is, a > c. Assume also that initially the scooter is
moving forward, so we again have the equation

c2 = a2 + r2 + 2rr′a. (C.20.8)

The initial position is indicated in Figure C.20.5(a).
Now c2 − a2 − r2 is negative, and we have

2rr′

a2 + r2 − c2
=
−1

a
,

where the denominator on the left-hand side is positive. Thus there is a con-
stant k such that

a2 + r2 − c2 = eke−s/a. (C.20.9)

If s gets arbitrarily large, (C.20.9) implies that r2 approaches c2 − a2. But,
c2−a2 is negative, so this cannot happen. Our assumption that (C.20.8) holds
for all s must be wrong. Instead, there must be a cusp and the governing
equation switches to

c2 = a2 + r2 − 2arr′.
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(a) (b) (c)

(d) (e) (f)

Figure C.20.4: The path of the rear wheel of a scooter with length a = 1,
whose front wheel moves counter-clockwise around the circle with radius c = 2
from the point (2, 0) with the line of the scooter at an angle θ = −3π/4 with
the front wheel. The snapshots are taken when (a) s = 0, (b) s = 1.25,
(c) s = 2.50, (d) s = 5.0, (e) s = 10.0, and (f) s = 15.0. Because this
is a short scooter (a < c), the rear wheel approaches the circle with radius
r =
√
c2 − a2 =

√
3. (Recall that s is the arclength of the rear wheel’s path.)
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(a) (b) (c)

(d) (e) (f)

Figure C.20.5: The path of the rear wheel of a scooter with length a = 4,
whose front wheel moves counter-clockwise around the circle with radius c = 2
from the point (2, 0) with the line of the scooter at an angle θ = pi with the
front wheel. The snapshots are taken when (a) s = 0, (b) s = 3, (c) s = 9, (d)
s = 18, (e) s = 36, and (f) s = 72. Because this is a long scooter (a > c), the
rear wheel travels along path that has cusps whenever r = c+a and f = |c−a|.
(Recall that s is the arclength of the rear wheel’s path.)
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This leads to the equation

a2 + r2 − c2 = ekes/a. (C.20.10)

Equation (C.20.10) implies that as s increases r becomes arbitrarily large.
However, r can never exceed c+ a. So, another cusp must form.

It can be shown that the cusps occur when r = a− c (assuming a > c) and
r = a+ c. At the vertex of a cusp, r′ is not defined; it changes direction by π.

Figure C.20.5(b) shows the shape of the path of the rear wheel for a long
scooter, a > c. (For a > 2c, that path remains outside the circle.)

EXERCISES

1.[R]

(a) Assume a and c are positive numbers with c > a and that the front wheel
moves on a circle of radius c. Show that when the front wheel moves along a
circle of radius c the rear wheel could remain on a concentric circle of radius
b =

√
(c2 − a2).

(b) Draw the triangle whose sides are a, b, and c and explain why the result in
(a) is plausible.

2.[M] We assumed in the case of the short scooter that initially r2 < c2 − a2.
Examine the case in which initially r2 > c2 − a2. Again, assume that initially the
scooter is not backing up.

3.[M] We assumed in the case of the short scooter that initially r2 < c2 − a2 and
that the scooter is not backing up. Investigate what happens when we assume that
initially r2 < c2 − a2 and the scooter is backing up.

(a) Draw such an initial position.

(b) Predict what will happen.

(c) Carry out the mathematics.

4.[R] It is a belief among many bicyclists that the rear tire wears out more slowly
than the front tire. Decide whether their belief is justified. (Assume both tires
support the same weight.)

5.[M] Show that if the path of the front wheel is a circle and a cusp forms in the
path of the rear wheel, the scooter at that moment lies on a line through the center
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of the circle.

6.[M] In the case of the long scooter, a > c, do cusps always form, whatever the
initial value of r and θ?

7.[C] Extend the analysis of the scooter to the case when a = c.

8.[C] Assume that the path of the front wheel is a straight line. For convenience,
choose that line as the x-axis. Write r(s) as x(s)i + y(s)j.

(a) Show that y(s) + y′(s)a = 0.

(b) Deduce that there is a constant k such that y(s) = ke−s/a. Thus the distance
from the rear wheel to the x-axis “decays” exponentially.
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Chapter 16

Partial Derivatives

The use of contour lines to help understand a function whose domain is part
of the plane goes back to the year 1774. A group of surveyors had collected a
large number of the elevations of points on Mount Schiehalli in Scotland. They
were doing this in order to estimate its mass and by its gravitational attraction,
the mass of the earth. They asked the mathematician Charles Hutton for help
in using the data entered as a map. Hutton saw that if he connected points
on the map that showed the same elevation, the resulting curves — contour
lines — suggested the shape of the mountain. Reference: Bill Bryson, A

Short History of Nearly
Everything, Broadway
Books, New York, 2003,
p. 57.
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16.1 Picturing a Function of Several Variables

The graph of y = f(x), a function of just one variable, x, is a curve in the
xy-plane. The graph of a function of two variables, z = f(x, y) is a surface in
space. It consists of the points (x, y, z) for which z = f(x, y). For instance, if
z = 2x+ 3y, the graph is the plane 2x+ 3y − z = 0.

A vector field in the xy-plane is a vector-valued function of x and y. We
pictured it by drawing a few vectors with their tails placed at the arguments.

This section describes some of the ways of picturing a scalar-valued func-
tions of two or three variables.

Contour Lines
This is similar to what we

did for vector fields. For a function, z = f(x, y), the simplest method is to attach at some
point (x, y) the value of the function, z = f(x, y). For instance, if z = xy,
Figure 16.1.1 shows this method. This conveys a sense of the function. Its

Figure 16.1.1:

values are positive in the first and third quadrants, negative in the second and
fourth. For (x, y) far from the origin near the lines y = x or y = −x the values
are large.

Rather than attach the values at points, we could indicate all the points
where the function has a specific fixed value. In other words we could graph,
for a constant c, all the points where f(x, y) = c. Such as graph is called acontours and level curves

contour or level curve.
For the function z = xy, the contours are hyperbolas xy = c. In Fig-

ure 16.1.2(a) the contours corresponding to c = 2, 4, 6, 0, −2, −4, −6 are
shown.

Many newspapers publish a daily map showing the temperature throughout
the nation with the aid of contour lines. Figure 16.1.2(b) is an example.
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(a) (b)

Figure 16.1.2:

At a glance you can see where it is hot or cold and in what direction to
travel to warm up or cool off.

Traces
SHERMAN: xrcs Katrina
wind / pressure?Another way to get some idea of what the surface z = f(x, y) looks like is to

sketch the intersection of various planes with the surface. These intersections
(or cross sections) are called traces.

For instance, Figure 16.1.3 exhibits the notion of a trace by a plane parallel
to the xy-coordinate plane, namely, the plane z = k This trace is an exact copy
of the contour f(x, y) = k, as shown in Figure 16.1.3.

Figure 16.1.3:
Doug: maybe z = x2 − y2 is
better? SHERMAN: I’m OK
with xy, it’s just a matter
of perspective.

EXAMPLE 1 Sketch the traces of the surface z = xy with the planes

1. z = 1,
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2. x = 1,

3. y = x,

4. y = −x,

5. x = 0.

SOLUTION

1. The trace with the plane z = 1 is shown in Figure 16.1.4. For points
(x, y, z) on this trace xy = 1. The trace is a hyperbola. In fact, it is
just the contour line xy = 1 in the xy plane raised by one unit as in
Figure 16.1.4(a)

2. The trace in the plane x = 1 satisfies the equation z = 1 · y = y. It is a
straight line, shown in Figure 16.1.4(b)

3. The trace in the plane y = x satisfies the equation z = x2. It is the
parabola shown in Figure 16.1.4(c).

4. The trace in the plane y = −x satisfies the equation z = x(−x) = −x2.
It is an “upside-down” parabola, shown in Figure 16.1.4(d).

5. The intersection with the coordinate plane x = 0 satisfies the equation
z = 0 · y = 0. It is the y-axis, shown in Figure 16.1.4(e).

(a) (b) (c) (d) (e)

Figure 16.1.4:

So the surface can be viewed as made up of lines, or of parabolas or of
hyperbolas.

Figure 16.1.5:

The surface z = xy is shown in Figure 16.1.5 with some of the traces drawn
on it. �

The surface z = xy looks like a saddle or the pass between two hills, as
shown in Figure 16.1.6.
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(a) (b)

Figure 16.1.6:

Functions of Three Variables

The graph of y = f(x) consists of certain points in the xy plane. The graph
of z = f(x, y) consists of certain points in the xyz space. But what if we
have a function of three variables, u = f(x, y, x)? (The volume V of a box
of sides x, y, z is given by the equation V = xyz; this is an example of the
function of three variables.) We cannot graph the set of points (x, y, z, u)
where u = f(x, y, z, u) since we live in space of only three dimensions. What
we could do is pick a constant k and draw the “level surfaces,” the set of points
where f(x, y, z) = k. Varying k may give an idea of this function’s behavior,
just as varying the k of f(x, y) = k yields information about the behavior of a
function of two variables.

For example, let T = f(x, y, z) be the temperature (Fahrenheit) at the
point (x, y, z). Then the level surface

68 = f(x, y, z)

consists of all points where the temperature is 68◦.

EXAMPLE 2 Describe the level surfaces of the function u = x2 + y2 + z2.
SOLUTION For each k we examine the equation u = x2 + y2 + z2. If k is
negative, there are no points in the “level surface.” If k = 0, there is only
one point, the origin (0, 0, 0). If k = 1, the equation 1 = x2 + y2 + z2, which
describes a sphere of radius 1 center (0, 0, 0). If k is positive, the level surface
f(x, y, z) = k is a sphere of radius

√
k, center (0, 0, 0). See Figure 16.1.7 �

Summary

We introduced the idea of a function of two variables z = f(P ) is in some
region in the xy plane. The graph of z = f(P ) is usually a surface. But it is
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Figure 16.1.7:

often more useful to sketch a few of its level curves than to sketch that surface.
Each level curve is the projection of a trace of the surface in a plane of the
form z = k. Note that at all points (x, y) on a level curve the function have
the same value. In other words, the function f is constant on a level curve.

In particular, we used level curves to analyze the function z = xy whose
graph is a saddle.

For functions of three variables u = (x, y, z), we defined level surfaces.
When considered on a level surface, k = f(x, y, z) such a function is constant,
with value k.
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EXERCISES for Section 16.1 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 10, graph the given function.

1.[R] f(x, y) = y

2.[R] f(x, y) = x+ 1
3.[R] f(x, y) = 3
4.[R] f(x, y) = −2
5.[R] f(x, y) = x2

6.[R] f(x, y) = y2

7.[R] f(x, y) = x+ y + 1
8.[R] f(x, y) = 2x− y + 1
9.[R] f(x, y) = x2 + 2y2

10.[M] f(x, y) =
√
x2 + y2

In Exercises 11 to 14 draw for the given functions the level curves corresponding to
the values −1, 0, 1, and 2 (if they are not empty).

11.[R] f(x, y) = x+ y

12.[R] f(x, y) = x+ 2y
13.[R] f(x, y) = x2 + 2y2

14.[R] f(x, y) = x2 − 2y2

In Exercises 15 to 18 draw the level curves for the given functions that pass through
the given points.

15.[R] f(x, y) = x2 + y2 through (1, 1) Hint: First compute f(1, 1).
16.[R] f(x, y) = x2 + 3y2 through (1, 2)
17.[R] f(x, y) = x2 − y2 through (3, 2)
18.[R] f(x, y) = x2 − y2 through (2, 3)

19.[R]

(a) Draw the level curves for the functions f(x, y) = x2 + y2 corresponding to the
values k = 0, 1, . . . , 9.

(b) By inspection of the curves in (a), decide where the functions changing most
rapidly. Explain why you think so.

20.[R] Let f(P ) be the average daily solar radiation at the point P (measured in
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langleys). The level curves corresponding to 350, 400, 450, and 500 langley are shown

in Figure 16.1.8.

Figure 16.1.8:

(a) What can be said about the ratio between the maximum and minimum solar
radiation at points in the United States?

(b) Why are there rather sharp bends in the level curves in two areas?

21.[R] Let u = g(x, y, z) be a function of three variables. Describe the level surface
g(x, y, z) = 1 if g(x, y, z) is

(a) x+ y + z

(b) x2 + y2 + z2

(c) x2 + y2 − z2

(d) x2 − y2 − z2 Hint: For (c) and (d) are examples of quadric surfaces.

22.[R]
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Figure 16.1.9:
The daily weather map shows the barometric pressure function by a few well-chosen
level curves (called isobars), as in Figure 16.1.9. In this case, the function is ‘pressure
at (x, y).”

(a) Where is the lowest pressure?

(b) Where is the highest pressure?

(c) Where do you think the wind at ground level is the fastest? Why?

23.[R] A map of August, 26, 2005 showing isobars and wind vectors, day of Katrina
and some questions.

24.[R] Questions about the map in Figure 16.1.2(b).

25.[M]

(a) Sketch the surface z = x2 + y2.

(b) Show that all the traces by planes parallel to the xz plane are parabolas.

(c) Show that the parabolas in (b) are all congruent. (So the surface is made up
of identical parabolas.)

(d) What kind of curve is a trace in a plane parallel to the xy plane?

26.[M] Consider the surface z = x2 + 4y2. What type of curve is produced by a
trace by a plane parallel to

(a) the xy plane,

(b) the xz palne,

(c) the yz plane.

27.[C]

(a) Is the parabola y = x2 congruent to the parabola y = 4x2?

(b) Is the parabola y = x2 similar to the parabola y = 4x2? (One figure is
similar to another if one is simply the other magnified by the same factor in
all direction.)
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16.2 The Many Derivatives of f (x, y).

The notions of limit, continuity and derivative carry over with similar defi-
nitions from functions f(x) of one variable to functions of several variables
f(x, y). However, the derivatives of functions of several variable involves some
new ideas.SHERMAN: There are more

new ideas for limits than
derivatives. In fact, partial

derivatives are a single
variable concept.

Limits and Continuity of f(x, y)

Figure 16.2.1:

The domain of function f(x, y) is the set of points where it is defined.
The domain of f(x, y) = x+ y is the entire xy plane. The domain of f(x, y) =√

1− x2 − y2 is much smaller. In order for the square root of 1 − x2 − y2 to
be defined, 1 − x2 − y2 must not be negative. In other words, we must have
x2 + y2 ≤ 1. The domain is the disk bounded by the circle x2 + y2 = 1, shown
in Figure 16.2.1.

A point P0 is on the boundary of a set if every disk centered at P0, no
matter how small, contains points in the set and points not in the set. (See
Figure 16.2.3.) The boundary of the circle x2 +y2 ≤ 1 is the circle x2 +y2 = 1.
The domain of f(x, y) =

√
1− x2 − y2 includes every point on its boundary.

The domain of f(x, y) = 1/
√

1− x2 − y2 is even smaller. Now we must

not let 1−x2−y2 be 0 or negative. The domain of 1/
√

1− x2 − y2 consists of
the points (x, y) such that x2 + y2 < 1. It is the disk in Figure 16.2.1 without
its boundary.

The function f(x, y) = 1/(y − x) is defined everywhere except on the line
y − x = 0. Its domain is the xy plane from which the line y = x is removed.
(See Figure 16.2.2.)

Figure 16.2.2:

The domain of a function of interest to us will either be the entire xy plane
or some region bordered by curves or lines, or perhaps such a region with a
few points omitted. Let P0 be a point in the domain of a function f . If there is

(a) (b)

Figure 16.2.3:
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a disk with center P0 that lies within the domain of f , we call P0 an interior
point of the domain. (See Figure 16.2.3(b).) When P0 is an interior point of
the domain of f , we know that f(P ) is defined for all points P sufficiently near
P0. Every point P0 in the domain not on its boundary is an interior point. A
set R is called open if each point P of R is an interior point of R. The entire
xy plane is open. So is any disk without its circumference. More generally,
the set of points inside some closed curve but not on it forms an open set.

The definition of the limit of f(x, y) as (x, y) approaches P0 = (a, b) will
not come as a surprise.

DEFINITION (Limit of f(x, y) at P0 = (a, b)) Let f be a func-
tion defined at least at every point in some disk with center P0,
except perhaps at P0. If there is a number L such that f(P ) ap-
proaches L whenever P approaches P0 we call L the limit of f(P )
as P approaches P0. We write

lim
P→P0

f(P ) = L

or
f(P )→ L as P → P0.

We also write
lim

(x,y)→(a,b)
f(x, y) = L.

For most of the functions of interest the limit will always exist throughout
its domain. However, even a formula that is easily defined may not have a
limit at some points.

EXAMPLE 1 Let f(x, y) = x2−y2
x2+y2

. Determine whether limP→(0,0) f(P )
exists.

SOLUTION The function is not defined at (0, 0). When (x, y) is near (0, 0),
both the numerator and denominator of (x2−y2)/(x2 +y2) are small numbers.
There are, as in Chapter 2, two influences. The numerator is pushing the
quotient towards 0 while the denominator is influencing the quotient to be
large. We must be careful.

Figure 16.2.4:

We try a few inputs near (0, 0). For instance, (0.01, 0) is near (0, 0) and

f(0.01, 0) =
(0.01)2 − 02

(0.01)2
+ 02 = 1

Also, (0, 0.01) is near (0, 0) and

f(0, 0.01) =
02 − (0.01)2

02 + (0.01)2
= −1
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More generally, for x 6= 0,

f(x, 0) = 1;

while, for y 6= 0,

f(0, y) = −1

Since x can be as near 0 as we please and y can be as near 0 as we please, it
is not the case that limP→(0,0) f(P ) exists. Figure 16.2.4 shows the graph of

z = x2−y2
x2+y2

. �

Continuity of f(x, y) at P0 = (a, b)

With only slight changes, the definition of continuity for f(x) in Section 2.4
easily generalizes to the definition of continuity for f(x, y).

DEFINITION (Continuity of f(x, y) at P0 = (a, b)). Assume
that f(P ) is defined throughout some disk with center P0. Then f
is continuous at P0 if limP→P0 f(P ) = f(P0).

This means

1. f(P0) is defined (that is, P0 is in the domain of f),

2. limP→P0 f(P ) exists, and

3. limP→P0 f(P ) = f(P0).

Continuity at a point on the boundary of the domain can be defined
similarly. A function f(P ) is continuous if it is continuous at
every point in its domain.

EXAMPLE 2 Determine whether f(x, y) = x2−y2
x2+y2

is continuous at (1, 1).

SOLUTION This is the function explored in Example 1. First, f(1, 1) is

defined. (It equals 0.) Second, lim(x,y)→(1,1)
x2−y2
x2+y2

. (It is 0
2

= 0.) Third,

lim(x,y)→(1,1) f(x, y) = f(1, 1).

Hence, f(x, y) is continuous at (1, 1). �

In fact, the function of Example 2 is continuous at every point (x, y) in its
domain. We do not need to worry about the behavior of f(x, y) when (x, y) is
near (0, 0) because (0, 0) is not in the domain. Since f(x, y) is continuous at
every point in its domain, it is a continuous function.
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The Two Partial Derivatives of f(x, y)

Let (a, b) be a point on the domain of f(x, y). The trace on the surface
z = f(x, y) by a plane through (a, b) and parallel to the z-axis is a curve, as
shown in Figure 16.2.5.

If f is well behaved at the point P = (a, b, f(a, b)) the trace has a slope.
This slope depends on the plane through (a, b). In this section we consider
only the two planes parallel to the coordinate planes y = 0 and x = 0. In the
next section we treat the general cases.

Figure 16.2.5:

Consider the function f(x, y) = x2y3. If we hold y constant and differenti-
ate with respect to x, we obtain d(x2y3)/dx = 2xy3. This derivative is called
the “partial derivative” of x2y3 with respect to x. We could hold x fixed instead
and find the derivative of x2y3 with respect to y, that is, d(x2y3)/dy = 3x2y2.
This derivative is called the “partial derivative” of x2y3 with respect to y. This
example introduces the general idea of partial derivative. First we define them.
Then we will see what they mean in terms of slope and rate of change.

DEFINITION (Partial derivatives.) Assume that the domain of
f(x, y) includes the region within some disk with center (a, b). If

lim
∆x→0

f(a+ ∆x, b)− f(a, b)

∆x

exists, this limit is called the partial derivative of f with re-
spect to x at (a, b). Similarly, if

lim
∆x→0

f(a, b+ ∆y)− f(a, b)

∆y

exists, it is called the partial derivative of f with respect to
y at 9a, b).

The following notations are used for the partial derivatives of z = f(x, y)
with respect to x: Notations for partial

derivatives.∂z

∂x
,
∂f

∂y
, fx, f1, or zx.

And the following are used for partial derivative of z = f(x, y) with respect to
y:

∂z

∂y
,
∂f

∂y
, fy, f2, or zy.

Since physicists and engineers use the subscript notation in study of vectors,
they prefer to use

∂f

∂x
and

∂f

∂y
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to denote the two partial derivatives. The symbol ∂∂f/∂x may be viewed as
“the rate at which the function f(x, y) changes when x varies and y is kept
fixed.” The symbol ∂f/∂y records “the rate at which the function f(x, y)
changes when y varies and x is kept fixed.”

The value of ∂f/∂x at (a, b) is denoted

∂f

∂x
(a, b) or

∂f

∂x

∣∣∣∣
(a,b)

.

In the middle of a sentence, we will write it as fx(a, b) or ∂f/∂x(a, b).

EXAMPLE 3 If f(x, y) = sin(x2y), find

1. ∂f/∂x,

2. ∂f/∂y, and

3. ∂f/∂y at (1, π/4).

SOLUTION

1. To find ∂
∂x

(sinx2y), differentiate with respect to x, keeping y constant:

∂
∂x

(sinx2y) = cos(x2y) ∂
∂x

(x2y) chain rule
= cos(x2y)(2xy) y is constant
= 2xy cos(x2y).

2. To find ∂
∂y

(sinx2y), differentiate with respect to y, keeping x constant:

∂
∂y

(sinx2y) = cos(x2y) ∂
∂y

(x2y) chain rule

= cos(x2y)(x2) x is constant
= x2 cos(x2y).

3. By (b)

∂f
∂y

(1, π/4) = x2 cos(x2y)|(1,π/4) = 12 cos
(
12 π

4

)
=
√

2
2
.

�

As Example 3 shows, since partial derivatives are really ordinary deriva-
tives, the procedures for computing derivatives of a function f(x) of a single
variable carry over to functions of two variables.
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Higher-Order Partial Derivatives

Just as there are derivatives of derivatives, so are there partial derivatives of
partial derivatives. For instance, if

z = 2x+ 5x4y7,

then
∂z

∂x
= 2 + 20x3y7 and

∂z

∂y
= 35x4y6.

We may go on and compute the partial derivatives of ∂z/∂x and ∂z/∂y:

∂
∂x

(
∂z
∂x

)
= 60x2y7 ∂

∂y

(
∂z
∂y

)
= 140x3y6

∂
∂x

(
∂z
∂y

)
= 140x3y6 ∂

∂y

(
∂z
∂y

)
= 210x4y5.

There are four partial derivatives of the second order:

∂

∂x

(
∂z

∂x

)
,
∂

∂y

(
∂z

∂x

)
,
∂

∂y

(
∂z

∂y

)
,
∂

∂x

(
∂z

∂y

)
.

These are usually denoted, in the same order, as

∂2z

∂x2
,
∂2z

∂y∂x
,
∂2z

∂y2
,
∂2z

∂x∂y
.

To compute ∂2z/∂x∂y, you first differentiate with respect to y, then with
respect to x. To compute ∂2z/∂y∂x, you first differentiate with respect to x,
then with respect to y. In both cases, “differentiate from right to left in the
order that the variables occur.”

The partial derivative ∂f
∂x

is also denoted fx and ∂f
∂y

is denoted fy. The

second partial derivative ∂2f
∂x∂y

= ∂(fy)

∂x
= (fy)x is denoted fyx. In this case you

differentiate from left to right, “first fy, then (fy)x.” In short, fyx = (fy)x, The subscript notation, fyx,
is generally preferred in the
midst of other text.

fyy = (fy)y, and fxy = (fx)y. In both notations the mixed partial is computed
in the order that resembles its definition (with the parentheses removed), Thus

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
and fxy = (fx)y

are the two different mixed second partial derivatives of f . Equality of the mixed
partialsIn the computations just done, the two mixed partials zxy and zyx are

equal. For the functions commonly encountered, the two mixed partials are
equal. (For a proof, see Appendix K.) SHERMAN: V had an

appedix on interchanging
limits. How will we deal
with this in VI?
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Exercise 27 presents a function for which the two mixed particles are not
equal. Such a special case mathematicians call “pathological”, though the
function does not view itself as sick.

EXAMPLE 4 Compute
∂2z

∂x2
= fxx,

∂2z

∂y∂x
= fxy, and

∂2z

∂x∂y
= zyx for

z = y cos(xy).
SOLUTION First compute

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
=

∂

∂x
(−y2 sin(xy)) = −y3 cos(xy).

Then

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(−y2 cos(xy)) = −2y sin(xy)− xy2 cos(xy).

Finally,

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(−yx sin(xy) + cos(xy))

= −y ∂
∂x

(x sin(xy) +
∂

∂x
(cos(xy)) = −y(xy cos(xy) + sin(xy))− y sin(xy)

= −xy2 cos(xy)− y sin(xy)− y sin(xy) = −2y sin(xy)− xy2 cos(xy).

Notice that while the work required to compute the mixed partials is very
different, the two derivatives are, as expected, are equal. �

Functions of More Than Two Variables

A quantity may depend on more than two variables. For instance, the volume
of a box depends on three variables: the length l, width w, and height h,
V = lwh. The “chill factor” depends on the temperature, humidity, and wind
velocity. The temperature T at any point in the atmosphere is a function of
the three space coordinates, x, y, and z: T = f(x, y, z).To differentiate, hold all

variables constant except
one.

The notions and notations of partial derivatives carry over to functions of
more than two variables. If u = f(x, y, z, t), there are four first-order partial
derivatives. For instance, the partial derivative of u with respect to x, holding
y, z, and t fixed, is denoted

∂u

∂x
,
∂f

∂x
, ux, etc.

Higher-ordered partial derivatives are defined and denoted similarly. ManyInsert CIE on the Vibrating
String. basic problems in chemistry and physics, such as vibrating string are examined

in terms of equations involving partial derivatives (known as PDEs).
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Summary

We defined limit, continuity, and derivatives for functions of several variables.
These notions are all closely related to the one variable versions.

A key difference is that a partial derivative with respect to one variable, say
x, is found by treating all other variables as constants and applying the stan-
dard differentiation rules with respect to x. Higher-order partial derivatives
are also defined much like higher-order derivatives. An important property of
higher-order partial derivatives is that the order in which the partial deriva-
tives are applied can be important, but not for the functions usually met in
applications.
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EXERCISES for Section 16.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 8 evaluate the limits, if they exist.SHERMAN: Move some of
these to Chapter Summary.

Emphasis is on partial
derivatives.

1.[R] lim
(x,y)→(2,3)

x+ y

x2 + y2

2.[R] lim
(x,y)→(1,1)

x2

x2 + y2

3.[R] lim
(x,y)→(0,0)

x2

x2 + y2

4.[R] lim
(x,y)→(0,0)

xy

x2 + y2

5.[R] lim
(x,y)→(2,3)

xy

6.[R] lim
(x,y)→(0,0)

(x2)y

7.[R] lim
(x,y)→(0,0)

(1 + xy)1/(xy)

8.[R] lim
(x,y)→(0,0)

(1 + x)1/y

In Exercises 9 to 14, (a) describe the domain of the given functions and (b) state
whether the functions are continuous.

9.[R] f(x, y) = 1/(x+ y)
10.[R] f(x, y) = 1/(x2 + 2y2)
11.[R] f(x, y) = 1/(9− x2 − y2)
12.[R] f(x, y) =

√
x2 + y2 − 25

13.[R] f(x, y) =
√

16− x2 − y2

14.[R] f(x, y) =
√

49− x2 − y2

In Exercises 15 to 20, find the boundary of the given region R.

15.[R] R consists of all points (x, y) such that x2 + y2 ≤ 1.
16.[R] R consists of all points (x, y) such that x2 + y2 < 1.
17.[R] R consists of all points (x, y) such that 1/(x2 + y2) is defined.
18.[R] R consists of all points (x, y) such that 1/(x+ y) is defined.
19.[R] R consists of all points (x, y) such that y < x2.
20.[R] R consists of all points (x, y) such that y ≤ x.

In Exercises 21 to 24 concern the precise definition of lim(x,y)→P0
f(x, y).

21.[R] Let f(x, y) = x+ y.

(a) Show that if P = (x, y) lies within a distance 0.01 of (1, 2), then |x−1| < 0.01
and |y − 2| < 0.01. (See Figure 16.2.6).
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(b) Show that if |x− 1| < 0.01 and |y − 2| < 0.01, then |f(x, y)− 3| < 0.02.

(c) Find a number δ > 0 such that if P = (x, y) is in the disk of center (1, 2) and
radius δ, then |f(x, y)− 3| < 0.001.

(d) Show that for any positive number ε, no matter how small, there is a positive
number δ such that when P = (x, y) is in the disk of radius δ and center (1, 2),
then |f(x, y)− 3| < ε. (Give δ as a function of ε.)

(e) What may we conclude on the basis of (d)?

Figure 16.2.6:

22.[R] Let f(x, y) = 2x+ 3y.

(a) Find a disk with center (1, 1) such that whenever P is in that disk, |f(P )−5| <
0.01

(b) Let ε be any positive number. Show that there is a disk with center (1, 1) such
that whenever P us in that disk, |f(P )− 5| < ε. (Give δ as a function of ε.)

(c) What may we conclude on the basis of (b)?

23.[R] Let f(x, y) = s2y/(x4 + 2y2).

(a) What is the domain of f?

(b) Fill in this table:

(x, y) (0.01, 0.01) (0.01, 0.02) (0.001, 0.003)
f(x, y)

(c) On the basis of (b), do you think limP→(0,0) f(P ) exists? If so, what is its
value?
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(d) Fill in this table:

(x, y) (0.5, 0.25) (0.1, 0.01) (0.001, 0.000001)
f(x, y)

(e) On the basis of (d), do you think limP→(0,0) f(P ) exists? If so, what is its
value?

(f) Does limP→(0,0) f(P ) exist? If so, what is it? Explain.

24.[R] Let f(x, y) = 5x2y/(2x4 + 3y2).

(a) What is the domain of f?

(b) As P approaches (0, 0) on the line y = 2x, what happens to f(P )?

(c) As P approaches (0, 0) on the line y = 3x, what happens to f(P )?

(d) As P approaches (0, 0) on the parabola y = x2, what happens to f(P )?

(e) Does limP→(0,0) f(P ) exist? If so, what is it? Explain.

25.[R] Show that for any polynomial P (x, y), Pyx equals Pxy. Suggestion: It is
enough to show it for an arbitrary monomial axmyn, where a is constant and m and n
are non-negative integers. The case where m or n is 0 should be treated separately.

26.[M] Let T (x, y, z) = 1/
√
x2 + y2 + z2, if (x, y, z) is not the origin (0, 0, 0). Show

that
∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
= 0

This equation arises in the theory of heat as we will show in Section 16.4.

27.[C] This exercise presents a function f(x, y) such that its two mixed partial
derivatives at (0, 0) are not equal.

(a) Let g(x, y) = x2−y2
x2+y2

for (x, y) not (0, 0). Show that limk→0(limh→0 g(h, k)) =
−1 but limh→0(limk→0 g(h, k)) = 1.

(b) Let f(x, y) = xyg(x, y) if (x, y) is not (0, 0) and f(0, 0) = 0. Show that
f(x, y) = 0 if x or y is 0.

(c) Show that fxy(0, 0) = limk→0
fx(0,k)−fx(0,0)

k .

(d) Show that fxy(0, 0) = limk→0

(
limh→0

f(h,k)−f(j,k)−f(h,0)+f(0,0)
hk

)
.
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(e) Show that fxy(0, 0) = −1.

(f) Similarly, show that fxy(0, 0) = 1.

(g) Show that in polar coordinates the value of f at the point (r, θ) is r2 sin(4θ)/4.
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16.3 Change and the Chain Rule

For a function of one variable, f(x), the change in the value of the function as
the input changes from a to a+ ∆x is approximately f ′(a)∆x. In this section
we estimate the change in f(x, y) as (x, y) moves from (a, b) to (a+∆x, b+∆y).

That type of estimate is the key to obtaining the chain rule for functions
of several variables. We will find that the chain rule involves the sum of terms
that resemble the product dy

du
· du
dx

that appear in the chain rule for a function
of one variable.

Estimating the Change of ∆f

Let z = f(x, y) be a function of two variables with continuous partial deriva-
tives at least throughout a disk centered at the point (a, b). We will express
∆f = f(a+ ∆x, b+ ∆y)− f(a, b) in terms of fx and fy. This change is shown
in Figure 16.3.1. We can view this change as obtained in two steps. First, the

Figure 16.3.1:

change as x goes from a to a+ ∆x, that is, f(a+ ∆x, b)− f(a, b). Second, the
change from f(a+ ∆x, b) to f(a+ ∆x, b+ ∆y), as y changes from b to b+ ∆y.

In short,

∆f = (f(a+ ∆x, b)− f(a, b)) + (f(a+ ∆x, b+ ∆y)− f(a+ ∆, b)) . (16.3.1)

By the mean-value theorem, there is a number c1 between a and a+ ∆x such(16.3.1) is clear algebraically
because the two

f(a+ ∆x, b) terms cancel.
that

f(a+ ∆x, b)− f(a, b) =
∂f

∂x
(c1, b)∆x (16.3.2)

Similarly, applying the mean-value theorem to the second bracket expres-
sion as (16.3.2), we see that there is a number c3 between b and b + ∆y such
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that

f(a+ ∆x, b+ ∆y)− f(a+ ∆x, b) =
∂f

∂y
(a+ ∆x, c2)∆y. (16.3.3)

Combining (16.3.1), (16.3.2) and (16.3.3) we obtain

∆f =
∂f

∂x
(c1, b)∆x+

∂f

∂y
(z + ∆x, c2)∆y. (16.3.4)

When both ∆x and ∆y are small, the points (c1, b) and (a+∆x, c2) are near
the point (a, b). If we assume that the partial derivatives fx are continuous at
(a, b), then we may conclude that

∂f

∂x
(c1, b) =

∂f

∂x
(a, b) + ε1 and

∂f

∂y
(a+ ∆x, c2) =

∂f

∂y
(a, b) + ε2, (16.3.5)

where both ε1 and ε2 approach 0 as ∆x and ∆y approach 0.
Combining (16.3.4) and (16.3.5) gives the key to estimating the change in

the function f . We state this important result as a theorem.

Theorem 16.3.1. Let f have continuous partial derivatives fx and fy for all
points within some disk with center at the point (a, b). Then ∆f , which is the
change f(a+ ∆x, b+ ∆y)− f(a, b), can be written

∆f =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y + ε1∆x+ ε2∆y, (16.3.6)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0. (Both ε1 and ε2 are
functions of the four variables a, b, ∆x and ∆y.)

This equation is the core of
this section.The term fx(a, b)∆x estimates the change due to the change in the x-

coordinate, while fy(a, b)∆y estimates the change due to the change in the
y-coordinate.

We will call f(x, y) differentiable at (a, b) if (16.3.6) holds. In particular if
the partial derivatives fx and fy exist in a disk around (a, b) and are continuous
at (a, b), then f is differentiable at (a, b).

Since ε1 and ε2 in (16.3.6) both approach 0 as ∆x and ∆y approach 0,

∆f ≈ ∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y, (16.3.7)
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The approximation (16.3.7) gives us a way to estimate ∆f when ∆x and
∆y are small.

EXAMPLE 1 Estimate (2.1)2(0.95)3.
SOLUTION Let f(x, y) = x2y3. We wish to estimate f(2.1, 0.95). We know
that f(2, 1) equals 2213 = 4. We use (16.3.7) to estimate ∆f = f(2.1, 0.95)−
f(2, 1). We have

∂(x2y3)

∂x
= 2xy3 and

∂(x2y3)

∂y
= 3x2y2.

Then
∂f

∂x
(2, 1) = 4 and

∂f

∂y
(2, 1) = 12.

Since ∆x = 0.1 and ∆y = −0.05, we have

∆f = 4(0.1) + 12(−0.05) = 0.4− 0.6 = −0.2.

Thus (2, 1)2(0.95)3 is approximately 4 + (−0.2) = 3.8. �The exact value is
3.78102375.

DOUG: You may want to do
more with “approximation”.

SHERMAN: What do you
mean by this?

The Chain Rule

We begin with two special cases of the chain rule for functions of more than one
variable. Afterward we will state the chain rule for functions of any number
of variables.

The first theorem considers the case when z = f(xy) and x and y are
functions of just one variable t. The second theorem is more general, where x
and y may be functions of two variables, t and u.

Theorem. Chain Rule – Special Case #1 Let z = f(x, y) have continuous
partial derivatives fx and fy, and let x = x(t) and y = y(t) be differentiable
functions of t. Then z is a differentiable function of t and

dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt
. (16.3.8)

Proof

By definition,
dz

dt
= lim

∆t→0

∆z

∆t
.

Now, ∆t induces changes ∆x and ∆y in x and y, respectively. According to
Theorem 16.3.1,

Figure 16.3.2:

∆z =
∂f

∂x
(x, y)∆x+

∂f

∂y
(x, y)∆y + ε1∆x+ ε2∆y,
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where ε1 → 0 and ε2 → 0 as ∆x and ∆y approach 0. (Keep in mind that x
and y are fixed.) Thus

∆z

∆t
=
∂f

∂x
(x, y)

∆x

∆t
+
∂f

∂y
(x, y)

∆y

∆t
+ ε1

∆x

∆t
+ ε2

∆y

∆t
.

and
dz

dt
= lim

∆t→0

∆z

∆t
=
∂f

∂x
(x, y)

dx

dt
+
∂f

∂y
(x, y)

dy

dt
+ 0

dx

dt
+ 0

dy

dt
.

This proves the theorem. •

MEMORY AID: Each path produces one summand. And, each leg in each
path produces one factor in that summand.

The two summands on the right-hand sides of (16.3.8) remind us of the
chain rule for functions of one variable. Why is there a “+” in (16.3.8)? The
“+” first appears in (16.3.4) and you can trace it back to Figure 16.3.1.

The diagram in Figure 16.3.2 helps in using this special case of the chain
rule . There are two paths from the top variable z down to the bottom variable

Figure 16.3.3:Figure 16.3.4:

t. Label each edge with the appropriate partial derivative (or derivative). For
each path there is a summand in the chain rule. The left-hand path (see
Figure 16.3.3) gives us the summand

∂z

∂x

dx

dt
.

The right-hand path (see Figure 16.3.4) gives us the summand

∂z

∂y

dy

dt
.

Then dz/dt is the sum of those two summands.

EXAMPLE 2 Let z = x2y3, x = 3t2, and y = t/3. Find dz/dt when t = 1.
SOLUTION In order to apply the special case of the chain rule, compute zx,
zy, dx/dt, and dy/dt:

∂z

∂x
= 2xy3 ∂z

∂y
= 3x2y2

dx

dt
= 6t

dy

dt
=

1

3
.
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By the special case of the chain rule,

dz

dt
= 2xy3 · 6t+ 3x2y2 · 1

3
.

In particular, when t = 1, x is 3 and y is 1
3
. Therefore, when t = 1,

dz

dt
= 2 · 3

(
1

3

)3

6 · 1 + 3 · 32

(
1

3

)2
1

3
=

36

27
+

27

27
=

7

3
.

�
In Example 2, the derivative dz/dt can be found without using the theorem.

To do this, express z explicitly in terms of t:

z = x2y3 = (3t2)2

(
t

3

)3

=
t7

3
.

Then
dz

dt
=

7t6

3
.

When t = 1, this gives
dz

dt
=

7

3
,

in agreement with the first computation.

EXAMPLE 3 The temperature at the points (x, y) on a window is T (x, y).
A bug wandering on the window is at the point (x(t), y(t)) at time t. How fast
does the bug observe that the temperature of the glass changes as he crawls
about?
SOLUTION The bug is asking us to find dT/dt. The chain rule (16.3.8) tells
us that

dT

dt
=
∂T

∂x

dx

dt
+
∂T

∂y

dy

dt
.

The bug can influence this rate by crawling faster or slower. He may want to
know the direction he should choose in order to cool off as quickly as possible.
But we will not be able to tell him how to do this until the next section,
Section 16.4. �

The proof of the next chain rule is almost identical to the proof of Theo-
rem 16.3. (See Exercise 24.)

Theorem. Chain Rule – Special Case #2 Let z = f(x, y) have continuous
partial derivatives, fx and ft. Let x = x(t, u) and y = (t, u) have continuous
partial derivatives

∂x

∂t
,

∂x

∂u
,

∂y

∂t
,

∂y

∂u
.
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Then
∂z

∂t
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
and

∂z

∂u
=
∂z

∂x

∂x

∂u
+
∂z

∂y

∂y

∂u
.

Figure 16.3.5:

The variables are listed in Figure 16.3.5.
To find zt, draw all the paths from z down to t. Label the edges by the

appropriate partial derivative, as shown in Figure 16.3.6.
Each path from the top variable down to the bottom variable contributes a

summand in the chain rule. The only difference between Figure 16.3.2 and Fig-
ure 16.3.6 is that ordinary derivatives dx/dt and dy/dt appear in Figure 16.3.2,
while partial derivatives xt and yt appear in Figure 16.3.6.

Figure 16.3.6:

In the first special case of the chain rule there are two middle variables and
one bottom variable. In the second chain rule there are two middle variables
and two bottom variables. The chain rule holds for any number of middle
variables and any number of bottom variable. For instance, there may be
three middle variables and, say, four bottom variables. In that case there are
three summands for each of four partial derivatives.

In the next example there is only one middle variable and two bottom
variables.

EXAMPLE 4 Let z = f(u) be a function of a single variable. Let u =
2x+ 3y. Then z is a composite function of x and y. Show that

2
∂z

∂y
= 3

∂z

∂x
. (16.3.9)

SOLUTION We will evaluate both zx and zy by the chain rule and then
check whether (16.3.9) is true.

To find zx we consider all paths from z down to x. There is only one middle
variable so there is only one path. Since u = 2x+ 3y, ux = 2. Thus

∂z

∂x
=
dz

du

∂u

∂x
=
dz

du
· 2 = 2

dz

du

(Note that one derivative is ordinary, while the other is a partial derivative.)
Next we find zy. Again, there is only one summand. Since u = 2x + 3y,

uy = 3. Thus
∂z

∂y
=
dz

du

∂u

∂y
=
dz

du
· 3 = 3

dz

du
.

Thus zx = 2dz/du and zy = 3dz/du. Substitute these into the equation

2
∂z

∂y
= 3

∂z

∂x
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to see whether we obtain a true equation:

2

(
3
dz

du

)
= 3

(
2
dz

du

)
. (16.3.10)

Since (16.3.10) is true, we have verified (16.3.9). �

An Important Use of the Chain Rule

There is a fundamental difference between Example 2 and Example 4. In the
first example, we were dealing with explicitly given functions. We did not
really need to use the chain rule to find the derivative, dz/dt. As remarked
after the example, we could have shown that z = t7/3 and easily found that
dz/dt = 7t6/3. But in Example 4, we were dealing with a general type of
function formed in a certain way: We showed that (16.3.9) holds for every
differentiable function f(u). No matter what f(u) we choose, we know that
2zy = 3zx.

Example 4 shows why the chain rule is important. It enables us to make
general statements about the partial derivatives of an infinite number of func-
tions, all of which are formed the same way. The next example illustrates this
use again.The wave equation also

appears in the study of
sound or light.

D’Alembert in 1746 obtained the partial differential equation for a vibrating
string:

∂2y

∂t2
= k2 ∂

2y

∂x2
. (16.3.11)

(See Figure C.21.3 in the CIE about the Wave in a Rope.) This “wave equa-
tion” created a great deal of excitement, especially since d’Alembert showed
that any differentiable function of the form

g(x+ kt) + h(x− kt)

is a solution.
Before we show that d’Alembert is right, we note that it is enough to check

it for g(x+kt). If you replace k by −k in it, you will also have a solution since
replacing k by −k in (16.3.11) doesn’t change the equation.

EXAMPLE 5 Show that any function y = g(x + kt) satisfies the partial
differential equation (16.3.11).
SOLUTION In order to find the partial derivatives yxx and ytt we express
y = g(x+ kt) as a composition of functions:

Figure 16.3.7:

y = g(u) where u = x+ kt.

Note that g is a function of just one variable. Figure 16.3.7 lists the variables.
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We will compute yxx and ytt in terms of derivatives of g and then check
whether (16.3.11) holds. We first compute yxx. First of all, Recall that u = x+ kt.

∂y

∂x
=
dy

du

∂u

∂x
=
dy

du
· 1 =

dy

du
. (16.3.12)

(There is only one path from y down to x. See Figure 16.3.7.) In (16.3.12)
dy/du is viewed as a function of x and t; that is, u is replaced by x+kt. Next,

∂2y

∂x2
=

∂

∂x

(
∂y

∂x

)
=

∂

∂x

(
dy

du

)
.

Now, dz/du, viewed as a function of x and t, may be expressed as a composite
function. Letting w = dy/du, we have

w = f(u), where u = x+ kt.

Therefore

Figure 16.3.8:

∂2y
∂x2 = ∂

∂x

(
∂y
∂x

)
= ∂w

∂x

= dw
du
· ∂u
∂x

(only one path down to x)

= d
du

(
dy
du

)
∂u
∂x

= d2y
du2 · 1;

hence
∂2y

∂x2
=
d2y

du2
. (16.3.13)

Then we also express ytt in terms of d2y/du2, as follows. First of all,

Figure 16.3.9:

∂y

∂t
=
dy

du

∂u

∂t
=
dy

du
· k = k

dy

du
.

(See Figure 16.3.9.)
Then

∂2y
∂t2

= ∂
∂t

(
∂y
∂t

)
= ∂

∂t

(
k dy
du

)
= k d

du

(
dy
du

)
· ∂u
∂t

(only one path down to t)

= k d
2y
du2 · k;

hence
∂2y

∂t2
= k2 d

2z

du2
(16.3.14)

Comparing (16.3.13) and (16.3.14) shows that

∂2z

∂t2
= k2 d

2z

dx2

�
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Summary

The section opened by showing that under suitable assumptions on f(x, y)

∆f =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b) + ε1∆x+ ε2∆y, (16.3.15)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0. This gave us a way to
estimate ∆f , namely

∆f ≈ ∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y

“The change is due to both the change in x and the change in y.” (16.3.15)
generalizes to any number of variables and also is the basis for the various
chain rules for partial derivatives. This is the general case:

Figure 16.3.10:

If z is a function of x1, x2, . . . xm and each xi is a function of t1, t2 . . . tn,
then there are n partial derivatives of ∂z/∂tj. Each is a sum of m products
of the form (∂z/∂xi)(∂xi/∂tj). To do the bookkeeping, first make a roster
as shown in Figure 16.3.10. To compute ∂z/∂tj, list all paths from z down

Figure 16.3.11:

to tj, as shown in Figure 16.3.11. Each path that starts at z and goes down
to tj “contributes” a product. You do not have to be a great mathematicianSome advice

to apply the chain rule. However, you must do careful bookkeeping. First,
display the top, middle, and bottom variables. Second, keep in mind that the
number of middle variables determines the number of summands.
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EXERCISES for Section 16.3 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4 verify the chain rule (Special Case #1, on page 1292) by comput-
ing dz/dt two ways: (a) with the chain rule, (b) without the chain rule (by writing
z as a function of t).

1.[R] z = x2y3, x = t2, y = t3

2.[R] z = xey, x = t, y = 1 + 3t

3.[R] z = cos(xy2), x = e2t, y = sec(3t)

4.[R] z = ln(x+ 3y), x = t2, y = tan(3t).

In Exercises 5 and 6 verify the chain rule (Special Case #2, on page 1294) by
computing dz/dt two ways: (a) with the chain rule, (b) without the chain rule (by
writing z as a function of t and u).

5.[R] z = x2y, x− 3t+ 4u, y = 5t− u
6.[R] z = sin(x+ 3y), x =

√
t/u, y =

√
t+
√
u

7.[R] Assume that z = f(x1, x2, x3, x4, x5) and that each xi is a function of t1, t2,
t3.

(a) List all variables, showing top, middle, and bottom variables.

(b) Draw the paths involved in expressing ∂z/∂t3 in terms of the chain rule.

(c) Express ∂z/∂t3 in terms of the sum of products of partial derivatives.

(d) When computing ∂z/∂t2, which variables are constant?

(e) When computing ∂z/∂t3, which variables are constant?

8.[R] If z = f(g(t1, t2, t3), h(t1, t2, t3))

(a) How many middle variables are there?

(b) How many bottom variables?

(c) What does the chain rule say about ∂z/∂t3? (Include a diagram showing the
paths.)

9.[R] Find dz/dt if zx = 4, xy = 3, dx/dt = 4, and dy/dt = 1.
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10.[R] Find dz/dt if zx = 3, zy = 2, dx/dt = 4, and dy/dt = −3.

11.[R] Let z = f(x, y), x = u+ v, and y = u− v.

(a) Show that (zx)2 − (zy)2 = (zu)(zv). (Include diagrams.)

(b) Verify (a) when f(x, y) = x2 + 2y3.

12.[R] Let z = f(x, y), x = u2 − v2, and y = v2 − u2.

(a) Show that

u
∂z

∂v
+ v

∂z

∂u
= 0.

(Include diagrams.)

(b) Verify (a) when f(xy) = sin(x+ 2y).

13.[R] Let z = f(t− u,−t+ u).

(a) Show that ∂z
∂t + ∂z

∂u = 0 (Include diagrams.)

(b) Verify (a) when f(x, y) = x2y

14.[R] Let w = f(x− y, y − z, z − x).

(a) Show that ∂w
∂x + ∂w

∂y + ∂w
∂z = 0. (Include diagrams.)

(b) Verify (a) in the case f(s, t, u) = s2 + t2 − u.

15.[R] Let z = f(u, v) where u = ax+ by, v = cx+ dy, and a, b, c, d are constants.
Show that

(a)
∂2z

∂x2
= a2∂

2f

∂u2
+ 2ac

∂2f

∂u∂v
+ c2∂

2f

∂v2

(b)
∂2z

∂y2
= b2

∂2f

∂u2
+ 2bd

∂2f

∂u∂v
+ d2∂

2f

∂v2

(c)
∂2z

∂x∂y
= ab

∂2f

∂u2
+ (ad+ bc)

∂2f

∂u∂v
+ cd

∂2f

∂v2
.
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16.[R] Let a, b, and c be given constants and consider the partial differential
equation

a
∂2z

∂x2
+ b

∂2z

∂x∂y
+ c

∂2z

∂y2
= 0

Assume a solution of the form z = f(y + mx), where m is a constant. Show that
for this function to be a solution, am2 + bm+ c must be 0.

17.[R]

(a) Show that any function of the form z = f(x + y) is a solution of the partial
differential equation

∂2z

∂x2
− 2

∂2z

∂x∂y
+
∂2z

∂y2
= 0.

(b) Verify (a) for z = (x+ y)3.

18.[R] Let u(x, t) be the temperature at point x along a rod at time t. The function
u satisfies the one-dimensional heat equation for a constant k:

∂u

∂t
= k

∂2u

∂x2
.

(a) Show that u(x, t) = ektg(x) satisfies the heat equation if g(x) is any function
such that g′′(x) = g(x).

(b) Show that if g(x) = 3e−x + 4ex, then g′′(x) = g(x).

19.[R]

(a) Show that any function of the form z = f(x+ y) + eyf(x− y) is a solution of
the partial differential equation

∂2z

∂x2
− ∂2z

∂y2
− ∂z

∂x
+
∂z

∂y
= 0.

(b) Check (a) for z = (x+ y)2 + ey sin(x− y).

20.[R] Let z = f(x, y) denote the temperature at the point (x, y) in the first
quadrant. If polar coordinates are used, then we would write z = f(r, θ).
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(a) Express zr in terms of zx and xy. Hint: What is the relation between rect-
angular coordinates (x, y) and polar coordinates (r, θ)?

(b) Express zθ in terms of zx and zy.

(c) Show that (
∂z

∂x

)2

+
(
∂z

∂y

)2

=
(
∂z

∂r

)2

+
1
r2

(
∂z

∂θ

)2

.

21.[R] Let u = f(r) and r = (x2 + y2 + z2)1/2. Show that

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
=
d2u

dr2
+

2
r

du

dr
.

22.[R] At what rate is the volume of a rectangular box changing when its width
is 3 feet and increasing at the rate of 2 feet per second, its length is 8 feet and
decreasing at the rate of 5 feet per second, and its height is 4 feet and increasing at
the the rate of 2 feet per second?

23.[R] The temperature T at (x, y, z) in space is f(x, y, z). An astronaut is traveling
in such a way that his x and y coordinates increase at the rate of 4 miles per second
and his z coordinate decreases at the rate of 3 miles per second. Compute the rate
dT/dt at which the temperature changes at a point where

∂T

∂x
= 4,

∂T

∂y
= 7, and

∂T

∂z
= 9.

24.[M] We proved Special Case #1 of the chain rule (page 1292), when there are
two are two middle variables and one bottom variable. Prove Special Case #2 of
the chain rule (page 1294), where there are two middle variables and two bottom
variables.

25.[M] To prove the general chain rule when there are three middle variables, we
need an analog of Theorem 16.3.1 concerning ∆f when f is a function of three
variables.

(a) Let y = f(x, y, x) be a function of three variables. Show that

∆f = f(x+ ∆x, y + ∆y, z + ∆z)− f(x, y, z)
= (f(x+ ∆x, y, z)− f(x, y, z)) + (f(x+ ∆x, y + ∆y, z)− f(x+ ∆x, y, z))

+(f(x+ ∆x, y + ∆y, z + ∆z)− f(x+ ∆x, y + ∆y, z)).
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(b) Using (a) show that

∆f =
∂f

∂x
(x, y, z)∆x+

∂f

∂y
(x, y, z)∆y +

∂f

∂z
(x, y, z)∆z + ε1∆x+ ε2∆y + ε3∆z,

where ε1, ε2, ε3 → 0 as ∆x, ∆y, ∆z → 0.

(c) Obtain the general chain rule in the case of three middle variables and any
number of bottom variables.

26.[M] Let z = f(x, y), where x = r cos(θ) and y = r sin(θ). Show that

∂2z

∂r2
= cos2(θ)

∂2f

∂x2
+ 2 cos(θ) sin(θ)

∂2f

∂x∂y
+ sin2(θ)

∂2f

∂y2
.

27.[M] Let u = f(x, y), where x = r cos(θ) and y = r sin(θ). Verify the following
equation, which appears in electromagnetic theory,

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
=
∂2u

∂x2
+
∂2u

∂y2
.

28.[M] Let u be a function of x and y, where x and y are both functions of s and t.
Show that

∂2u

∂s2
=
∂2u

∂x2

(
∂x

∂s

)2

+ 2
∂2u

∂x∂y

∂x

∂s

∂y

∂x
+
∂2u

∂y2

(
∂y

∂x

)2

+
∂u

∂x

∂2x

∂s2
+
∂u

∂y

∂2y

∂s2
.

29.[C] Let (r, θ) be polar coordinates for the point (x, y) given in rectangular
coordinates.

(a) From the relation r =
√
x2 + y2, show that ∂r/∂x = cos(θ).

(b) From the relation r = x/ cos θ, show that ∂r/∂x = 1/ cos(θ).

(c) Explain why (a) and (b) are not contradictory.

30.[C] In developing (16.3.6), we used the path that started at (x, y), went to
(x + ∆x, y), and ended at (x + ∆x, y + ∆y). Could we have used the path from
(x, y), through (x, y + ∆y), to (x + ∆x, y + ∆y) instead? If “no”, explain why. If
“yes,” write out the argument, using the path.
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In Exercises 31 to 34 concern homogeneous functions. A function f(x, y) is homo-
geneous of degree r if f(kx, ky) = krf(x, y) for all k > 0.

31.[R] Verify that each of the following functions is homogeneous of degree 1 and
also verify that each satisfies the conclusion of Euler’s theorem (with r = 1):

f(x, y) = x
∂f

∂x
+ y

∂f

∂y
.

(a) f(x, y) = 3x+ 4y

(b) f(x, y) = x3y−2

(c) f(x, y) = xex/y

32.[M] Show that each of the following functions is homogeneous, and find the
degree r.

(a) f(x, y) = x2(lnx− ln y)

(b) f(x, y) = 1/
√
x2 + y2

(c) f(x, y) = sin
( y
x

)
33.[C] (See Exercise 31.) Show that if f is homogeneous of degree r, then
xfx + yfy = rf . This is the general form of Euler’s theorem.

34.[C] (See Exercise 33.) Verify Euler’s theorem for each of the functions in Exer-
cise 32.

35.[C] (See Exercise 32.) Show that if f is homogeneous of degree r, then ∂f/∂x

is homogeneous of degree r − 1.
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16.4 Directional Derivatives and the Gradient

In this section we generalize the notion of a partial derivative to that of a
directional derivative. Then we introduce a vector, called “the gradient,” to
provide a short formula for the directional derivative. The gradient will have
other uses later in this chapter and in Chapter 18.

Directional Derivatives

If z = f(x, y), the partial derivative ∂f/∂x tells us how rapidly z changes as
we move the input point (x, y) in a direction parallel to the x-axis. Similarly,
fy tells how fast z changes as we move parallel to the y-axis. But we can ask,
“How rapidly does z change when we move the input point (x, y) in any fixed
direction in the xy plane?” The answer is given by the directional derivative. It is important to remember

that ‖u‖ = 1.Consider a function z = f(x, y), let’s say the temperature at (x, y). Let
(a, b) be a point and let u be a unit vector in the xy plane. Draw a line through
(a, b) and parallel to u. Call it the t-axis and let its positive part point in the
direction of u. Place the 0 of the t-axis at (a, b). (See Figure 16.4.1.) Each
value of t determines a point (x, y) on the t-axis and thus a value of z. Along
the t-axis, z can therefore be viewed as a function of t, z = g(t). The derivative
dg/dt, evaluated at t = 0, is called the directional derivative of z = f(x, y)
at (a, b) in the direction u. It is denoted Duf . The directional derivative is the
slope of the tangent line to the curve z = g(t) at t = 0. (See Figure 16.4.1(c).)

(a) (b) (c)

Figure 16.4.1: ARTIST: Improved figures are needed here.

When u = i, we obtain the directional derivative Duf , which is simply fx.
When u = j, we obtain Djf , which is fy.

The directional derivative generalizes the two partial derivatives fx and fy.
After all, we can ask for the rate of change of z = f(x, y) in any direction in
the xy plane, not just the directions indicated by the vectors i and j.

The following theorem shows how to compute a directional derivative.
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Theorem. (Directional Derivatives) If f(x, y) has continuous partial deriva-
tives fx and fy, then the directional derivative of f at (a, b) in the direction of
u = cos(θ)i + sin(θ)j where θ is the angle between u and i is

∂f

∂x
(a, b) cos(θ) +

∂f

∂y
(a, b) sin(θ). (16.4.1)

Proof

The directional derivative of f at (a, b) in the direction u is the derivative of

Figure 16.4.2:

the function
g(t) = f(a+ t cos(θ), b+ t sin(θ))

when t = 0. (See Figure 16.3.2 and Figure 16.3.3.)

Figure 16.4.3:

Now, g is a composite function

g(t) = f(x, y) where

{
x = a+ t cos(θ)
y = b+ t sin(θ).

The chain rule tells us that

g′(t) =
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

Moreover,
dx

dt
= cos(θ) and

dy

dt
= sin(θ).

Thus

g′(0) =
∂f

∂x
(a, b) cos θ +

∂f

∂y
(a, b) sin θ,

and the theorem is proved. •Check (16.4.1) when θ = 0
When θ = 0, that is, u = i, (16.4.1) becomes

∂f

∂x
(a, b) cos(0) +

∂f

∂y
(a, b) sin(0) =

∂f

∂x
(a, b)(1) +

∂f

∂y
(a, b)(0) =

∂f

∂x
(a, b).

Check (16.4.1) when θ = π

When θ = π, that is, u = −i, (16.4.1) becomes

∂f

∂x
(a, b) cos(π) +

∂f

∂y
(a, b) sin(π) =

∂f

∂x
(a, b)(−1) +

∂f

∂y
(a, b)(0) = −∂f

∂x
(a, b).

(This makes sense: If the temperature increases as you walk east, then it
decreases when you walk west.)Check (16.4.1) when θ = π

2

When θ = π
2
, that is, u = j, (16.4.1) asserts that the directional derivative

is

∂f

∂x
(a, b) cos(

π

2
) +

∂f

∂y
(a, b) sin(

π

2
) =

∂f

∂x
(a, b)(0) +

∂f

∂y
(a, b)(1) =

∂f

∂y
(a, b).
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which also is expected.

EXAMPLE 1 Compute the derivative of f(x, y) = x2y3 at (1, 2) in the di-
rection given by the angle π/3. (That is, u = cos(π/3)i+sin(π/3)j.) Interpret
the results if f describes a temperature distribution.

SOLUTION First of all,

∂f

∂x
= 2xy3 and

∂f

∂y
= 3x2y2.

Hence
∂f

∂x
(1, 2) = 16 and

∂f

∂y
(1, 2) = 12.

Second,

cos
(π

3

)
=

1

2
and sin

(π
3

)
=

√
3

2
.

Thus the derivative of f in the direction given by θ = π/3 is

16

(
1

2

)
+ 12

(√
3

2

)
= 8 + 6

√
3 ≈ 18.3923.

If x2y3 is the temperature in degrees at the point (x, y), where x and y are
measured in centimeters, then the rate at which the temperature changes at
(1, 2) in the direction given by θ = π/3, is approximately 18.4 degrees per
centimeter. �

The Gradient

Equation (16.4.1) resembles the formula for the dot product. To exploit this
similarity, it is useful to introduce the vector whose scalar components are
fx(a, b) and fy(a, b).

DEFINITION (The gradient of f(x, y).) The vector

∂f

∂x
(a, b)i +

∂f

∂y
(a, b)j

is the gradient of f at (a, b) and is denoted ∇f . (It is also called
“del f ,” because of the upside-down delta ∇.)

The del symbol is in boldface to emphasize that the gradient of f is a
vector. For instance, let f(x, y) = x2 + y2. We compute and draw ∇f at a few
points, listed in the following table:

Figure 16.4.4:

Figure 16.4.4 shows ∇f , with the tail of ∇f placed at the point where ∇f
is computed.

In vector notation, Theorem 16.4 reads as follows:
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(x, y) ∂f
∂x

= 2x ∂f
∂y

= 2y ∇f
(1, 2) 2 4 2i + 4j
(3, 0) 6 0 6i

(2,−1) 4 −2 4i− 2j

Table 16.4.1:

Theorem. Directional Derivative - Rephrased If z = f(x, y) has continuous
partial derivatives fx and fy, then at (a, b)

Duf = ∇f(a, b) · u = (fx(a, b)i + fy(a, b)j) · u.

The gradient is introduced not merely to simplify the computation of di-
rectional derivatives. Its importance is made clear in the next theorem.

A Different View of the Gradient

The gradient vector provides two important pieces of geometric information
about a function. The gradient vector, ∇f(a, b), always points in the direction
in which the function increases most rapidly from the point (a, b). In the
same way, the negative of the gradient vector, −∇f(a, b), always points in the
direction in which the function decreases most rapidly from the point (a, b).
And, the length of the gradient vector, ‖∇f(a, b)‖, is the largest directional
derivative of f at (a, b).The meaning of ‖∇f‖ and

the direction of ∇f

Theorem. Significance of ∇f Let z = f(x, y) have continuous partial deriva-
tives fx and fy. Let (a, b) be a point in the plane where ∇f is not 0. Then the
length of ∇f at (a, b) is the largest directional derivative of f at (a, b). The
direction of ∇f is the direction in which the directional derivative at (a, b) has
its largest value.

Proof

By the definition of the directional derivative, if u is a unit vector, then, at

Figure 16.4.5:

(a, b),
Duf = ∇f · u.

By the definition of the dot product

∇f · u = ‖∇f‖‖u‖ cos(α),

where α is the angle between ∇f and u, as shown in Figure 16.4.5. Since
|u| = 1,

Duf = ‖∇f‖ cos(α). (16.4.2)
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The largest value of cos(α) for 0 ≤ α ≤ π, occurs when cos(α) = 1; that
is, when α = 0. Thus, by (16.4.2), the largest directional derivative of f(x, y)
at (a, b) occurs when the direction is that of ∇f at (a, b). For that choice of
u, Duf = ‖∇f‖. This proves the theorem. •

What does this theorem tell a bug wandering around on a flat piece of
metal? If it is at the point (a, b) and wishes to get warmer as quickly as
possible, it should compute the gradient of the temperature function and then
go in the direction indicated by that gradient.

EXAMPLE 2 What is the largest direction derivative of f(x, y) = x2y3 at
(2, 3)? In what direction does this maximum directional derivative occur?
SOLUTION At the point (x, y),

∇f = 2xy3i + 3x2y2j.

Figure 16.4.6:

Thus at (2, 3),

∇f = 108i + 108j,

which is sketched in Figure 16.4.6 (not to scale). Note that its angle θ is
π/4. The maximal directional derivative of x2y3 at (2, 3) is ‖∇f‖ = 108

√
2 ≈

152.735. This is achieved at the angle θ = π/4, relative to the x-axis, that is,
for

u = cos
(π

4

)
i + sin

(π
4

)
j =

√
2

2
i +

√
2

2
j.

�
Direction of fastest decrease
is −∇fIncidentally, if f(x, y) denotes the temperature at (x, y), the gradient ∇f

helps indicate the direction in which heat flows. It tends to flow “toward the
coldest,” which boils down to the mathematical assertion, “Heat tends to flow
in the direction of −∇f .”

The gradient and directional derivative have been interpreted in terms of
a temperature distribution in the plane and a wandering bug. It is also in-
structive to interpret these concepts in terms of a hiker on the surface of a
mountain.

Consider a mountain above the xy plane. The elevation of the point on
the surface above the point x, y) will be denoted by f(x, y). The directional
derivative Duf indicates the rate at which altitude changes per unit change in

Figure 16.4.7:

horizontal distance in the direction of u. The gradient ∇f at (a, b) points in
the compass direction the hiker should choose to climb in the direction of the
steepest ascent. The length of ∇f tells the hiker the steepest slope available.
(See Figure 16.4.7.)
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Generalization to f(x, y, z)

The notions of directional derivative and gradient can be generalized with
little effort to functions of three (or more) variables. It is easiest to interpret
the directional derivative of f(x, y, z) in a particular direction in space as
indicating the rate of change of the function in that direction in space. A
useful interpretation is how fast the temperature changes in a given direction.

Let u be a unit vector in space, with direction angles α, β, and γ. Then
u = cosαi + cos βj + cos γk. We now define the derivative of f(x, y, z) in the
direction u.

DEFINITION (Directional Derivative of f(x, y, z).) The direc-
tional derivative of f at (a, b, c) in the direction of the unit vector
u = cos(α)i + cos(β)j + cos(γ)k is g′(0), where g is defined by

g(t) = f(a+ t cos(α), b+ t cos(β), c+ t cos(γ)).

It is denoted Duf .

Note that t is the measure of length along the line through (a, b, c) with
direction angles α, β, and γ. Therefore Duf is just a derivative along the
t-axis.

The proof of the following theorem for a function of three variables is like
those given earlier in this section for functions of two variables.

Theorem. Directional Derivative of f(x, y, z) If f(x, y, z) has continuous par-
tial derivatives fx, fy, and fz, then the directional derivative of f at (a, b, c)
in the direction of the unit vector u = cos(α)i + cos(β)j + cos(γ)k is

∂f

∂x
(a, b, c) cos(α) +

∂f

∂y
(a, b, c) cos(β) +

∂f

∂z
(a, b, c) cos(γ).

DEFINITION (The gradient of f(x, y, z).) The vector

∂f

∂x
(a, b, c)i +

∂f

∂y
(a, b, c)j +

∂f

∂z
(a, b, c)k

is the gradient of f at (a, b, c) and is denoted ∇f .

This theorem thus asserts that

the derivative of f(x, y, z) in the direction of the unit vector u equals the dot
product of u and the gradient of f :

Duf = ∇f · u.
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Just as in the case of a function of two variables, ∇f evaluated at (a, b, c),
points in the direction u that produces the largest directional derivative at
(a, b, c). Moreover ‖∇f‖ is that largest directional derivative. Just as in
the two variable case, the key steps in the proof of this theorem are writing
∇f · u = ‖∇f‖‖u‖ cos(∇f,u) and recalling that u is a unit vector.

EXAMPLE 3 The temperature at the point (x, y, z) in a solid piece of
metal is given by the formula f(x, y, z) = c2x+y+3z degrees. In what direction
at the point (0, 0, 0) does the temperature increase most rapidly?

SOLUTION First compute

∂f

∂x
= 2e2x+y+3z,

∂f

∂y
= e2x+y+3z,

∂f

∂z
= 3e2x+y+3z.

Then form the gradient vector:

∇f = 2e2x+y+3zi + e2x+y+3zj + 3e2x+y+3zk.

At (0, 0, 0),

∇f = 2i + j + 3k.

Consequently, the direction of most rapid increase in temperature is that given
by the vector 2i + j + 3k. The rate of increase is then

‖2i + j + 3k‖ =
√

14 degrees per unit length.

If the line through (0, 0, 0) parallel to 2i + j + 3k is given a coordinate system
so that it becomes the t-axis, with t = 0 at the origin and the positive part in
the direction of 2i + j + 3k, the df/dt =

√
14 at 0. �

The gradient was denoted ∆ by Hamilton in 1846. By 1870 it was denoted ∇,
an upside-down delta, and therefore called “atled.” In 1871 Maxwell wrote,
“The quantity ∇P is a vector. I venture, with much diffidence, to call it the
slope of P .” The name “slope” is no longer used, having been replaced by
“gradient.” “Gradient” goes back to the word “grade,” the slope of a road or
surface. The name “del” first appeared in print in 1901, in Vector Analysis, A
text-book for the use of students of mathematics and physics founded upon the
lectures of J. Willard Gibbs, by E.B. Wilson.

Calculus December 4, 2010



1312 CHAPTER 16 PARTIAL DERIVATIVES

Summary

We defined the derivative of f(x, y) at (a, b) in the direction of the unit vector u
in the xy plane and the derivative of f(x, y, z) at (a, b, c) in the direction of the
unit vector u in space. Then we introduced the gradient vector ∇f in terms
of its components and obtained the formula

Duf = ∇f · u.

By examining this formula we saw that the length and direction of ∇f at
a given point are significant:

• ∇f points in the direction u that maximizes Duf at the given point

• ‖∇f‖ is the maximum directional derivative of f at the given point.
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EXERCISES for Section 16.4 Key: R–routine, M–moderate, C–challenging

As usual, we assume that all functions mentioned have continuous partial derivatives.
In Exercises 1 and 2 compute the directional derivatives of x4y5 at (1, 1) in the
indicated directions.

1.[R] (a) i, (b) −i, (c) cos(π/4)i + sin(π/4)j
2.[R] (a) j, (b) −j, (c) cos(π/3)i + sin(π/3)j

In Exercises 3 and 4 compute the directional derivatives of x2y3 in the directions of
the given vectors.

3.[R] (a) j, (b) k, (c) −i

4.[R] (a) i+ j+k, (b) 2i− j+ 2k, (c) i+k Note: These are not unit vectors. First
construct a unit vector with the same direction.

5.[R] Assume that, at the point (2, 3), ∂f/∂x = 4 and ∂f/∂y = 5.

(a) Draw ∇f at (2, 3).

(b) What is the maximal directional derivative of f at (2, 3)?

(c) For which u is Duf at (2, 3) maximal? (Write u in the form xi + yj.)

6.[R] Assume that, at the point (1, 1), ∂f/∂x = 3 and ∂f/∂y = −3.

(a) Draw ∇f at (1, 1).

(b) What is the maximal directional derivative of f at (1, 1)?

(c) For which u is Duf at (1, 1) maximal? (Write u in the form xi + yj.)

In Exercises 7 and 8 compute and draw ∇f at the indicated points for the given
functions.

7.[R] f(x, y) = x2y at (a) (2, 5), (b) (3, 1)
8.[R] f(x, y) = 1/

√
x2 + y2 at (a) (1, 2), (b) (3, 0)

9.[R] If the maximal directional derivative of f at (a, b) is 5, what is the minimal
directional derivative there? Explain.

10.[R] For a given function f(x, y) at a given point (a, b) is there always a direction
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in which the directional derivative is 0? Explain.

11.[R] If (∂f/∂x)(a, b) = 2 and (∂f/∂t)(a, b) = 3, in what direction should a
directional derivative at (a, b) be computed in order that it be

(a) 0?

(b) as large as possible?

(c) as small as possible?

12.[R] If, at the point (a, b, c), ∂f/∂x = 2, ∂f/∂y = 3, ∂f/∂z = 4, what is the
largest directional derivative of f at (a, b, c)?

13.[R] Assume that f(1, 2) = 2 and f(0.99, 2.01) = 1.98.

(a) Which directional derivatives Duf at (1, 2) can be estimated with this infor-
mation? (Give u.)

(b) Estimate the directional derivatives in (a).

14.[R] Assume that f(1, 1, 1) = 3 and f(1.1, 1.2, 1.1) = 3.1.

(a) Which directional derivatives Duf at (1, 1, 1) can be estimated with this in-
formation? (Give u.)

(b) Estimate the directional derivatives in (a).

15.[R] When a bug crawls east, it discovers that the temperature increases at the
rate of 0.02◦ per centimeter. When it crawls north, the temperature decreases at
the rate of −0.03◦ per centimeter.

(a) If the bug crawls south, at what rate does the temperature change?

(b) If the bug crawls 30◦ north of east, at what rate does the temperature change?

(c) If the bug is happy with its temperature, in what direction should it crawl to
try to keep the temperature the same?

16.[R] A bird is very sensitive to the temperature. It notices that when it flies
in the direction i, the temperature increases at the rate of 0.03◦ per centimeter.
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When it flies in the direction j, the temperature decreases at the rate of 0.02◦ per
centimeter. When it flies in the direction k the temperature increases at the rate of
0.05◦ per centimeter. It decides to fly off in the direction of the vector (2, 5, 1). Will
it be getting warmer or colder?

17.[R] Assume that f(1, 2) = 3 and that the directional derivative of f at (1, 2) in
the direction of the (nonunit) vector i + j is 0.7. Use this information to estimate
f(1.1, 2.1).

18.[R] Assume that f(1, 1, 2) = 4 and that the directional derivative of f at (1, 1, 2)
in the direction of the vector from (1, 1, 2) to (1.01, 1.02, 1.99) is 3. Use this infor-
mation to estimate f(0.99, 0.98, 2.01).

In Exercises 19 to 24 find the directional derivative of the function in the given
direction and the maximum directional derivative.

19.[R] xyz2 at (1, 0, 1); i + j + k

20.[R] x3yz at (2, 1,−1); 2i− k

21.[R] exy sin(z) at (1, 1, π/4); i + j + +3k

22.[R] arctan(
√
x2 + y + z) at (1, 1, 1); −i

23.[R] ln(1 + xyz) at (2, 3, 1); −i + j

24.[R] xxyez
2

at (1, 1, 0); i− j + k

25.[R] Let f(x, y, z) = 2x+ 3y + z.

(a) Compute ∇f at (0, 0, 0) and at (1, 1, 1).

(b) Draw ∇f for the two points in (a), in each case putting its tail at the point.

26.[R] Let f(x, y, z) = x2 + y2 + z2.

(a) Compute ∇f at (2, 0, 0), (0, 2, 0) and (0, 0, 2).

(b) Draw ∇f for the three points in (a), in each case putting its tail at the point.

27.[M] Assume that ∇f at (a, b) is not 0. Show that there are two unit vectors u1

and u2, such that the directional derivatives of f at (a, b) in the direction of u1 and
u2 are 0.

28.[M] Assume that ∇f at (a, b, c) is not 0. How many unit vectors u are there
such that Duf = 0? Explain.
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29.[R] Let T (x, y, z) be the temperature at the point (x, y, z). Assume that ∇T at
(1, 1, 1) is 2i + 3j + 4k.

(a) Find DuT at (1, 1, 1) if u is in the direction of the vector i− j + 2k.

(b) Estimate the change in temperature as you move from the point (1, 1, 1) a
distance 0.2 in the direction of the vector i− j + 2k.

(c) Find three unit vectors u such that DuT = 0 at (1, 1, 1).

30.[R] A bug at the point (1, 2) is very sensitive to the temperature and observes
that if it moves in the direction i the temperature increases at the rate of 2◦ per
centimeter. If it moves in the direction j, the temperature decreases at the rate of
2◦ per centimeter. In what direction should it move if it wants

(a) to warm up most rapidly?

(b) to cool off most rapidly?

(c) to change the temperature as little as possible?

31.[R] Let f(x, y) = 1/
√
x2 + y2; the function f is defined everywhere except at

(0, 0). Let r = 〈x, y〉.

(a) Show that ∇f = −r/‖r‖3.

(b) Show that ‖∇f‖ = −1/‖r‖2.

32.[R] Let f(x, y, z) = 1/
√
x2 + y2 + z2, which is defined everywhere except at

(0, 0, 0). (This function is related to the potential in a gravitational field due to a
point-mass.) Let r = xi + yj + zk. Express ∇f in terms of r.

33.[R] Let f(x, y) = x2 + y2. Prove that if (a, b) is an arbitrary point on the curve
x2 + y2 = 9, then ∇f computed at (a, b) is perpendicular to the tangent line to that
curve at (a, b).

34.[R] Let f(x, y, z) equal temperature at (x, y, z). Let P = (a, b, c) and Q be a
point very near (a, b, c). Show that ∇f ·

−−→
PQ is a good estimate of the change in

temperature from point P to point Q.
SHERMAN: Exercises 28

and 35 are similar, but
different. Should (27 and)

28 be moved later, and
classified as M? Or, one

moved to the Chapter
Summary?

35.[R]
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(a) If (∂f/∂x)(a, b, c) = 2, (∂f/∂y)(a, b, c) = 3 and (∂f/∂z)(a, b, c) = 1, find three
different unit vectors u such that Duf at (a, b, c) is 0.

(b) How many unit vectors u are there such that Duf at (a, b, c) is 0?

36.[C] Let f(x, y) = xy.

(a) Draw the level curve xy = 4 carefully.

(b) Compute ∇f at three convenient points on that level curve and draw it with
its tail at the point where it is evaluated.

(c) What angle does ∇f seem to make with the curve at the point where it is
evaluated?

(d) Prove that the angle is what you think it is.

37.[M] Let (x, y) be the temperature at (x, y). Assume that ∇f at (1, 1) is 2i + 3j.
A bug is crawling northwest at the rate of 3 centimeters per second. Let g(t) be
the temperature at the point where the bug is at time t seconds. Then dg/dt is the
rate at which temperature changes on the bug’s journey (degrees per second.) Find
dg/dt when the bug is at (1, 1).

SHERMAN: There is a typo
for this exercise in V. What
coefficient do you want? I
assumed −1/c2.

38.[R] If f(P ) is the electric potential at the point P , then the electric field E at
P is given by −1/c2∇f . Calculate E if f(x, y) = sin(αx) cos(βy), where α and β
are constants.

39.[R] The equality ∂2f/∂x∂y = ∂2f/∂y∂x can be written as Di(Djf) = Dj(Dif).
Show for any two unit vectors u1 and u2 that Du2(Du1f) = Du1(Du2f). (Assume
that all partial derivatives of f of all orders are continuous.)

40.[C] Without the aid of vectors, prove that the maximum value of

g(θ) = ∂f/∂x(a, b) cos(θ) + ∂f/∂y(a, b) sin(θ)

is
√

(∂f/∂x(a, b))2 + (∂f/∂y(a, b))2. Note: This is the first part of the theorem
about the significance of the gradient, on page 1308.

41.[R] Figure 16.4.8 shows two level curves of a function f(x, y) near the point
(1, 2), namely f(x, y) = 3 and f(x, y) = 3.02. Use the diagram to estimate

(a) Dif at (1, 2),

(b) Djf at (1, 2),
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(c) Draw ∇f at (1, 2).

Figure 16.4.8:

42.[C] Why is a unit vector u in the xy-plane described by a single angle θ, but a
unit vector in space is described by three angles?

43.[M] Let f and g be two vector functions defined throughout the xy-plane. As-
sume they have the same gradient, ∇f = ∇g. Must f = g? Is there any relation
between f and g?
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16.5 Normals and Tangent Planes

In this section we first find how to obtain a normal vector to a curve given
implicitly, as a level curve f(x, y) = k. Then we find how to obtain a normal
to a surface given implicitly, as a level surface f(x, y, z) = k. With the aid of
this vector we define the tangent plane to a surface at a given point on the
surface.

Normals to a Curve in the xy Plane

We saw in Section 14.4 how to find a normal vector to a curve when the curve
is given parametrically, r = G(t). Now we will see how to find a normal when
the curve is given implicitly, as a level curve f(x, y) = k. Throughout this
section we assume that the various functions are “well behaved.” In particular,
curves have continuous tangent vectors and functions have continuous partial
derivatives.

Theorem. The gradient ∇f at (a, b) is a normal to the level curve of f passing
through (a, b).

Proof

Let G(t) = x(t)i + y(t)j be a parameterization of the level curve of f that
passes through the point (a, b). On this curve, f(x, y) is a constant and has
the value f(a, b). Let G′(t0) be the tangent vector to the curve at (a, b) and
let the gradient of f at (a, b) be ∇f(a, b) = fx(a, b, )i − fy(a, b)j. We wish to
show that

∇f ·G′(t0) = 0;

that is,
∂f

∂x
(a, b)

dx

dt
(t0) +

∂f

∂y
(a, b)

dy

dt
(t0) = 0. (16.5.1)

The left side of (16.5.1) has the form of a chain rule. To make use of this fact,
introduce the function u(t) defined as

u(t) = f(x(t), y(t)).

Note that u(t) is the value of f at a point on the level curve that passes through
(a, b). Hence u(t) = f(a, b). What is more important is that u(t) is a constant
function. Therefore, du/dt = 0.

Now, u = f(x, y), where x and y are functions of t. The chain rule asserts
that

du

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.
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Since du/dt = 0, (16.5.1) follows. Hence ∇f , evaluated at (a, b), is a normal
to the level curve of f that passes through (a, b). •

What does this theorem say about the daily weather map that shows the
barometric pressure? A level curve, or contour, shows the points where the
pressure has a prescribed value. The gradient ∇f at anyplace on such a curve
points in the direction in which the pressure increases most rapidly. So −∇f
points where the pressure is decreasing most rapidly. Since the wind tends to
go from high pressure to low pressure, we can think of −∇f as representing
the wind.

Figure 16.5.1:

Figure 16.5.1 shows a typical level curve and gradient. The gradient is
perpendicular to the level curve. Moreover, as we saw in Section 16.4, the
gradient points in the direction in which the function increases most rapidly.

EXAMPLE 1 Find and draw a normal vector to the hyperbola xy = 6 at
the point (2, 3).
SOLUTION Let f(x, y) = xy. Then fx = y and fy = x. Hence,

∇f = yi + xj.

In particular

∇f(2, 3) = 3i + 2j.

This gradient and level curve xy = 6 are shown in Figure 16.5.2. �

Figure 16.5.2:

EXAMPLE 2 Find an equation of the tangent line to the ellipse x2 +2y2 =
7 at the point (2, 1).
SOLUTION As we saw in Section 14.4, we may write the equation of a line
in the plane if we know a point on the line and a vector normal to the line.
We know that (2, 1) lies on the line. We use a gradient to produce a normal.

The ellipse x2 + 3y2 = 7 is a level curve of the function f(x, y) = x2 + 3y2.
Since fx = 2x and fy = 6y, ∇f = 2xi + 6yj. In particular

∇f(2, 1) = 4i + 6j.

Hence the tangent line at (2, 1) has an equation

4(x− 2) + 6(y − 1) = 0 or 4x+ 6y = 14.

The level curve, normal vector, and tangent line are all shown in Figure 16.5.3.
�

Figure 16.5.3:
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Normals to a Surface

We can construct a vector perpendicular to a surface f(x, y, z) = k at a given
point P = (a, b, c) as easily as we constructed a vector perpendicular to a
planar curve. It turns out that the gradient vector ∇f , evaluated at (a, b, c),
is perpendicular to the surface f(x, y, z) = k. The proof of this result is similar
to the proof for normal vectors to a level curve, given earlier in this section.

Before going on, we must state what is meant by a “vector being perpen-
dicular to a surface.”

DEFINITION (Normal vector to a surface) A vector is perpen- A vector is perpendicular to
a curve at a point (a, b, c)
on the curve if the vector is
perpendicular to a tangent
vector to the curve at
(a, b, c).

dicular to a surface at the point (a, b, c) on this surface if the vector
is perpendicular to each curve on the surface through the point
(a, b, c). Such a vector is called a normal vector.

Theorem. Normal vectors to a level surface The gradient ∇f at (a, b, c) is a
normal to the level surface of f passing through (a, b, c).

Finding a normal to the
surface f(x, y, z) = k
SHERMAN: You have a
note about using
ai + bj + ck or < a, b, c >. I
think we should use both,
but I don’t have a strong
opinion about this.

Proof

Let G(t) = x(t)i+y(t)j+z(t)k be the parameterizations of a curve in the level
surface of f that passes through the point (a, b, c). Assume G(t0) = ai+bj+ck.
Then G′(t0) is the tangent vector to the curve at the point (a, b, c) and the
gradient at (a, b, c) is

∇f =
∂f

∂x
(a, b, c)i +

∂f

∂y
(a, b, c)j +

∂f

∂z
(a, b, c)k.

We wish to show that
∇f ·G′(t0) = 0;

that is

∂f

∂x
(a, b, c)x′(t0) +

∂f

∂y
(a, b, c)y′(t0) +

∂f

∂z
(a, b, c)z′(t0) = 0. (16.5.2)

(See Figure 16.5.4.) Introduce the function u(t) defined by

Figure 16.5.4:

u(t) = f(x(t), y(t), z(t)).

By the chain rule, Once again the chain rule
comes to our aid.

du

dt

∣∣∣∣
t=t0

=
∂f

∂x
(a, b, c)x′(t0) +

∂f

∂y
(a, b, c)y′(t0) +

∂f

∂z
(a, b, c)z′(t0) = 0 (16.5.3)

However, since the curve G(t) lies on a level surface of f , u(t) is constant. [In
fact, u(t) = f(a, b, c).] Thus du/dt = 0, and the right side of (16.5.3) is 0, as
required. •
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A simple check of this result is to see whether it is correct when the level
surfaces are just planes. Consider f(x, y, z) = Ax+By + Cz +D. The plane
Ax + By + Cz + D = 0 is the level surface f(x, y, z) = 0. According to the
theorem, ∇f is perpendicular to this surface. Now, fx = A, fy = B, and
fz = C. Hence,

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k = Ai +Bj + Ck.

This agrees with the fact that Ai +Bj + Ck = 0, as we saw in Section 14.4.

EXAMPLE 3 Find a normal vector to the ellipsoid x2 + y2/4 + z2/9 = 3
at the point (1, 2, 3).
SOLUTION The ellipsoid is a level surface of the function

f(x, y, z) = x2 +
y2

4
+
z2

9
.

The gradient of f at the point (x, y, z) is

∇f = 2xi +
y

2
j +

2z

9
k.

At (1, 2, 3)
∇f = 2i + j + 2/3k.

This vector is normal to the ellipsoid at (1, 2, 3). �

Tangent Planes to a Surface

Now that we can find a normal to a surface we can define a tangent plane at
a point on the surface.

Figure 16.5.5:

DEFINITION (Tangent plane to a surface) Consider a surface
that is a level surface of a function u = f(x, y, z). Let (a, b, c) be
a point on this surface where ∇f is not 0. The tangent plane to
the surface at the point (a, b, c) is that plane through (a, b, c) that
is perpendicular to the vector ∇f evaluated at (a, b, c).

The tangent plane at (a, b, c) is the plane that best approximates the surface
near (a, b, c). It consists of all the tangent lines at (a, b, c) to curves in the
surface that pass through the point (a, b, c). See Figure 16.5.5.

Note that an equation of the tangent plane to the surface f(x, y, z) = k at
(a, b, c) is

∂f

∂x
(a, b, c)(x− a) +

∂f

∂y
(a, b, c)(y − b) +

∂f

∂z
(a, b, c)(z − c) = 0.
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EXAMPLE 4 Find an equation of the tangent plane to the ellipsoid x2 +
y2/4 + z2/9 = 3 at the point (1, 2, 3).
SOLUTION By Example 3, the vector 2i + j + 2/3k is normal to the surface
at the point (1, 2, 3). The tangent plane consequently has an equation

2(x− 1) + 1(u− 2) + 2/3(z − 3) = 0

�

Normals and Tangent Planes to z = f(x, y)

A surface may be described explicitly in the form z = f(x, y) rather than
implicitly in the form f(x, y, z) = k. The techniques already developed enable
us to find the normal and tangent plane in the case z = f(x, y) as well. Finding a normal to the

surface z = f(x, y)We need only rewrite the equation z = f(x, y) in the form z − f(x, y) = 0.
Then define g(x, y, z) to be z − f(x, y). The surface z − f(x, y) is simply
the particular level surface of g given by g(x, y, z) = 0. There is no need to
memorize an extra formula for a vector normal to the surface z = f(x, y). The
next example illustrates this advice. DOUG: I graphed z = xy,

not z = x2 = y2. What to
do? SHERMAN: I do not
see how this graph is
incorrect.

EXAMPLE 5 Find a vector perpendicular to the saddle z = y2−x2 at the
point (1, 2, 3).

SOLUTION In this case, rewrite z = y2−x2 as z+x2− y2 = 0. The surface
in question is a level surface of g(x, y, z) = z+x2−y2. Hence∇g = 2xi−2yj+k
is perpendicular to the surface at the point (1, 2, 3).

Figure 16.5.6:

This surface looks like a saddle near the origin. The surface and the normal
vector 2i− 4j + k are shown in Figure 16.5.6. �

Estimates and the Tangent Planes

In the case of a function of one variable, y = f(x), the tangent line at (a, f(a))
closely approximates the graph of y = f(x). The equation of the tangent
line y = f(a) + f ′(a)(x − a) gives us a linear approximation of f(x). (See
Section 5.3.)

We can use the tangent plane to the surface z = f(x, y) similarly. To find
the equation of the plane tangent at (a, b, f(a, b)), we first rewrite the equation
of the surface as

g(x, y, z) = f(x, y)− z = 0.

Then ∇g is a normal to the surface at (a, b, f(a, b)). Now,

∇g =
∂f

∂x
i +

∂f

∂y
j− k,
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where the partial derivatives are evaluated at (a, b).
The equation of the tangent plane at (a, b, f(a, b)) is therefore

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)− (z − f(a, b)) = 0.

We can rewrite this equation as

z = f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b). (16.5.4)

Letting ∆x = x− a and ∆y = y − b, (16.5.4) becomes

z =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y.

This tells us that the change of the z coordinate on the tangent plane, as the
x coordinate changes from a to a + ∆x and the y coordinate changes from b
to b+ ∆y is exactly

∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y.

Figure 16.5.7:

By (16.3.1) in Section 16.3, this is an estimate of the change ∆f in the
function f as its argument changes from (a, b) to (a + ∆x, b + ∆y). This is
another way of saying that “the tangent plane to the surface z = f(x, y) at
(a, b, f(a, b)) looks a lot like that surface near that point.” See Figure 16.5.7.

The expression fx(a, b) dx + fy(a, b) dy is called the differential of f at
(a, b). For small values of dx and dy it is a good estimate of ∆f = f(a +
dx, b+ dy)− f(a, b).

EXAMPLE 6 Let z = f(x, y) = x2y. Let ∆z = f(1.01, 2.02)− f(1, 2) and
let

dz =
∂f

∂x
(1, 2) · 0.0 +

∂f

∂y
(1, 2) · 0.02.

Compute ∆z and dz.
SOLUTION

∆z = (1.01)2(2.02)− 122 = 2.060602− 2 = 0.060602

Since fx = 2xy and fy = x2, we have fx = 4 and fy = 1 at (1, 2). Hence,

dz = (4)(0.01) + (1)(0.02) = 0.06.

Note that dz is a good approximation of ∆z. �
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Function Level Curve/Surface Normal Tangent
f(x, y) level curve:

f(x, y) = k
∇f = fxi + fyj Tangent line at (a, b) is

fx(a, b)(x − a) + fy(a, b)(y − b) =
f(a, b)

f(x, y, z) level surface:
f(x, y, z) = k

∇f = fxi + fyj + fzk Tangent plane at (a, b, c) is
fx(a, b, c)(x − a) + fy(a, b, c)(y −
b) + fz(a, b, c)(z − c) = f(a, b)

Table 16.5.1: t15-5-1

Summary

This table summarizes mot of what we did concerning normal vectors.
To find a normal and tangent plane to a surface given in the form z =

f(x, y), treat the surface as a level surface of the function z−f(x, y), normally
z − f(x, y) = 0.

We also showed that the differential approximation of ∆f in Section 16.3
is simply the change along the tangent plane. DOUG: Must get implicit

diff in partials somewhere??
SHERMAN: Exercises??
Maybe back in the Chain
Rule section, with a few
more exercises in this
section. Or, in §16.8.
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EXERCISES for Section 16.5 Key: R–routine, M–moderate, C–challenging

1.[R] In estimating the value of a right circular cylindrical tree trunk, a lumber
jack may make a 5 percent error in estimating the diameter and a 3 percent error in
measuring the height. How large an error may he make in estimating the volume?

2.[R] Let T denote the time it takes for a pendulum to complete a back-and-forth
swing. If the length of the pendulum is L and g the acceleration due to gravity, then

T = 2π

√
L

g
.

A 3 percent error may be made in measuring L and a 2 percent error in measuring g.
How large an error may we make in estimating T?

3.[R] Let A(x, y) = xy be the area of a rectangle of sides x and y. Compute ∆A
and dA and show them in Figure 16.5.8

Figure 16.5.8:

The differential of a function u = f(x, y, z) is defined to be fx∆x + fy∆y + fz∆z,
in analogy with the differential of a function of two variables.

4.[R] Let V (x, y, z) = xyz be the volume of a box of sides x, y, and z. Compute
∆V and dV and show them in Figure 16.5.9.

December 4, 2010 Calculus



§ 16.5 NORMALS AND TANGENT PLANES 1327

Figure 16.5.9:

5.[R] Let u = f(x, y, z) and r = G(t). Then u is a composite function of t. Show
that

du

dt
= ∇f ·G′(t),

where∇f is evaluated at G(t). For instance, let y = f(x, y, z) and let G describe the
journey of a bug. Then the rate of change in the temperature as observed by the but
is the dot product of the temperature gradient ∇f and the velocity vector v = G′.

6.[R] We have found a way to find a normal and a tangent plane to a surface. How
would you find a tangent line to a surface? Illustrate your method by finding a line
that is tangent to the surface z = xy at (2, 3, 6).

7.[R] Suppose you are at the point (a, b, c) on the level surface f(x, y, z) = k. At
that point ∇F = 2i + 3j− 4k.

(a) If u is tangent to the surface at (a, b, c), what would Duf equal?

(b) If u is normal to the level surface at (a, b, c), what would Du equal? (There
are two such normals.)

8.[R]

(a) Draw three level curves of the function f defined by f(x, y) = xy. Include the
curve through (1, 1) as one of them.

(b) Draw three level curves of the function g defined by g(x, y) = x2−y2. Include
the curve through (1, 1) as one of them.

(c) Draw three level curves of the function g defined by g(x, y) = x2−y2. Include
the curve through (1, 1) as one of them.
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(d) Prove that each level curve of f intersects each level curve of g at a right
angle.

(e) If we think of f as air pressure, how may we interpret the level curves of g?

9.[R]

(a) Draw a level curve for the function 2x2 + y2.

(b) Draw a level curve for the function y2/x.

(c) Prove that any level curve of 2x2 +y2 crosses any level curve of y2/x at a right
angle.

10.[R] The surfaces x2yz = 1 and xy + yz + zx = 3 both pass through the point
(1, 1, 1). The tangent planes to these surfaces meet in a line. Find parametric equa-
tions for this line.

11.[R] Let T (x, y, z) be the temperature at the point (x, y, z), where ∇T is not 0.
A level surface T (x, y, z)−k is called an isotherm. Show that if you are at the point
(a, b, c) and wish to move in the direction in which the temperature changes most
rapidly, you would move in a direction perpendicular to the isotherm that passes
through (a, b, c).

12.[R] Two surfaces f(x, y, z) = 0 and g(x, y, z) = 0 both pass through the point
(a, b, c). Their intersection is a curve. How would you find a tangent vector to that
curve at (a, b, c)?

13.[R] Write a short essay on the wonders of the chain rule. Include a description
of how it was used to show that Duf = ∇f · u and in showing that ∇f is a normal
to the level surface of f at the point where it is evaluated.

The angle between two surfaces that pass through (a, b, c) is defined as the angle
between the two lines through (a, b, c) that are perpendicular to the two surfaces at
the point (a, b, c). This angle is taken to be acute. Use this definition in Exercises 14
to 16.

14.[R]

(a) Show that the point (1, 1, 2) lies on the surfaces xyz = 2 and x3yz2 = 4.

(b) Find the angle between the surfaces in (a) at the point (1, 1, 2).
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15.[R]

(a) Show that the point (1, 2, 3) lies on the plane

2x+ 3y − z = 5

and the sphere
x2 + y2 + z2 = 14.

(b) Find the angle between them at the point (1, 2, 3).

16.[R]

(a) Show that the surfaces z = x2y3 and z = 2xy pass through the point (2, 1, 4).

(b) At what angle do they cross at that point?

17.[R] Let z = f(x, y) describe a surface. Assume that at (3, 5), z = 7, ∂z/∂x = 2,
and ∂z/∂y = 3.

(a) Find two vectors that are tangent to the surface at (3, 5, 7).

(b) Find a normal to the surface at (3, 5, 7).

(c) Estimate f(3.02, 4.99).

18.[R] This map shows the pressure p(x, y) in terms of level curves called isobars.
Where is the gradient of p, ∇p the longest? In what direction does it point? In
which direction (approximately) would the wind vector point?

Figure 16.5.10: Source: http://www.walltechnet.com/b_f/Weather/

USAIsobarMap.htm (18 July 2008)
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19.[M] How far is the point (2, 1, 3) from the tangent plane to z = xy at (3, 4, 12)?

20.[C] The surface x2

a2 + y2

b2
+ z2

c2
= 1 is called an ellipsoid. If a2 = b2 = c2 it is a

sphere. Show that if a2, b2, and c2 are distinct, then there are exactly six normals
on the ellipsis that pass through the origin.

21.[C] Let S be a surface with the property that its target planes are always per-
pendicular to r. Must S be a sphere?
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16.6 Critical Points and Extrema

In the case of a function of one variable, y = f(x), the first and second deriva-
tives were of use in searching for relative extrema. First, we looked for critical
numbers, that is, solutions of the equation f ′(x) = 0. Then we checked the Recall: f ′′(x) positive

means the graph of f is
concave up; f ′′(x) negative
means the graph of f is
concave down.

value of f ′′(x) at each such point. If f ′′(x) were positive, the critical number
gave a relative minimum. If f ′′(x) were negative, the critical number gave a
relative maximum. If f ′′(x) were 0, then anything might happen: a relative
minimum or maximum or neither. (For instance, at 0 the functions x4, −x4,
and x3 have both first and second derivatives equal to 0, but the first function
has a relative minimum there, the second has a relative maximum, and the
third has neither.) In such a case, we have to resort to other tests. Remember that

∂f

∂x
= fx.

The subscript notation is
used in text to save space.

This section extends the idea of a critical point to functions f(x, y) of two
variables and shows how to use the second-order partial derivatives fxx, fyy,
and fxy to see whether the critical point provides a relative maximum, relative
minimum, or neither.

Extrema of f(x, y)

The number M is called the maximum (or global maximum) of f over a
set R in the plane if it is the largest value of f(x, y) for (x, y) in R. A relative
maximum (or local maximum) of f occurs at a point (a, b) in R if there is
a disk around (a, b) such that f(a, b) ≥ f(x, y) for all points (x, y) in the disk.
Minimum and relative (or local) minimum are defined similarly.

Figure 16.6.1:

Let us look closely at the surface above a point (a, b) where a relative
maximum of f occurs. Assume that f is defined for all points within some
circle around (a, b) and possesses partial derivatives at (a, b). Let L1 be the
line y = b in the xy plane; let L2 be the line x = a in the xy plane. (See
Figure 16.6.1. Assume, for convenience, that the values of f are positive.)

Let C1 be the curve in the surface directly above the line L1. Let C2 be
the curve in the surface directly above the line L2. Let P be the point on the
surface directly above (a, b).

Since f has a relative maximum at (a, b), no point on the surface near P
is higher than P . Thus P is a highest point on the curve C1 and on the curve
C2 (for points near P ). The study of functions of one variable showed that
both these curves have horizontal tangents at P . In other words, at (a, b) both
partial derivatives of f must be 0:

∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0.

This conclusion is summarized in the following theorem.
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Theorem. Relative Extremum of f(x, y) Let f be defined on a domain that
includes the point (a, b) and all points within some circle whose center is (a, b).
If f has a relative maximum (or relative minimum) at (a, b) and fx and fy exist
at (a, b), then both these partial derivatives are 0 at (a, b); that is,

∂f

∂x
(a, b) = 0 =

∂f

∂y
(a, b),

In short, the gradient of f , ∇f is 0 at a relative extremum.

A point (a, b) where both partial derivatives fx and fy are 0 is clearly of
importance. The following definition is analogous to that of a critical point of
a function of one variable.

DEFINITION (Critical point) If fx(a, b) = 0 and fy(a, b) = 0,
the point (a, b) is a critical point of the function f(x, y).

You might expect that if (a, b) is a critical point of f and the two second
partial derivatives fxx and fyy are both positive at (a, b), then necessarily has
a relative minimum at (a, b). The next example shows that the situation is
not that simple.

EXAMPLE 1 Find the critical points of f(x, y) = x2 + 3xy + y2 and
determine whether there is an extremum there.

SOLUTION First, find any critical points by setting both fx and fy equal
to 0. This gives the simultaneous equations

2x+ 3y = 0 and 3x+ 2y = 0.

Since the only solution of these equations is (x, y) = (0, 0), the function has
one critical point, namely (0, 0).

Now look at the graph of f for (x, y) near (0, 0).
First, consider how f behaves for points on the x axis. We have f(x, 0) =

x2 + 3 · x · 0 + 02 = x2. Therefore, considered only as a function of x, the
function has a minimum at the origin. (See Figure 16.6.2(a).)

On the y-axis, the function reduces to f(0, y) = y2, whose graph is another
parabola with a minimum at the origin. (See Figure 16.6.2(b).) Note also that
fxx = 2 and fyy = 2, so both are positive at (0, 0).

So far, the evidence suggests that f has a relative minimum at (0, 0). How-
ever, consider its behavior on the line y = −x. For points (x, y) on this line

f(x, y) = f(x,−x) = x2 + 2x(−x) + (−x)2 = −x2.

On this line the function assumes negative values, and its graph is a parabola
opening downward, as shown in Figure 16.6.2(c).
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(a) (b) (c)

Figure 16.6.2:

Thus f(x, y) has neither a relative maximum nor minimum at the origin.
Its graph resembles a saddle. �

Example 1 shows that to determine whether a critical point of f(x, y)
provides an extremum, it is not enough to look at fxx and fyy The criteria fxx and fyy describe the

behavior of f(x, y) only on
lines parallel to the x-axis
and y-axis, respectively.

are more complicated and involve the mixed partial derivative fxy as well.
Exercise 58 outlines a proof of the following theorem. At the end of this
section a proof is presented in the special case when f(x, y) is a polynomial of
the form Ax2 +Bxy + Cy2, where A, B and C are constants.

Theorem 16.6.1. Second-partial-derivative test for f(x, y) Let (a, b) be a crit-
ical point of the function f(x, y). Assume that the partial derivatives fx, fy,
fxx, fxy, and fyy are continuous at and near (a, b). Let In subscript notation,

D = fxxfyy − (fxy)2.

D =
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

.

1. If D > 0 and fxx(a, b) > 0, then f has a relative minimum at (a, b).

2. If D > 0 and fxx(a, b) < 0, then f has a relative maximum at (a, b).

3. If D < 0, then f has neither a relative minimum nor a relative maximum
at (a, b). (There is a saddle point at (a, b).)

If D = 0, then anything can happen; there may be a relative minimum,
a relative maximum, or a saddle. These possibilities are illustrated in Exer-
cise 43.

To see what the theorem says, consider case 1, the test for a relative mini-
mum. It says that fxx(a, b) > 0) (which is to be expected) and that

∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

> 0,
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Or equivalently, (
∂2f

∂x∂y
(a, b)

)2

<
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b). (16.6.1)

Memory aid regarding size
of fxy Since the square of a real number is never negative, and fxx(a, b) is positive,

it follows that fyy(a, b) > 0, which was to be expected. But inequality (16.6.1)
says more. It says that the mixed partial fxy(a, b) must not be too large. For
a relative maximum or minimum, inequality (16.6.1) must hold. This may be
easier to remember than “D > 0.”

EXAMPLE 2 Examine each of these functions for relative extrema:

1. f(x, y) = x2 + 3xy + y2,

2. g(x, y) = x2 + 2xy + y2,

3. h(x, y) = x2 + xy + y2.

SOLUTION

1. The case f(x, y) = x2 + 3xy + y2 is Example 1. The origin is the only
critical point, and it provides neither a relative maximum nor a relative
minimum. We can check this by the use of the discriminant. We have

∂2f

∂x2
(0, 0) = 2,

∂2f

∂x∂y
(0, 0) = 3, and

∂2f

∂y2
(0, 0) = 2.

Hence D = 2 · 2− 32 = −5 is negative. By the second-partial-derivative
test, there is neither a relative maximum nor a relative minimum at the
origin. Instead, there is a saddle there.

2. It is straightforward matter to show that all the points on the line x+y =
0 are critical points of g(x, y) = x2 + 2xy + y2. Moreover,

∂2g

∂x2
(x, y) = 2,

∂2g

∂x∂y
(x, y) = 2, and

∂2g

∂y2
(x, y) = 2.

Thus the discriminant D = 2 · 2− 22 = 0. Since D = 0, the discriminant
gives no information.

Note, however, that x2 + 2xy + y2 = (x + y)2 and so, being the square
of a real number, is always greater than or equal to 0. Hence the origin
provides a relative minimum of x2 + 2xy+ y2. (In fact, any point on the
line x+ y = 0 provides a relative minimum. Since g(x, y) = (x+ y)2, the
function is constant on each line x+y = c, for any choice of the constant
c. See Figure 16.6.3.)

Figure 16.6.3:
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3. For h(x, y) = x2 + xy+ y2, again the origin is the only critical point and
we have

∂2h

∂x2
(0, 0) = 2,

∂2h

∂x∂y
(0, 0) = 1, and

∂2h

∂y2
(0, 0) = 2.

In this case, D = 2 · 2 − 12 = 3 is positive and hxx(0, 0) > 0. Hence
x2 + xy + y2 has a relative minimum at the origin.

The graph of h is shown in Figure 16.6.4

Figure 16.6.4:

�

EXAMPLE 3 Examine f(x, y) = x + y + 1/(xy) for global and relative
extrema.

SOLUTION When x and y are both large positive numbers or small positive
numbers, then F (x, y) may be arbitrarily large. There is therefore no global
maximum. By allowing x and y to be negative numbers of large absolute
values, we see that there is no global minimum. Function has no global

extrema.Any local extrema will occur at a critical point. We have

∂f

∂x
= 1− 1

x2y
and

∂f

∂y
= 1− 1

xy2
.

Setting these derivatives equal to 0 gives

1

x2y
= 1 and

1

xy2
= 1 (16.6.2)

Hence x2y = xy2. Since the function f is not defined when x or y is 0, we
may assume xy 6= 0. Dividing both sides of x2y = xy2 by xy gives x = y.
By (16.6.2) (either equation), 1/x3 = 1; hence x = 1. Thus there is only one
critical point, namely, (1, 1).

To find whether it is a relative extremum, use Theorem 16.6.1. We have

∂2f

∂x2
=

2

x3y
,

∂2f

∂x∂y
=

1

x2y2
, and

∂2f

∂y2
=

2

xy3
.

Thus at (1, 1),

∂2f

∂x2
= 2,

∂2f

∂x∂y
= 1, and

∂2f

∂y2
= 2.

Therefore,
D = 2 · 2− 12 = 3 > 0.

Since D > 0 and fxx)(1, 1) > 0, the point (1, 1) provides a relative mini-
mum. �
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Extrema on a Bounded Region

In Section 4.3, we saw how to find a maximum of a differentiable function,
y = f(x), on an interval [a, b]. The procedure is as follows:

1. First find any numbers x in [a, b] (other than a or b) where f ′(x) =
0. Such a number is called a critical number. If there are no critical
numbers, the maximum occurs at a or b.

2. If there are critical numbers, evaluate f at them. Also find the values of
f(a) and f(b). The maximum of f in [a, b] is the largest of the numbers:
f(a), f(b), and the values of f at critical numbers.

Figure 16.6.5:

We can similarly find the maximum of F (x, y) in a region R in the plane
bounded by some polygon or curve. (See Figure 16.5.7.) It is assumed that R
includes its border and is a finite region in the sense that it lies within some
disk. (In advanced calculus, it is proved that a continuous function defined on
such a domain has a maximum – and a minimum – value.) If f has continuous
partial derivatives, the procedure for finding a maximum is similar to that for
maximizing a function on a closed interval.

1. First find any points that are in R but not on the boundary of R where
both fx and fy are 0. These are called critical points. (if there are no
critical points, the maximum occurs on the boundary.)

2. If there are critical points, evaluate f at them. Also find the maximum
of f on the boundary. The maximum of f on R is the largest value of f
on the boundary and at critical points.

A similar procedure finds the minimum value on a bounded region.

EXAMPLE 4 Maximize the function f(x, y) = xy(108−2x−2y) = 108xy−
2x2y − 2xy2 on the triangle R bounded by the x-axis, the y-axis, and the line
x+ y = 54. (See Figure 16.6.6.)

Figure 16.6.6:

SOLUTION First find any critical points. We haveFind all critical points.

∂f

∂x
(x, y) = 108y − 4xy − 2y2 = 0 (16.6.3)

∂f

∂y
(x, y) = 108x− 2x2 − 4xy = 0 (16.6.4)

which give the simultaneous equations

2y(54− 2x− y) = 0, (16.6.5)

2x(54− x− 2y) = 0. (16.6.6)
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By the first equation, y = 54−2x. Substitution of this into the second equation
gives: 54− x− 2(54− 2x) = 0, or −54 + 3x = 0. Hence x = 18 and therefore
y = 54− 2 · 18 = 18.

The point (18, 18) lies in the interior of R, since it lies above the x-axis, Evaluate f at critical points.

to the right of the y-axis, and below the line x + y = 54. Furthermore,
f(18, 18) = 18 · 18(108− 2 · 18− 2 · 18) = 11, 664.

Next we examine the function f(x, y) = xy(108−2x−2y) on the boundary Evaluate f on boundary.

of the triangle R. On the base of R, y = 0, so f(x, y) = 0. On the left edge of
R, x = 0, so again f(x, y) = 0. On the slanted edge, which lies on the same
line x + y = 54, we have 108 − 2x − 2y = 0, so f(x, y) = 0 on this edge also.
Thus f(x, y) = 0 on the entire boundary.

Therefore, the local maximum occurs at the critical point (18, 18) and has
the value 11, 664. �

EXAMPLE 5 The combined length and girth (distance around) of a pack-
age sent through the mail cannot exceed 108 inches. If the package is a rect-
angle box, how large can its volume be?

SOLUTION Introduce letters to name the quantities of interest. We label

Figure 16.6.7:

its length (a longest side) z and the other sides x and y, as in Figure 16.6.7.
The volume V = xyz is to be maximized, subject to girth plus length at most
108, that is,

2x+ 2y + z ≤ 108.

Since we want the largest box, we might as well restrict our attention to boxes
for which

2x+ 2y + z = 108. (16.6.7)

By (16.6.7), z = 108− 2x− 2y. Thus V = xyz can be expressed as a function
of two variables:

V = f(x, y) = xy(108− 2x− 2y).

This function is to be maximized on the triangle described by x ≥ 0, y ≥ 0, Why is 2x+ 2y ≤ 108?

2x+ 2y ≤ 108, that is, x+ y ≤ 54.
These are the same function and region as in the previous example. Hence,

the largest box has x = y = 18 and z = 108−2x−2y = 108−2·18−2·18 = 36;
its dimensions are 18 inches by 18 inches by 36 inches and its volume is 11, 664
cubic inches. �

Remark: In Example 5 we let z be the length of a longest side, an
assumption that was never used. So if the Postal Service regula-
tions read “The length of one edge plus the girth around the other
edges shall not exceed 108 inches,” the effect would be the same.
You would not be able to send a larger box by, say, measuring the
girth around the base formed by its largest edges.
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EXAMPLE 6 Find the maximum and minimum values of f(x, y) = x2 +
y2 − 2x− 4y on the disk R of radius 3 and center (0, 0).

SOLUTION First, find any critical points. We have

∂f

∂x
= 2x− 2 and

∂f

∂y
= 2y = 4.

The equations

2x− 2 = 0

2y − 4 = 0

have the solutions x = 1 and y − 2. This point lies in R (since its distance
from the origin is

√
12 + 22 =

√
5, which is less than 3). At the critical point

(1, 2), the value of the function is 12 + 22 − 2(1)− 4(2) = 5− 2− 8 = −5.
Second, find the behavior of f on the boundary, which is a circle of radius

3. We parameterize this circle:

x = 3 cos(θ)

y = 3 sin(θ).

On this circle,

f(x, y) = x2 + y2 − 2x− 4y

= (3 cos(θ))2 + (3 sin(θ))2 − 2(3 cos(θ))− 4(3 sin(θ))

= 9 cos2(θ) + 9 sin2(θ)− 6 cos(θ)− 12 sin(θ)

= 9− 6 cos(θ)− 12 sin(θ).

We now must find the maximum and minimum of the single-variable func-
tion g(θ) = 9− 6 cos(θ)− 12 sin(θ) for θ in [0, 2π].

To do this, find g′(θ):

g′(θ) = 6 sin θ − 12 cos θ.

Setting g′(θ) = 0 gives

0 = 6 sin(θ)− 12 cos(θ)

or
sin(θ) = 2 cos(θ). (16.6.8)

Why is cos(θ) not 0?

To solve (16.6.8), divide by cos(θ) (which will not be 0), getting

sin(θ)

cos(θ)
= 2
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or
tan(θ) = 2.

There are two angles θ in [0, 2π] such that tan(θ) = 2. One is in the first
quadrant, θ = arctan(2), and the other is in the third quadrant, π+arctan(2).
To evaluate g(θ) = 9 − 6 cos(θ) − 12 sin(θ) at these angles, we must compute
their cosine and sine. The right triangle in Figure 16.6.8 helps us do this.

Figure 16.6.8:

Inspection of Figure 16.6.8 shows that for θ = arctan(2),

cos(θ) =
1√
5

and sin(θ) =
2√
5
.

For this angle

g(arctan(2)) = 9− 6

(
1√
5

)
− 12

(
2√
5

)
= 9− 30√

5
≈ −4.41641.

When θ = π + arctan(2),

cos(θ) =
−1√

5
and sin(θ) =

−2√
5
.

So

g(π + arctan(2)) = 9− 6

(
−1√

5

)
− 12

(
−2√

5

)
= 9 +

30√
5
≈ 22.41641.

Since g(2π) = g(0) = 9−6(1)−12(0) = 3, the maximum of f on the border
of R is about 22.41641 and the minimum is about −4.41641. (Recall that at
the critical point the value of f is −5.)

We conclude that the maximum value of f on R is about 22.41641 and the
minimum value is −5 (and it occurs at the point (1, 2), which is not on the
boundar)]. See Figure 16.6.9. �

Figure 16.6.9:

Proof of Theorem 16.6.1 in a Special Case

We will prove Theorem 16.6.1 in case f(x, y) is a second-degree polynomial of
the form

f(x, y) = Ax2 +Bxy + Cy2.

Theorem 16.6.2. Let f(x, y) = Ax2 + Bxy + Cy2, where A, B, and C are
constants. Then (0, 0) is a critical point. Let

D =
∂2f

∂x2
(0, 0)

∂2f

∂y2
(0, 0)−

(
∂2f

∂x∂y
(0, 0)

)2

.
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1. If D > 0 and fxx(0, 0) > 0, then f has a relative minimum at (0, 0).

2. If D > 0 and fxx(0, 0) < 0, then f has a relative maximum at (0, 0).

3. If D < 0, then f has neither a relative minimum nor a relative maximum
at (0, 0).

Proof

We prove Case 1, leaving Cases 2 and 3 for Exercises 60 and 61.
First, compute the first- and second-order partial derivatives of f :

∂f

∂x
= 2Ax+By,

∂f

∂y
= Bx+ 2Cy,

∂2f

∂x2
= 2A,

∂2f

∂x∂y
= B,

∂2f

∂y2
= 2C.

Note that both fx and fy are 0 at (0, 0). Hence (0, 0) is a critical point and
f(0, 0) = 0. We must show that f(x, y) ≥ 0 for (x, y) near (0, 0). [In fact we
will show that f(x, y) ≥ 0 for all (x, y).]

Next, expressing Case 1 in terms of A, B, and C, we have

D = fxx(0, 0)fyy(0, 0)− f 2
xy(0, 0) = (2A)(2C)−B2 = 4AC −B2 > 0.

and fxx(0, 0) = 2A > 0. In short, we are assuming that 4AC − B2 > 0 and
A > 0, and want to deduce that f(x, y) = Ax2 + Bxy + Cy2 ≥ 0, for (x, y)
near (0, 0).

Since A is positive, this amounts to showing that

A(Ax2 +Bxy + Cy2) ≥ 0. (16.6.9)
We multiply by A to

simplify completing the
square on the next step.

Now we complete the square,

A(Ax2 +Bxy + Cy2) = A2x2 + ABxy + ACy2

= A2x2 + ABxy +
B2

4
y2 − B2

4
y2 + ACy2

= (Ax+
B

2
y)2 + (AC − B2

4
)y2

= (Ax+
B

2
y)2 + (

4AC −B2

4
)y2.

Now,
(
Ax+ B

2
y
)2 ≥ 0 and y2 ≥ 0 since they are squares of real numbers.

But by our assumption on D, 4AC − B2 is positive. Thus (16.6.9) holds for
all (x, y), not just for (x, y) near (0, 0) varies Case 1 of the theorem is proved.
•
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Summary

We defined a critical point of f(x, y) as a point where both partial derivatives
fx and fy are 0. Even if fxx and fyy are negative there, such a point need not
provide a relative maximum. We must also know that fxy is not too large in
absolute value.

• If fxx < 0 and f 2
xy < fxxfyy, then there is indeed a relative maximum at

the critical point. (Note that the two inequalities imply fyy < 0.)

• Similar criteria hold for a relative maximum: if fxx > 0 and f 2
xy < fxxFyy,

then this critical point is a relative minimum.

• The critical point is a saddle point when fxy > fxxfyy.

• When f 2
xy = fxxfyy, the critical point may be a relative maximum, rela-

tive minimum, or neither.

We also saw how to find extrema of a function defined on a bounded region.
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EXERCISES for Section 16.6 Key: R–routine, M–moderate, C–challenging

DM: Are there some more
varied realistic exercises?

SHERMAN: Have you had
complaints about these
problems in your earlier

books? We can look, but I
don’t believe it’s too critical

to be creative here.

Use Theorems 16.6 and 16.6.1 to determine any relative maxima or minima of the
functions in Exercises 1 to 10.

1.[R] x2 + 3xy + y2

2.[R] f(x, y) = x2 − y2

3.[R] f(x, y) = x2 − 2xy + 2y2 + 4x
4.[R] f(x, y) = x4 + 8x2 + y2 − 4y
5.[R] f(x, y) = x2 − xy + y2

6.[R] f(x, y) = x2 + 2xy + 2y2 + 4x
7.[R] f(x, y) = 2x2 + 2xy + 5y2 + 4x
8.[R] f(x, y) = −4x2 − xy − 3y2

9.[R] f(x, y) = 4/x+ 2/y + xy

10.[R] f(x, y) = x3 − y3 + 3xy

Let f by a function of x and y such that at (a, b) both fx and fy equal 0. In each of
Exercises 11 to 16. values are specified for fxx, fxy, and fyy at (a, b). Assume that
all these partial derivatives are continuous. On the basis of the given information
decides whether

1. f has a relative maximum at (a, b),

2. f has a relative minimum at (a, b),

3. f has a saddle point at (a, b),

4. there is inadequate information.

11.[R] fxy = 4, fxx = 2, fyy = 8
12.[R] fxy = −3, fxx = 2, fyy = 4
13.[R] fxy = 3, fxx = 2, fyy = 4
14.[R] fxy = 2, fxx = 3, fyy = 4
15.[R] fxy = −2, fxx = −3, fyy = −4
16.[R] fxy = −2, fxx = 3, fyy = −4

In Exercises 17 to 24 find the critical points and the relative extrema of the given
functions.

17.[R] x+ y − 1
xy

18.[R] 3xy − x3 − y3

19.[R] 12xy − x3 − y3
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20.[R] 6xy − x2y − xy2

21.[R] exp(x3 + y3)
22.[R] 2xy

23.[R] 3x+ xy + x2y − 2y
24.[R] x+ y + 8

xy

25.[R] Find the dimensions of the open rectangular box of volume 1 of smallest
surface area. Use Theorem 16.6.1 as a check that the critical point provides a min-
imum.

26.[R] The material for the top and bottom of a rectangular box costs 3 cents
per square foot, and that for the sides 2 cents per square foot. What is the least
expensive box that has a volume of 1 cubic foot? Use Theorem 16.6.1 as a check
that the critical point provides a minimum.

27.[R] UPS ships packages whose combined length and girth is at most 165 inches
(and weighs at most 150 pounds).

(a) What are the dimensions of the package with the largest volume that it ships?

(b) What are the dimensions of the package with maximum surface are that UPS
will ship?

28.[R] Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3), and P4 = (x4, y4). Find the
coordinates of the point P that minimizes the sum of the squares of the distances
from P to the four points.

29.[R] Find the dimensions of the rectangle box of largest volume if its total surface
area is to be 12 square meters.

30.[R] Three nonnegative numbers x, y, and z have the sum 1.

(a) How small can x2 + y2 + z2 be?

(b) How large can it be?

31.[R] Each year a firm can produce r radios and t television sets at a cost of
2r2 + rt+ 2t2 dollars. It sells a radio for $600 and a television set for $900.

(a) What is the profit from the sale of r radios and t television sets? Note: Profit
is revenue less the cost.
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(b) Find the combination of r and t that maximizes profit. Use the discriminant
as a check.

32.[R] Find the dimensions of the rectangular box of largest volume that can be
inscribed in a sphere of radius 1.

33.[R] For which values of the constant k does x2 + kxy + 3y2 have a relative
minimum at (0, 0)?

34.[R] For which values of the constant k does the function kx2 + 5xy + 4y2 have
a relative minimum at (0, 0)?

35.[R] Let f(x, y) = (2x2 + y2)e−x
2−y2 .

(a) Find all critical points of f .

(b) Examine the behavior of f when x2 + y2 is large.

(c) What is the minimum value of f?

(d) What is the maximum value of f?

36.[R] Find the maximum and minimum values of the function in Exercise 35 on
the circle

(a) x2 + y2 = 1,

(b) x2 + y2 = 4.

Hint: Express the function in terms of θ.

37.[R] Find the maximum value of f(x, y) = 3x2 − 4y2 + 2xy for points (x, y) in
the square region whose vertices are (0, 0), (0, 1), (1, 0), and (1, 1).

38.[R] Find the maximum value of f(x, y) = xy for points (x, y) in the triangular
region whose vertices are (0, 0), (1, 0), and (0, 1).

39.[R] Maximize the function −x+ 3y + 6 on the quadrilateral whose vertices are
(1, 1), (4, 2), (0, 3), and (5, 6).

40.[M]

(a) Show that z = x2 − y2 + 2xy has no maximum and no minimum.
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(b) Find the minimum and maximum of z if we consider only (x, y) on the circle
of radius 1 and center (0, 0), that is all (x, y) such that x2 + y2 = 1.

(c) Find the minimum and maximum of z if we consider all (x, y) in the disk of
radius 1 and center (0, 0), that is, all (x, y) such that x2 + y2 ≤ 1.

41.[M] Suppose z is a function of x and y with continuous second partial deriva-
tives. If, at the point (x0, y0), zx = 0 = zy, zxx = 3, and zyy = 12, for what values
of zxy is it certain that z has a relative minimum at (x0, y0)?

42.[M] Let U(x, y, z) = x1/2y1/3z1/6 be the “utility” or “desirability” to a given
consumer of the amounts x, y, and z of three different commodities. Their prices
are, respectively, 2 dollars, 1 dollar, and 5 dollars, and the consumer has 60 dollars
to spend. How much of each product should he buy to maximize the utility?

43.[M] This exercise shows that if the discriminant D is 0, then any of the three
outcomes mentioned in Theorem 16.6.1 are possible.

(a) Let f(x, y) = x2 + 2xy+ y2. Show that at (0, 0) both fx and fy are 0, fxx and
fyy are positive, D = 0, and f has a relative minimum.

(b) Let f(x, y) = x2 + 2xy + y2 − x4 Show that at (0, 0) both fx and fy are 0,
fxx and fyy are positive, D = 0, and f has neither a relative maximum nor a
relative minimum at (0, 0).

(c) Give an example of a function f(x, y) for which (0, 0 is a critical point and
D = 0 there, but f has a relative maximum at (0, 0).

44.[M] Let f(x, y) = ax + by + c, for constants a, b, and c. Let R be a polygon
in the xy plane. Show that the maximum and minimum values of f(x, y) on R are
assumed only at vertices of the polygon.

45.[M] Two rectangles are placed in the triangle whose vertices are (0, 0), (1, 1),
and (−1, 1) as shown in Figure 16.6.10(a). SHERMAN:I modified your

picture in (b), some. OK? I
didn’t think it was so bad;
see my answer.

(a) (b)

Figure 16.6.10:
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Show that they can fill as much as 2/3 of the area of the triangle.

46.[M] Two rectangles are placed in the parabola y = x2 as shown in Fig-
ure 16.6.10(b). How large can their total area be?

47.[M] Let P0 = (a, b, c) be a point not on the surface f(x, y, z) = 0. Let P be the
point on the surface nearest P0. Show that

−−→
PP0 is perpendicular to the surface at P .

Hint: Show it is perpendicular to each curve on the surface that passes through P .

48.[C] Let (x1, y1), (x2, y2), . . . , (xn, yn) be n points in the plane. Statisticians
define the line of regression as the line that minimizes the sum of the squares of
the differences between yi and the ordinates of the line at xi. (See Figure 16.6.11.)
Let the typical line in the plane have the equation y = mx+ b.

(a) Show that the line of regression minimizes the sum
∑n

i=1 (yi − (mxi + b))2

considered as a function of m and b.

(b) Let f(m, b) =
∑n

i=1 (yi − (mxi + b))2. Compute fm and fb.

(c) Show that when fm = 0 = fbb, we have

m

n∑
i=1

x2
i + b

n∑
i=1

x1 =
n∑
i=1

xiyi

and

m

n∑
i=1

xi + nb =
n∑
i=1

yi.

(d) When do the simultaneous equations in (c) have a unique solution for m and
b?

(e) Find the regression line for the points (1, 1), (2, 3), and (3, 5).
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Figure 16.6.11:
49.[C] If your calculator is programmed to compute lines of regression, find and
draw the line of regression for the points (1, 1), (2, 1.5), (3, 3), (4, 2) and (5, 3.5).

50.[C] Let f(x, y) = (y − x2)(y − 2x2).

(a) Show that f has neither a local minimum nor a local maximum at (0, 0)

(b) Show that f has a local minimum at (0, 0) when considered only on any fixed
line through (0, 0).

Suggestion for (b): Graph y = x2 and y = 2x2 and show where f(x, y) is positive
and where it is negative.

51.[C] Find (a) the minimum value of xyz, and (b) the maximum value of xyz, for
all triplets of nonnegative real numbers x, y, z such that x+ y + z = 1.

52.[C]

(a) Deduce from Exercise 51 that for any three nonegative numbers a, b, and c,
3
√
abc ≤ (a+ b+ c)/3. Note: This exercise asserts that the “geometric mean”

of three numbers is not larger than their ‘arithmetic mean”.

(b) Obtain a corresponding result for four numbers.

53.[C] Prove case 2 of Theorem 16.6.2.

54.[C] Prove case 3 of Theorem 16.6.2.

55.[C] The three dimensions of a box are x, y, and z. The girth plus length are at
most 165 inches. If you are free to choose which dimension is the length, which would
you choose if you wanted to maximize the volume of the box? Assume x < y < z.

56.[C] A surface is called closed when it is the boundary of a region R, as a balloon
surrounds the air within it. A surface is called smooth when it has a continuous
outward unit normal vector at each point of the surface. Let S be a smooth closed
surface. Show that for any point P0 in R, there are at least two points on S such
that

−−→
P0P is normal to S. Note: It is conjectured that if P0 is the centroid of R,

then there are at least four points on S such that P0P is normal to S.

57.[C] Find the point P on the plane Ax + By + Cz + D = 0 nearest the point
P0 = (x0, y0, z0), which is not on that plane.
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(a) Find P by calculus.

(b) Find P by using the algebra of vectors. (Why is
−−→
P0P perpendicular to the

plane?)

58.[C] This exercise outlines the proof of Theorem 16.6.2 in the case fxx(a, b) >
0 and fxx(a, b)fyy(a, b) − fxy2(a, b) > 0. Assuming that fxx, fyy, and fxy are
continuous, we know by the permanence principle that fxx and fxxfyy−fx2y remain
positive throughout some disk R whose center is (a, b). The following steps show
that f has a minimum (a, b) on each line L through (a, b). Let u = cos(θ) + sin(θ)
be a unit vector. Show that Du(Duf) is positive throughout the part of L that lies
in the dark.

(a) Show that Duf(a, b) = 0.

(b) Show that Du(Duf) = fxx cos2(θ) + 2fxy sin(θ) cos(θ) + fyy sin2(θ) .

(c) Show that fxxDu(Duf) = (fxxcos(θ) + fxy sin(θ))2 + (fxxfyy − f2
xy) sin2(θ) .

(d) Deduce from (b) that f is concave up as the part of each line through (a, b)
inside the disk R.

(e) Deduce that f has a relative minimum at (a, b).

59.[C] Let f(x) have period 2π and let

S(x) =
a0

2
+
∞∑
k=1

ak cos(kx) +
∞∑
k=1

bk sin(kx)

be the series that minimizes the integral

π∫
−π

(f(x)− S(x))2 dx. (16.6.10)

Show that S(x) is the Fourier series associated with f(x). Note: You may assume
that in this case you may “differentiate past the integral sign,” that is

∂

∂y

b∫
a

g(x, y) dx =

b∫
a

∂g

∂y
dx.

The quantity in (16.6.10) measures the total squared error between S(x) and f(x)
over the interval [−π, π].
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60.[C] Prove Case 2 of Theorem 16.6.2.

61.[C] Prove Case 3 of Theorem 16.6.2.
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16.7 Lagrange Multipliers

Another method of finding maxima or minima of a function is due to Joseph
Louis LaGrange (1736–1813). It makes use of the fact that a gradient of aSee http://en.

wikipedia.org/wiki/
Joseph_Louis_Lagrange.

function is perpendicular to the level curves (or level surfaces) of that function.

The Essence of the Method

Figure 16.7.1:

We introduce the technique by considering the simplest case. Imagine that
you want to find a maxima or a minima of f(x, y) for points (x, y) on the line
L that has the equation g(x, y) = C. See Figure 16.7.1.

Figure 16.7.2:

Imagine that f(x, y), for points on L has a maximum or minimum at the
point (a, b). Let ∇f be the gradient of f evaluated at (a, b). What can we say
about the direction of ∇f? (See Figure 16.7.2

Assume that ∇f is not perpendicular to L. Let u be a unit vector parallel
to L. Then Duf = (∇f)·u is not 0. If Duf is positive then f(x, y) is increasing
in the direction u, which is along L. In the direction −u, f(x, y) is decreasing.
Therefore the point (a, b) could not provide either a maximum or a minimum
of f(x, y) for point (x, y) on L. That means ∇f must be perpendicular to L.
But ∇g is perpendicular to L, since g(x, y) = C is a level curve of g. Since
∇f and ∇g are parallel there must be a scalar λ such that

∇f = λ∇g (16.7.1)

The scalar λ is called a Lagrange multiplier.λ, lambda, Greek letter L.

EXAMPLE 1 Find the minimum of x2y2 on the line x+ y = 2.
SOLUTION Since x2 +2y2 increases without bound in both directions along
the line it must have a minimum somewhere.

Here f(x, y) = x2 + 2y2 and g(x, y) = x+ y so

∇f = 2xi + 4yj and ∇g = i + j

At the minimum, the gradients of f and g must be parallel. That is, there is
a scalar λ such that

∇f = λ∇g,

This means

2xi + 4yj = λ(i + j). (16.7.2)

This single vector equation leads to the 2 equations{
2x = λ equating i components
4y = λ equating j components

(16.7.3)
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But we also have the constraint,

x+ y = 2 (16.7.4)

From (16.7.3), 2x = 4y or x = 2y. Substituting this into (16.7.4) gives 2y+y =

2 or y = 2/3, hence x = 2y = 4/3. The minimum is f
(

4
3
, 2

3

)
=
(

4
3

)2
+
(

2
3

)2
= 20

9
.

There is no need to find λ its there just to help us compute. Its task, done, it
gracefully departs. �

The General Method

Let us see why Lagrange’s method works when the constraint not a line, but
a curve. Consider this problem:

Figure 16.7.3:

Maximize or minimize u = f(x, y), given the constraint g(x, y) = k.

The graph of g(x, y) = k is in general a curve C, as shown in Figure 16.7.3.
Assume that f , considered only on points of C, takes a maximum (or minimum)
value at the point P0. Let C be parameterized by the vector function G(t) =

x(t)i + y(t)j. Let G(t0) =
−−→
OP0. Then u is a function of t:

u = f(x(t), y(t)),

and, as shown in the proof of Theorem 16.5 of Section 16.5,

du

dt
= ∇f ·G′(t0). (16.7.5)

Since f , considered only on C, has a maximum at G(t0),

du

dt
= 0 at t = 0.

Thus, by (16.7.5),

∇f ·G′(t0) = 0.

Figure 16.7.4:

This means that ∇f is perpendicular to G′(t0) at P0. But ∇g, evaluated at
P0, is also perpendicular to G′(t0), since the gradient ∇g is perpendicular to
the level curve g(x, y) = 0. (We assume that ∇g is not 0.) (See Figure 16.7.4.)
Thus

∇f is parallel to ∇g.
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In other words, there is a scalar λ such that ∇f = λ∇g.

EXAMPLE 2 Maximize the function x2y for points (x, y) on the unit circle
x2 + y2 = 1.

SOLUTION We wish to maximize f(x, y) = x2y for points on the circle
g(x, y) = x2 + y2 = 1. Then

∇f = ∇(x2y) = 2xyi + x2j

and
∇g = ∇(x2 + y2) = 2xi + 2yj

At an extreme point of f , ∇f = λ∇g for some scalar λ. This gives us two
scalar equations:

2xy = λ(2x) i component (16.7.6)

x2 = λ(2y) j component (16.7.7)

The third equation is the constraint,

x2 + y2 = 1. (16.7.8)

Since the maximum does not occur when x = 0, we may assume x is not 0.
Dividing both sides of (16.7.6) by x, we get 2y = 2λ or y = λ. Thus (16.7.7)
becomes

x2 = 2y2. (16.7.9)

Combining this with (16.7.8), we have

2y2 + y2 = 1

or

y2 =
1

3
.

Thus

y =

√
3

3
or y = −

√
3

3
.

By (16.7.9),
x =
√

2y or x = −
√

2y.

There are only four points to be considered on the circle:(√
6

3
,

√
3

3

)
,

(
−
√

6

3
,

√
3

3

)
,

(
−
√

6

3
,
−
√

3

3

)
,

(√
6

3
,
−
√

3

3

)
.
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At the first and second points x2y is positive, while at the third and fourth
x2y is negative. The first two points provide the maximum value of x2y on the
circle x2 + y2 = 1, namely (√

6

3

)2 √
3

3
=

2
√

3

9
.

The third and fourth points provide the minimum value of x2y namely,

−2
√

3

9
.

�

More Variables

In the preceding examples we examined the maximum and minimum of f(x, y)
on a curve g(x, y) = k. But the same method works for dealing with extreme
values of f(x, y, z) on a surface g(x, y, z) = k. If f has, say, a minimum at
(a, b, c), then it does on any level curve on the surface g(x, y, z) = k. Thus ∇f
is perpendicular to any curve on the surface through P . But so is ∇g. Thus
∇f and ∇g are parallel, and there is a scalar λ such that the ∇f = λ∇g. So
we will have four scalar equations: three from the vector equation ∇f = λ∇g
and one from the constraint g(x, y, z) = k. That gives four equations in four
unknowns, x, y, z and λ, but it is not necessary to find λ though it may be
useful to determine it. Solving these four simultaneous equations may not be
feasible. However, the exercises in this section lead to fairly simple equations
that are relatively easy to solve.

EXAMPLE 3 Find the rectangle box with the largest volume, given that
its surface area is 96 square feet.
SOLUTION Let the three dimensions be x, y and z and the volume be V ,

Figure 16.7.5:

which equals xyz. The surface area is 2xy + 2xz + 2yz. See Figure 16.7.5.

We wish to maximize V (x, y, z) = xyz subject to the constraint

g(x, y, z) = 2xy + 2xz + 2yz = 96. (16.7.10)

Now

∇V = yzi + xzj + xyk

and

∇g = (2y + 2z)i + (2x+ 2z)j + (2x+ 2y)k.
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The vector equation ∇V = λ∇g provides three scalar equations

yz = λ(2y + 2z)

xz = λ(2x+ 2z)

xy = λ(2x+ 2y)

The fourth equation is the constraint,

2xy + 2xz + 2yz = 96.

Solving for λ in (16.7.11) and in (16.7.11), and equating the results gives

yz

2y + 2z
=

xz

2x+ 2z
.

Since z will not be 0, we haveWhy not?

y

2y + 2z
=

x

2x+ 2z
.

Clearing denominators gives

2xy + 2yz = 2xy + 2xz

2yz = 2xz.

Since z 6= 0, we reach the conclusion that

x = y.

Since x, y and z play the same roles in both the volume xyz and in the
surface area, 2(xy + xz + yz), we conclude also that

x = z.

Then x = y = z. The box of maximum volume is a cube.
To find its dimensions we return to the constraint, which tells us that

6x2 = 96 or x = 4. Hence y and z are 4 also. �

More Constraints

Lagrange multipliers can also be used to maximize f(x, y, z) subject to more
than one constraint; for instance, the constraints may be

g(x, y, z) = k1 and h(x, y, z) = k2. (16.7.11)

Figure 16.7.6:
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The two surfaces (16.7.11) in general meet in a curve C, as shown in Fig-
ure 16.7.6. Assume that C is parameterized by the function G. Then at a
maximum (or minimum) of f at a point P0(x0, y0, z0) on C,

∇f ·G′(t0) = 0.

Thus ∇f , evaluated at P0, is perpendicular to G′(t0). But ∇g and ∇h,
being normal vectors at P0 to the level surfaces g(x, y, z) = K1 and h(x, y, z) =
K2, respectively, are both perpendicular to G′(t0). Thus

Figure 16.7.7:

∇f , ∇g, and ∇h are all perpendicular to G′(t0) at (x0, y0, z0).
(See Figure 16.7.7.) Consequently, ∇f lies in the plane determined by the

vectors∇g and∇h (which we assume are not parallel). Hence there are scalars
λ and µ such that mu, mew, is Greek for the

letter M.∇f = λ∇g + µ∇h.
This vector equation provides three scalar equations in λ, µ, x, y, z. The two
constraints give two more equations. All told: five equations in five unknowns.
(Of course we find λ and µ only if they assist the algebra.)

A rigorous development of the material in this section belongs in an ad-
vanced calculus course. If a maximum occurs at an endpoint of the curves in
question or if the two surfaces do not meet in a curve or if the ∇g and ∇h are
parallel, this method does not apply. We will content ourselves by illustrating
the method with an example in which there are two constraints.

EXAMPLE 4 Minimize the quantity x2 +y2 +z2 subject to the constraints
x+ 2y + 3z = 6 and x+ 3y + 9z = 9.

SOLUTION There are three variables and two constraints. Each of the two
constraints mentioned describes a plane. Thus the two constraints together
describe a line. The function x2 + y2 + z2 is the square of the distance from
(x, y, z) to the origin. So the problem can be rephrased as “How far is the origin
from a certain line?” (It could be solved by vector algebra. See Exercises 19
and 20.) When viewed this way, the problem certainly has a solution; that is,
there is clearly a minimum.

In this case

f(x, y, z) = x2 + y2 + z2 (16.7.12)

g(x, y, z) = x+ 2y + 3z (16.7.13)

h(x, y, z) = x+ 3y + 9z. (16.7.14)

Thus

∇f = 2xi + 2yj + 2zk (16.7.15)

∇g = i + 2j + 3k (16.7.16)

∇h = i + 3j + 9k. (16.7.17)
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There are constants λ and µ so

∇f = λ∇g + µ∇h.

Therefore, the five equations for x, y, z, λ, and µ are

2x = λ+ µ (16.7.18)

2y = 2λ+ 3µ (16.7.19)

2z = 3λ+ 9µ (16.7.20)

x+ 2y + 3z = 6 (16.7.21)

x+ 3y + 9z = 9 (16.7.22)

There are several ways to solve these equations.One way is to use software
programs that solve
simultaneous linear

equations.

One way is to use the first three of the five equations: to express x, y, and
z in terms of λ and µ. Then substitute these values in the last two equations,
getting an old friend from high school “two simultaneous equations in two
unknowns”

By (16.7.18), (16.7.19), and (16.7.20),

x =
λ+ µ

2
, y =

2λ+ 3µ

2
, z =

3λ+ 9µ

2
.

Equations (16.7.21) and (16.7.22) then become

λ+ µ

2
+

2(2λ+ 3µ)

2
+

3(3λ+ 9µ)

2
= 6

and
λ+ µ

2
+

3(2λ+ 3µ)

2
+

9(3λ+ 9µ)

2
= 9,

which simplify to

14λ+ 34µ = 12 (16.7.23)

and 34λ+ 91µ = 18. (16.7.24)

Solving (16.7.23) and (16.7.24) gives

λ =
240

59
µ = −78

59
.

Thus

x =
λ+ µ

2
=

81

59
≈ 1.37288,

y =
2λ+ 3µ

2
=

123

59
≈ 2.08475,

z =
3λ+ 9µ

2
=

9

59
≈ 0.15254.
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The minimum of x2 + y2 + z2 is this Since there is no maximum,
this must be a minimum.
Why?

(
81

59

)2

+

(
123

59

)2

+

(
9

59

)2

=
21, 771

3, 481
=

369

59
≈ 6.24542.

�

In Example 4 there were three variables, x, y, and z, and two constraints.
There may, in some cases, be many variables, x1, x2, . . .xn, and many con-
straints. If there are m constraints, g1, g2 . . . gm introduce Lagrange multipliers
λ1, λ2, . . .λm, one for each constraints. So there would be m+ n equations, n
from the equation

∇f = λ1∇g1 + λ2∇g2 + · · ·+ λm∇gm

and m more equations from the m constraints. There would be m + n un-
knowns, λ1, λ2, . . . , λm, x1, x2, . . . , xn.

Summary

The basic idea of Lagrange multipliers is that if f(x, y, z) (or f(x, y)) has an
extreme value on a curve that lies on the surface g(x, y, z) = C (or the curve
g(x, y) = k), then ∇f and ∇g are both perpendicular to the curve at the point
where the extreme value occurs. If there is only one constraint, then ∇f and
∇g are parallel. If there are two constraints g(x, y, z) = k1 and h(x, y, z) = k2,
then ∇f lies on the plane of ∇g and ∇h. In the first case there is a scalar
λ such that ∇f = λ∇g. In the second case, there are scalars λ and µ such
that ∇f = λ∇g+µ∇h. These vector equations, together with the constraints,
provide simultaneous scalars equations, which must then be solved.
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EXERCISES for Section 16.7 Key: R–routine, M–moderate, C–challenging

In the exercises use Lagrange multipliers unless otherwise suggested.
1.[R] Maximize xy for points on the circle x2 + y2 = 4.

2.[R] Minimize x2 + y2 for points on the line 2x+ 3y = 6.

3.[R] Minimize 2x+3y on the portion of the hyperbola xy = 1 in the first quadrant.

4.[R] Maximize x+ 2y on the ellipse x2 + y2 = 8.

5.[R] Find the largest area of all rectangles whose perimeters are 12 centimeters.

6.[R] A rectangular box is to have a volume of 1 cubic meter. Find its dimensions
if its surface area is minimal.

7.[R] Find the point on the plane x + 2y + 3z = 6 that is closest to the origin.
Hint: Minimize the square of the distance in order to avoid square roots.

8.[R] Maximize x+ y + 2z on the sphere x2 + y2z2 = 9.

9.[R] Minimize the distance from (x, y, z) to (1, 3, 2) for points on the plane
2x+ y + z = 5.

10.[R] Find the dimensions of the box of largest volume whose surface area is to
be 6 square inches.

11.[R] Maximize x2y2z2 subject to the constraint x2 + y2 + z2 = 1.

12.[R] Find the points on the surface xyz = 1 closest to the origin.

13.[R] Minimize x2 +y2 +z2 on the line common to the two planes x+ 2y+ 3z = 0
and 2x+ 3y + z = 4.

14.[R] The plane 2y + 4z − 5 = 0 meets the cone z2 = 4(x2 + y2) in a curve. Find
the point on this curve nearest the origin.

In Exercises 15 to 18 solve the given exercise in Section 16.5 by Lagrange multipliers.
15.[R] Exercise 25

16.[R] Exercise 26
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17.[R] Exercise 29
18.[R] Exercise 30

19.[R] Solve Example 4 by vector algebra.

20.[R] Solve Exercise 13 by vector algebra.

21.[R]

(a) Sketch the elliptical paraboloid z = x2 + 2y2.

(b) Sketch the plane x+ y + z = 1.

(c) Sketch the intersection of the surfaces in (a) and (b).

(d) Find the highest point on the intersection in (c).

22.[R]

(a) Sketch the ellipsoid x2 + y2/4 + z2/9 = 1 and the point P (2, 1, 3).

(b) Find the point Q on the ellipsoid that is nearest P .

(c) What is the angle between PQ and the tangent plane at Q?

23.[R]

(a) Sketch the hyperboloid x2−y2/4−z4/9 = 1. (How many sheets does it have?)

(b) Sketch the point (1, 1, 1). (Is it “inside” or “outside” the hyperboloid?)

(c) Find the point on the hyperboloid nearest P .

24.[R] Maximize x3 + y3 + 2z3 on the intersection of the surfaces x2 + y2 + z2 = 4
and (x− 3)2 + y2 + z2 = 4.

25.[R] Show that a triangle in which the product of the sines of the three angles
is maximized is equilateral. Hint: Use Lagrange multipliers.

26.[R] Solve Exercise 25 by labeling the angles x,y, and π− x− y and minimizing
a function of x and y by the method of Section 16.6.
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27.[R] Maximize x + 2y + 3z subject to the constraints x2 + y2 + z2 = 2 and
x+ y + z = 0.

28.[C]

(a) Maximize x1x2, · · ·xn subject to the constraints that
∑n

i=1 xi = 1 and all
xi ≥ 0.

(b) Deduce that for nonnegative numbers a1, a2, . . . , an, n
√
a1a2 · · · an ≤ (a1+a2+

· · ·+ an)/n. (The geometric mean is less than or equal to the arithmetic
mean.)

29.[C]

(a) Maximize
∑n

i=1 xiyi subject to the constraints
∑n

i=1 x
2
i = 1 and

∑n
i=1 y

2
i = 1.

(b) Deduce that for any numbers a1, a2, . . . , an and b1, b2, . . . bn,
∑n

i=1 aibi ≤(∑n
i=1 a

2
i

)1/2 (∑n
i=1 b

2
i

)1/2, which is called the Schwarz inequality. Hint: Let
xi = ai

(
Pn
i=1 a

2
i )

1/2 and y1 = bi
(
Pn
i=1 b

2
i )

1/2 .

(c) How would you justify the inequality in (b), for n = 3, by vectors?

30.[C] Let a1, a2 . . . an be fixed nonzero numbers. Maximize
∑n

i=1 aixi subject to∑n
i=1 x

2
i = 1.

31.[C] Let p and q be positive numbers that satisfy the equation 1/p + 1/q = 1.
Obtain Holder’s inequality for nonnegative numbers ai and bi,

n∑
i=1

aibi ≤

(
n∑
i=1

api

)1/p( n∑
i=1

bqi

)1/q

,

as follows.

(a) Maximize
∑n

i=1 xiyi subject to
∑n

i=1 x
p
i = 1 and

∑n
i=1 y

q
i = 1.

(b) By letting xi = ai
(
Pn
i=1 a

p
i )1/p

and yi = bi
(
Pn
i=1 b

q
i )

1/q , obtain Holder’s inequality.

Note that Holder’s inequality, with p = 2 and q = 2, reduces to the Schwarz in-
equality in Exercise 29.

32.[C] A consumer has a budget of B dollars and my purchase n different items.
The price of the ith item is p1 dollars. When the consumer buys x1 units of the ith
item, the total cost is

∑n
i=1 pixi. Assume that

∑n
i=1 pixi = B and that the consumer

wishes to maximize her utility u(x1, x2 . . . xn).
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(a) Show that when x1, . . . , xn, are chosen to maximize utility, then

∂u/∂xi
pi

=
∂u/∂xj
pj

.

(b) Explain the result in (a) using just economic intuition. Hint: Consider a
slight change in xi and xj , with the other xk’s held fixed.

33.[C] The following is quoted from Colin W. Clark in Mathematical Bioeconomics,
Wiley, New York, 1976:

[S]uppose there are N fishing grounds. Let H i = H i(Ri, Ei) denotes
the production function for the total harvest H i on the ith ground as a
function of the recruited stock level Ri and effort Ei on the ith ground.
The problem is to determine the least total cost

∑N
i=1 ciE

i at which a
given total harvest H =

∑n
i=1H

i can be achieved. This problem can
be easily solved by Lagrange multipliers. The result is simply

1
ci

∂H i

∂Ei
= constant

[independent of i].

Verify his assertion. The ci‘s are constants. The superscripts name the functions;
they are not exponents.

34.[C] (Computer science) This exercise is based on J. D. Ullman, Principles of
Database Systems, pp. 82–83, Computer Science Press, Potomac, Md., 1980. It
arises in the design of efficient “bucket” sorts. (A bucket sort is a particular way
of rearranging information in a database.) Let p1, p2, . . . , pk and B be positive
constants. Let b1, b2, . . . , bk be k nonnegative variables satisfying

∑k
j=1 bj = B.

The quantity
∑k

j=1 pj · 2B−bj represents the expected search time. What values of
b1, b2, . . . , bk does the method of Lagrange multipliers suggest provide the minimum
expected search time?

35.[C] Assume that f(x, y, z) has an extreme value at P0 on the level surface
g(x, y, z) = k

(a) Why is ∇g evaluated at P0 perpendicular to the surface at P0?

(b) Why is ∇f evaluated at P0 perpendicular to the surface at P0?

36.[C] Solve Example 35 by vector algebra (or just algebra).
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16.8 What Everyone Who Will Study Ther-

modynamics Needs to Know

The basic equations of thermodynamics follow from the Chain Rule and theReview the Chain Rule, if
necessary. equality of the mixed partial derivatives. We will describe the mathematics

within the thermodynamics context.

Implications of The Chain Rule

We start with a function of three variables, f(x, y, z), which we assume has
first partial derivatives

∂f

∂x

∣∣∣∣
y,z

∂f

∂y

∣∣∣∣
x,z

∂f

∂z

∣∣∣∣
x,y

.

The subscripts denote the variables held fixed.This notation is standard
practice in thermodynamics,

though it offends some
mathematicians.

Without this explicit reminder it is necessary to remember the other vari-
ables. At this point this is not difficult. But, when additional information is
included, it can become more difficult to keep track of all of the variables in
the problem.

Now assume that z is a function of x and y, z = g(x, y). Then f(x, y, z) =
f(x, y, g(x, y)) is a function of only two variables. This new function we name
h(x, y): h(x, y) = f(x, y, g(x, y)). There are only two first partial derivatives
of h:

∂h

∂x

∣∣∣∣
y

and
∂h

∂y

∣∣∣∣
x

.

Let the value of f(x, y, z) be called u, u = f(x, y, z). But x, y, and z are
functions of x and y: x = x, y = y, and z = g(x, y).

Figure 16.8.1:

Figure 16.8.1 provides a pictorial view of the relationship between the dif-
ferent variables. Both x and y appear as middle and independent variables.
We have u = f(x, y, z) and also u = h(x, y). By the Chain Rule ThenA change in x affects f

directly and also indirectly
because it causes a change
in z, which also affects f .

∂h

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

∂x

∂x

∣∣∣∣
y

+
∂f

∂y

∣∣∣∣
x,z

∂y

∂x

∣∣∣∣
y

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

.

Since x and y are independent variables, ∂x/∂x = 1 and ∂y/∂x = 0 and we
have

∂h

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

, (16.8.1)

or simply
∂h

∂x
=
∂f

∂x
+
∂f

∂z

∂g

∂x
. (16.8.2)
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When the subscripts are omitted we have to look back at the definitions of f ,
g, and h to see which variables are held fixed.

EXAMPLE 1 Let’s check (16.8.2) when

f(x, y, z) = x2y3z5 and g(x, y) = 2x+ 3y.

SOLUTION We have h(x, y) = f(x, y, g(x, y)) = x2y3(2x + 3y)5. Then
∂f

∂x
= 2xy3z5 and

∂f

∂z
= 5x2y3z4. Also

∂g

∂x
= 2.

Computing ∂h/∂x directly gives

∂h

∂x
=

∂

∂x

(
x2y3(2x+ 3y)5

)
= y3 ∂

∂x

(
x2(2x+ 3y)5

)
= y3

(
2x(2x+ 3y)5 + x2

(
5(2x+ 3y)4(2)

))
= 2xy3(2x+ 3y)5 + 10x2y3(2x+ 3y)4. (16.8.3)

On the other hand, by (16.8.2), we have

∂h

∂x
=

∂f

∂x
+
∂f

∂z

∂g

∂x
= 2xy3z5 + (5x2y3z4)(2)

= 2xy3(2x+ 3y)5 + 10x2y3(2x+ 3y)4,

which agrees with (16.8.3). �

What If z = g(x, y) Makes f(x, y, z) Constant?

Next, assume that when z is replaced by g(x, y), the function h(x, y) =
f(x, y, g(x, y)) is constant: h(x, y) = f(x, y, g(x, y)) = C. This happens when
we use the equation f(x, y, z) = C to determine z implicitly as a function of
x and y.

Then
∂h

∂x

∣∣∣∣
y

= 0 and
∂h

∂y

∣∣∣∣
x

= 0.

In this case, which occurs frequently in thermodynamics, (16.8.1) becomes (16.8.4) will be the
foundation for deriving
(16.8.9) and (16.8.10), key
mathematical relationships
used in thermodynamics.

0 =
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

. (16.8.4)
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Solving (16.8.4) for
∂g

∂x

∣∣∣∣
y

we obtain

∂g

∂x

∣∣∣∣
y

=
− ∂f

∂x

∣∣
y,z

∂f
∂z

∣∣
x,y

. (16.8.5)

Equation (16.8.5) expresses the partial derivative of g(x, y) with respect to x
in terms of the partial derivatives of the original function f(x, y, z).

EXAMPLE 2 Let f(x, y, z) = x3y5z7. Define g(x, y) implicitly by x3y5(g(x, y))7 =
1. That is, g(x, y) = x−3/7y−5/7. Verify (16.8.5).

SOLUTION First of all,
∂g

∂x

∣∣∣∣
y

= −3
7
x−10/7y−5/7. Then

∂f

∂x

∣∣∣∣
y,z

= 3x2y5z7 and
∂f

∂z

∣∣∣∣
x,x

= 7x3y5z6.

Substituting in (16.8.5), we have

−
∂f

∂x

˛̨̨̨
˛̨
y,z

∂f

∂z

˛̨̨̨
˛̨
x,y

=
− (3x2y5z7)

7x3y5z6

= −3

7
x−1z

= −3

7
x−1x−3/7y−5/7 because x3y5z7 = 1

= −3

7
x−10/7y−5/7

=
∂g

∂x

∣∣∣∣
y

so (16.8.5) is satisfied.

�

The Reciprocity Relations

In a thermodynamics text you will see equations of the form

∂x

∂z

∣∣∣∣
y

=
1

∂z

∂x

∣∣∣∣
y

. (16.8.6)
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We will explain where this equation comes from, presenting the mathematical
details often glossed over in the applied setting. There is a function f(x, y, z)
with constant value C, f(x, y, z) = C. It is assumed that this equation deter-
mines z as a function of x and y, or, similarly, determines x as a function of y
and z, or y as a function of x and z. There are six first partial derivatives: See Exercise 5.

∂z

∂x

∣∣∣∣
y

,
∂z

∂y

∣∣∣∣
x

,
∂x

∂y

∣∣∣∣
z

,
∂x

∂z

∣∣∣∣
y

,
∂y

∂x

∣∣∣∣
z

,
∂y

∂z

∣∣∣∣
x

. (16.8.7)

An equation analogous to (16.8.5) holds for each of them. For instance,

∂x

∂z

∣∣∣∣
y

=

− ∂f

∂z

∣∣∣∣
x,y

∂f

∂x

∣∣∣∣
y,z

. (16.8.8)

Combining (16.8.5) and (16.8.8) verifies that This is to be expected, for
∆z
∆x is the reciprocal of ∆x

∆z .

∂x

∂z

∣∣∣∣
y

=
1

∂z

∂x

∣∣∣∣
y

. (16.8.9)

Equation (16.8.9) is an example of a reciprocity relation: The partial deriva-
tive of one variable with respect to a second variable is the reciprocal of the
partial derivative of the second variable with respect to the first variable.

EXAMPLE 3 Let f(x, y, z) = 2x+ 3y+ 5z = 12. Verify that ∂z/∂x is the
reciprocal of ∂x/∂z.
SOLUTION Since 2x+ 3y + 5z = 12, z = (12− 2x− 3y)/5. Then ∂z/∂x =
−2/5.

Also, x = (12 − 3y − 5z)/2, so ∂x/∂z = −5/2, which is, as predicted, the
reciprocal of ∂z/∂x. �

The Cyclic Relations

With the aid of equations like (16.8.8) it is easy to establish the surprising
relation The Cyclic Relation, also

known as the Triple Product
Rule, the Cyclic Chain Rule,
or Euler’s Chain Rule. See
http://en.wikipedia.
org/wiki/Triple_
product_rule.
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∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1. (16.8.10)

Equation (16.8.10) results from the use of three versions of (16.8.8). The left-
hand side of (16.8.10) can be expressed as

− ∂f

∂y

∣∣∣∣
x,z

∂f

∂x

∣∣∣∣
y,z



− ∂f

∂z

∣∣∣∣
x,y

∂f

∂y

∣∣∣∣
x,z



− ∂f

∂z

∣∣∣∣
x,y

∂f

∂x

∣∣∣∣
y,z

 (16.8.11)

Cancellation reduces (16.8.11) to -1.

EXAMPLE 4 Let f(x, y, z) = 2x+3y+5z = 12. This equation determines
implicitly each of the variables in terms of the two others. Verify (16.8.10) in
this case.
SOLUTION By the equation 2x+ 3y + 5z = 12,

x =
12− 3y − 5z

2
y =

12− 2x− 5z

3
z =

12− 2x− 3y

5

Then ∂x/∂y = −3/2, ∂y/∂z = −5/3, and ∂z/∂x = −2/5, and we have

∂x

∂y

∂y

∂z

∂z

∂x
=

(
−3

2

)(
−5

3

)(
−2

5

)
= −1

�

If two of the three partial derivatives in (16.8.10) are easy to calculate,
then we can use (16.8.10) to find the third, which may otherwise be hard to
calculate. We illustrate this use of the cyclic relationship with an example
from thermodynamics. In this context T denotes temperature, p, pressure,
and v the mass per unit volume.v is the reciprocal of density

Equations (16.8.4, (16.8.9), and (16.8.10) are the 15sential mathematical
relationships used in thermodynamics. We now show their use in a few typical
thermodynamics problems.

EXAMPLE 5 In van der Waal’s equation p, T , and v are all related by the
relationvan der Waal’s equation is

only one example of an
equation of state. See also

Exercises 11 and 12.

p =
RT

v − b
− a

v2
; (16.8.12)
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R, a and b are constants. Use a cyclic relation to find (∂v/∂T )p.

SOLUTION We use the cyclic relation Exercises 13 and 14 describe
other ways to solve
Example 5.∂v

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
v

∂p

∂v

∣∣∣∣
T

= −1. (16.8.13)

Looking at (16.8.12), we see that (∂p/∂T )v is easier to calculate than (∂T/∂p)v.
So (16.8.13) becomes

∂v

∂T

∣∣∣∣
p

∂p

∂v

∣∣∣∣
T

∂p

∂T

∣∣∣∣
v

= −1

and therefore

∂v

∂T

∣∣∣∣
p

= −

∂p

∂T

∣∣∣∣
v

∂p

∂v

∣∣∣∣
T

.

(16.8.14)

Since p is given as a function of v and T , it is easy to calculate the numerator
and denominator in (16.8.14):(

∂p

∂T

)
v

=
R

v − b
and

(
∂p

∂v

)
T

=
−RT

(v − b)2
+

2a

v3
.

Thus, by (16.8.14), (
∂v

∂T

)
p

=
−R/(v − b)

−RT/(v − b)2 + 2a/v3
.

�

Using the Equality of the Mixed Partial Derivatives

Having shown how the Chain Rule provides some of the basic equations in
thermodynamics, let us show how the equality of the mixed partials leads to
other basic equations.

We resume our consideration of a thermodynamic process in which the
pressure is denoted by P , the temperature by T , and the volume per unit
mass by v. Other common variables are

u thermal energy per unit mass
s entropy per unit mass
a Helmholtz free energy per unit mass
g Gibbs free energy per unit mass
h enthalpy per unit mass
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That is a total of 8 variables of interest. If they were independent, the possible
states would be part of an eight-dimensional space. However, they are very
interdependent. In fact any two determine all the others.

For instance, u may be viewed as a function of s and v, and we have
∂u

∂s

∣∣∣∣
v

,

which is the definition of temperature, T . Thermodynamic texts either stateWhen you look at your
thermometer, remember

that you are gazing at the
value of a partial derivative.

or derive the “Gibbs relation”

du = T ds− P dv.

This equation involving differentials tells us that u is viewed as a function of
s and v, and that

∂u

∂s

∣∣∣∣
v

= T and
∂u

∂v

∣∣∣∣
s

= −P.

Equating the mixed second partial derivatives then gives us

∂2u

∂v∂s
=

∂2u

∂s∂v
equality of mixed partials of u(s, v)

∂

∂v

(
∂u
∂s

)
=

∂

∂s

(
∂u
∂v

)
∂T

∂v

∣∣∣∣
s

=
∂(−P )

∂s

∣∣∣∣
v

because
∂u

∂s

∣∣∣∣
v

= T and
∂u

∂v

∣∣∣∣
s

= −P

∂T

∂v

∣∣∣∣
s

= − ∂P

∂s

∣∣∣∣
v

.

Several thermodynamic statements that equate two partial derivatives are
obtained this way. The starting point is an equation of the formIn other contexts we will say

that dz = Mdx+Ndy is
an exact differential.

dz = M dx+N dy

where M is
∂z

∂x

∣∣∣∣
y

and N is
∂z

∂y

∣∣∣∣
x

. Then, because

∂z

∂x∂y
=

∂z

∂y∂x
,

it is found that
∂M

∂y

∣∣∣∣
x

=
∂N

∂x

∣∣∣∣
y

.

Summary

We showed how the Chain Rule in the special case where an intermediate vari-
able is also a final variable justifies certain identities, namely, the reciprocal
and cyclic relations used in thermodynamics. Then we showed how the equal-
ity of the mixed partial derivatives is used to derive other equations linking
various partial derivatives.
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EXERCISES for Section 16.8 Key: R–routine, M–moderate, C–challenging

1.[R] Let u = x2 + y2 + z2 and let z = x+ y.

(a) The symbol
∂u

∂x
has two interpretations. What are they?

(b) Evaluate
∂u

∂x
in both cases identified in (a).

2.[R] Let z = rst and let r = st.

(a) The symbol
∂z

∂t
has two interpretations. What are they?

(b) Evaluate
∂z

∂t
in both cases identified in (a).

3.[R] Let u = f(x, y, z) and z = g(x, y). Then u is indirectly a function of x and

of y. Express
∂u

∂x

∣∣∣∣
y

in terms of partial derivatives of f . (Supply all the steps.)

4.[R] Assume that the equation f(x, y, z) = C, a constant, determines x as a func-

tion of y and z: x = h(y, z). Express
∂x

∂y

∣∣∣∣
z

in terms of partial derivatives of f .

(Supply all the steps.)

5.[R] What is the product of the six partial derivatives in (16.8.7)?

6.[R] Using the function f from Example 2, verify the analog of (16.8.8) for
∂z

∂y

∣∣∣∣
x

.

7.[R] Let f(x, y, z) = 2x + 4y + 3z. The equation f(x, y, z) = 7 determines any
variable as a funciton of the other two. Verify (16.8.8), where z is viewed as a func-
tion of x and y.

8.[R] Obtain the cyclic relation

∂x

∂z

∣∣∣∣
y

∂z

∂y

∣∣∣∣
x

∂y

∂x

∣∣∣∣
z

= −1.

Hint: Duplicate the steps leading to (16.8.10).

9.[R] Verify (16.8.10) in the case f(x, y, z) = x3y5z7 = 1.
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10.[R] Verify (16.8.10) in the case f(x, y, z) = 2x+ 4y + 3z = 7.

11.[R] The equation of state for an ideal gas is pv = RT . Find (∂v/∂T )p.

12.[R] The Redlich-Kwang equation

p =
RT

v − b
− a

v(v + b)T 1/2
.

is an improvement upon the van der Waal’s equation of state (16.8.12) for gases and
liquids. Find (∂v/∂T )p. Note: Do a Google search for ”Redlich Kwang equation”,
or visit http://en.wikipedia.org/wiki/Equation_of_state.

13.[R] Find (∂v/∂T )p in Example 5 by differentiating both sides of (16.8.12) with
respect to T , holding p constant.

14.[R] One might try to find (∂v/∂T )p in Example 5 by first finding an equation
that expresses v in terms of T and p. What unpleasantness happens when you try
this approach?

15.[R] In Example 5, find (∂v/∂p)T , (∂T/∂v)p, and (∂T/∂p)v.

16.[M] In thermodynamics there is the Gibbs relation

dh = T ds+ v dP.

It is understood that
∂h

∂s

∣∣∣∣
p

= T and
∂h

∂p

∣∣∣∣
s

= v. Deduce that
∂T

∂P

∣∣∣∣
s

=
∂v

∂s

∣∣∣∣
P

.

17.[R] Consider the thermodynamic equation

∂E

∂T

∣∣∣∣
v

=
∂E

∂T

∣∣∣∣
P

+
∂E

∂P

∣∣∣∣
T

∂P

∂T

∣∣∣∣
v

. (16.8.15)

(a) What is the dependent variable?

(b) What are the independent variables?

(c) What are the intermediate variables?

(d) Draw a diagram showing all the paths from the dependent variables to the
independent variables.

(e) Use the Chain Rule to complete the derivation of (16.8.15).
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18.[M] Show that
∂P

∂T

∣∣∣∣
v

=
−
∂v

∂T

˛̨̨̨
˛
P

∂v

∂P

˛̨̨̨
˛
T

.

19.[M] Show that

(a)
∂E

∂v

∣∣∣∣
P

=
∂E

∂T

∣∣∣∣
P

∂T

∂v

∣∣∣∣
P

(b)
∂E

∂P

∣∣∣∣
v

=
∂E

∂T

∣∣∣∣
P

∂T

∂P

∣∣∣∣
v

+
∂E

∂P

∣∣∣∣
T

.

20.[M] Show that
∂P

∂T

∣∣∣∣
v

∂T

∂P

∣∣∣∣
v

= 1. Hint: Express each of the partial derivaties as

a quotient of partial derivatives, as in Exercise 18.

21.[M] Show that
∂P

∂T

∣∣∣∣
v

∂T

∂v

∣∣∣∣
P

∂v

∂P

∣∣∣∣
T

= −1.

22.[M] Let u = F (x, y, z) and z = f(x, y). Thus u is a (composite) function of x
and y: u = G(x, y) = F (x, y, f(x, y)). Assume that G(x, y) = x2y. Obtain a formula

for
∂f

∂x
in terms of

∂F

∂x
,
∂F

∂y
, and

∂F

∂z
. (All three need not appear in your answer.)

23.[M] Let u = F (x, y, z) and x = f(y, z). Thus u is a (composite) function of y and
z: u = G(y, z) = F (f(y, z), y, z). Assume that G(y, z) = 2y + z2. Obtain a formula

for
∂f

∂z
in terms of

∂F

∂x
,
∂F

∂y
, and

∂F

∂z
. (All three need not appear in your answer.)

24.[C] Two functions u and v of the variables x and y are defined implicitly by the
two simultaneous equations

F (u, v, x, y) = 0 and G(u, v, x, y) = 0.

Assuming all necessary differentiability, find a formula for
∂u

∂x
in terms of the partial

derivatives of F and of G.
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16.S Chapter Summary

This chapter extends to functions of two or more variables the notions of rate
of change and derivative originally in Chapter 3. For a function of several
variables a “partial derivative” is simply the derivative with respect to one of
the variables, when all the other variables are held constant.

The precise definition rests on a limit. For instance, the partial derivative
with respect to x of f(x, y) at (a, b) is

∂f

∂x
(a, b) = lim

∆x→0

f(a+ ∆x, b)− f(a, b)

∆x
.

Just as there are higher-order derivatives, there are higher-order partial deriva-
tives, for instance:

∂2f

∂x∂x
=

∂

∂x

(
∂f

∂x

)
,
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
, and

∂2f

∂y∂y
=

∂

∂y

(
∂f

∂y

)
.

For functions usually encountered in applications, the two “mixed partialas,”
∂2f/∂x∂y and ∂2f/∂y∂x, are equal; we can therefore not worry about the
order of the differentiation.

Also, for common functions “differentiation under the integral sign” is legal:

if g(y) =

b∫
a

f(x, y) dx, then
dg

dy
=

b∫
a

∂f

∂y
(x, y) dx.

For a function of one variable, f(x), with a continuous derivative,

∆f = f(a+∆x)−f(a) = f ′(c)∆x = (f ′(a)+ε)∆x = f ′(a)∆x+ε∆x. (16.S.1)

Here c is in [a, a + ∆x] and ε → 0 as ∆x → 0. The analog of (16.S.1) for a
function of two or more variables is the basis for the chain rule for functions
of several variables:

∆f = f(a+∆x, b+∆y)−f(a, b) = (f(a+ ∆x, b+ ∆y)− f(a, b+ ∆y))+(f(a, b+ ∆y)− f(a, b)) =
∂f

∂x
(a, b)∆x+

∂f

∂y
(a, b)∆y+ε1∆x+ε2∆y,

(16.S.2)
where ε1 and ε2 → 0 as Deltax and ∆y → 0.See the CIE section on

Maxwell’s equations at the
end of Chapter 18.

The chain rule showed then, if g(u) and h(u) are differentiable functions,
then y = g(x + kt) + h(x − kt), k constant, satisfies the partial differential
equation (PDE) ∂2y/∂t2 = k2∂2y/∂x2. This PDE was the key to Maxwell’s
conjecture that light is an electro-magnetic phenomenon.

The gradient, a vector function, was defined in terms of partial derivatives:
∇f = 〈fx, fy〉 or, for a function of three variables: ∇f = 〈fx, fy, fz〉. The

December 4, 2010 Calculus



§ 16.S CHAPTER SUMMARY 1373

gradient points in the direction a function increases most rapidly. The rate
at which f(x, y) changes in the direction of a unit vector u is ∇f · u. The
gradient is perpendicular to the level curve (or level surface) passing through
a given point. At a critical point the gradient vanishes.

For a function of one variable the sign of the second derivative helps tell
whether a critical point is a maximum or a minimum. For a function of two
variables, the test also involves all three second derivatives. In particular, the
signs of fxx and fxxfyy − (fxy)

2 are important. The number λ is called a
Lagrange multiplier.Maximizing a function f subject to a constraint g depends on the obser-

vation that at an extremum ∇f is parallel to ∇g. Hence there is a number λ
such that ∇f = λ∇g.

The final section showed that the chain rule is the bases of two facts in
thermodynamics. It also shows how to apply the chain rule when a middle
variable is also a final variable.

EXERCISES for 16.S Key: R–routine, M–moderate, C–challenging

1.[R] Let f(x, y) = x2 − y2 and g(x, y) = 2xy. Show that

(a) ∂f
∂x = ∂g

∂y

(b) ∂f
∂y = − ∂g

∂x

(c) ∂2f
∂x2 + ∂2f

∂y2
= 0

(d) ∂2g
∂x2 + ∂2g

∂y2
= 0

2.[R] Repeat Exercise 1 for f(x, y) = ln
(√

x2 + y2
)

and g(x, y) = arctan (y/x).

3.[M] Let f and g be functions of x and y that have continuous second derivatives.
Assume the first partial derivatives of f and g satisfy:

∂f

∂x
=
∂g

∂y
and

∂f

∂y
= −∂g

∂x
. (16.S.3)

Show that
∂2f

∂x2
+
∂2f

∂y2
= 0 and

∂2g

∂x2
+
∂2g

∂y2
= 0. (16.S.4)

Note: The two equations in (16.S.3) are known as the Cauchy–Riemann equations.
A pair of functions that satisfy (16.S.4) are called a conformal pair of functions.

In Exercises 4 to 12 assume the functions have continuous partial derivatives through-
out the xy plane.
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4.[R] If fx(x, y) = 0 for all points (x, y) in the plane, must f be constant? If not,
describe f .

5.[R] If fx(x, y) = 0 and fy(x, y) = 0 for all points (x, y) in the plane, must f be
constant? If not, describe f .

6.[R] The function 3x+g(y), for any differentiable function g(y) satisfies the partial
differential equation ∂f/∂x = 3. Are there any other solutions to that equation?
Explain your answer.

7.[R] Find all functions f such that ∂f/∂x = 3 and also ∂y/∂x = 3 are satisfied.

8.[R] Show that there is no function f such that ∂f/∂x = 3y and ∂f/∂y = 4x.

9.[R] Find all functions such that fxx(x, y) = 0.

10.[R] Find all functions such that fxx(x, y) = 0 and fyy(x, y) = 0.

11.[R] Find all functions such that fxy(x, y) = 0.

12.[R] Find all functions such that fxy(x, y) = 1.

13.[M] A hiker is at the origin on a hill whose equation is z = x. If he walks south,
along the positive x-axis the slope of his path would be steep, 1, with angle π/4. If
he walked along the y-axis, the slope would be 0.

(a) If he walked NE what would the slope of his path be?

(b) In what direction should he walk in order that his path would have a slope of
0.2?

14.[C] This exercise outlines a proof that the two mixed partials of f(x, y) are
generally equal. It suffices to show that fxy(0, 0) = fyx(0, 0). We assume that all
the first and second partial derivatives are continuous in some disk with center (0, 0).

(a) Why is fxy(0, 0) equal to

lim
k→0

fx(0, k)− fx(0, 0)
k

? (16.S.5)

(b) Why is (16.S.5) equal to

lim
k→0

(
lim
h→0

(f(h, k)− f(0, k))− (f(h, 0)− f(0, 0))
hk

)
? (16.S.6)
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(c) Let u(y) = f(h, y)− f(0, y). Show that the fraction in (16.S.6) equals

u(k)− u(0)
hk

,

and this fraction equals u′(k)/h for some k between 0 and k.

(d) Why is u′(k) = fy(h, k)− fy(0, k)?

(e) Why is u′(k)/h equal to (fy)x(H,K) for some H between 0 and h?

(f) Deduce that fxy(0, 0) = fyx(0, 0).

(g) Did this derivation use the continuity of fyx? If so, how?

(h) Did this derivation use the continuity of fxy? If so, how?

(i) Did we need to assume fxy exists? If so, where was this assumption used?

(j) Did we need to assume fyx exists? If so, where was this assumption used?

15.[C] The assertion that it is safe to “differentiate across the integral sign,”
amounts to the statement that two definite integrals are equal. To illustrate this,
translate the assertion into the language of limits:

d

dt

b∫
a

f(x, t) dx =

b∫
a

∂

∂t
f(x, t) dx. (16.S.7)

(a) Why is the derivative on the left an ordinary derivative, d()/dt, but the deriva-
tive on the right is a partial derivative?

(b) Using the definitions of ordinary derivatives and partial derivatives as limits,
show what (16.S.7) says about limits.

(c) Verify (16.S.7) for f(x, t) = x7t4.

(d) Verfiy (16.S.7) for f(x, t) = cos(xt).

Exercise 16 provides another motivation for the definition of the Fourier series of a
function f defined on the interval [0, 2π].
16.[C] For a particular integer n consider all functions S(x) of the form

S(x) =
a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx)) ,
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Let f(x) be a continuous function defined on [0, 2π]. The definite integral

2π∫
0

(f(x)− S(x))2 dx

is a measure of how close S(x) is to f(x) on the interval [0, 2π]. The integral can
never be negative. (Why?) The smaller the integral, the better S approximates f
on [0, 2π]. Show that the S(x) that minimizes the integral is precisely a front-end
of the Fourier series associated with f(x).
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Calculus is Everywhere # 21

The Wave in a Rope

We will develop what may be the most famous partial differential equation.
In the CIE of the next chapter we will solve that equation and, then, use it
in the final chapter to show how it helped Maxwell discover that light is an
electrical-magnetic phenomenon.

As Morris Kline writes in Mathematical Thought from Ancient to Modern
Times, “The first real success with partial differential equations came in re-
newed attacks on the vibrating string problem, typified by the violin string.
The approximation that the vibrations are small was imposed by d’Alembert
(1717-1783) in his papers of 1746.”

Figure C.21.1:

Imagine shaking the end of a rope up and down gently, as in Figure C.21.1.
That motion starts a wave moving along the rope. The individual molecules

in the rope move up and down, while the wave travels to the right. In the case
of a sound wave, the wave travels at 700 miles per hour, but the air just
vibrates back and forth. (When someone says “good morning” to us, we are
not struck with a hurricane blast of wind.)

To develop the mathematics of the wave in a weightless rope, we begin
with some simplifying assumptions. First, each molecule moves only up and
down. Second, the distance each one moves is very small and the slope of the
curve assumed by the rope remains close to zero. (Think of a violin string.)

At time t the vertical position of the molecule whose x-coordinate is x is
y = y(x, t), for it depends on both x and t. Consider a very short section of

Figure C.21.2:

the rope at time t, shown as PQ in Figure C.21.2.
We assume that the tension T is the same throughout the rope. Apply

Newton’s Second Law, “force equals mass times acceleration,” to the mass in
PQ.

If the linear density of the rope is λ, the mass of the segment is λ times the
length of the segment. Because we are assuming small displacements, we will
approximate that length by ∆x. The upward force exerted by the rope on the
segment is T sin(θ+ ∆θ) and the downward force is T sin(θ). The net vertical
force is T sin(θ + ∆θ)− T sin(θ). Thus

Tsin(θ + ∆θ)− T sin(θ)︸ ︷︷ ︸
net vertical force

= λ∆x︸︷︷︸
mass

∂2y

∂t2︸︷︷︸
acceleration

. (C.21.1)

(Because y is a function of x and t, we have a partial derivative, not an ordinary
derivative.)
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Next we express sin(θ) and sin(θ + ∆θ) in terms of the partial derivative
∂y/∂x.

First of all, because θ is near 0, cos(θ) is near 1. Thus sin(θ) is approxi-
mately sin(θ)/ cos(θ) = tan(θ), the slope of the rope at time t above (or below)
x, which is ∂y/∂x at x and t. Similarly, sin(θ + ∆θ) is approximately ∂y/∂x
at x+ ∆x and t. So (C.21.1) is approximated by

T
∂y

∂x
(x+ ∆x, t)− T ∂y

∂x
(x, t) = λ∆x

∂2y

∂t2
(x, t). (C.21.2)

Dividing both sides of (C.21.2) by ∆x gives

T
(
∂y
∂x

(x+ ∆x, t)− ∂y
∂x

(x, t)
)

∆x
= λ

∂2y

∂t2
(x, t). (C.21.3)

Letting ∆x in (C.21.3) approach 0, we obtain

T
∂2y

∂x2
(x, t) = λ

∂2y

∂t2
(x, t). (C.21.4)

Since both T and λ are positive, we can write (C.21.4) in the form

∂2y

∂x2
=

1

c2

∂2y

∂t2
. (C.21.5)

This is the famous wave equation. It relates the acceleration of the molecule
to the geometry of the curve; the latter is expressed by ∂2y/∂x2. Since we are

assuming that the slope of the rope remains near 0, ∂2y
∂x2 is approximately

∂2y
∂x2(√

1 +
(
∂y
∂x

)2
)3

which is the curvature at a given location and time. At the curvier part of the
rope, the acceleration is greater.

As the CIE in the next chapter shows, the constant c turns out to be the
velocity of the wave.

EXERCISES

1.[M] Figure C.21.3 shows a vibrating string whose ends are fixed at A and B.
Assume that each part of the string moves parallel to the y-axis (a reasonable ap-
proximation of the vibrations are small.) Let y = f(x, t) be the height of the string
at the point with abscissa x at time t, as shown in the figure. In this case, the partial
derivatives are denoted ∂y/∂x and ∂y/∂t.
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Figure C.21.3:

(a) What is the meaning of yx?

(b) What is the meaning of yt?

Calculus December 4, 2010



1380 CHAPTER 16 PARTIAL DERIVATIVES

December 4, 2010 Calculus



Chapter 17

Plane and Solid Integrals

In Chapter 2 we introduced the derivative, one of the two main concepts in
calculus. Then in Chapter 15 we extended the idea to higher dimensions. In the
present chapter, we generalize the concept of the definite integral, introduced
in Chapter 6, to higher dimensions.

Take a moment to review the definite integral. Instead of using the notation
of Chapter 6, we will restate the definition in a notation that easily generalizes
to higher dimension.

We started with an interval [a, b], which we will call I, and a continuous
function f defined at each point P of I. Then we cut I into n short intervals
I1, I2, . . . , Iu, chose a point P1 in I1, P2 in I2, . . . , Pn in In. See Figure 17.0.1.
Denoting the length of Ii by Li, we formed the sum

Figure 17.0.1:

n∑
i=1

f(Pi)Li.

The limit of these sums as all the subintervals are chosen shorter and shorter
is the definite integral of f over interval I. We denoted it

∫ a
b
f(x) dx. We now

denote it
∫
I
f(P )dL. This notation tells us that we are integrating a function,

f , over an interval I. The dL reminds us that the integral is the limit of
approximations formed as the sum of products of the function value and the
length of an interval.

We will define integrals of functions over plane regions, such as square and
disks, over solid regions, such as tubes and balls, and over surfaces such as the
surface of a ball, in the same way. You can probably conjecture already what
the definition will be. These integrals are needed to compute total mass if we
know the density at each point, or total gravitational attraction, or center of
gravity, and so on.

It is one thing to define these higher-dimensional integrals. It is another to
calculate them. Most of our attention will be devoted to seeing how to compute
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them with the aid of so-called “iterated integrals,” which involve integrals over
intervals, the type defined in Chapter 6.
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17.1 The Double Integral: Integrals Over Plane

Areas
We suggest you re-read the
introduction to this chapter
and the definition of the
definite integral

∫ b
a f(x) dx

before going on.

The goal of this section is to define the integral of a function defined in a
region of a plane. With only a slight tweaking of this definition, we will define
later in the chapter integrals over surfaces and solids.

Volume Approximated by Sums

Let R be a region in the xy plane, bounded by curves. For convenience, assume
R is convex (no dents), for example, an ellipse, a disk, a parallelogram, a
rectangle, or a square. We draw R in perspective in Figure 17.1.1(a). Imagine

(a) (b) (c)

Figure 17.1.1:

that there is a surface above R (perhaps an umbrella). The height of the
surface above point P on R is f(P ), as shown in Figure 17.1.1(b)

If you know f(P ) for every point P how would you estimate the volume,
V , of the solid under the surface and above R?

Just as we used rectangles to estimate the area of regions back in Sec-
tion 6.1, we will use cylinders to estimate the volume of a solid. Recall, from
Section 7.4, that the volume of a cylinder is the product of its height and the
area of its base.

Inspired by the approach in Section 6.1, we cut R into n small regions R1,
R2, . . . , Rn. Each Ri has area Ai. Choose points P1 in R1, P2 in R2, . . . , Pn
in Rn. Then we build a cylinder over each little region Ri. Its height will be
f(Pi). There will then be n cylinders. The total volume of these cylinders is

n∑
i=1

f(Pi)Ai. (17.1.1)

As we choose the regions R1, R2, . . . , Rn, smaller and smaller, the sum (17.1.1)
approaches the volume V , if f is a continuous function.

EXAMPLE 1 Estimate the volume of the solid under the saddle z = xy
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and above the rectangle R whose vertices are (1, 0), (2, 0), (2, 3), and (1, 3).SHERMAN: Changed left
edge from 0 to 1 so that

base and height are not the
same.

SOLUTION Figure 17.1.2(a) shows the solid region in question.

(a) (b) (c)

Figure 17.1.2:

The highest point is above (2, 3), where z = 6. So the solid fits in a box
whose height is 6 and whose base has area 4. So we know the volume is at
most 4 · 6 = 24.

To estimate the volume we cut the rectangular box into four 1 by 1 squares
and evaluate z = xy at, say, the center of the squares, as shown in Fig-
ure 17.1.2(b).

Then we form a cylinder for each square. The base is the square and the
height is determined by the value of xy at the center of the square. These are
shown in Figure 17.1.2(c). (The cylinder over rectangle boxes.)

Then the total volume is

3

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
5

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
9

4︸︷︷︸
height

· 1︸︷︷︸
area of base

+
15

4︸︷︷︸
height

· 1︸︷︷︸
area of base

= 8

(17.1.2)
This estimate is then 8 cubic units. We know this is an overestimate (Why?)
By cutting the base into smaller pieces and using more cylinders we could
make a more accurate estimate of the volume of the solid. �

Density

Before we consider a “total mass” problem we must define the concept of
“density.” Consider a piece of sheet metal, which we view as part of a plane.
It is homogeneous, “the same everywhere.” Let R be any region in it, of area
A and mass m. The quotient m/A is the same for all regions R, and is called
the “density.”

It may happen that the material, unlike sheet metal is not uniform. For
instance, a towel that was just used to dry dishes. As R varies, the quotient
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m/A, or “average density in R,” also varies. Physicists define the density at
a point as follows.

Figure 17.1.3:

They consider a small disk R of radius r and center at P , as in Figure 17.1.4.
Let m(r) be the mass in that disk and A(r) be the area of the disk (πr2). The

“Density at P” = lim
r→0

m(r)

A(r)
.

Thus density is denoted σ(P ), “sigma of P,” σ is Greek for our letter “s”,
the initial letter of
“surface.” σ(P ) denotes
the density of a surface or
“lamina” at P .

With the physicists, we will assume the density σ(P ) exists at each point
and that it is a continuous function. In addition, we will assume that if R is a
very small region of area A and P is a point in that region then the product
σ(P )A is an approximation of the mass in R.

Total Mass Approximated by Sums

Assume that a flat region R is occupied by a material of varying density. The
density at point P in R is σ(P ). Estimate M , the total mass in R.

As expected, we cut R into n small regions R1, R2, . . . , Ri has area Ai.
We next choose points P1 in R1, P2 in R2, . . . , Pu in Rn. Then we estimate
the mass in each little region Ri, as shown in Figure 17.1.4. The mass in Ri is

Figure 17.1.4: This exam-
ple has i = 7 subregions.

approximately

σ(Pi)︸ ︷︷ ︸
density

· Ai︸︷︷︸
area

Thus
n∑
i=1

σ(P1)Ai (17.1.3)

is the total estimate. As we divide R into smaller and smaller regions, , the
sums (17.1.2) approaches the total mass M , if σ is a continuous function.

EXAMPLE 2 A rectangular lamina, of varying density occupies the rect-
angle with corners at (0, 0), (2, 0), (2, 3), and (0, 3) in the xy plane. Its density
at (x, y) is xy grams per square cm. Estimate its mass by cutting it into six 1
by 1 squares and evaluating the density at the center of each square.

SOLUTION One such square is shown in Figure 17.1.5. The density at its

Figure 17.1.5:

center is 1
2
· 1

2
= 1

4
. Since its area is 1× 1 = 1, an estimate of σ, its mass, is

1

4︸︷︷︸
density

· 1︸︷︷︸
area

=
1

4
grams.
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Similar estimates for the remaining six small squares gives a total estimate of

1

4
· 1 +

3

4
· 1 +

3

4
· 1 +

9

4
· 1 +

5

4
· 1 +

15

4
· 1 = 9 grams

Thus sum is identical to the sum (17.1.2), which estimates a volume. �

The arithmetic in Examples 1 and 2 show that totally unrelated problems,
one in volume, the other in mass, lead to the same estimates. Moreover, as
the rectangle is cut into smaller pieces, the estimate would become closer and
closer to the volume or the mass. These estimates, similar to the estimates∑n

i=1(f(ci)∆xi that appears in the definition of the definite integral
∫ b
a
f(x) dx,

brings us to the definition of “double integral”. It is called the double integral
because the domain of the function is in the two-dimensional plane.

——————-

The Double Integral

The definition of the double integral is almost the same as that of
∫ b
a
f(x) dx,

the integral over an interval. The only differences are:

1. instead of dividing an interval into smaller intervals, we divide a planar
region into smaller planar regions,

2. instead of a function defined on an interval, we have a function defined
on a planar region, and

3. we need a quantitative way to say that a “little” region is “small.”

To meet the need described in (3) we define the “diameter” of a planar
region. The diameter of a region bounded by a curve is the maximum distance
between two points in the region. For instance, the diameter of a square of
side s is s

√
2 and the diameter of a disk is the same as its traditional diameter

that we know from geometry.
With that aside taken care of, we are ready to define a double integral.

DEFINITION (Double Integral) Let R be a region in a plane
bounded by curves and f a continuous numerical function defined
at least on R. Partition R into smaller regions R1, R2, . . . , Rn of
respective areas A1, A2, . . . , An. Choose a point P1 in R1, P2 in
R2, . . . , Pn in Rn and form the approximating (Riemann) sum

n∑
i=1

f(Pi)Ai. (17.1.4)
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Form a sequence of such partitions such that as one goes out in
the sequence of partitions, the sequence of diameters of the largest
region in each partition approaches 0. Then the sums (17.1.4)
approach a limit, which is called “the integral of f over R” or the
“double integral” of f over R. It is denoted∫

R

f(P ) dA.

Before looking at some examples, we make four brief remarks:

1. It is called a double integral because R lies in a plane, which has dimen-
sion 2.

2. We use the notion of a diameter of a region only to be able to define the
double integral.

3. It is proved in advanced calculus that the sums do indeed approach a
limit.

4. Other notations for a double integral are discussed near the end of this
section.

Our discussion of integrals over a plane region started with two important
illustrations . The rest of this section is devoted to these applications in the
context of double integrals.

Volume Expressed as a Double Integral

Consider a solid S and its projections (“shadows”) R on a plane, as in Fig-
ure 17.1.6. Assume that for each point P in R the line through P perpendicular
to R intersects S in a line segment of length C(P ). Then

Figure 17.1.6: ARTIST:
Delete the line L, and the
current caption. Add a
point P in R and draw
the vertical line through P ,
highlighting the part that is
in S (and has length c(P ).

“The double integral of cross-section is the volume.”

Volume of S =

∫
R

C(P ) dA.
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Mass Expressed as a Double Integral

Consider a plane distribution of mass through a region R, as shown in Fig-
ure 17.1.7. The density may vary throughout the region. Denote the density
at P by σ(P ) (in grams per square centimeters). Then

Figure 17.1.7:

“The double integral of density is the total mass.”

Mass in R =

∫
R

σ(P ) dA

Average Value as a Double Integral

The average value of f(x) for x is the interval [a, b] was defined in Section 6.3
as ∫ b

a
f(x) dx

length of interval.

We make a similar definition for a function defined on a two-dimensional region.

DEFINITION (Average value) The average value of f over the
region R is ∫

R
f(P ) dA

Area of R
.

If f(P ) is positive for all P in R, there is a simple geometric interpretation
of the average of f over R. Let S be the solid situated below the graph of f (a
surface) and above the region R. The average value of f over R is the height
of the cylinder whose base is R and whose volume is the same as the volume
of S. (See Figure 17.1.8. The integral

∫
R
f(P ) dA is called “an integral over a

Figure 17.1.8:

plane region” to distinguish it from
∫ b
a
f(x) dx, which, for contrast, is called,

“an integral over an interval.”
/mnoteSHERMAN: Duplicitous? Or needed? Shorten to margin note?

Recall that
∫
R
f(P ) dA is often denoted

∫∫
R
f(P ) dA, with the two integral

signs emphasizing that the integral is over a plane set. However, the symbol
dA, which calls to mind areas, is an adequate reminder.

The integral of the function f(P ) = 1 over a region is of special interest.
The typical approximating sum

∑n
i=1 f(Pi)Ai then equals

∑n
i=1 1 · Ai = A1 +

A2 + · · ·+An, which is the area of the region R that is being partitioned. Since
every approximating sum has this same value, it follows that

lim
n→∞

n∑
i=1

f(Pi)Ai = Area of R.
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Integral Interpretation∫
R

1 dA Area of R∫
R
σ(P ) dA, σ(P ) = density Mass of R∫

R
c(P ) dA, c(P ) = length of cross section of solid Volume of R

Table 17.1.1:

Consequently The integral of a constant
function, 1, gives area.

∫
R

1 dA = Area of R.

This formula will come in handy on several occasions. The 1 is often omitted,
in which case we write

∫
R
dA = Area of R. This table summarizes some of

the main applications of the double integral
∫
R
dA:

Properties of Double Integrals

Integrals over plane regions have properties similar to those of integrals over
intervals:

1.
∫
R
cf(P ) dA = c

∫
R
f(P ) dA for any constant c.

2.
∫
R

[f(P ) + g(P )] dA =
∫
R
f(P ) dA+

∫
R
g(P ) dA.

3. If f(P ) ≤ g(P ) for all points P in R, then
∫
R
f(P ) dA ≤

∫
R
g(P ) dA.

4. If R is broken into two regions, R1 and R2, overlapping at most on their
boundaries, then∫

R

f(P ) dA =

∫
R1

f(P ) dA+

∫
R2

f(P ) dA.

For instance, consider 3 when f(P ) and g(P ) are both positive. Then
∫
R
f(P ) dA

is the volume under the surface z = f(P ) and above R in the xy plane. Simi-
larly

∫
R
g(P ) dA is the volume under z = f(P ) and above R. Then 3 asserts

that the volume of a solid is not larger than the volume of a solid that contains
it. (See Figure 17.1.9.)

Figure 17.1.9:

SHERMAN: This summary
needs to be written.
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Summary

A Word about 4-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (x, y) of real
numbers. The set of ordered triplets of real numbers (x, y, z) represents 3-
dimensional space. The set of ordered quadruplets of real numbers (x, y, z, t)
represents 4-dimensional space.
It is easy to show that 4-dimensional space is a very strange place.
In 2-dimensional space the set of points of the form (x, 0), the x-axis, meets
the set of points of the form (0, y), the y-axis, in a point, namely the origin
(0, 0). Now watch what can happen in 4-space. The set of points of the form
(x, y, 0, 0) forms a plane congruent to our familiar xy-plane. The set of points
of the form (0, 0, z, t) forms another such plane. So far, no surprise. But notice
what the intersection of those two planes is. Their intersection is just the point
(0,0,0,0). Can you picture two endless planes meeting in a single point? If so,
tell us how.
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EXERCISES for Section 17.1 Key: R–routine, M–moderate, C–challenging

1.[R] In the estimates for the volume in Example 1, the centers of the squares were
used as the Pi’s. Make an estimate for the volume in Example 1 by using the same
partition but taking as Pi

(a) the lower left corner of each Ri,

(b) the upper right corder of each Ri.

(c) What do (a) and (b) tell about the volume of the solid?

2.[R] Estimate the mass in Example 2 using the partition of R into six squares and
taking as the Pi’s

(a) upper left corners,

(b) lower right corners.

3.[R] Let R be a set in the plane whose area is A. Let f be the function such that
f(P ) = 5 for every point P in R.

(a) What can be said about any approximating sum
∑n

i=1 f(Pi)Ai formed for this
R and this f?

(b) What is the value of
∫
R f(P ) dA?

4.[R] Let R be the square with vertices (1, 1), (5, 1), (5, 5), and (1, 5). Let f(P ) be
the distance from P to the y-axis.

(a) Estimate
∫
R f(P ) dA by partitioning R into four squares and using midpoints

as sampling points.

(b) Show that 16 ≤
∫
R f(P ) dA ≤ 80.

5.[R] Let f and R be as in Example 1. Use the estimate of
∫
R f(P ) dA obtained

in the text to estimate the average of f over R.

6.[R] Assume that for all P in R, m ≤ f(P ) ≤M , where m and M are constants.
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Let A be the area of R. By examining approximating sums, show that

mA ≤
∫
R

f(P ) dA ≤MA.

7.[R]

(a) Let R be the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3). Let
f(x, y) =

√
x+ y. Estimate

∫
R

√
x+ y dA by participating R into six squares

and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f over R.

8.[R]

(a) Let R be the square with vertices (0, 0), (0.8, 0), (0.8, 0.8), and (0, 0.8). Let
f(P ) = f(x, y) = exy. Estimate

∫
R e

xy dA by partitioning R into 16 squares
and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f(P ) over R.

(c) Show that 0.64 ≤
∫
R f(P ) dA ≤ 0.64e0.64.

9.[R]

(a) Let R be the triangle with vertices (0, 0), (4, 0), and (0, 4) shown in Fig-
ure 17.1.10. Let f(x, y) = x2y. Use the partition into four triangles and
sampling points shown in the diagram to estimate

∫
R f(P ) dA.

(b) What is the maximum value of f(x, y) in R?

(c) From (b) obtain an upper bound on
∫
R f(P ) dA.

Figure 17.1.10:
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10.[R]

(a) Sketch the surface z =
√
x2 + y2.

(b) Let V be the region in space below the surface in (a) and above the square R
with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Let V be the volume of V. Show
that V ≤

√
2.

(c) Using a partition of R with 16 squares, find an estimate for V that is too
large.

(d) Using the partition in (c), find an estimate for V that is too small.

11.[R] The amount of rain that falls at point P during one year is f(P ) inches.
Let R be some geographic region, and assume areas are measured in square inches.

(a) What is the meaning of
∫
R f(P ) dA?

(b) What is the meaning of ∫
R f(P ) dA
Area of R

?

12.[M] A region R in the plane is divided into two regions R1 and R2. The function
f(P ) is defined throughout R. Assume that you know the areas of R1 and R2 (they
are A1 and A2) and the average of f over R1 and the average of f over R2 (they are
f1 and f2). Find the average of f over R. (See Figure 17.1.11(a).)

(a) (b)

Figure 17.1.11:

13.[M] A point Q on the xy plane is at a distance b from the center of a disk R

of radius a(a < b) in the xy plane. For P in R let f(P ) = 1/
−−→
PQ. Find positive

numbers c and d such that:

c <

∫
R

f(P ) dA < d.
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(The numbers c and d depend on a and b.) See Figure 17.1.11(b).

14.[M] Figure 17.1.12(a) shows the parts of some level curves of a function z =
f(x, y) and a square R. Estimate

∫
R f(P ) dA, and describe your reasoning.

(a) (b)

Figure 17.1.12:

15.[M] Figure 17.1.12(b) shows the parts of some level curves of a function z =
f(x, y) and a unit circle R. Estimate

∫
R f(P ) dA, and describe your reasoning.

16.[C]

(a) Let R be a disk of radius 1. Let f(P ), for P in R, be the distance from P to
the center of the disk. By cutting R into narrow circular rings with center at
the center of the disk, evaluate

∫
R f(P ) dA.

(b) Find the average of f(P ) over R.

Exercises 17 and 18 introduce an idea known as Monte Carlo methods for esti-
mating a double integral using randomly chosen points. These methods tend to be
rather inefficient because the error decreases on the order of 1/

√
n, where n is the

number of random points. That is a slow rate. These methods are used only when
it’s possible to choose n very large.
17.[C] This exercise involves estimating an integral by choosing points randomly.
A computing machine can be used to generate random numbers and thus random
points in the plane which can be used to estimate definite integrals, as we now
show. Say that a complicated region R lies in the square whose vertices are (0, 0),
(2, 0), (2, 2), and (0, 2), and a complicated function f is defined in R. The machine
generated 100 random points (x, y) in the square. Of these, 73 lie in R. The average
value of f for these 73 points is 2.31.

(a) What is a reasonable estimate of the area of R?

(b) What is a reasonable estimate of
∫
R f(P ) dA?
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18.[C] Let R be the disk bounded by the unit circle x2 + y2 = 1 in the xy plane.
Let f(x, y) = ex

2y be the temperature at (x, y).

(a) Estimate the average value of f over R by evaluating f(x, y) at twenty random
points in R. (Adjust your program to select each of x and y randomly in the
interval [−1, 1]. In this way you construct a random point (x, y) in the square
whose vertices are (1, 1), (−1, 1), (−1,−1), (1,−1). Consider only those points
that lie in R.)

(b) Use (a) to estimate
∫
R f(P ) dA.

(c) Show why π/e ≤ fRf(P ) dA ≤ πe.

19.[C] Sam is heckling again. “As usual, the authors made this harder than
necessary. They didn’t need to introduce “diameters.” Instead they could have
used good old area. They could have taken the limit as all the areas of the little
pieces approached 0. I’ll send them a note.”
Is Sam right?

In making finer and finer partitions as n → ∞ we saw that each Ri is small in the
sense it fits in a disk of radius rn, where rn → 0 as n→∞. The Exercises 20 to 23
in this section explore another way to control the size of a region.
20.[C] Consider a region R in the plane. The diameter, d of R, is defined as the
greater distance between two points in R. Find the diameter of

(a) a disk of radius r,

(b) and equilateral triangle of side length s,

(c) a square whose sides have length s.

21.[C]

(a) Show that a region of diameter d can always fit into a disk of diameter 2d.

(b) Can it alway fit into a disk of diameter d?

22.[C] If a region has diameter d,

(a) how small can its area be?
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(b) show that area is less than or equal to πd2/2.SHERMAN: Is this in polar
coordinate area? If so, move

to Section 17.3 or Chapter
Summary.

23.[C] The unit square can be partitioned with nine congruent squares.

(a) What is the diameter of each of these small squares?

(b) It is possible to partition that square into nine regions whose largest diameter
is 5/11. Show that 5/11 is smaller than the diameter in (a).

24.[R] Some practice differentiates.

25.[R] Some practice integrals, e.g.
∫
x2+1
x3 dx, etc.
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17.2 Computing
∫
R f (P ) dA Using Rectangular

Coordinates

In this section, we will show how to use rectangular coordinates to evaluate
the integral of a function f over a plane region R,

∫
R
f(P ) dA. This method

requires that both R and f be described in rectangular coordinates. We first
show how to describe plane regions R in rectangular coordinates.

Describing R in Rectangular Coordinates

Some examples illustrate how to describe planar regions by their cross sections
in terms of rectangular coordinates.

EXAMPLE 1 Describe a disk R of radius a in a rectangular coordinates.

(a) (b)

Figure 17.2.1:

SOLUTION Introduce an xy coordinate system with its origin at the center
of the disk, as in Figure 17.2.1(a). A glance at the figure shows that x ranges
from −a to a. All that remains is to tell how y varies for each x in [−a, a].

Figure 17.2.1(b) shows a typical x in [−a, a] and corresponding cross sec-
tion. The circle has the equation x2 +y2 = a2. The top half has the description
y =
√
a2 − x2 and the bottom half, y = −

√
z2 − y2. So, for each x in [−a, a],

y varies from −
√
a2 − x2 to

√
a2 − x2. (As a check, test x = 0. Does y

vary from −
√
a2 − 02 = −a to

√
a2 − 02 = a? It does, as an inspection of

Figure 17.2.1(b) shows.)
All told, this is the description of R by vertical cross sections:

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.
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�

EXAMPLE 2 Let R be the region bounded by y = x2, the x-axis, and the
line x = 2. Describe R in terms of cross sections parallel to the y-axis.

SOLUTION A glance at R in Figure 17.2.2(a) shows that for points (x, y)
in R, x ranges from 0 to 2. To describe R completely, we shall describe the
behavior of y for any x in the interval [0, 2].

Hold x fixed and consider only the cross section above the point (x, 0). It
extends from the x-axis to the curve y = x2; for any x, the y coordinate varies
from 0 to x2. The compact description of R by vertical cross sections is:

0 ≤ x ≤ 2, 0 ≤ y ≤ x2.

�

(a) (b)

Figure 17.2.2:

EXAMPLE 3 Describe the region R of Example 2 by cross sections parallel
to the x-axis, that is, horizontal cross sections.

SOLUTION A glance at R in Figure 17.2.2(b) shows that y varies from 0
to 4. For any y in the interval [0, 4], x varies from a smallest value x1(y) to a
largest value x2(y). Note that x2(y) = 2 for each value of y in [0, 4]. To find
x1(y), utilize the fact that the point (x1(y), y) is on the curve y = x2, that is,

x1(y) =
√
y.

The compact description of R in terms of horizontal cross sections is

0 ≤ y ≤ 4,
√
y ≤ x ≤ 2.
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0 ≤ x ≤ 4, 0 ≤ y ≤ 2
and

4 ≤ x ≤ 6, 0 ≤ y ≤ 6− x.

�

EXAMPLE 4 Describe the region R whose vertices are (0, 0), (0, 6), (4, 2),
and (0, 2) by vertical cross sections and then by horizontal cross sections. (See
Figure 17.2.3.)

Figure 17.2.3:

SOLUTION Clearly, x varies between 0 and 6. For any x in the interval
[0, 4], y ranges from 0 to 2 (independently of x). For x in [4, 6], y ranges from
0 to the value of y on the line through (4, 2) and (6, 0). This line has the
equation y = 6 − x. The description of R by vertical cross sections therefore
requires two separate statements:

Use of horizontal cross sections provides a simpler description. First, y
goes from 0 to 2. For each y in [0, 2], x goes from 0 to the value of x on the
line y = 6− x. Solving this equation for x yields x = 6− y.

The compact description in terms of horizontal cross-sections is much
shorter:

0 ≤ y ≤ 2, 0 ≤ x ≤ 6− y.

�

These examples are typical. First, determine the range of one coordinate,
and then see how the other coordinate varies for any fixed value of the first
coordinate.

Evaluating
∫
R f(P ) dA by Iterated Integrals

We will offer an intuitive development of a formula for computing double in-
tegrals over plane regions.

We first develop a way for computing a double integral over a rectangle.
After applying this formula in Example 5, we make the slight modification
needed to evaluate double integrals over more general regions.

Consider a rectangular region R whose description by cross sections is

a ≤ x ≤ b, c ≤ y ≤ d,

as shown in Figure 17.2.4(a). If f(P ) ≤ 0 for all P in R, then
∫
R
f(P ) dA is the

volume V of the solid whose base is R and which has, above P , height f(P ).
(See Figure 17.2.4(b).) Let A(x) be the area of the cross section made by a
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(a) (b) (c)

Figure 17.2.4:

plane perpendicular to the x-axis and having abscissa x, as in Figure 17.2.4(c).
As was shown in Section 5.1,

V =

a∫
b

A(x) dx.

But the area A(x) is itself expressible as a definite integral:

A(x) =

d∫
c

f(x, y) dy.

Note that x is held fixed throughout the integration to find A(x). This rea-
soning provides an iterated integral whose value is V =

∫
R
f(P ) dA, namely,∫

R

f(P ) dA = V =

b∫
a

A(x) dx =

b∫
a

 d∫
c

f(x, y) dy

 dx.

In short

∫
R

f(P ) dA =

b∫
a

 d∫
c

f(x, y) dy

 dx.

An integral over a rectangle
expressed an iterated

integral
Of course, cross sections by planes perpendicular to the y-axis could be used.
Then similar reasoning shows that

∫
R

f(P ) dA =

d∫
c

 b∫
a

f(x, y) dx

 dy.
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The quantities
∫ b
a

(∫ d
c
f(x, y) dy

)
dx and

∫ d
c

(∫ b
a
f(x, y) dx

)
dy are called

iterated integrals. Usually the brackets are omitted and are written
∫ b
a

∫ d
c
f(x, y) dy dx

and
∫ d
c

∫ b
a
f(x, y) dx dy. The order of dx and dy

matters; the differential that
is on the left tells which
integration is performed
first.

EXAMPLE 5 Compute the double integral
∫
R
f(P ) dA, where R is the

rectangle shown in Figure 17.2.5(a) and the function f is defined by f(P ) =

AP
2
.

(a) (b)

Figure 17.2.5:

SOLUTION Introduce xy coordinates in the convenient manner depicted in
Figure 17.2.5(b). Then f has this description in rectangular coordinates:

f(x, y) = AP
2

= x2 + y2.

To describe R, observe that x takes all values from 0 to 4 and that for each
x the number y takes all values between 0 and 2. Thus

∫
R

f(P ) dA =

4∫
0

 2∫
0

(x2 + y2) dy

 dx.

We must first compute the inner integral The cross-sectional area
A(x).

2∫
0

(x2 + y2) dy, where x is fixed in [0, 4].

To apply the Fundamental Theorem of Calculus, first find a function F (x, y)
such that

∂F

∂y
= x2 + y2.
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Keep in mind that x is constant during this first integration.

F (x, y) = x2y +
y3

3

is such a function. The appearance of x in this formula should not disturb us,
since x is fixed for the time being. By the Fundamental Theorem of Calculus,

2∫
0

(x2 + y2) dy =

(
x2y +

y3

3

)∣∣∣∣y=2

y=0

=

(
x2 · 2 +

23

3

)
−
(
x2 · 0 +

03

3

)
= 2x2 +

8

3
.

The notation |y=2
y=0 reminds

us that y is replaced by 0
and 2.

The formula 2x2 + 8
3

is the area A(x) discussed earlier in this section.
Now compute

4∫
0

A(x) dx =

4∫
0

(2x2 +
8

3
) dx.

By the Fundamental Theorem of Calculus,

4∫
0

(
2x2 +

8

3

)
dx =

(
2x3

3
+

8x

3

)∣∣∣∣4
0

=
160

3
.

How do these compare with
the estimates in

Section 17.1?
Hence the two-dimensional definite integral has the value 160

3
. The volume

of the region in Problem 1 of Sec. 16.1 is 160
3

cubic inches. The mass in
Problem 2 is 160

3
grams. �

If R is not a rectangle, the repeated integral that equals
∫
R
f(P ) dA differs

from that for the case where R is a rectangle only in the intervals of integration.
If R has the description

a ≤ x ≤ b y1(x) ≤ y ≤ y2(x),

by cross sections parallel to the y-axis, then

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Figure 17.2.6:

Similarly, if R has the description

c ≤ y ≤ d x1(y≤x ≤ x2(y),

by cross sections parallel to the x-axis, then
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∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

The intervals of integration are determined by R; the function f influences
only the integrand. (See Figure 17.2.7.)

Figure 17.2.7:

In the next example R is the region bounded by y = x2, x = 2, and
y = 0; the function is f(x, y) = 3xy. The integral

∫
R

3xy dA has at least three
interpretations:

Figure 17.2.8:

1. If at each point P = (x, y) in R we erect a line segment above P of
length 3xy, then the integral is the volume of the resulting solid. (See
Figure 17.2.8.)

2. If the density of matter at (x, y) in R is 3xy, then
∫
R

3xy dA is the total
mass in R.

3. If the temperature at (x, y) in R is 3xy then
∫
R

3xy dA divided by the
area of R is the average temperature in R.

EXAMPLE 6 Evaluate
∫
R

3xy dA over the region R shown in Figure 17.2.9.

Figure 17.2.9:

This is the same R as in
Examples 2 and 3.SOLUTION If cross sections parallel to the y-axis are used, then R is de-

scribed by
0 ≤ x ≤ 2 0 ≤ y ≤ x2.

Thus ∫
R

3xy dA =

2∫
0

 x2∫
0

3xy dy

 dx,

which is easy to compute. First, with x fixed,

x2∫
0

3xy dy =

(
3x
y2

2

)∣∣∣∣y=x2

y=0

= 3x
(x2)2

2
− 3x

02

2
=

3x5

2
.

Then,
2∫

0

3x5

2
dx =

3x6

12

∣∣∣∣2
0

= 16.
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(a) (b)

Figure 17.2.10:

Figure 17.2.10(a) shows which integration is performed first.

The region R can also be described in terms of cross sections parallel to
the x-axis:

0 ≤ y ≤ 4
√
y ≤ x ≤ 2.

In this case, the double integral is evaluated as:

∫
R

3xy dA =

4∫
0

 2∫
√
y

3xy dx

 dy,

which, as the reader may verify, equals 16. See Figure 17.2.10(b). �

In Example 6 we could evaluate
∫
R
f(P ) dA by cross sections in either

direction. In the next example we don’t have that choice.

Figure 17.2.11:

EXAMPLE 7 A triangular lamina is located as in Figure 17.2.11. Its
density at (x, y) is ey

2
. Find its mass, that is

∫
R
f(P ) dA, where f(x, y) = ey

2
.

SOLUTION The description of R by vertical cross sections is

0 ≤ x ≤ 2,
x

2
≤ y ≤ 1.

Hence ∫
R

f(P ) dA =

2∫
0

 1∫
x/2

ey
2

dy

 dx.
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Since ey
2

does not have an elementary antiderivative, the Fundamental Theo-
rem of Calculus is useless in computing

1∫
x/2

ey
2

dy.

So we try horizontal cross sections instead. The description of R is now

0 ≤ y ≤ 1, 0 ≤ x ≤ 2y.

This leads to a different iterated integral, namely:

∫
R

f(P ) dA =

1∫
0

 2y∫
0

ey
2

dx

 dy.

The first integration,
∫ 2

0
ey

2
dx, is easy, since y is fixed; the integrand is Note that the integrand

does not depend on x.constant. Thus

2y∫
0

ey
2

dx = ey
2

2y∫
0

1 dx = ey
2

x
∣∣∣x=2y

x=0
= ey

2

2y.

The second definite integral in the repeated integral is thus
∫ 1

0
ey

2
2y dy, which

can be evaluated by the Fundamental Theorem of Calculus, since d(ey
2
)/dy =

ey
2
2y:

1∫
0

ey
2

2y dy = ey
2
∣∣∣1
0

= e12 − e02

= e− 1.

The total mass is e− 1. �
Notice that computing a definite integral over a plane region R involves,

first, a wise choice of an xy-coordinate system; second, a description of R
and f relative to this coordinate system; and finally, the computation of two
successive definite integrals over intervals. The order of these integrations
should be considered carefully since computation may be much simpler in one
than the other. This order is determined by the description of R by cross
sections.

Summary

We showed that the integral of f(P ) over a plane region R can be evaluated
by an iterated integral, where the limits of integration are determined by R
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(not by f). If each line parallel to the y-axis meets R in at most two points
then R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)

and ∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

If each line parallel to the x-axis meets R in at most two points, then,
similarly, R can be described in the form

c ≤ y ≤ d x1(y) ≤ x ≤ x2(y)

and ∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

A Few Words on Notation
We use the notation

∫
f(P ) dA or

∫
R
f(P ) dA for a (double) integral over

a plane region,
∫
f(P ) dS or

∫
S f(P ) dS for an integral over a surface, and∫

f(P ) dV or
∫
R
f(P ) dV for a (triple) integral over a region in space. The

symbols dA, dS, and dV indicate the type of set over which the integral is
defined.

Many people traditionally use repeated integral signs to distinguish di-
mensions. For instance they would write

∫
f(P ) dA as

∫∫
f(P )dA or∫∫

f(x, y) dxdy. Similarly, they denote a triple integral by
∫∫∫

f(P ) dxdydz.
We use the single-integral-sign notation for all integrals for three reasons:

1. it is free of any coordinate system

2. it is compact (uses the fewest symbols):
∫

for “integral”, f(P ) or f for
the integrand, and dA, dS, or dV for the set

3. it allows the symbols
∫∫

and
∫∫∫

to be reserved for use exclusively for
iterated integrals.

Iterated integrals are a completely different mathematical object. Each integral
in an iterated integral is an integral over an interval. Note that this means we
we write dx (or dy or dz) only when we are talking about an integral over an
interval.
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EXERCISES for Section 17.2 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 12 provide practice in describing plane regions by cross sections in
recangular coordinates. In each exercise, describe the region by (a) vertical cross
sections and (b) horizontal cross sections.
1.[R] The triangle whose vertices are (0, 0), (2, 1), (0, 1).
2.[R] The triangle whose vertices are (0, 0), (2, 0), (1, 1).
3.[R] The parallelogram with vertices (0, 0), (1, 0), (2, 1), (1, 1).
4.[R] The parallelogram with vertices (2, 1), (5, 1), (3, 2), (6, 2).
5.[R] The disk of radius 5 and center (0, 0).
6.[R] The trapezoid with vertices (1, 0), (3, 2), (3, 3),(1, 6).
7.[R] The triangle bounded by the lines y = x, x+ y = 2, and x+ 3y = 8.
8.[R] The region bounded by the ellipse 4x2 + y2 = 4.
9.[R] The triangle bounded by the lines x = 0, y = 0, and 2x+ 3y = 6.
10.[R] The region bounded by the curves y = ex, y = 1− x, and x = 1.
11.[R] The quadrilateral bounded by the lines y = 1, y = 2, y = x, y = x/3.
12.[R] The quadrilateral bounded by the lines x = 1, x = 2, y = x, y = 5− x.

In Exercises 13 to 16 draw the regions and describe them by horizontal cross sec-
tions.
13.[R] 0 ≤ x ≤ 2, 2x ≤ y ≤ 3x
14.[R] 1 ≤ x ≤ 2, x3 ≤ y ≤ 2x2

15.[R] 0 ≤ x ≤ π/4, 0 ≤ y ≤ sinx and π/4 ≤ x ≤ π/2, 0 ≤ y ≤ cosx
16.[R] 1 ≤ x ≤ e, (x− 1)/(e− 1? ≤ y ≤ lnx

In Exercises 17 to 22 evaluate the iterated integrals.
17.[R]

∫ 1
0

(∫ x
0 (x+ 2y) dy

)
dx

18.[R]
∫ 2

1

(∫ 2x
x dy

)
dx

19.[R]
∫ 2

0

(∫ x2

0 xy2 dy
)
dx

20.[R]
∫ 2

1

(∫ y
0 e

x+y dx
)
dy

21.[R]
∫ 2

1

(∫ √y
0 yx2 dx

)
dy

22.[R]
∫ 1

0

(∫ x
0 y sin(πx) dy

)
dx

23.[R] Complete the calculation of the second iterated integral in Example 6.

24.[R]

(a) Sketch the solid region S below the plane z = 1+x+y and above the triangle
R in the place with vertices (0, 0), (1, 0), (0, 2).
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(b) Describe R in terms of coordinates.

(c) Set up an iterated integral for the volume of S.

(d) Evaluate the expression in (c), and show in the manner of Figure 17.2.10(a)
and 17.2.10(b) which integration you performed first.

(e) Carry out (c) and (d) in the other order of integration.

25.[R] Let S be the solid region below the paraboloid z = x2 + 2y2 and above
the rectangle in the xy plane with vertices (0, 0), (1, 0), (1, 2), (0, 2). Carry out the
steps of Exercise 24 in this case.

26.[R] Let S be the solid region below the saddle z = xy and above the triangle in
the xy plane with vertices (1, 1), (3, 1), and (1, 4). Carry out the steps of Exercise 24
in this case.

27.[R] Let S be the solid region below the saddle z = xy and above the region n
the first quadrant of the xy plane bounded by the parabolas y = x2 and y = 2x2

and the line y = 2. Carry out the steps of Exercise 24 in this case.

28.[R] Find the mass of a thin lamina occupying the finite region bounded by
y = 2x2 and y = 5x− 3 and whose density at (x, y) is xy.

29.[R] Find the mass of a thin lamina occupying the triangle whose vertices are
(0, 0), (1, 0), (1, 1) and whose density at (x, y) is 1/(1 + x2).

30.[R] The temperature at (x, y) is T (x, y) = cos(x + 2y). Find the average tem-
perature in the triangle with vertices (0, 0), (1, 0), (0, 2).

31.[R] The temperature at (x, y) is T (x, y) = ex−y. Find the average temperature
in the region in the first quadrant bounded by the triangle with vertices (0, 0), (1, 1),
and (3, 1).

In each of Exercises 32 to 35 replace the given iterated integral by an equivalent one
with the order of integration reversed. First sketch the region R of integration.
32.[R]

∫ 2
0

(∫ x2

0 x3y dy
)
dx

33.[R]
∫ π/2

0

(∫ cosx
0 x2 dy

)
dx

34.[R]
∫ 1

0

(∫ x
x/2 xy dy

)
dx+

∫ 2
1

(∫ 1
x/2 xy dy

)
dx

35.[R]
∫ 0
−1/
√

2

(∫ √1−x2

−x x3y dy
)
dx+

∫ 1
0

(∫ √1−x2

0 x3y dy
)
dx
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In Exercises 36 to 39 evaluate the iterated integrals. First sketch the region of inte-
gration.
36.[R]

∫ 1
0

(∫ 1
x sin(y2) dy

)
dx

37.[R]
∫ 1

0

(∫ 1√
x

dy√
1+y3

)
dx

38.[R]
∫ 1

0

(∫ 1
3
√
y

√
1 + x4/dx

)
dy

39.[R]
∫ 2

1

(∫ y
1

lnx
x dx

)
dy +

∫ 4
2

(∫ 2
y/2

lnx
x dx

)
dy

40.[R] Let f(x, y) = y2ey
2

and let R be the triangle bounded by y = a, y = x/2,
and y = x. Assume that a is positive.

(a) Set up two repeated integrals for
∫
R f(P ) dA.

(b) Evaluate the easier one.

41.[R] Let R be the finite region bounded by the curve y =
√
x and the line y = x.

Let f(x, y) = (sin(y))/y if y 6= 0 and f(x, 0) = 1. Compute
∫
R f(P ) dA.
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17.3 Computing
∫
R f (P ) dA Using Polar Coor-

dinates

This section shows how to evaluate
∫
R
f(P ) dA by using polar coordinates.

This method is especially appropriate when the region R has a simple de-
scription in polar coordinates, for instance, if it is a disk or cardioid. As in
Section 17.2, we first examine how to describe cross sections in polar coordi-
nates. Then we describe the iterated integral in polar coordinates that equals∫
R
f(P ) dA.

Describing R in Polar Coordinates

In describing a region R in polar coordinates, we first determine the range of θ
and then see how r varies for any fixed value of θ. (The reverse order is seldom
useful.) Some examples show how to find how r varies for each θ.

EXAMPLE 1 Let R be the disk of radius a and center at the pole of a
polar coordinate system. (See Figure 17.3.1.) Describe R in terms of cross
sections by rays emanating from the pole.

Figure 17.3.1:

SOLUTION To sweep out R, θ goes from 0 to 2π. Hold θ fixed and con-
sider the behavior of r on the ray of angle θ. Clearly, r goes from 0 to a,
independently of θ. (See Figure 17.3.1.) The complete description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

�

EXAMPLE 2 R Let R be the region between the circles r = 2 cos θ and
r = 4 cos θ. Describe R in terms of cross sections by rays from the pole. (See
Figure 17.3.2.)

Figure 17.3.2:

SOLUTION To sweep out this region, use the rays from θ = −π/2 to θ =
π/2. for each such θ, r varies from 2 cos θ to 4 cos θ. The complete description
is

−π
2
≤ θ ≤ π

2
, 2 cos θ ≤ r ≤ 4 cos θ.

�
As Examples 1 and 2 suggest, polar coordinates provide simple descriptions

for regions bounded by circles. The next example shows that polar coordinates
may also provide simple descriptions of regions bounded by straight lines,
especially if some of the lines pass through the origin.

EXAMPLE 3 Let R be the triangular region whose vertices, in rectangular
coordinates, are (0, 0), (1, 1), and (0, 1). Describe R in polar coordinates.

Figure 17.3.3: ARTIST:
Show typical ray, as in Fig-
ure 17.3.2.
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SOLUTION Inspection of R in Figure 17.3.3 shows that θ varies from π/4
to π/2. For each θ, r goes from 0 until the point (r, θ) is on the line y = 1, that
is, on the line r sin(θ) = 1. Thus the upper limit of r for each θ is 1/ sin(θ).
The description of R is

π

4
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

sin(θ)
.

� In general, cross sections by rays lead to descriptions of plane regions of the

form:

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

A Basic Difference Between Rectangular and Polar Co-
ordinates

Before we can set up an iterated integral in polar coordinates for
∫
R
f(P ) dA

we must contrast certain properties of rectangular and polar coordinates.
Consider all points (x, y) in the plane that satisfy the inequalities

x0 ≤ x ≤ x0 + ∆x and y0 ≤ y ≤ y0 + ∆y,

where x0, ∆x, y0 and ∆y are fixed numbers with ∆x and ∆y positive. The
set is a rectangle of sides ∆x and ∆y shown in Figure 17.3.4(a). The area of
this rectangle is simply the product of ∆x and ∆y; that is,

Area = ∆x∆y. (17.3.1)

This will be contrasted with the case of polar coordinates.

(a) (b)

Figure 17.3.4:
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Consider the set in the plane consisting of the points (r, θ) such that

r0 ≤ r ≤ r0 + ∆r and θ0 ≤ θ ≤ θ0 + ∆θ,

where r0, ∆r, θ0 and ∆θ are fixed numbers, with r0, ∆r, θ0 and ∆θ all positive,
as shown in Figure 17.3.4(b).The exact area is found in

Exercise 32. When ∆r and ∆θ are small, the set is approximately a rectangle, one side
of which has length ∆r and the other, r0∆θ. So its area is approximately
r0∆r∆θ. In this case,

Area ≈ r0∆r∆θ. (17.3.2)

The area is not the product of ∆r and ∆θ. (It couldn’t be since ∆θ is in
radians, a dimensionless quantity – “arc length subtended on a circle divided
by length of radius” – so ∆r∆θ has the dimension of length, not of area.) The
presence of this extra factor r0 will be reflected in the integrand we use when
integrating in polar coordinates.

It is necessary to replace dA by r dr dθ, not simply by dr dθ.

How to Evaluate
∫
R f(P ) dA by an Iterated Integral in

Polar Coordinates

The method for computing
∫
R
f(P ) dA with polar coordinates involves an iter-

ated integral where the dA is replaced by r dr dθ. A more detailed explanation
of why the r must be added is given at the end of this section.Notice the factor r in the

integrand.

Evaluating
∫
R
f(P ) dA in Polar Coordinates

1. Express f(P ) in terms of r and θ: f(r, θ).

2. Describe the region R in polar coordinates:

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

3. Evaluate the iterated integral:

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

Figure 17.3.5:

December 4, 2010 Calculus



§ 17.3 COMPUTING
∫
R F (P ) DA USING POLAR COORDINATES 1413

EXAMPLE 4 Let R be the semicircle of radius a shown in Figure 17.3.5.
Let f(P ) be the distance from a point P to the x-axis. Evaluate

∫
R
f(P ) dA

by an iterated integral in polar coordinates.
SOLUTION In polar coordinates, R has the description

0 ≤ θ ≤ π, 0 ≤ r ≤ a.

The distance from P to the x-axis is, in rectangular coordinates, y. Since
y = r sin(θ), f(P ) = r sin(θ). Thus, Notice the extra r in the

integrand.∫
R

f(P ) dA =

π∫
0

 a∫
0

(r sin(θ))r dr

 dθ.

From here on the
calculation are like those in
the preceding section.

The calculation of the iterated integral is like that for an iterated integral
in rectangular coordinates. First, evaluate the inside integral:

a∫
0

r2 sin(θ) dr = sin(θ)

a∫
0

r2 dr = sin(θ)

(
r3

3

)∣∣∣∣a
0

=
a3 sin(θ)

3
.

The outer integral is therefore

π∫
0

a3 sin θ

3
dθ =

a3

3

π∫
0

sin θ dθ =
a3

3
(− sin θ)

∣∣∣∣π
0

=
a3

3
[(− cos π)− (− cos 0)] =

a3

3
(1 + 1) =

2a3

3
.

Thus ∫
R

y dA =
2a3

3
.

�
Example 5 refers to a ball of radius a. Generally, we will distinguish be-

tween a ball, which is a solid region, and a sphere, which is only the surface
of a ball.

EXAMPLE 5 A ball of radius a has its center at the pole of a polar co-
ordinate system. Find the volume of the part of the ball that lies above the
plane region R bounded by the curve r = a cos(θ). (See Figure 17.3.6.)

Figure 17.3.6:

SOLUTION It is necessary to describe R and f in polar coordinates, where
f(P ) is the length of a cross section of the solid made by a vertical line through
P . R is described as follows: r goes 0 to a cos(θ) for each θ in [−π/2, π/2],
that is,

−π
2
≤ θ ≤ π

2
, 0 ≤ r ≤ a cos θ.
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To express f(P ) in polar coordinates, consider Figure 17.3.7, which shows the

Figure 17.3.7:

top half of a ball of radius a. By the Pythagorean Theorem,

r2 + (f(r, θ))2 = a2.

Thus
f(r, θ) =

√
a2 − r2.

Consequently,

Volume =

∫
R

f(P ) dA =

π/2∫
−π/2

 a cos(θ)∫
0

√
z2 − r2r dr

 dθ.

Exploiting symmetry, compute half the volume, keeping θ in [0, π/2], and thenRemember to double.

double the result:

a cos(θ)∫
0

√
a2 − r2r dr =

−(a2 − r2)3/2

3

∣∣∣∣a cos(θ)

0

= −
(

(a2 − a2 cos2(θ))3/2

3
− (a2)3/2

3

)

=
a3

3
− (a2 − a2 cos2(θ))3/2

3
=
a3

3
− a3(1− cos2(θ))3/2

3

=
a3

3
(1− sin3(θ)).

(The trigonometric formula used above, sin(θ) =
√

1− cos2(θ), is true when
0 ≤ θ ≤ π/2 but not when −π/2 ≤ θ ≤ 0.)

Then comes the second integration:

π/2∫
0

a3

3
(1− sin3(θ)) dθ =

a3

3

π/2∫
0

(1− (1− cos2(θ)) sin(θ)) dθ

=
a3

3

π/2∫
0

1− sin(θ)− cos2(θ) sin(theta) dθ

=
a3

3

(
θ + cos(θ)− cos3(θ)

3

)∣∣∣∣π/2
0

=
a3

3

[
π

2
−
(

1− 1

3

)]
= a3

(
3π − 4

18

)
.

The total volume is twice is large:We remembered.

a3

(
3π − 4

9

)
.
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�

EXAMPLE 6 A circular disk of radius a is formed of a material which had
a density at each point equal to the distance from the point to the center.

(a) Set up an iterated integral in rectangular coordinates for the total mass
of the disk.

(b) Set up an iterated integral in polar coordinates for the total mass of the
disk.

(c) Compute the easier one.

Figure 17.3.8:

SOLUTION The disk is shown in Figure 17.3.8.

(a) (Rectangular coordinates) The density σ(P ) at the point (P ) = (x, y) is√
x2 + y2. The disk has the description

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.

Thus

Mass =

∫
R

σ(P ) dA =

a∫
−a


√
a2−x2∫

−
√
a2−x2

√
x2 + y2 dy

 dx.

(b) (Polar coordinates) The density σ(P ) at P = (r, θ) is r. The disk has
the description

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

Thus

Mass =

∫
R

σ(P ) dA =

2π∫
0

 a∫
0

r · r dr

 dθ =

2π∫
0

 a∫
0

r2 dr

 dθ.

(c) Even the first integration in the iterated integral in (a) would be tedious.
However, the iterated integral in (b) is a delight: The first integration
gives

a∫
0

r2 dr =
r3

3

∣∣∣∣a
0

=
a3

3
.
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The second integration gives

2π∫
0

a3

3
dθ =

a3θ

3

∣∣∣∣2π
0

=
2πa3

3
.

The total mass is 2πa3/3.

�

A Fuller Explanation of the Extra r in the Integrand

Consider
∫
R
f(P ) dA as the region in the plane bound by the circle r = a and

r = b and the range θ = α and θ = β. Break it into n2 little pieces with
the aid of the partitions r0 = a, r1, ri, rn = b and θ0 = α, θ1, θj, θn = β. For
convenience, assume that all ri−ri−1 are equal to ∆r and all θj−θj−1 are equal
to ∆θ. (See Figure 17.3.9(a).) The typical patch, shown in Figure 17.3.9(b),

(a) (b)

Figure 17.3.9: (b) Pij is
(
rj+rj+1

2
,
θj+θi−1

2

)
has area, exactly

Aij =
(rj + rj−1)

2
(rj − rj−1)(θi − θi−1),

as shown in Exercise 6.
Then the sum of the n2 terms of the form f(Pij)Aij is an estimate of∫

R
f(P ) dA.

Figure 17.3.10:

Let us look closely at the summand for the n patches between the rays
θ = θi−1 and θ = θi, as shown in Figure 17.3.10.
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The sum is
n∑
j=1

f

(
rj + rj−1

2
,
θi + θi−1

2

)
rj + rj+1

2
∆r∆θ. (17.3.3)

In (17.3.3), θi, θi−1, and ∆θ are constants. If we define g(r, θ) to be f(r, θ)r,
then the sum is (

n∑
i−1

g

(
rj + rj+1

2
,
θi + θi−1

2

)
∆r

)
∆θ. (17.3.4)

The sum in brackets in (17.3.4) is an estimate of

b∫
a

g

(
r,
θj + θj−1

2

)
dr.

Thus the sum, corresponding to the region between the rays θ = θi and θ =
θi−1, is

n∑
i=1

b∫
a

g

(
r,
θi + θi−1

2

)
dr ∆θ. (17.3.5)

Now let h(θ) =
∫ b
a
g(r, θ) dr. Then (17.3.5) equals

n∑
i=1

h

(
θi + θi−1

2

)
∆θ.

This is an estimate of
∫ b
a
f(θ) dθ. Hence the sum of all n2 little terms of the

form f(Pij)Aij is an approximation of

β∫
α

h(θ) dθ =

β∫
α

 b∫
a

g(r, θ) dr

 dθ =

β∫
α

 b∫
a

f(r, θ)r dr

 dθ.

The extra factor r appears as we obtained the first integral,
∫ b
a
f(r, θ)r dr.

The sum of the n2 terms Aij, which we knew approximated the double integral∫
R
f(P ) dA, we now see approximate also the iterated integral (17.3.6). Taking

limits as n→∞ show that the iterated integral equals the double integral.

Summary

We saw how to calculate an integral
∫
R
f(P ) dA by introducing polar coordi-

nates. In this case, the plane region R can be described, in polar coordinates,
as

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ)
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then ∫
R

f(P ) dA =

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

The extra r in the integrand is due to the fact that a small region corresponding
to changes dr and dθ has area area approximately r dr dθ (not dr dθ). Polar
coordinates are convenient when either the function f or the region R has a
simple description in terms of r and θ.
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EXERCISES for Section 17.3 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 6 draw and describe the given regions in the form α ≤ θ ≤ β,
r1(θ) ≤ r ≤ r2(θ).
1.[R] The region inside the curve r = 3 + cos(θ).
2.[R] The region between the curve r = 3 + cos(θ) and the curve r = 1 + sin(θ).
3.[R] The triangle whose vertices have the rectangular coordinates (0, 0),(1, 1), and
(1,
√

3).
4.[R] The circle bounded by the curve r = 3 sin(θ).

5.[R] The region shown in Figure 17.3.11.

Figure 17.3.11:

6.[R] The region in the loop of the three-leaved rose, r = sin(3θ), that lies in the
first quadrant.

7.[R]

(a) Draw the region R bounded by the lines y = 1, y = 2, y = x, y = x/
√

3.

(b) Describe R in terms of horizontal cross sections,

(c) Describe R in terms of vertical cross sections,

(d) Describe R in terms of cross sections by polar rays.

8.[R]

(a) Draw the region R whose description is given by

−2 ≤ y ≤ 2, −
√

4− y2 ≤ x ≤
√

4− y2.

(b) Describe R by vertical cross sections.
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(c) Describe R by cross sections obtained using polar rays.

9.[R] Describe in polar coordinates the square whose vertices have rectangular co-
ordinates (0, 0), (1, 0), (1, 1), (0, 1).

10.[R] Describe the trapezoid whose vertices have rectangular coordinates (0, 1),
(1, 1), (2, 2), (0, 2).

(a) in polar coordinates,

(b) by horizontal cross sections,

(c) by vertical cross sections.

In Exercises 5 to 14 draw the regions and evaluate
∫
R r

2 dA for the given regions
R.
11.[R] −π/2 ≤ θ ≤ π/2, 0 ≤ r ≤ cos(θ)
12.[R] 0 ≤ θ ≤ π/2, 0 ≤ r ≤ sin2(θ)
13.[R] 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 + cos(θ)
14.[R] 0 ≤ θ ≤ 0.3, 0 ≤ r ≤ sin 2(θ)

In Exercises 15 to 18 draw R and evaluate
∫
R y

2 dA for the given regions R.
15.[R] The circle of radius a, center at the pole.
16.[R] The circle of radius a with center at (a, 0) in polar coordinates.
17.[R] The region within the cardioid r = 1 + sin θ.
18.[R] The region within one leaf of the four-leaved rose r = sin 2θ.

In Exercises 19 and 20, use iterated integrals in polar coordinates to find the given
point.
19.[R] The center of mass of the region within the cardioid r = 1 + cos(θ).
20.[R] The center of mass of the region within the leaf r = cos 3(θ) that lies along
the polar axis.

The average of a function f(P ) over a region R in the plane is defined as
∫
R f(P ) dA

divided by the area of R. In each of Exercises 21 to 24, find the average of the given
function over the given region.
21.[R] f(P ) is the distance from P to the pole; R is one leaf of the three-leaved
rose, r = sin(3θ).
22.[R] f(P ) is the distance from P to the x-axis; R is the region between the rays
θ = π/6, θ = π/4, and the circles r = 2, r = 3.
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23.[R] f(P ) is the distance from P to a fixed point on the border of a disk R of
radius a. (Hint: Choose the pole wisely.)
24.[R] f(P ) is the distance from P to the x-axis; R is the region within the cardioid
r = 1 + cos(θ).

In Exercises 25 to 28 evaluate the given iterated integrals using polar coordinates.
Pay attention to the elements of each exercise that makes it appropriate for evalu-
ation in polar coordinates.
25.[R]

∫ 1
0

(∫ x
0

√
x2 + y2 dy

)
dx

26.[R]
∫ 1

0

(∫ √1−x2

0 x3 dy
)
dx

27.[R]
∫ 1

0

(∫ √1−x2

x xy dy
)
dx

28.[R]
∫ 2

1

(∫ √3x

x/
√

3
(x2 + y2)3/2 dy

)
dx

29.[R] Evaluate the integrals over the given regions.

(a)
∫
R cos(x2 + y2) dA; R is the portion in the first quadrant of the disk of radius
a centered at the origin.

(b)
∫
R

√
x2 + y2 dA; R is the triangle bounded by the line y = x, the line x = 2,

and the x-axis.

30.[R] Find the volume of the region above the paraboloid z = x2 + y2 and below
the plane z = x+ y.

31.[R] The area of a region R is equal to
∫
R 1 dA. Use this to find the area of a

disk of radius a. (Use an iterated integral in polar coordinates.)

32.[R] Find the area of the shaded region in Figure 17.3.4(b) as follows:

(a) Find the area of the ring between two circles, one of radius r0, the other of
radius r0 + ∆r.

(b) What fraction of the area in (a) is included between two rays whose angles
differ by ∆θ?

(c) Show that the area of the shaded region in Figure 17.3.4(b) is precisely(
r0 +

∆r
2

)
∆r∆θ.
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33.[R] Evaluate the repeated integral

π/2∫
−π/2

 a cos(θ)∫
0

√
a2 − r2 r dr

 dθ

directly. The result should still be a3(3π − 4)/9. (In Example 5 we computed half
the volume and doubled the result.)
Caution: Use trigonometric formulas with care.
Prior to beginning Exercise 34, consider the following two quotes:

Once when lecturing to a class he [the physicist Lord Kelvin] used the
word “mathematician” and then interrupting himself asked the class:
“Do you know what a mathematician is?” Stepping to his blackboard
he wrote upon it:

∫∞
−∞ e

−x2
dx =

√
π. Then putting his finger on what

he had written, he turned to his class and said, “A mathematician is
one to whom this is as obvious as that twice two makes four is to you.”

S. P. Thompson, in Life of Lord Kelvin (Macmillan, London, 1910).

Many things are not accessible to intuition at all, the value of
∫∞

0 e−x
2
dx

for instance.

J. E. Littlewood, “Newton and the Attraction of the Sphere”, Mathematical Gazette,
vol. 63, 1948.
34.[M] This exercise shows that

∫∞
0 e−x

2
dx =

√
π

2 . Let R1, R2, and R3 be the
three regions indicated in Figure 17.3.12, and f(P ) = e−r

2
where r is the distance

from P to the origin. Hence, f(r, θ) = e−r
2

in polar coordinates and in rectangular
coordinates f(x, y) = e−x

2−y2 . Note: Observe that R1 is inside R2 and R2 is inside
R3.

(a) Show that
∫
R1
f(P ) dA = π

4

(
1− e−a2

)
and that

∫
R3
f(P ) dA = π

4

(
1− e−2a2

)
.

(b) By considering
∫
R2
f(P ) dA and the results in (a), show that

π

4

(
1− e−a2

)
<

 ∞∫
0

e−x
2
dx

2

<
π

4

(
1− e−2a2

)
.

(c) Show that
∫∞

0 e−x
2
dx =

√
π

2 .

(a) (b) (c)
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Figure 17.3.12:
35.[R] Figure 17.3.13 shows the “bell curve” or “normal curve” often used to assign
grades in large classes. Using the fact established in Exercise 34 that

∫∞
0 e−x

2
dx =√

π/2, show that the area under the curve in Figure 17.3.13 is 1.

Figure 17.3.13:

36.[R] (The spread of epidemics.) In the theory of a spreading epidemic it is
assumed that the probability that a contagious individual infects an individual D
miles away depends only on D. Consider a population that is uniformly distributed
in a circular city whose radius is 1 mile. Assume that the probability we mentioned
is proportional to 2 − D. For a fixed point Q let f(P ) = 2 − PQ. Let R be the
region occupied by the city.

(a) Why is the exposure of a person residing at Q proportional to
∫
R f(P ) dA,

assuming that contagious people are uniformly distributed throughout the
city?

(b) Compute this definite integral when Q is the center of town and when Q is
on the edge of town.

(c) In view of (b), which is the safer place?

Transportation problems lead to integrals over plane sets, as Exercises 37 to 40
illustrate.
37.[R] Show that the average travel distance from the center of a disk of area A
to points in the disk is precisely 2

√
A/(3

√
)π ≈ 0.376

√
A.

38.[R] Show that the average travel distance from the center of a regular hexagon
of area A to points in the hexagon is

√
2A

33/4

(
1
3

+
ln 3
4

)
≈ 0.377

√
A.
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39.[R] Show that the average travel distance from the center of a square of area A
to points in the square is (

√
2 + ln(tan(3π/8)))

√
A/6 ≈ 0.383

√
A.

40.[R] Show that the average travel distance from the centroid of an equilateral
triangle of area A to points in the triangle is

√
A

39/4

(
2
√

3 + ln(tan(
5π
12

))
)
≈ 0.404

√
A

Note: The centroid of a triangle is its center of mass.

In Exercises 37 to 40 the distance is the ordinary straight-line distance. In cities the
usual street pattern suggests that the “metropolitan” distance between the points
(x1, y1) and (x2, y2) should be measured by |x1 − x2|+ |y1 − y2|.
41.[M] Show that if in Exercise 37 metropolitan distance is used, then the average
is 8
√
A/(3π3/2) ≈ 0.470

√
A.

42.[M] Show that if in Exercise 40 metropolitan distance is used, then the average
is
√
A/2. In most cities the metropolitan average tends to be about 25 percent

larger than the direct-distance average.

43.[C]

Sam: The formula in this section for integrating in polar coordinates is wrong. I’ll
get the right formula. We don’t need the factor r.

Jane: But the book’s formula gives the correct answers.

Sam: I don’t care. Let f(r, θ) be positive and I’ll show how to integrate over the
set R bounded by r = b and r = a, b > a, and θ = β and θ = α. We have∫
R f(P ) dA is the volume under the graph of f and above R. Right?

Jane: Right.

Sam: The area of the cross-section corresponds to a fixed angle θ is
∫ b
a f(r, θ) dr.

Right?

Jane: Right.

Sam: So I, just integrate cross-sectional areas as θ goes from α to β, and the
volume is therefore

∫ β
α (
∫ b
a f(r, θ) dr) dθ. Perfectly straightforward. I hate to

overthrow a formula that’s been around for three centuries.

What does Jane say next?

44.[C]
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Jane: I won’t use a partition. Instead, look at the area under the graph of f and
above the circle of radius r. I’ll draw this fence for you (see Figure 17.3.14(a).

(a) (b)

Figure 17.3.14:

To estimate its area I’ll cut the arc AB into n sections of equal length by
angle θ0 = a . . . .

Then break AB into n short area, each of length r∆θ. (Remember, Sam, how
radians are defined.) The typical small approach to the shaded area looks like
Figure 17.3.14(b). That’s just an estimate of

∫ β
α f(r, θ)r dθ. Here r is fixed.

Then I integrate the cross-sectional area as r goes from a to b. The total
volume is then

∫ b
a

∫ β
α f(r, θ)r dθ dr. But

∫
R f(r, θ) dA is the volume.

Sam: All right.

Jane: At least it gives the r factor.

Sam: But you had to assume f is positive.

Jane: Well, if it isn’t just add a big positive number k to f , then g = f + k is
positive. From then on its easy. If it’s so far g it’s so far f .

Check that Jane is right about g and f .

Calculus December 4, 2010



1426 CHAPTER 17 PLANE AND SOLID INTEGRALS

17.4 The Triple Integral: Integrals Over Solid

Regions

In this section we define integrals over solid regions in space and show how to
compute them by iterated integrals using rectangular coordinates. Throughout
we assume the regions are bounded by smooth surfaces and the functions are
continuous.

The Triple Integral

Let R be a region in space bounded by some surface. For instance, R could
be a ball, a cube, or a tetrahedron. Let f be a function refined at least on R.

For each positive integer n break R into n small region R1, R2, . . . Rn.
Choose a point P , in R1, P2 in R2, . . . , Pn in Rn. Let the volume of Ri

be Vi. Then

lim
n→∞

n∑
i=1

f(Pi)Vi

exists. It is denoted ∫
R

f(P ) dV (17.4.1)

and is called the integral of f over R or the triple integral of f over R.
Note:

1. As in the preceding section, we define small. For each n let rn be the
smallest number such that each Ri in the partition fits inside a ball of
radius rn. We assume that rn → 0 as n→∞.

2. The notation
∫ ∫ ∫

R
f(P ) dV is commonly used, but, we stick to using

one integral sign,
∫
R
f(P ) dV to emphasize that the triple integral is not

a repeated integral.

3. The notation
∫ ∫ ∫

f(x, y, z) dV is also used, but, again, we prefer not
to refer to a particular coordinate system.

EXAMPLE 1 If f(P ) = 1 for each point P in a solid region R, compute∫
R
f(P ) dV .

SOLUTION Each approximating sum
∑n

i=1 f(Pi)Vi has the value

n∑
i=1

1 · Vi = V1 + V2 + · · ·+ Vn = Volume of R.
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Hence ∫
R

f(P ) dV = Volume of R,

a fact that will be useful for computing volumes. �
Average of a function

The average value of a function f defined on a region R in space is defined
as ∫

R
1 dV

Volume of R
.

This is the analog of the definition of the average of a function over an interval
(Section 6.3) or the average of a function over a plane region (Section 17.1).
If f describes the density of matter in R, then the average value of f is the
density of a homogeneous solid occupying R and having the same total mass
as the given solid.

Think about it. If the number∫
R
f(P ) dV

Volume of R
.

is multiplied by the volume of R, the result is∫
R

f(P ) dV,

which is the total mass. SHERMAN: I have a feeling
I’ve read this before, but
didn’t find it in a quick
search. Is this a repeat? If,
should one be removed?

“Density” at a point is defined for lamina; with balls replacing disks. For
a positive number r, let m(r) be the mass in a ball with center P and radius
r. Let V (r) be the volume of the ball of radius r. Then the density at P is
defined as

lim
r→0

m(r)

V (r)
.

An Interpretation of
∫
R f(P ) dV .

Triple integrals appear in the study of gravitation, rotating bodies, centers of
gravity, and electro-magnetic theory. The simplest way to think of them is to
interpret f(P ) as the density at P of some disturbance of matter and, then,∫
R
f(P ) dV is the total mass in a region R.
We can’t picture

∫
R
f(P ) dV as measuring the volume of something. We

could do this for
∫
R
f(P ) dA, because we could use two dimensions for de-

scribing the region of integration and then the third dimension for the values
of the function, obtaining a surface in three-dimensional space. However, with
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∫
R
f(P ) dV , we use up three dimensions just describing the region of integra-

tion. We need four-dimensional space to show the values of the function. But
it’s hard to visualize such a space, no matter how hard we squint.

A Word about Four-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (x, y) of real
numbers. The set of ordered triplets of real numbers (x, y, z) represents 3-
dimensional space. The set of ordered quadruplets of real numbers (x, y, z, t)
represents 4-dimensional space.
It is easy to show 4-D space is a very strange place.
In 2-dimensional space the set of points of the form (x, 0), the y-axis, meets
the set of points of the form (0, y), the y-axis, in a point, namely the origin
(0, 0). Now watch what can happen in 4-space. The set of points of the form
(x, y, 0, 0) forms a plane congruent to our familiar xy-plane. The set of points
of the form (0, 0, z, t) forms another such plane. So far, no surprise. But notice
what the intersection of those two planes is. Their intersection is just the point
(0, 0, 0, 0). Can you picture two endless planes meeting in a single point? If
so, please tell us how.

Describing a Solid Region

In order to evaluate triple integrals, it is necessary to describe solid regions in
terms of coordinates.

A description of a typical solid region in rectangular coordinates has the
formThis is the order x, y, then

z. There are six possible
orders, as you may check. a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

The inequalities on x and y describe the “shadow” or projection of the region

Figure 17.4.1:

on the xy plane. The inequalities for z then tell how z varies on a line parallel
to the z-axis and passing through the point (x, y) in the projection. (See
Figure 17.4.1.)

EXAMPLE 2 Describe in terms of x, y, and z the rectangular box shown
in Figure 17.4.2(a).

SOLUTION The shadow of the box on the xy plane has a description 1 ≤
x ≤ 2, 0 ≤ y ≤ 3. For each point in this shadow, z varies from 0 to 2, as
shown in Figure 17.4.2(b). So the description of the box is

1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2,
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(a) (b)

Figure 17.4.2:

which is read from left to right as “x goes from 1 to 2; for each such x, the
variable y goes from 0 to 3; for each such x and y, the variable z goes from 0
to 2.”

Of course, we could have changed the order of x and y in the description
of the shadow or projected the box on one of the other two coordinate planes.
(All told, there are six possible descriptions.) �

EXAMPLE 3 Describe by cross sections the tetrahedron bounded by the
planes x = 0, y = 0, z = 0, and x+ y + z = 1, as shown in Figure 17.4.3(a).

(a) (b) (c)

Figure 17.4.3:

SOLUTION For the sake of variety, project the tetrahedron onto the xz
plane. The shadow is shown in Figure 17.4.3(b). A description of the shadow
is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x,

since the slanted edge has the equation x + z = 1. For each point (x, z) in
this shadow, y ranges from 0 up to the value of y that satisfies the equation
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x+y+z = 1, that is, up to y = 1−x−z. (See Figure 17.4.3(c).) A description
of the tetrahedron is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x, 0 ≤ y ≤ 1− x− z.

That is, x goes from 0 to 1; for each x, z goes from 0 to 1− x; for each x and
z, y goes from 0 to 1− x− z. �

EXAMPLE 4 Describe in rectangular coordinates the ball of radius 4
whose center is at the origin.

SOLUTION The shadow of the ball on the xy plane is the disk of radius 4
and center (0, 0). Its description is

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2.

Hold (x, y) fixed in the xy plane and consider the way z varies on the line
parallel to the z-axis that passes through the point (x, y, 0). Since the sphere
that bounds the ball has the equation

x2 + y2 + z2 = 16,

for each appropriate (x, y), z varies from

Figure 17.4.4:

−
√

16− x2 − y2 to
√

16− x2 − y2.

This describes the line segment shown in Figure 17.4.4.
The ball, therefore, has a description

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2,
√

16− x2 − y2 ≤ z ≤
√

16− x2 − y2.

�

Iterated Integrals for
∫
R f(P ) dV

The iterated integral in rectangular coordinates for
∫
R
f(P ) dV is similar to

that for evaluating integrals over plane sets. It involves three integrations
instead of two. The limits of integration are determined by the description of
R in rectangular coordinates. If R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y),

then ∫
R

f(P ) dV =

b∫
a

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy dx.
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An example illustrates how this formula is applied. In Exercise 31 an argument
for its plausibility is presented.

EXAMPLE 5 Compute
∫
R
z dV , where R is the tetrahedron in Example 3.

SOLUTION A description of the tetrahedron is

0 ≤ y ≤ 1, 0 ≤ x ≤ 1− y, 0 ≤ z ≤ 1− x− y.

Hence ∫
R

z dV =

1∫
0

 1−y∫
0

 1−x−y∫
0

z dz

 dx

 dy.

Compute the inner integral first, treating x and y as constants. By the
Fundamental Theorem,

1−x−y∫
0

z dz =
z2

2

∣∣∣∣z=1−x−y

z=0

=
(1− x− y)2

2
.

The next integration, where y is fixed, is

1−y∫
0

(1− x− y)2

2
dx = −(1− x− y)3

6

∣∣∣∣x=1−y

x=0

= −03

6
+

(1− y)3

6
=

(1− y)3

6
.

The third integration is

1∫
0

(1− y)3

6
dy = −(1− y)4

24

∣∣∣∣1
0

= − 04

24
+

14

24
=

1

24
.

This completes the calculation that∫
R

z dV =
1

24
.

�

Summary

We defined
∫
R
f(P ) dV , where R is a region in space. The volume of a solid re-

gion R is
∫
R
dV and, if f(P ) is the density of matter near P , then

∫
R
f(P ) dV

is the total mass. We also showed how to evaluate these integrals by introduc-
ing rectangular coordinates.
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There are six possible
orders. The general approach is to, first, describe R, for instance, as

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Then ∫
R

f(P ) dV =

b∫
a

 y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dx

 dy

 dx.
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EXERCISES for Section 17.4 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 4 concern the definition of
∫
R f(P ) dV .

1.[R] A cube of side 4 centimeters is made of a material of varying density.
Near one corner A it is very light; at the opposite corner it is very dense. In
fact, the density f(P ) (in grams per cubic centimeter) at any point P in the cube
is the square of the distance from A to P (in centimeters). See Figure 17.4.5.

Figure 17.4.5:

(a) Find upper and lower estimates for the mass of the cube by partitioning it
into eight cubes.

(b) Using the same partition as in (a), estimate the mass of the cube, but select
as the Pi’s the centers of the four rectangular boxes.

(c) Estimate the mass of the cube described in the opening problem by cutting
it into eight congruent cubes and using their centers as the Pi’s.

(d) What does (c) say about the average density in the cube?

2.[R] How would you define the average distance from points of a certain set in
space to a fixed point P0?
3.[R] If R is a ball of radius r and f(P ) = 5 for each point in R, compute

∫
R f(P ) dV

by examining approximating sums. Recall that the ball has volume 4/3πr3.
4.[R] If R is a three-dimensional set and f(P ) is never more than 8 for all P in R.

(a) what can we say about the maximum possible value of
∫
R f(P ) dV ?

(b) what can we say about the average of f over R?
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In Exercises 5 to 10 draw the solids described.
5.[R] 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ x
6.[R] 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 1 ≤ z ≤ 1 + x+ y

7.[R] 0 ≤ y ≤ 1, 0 ≤ x ≤ y2, y ≤ z ≤ 2y
8.[R] 0 ≤ y ≤ 1, y2 ≤ x ≤ y, 0 ≤ z ≤ x+ y

9.[R] −1 ≤ z ≤ 1, −
√

1− z2 ≤ x ≤
√

1− z2, −1
2 ≤ y ≤

√
1− x2 − z2

10.[R] 0 ≤ z ≤ 3, 0 ≤ y ≤
√

9− z2, 0 ≤ x ≤
√

9− y2 − z2

In Exercises 11 to 14 evaluate the iterated integrals.
11.[R]

∫ 1
0

(∫ 2
0

(∫ x
0 z dz

)
dy
)
dx.

12.[R]
∫ 1

0

(∫ x2

x3

(∫ x+y
0 z dz

)
dy
)
dx.

13.[R]
∫ 3

2

(∫ 2x
x

(∫ 1
0 (x+ z) dz

)
dy
)
dx.

14.[R]
∫ 1

0

(∫ x
0

(∫ 3
0 (x2 + y2) dz

)
dy
)
dx.

15.[R] Describe the solid cylinder of radius a and height h shown in Figure 17.4.6(a)
in rectangular coordinates

(a) in the order first x, then y, then z,

(b) in the order first x, then z, then y.

(a) (b)

Figure 17.4.6:

16.[R] Describe the prism shown in Figure 17.4.6(b) in rectangular coordinates, in
two ways:

(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

17.[R] Describe the tetrahedron shown in Figure 17.4.7(a) in rectangular coordi-
nates in two ways:
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(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

(a) (b)

Figure 17.4.7:

18.[R] Describe the tetrahedron whose vertices are given in Figure 17.4.7(b) in
rectangular coordinates as follows:

(a) Draw its shadow on the xy plane.

(b) Obtain equations of its top and bottom planes.

(c) Give a parametric description of the tetrahedron.

19.[R] Let R be the tetrahedron whose vertices are (0, 0, 0), (a, 0, 0), (0, b, 0), and
(0, 0, c), where a, b, and c are positive.

(a) Sketch the tetrahedron.

(b) Find the equation of its top surface.

(c) Compute
∫
R z dV .

20.[R] Compute
∫
R z dV , where R is the region above the rectangle whose vertices

are (0, 0, 0), (2, 0, 0), (2, 3, 0), and (0, 3, 0) and below the plane z = x+ 2y.

21.[R] Find the mass of the cube in Exercise 1. (See Figure 17.4.1.)

22.[R] Find the average value of the square of the distance from a corner of a cube
of side a to points in the cube.

23.[R] Find the average of the square of the distance from a point P in a cube of
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side a to the center of the cube.

24.[R] A solid consists of all points below the surface z = xy that are above the
triangle whose vertices are (0, 0, 0), (1, 0, 0), and (0, 2, 0). If the density at (x, y, z)
is x+ y, find the total mass.

25.[R] Compute
∫
R xy dV for the tetrahedron of Example 3.

26.[R]

(a) Describe in rectangular coordinates the right circular cone of radius r and
height h if its axis is on the positive z-axis and its vertex is at the origin.
Draw the cross sections for fixed x and fixed x and y.

(b) Find the z coordinate of its centroid.

27.[R] The temperature at the point (x, y, z) is e−x−y−z. Find the average temper-
ature in the tetrahedron whose vertices are (0, 0, 0), (1, 1, 0), (0, 0, 2), and (1, 0, 0).

28.[R] The temperature at the point (x, y, z), y > 0, is e−x/
√
y. Find the average

temperature in the region bounded by the cylinder y = x2, the plane y = 1, and the
plane z = 2y.

29.[R] Without using a repeated integral, evaluate
∫
R x dV , where R is a spherical

ball whose center is (0, 0, 0) and whose radius is a.

30.[R] The work done in lifting a weight of w pounds a vertical distance of x feet is
wx foot-pounds. Imagine that through geological activity a mountain is formed con-
sisting of material originally at sea level. Let the density of the material near point
P in the mountain be g(P ) pounds per cubic foot and the height of P be h(P ) feet.
What definite integral represents the total work expended in forming the mountain?
This type of problem is important in the geological theory of mountain formation.

31.[R] In Section 17.2 an intuitive argument was presented for the equality

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Here is an intuitive argument for the equality

∫
R

f(P ) dV =

x2∫
x1

 y2(x)∫
y1(x)

 x2(x,y)∫
x1(x,y)

f(x, y, z) dz

 dy

 dx.
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To start, interpret f(P ) as “density.”

(a) Let R(x) be the plane cross section consisting of all points in R with abscissa
x. Show that the average density in R(x) is∫ y2(x)

y1(x)[
(∫ z2(x,y)

z1(x,y) f(x, y, z) dz
)
dy

Area of R(x)

(b) Show that the mass of R between the plane sections R(x) and R(x + ∆x) is
approximately

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy ∆x.

(c) From (b) obtain a repeated integral in rectangular coordinates for
∫
R f(P ) dV .
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17.5 Cylindrical and Spherical Coordinates

Rectangular coordinates provide convenient descriptions of solids bounded by
planes. In this section we describe two other coordinate systems, cylindrical –
ideal for describing circular cylinders — and spherical — ideal for describing
spheres, balls, and cones. Both will be used in the next section to evaluate
multiple integrals by iterated integrals.

CYLINDRICAL COORDINATES

Figure 17.5.1:

Cylindrical coordinates combine polar coordinates in the plane with the z
of rectangular coordinates in space. Each point P in space receives the name
(r, θ, z) as in Figure 17.5.1. We are free to choose the direction of the polar
axis; usually it will coincide with the x-axis of an (x, y, z) system. Note that
(r, θ, z) is directly above (or below) P ∗ = (r, θ) in the rθ plane. Since the set
of all points P = (r, θ, z) for which r is some constant is a circular cylinder,
this coordinate system is convenient for describing such cylinders. Just as with
polar coordinates, cylindrical coordinates of a point are not unique.

(a) (b) (c)

Figure 17.5.2:

Figure 17.5.2 shows the surfaces θ = k, r = k, and z = k, where k is a
positive number.

Figure 17.5.3:

EXAMPLE 1 Describe a solid cylinder of radius a and height h in cylindri-
cal coordinates. Assume that the axis of the cylinder is on the positive z-axis
and the lower base has its center at the pole, as in Figure 17.5.3.

SOLUTION The shadow of the cylinder on the rθ plane is the disk of radius

Figure 17.5.4:
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a with center at the pole shown in Figure 17.5.4. Its description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

Figure 17.5.5:

For each point (r, θ) in the shadow, the line through the point parallel to
the z-axis intersects the cylinder in a line segment. On this segment z varies
from 0 to h for every (r, θ). (See Figure 17.5.5.) Thus a description of the
cylinder is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, 0 ≤ z ≤ h.

�

EXAMPLE 2 Describe in cylindrical coordinates the region in space formed
by the intersection of a solid cylinder of radius 3 with a ball of radius 5 whose
center in on the axis of the cylinder. Place the cylindrical coordinate system
as shown in Figure 17.5.6.

Figure 17.5.6:

SOLUTION Note that the point P = (r, θ, z) is a distance
√
r2 + z2 from the

origin O, for, by the pythagorean theorem, r2 +z2 = ¯OP 2. (See Figure 17.5.7.)
We will use this fact in a moment.

Now consider the description of the solid. First of all, θ varies from 0 to
2π and r from 0 to 3, bounds determined by the cylinder. For fixed θ and
r, the cross section of the solid is a line segment determined by the sphere
that bounds the ball, as shown in Figure 17.5.7(b). Now, since the sphere has
radius 5, for any point (r, θ, z) on it,

r2 + z2 = 25 or z ±
√

25− r2.

Thus, on the line segment determined by fixed r and θ, z varies from−
√

25− r2

to
√

25− r2.
The solid has this description:

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, −
√

25− r2 ≤ z ≤
√

25− r2.

�

EXAMPLE 3 Describe a ball of radius a in cylindrical coordinates.

SOLUTION Place the origin at the center of the ball, as in Figure 17.5.7(a).
The shadow of the ball on the (r, θ) plane is a disk of radius a, shown in
Figure 17.5.7(b) in perspective. This shadow is described by the equations

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

All that is left is to see how z varies for a given r and θ. In other words,
how does z vary on the line AB in Figure 17.5.7(c)?
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(a) (b) (c)

Figure 17.5.7:

(a) (b)

Figure 17.5.8:
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If r is a, then z “varies” from 0 to 0, as Figure 17.5.7(c) shows. If r is 0, then
z varies from−a to a. The bigger r is, the shorter AB is. Figure 17.5.8 presents
the necessary geometry, first in perspective. With the aid of Figure 17.5.8, we
see that z varies from −

√
a2 − r2 to

√
a2 − r2. You can check this by testing

the easy cases, r = 0 and r = a. All told,

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a︸ ︷︷ ︸
The shadow

,−
√
a2 − r2 ≤ z ≤

√
a2 − r2︸ ︷︷ ︸

Range of z for each θ and r

�

EXAMPLE 4 Draw the region R bounded by the surfaces r2 + z2 = a2,
θ = π/6, and θ = π/3, situated in the first octant.

SOLUTION In the rz-plane, r2+z2 = a2 describes a circle of radius a, center
at the origin. There is no restriction on θ. Thus it is a circular cylinder with
its axis along the polar axis, as shown in Figure 17.5.9(a) in perspective. The
shadow of R, which lies in the first octant, on the rz-plane is a quarter circle,
shown in Figure 17.5.9(b).

(a) (b) (c) (d)

Figure 17.5.9:

Next we draw the half planes θ = π/6 and θ = π/3, as in Figure 17.5.9(c)
showing at least the part in the first octant.

Finally we put Figure 17.5.9(a) and (c) together in (d), to show R.

R has three planar surfaces and one curved surface. The two curved edges
are parts of ellipses, not parts of circles.

The description of R is

0 ≤ r ≤ a, 0 ≤ z ≤
√
a2 − r2, π/6 ≤ θ ≤ π/3.

�
Note that the shading and
dashed hidden line help
make the diagram clearer.
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THE VOLUME SWEPT OUT BY ∆r, ∆, and ∆θ

To use polar coordinates to evaluate an integral over a plane set we needed
to know that the area of the little region corresponding to small changes ∆r
and ∆θ is roughly r∆r∆θ. In order to evaluate integrals over solids using
an iterated integral in cylindrical coordinates, we will need to estimate the
volume of the small region correspond to small changes ∆r, ∆θ, ∆z in the
three coordinates.

(a) (b)

Figure 17.5.10:

The set of all points (r, θ, z) whose r coordinates are between r and r+∆r,
whose θ coordinates are between θ and θ + ∆θ, and whose z coordinates are
between z and z+ ∆z is shown in Figure 17.5.10(a). It is a solid with four flat
surfaces and two curved surfaces.

When ∆r is small, the area of the flat base of the solid is approximately
r∆r∆θ, as shown in Section 9.2 and as we saw when working with polar
coordinates in the plane. Thus, when ∆r, ∆θ, and ∆z are small, the volume
∆V of the solid in Figure 17.5.10(b) is

∆V = (Area of base)(height) ≈ r∆r∆θ∆z.

That is,

∆V ≈ r∆r∆θ∆z.

Just as the factor r appears in iterated integrals in polar coordinates, the
same factor appears in iterated integrals in cylindrical coordinates.
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SPHERICAL COORDINATES

The third standard coordinate system in space is spherical coordinates,
which combines the θ of cylindrical coordinates with two other coordinates.

In spherical coordinates a point P is described by three numbers: ρ is pronounced “row” or
“roe”; it is the Greek letter
for r. The letter φ is
pronounced “fee” or “fie.”

ρ the distance from P to the origin O, θ the same angle as in cylindrical
coordinates, φ the angle between the positive z-axis and the ray from O to P .

In physics and engineering r is used instead of ρ.

Figure 17.5.11:

The point P is denoted P = (ρ, θ, φ). Note the order: first ρ, then θ, then
φ. See Figure 17.5.11. Note that φ is the same as the direction angle of OP
with k, 0 ≤ φ ≤ π. The surfaces ρ = k (a sphere), φ = k (a cone), and θ = k
(a half plane) are shown in Figure 17.5.12.

(a) (b) (c)

Figure 17.5.12: (a) θ and φ vary, (b) ρ and θ vary, (c) ρ and φ vary.

When φ and θ are fixed and ρ varies, we describe a ray, as shown in Fig-
ure 17.5.13.

Figure 17.5.13:

RELATION TO RECTANGULAR COORDINATES

Figure 17.5.14 displays the relation between spherical and rectangular coordi-
nates of a point P = (ρ, θ, φ) = (x, y, z).

Note, in particular, right triangle OSP has hypotenuse OP and a right
angle at S, and right triangle OQR has a right angle at Q.
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(a) (b) (c) (d)

Figure 17.5.14:

First of all, z = ρ cos(φ). Then OR = ρ sin(φ). Finally x = OR cos(θ) =
ρ sin(φ) cos(θ) And y = OR sin(θ) = ρ sin(φ) sin(θ).

EXAMPLE 5 Figure 17.5.15 shows a point given in spherical coordinates.
Find its rectangular coordinates.

Figure 17.5.15:

SOLUTION In this case, ρ = 2, θ = π/3, φ = π/6. Thus

x = 2 sin(π/6) cos
π

3
= 2 · 1

2
· 1

2
=

1

2

y = 2 sin(
π

6
) sin(

π

3
) = 2 · 1

2
·
√

32

=

√
3

2

z = 2 cos(
π

6
= 2

√
3

2
=
√

3.

As a check, x2 + y2 + z2 should equal ρ2, and it does, for (1/2)2 + (
√

3
2

) +

(
√

3)2 = 1
4

+ 3
4

+ 3 = 4 = 22. �
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The next example exploits spherical coordinates to describe a cone and a
ball.

EXAMPLE 6 The region R consists of the portion of a ball of radius a that
lies within a cone of half angle π/6. The vertex of the cone is at the center of
the ball.

(a) (b)

Figure 17.5.16:

SOLUTION R is shown in Figure 17.5.17. It resembles an ice cream cone,

Figure 17.5.17:

the dry cone topped with spherical ice cream.
Because R is a solid of revolution (around the z-axis), 0 ≤ θ ≤ 2π. The

section of R corresponding to a fixed angle θ is the intersection of R with a
half plane, shown in Figure 17.5.16.

Figure 17.5.18:

In this sector of a disk, φ goes from 0 to π/6, independent of θ. Finally, a
fixed θ and φ determine a ray on which ρ goes from 0 to a, as in Figure 17.5.18.
�

The next example describes a ball in rectangular and spherical coordinates.

EXAMPLE 7 Describe a ball of radius a in rectangular and spherical co-
ordinates.

SOLUTION In each case we put the origin of the coordinate system at the
center of the ball.

Rectangular coordinates: The shadow of the ball on the xy-plane is a disk
of radius a, described by

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2.
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For each point (x, y) in that projection, z varies along the line AB in Fig-

Figure 17.5.19:

ure 17.5.19.
Since the equation of the sphere is x2+y2+z2 = a2 atA, z is−

√
z2 − x2 − y2,

and at B is
√
a2 − x2 − y2. The entire description is

−a ≤ x ≤ a, −
√
a2 − x2 ≤ y ≤

√
a2 − x2, −

√
a2 − x2 − y2 ≤ z ≤

√
z2 − x2 − y2.

Spherical coordinates: This time the shadow on the xy-plane plays no role.
Instead, we begin with

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,

which sweeps out all the rays from the origin. On each such ray ρ goes from
0 to a. The complete description involves only constants as bounds:

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a.

Since the range of each variable is not influenced by other variables, the three
restraints can be given in any order. �

THE VOLUME SWEPT OUT BY ∆rho, ∆phi, and ∆θ

In the next section we will need an estimate of the volume of the little curvy
“box-like” region bounded by spheres with radii ρ and ρ+ ∆ρ, the half-planes
with angles θ and θ+ ∆θ, and the cones with half-angles φ and φ+ ∆φ. This
region is shown in Figure 17.5.20. Two of its surfaces are flat, two are spherical,
and two are patches on cones.

(a) (b)

Figure 17.5.20:
AB and AD are arcs of

circles, while AC is straight
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(a) (b) (c)

Figure 17.5.21:

The product of the length of AB, AC and AD is an estimate of the volume
of the little box. Figure 17.5.21 shows how to find these lengths.

Therefore the volume of the small box is approximately (ρ sin(φ)∆θ)(ρ∆φ)(∆ρ):

∆V ≈ ρ2 sin(φ)∆ρ∆φ∆θ

Just as we added an r to an integrand in polar coordinates, we must, in the
next section, and the factor ρ2 sin(φ) to an integrand when using an iterated
integral in spherical coordinates.

Summary

This section described cylindrical and spherical coordinates. The volume of the
small box corresponding to small changes in the three cylindrical coordinates
is approximately r∆r∆θ∆z. Because of the presence of the factor r, we must
adjoin an r to the integrand when using an iterated integral in cylindrical
coordinates.

Similarly, ρ2 sin(φ) must be added to an integrand when using an iterated
integral in spherical coordinates.

The next section illustrates the computations using these coordinates.
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EXERCISES for Section 17.5 Key: R–routine, M–moderate, C–challenging

DOUG: Perhaps there
should be examples and

exercises with the bounds
involving variables more??

(See Stewart)

1.[R] On the region in Example 2 draw the set of points described by (a) z = 2,
(b) z = 3, (c) z = 4.5.

2.[R] For the cylinder in Example 1 draw the set of points described by (a) r = a/2,
(b) θ = π/4, (c) z = h/3.

3.[R]

(a) In the formula ∆V ≈ r∆r∆θ∆z, which factors have the dimension of length?

(b) Why would you expect three such factors?

4.[R]

(a) In the formula ∆V ≈ ρ2∆ρ∆θ∆φ, which factors have the dimension of length?

(b) Why would you expect three such factors?

5.[R] Drawing one clear, large diagram, show how to express rectangular coordi-
nates in terms of cylindrical coordinates.

6.[R] Drawing one clear, large diagram, show how to express rectangular coordi-
nates in terms of spherical coordinates.

7.[R] Find the cylindrical coordinates of (x, y, z) = (3, 3, 1), including a clear dia-
gram.

8.[R] Find the spherical coordinates of (x, y, z) = (3, 3, 1),including a clear dia-
gram.

In Exercises 9 to 11 (a) draw the set of points described, and (b) describe that set
in words.
9.[R] ρ and φ fixed, θ varies.
10.[R] ρ and θ fixed, φ varies.
11.[R] θ and φ fixed, ρ varies.

12.[R] What is the equation of a sphere of radius a centered at the origin in

(a) spherical,
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(b) cylindrical ,

(c) rectangular coordinates?

13.[R] Explain why if P = (x, yz) = (ρ, θ, φ), in spherical coordinates, that
x2 + y2 + z2 = ρ2. Hint: Draw a box.

14.[R] Describe the region in Example 6 in cylindrical coordinates in the order
α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ), z1(r, θ) ≤ z ≤ z2(r, θ).

15.[R] Like Exercise 14, but in the order a ≤ z ≤ b, θ1(z) ≤ θ ≤ θ2(z), r1(θ, z) ≤
r ≤ r2(θ, z).

16.[R] Sketch the region in the first octant bounded by the planes θ = π
6 and θ = π

3
and the sphere ρ = a.

17.[R] Estimate the area of the bottom face of the curvy box shown in Fig-
ure 17.5.20. It lies on the sphere of radius ρ.

18.[A] cone of half-angle π/6 is cut by a plane perpendicular to its axis at a distance
4 from its vertex.

(a) Place it conveniently on a cylindrical coordinate system.

(b) Describe it in cylindrical coordinates.

19.[R] Like the preceding exercise, but use spherical coordinates.

20.[R] A cone has its vertex at the origin and its axis along the positive z-axis. It
is made by revolving a line through the origin that has an angle A with the z-axis,
about the z-axis. Describe it in

(a) spherical coordinates,

(b) cylindrical coordinates, and

(c) rectangular coordinates.

21.[R] Use spherical coordinates to describe the surface in Figure 17.5.22. It is part
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of a cone of half vertex angle B with the z-axis as its axis, situated within a sphere of

radius a centered at the origin.

Figure 17.5.22:

22.[R] A triangle ABC is inscribed in a circle, with AB a diameter of the circle.

(a) Using elementary geometry, show that angle ACB is a right angle.

(b) Instead, using the equation of a circle in rectangular coordinates, show that
AC and BC are perpendicular.

(c) Use (a) or (b) to show that the graph in the plane of r = b cos(θ) is a circle
of diameter b.

(d) In view of the preceding exercise, show that the equation of the circle in
Figure 17.5.22 is r = 2a cos(θ).

23.[R] (See Exercise 22.) A ball of radius a has a diameter coinciding with the
interval [0, 2a] on the x-axis. Describe the ball in spherical coordinates.

24.[R] The ray described in spherical coordinates by θ = π
6 and φ = π

4 makes an
angle A with the x-axis.

(a) Draw a picture that shows the three angles.

(b) Find cos(A).

25.[R]

(a) If you describe the region in Example 2 in the order 0 ≤ θ ≤ 2π, z1(θ) ≤ z ≤
z2(θ), r1(θ, z) ≤ r ≤ r2(θ, z), what complication arises?
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(b) Describe the region using the order given in (a).

By differentiating, verify the equations in Exercises 26 to 27.
26.[R]

∫
|fracdx(x3

√
z2 + x2 = −

√
a2+x2

2a2+x2 + 1
2a3 ln |a+

√
a2+x2

x |.

27.[R]
∫ x2]dx
a4−x4 = 1

4a ln |a+x
a−x | −

1
2a arctan x

a .

28.[R] What is the distance between P1 = (ρ1, θ1, φ1) and P2 = (ρ2, θ2, φ2)?

29.[R] The points P1 = (ρ1, θ1, φ1) and P2 = (ρ1, θ2, φ2) both lie on a sphere of
radius ρ1. Assuming that both are in the first octant, find the great circle distance
between them. Note: If the sphere is the earth’s surface, ρ is approximately 3960
miles, φ is the complement of the latitude, and θ is related to longitude.

30.[R] At time t a particle moving along a curve is at the point (ρ(t), θ(t), φ(t))
What is its speed?

31.[R] How far apart are the points (r1, θ1, z1) and (r2, θ2, z2) in the first octant?

(a) Draw a large clear diagram.

(b) Find the distance.

32.[R] A bug is wandering on the surface of a cylinder whose description is
0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ 2. It is at the point (3, 0, 2) and wants the
shortest route on the surface to (3, π, 0). The bug plans to go straight down, keep-
ing θ = 0, and then taking a straight path on the base along a diameter. Is that the
shortest path? If not, what is?
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17.6 Iterated integrals for
∫
R f (P ) dV in Cylin-

drical or Spherical Coordinates

In Section 17.2 we evaluated an integral of the form
∫
R
f(P ) dA by an iterated

integral in polar coordinates. In this method it is necessary to multiply the
integrand by an “r.” This is necessary because the small patch determined
by small increments in r and θ is not ∆r∆θ but r∆r∆θ. Similarly, when
developing iterated integrals using cylindrical coordinates, an extra r must be
adjoined to the integrand. In the case of spherical coordinates one must adjoin
ρ2ρ sin(φ). These adjustments are based on the estimates of the volumes of
the small curvy boxes made in the previous section.

A few examples will illustrate the method, which is: Describe the solid R
and the integrand in the most convenient coordinate system. Then use that
description to set up an iterated integral, being sure to include the appropriate
extra factor in the integrand.

ITERATED INTEGRALS IN CYLINDRICAL COOR-
DINATES

To evaluate
∫
R
f(P ) dV in cylindrical coordinates we express the integrand in

cylindrical coordinates and describe the region R in cylindrical coordinates.
It must be kept in mind that dV is replaced by r dz dr dθ. There are six
possible orders of integration, but the most common one is: z varies first, then
r, finally θ:

∫
R
f(P ) dV =

∫ β
α

∫ r2(θ)

r1(θ)

(∫ z2(r,θ)

z1(r,θ)
f(r, θ, z)r dz

)
dr dθ.

EXAMPLE 1 Find the volume of a ball R of radius a using cylindrical
coordinates.

SOLUTION Place the origin of a cylindrical coordinate system at the center

Figure 17.6.1:

of the ball, as in Figure 17.6.1.

The volume of the ball is
∫
R

1 dV . The description of R in cylindrical
coordinates is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, −
√
a2 − r2 ≤ z ≤

√
a2 − r2.

Note, as with polar
coordinates, the extra factor

r.
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The iterated integral for the volume is thus

∫
R

1 dV =

2π∫
0

 a∫
0


√
a2−r2∫

−
√
a2−rs

1 · r dz

 dr

 dθ.

Evaluation of the first integral, where r and θ are fixed, yields

√
a2−r2∫

−
√
a2−r2

r dz = rz|z=
√
a2−r2

z=−
√
z2−r2 = 2r

√
a2 − r2.

Note that the order of
integration is determined by
the order of the variables in
describing R.

Evaluation of the second integral, where θ is fixed, yields

a∫
0

2r
√
a2 − r2 dr =

−2(a2 − r2)3/2

3

∣∣∣∣r=a
r=0

=
2a3

3
.

Finally, evaluation of the third integral gives

2π∫
0

2a3

3
dθ =

2a3

3

2π∫
0

dθ =
2a3

3
cdot2π =

4

3
πa3.

�

EXAMPLE 2 Find the volume of the region R inside the cylinder x2 +y2 =
a, above the xy-plane, and below the plane z = x + 2y + 9. Use cylindrical
coordinates.
SOLUTION We wish to evaluate

∫
R

1 dV over the region R described in
cylindrical coordinates R by

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ r cos(θ) + 2r sin(θ) + 9.

(Here we replace the equation z = x+ 2y + 9 by z = r cos(θ) + 2r sin(θ) + 9.) Note, as with polar
coordinates, the extra factor
r.

The iterated integral takes the form

2π∫
0

 3∫
0

 r cos(θ)+2r sin(θ)+9∫
0

1 · r dz

 dr

 dθ.

Integration with respect to z gives r and θ are constant

r cos(θ)+2r sin(θ)+9∫
0

r dz = r

r cos(θ)+2r sin(θ)+9∫
0

dz = r2 cos(θ) + 2r2 sin(θ) + 9r.
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Then comes integration with respect to r, with θ constant:

3∫
0

(
r2 cos(θ) + 2r2 sin(θ) + 9r

)
dr =

r3

3
cos(θ) +

2r3

3
sin(θ) +

9r2

2

∣∣∣∣3
0

= 9 cos(θ)+18 sin(θ)+
81

2
.

Finally, integration with respect to θ gives

2π∫
0

(
9 cos(θ) + 18 sin(θ) +

81

2

)
dθ. (17.6.1)

Because
∫ 2π

0
cos(θ) dθ = 0 =

∫ 2π

0
sin(θ) dθ, (17.6.1) reduces to

∫ 2π

0
81
2
dθ = 81π.

The volume is 81π. �

Computing
∫
R f(P ) dV in Spherical Coordinates

To evaluate a triple integral
∫
R
f(P ) dV in spherical coordinates, first describe

the region R in spherical coordinates. Usually this will be in the order:

α ≤ θ ≤ β, φ1(θ) ≤ φ ≤ φ2(θ), ρ1(θ, φ) ≤ ρ ≤ ρ2(ρ, θ).

Sometimes the order of ρ and φ is switched:

α ≤ θ ≤ β ρ1(θ) ≤ ρ ≤ ρ2(θ) φ1(ρ, θ) ≤ φ ≤ φ2(ρ, θ).

Then set up an iterated integral, being sure to express dV as ρ2 sin(φ) dρ dφ dθ
(or ρ2 sin(φ) dφ dρ dθ).

EXAMPLE 3 Find the volume of a ball of radius a, using spherical coor-
dinates.

Figure 17.6.2:

SOLUTION Place the origin of spherical coordinates at the center of the
ball, as in Figure 17.6.2. The ball is described by

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a.

Hence

Volume of ball =

∫
R

1 dV =

2π∫
0

π∫
0

a∫
0

ρ2 sin(φ) dρ dφ dθ.

The inner integral is

a∫
0

ρ2 sin(φ) dρ = sinφ

a∫
0

ρ2 dρ =
a3 sin(φ)

3
.
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The next integral is

π∫
0

a3 sin(φ)

3
dφ =

−a3 sin(φ)

3

∣∣∣∣π
0

=
−a3(−1)

3
− −a

3(1)

3
=

2a3

3
.

The final integral is

2π∫
0

2a3

3
dθ =

2a3

3

2π∫
0

dθ =
2a3

3
2π =

4πa3

3
.

�

An Integral in Gravity

The next example is of importance in the theory of gravitational attraction.
It implies that a homogeneous ball attracts a particle (or satellite) as if all the
mass of the ball were at its center.

EXAMPLE 4 Let A be a point at a distance H from the center of the ball,
H > a. Compute

∫
R

(δ/q) dV , where δ is density and q is the distance from a
point P in R to A. (See Figure 17.6.3.)

(a) (b)

Figure 17.6.3:

SOLUTION First, express q in terms of spherical coordinates. To do so,
choose a spherical coordinate system whose origin is at the center of the sphere
and such that the φ coordinate of A is 0. (See Figure 17.6.3(b).)
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Let P = (ρ, θ, φ) be a typical point in the ball. Applying the law of cosines
to triangle AOP , we find that

a2 = H2 + ρ2 − 2ρH cos(φ).

Hence
q =

√
H2 + ρ2 − 2ρH cos(φ).

Since the ball is homogeneous,

δ =
M

4
3
πa3

=
3M

4πa3
.

Hence ∫
R

δ

q
dV =

∫
R

3M

4πa3q
dV =

3M

4πa3

∫
R

1

q
dV. (17.6.2)

Now evaluate ∫
R

1

q
dV

by an iterated integral in spherical coordinates:A case where integration
with respect to ρ is not first ∫

R

1

q
dV =

2π∫
0

 a∫
0

 π∫
0

ρ2 sin(φ)√
H2 + ρ2 − 2ρH cos(φ)

dφ

 dρ

 dθ.

We integrate with respect to φ first, rather than ρ, because it is easier in
this case.

Evaluation of the first integral, where ρ and θ are constants, is accomplished
with the aid of the fundamental theorem:
π∫

0

ρ2 sinφ√
H2 + ρ2 − 2ρH cos(φ)

dφ =
ρ
√
H2 + ρ2 − 2ρH cos(φ)

H

∣∣∣∣∣
φ=π

φ=0

=
ρ

H
(
√
H2 + ρ2 + 2ρH −

√
H2 + ρ2 − 2ρH.

Now,
√
H2 + ρ2 + 2ρH = H + ρ. Since ρ ≤ a < H, H − ρ is positive and√

H2 + ρ2 − 2ρH = H − ρ.
Thus the first integral equals

ρ

H
[H + ρ)− (H − ρ)] =

2ρ2

H
.

Evaluation of the second integral yields

a∫
0

2ρ2

H
dρ =

2a3

3H
.
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Evaluation of the third integral yields

2π∫
0

2a3

eH
dθ =

4πa3

3H
.

Hence ∫
R

1

q
dV =

4πa3

3H
.

By (17.6.2) ∫
R

δ

q
dV =

3M

4πa3

4πa3

3H
=
M

H
.

Newton obtained this
remarkable result in 1687.This result, M/H, is exactly what we would get if all the mass were located

at the center of the ball. �
SHERMAN: Compare this
with your version. What is
your M? I thought it was
the object, i.e., the region
together with its density,
but you are using it also as
the mass of the object. If
you want the latter, you
can’t talk about “a mass M
occupies a region R.” I
prefer to say we have an
object that occupies a
region R, with density δ,
and mass M where
M =

∫
R δ(P ) dV . See

what I have written. This
may need to be changed
elsewhere. That should not
be difficult to do, but I want
to see your comments first.

THE MOMENT OF INERTIA ABOUT A LINE

In the study of rotation of a object about an axis, one encounters the “moment
of inertia”, I of the object. It is defined as follows. The object occupies a region
R. The density of the object at a typical point P is δ(P ), so the mass of the
object is M =

∫
R
δ(P ) dV . Usually the density is constant, in which case it is An object with constant

density is called
homogeneous.

M divided by the volume of R (or M divided by the area of R if R is planar).
Let r(P ) be the distance from P to a fixed line L. Then, by definition,

I = Moment of Inertia =

∫
R

(r(P ))2δ(P ) dV.

A similar definition holds for objects distributed on a planar region. The only
difference is that dV is replaced by dA. Exercise 31 shows that I

plays the same role in a
rotating body (such as a
spinning skater) as mass
does in an object moving
along a line.

EXAMPLE 5 Compute the moment of inertia of a uniform mass M in the
form of a ball of radius a around a diameter L.
SOLUTION The density δ(P ), being constant, is M/(4

3
πa3). We place the As a check on our answer

we note in advance that I
must be less than Ma2,
since the maximum of r(P )
is a.

diameter L along the z-axis, as in Figure 17.6.4

Figure 17.6.4:

Because the distance r(P ) is just r in cylindrical coordinates, we will first
work in those coordinates. Then we will calculate the moment of inertia in
spherical coordinates.

One description of the ball is

0 ≤ θ ≤ 2π, −a ≤ z ≤ a, 0 ≤ r ≤
√
a2 − z2.
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Then

I =
∫
R

M
4
3
πa3 r

2 dV = 3M
4πa3

∫
R
r2 dV Note the introduction of the extra r

= 3M
4πa3

∫ 2π

0

∫ a
−a

∫ √a2−z2
0

r3 dr dz dθ

The first integration is
√
a2−z2∫
0

r3 dr =
r4

4

∣∣∣∣
√
a2−z2

0

=
(a2 − z2)2

4
.

The second is

a∫
−a

(a2 − z2)2

4
dz =

a∫
−a

a4 − 2a2z2 + z4

4
dz =

1

4

(
a4z − 2a2z3

3
+
z5

5

)
|a−a

=
1

4

(
a5 − 2a5

3
+
a5

5

)
− 1

4

(
−a5 +

2a5

3
− a5

5

)
=

4

15
a5.

The third is
2π∫

0

4

15
a5 dθ =

8π

15
a5.

Then remembering to include the factor 3M/4πa3, we have

I =
3M

4πa3
· 8π

15
a5 =

2

5
Ma2.

Because spherical coordinates provide a simple description of the ball, we
will also use them to find I to see if the computations are easier. Now the
distance r(P ) has a more complicated form, δ(P ) = δ(ρ, θ, φ) = ρsin(φ). The
integral for the moment of inertia is

I =
3M

4πa3

∫
R

(ρ sin(φ)2 dV.

The iterated integral for this multiple integral is

2]pi∫
0

 π∫
0

 a∫
0

(ρ sin(φ))2 ρ2 sin(φ) dρ

 dφ

 dθ.

The first integration is

a∫
0

ρ4 sin3(φ) dρ =
ρ5

5
sin3(φ)

∣∣∣∣ρ=a

ρ=0

=
a5

5 sin3(φ)
.
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The second is
π∫

0

a5

5
sin3(φ) dφ =

a5

5

π∫
0

sin3(φ) dφ.

Since the exponent, 3, is odd, we write sin3(φ) as (1−cos2(φ)) sin(φ) and have
π∫

0

sin3(φ) dφ =

π∫
0

(sin(φ)− cos2(φ) sin(φ)) = (− cos(φ) +
cos3(φ)

3

∣∣∣∣π
0

= (−(−1) +
(−1)3

3
)− (−1 +

1

3
) =

4

3
.

The final integration is just

2π∫
0

a5

5
· 4

3
dθ =

8

15
π.

Note that this is 2/5 of our
upper estimate, hence is
plausible.

And, as expected, gives, again

I = (2/5)Ma2.

�

Summary

A multiple integral
∫
R
f(P ) dV may be evaluated by an iterated integral in

cylindrical or spherical coordinates. In cylindrical coordinates the iterated
integral takes the form

θ2∫
θ1

 r2(θ)∫
r1(θ)

 z2(r,θ)∫
z1(r,θ)

rf(r, θ, z) dz

 dr

 dθ.

The description of the region determines the range of integration on each
of the three integrals over intervals. (Changing the order of the description of
R changes the order of the integrations.) The factor r must be inserted into
the integrand.

In spherical coordinates the iterated integral usually takes the form

θ2∫
θ1

 φ2(θ)∫
φ1(θ)

 ρ2(θ,φ)∫
ρ1(θ,φ)

f(r, θ, φ)ρ2 sin(φ) dφ

 dφ

 dθ.

In this form, integration with respect to ρ is first, but as Example 4 illus-
trates, it may be convenient to integrate first with respect to φ. The factor
ρ2 sin(φ) must be inserted in the integrand.
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EXERCISES for Section 17.6 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4: (a) draw the region, (b) set up an iterated integral in cylindrical
coordinates for the given multiple integrals, and (c) evaluate the iterated integral.
1.[R]

∫
R r

2 dV , R is bounded by the cylinder r = 3 and the planes z = 2x and
z = 3x.
2.[R]

∫
R z dV , R is bounded by the sphere z2 + r2 = 25, the rθ coordinate plane,

and the plane z = 2.
3.[R]

∫
R rz dV , R is the part of the ball bounded by r2 +z2 = 16 in the first octant.

4.[R]
∫
R cos θ/dV , R is bounded by the cylinder r = 2 cos(θ) and the paraboloid

z = r2.

5.[R] Compute the volume of a right circular cone of height h and radius r using
(a) spherical coordinates, (b) cylindrical coordinates, and (c) using rectangular co-
ordinates.

6.[R] Find the volume of the region above the xy plane and below the paraboloid
z = 9− r2 using cylindrical coordinates.

7.[R] A right circular cone of radius a and height h has a density at point P equal
to the distance from P to the base of the cone. Find its mass, using spherical coor-
dinates.

In Exercises 8 to 9 draw the region R and give a formula for the integrand f(P )
such that

∫
R dV is described by the given iterated integrals.

8.[R]
∫ π/2

0 [
∫ π/4

0 (
∫ cosφ

0 ρ3 sin2(θ) sin(φ) dρ) dφ] dθ.

9.[R]
∫ π/4

0 [
∫ π/2
π/6 (

∫ sec θ
0 ρ3 sin(θ) cos(φ) dρ) dφ] dθ.

10.[R] Let R be the solid region inside both the sphere x2 + y2 + z2 = 1 and the
cone z =

√
x2 + y2. Let the density at (x, y, z) be f(x, y, z) = z. Set up iterated

integrals for the mass in R using (a) rectangular coordinates, (b) cylindrical coor-
dinates, (c) spherical coordinates. (d) Evaluate the iterated integral in (c).

11.[R] Find the average temperature in a ball of radius a if the temperature is the
square of the distance from a fixed equatorial plane.

In each of Exercises 12 to 13 evaluate the iterated integral.
12.[R]

∫ 2π
0

(∫ 1
0

(∫ 1
r zr

3 cos2 θ dz
)
dr
)
dθ

13.[R]
∫ 2π

0

(∫ 1
0

(∫ √a2−r2
−
√
a2−r2 z

2r dz
)
dr
)
dθ
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14.[R] Let R be the solid region inside both the sphere x2 + y2 + z2 = 1 and the
cone z =

√
x2 + y2. Let the density at (x, y, z) be f(x, y, z) = z. Using cylindrical

coordinates, find the mass of R.

15.[R] Using cylindrical coordinates, find the volume of the region below the plane
z = y + 1 and above the circle in the xy plane whose center is (0, 1, 0) and whose
radius is 1. (Include a drawing of the region.) Hint: What is the equation of the
circle in polar coordinates when the polar axis is along the positive x-axis?

16.[R] Find the average distance from the center of a ball of radius a to other
points of the ball by setting up appropriate iterated integrals in the three types of
coordinate systems and evaluating the easiest.

17.[R] A solid consists of that part of a ball of radius a that lies within a cone of
half-vertex angle φ = π/6, the vertex being at the center of the ball. Set up iterated
integrals for

∫
R z dV in all three coordinate systems and evaluate the simplest.

In Exercises 18 to 23 evaluate the multiple integrals over a ball of radius a with
center at the origin, without using an iterated integral (φ,θ, and z are cylindrical or
spherical coordinates).
18.[R]

∫
R cos(θ) dV

19.[R]
∫
R cos2 θ dV

20.[R]
∫
R z dV

21.[R]
∫
R(3 + 2 sin(θ) dV

22.[R]
∫
R sin2(φ) dV

23.[R]
∫
R sin(φ) dV

24.[R] In polar, cylindrical, and spherical coordinates one must introduce an extra
factor in the integrand when using an iterated integral. Why is that not necessary
when using rectangular coordinates?

25.[R] Is
√
a2 always equal to a?

26.[R] Using the method of Example 4 find the average value of q for all points P in
the ball. Note that it is not the same as if the entire ball were placed at its center.

27.[C] Show that the result of Example 4 holds if the density δ(P ) depends only
on ρ, the distance to the center. (This is approximately the case with the planet
Earth, which is not homogeneous.) Let g(ρ) denote δ(ρ, θ, φ).
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In Exercises 28 to 29check the equations by differentiation.
28.[R] tan

(
x
2

)
=
∫

dx
1+cos(x)

29.[R] x tan
(
x
2

)
+ 2 ln

∣∣cos
(
x
2

)∣∣ =
∫

x dx
1+cos(x)

30.[R]

(a) Find the exact volume of the little curvy box corresponding to the changes
∆ρ, ∆θ, ∆φ.

(b) One hopes that the ratio between that exact volume and our estimate, ρ2 sin(φ)∆ρ∆θ∆ρ
approaches 1 as ∆ρ, ∆θ, ∆φ approach 0. Show that it does. Hint: Recall the
definition of a derivative.

(c) Show that the exact volume in (a) can be written in the form (ρ∗t)2 sin(φ∗)∆ρ∆φ∆θ,
where ρ∗ is between ρ and ρ+ ∆ρ and φ∗ is between φ and φ+ ∆φ.

31.[R] The kinetic energy of an object with mass m moving at the velocity v is
mv2/2. An object moving in a circle of radius r at the angular speed ω radians
per unit time has velocity rω. (Why?) Thus its kinetic energy is (mr2/2)ω2. Now
consider a mass M that occupies the region R in space. Its density is ∆(P ), which
may vary from point to point. (If it is constant, it equals M/(Volume of R).) Let
f(P ) be the distance from P to a fixed line L. If the mass is spinning around the
axis L at the angular rate ω, show that its total kinetic energy is∫

R

1
2

(f(P ))2δ(P )w2 dv.

This can be written as
Kinetic Energy = (

1
2
Iω2.

Thus I plays the same role in rotational motion that mass m plays in linear motion
in the formula (1

2mv
2.

Every spinning ice skater knows this. When spinning with her arms extended she
has a certain amount of kinetic energy. If she suddenly puts her arms to her sides
she decreases her moment of inertia but has not destroyed her kinetic energy. That
forces her angular speed to increase. The larger the mass m is, the harder it is to
start it moving and to stop it when it is moving. Similarly, the larger I is, the harder
it is to stop the mass from spinning and to stop it when it is spinning.

In Exercises 32 to 36 the objects have a homogeneous (constant density) mass M .
Find I.
32.[R] A rectangular box of dimensions, a, b, c around a line through its center
and perpendicular to the face of dimensions a and b.
33.[R] A solid cylinder of radius a and height h around its axis.
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34.[R] A solid cylinder of radius a and height h around a line on its surface.
35.[R] A hollow cylinder of height h, inner radius a, and outer radius b, about its
axis.
36.[R] A solid cylinder of radius a and height h around a diameter in its base.

37.[R] In Example 2 what unpleasantness occurs when you describe the region in
the order of the form a ≤ θ ≤ b, z1(θ) ≤ z ≤ z2(θ), r1(θ, z) ≤ r ≤ r2(θ, z)?

38.[R] Solve Example 2 using rectangular coordinates.

39.[R] Evaluate the moment of inertia in Example 5 using the description 0 ≤ θ ≤
2π, 0 ≤ r ≤ a, −

√
a2 − r2 ≤ z ≤

√
a2 − r2.

40.[R] Let R be a solid ball of radius a with center at the origin of the coordinate
system

(a) Explain why
∫
R x

2 dV = 1
3

∫
R(x2 + y2 + z2) dV .

(b) Evaluate the second integral by spherical coordinates.

(c) Use (b) to find
∫
R x

2 dV .

41.[M] Show that
∫
R(x3 + y3 + z3) dV = 0, where R is a ball whose center is the

origin of a rectangular coordinate system. Note: Do not use an iterated integral.
Hint: Use symmetry.

42.[R] A homogeneous object with mass M occupies the region R between con-
centric spheres of radii a and b, a < b. Let A be a point at a distance H from their
center, H < a. Evaluate

∫
R
δ
q dV , where δ is the density and q = q(P ) is the distance

from H to any point P in R. (That the value of the integral does not involve H has
an important consequence: A uniform hollow sphere exerts no gravitational force
on objects in its interior.)

43.[R] In Example 4, H is greater than a. Solve the same problem for H less than a.
Note: For some ρ,

√
H2 + ρ2A− 2ρH equals H−ρ and for some it equals ρ−H.

44.[C] (See Example 43.) Let A be a point in the plane of a disk but outside the
disk. Is the average of the reciprocal of the distance from A to points in the disk
equal to the reciprocal of the distance to the center of the disk?

45.[C] A certain ball of radius a is not homogeneous. However, its density at P
depends only on the distance from P to the center of the ball. That is, there is
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a function f(ρ) such that the density at P = (ρ, θ, φ) is f(ρ). Using an iterated
integral, show that the mass of the ball is

4π

a∫
0

f(ρ2
ρ dρ.

46.[C] Let R be the part of a ball of radius a removed by a cylindrical drill of
diameter a whose edge passes through the center of the sphere.

(a) Sketch R.

(b) Notice that R consists of four congruent pieces. Find the volume of one of
these pieces using cylindrical coordinates. Multiply by four to get the volume
of R.

47.[C] Let R be the ball of radius a. For any point P in the ball other than the
center of the ball, define f(P ) to be the reciprocal of the distance from P to the ori-
gin. The average value of r over R involves an improper integral, since the function
blows up near the origin. Does this improper integral converge or diverge? What
is the average value of f over R? Suggestion: Examine the integral over the region
between concentric spheres of radii a and t, and let t→ 0+.
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17.7 Integrals Over Surfaces

In this section we define an integral over a surface and then show how to
compute it by an iterated integral.

Definition of a Surface Integral

Consider a surface S such as the surface of a ball or part of the saddle z = xy.
If f is a numerical function defined at least on S, we will define the integral∫
S
f(P ) dS. The definition is practically identical with the definition of the

double integral, which is the special case when the surface is a plane.
We assume that the surfaces we deal with are smooth, or composed of a

finite number of smooth pieces, and that the integrals we define exist.

Figure 17.7.1:

DEFINITION (Definite integral of a function f over a surface
S.) Let f be a function that assigns to each point P in a surface
S a number f(P ). Consider the typical sum

f(P1)S1 + f(P2)S2 + · · ·+ f(Pn)Sn,

formed from a partition of S, where Si is the area of the ith re-
gion in the partition and Pi is a point in the ith region. (See
Figure 17.7.1.) If these sums approach a certain number as the Si
are chosen smaller and smaller, the number is called the integral
of f over S and is written∫

S

f(P ) dS.

Surface integrals are also
denoted

∫∫
S f(P ) dS.If f(P ) is 1 for each point P in S then

∫
S f(P ) dS is the area of S. If S is

occupied by material of density σ(P ) at P then
∫
S σ(P ) dS is the total mass

of S.
First we show how to integrate over a sphere.

Integrating over a Sphere

If S is a sphere or part of a sphere, it is often convenient to evaluate an integral
over it with the aid of spherical coordinates. See Section 17.6 for a

similar argument, where ρ
was not constant.

If the center of a spherical coordinate system (ρ, θ, φ) is at the center of a
sphere of radius a, then ρ is constant on the sphere ρ = a. As Figure 17.7.2
suggests, the area of the small region on the sphere corresponding to slight
changes dθ and dφ is approximately

(a dφ) (a sin(φ) dθ) = a2 sin(φ) dθ dφ.
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Figure 17.7.2:

Thus we may write

dS = a2 sin(φ) dθ dφ

and evaluate ∫
S

f(P ) dS

in terms of a repeated integral in φ and θ. Example 1 illustrates this technique.

EXAMPLE 1 Let S be the top half of the sphere with radius a. Evaluate∫
S z dS.

SOLUTION Since the sphere has radius a, ρ = a. The top half of the sphere
is described by 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. And, in spherical coordinates,
z = ρ cos(φ) = a cos(φ). Thus

∫
S

z dS =

∫
S

(a cos(φ)) dS =

2π∫
0

 π/2∫
0

(a cos(φ))a2 sin(φ) dφ

 dθ.

Now,

π/2∫
0

(a cos(φ))a2 sin(φ) dφ = a3

π/2∫
0

cos(φ) sin(φ) dφ = a3 (− cos2(φ))

2

∣∣∣∣π/2
0

=
a3

2
[−0− (−1)] =

a3

2
.
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so that ∫
S

z dS =

2π∫
0

a3

2
dθ = πa3.

�

We can interpret the result in Example 1 in terms of average value. The
average value of f(P ) over a surface S is defined as∫

S f(P ) dS

Area of S
.

Geometric interpretation

Example 1 shows that the average value of z over the given hemisphere is∫
S z dS

Area of S
=

πa3

2πa2
=
a

2
.

“The average height above the equator is exactly half the radius.”

A General Technique

When we faced an integral over a curve,
∫
C
f ds, we evaluated it by replacing

it with
∫ b
a
f ds

dt
dt, an integral over an interval [a, b].

We will do something similar for an integral over a surface: We will replace
an surface integral by a double integral over a set in a coordinate plane.

The basic idea is to replace a small patch on the surface S by its projection
(shadow) or, say, the xy-coordinate plane. The area of the shadow is not the
same as the area of the patch. With the aid of Figure 17.7.3 we will express
the area of the shadow in terms of the tilt of the patch.

The unit normal vector to the patch is n. The angle between n and k is
γ. Call the area of the patch, dS, and the area of its projection, dA. Then

Figure 17.7.3:

dA ≈ | cos(γ)| dS.

Recall the discussion of
direction angles and
direction cosines in
Section 14.4.

Notice that the angle γ is one of the direction angles of the unit normal
vector, k.

For instance, if γ = 0, then dA = dS. If γ = π/2, then dA = 0. We use
the absolute value of cos(γ), since γ could be larger than π/2.

It follows, if cos(γ) is not 0, that
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dS =
dA

| cos(γ)|
(17.7.1)

With the aid of (17.7.1), we replace an integral over S with an integral over
its shadow in the xy plane.

The replacement is visible in the approximating sums involved in the inte-
gral over a surface.

Let S be a surface that meets each line parallel to the z-axis at most once.
Let f be a function whose domain includes S.

Consider an approximating sum for
∫
S f(P ) dS, namely

∑n
i=1 f(pi)∆Si.

The partition is shown in Figure 17.7.4.

Figure 17.7.4:

Let R be the projection of S in the xy plane. The patch Si with area Si,
projects down to Ri, of area Ai, and the point Pi on Si points down to Qi in
Ri. Let γi be the angle between the normal at Pi and k.

Then f(P )Si is approximately f(Pi)
| cos(γi)|Ai. Thus an approximation of

∫
S f(P ) dS

is
n∑
i=1

f(Pi)

| cos γi|
Ai. (17.7.2)

Replacing an integral over a
surface with an integral over

a planar region.
Theorem 17.7.1. Let S be a surface and let A be its projection on the xy
plane. Assume that for each point Q on A the line through Q parallel to the z-
axis meets S in exactly one point P . Let f be a function defined on S. Define
a function h on A by

h(Q) = f(P ).

Then ∫
S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

In this equation γ denotes the angle between k and a vector normal to the
surface of S at P . (See Figure 17.7.5.)

Figure 17.7.5:

In order to apply this result, we need to be able to compute cos(γ).

Computing cos(γ)

We find a vector perpendicular to the surface in order to compute cos(γ). If
S is the level surface of g(x, y, z), that is g(x, y, z) = c, for some constant c,
then the gradient ∇g is such a vector.
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If the surface S is given in the form z = f(x, y), rewrite it as z−f(x, y) = 0.
That means that S is a level surface of g(x, y, z) = z−f(x, y), Theorem 17.7.2
shows what the formulas for cos(γ) look like. However, it is unnecessary, even
distracting, to memorize them. Just remember that a gradient provides a
normal to a level surface.

Theorem 17.7.2. (a) If the surface S is part of the level surface g(x, y, z) =
c, then

| cos(γ)| =
|∂g
∂z
|√

( ∂g
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) If the surface S is given in the form z = f(x, y), then

| cos(γ)| = 1√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
.

Proof

(a) A normal vector to S at a given point is provided by the gradient

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k.

The cosine of the angle between k and ∇g is

k · ∇g
‖k‖‖∇g‖

=
k · ( ∂g

∂x
i + ∂g

∂y
j + ∂g

∂z
k)

(1)
(
·
√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
) ;

hence

| cos(γ)| =
|∂g
∂z
|√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) Rewrite z = f(x, y) as z − f(x, y) = 0. The surface z = f(x, y) is thus
the level surface g(x, y, z) = 0 of the function g(x, y, z) = z − f(x, y).
Note that

∂g

∂x
= −∂f

∂x
,

∂g

∂y
= −∂f

∂y
and

∂g

∂z
= 1.

By the formula in (a),

| cos(γ)| = 1√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
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•

Theorem 17.7.2 is stated for projections on the xy plane. Similar theorems
hold for projections on the xz or yz plane. The direction angle γ is then
replaced by the corresponding direction angle, β or α, and the normal vector
is dotted into j or i. Just draw a picture in each case; there is no point in
trying to memorize formulas for each situation.

EXAMPLE 2 Find the area of the part of the saddle z = xy inside the
cylinder x2 + y2 = a2.
SOLUTION Let S be the part of the surface z = xy inside x2 + y2 = a2.
Then

Area of S =

∫
S

1 dS.

The projection of S on the xy plane is a disk of radius a and center (0, 0). Call
it A, as in Figure 17.7.6. Then

Area of S =

∫
S

1 dS =

∫
A

1

| cos(γ)|
dA. (17.7.3)

Figure 17.7.6:

To find the normal to S rewrite z = xy as z − xy = 0. Thus S is a level
surface of the function g(x, y, z) = z − xy. A normal to S is therefore

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k

= −yi− xj + k.

Then

cos(γ) =
k · ∇g
‖k‖‖∇g‖

=
k · (−yi− xj + k)√

y2 + x2 + 1
=

1√
y2 + x2 + 1

.

The area of S is∫
A
√

(∂f/∂x)2 + (∂f/∂y)2 + 1 dA.By (17.7.3),

Area of S =

∫
A

√
y2 + x2 + 1 dA. (17.7.4)

Use polar coordinates to evaluate the integral in (17.7.4):

∫
A

√
y2 + x2 + 1 dA =

2π∫
0

a∫
0

√
r2 + 1r dr dθ.
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The inner integration gives

a∫
0

√
r2 + 1f dr =

(r2 + 1)3/2

3

∣∣∣∣a
0

=
(1 + a2)3/2 − 1

3
.

The second integration gives

2π∫
0

(1 + a2)3/2 − 1

3
dθ =

2π

3

(
(1 + a2)3/2 − 1

)
.

�

Summary

After defining
∫
S f(P ) dS, an integral over a surface, we showed how to com-

pute it when the surface is part of a sphere. Replace dS by
a2 sin(φ) dφ dθ, where a is
the radius of the sphere.

If each line parallel to the z-axis meets the surface S in at most one point,
an integral over S can be replaced by an integral over A, the projection of S
on the xy plane: ∫

S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

To find cos(γ), use a gradient. If the surface is a level surface of, g(x, y, z) = c,
use ∇g. If it has the equation z = f(x, y), rewrite the equation as z−f(x, y) =
0. As a special case, if S is the graph of z = f(x, y), then the area of S

Area of S =

∫
S

dS =

∫
A

√
(∂f/∂x)2 + (∂f/∂y)2 + 1 dA.
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EXERCISES for Section 17.7 Key: R–routine, M–moderate, C–challenging

1.[R] A small patch of a surface makes an angle of π/4 with the xy plane. Its
projection on that plane has area 0.05. Estimate the area of the patch.

2.[R] A small patch of a surface makes an angle of 25◦ with the yz plane. Its
projection on that plane has area 0.03. Estimate the area of the patch.

3.[R]

(a) Draw a diagram of the part of the plane x+ 2y + 3z = 12 that lies inside the
cylinder x2 + y2 = 9.

(b) Find as simply as possible the area of the part of the plane x+ 2y + 3z = 12
that lies inside the cylinder x2 + y2 = 9.

4.[R]

(a) Draw a diagram of the part of the plane z = x+3y that lies inside the cylinder
r = 1 + cos θ.

(b) Find as simply as possible the area of the part of the plane z = x + 3y that
lies inside the cylinder r = 1 + cos θ.

5.[R] Let f(P ) be the square of the distance from P to a fixed diameter of a sphere
of radius a. Find the average value of f(P ) for points on the sphere.

6.[R] Find the area of that part of the sphere of radius a that lies within a cone of
half-vertex angle π/4 and vertex at the center of the sphere, as in Figure 17.7.7.

Figure 17.7.7:
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In Exercises 7 and 8 evaluate
∫
S F · n dS for the given spheres and vectors fields (n

is the outward unit normal.)
7.[R] The sphere x2 + y2 + z2 = 9 and F = x2i + y2vj + z2k.
8.[R] The sphere x2 + y2 + z2 = 1 and F = x3i + y2j.

9.[R] Find the area of the part of the spherical surface x2 + y2 + z2 = 1 that lies
within the vertical cylinder erected on the circle r = cos θ and above the xy plane.

10.[R] Find the area of that portion of the parabolic cylinder z = 1
2x

2 between the
three planes y = 0, y = x, and x = 2.

11.[R] Evaluate
∫
S x

2y dS, where S is the portion in the first octant of a sphere
with radius a and center at the origin, in the following way:

(a) Set up an integral using x and y as parameters.

(b) Set up an integral using φ and θ as parameters.

(c) Evaluate the easier of (a) and (b).

12.[R] A triangle in the plane z = x + y is directly above the triangle in the xy
plane whose vertices are (1, 2), (3, 4), and (2, 5). Find the area of

(a) the triangle in the xy plane,

(b) the triangle in the plane z = x+ y.

13.[R] Let S be the triangle with vertices (1, 1, 1), (2, 3, 4), and (3, 4, 5).

(a) Using vectors, find the area of S.

(b) Using the formula

Area of S =
∫
S

1 dS,

find the area of S.

14.[R] Find the area of the portion of the cone z2 = x2 + y2 that lies above one
loop of the curve r =

√
cos 2(θ).

15.[R] Let S be the triangle whose vertices are (1, 0, 0), (0, 2, 0), and (0, 0, 3). Let

Calculus December 4, 2010



1474 CHAPTER 17 PLANE AND SOLID INTEGRALS

f(x, y, z) = 3x+ 2y + 2z. Evaluate
∫
S f(P ) dS.

In Exercises 16 and 17 let S be a sphere of radius a with center at the origin of a
rectangular coordinate system.
16.[R] Evaluate each of these integrals with a minimum amount of labor.

(a)
∫
S x dS

(b)
∫
S x

3 dS

(c)
∫
S

2x+4y5√
2+x2+3y2

dS

17.[R]

(a) Why is
∫
S x

2 dS =
∫
S y

2 dS?

(b) Evaluate
∫
S(x2 + y2 + z2) dS with a minimum amount of labor.

(c) In view of (a) and (b), evaluate
∫
S x

2 dS.

(d) Evaluate
∫
S(2x2 + 3y3) dS.

18.[R] An electric field radiates power at the rate of k(sin2(φ)/ρ2 units per square
meter to the point P = (ρ, θ, φ). Find the total power radiated to the sphere ρ = a.

19.[R] A sphere of radius 2a has its center at the origin of a rectangular coordinate
system. A circular cylinder of radius a has its axis parallel to the z-axis and passes
through the z-axis. Find the area of that part of the sphere that lies within the
cylinder and is above the xy plane.

Consider a distribution of mass on the surface S. Let its density at P be σ(P ). The
moment of inertia of the mass around the z-axis is defined as

∫
S(x2 +y2)σ(P ) dS.

Exercises 20 and 21 concern this integral.
20.[R] Find the moment of inertia of a homogeneous distribution of mass on the
surface of a ball of radius a around a diameter. Let the total mass be M .

21.[R] Find the moment of inertia about the z-axis of a homogeneous distribution
of mass on the triangle whose vertices are (a, 0, 0), (0, b, 0), and (0, 0, c). Take a, b,
and c to be positive. Let the total mass be M .

22.[R] Let S be a sphere of radius a. Let A be a point at distance b > a from the
center of S. For P in S let δ(P ) be 1/q, where q is the distance from P to A. Show
that the average of δ(P ) over S is 1/b.
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23.[R] The data are the same as in Exercise 22 but b < a. Show that in this case
the average of 1/q is 1/a. (The average does not depend on b in this case.)

Exercises 24 to 26 concern integration over the curved surface of a cone. Spherical
coordinates are also useful for integrating over a right circular cone. Place the origin
at the vertex of the cone and the “φ = 0” ray along the axis of the cone, as shown
in Figure 17.7.8(a). Let α be the half-vertex angle of the cone.
On the surface of the cone φ is constant, φ = α, but ρ and θ vary. A small “rectan-
gular” patch on the surface of the cone corresponding to slight changes dθ and dρ
has area approximately

(ρ sin(α) dθ) dρ = ρ sin(α) dρ dθ.

(See Figure 17.7.8.) So we may write

dS = ρ sinα dρ dθ.

ch16/f16-7-9

Figure 17.7.8:
24.[R] Find the average distance from points on the curved surface of a cone of
radius a and height h to its axis.
25.[R] Evaluate

∫
S z

2 dS, where S is the entire surface of the cone shown in Fig-
ure 17.7.8(b), including its base.
26.[R] Evaluate

∫
S x

2 dS, where S is the curved surface of the right circular cone
of radius 1 and height 1 with axis along the z-axis.

Integration over the curved surface of a right circular cylinder is easiest in cylindrical
coordinates. Consider such a cylinder of radius a and axis on the z-axis. A small
patch on the cylinder corresponding to dz and dθ has area approximately dS =
a dz dθ. (Why?) Exercises 27 and 28 illustrate the use of these coordinates.
27.[R] Let S be the entire surface of a solid cylinder of radius a and height h. For
P in S let f(P ) be the square of the distance from P to one base. Find

∫
S f(P ) dS.

Be sure to include the two bases in the integration.
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28.[R] Let S be the curved part of the cylinder in Exercise 27. Let f(P ) be the
square of the distance from P to a fixed diameter in a base. Find the average value
of f(P ) for points in S.

29.[R] The areas of the projections of a small flat surface patch on the three coor-
dinate planes are 0.01, 0.02, and 0.03. Is that enough information to find the area
of the patch? If so, find the area. If not, explain why not.

30.[R] Let F describe the flow of a fluid in space. (See Section 16.3 for fluid flow
in a planar region.) F(P ) = δ(P )v(P ), where δ(P ) is the density of the fluid at P
and v(P ) is the velocity of the fluid at P . Making clear, large diagrams, explain
why the rate at which the fluid is leaving the solid region enclosed by a surface S is∫
S F · n dS, where n denotes the unit outward normal to S.

31.[R] Let S be the smooth surface of a convex body. Show that
∫
S z cos(γ) dS is

equal to the volume of the solid bounded by S. Hint: Break S into two parts. In
one part cos(γ) is positive; and the other it negative.

32.[M] Let R(x, y, z) be a scalar function defined over a closed surface S. (See
Figure 17.7.9.)

(a) Show that∫
S

R(x, y, z) cos(γ) dS =
∫
A

(P (x, y, z2)− P (x, y, z1)) dA,

where A is the projection of S on the xy plane and the line through (x, y, 0)
parallel to the z-axis meets S at (x, y, z1) and (x, y, z2), with z1 ≤ z2.

(b) Let S be a surface of the type in (a). Evaluate
∫
S x cos γ dS.

Figure 17.7.9:
33.[C]
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(a) Let g be a differentiable function such that g((x + y)/2) = ((g(x) + g(y))/2
for all x and y. Show that g(x) = kx + c for some constraints k and c.
Hint: Differentiate.

(b) Let f be a differentiable function such that (x+y)f(x+y)+(x−y)f(x−y) =
2xf(x) for all x and y. Deduce that there are constraints k and c such that
f(x) = k + c/x.

34.[C] (Suggested by Exercises 22 and 23.) The function f(x) = 1/x has the
remarkable property that the average value of f(d(P )) over a sphere is the same
as f(H). Here d(P ) is the distance from P to a fixed point at a distance H for
the center of a sphere, of radius a, a < H. Show that the only functions with this
property have the form k + c/x for some constraints k and c. Hint: Use part of
the Fundamental Theorem of Calculus to remove integration. Then the Exercise 33
many come in handy.
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17.8 Magnification, Jacobian, and Change of

Coordinates

We now consider functions whose domain and range are parts of planes, curved
surfaces, or spatial regions. Of particular interest is how much they magnify
or shrink the areas (or volumes) of small regions. This magnifying factor
will be used in Chapter 17 to simplify some definite integrals over two- and
three-dimensional sets.

Throughout we assume the functions have continuous derivatives.

Mappings

Figure 17.8.1:

Figure 17.8.2:

EXAMPLE 1 Let F be the mapping that assigns to the point (u, v) the
point (2u, 3v).

(a) Describe the mapping geometrically.

(b) Find the image of the line v = u.

(c) Find the image of the square in the uv-plane whose vertices are (0, 0),
(1, 0), (1, 1), and (0, 1).

SOLUTION

(a) In this case, x = 2u and y = 3v. The table below records the effect of the

mapping on the points listed in (c):
(u, v) (0, 0) (1, 0) (1, 1) (0, 1)

(2u, 3v) (0, 0) (2, 0) (2, 3) (0, 3)
In the notation F (u, v) = (x, y), these data read

F (0, 0) = (2·0, 3·0) = (0, 0);F (1, 0) = (2·1, 3·0) = (2, 0);F (1, 1) = (2·1, 3·1) = (2, 3);F (0, 1) = (2·0, 3·1) = (0, 3).
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Note that the first coordinate of (x, y) = F (u, v) is x = 2u, twice the
first coordinate of (u, v). Thus the mapping magnifies horizontally by a
factor of 2. Similarly, it stretches vertically by a factor of 3. This causes
a six-fold magnification of areas.

(b) Let P = (u, v) be on the line v = u. Then F (P ) = F (u, v) = (x, y), with
x = 2u and y = 3v. Thus

u =
x

2
and v =

y

3
.

Since v = u,
y

3
=
x

2
or y =

3

2
x.

The image of the line v = u in the uv-plane is the line y = 3x/2 in the
xy-plane. (See Figure 17.8.3.)

Figure 17.8.3:

A similar argument shows that for this mapping the image of any line
Au + Bv + C = 0 in the uv-plane is a line in the xy-plane, namely, the
line Ax/2 +By/3 + C = 0.

(c) If P is a point in the square R whose vertices are

(0, 0) (1, 0), (1, 1), (0, 1),

then the image of P is a point in the rectangle S whose vertices are

(0, 0) (2, 0), (2, 3), (0, 3).

(See Figure 17.8.4.)

Think of (u, v) as a point on a slide and (2u, 3v) as its image on the
screen. Then the mapping F projects the square R on the slide onto a
rectangle S on the screen. (See Figure 17.8.5.)

�
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Figure 17.8.4:

Figure 17.8.5:
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Summary
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EXERCISES for Section 17.8 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4 compute mF by the mappings at the given points in the uv-
plane.
1.[R] F (u, v) = (uv, v2), u, v > 0, at (a) (1, 2) and (b) (3, 1).
2.[R] F (u, v) = (1/u, 1/v), u, v > 0, at (a) (2, 3) and (b) (1

2 , 4).
3.[R] F (u, v) = (eu cos v, eu sin v), 0 ≤ vL [2]π, at (a) (1, π/4) and (b)
(2, π/6).
4.[R] F (u, v) = (u/(u2 +v2), v/(u2 +v2)), u2 +v2 6= 0, at (a) (3, 1) and (b)
(1, 0).

5.[R] Let a, b, c, and d be constants such that ad− bc 6= 0. Let

x = au+ bv, y = cu+ dv.

Show that the determinant Jacobian of the mapping is ad− bc at all points.

6.[R] The magnification of a mapping is 3 at (2, 4). Let R be a small region around
(2, 4) of area 0.05. Approximately, how large is the image of R under the mapping?
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17.9 Moments, Centers of Mass, and Centroids

Now that we can integrate over planar regions, surfaces, and solid regions, we
can define and calculate the center of mass of a physical object. The center of
mass is important in the eyes of a naval architect, who wants his ships not to
tip over easily. A pole vaulter hopes that as she clears the bar her center of
mass goes under it. Archimedes, the first person to study the center of mass,
was interested in the stability of floating paraboloids.

The Center of Mass

Figure 17.9.1:

A small boy on one side of a seesaw (which we regard as weightless) can
balance a bigger boy on the other side. For example, the two boys in Fig-
ure 17.9.1 balance. (According to physical laws, each boy exerts a force on the
seesaw, due to gravitational attraction, proportional to his mass.)

The small mass with the long lever arm balances the large mass with the
small lever arm. Each boy contributes the same tendency to turn–but in
opposite directions.

This tendency is called the moment:

Moment = (Mass) · (Lever arm),

where the lever arm can be positive or negative. To be more precise, introduce
on the seesaw an x-axis with its origin 0 at the fulcrum, the point on which
the seesaw rests. Define the moment about 0 of a mass m located at the point
x on the x-axis to be the product mx. Then the bigger boy has a moment
(90)(4), which the smaller boy has a moment (40)(−9). The total moment of
the lever-mass system is 0, and the masses balance. (See Figure 17.9.2.)

Figure 17.9.2:

If a mass m is located on a line with coordinate x, we define its moment
about the point having coordinate k as the product m(x− k).

Now consider several point masses m1,m2, . . . ,mi. If mass mi is located at
xi, with i = 1, 2, . . . , n, then

∑n
i=1mi(xi − k) is the total moment of all the

masses about the point k. If a fulcrum is placed at k, then the seesaw rotates
clockwise if the total moment is greater that 0, rotates counterclockwise if it is
less than 0, and is in equilibrium if the total moment is 0. See Figure 17.9.3.

Figure 17.9.3:

To find where to place the fulcrum so that the total tendency to turn is 0,
we find k such that

n∑
i=1

mi(xi − k) = 0.

Writing this as

k

n∑
i=1

mi =
n∑
i=1

mi − xi,

we see that
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k =

∑n
i=1mixi∑n
i=1mi

. (17.9.1)

The number k given by (17.9.1) is called the center of mass or center of
gravity of the system of masses. It is the point about which all the masses
balance. The center of mass is found by dividing the total moment about 0 by
the total mass. It is usually denoted x̄.

(a) (b)

Figure 17.9.4:

Finding the center of mass of a finite number of “point masses” involves
only arithmetic, no calculus. For example, suppose three masses are placed
on a seesaw as in Figure 17.9.4(a). Introduce an x-axis with origin at mass
m1 = 20 pounds. Two additional masses are located at x2 = 4 feet and
x3 = 14 feet with masses m2 = 10 pounds and m3 = 50 pounds, respectively.
The total moment about x = k is

M = 20(0− k) + 10(4− k) + 50(14− k) = 740− 80k.

This moment vanishes when M = 0, that is, when k = 740/80 = 9.25.
This is consistent with the formula for the center of mass:

x̄ =
m1x1 +m2x2 +m3x3

m1 +m2 +m3

=
0 + 40 + 700

10 + 20 + 50
=

740

80
= 9.25.

The seesaw balances when the fulcrum is placed 9.25 feet from the first
mass. (See Figure 17.9.4(b).)

Now let us turn our attention to finding the center of mass of a continuous
distribution of matter in a plane region. For this purpose, we consider double
integrals.

Let R be a region in the plane occupied by a thin piece of metal whose
density, σ(P ), varies. Let L be a line in the plane, as shown in Figure 17.9.5(a).
We will find a formula for the unique line parallel to L, around which the mass
in R balances.
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(a) (b)

Figure 17.9.5:

To begin, let L′ be any line parallel to L. We will compute the moment
about L′ and then see how to choose L′ to make that moment equal to 0. To
compute the moment of R about L′, introduce an x-axis perpendicular to L
with its origin at its intersection with L. Assume that L′ passes through the
x-axis at the pointx = k, as in Figure 17.9.5(b). In addition, assume that
each line parallel to L meets R either in a line segment or at a point on the
boundary of R. The lever arm of the mass distributed throughout R varies
from point to point.

We partition R into n small regions R1, R2, . . . , Rn. Call the area of Ri, Ai.
In each of these regions the lever arm around L′ varies only a little. So, if we
pick a point P1 in R1, P2 in R2, . . . , Pn, in Rn, and the x-coordinate of Pi is
xi, then

(xi − k)︸ ︷︷ ︸
lever arm

σ(Pi)Ai︸ ︷︷ ︸
mass in Ri

is a local estimate of the turning tendency.

Thus
n∑
i=1

(xi − k)σ(Pi)Ai (17.9.2)

would presumably be a good estimate of the total turning tendency around
L′. Taking the limit of (17.9.2) as all Ri are chosen smaller and smaller, we
expect ∫

R

(x− k)σ(P ) dA (17.9.3)

to represent the turning tendency of the total mass around L′. The quantity
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(17.9.3) is called the moment of torque of the mass distribution around L′.

EXAMPLE 1 Let R be the region under y = x2 and above [0, 1] DOUG
with the density σ(x, y) = xy. Find its moment around the line x = 1/2.
SOLUTION R is shown in Figure 17.9.6. The moment (17.9.3) equals

Figure 17.9.6:

∫
R

(
x− 1

2

)
xy dA. (17.9.4)

We evaluate this double integral by the iterated integral

1∫
0

 x2∫
0

(
x− 1

2

)
xy dy

 dx.

The first integration givesSee Exercise 2.

x2∫
0

(
x− 1

2

)
xy dy = (x− 1/2)x

x2∫
0

y dy =

(
x− 1

2

)
x5

2
.

The second integration is

1∫
0

(
x− 1

2

)
x5

2
=

1∫
0

2x6 − x5

4
dx =

5

168
.

Since the total moment (17.9.4) is positive, the object would rotate clockwise
around the line x = 1

2
. �
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Now that we have a way to find the moment around any line parallel to
the y-axis we can find the line around which the moment is zero, the so-called
“balancing line.” We just solve for k in the equation∫

R

(x− k)σ(P ) dA = 0.

Thus ∫
R

xσ(P ) dA = k

∫
R

σ(P ) dA,

from which we find that

k =

∫
R
xσ(P ) dA∫

R
σ(P ) dA

. (17.9.5)

The denominator is the total mass. The numerator is the total torque. So we
can think of k as “the average lever arm as integrated by the density.”

That is therefore a unique balancing line parallel to the y axis. Call its
x-coordinate x (read: “x bar”). Similarly, there is a unique balancing line
parallel to the x axis. Call its y-coordinate y. The point (x, y) is called the
center of mass of the region R. We have:

The center of mass of a region R with density σ(P ) has coordinates (x̄, ȳ)
where

x =

∫
R
xσ(P ) dA∫

R
σ(P ) dA

and y =

∫
R
yσ(P ) dA∫

R
σ(P ) dA

.

The integral
∫
R
xσ(P ) dA is called the moment of R around the y-axis,

and is denoted My. Similarly, Mx =
∫
R
yσ(P ) dA.

If the density σ(P ) is constant, say, equal to 1 everywhere in R, then the
two equations reduce to

x =

∫
R
x dA∫

R
dA

and y =

∫
R
y dA∫

R
dA

.

In this case the center of mass R is also called the centroid of the region, a
purely geometric concept:
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The centroid of the plane region R has the coordinates (x̄, ȳ) where

x =

∫
R
x dA

Area of R
and y =

∫
R
y dA

Area of R)
. (17.9.6)

EXAMPLE 2 Find the center of mass of the region in Example 1.
SOLUTION The density at (x, y) in R is given by σ = xy. We compute three
double integrals: the mass

∫
R
xy dA and the two moments My =

∫
R
x(xy) dA

and Mx =
∫
R
y(xy) dA.

We have∫
R

x2y dA =

1∫
0

 x2∫
0

x2y dy

 dx =

1∫
0

x6

2
dx =

1

14
.

Then ∫
R

xy dA =

1∫
0

 1∫
0

xy dy

 dx =

1∫
0

x5

2
dx =

1

12
.

Finally, ∫
R

xy2 dA =

0∫
1

 0∫
1

xy2 dy

 dx =

1∫
0

x7

3
dx =

1

24
.

Thus

x =
1
14
1
12

=
6

7
and y =

1
24
1
12

=
1

2
.

It is not surprising that x is greater than 1/2, since in Example 17.9.1 we
found that the object rotates clockwise around the line x = 1/2. �

Figure 17.9.7:

An Important Point About an Important Point
We defined the center of mass (x, y) by first choosing an xy coordinate system.
What if we choose an x′y′ coordinate system at an angle to the xy coordinate
system? Would the center of mass computed in this system, (x′, y′) be the
same point as (x, y)? See Figure 17.9.7. Fortunately, it is, as Exercise 59
shows.
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Shortcuts for Computing Centroids

Assume that R is the region under y = f(x) for x in [a, b]. Then the moment
about the x-axis is

Mx =

∫
R

y dA.

Thus

My =

b∫
a

(

f(x)∫
0

y dy) dx =

b∫
a

(f(x))2

2
dx =

1

2

b∫
a

(f(x))2 dx.

Thus, by (17.9.6)

y =
1
2

∫ b
a
(f(x))2 dx

Area of R
. (17.9.7)

Figure 17.9.8:

EXAMPLE 3 Find the centroid of the semicircular region of radius a shown
in Figure 17.9.8.
SOLUTION By symmetry, x = 0.

To find y, use (17.9.7). The function f in this case is given by the formula
f(x) =

√
a2 − x2, an even function. The moment of R about the x-axis is

a∫
−a

(
√
z2 − x2)2

2
dx =

a∫
−a

a2 − x2

2
dx = 2

a∫
0

a2 − x2

2
dx

=

a∫
0

(a2 − x2) dx =

(
a2x− x3

3

)∣∣∣∣a
0

= (a3 − a3

3
)− 0 =

2

3
a3.

Thus Since 4/(3π) ≈ 0.42, the
center of gravity of R is at
a height of about 0.42a.y =

2
3
a3

Area of R
=

2
3
a3

1
2
πa2

=
4a

3π
.

�
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Centers of Other Masses

We developed the ideas of moments and centers of mass for masses situation
in a plane. The definition generalizes easily to masses distributed on a curve
(such as a wire) or in space (such as a potato).

In the case of a curve, the curve would have a linear density λ(P ). A short
piece around P of length ∆s would have mass approximately λ(P )∆s. Thus,
the mass and moments of the curve would be

M =

∫
C

λ(P ) ds, My =

∫
C

xλ(P ) ds, and Mx =

∫
C

yλ(P ) ds.

We state the definition in the case of a solid object of density λ(P ) occu-
pying the region R. We assume an xyz-coordinate system. The total mass
is

M =

∫
R

δ(P ) dV.

Now, there are three moments — one around each of the three coordinate
planes:

Myz =

∫
R

xδ(P ) dV,Mxz =

∫
R

yδ(P ) dV,Mxy

∫
R

zρ dV.

The center of mass is (x, y, z), where

overlinex =

∫
R
xδ(P ) dV

M
, y =

∫
R
yδ(P ) dv

M
, z =

∫
R
zδ(P ) dV

M
.

If δ(P ) = 1 for all P in R, the center of mass is called the centroid. In this
case the mass is the same as the volume.

EXAMPLE 4 Find the centroid of a hemisphere of radius a.

Figure 17.9.9:

SOLUTION We place the origin of an xyz-coordinate system at the center
of the hemisphere, as in Figure 17.9.9.

First of all, by symmetry, the centroid must be at the z-axis. mnoteIf the
centroid were not at the z-axis, you would get two centroids for the same object.
(If you spin the hemisphere about the z-axis you get the same hemisphere back,
which must have the same centroid.)

So x = y = 0. Calling the hemisphere R, we have

z =

∫
R
z dV

Volume of R
.

The volume of the hemisphere is half that of a ball, (2/3)πa3. To evaluate the
moment

∫
R
z dV , we bring in an iterated integral in spherical coordinates:∫

R

z dV =

2π∫
0

π/2∫
0

a∫
0

(ρ cos(φ))ρ2 sin(φ) dρ dφ dθ.
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z = ρ cosφSee Exercise 3.

Straightforward computations show that∫
R

z dV =
πa4

4
.

Thus

z =
πa4

4
2
3
πa3

=
3a

8
.

The centroid is (0, 0, 3a
8

). �

EXAMPLE 5 Find the centroid of a homogeneous cone of height h and
radius a.
SOLUTION As we just saw for the sphere in Example 4, symmetry tells us
the centroid lies on the axis of the cone.

Introduce a spherical coordinate system with the origin at the vertex of the
cone and with the axis of the cone lying on the ray φ = 0, as in Figure 17.9.10.

Figure 17.9.10:

The half-vertex angle is arctan(a/h). The plane of the base of the cone is
z = h (in rectangular coordinates), hence

ρ cos(φ) = h.

In spherical coordinates, the cone’s description is

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ arctan(a/h), 0 ≤ ρ ≤ h/ cos(φ).

To find the centroid of the cone we compute
∫
R
z dV and divide the results

by the volume of the cone, which is 1
3
πa2h.

Now

∫
R

z dV =

2π∫
0

arctan(a/h)∫
0

h/ cos(φ)∫
0

ρ cos(φ)(ρ2 sin(φ)) dρ dφ dθ.

See Exercise 4

For the first integration, φ and θ are constant; hence

h/ cos(φ)∫
0

ρ cos(φ)ρ2 sin(φ) dρ = cos(φ) sin(φ)

h/ cos(φ)∫
0

ρ3 dρ =
h4 sin(φ)

4 cos3(φ)
.

The second integration is

arctan(a/h)∫
0

h4 sin(φ)

4 cos3(φ)
dφ =

h4

4

arctan(a/h)∫
0

sin(φ)

cos3(φ)
dφ =

a2h2

8
.

Calculus December 4, 2010



1492 CHAPTER 17 PLANE AND SOLID INTEGRALS

curve (C) solid (R)
density λ(P ) δ(P )
M

∫
C
λ(P ) ds

∫
S
δ(P ) dV

Myz

∫
C
xλ(P ) ds

∫
S
xδ(P ) dV

Mxz

∫
C
yλ(P ) ds

∫
S
yδ(P ) dV

Mxy

∫
C
zλ(P ) ds

∫
S
zδ(P ) dV

The final integral is simply:

2π∫
0

a2h2

8
dθ =

a2h2

8
2π =

πa2h2

4
.

Thus,

z =

∫
R
z dV

Volume of R
=

(
πa2h2

4

)
(
πa2h

3

) =
3h

4
.

The centroid of a cone is three-fourths of the way from the vertex to the
base. �

Summary

We defined the moment about a line and used this concept to define the center
of mass for a plane distribution of mass. The moment of a mass about a line
L indicates the tendency of the mass to rotate about the line L. The center
of mass for a region R is the point in the region where the region balances.

• The moment about the y-axis, My, is
∫
R
xδ(P ) dA.

• The moment about the x-axis, Mx, is
∫
R
yδ(P ) dA.

Then, the center of mass is (x̄, ȳ) where

x =
My

Mass
, y =

Mx

Mass
.

If the density is constant, we have a purely geometric concept,

x =

∫
R
x dA

Area of R
, y =

∫
R
y dA

Area of R
.

These definitions generalize to curves and solids.
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EXERCISES for Section 17.9 Key: R–routine, M–moderate, C–challenging

1.[R]

(a) How would you define the centroid of a curve? Call its (linear) density λ(P ).

(b) Find the centroid of a semicircle of radius a.

2.[R] Carryout the integrations in Example 1.

3.[R] Carryout the “straightforward calculations” in Example 4.

4.[R] Provide the details needed to complete the integrals in Example 5.

5.[R] Example 4 showed that the centroid of a hemisphere is less than halfway
from the center to its surface. Why is that to be expected?

6.[M] If R is the region below y = f(x) and above [a, b], show that

x =

∫ b
a xf(x) dx
Area of R

.

7.[M] The corners of a triangular piece of metal of constant density 1 are (0, 0),
(1, 0), and (0, 2).

(a) Is the line y = 11x/5 a balancing line?

(b) If not, if the metal rests on this line which way would it rotate?

DEFINITION (Section of a region) Let R be a convex set in the plane.
A section of R is a part of R that is bounded by a chord and part of the

the boundary, as shown as Figure 17.9.11
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Figure 17.9.11:

8.[C] Consider a convex set R in the plane furnished with a density. Show that
different sections have different centers of gravity.

9.[C] (See Exercise 8.) Is every point in R that is not on the boundary the center
of mass of some section of R?

10.[C] Archimedes (287-212 b.c.) investigated the centroid of a section of a
parabola. Consider the parabola y = x2. The typical section is shown in Fig-
ure 17.9.12. M is the midpoint of the chord and N is the point on the parabola di-

rectly belowM .

Figure 17.9.12:
He showed, without calculus, that the centroid is on the line MN , three-fifths of the
way from N and M . Obtain his result with the aid of calculus.

11.[C] (See Exercise 10.) Is every point in the region bounded by the parabola the
centroid of some section?

12.[R] Find the centroid of a solid paraboloid of revolution. This is the region
above z = x2 + y2 and below the plane z = c. Archimedes solved this problem with-
out calculus and used the result to analyze the equilibrium of a floating paraboloid.
(If it is slightly tilted, will it come back to the vertical or topple over?) For details as
how he did this 2200 years ago see S. Stein, Archimedes: What Did He Do Besides
Cry Eureka?, Math. Assoc. America, 1999.

13.[C] (See Exercise 12.) The plane z = c in Exercise 12 is perpendicular to the
axis of the paraboloid. Archimedes was also interested in the case when the plane is
not perpendicular to the axis. Find the centroid of the region below the tilted plane
z = cy and above the paraboloid z = x2 + y2.

14.[R] Using cylindrical coordinates, find z for the region below the paraboloid
z = x2 +y2 and above the disk in the rθ plane bounded by the circle r = 2. (Include
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a drawing of the region.)

15.[R] Find the z coordinate, z, of the centroid of the part of the saddle z = xy
that lies above the portion of the disk bounded by the circle x2 +y2 = a2 in the first
quadrant.

16.[M] A plane distribution of matter occupies the region R. It is cut into two
pieces, occupying regions R1 and R2, as in Figure 17.9.13(a). The part in R1 has
mass M1 and centroid (x1, y1). The part in R2 has mass M2 and centroid (x2, y2).
Find the centroid (x, y) of the entire mass, which occupies R. [Express (x, y) in
terms of M1, M2, x1, x2, y1 and y2.]

(a) (b)

Figure 17.9.13:

17.[M] Use the formula in Exercise 16 to find the center of mass of the homoge-
neous lamina shown in Figure 17.9.13(b).

In Exercises 18 to 25 find the centroid of the given regions R. (Exercises 22 to 25
require integral tables or techniques of Chapter 8.)
18.[R] R is bounded by y = x2 and y = 4.

19.[R] R is bounded by y = x4 and y = 1.

20.[R] R is bounded by y = 4x− x2 and the x-axis.

21.[R] R is bounded by y = x, x+ y = 1, and the x-axis.

22.[R] The region bounded by y = ex and the x-axis, between the lines x = 1 and
x = 2.

23.[R] The region bounded by y = sin(2x) and the x-axis, between the lines x = 0
and x = π/2.

24.[R] The region bounded by y =
√

1 + x and the x-axis, between the lines x = 0
and x = 3.

25.[R] The region bounded by y = ln(x) and the x-axis between the lines x = 1
and x = e.

Exercises 26 to 28 concern Pappus’s Theorem, which relates the volume of a solid of
revolution to the centroid of the planar region R that is revolved to form the solid.
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Theorem 17.9.1 (Pappus). Let R be a region in the plane and L a line in the plane
that does not cross R (though it can touch R at its border). Then the volume of the
solid formed by revolving R about L is equal to the product

(Distance the centroid of R is rotated) · (Area of R) .

26.[C]

(a) Prove Pappus’s Theorem

(b) Use Pappus’s Theorem to find the volume of the torus or “doughnut” formed
by revolving a circle of radius 3 inches about a line 5 inches from its center.

27.[C] Use Pappus’s Theorem to find the centroid of the half disk R of radius a.

28.[C] Use Pappus’s Theorem to find the centroid of the right triangle in Fig-

ure 17.9.14.

Figure 17.9.14:

29.[M] Consider a distribution of mass in a plane region R with density σ(P ) at
P . Use the following steps to show that any line in the plane that passes through
the center of the mass is a balancing line.

(a) For convenience, place the origin of the xy-coordinate system at the center
of mass. That is, assume (x̄, ȳ) = (0, 0). Show that

∫
R xσ(P ) dA = 0 and∫

R yσ(P ) dA = 0.

(b) Let L be any line ax + by = 0 through the origin. Show that the moment of
the mass about L is ∫

R

ax+ by√
a2 + b2

σ(P ) dA.

Hint: What is the distance from a point (x, y) in R to the line ax+ by = 0?
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(c) From (a) and (b) deduce that the moment of the mass about L is 0. Thus
all balancing lines for the mass pass through a single point. Any two of
them therefore determine that point, which is called the center of mass. It is
customary to use the two lines parallel to the x and y axes to determine that
point.

30.[M] (See Exercise 29.) Show that the moment of a mass occupying a solid region
R about any plane through its center of mass is 0.

31.[C] This exercise concerns hydrostatic pressure. (See Section 7.6.)

(a) Show that the pressure of water against a submerged vertical surface occupy-
ing the plane region R equals the pressure at the centroid of R times the area
of R.

(b) Is the assertion in (a) correct if R is not vertical?

In each of Exercises 32 to 39 find the center of mass of the lamina occupying the
given region and having the given density.
32.[R] The triangle with vertices (0, 0), (1, 0), (0, 1); density at (x, y) is x+ y.
33.[R] The triangle with vertices (0, 0), (2, 0), (1, 1); density at (x, y) is y.
34.[R] The square with vertices (0, 0), (1, 0), (1, 1), (0, 1); density at (x, y) equals
to y arctan(x).
35.[R] The finite region bounded by y = 1 + x and y = 2x; density at (x, y) is
x+ y.
36.[R] The triangle with vertices (0, 0), (1, 2), (1, 3); density at (x, y) is xy.
37.[R] The finite region bounded by y = x2, the x-axis, and x = 2; density at (x, y)
is ex

38.[R] The finite region bounded by y = x2 and y = x+ 6, situated to the right of
the y-axis; density at (x, y) is 2x.
39.[R] The trapezoid with vertices (0, 0), (3, 0), (2, 1), (0, 1); density at (x, y) is
sin(x).

40.[C] Let R be a region in a plane and P a point a distance h > 0 from the plane.
P and R determine a cone with base R and vertex P , as shown in Figure 17.9.15.
Let the area of R be A. What can be said about the distance of the centroid of the
cone from the plane of R?

(a) What is that distance in the case of a right circular cone?

(b) Experiment with another cone with any convenient base of your choice.
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(c) Make a conjecture.

(d) Explain why the conjecture is true.

Figure 17.9.15:

In Exercises 41 and 42 find z for the given surfaces.
41.[M] The portion of the paraboloid 2z = x2 + y2 below the plane z = 9.
42.[M] The portion of the plane x+ 2y+ 3z = 6 above the triangle in the xy plane
whose vertices are (0, 0), (4, 0), and (0, 1).

43.[R] In a letter of 1680 Leibniz wrote:

Huygens, as soon as he had published his book on the pendulum,
gave me a copy of it; and at that time I was quite ignorant of Cartesian
algebra and also of the method of indivisibles, indeed I did not know
the correct definition of the center of gravity. For, when by chance I
spoke of it to Huygens, I let him know that I thought that a straight line
drawn through the center of gravity always cut a figure into two equal
parts; since that clearly happened in the case of a square, or a circle,
an ellipse, and other figures that have a center of magnitude. I imagine
that it was the same for all other figures. Huygens laughed when he
heard this, and told me that nothing was further from the truth.

(Quoted in C.H. Edwards, The Historical Development of the Calculus, p. 239,
Springer-Verlag, New York, 1979.)
Give an example showing that “nothing is further from the truth.”

44.[R] Let a be a constant that is not less than 1. Let R be the region below
y = xa, above the x-axis, and between the lines x = 0 and x = 1.

(a) Sketch R for a large value of a.
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(b) Compute the centroid (x, y) of R.

(c) Find lima→∞ x and lima→∞ y.

(d) For large a, does the centroid of R lie in R?

45.[C] (Contributed by Jeff Lichtman) Let f and g be two continuous functions
such that f(x) ≥ g(x) ≥ 0 for x in [0, 1]. Let R be the region under y = f(x) and
above [0, 1]; let R* be the region under y = g(x) and above [0, 1].

(a) Do you think the center of mass of R is at least as high as the center of mass
of R*? (An opinion only.)

(b) Let g(x) = x. Define f(x) to be 1
3 for 0 ≤ x ≤ 1

3 and f(x) to be x if 1
3 ≤ x ≤ 1.

(Note that f is continuous.) Find y for R and also for R*. (Which is larger?)

(c) Let a be a constant, 0 ≤ a ≤ 1. Let f(x) = a for 0 ≤ x ≤ a and let f(x) = x
for a ≤ x ≤ 1. Find y for R.

(d) Show that the number a for which y defined in part (c) is a minimum is a
root of the equation x3 + 3x− 1 = 0.

(e) Show that the equation in (d) has only one real root q.

(f) Find q to four decimal places.

46.[M] This exercise shows that the three medians of a triangle meet at the centroid
of the triangle. (A median of a triangle is a line that passes through a vertex and
the midpoint of the opposite edge.)
Let R be a triangle with vertices A, B, and C. It suffices to show that the centroid
of R lies on the median through C and the midpoint M of the edge AB. Introduce
an xy coordinate system such that the origin is at A, and B lies on the x-axis, as in
Figure 17.9.16.

(a) Compute (x, y).

(b) Find the equation of the median through C and M .

(c) Verify that the centroid lies on the median computed in (b).

(d) Why would you expect the centroid to lie on each median? (Just use physical
intuition.)
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Figure 17.9.16:

47.[R] Cut an irregular shape out of cardboard and find three balancing lines for
it experimentally. Are they concurrent; that is, do they pass through a common
point?

48.[R] Let f and g be continuous functions such that f(x) ≥ g(x) ≥ 0 for x in
[a, b]. Let R be the region above [a, b] which is bounded by the curves y = f(x) and
y = g(x).

(a) Set up a definite integral (in terms of f and g) for the moment of R about
the y-axis.

(b) Set up a definite integral with respect to x (in terms of f and g) for the
moment of R about the x-axis.

In Exercises 49 to 52 find (a) the moment of the given region R about the y-axis,
(b) the moment of R about the x-axis, (c) the area of R, (d) x, (e) y. Assume the
density is 1. (See Exercise 48.)
49.[R] R is bounded by the curves y = x2, y = x3.

50.[R] R is bounded by y = x, y = 2x, x = 1, and x = 2.

51.[R] R is bounded by the curves y = 3x and y = 2x between x = 1 and x = e.

52.[R] (Use a table of integrals or techniques from Chapter 8.) R is bounded by
the curves y = x− 1 and y = ln(x), between x = 1 and x = e.

53.[M] Which do you think would have the highest centroid? The semicircular
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wire of radius a, shown in Figure 17.9.17(a); the top half of the surface of a ball of
radius a, shown in Figure 17.9.17(b); the top half of a ball of radius a, shown in
Figure 17.9.17(c).

(a) (b) (c)

Figure 17.9.17:

54.[C] Consider the parabolic surface z = x2 + y2 below the plane za2.

(a) Set up a double integral in the xy-plane for the moment about the xy plane.

(b) Express this integral as an iterated integral in polar coordinates.

(c) Evaluate the integral.

(d) Find the centroid of the (curved) surface.

SHERMAN: This set of
exercises was moved from
Section 17.4.

Exercises 55 to 58 concern the moment of inertia. Note that if the object is homo-
geneous, has mass M and volume V , its density δ(P ) is M/V .
55.[R] A homogeneous rectangular solid box has mass M and sides of lengths a,
b, and c. Find its moment of inertia about an edge of length a.
56.[R] A rectangular homogeneous box of mass M has dimensions a, b and c. Show
that the moment of inertia of the box about a line through its center and parallel
to the side of length a is M(b2 + c2)/12.
57.[R] A right solid circular cone has altitude h, radius a, constant density, and
mass M .

(a) Why is its moment of inertia about its axis less that Ma2?

(b) Show that its moment of inertia about its axis is 3Ma2/10.

58.[R] Let P0 be a fixed point in a solid of mass M . Show that for all choices
of three mutually perpendicular lines that meet at P0 the sum of the moments of
inertia of the solid about the lines is the same.

59.[C] [An exercise showing that the center of mass does not depend on the choice
of coordinates.]
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17.S Chapter Summary

This chapter generalizes the notion of a definite integral over an interval to
integrals over plane sets, surfaces, and solids. These definitions are almost
the same, the integral of f(P ) over a set being the limit of sums of the form∑
f(Pi) ∆Ai,

∑
f(Pi) ∆Si, or

∑
f(Pi) ∆Vi for integrals over plane sets,

surfaces, or solids, respectively.
If f(P ) denotes the density at P , then in each case, the integrals give the

total mass.
The average value concept extends easily to functions of several variables.

For instance, if f(P ) is defined on some plane region R, its average value over
R is defined as

1

area(R)

∫
R

f(P ) dA.

Sometimes these “multiple integrals” (also known as “double” or “triple” in-
tegrals) can be calculated by repeated integrations over intervals, that is, as
“iterated integrals.” This requires a description of the region in an appropriate
coordinate system and replaces dA or dV by an expression based on the area
or volume of a small patch swept out by small changes in the coordinates, as
recorded in Table 17.S.1.

Coordinate System Substitution
Rectangular (2-d) dA = dx dy
Rectangular (3-3) dV = dx dy dz
Polar dA = r dr dθ
Cylindrical dV = r dr dθ dz
Cylindrical (surface) dS = r dθ dz
Spherical dV = ρ2 sin(φ) dφ dρ dθ
Spherical (surface) dS = ρ2 sin(φ) dφ dθ

Table 17.S.1:

An integral over a surface S,
∫
S
f(P ) dS, can often be replaced by an

integral over the projection of S onto a plane R, replacing dS by dA cos(γ),
where γ is the angle between a normal to S and a normal to R.If density is 1, the center of

mass is called the centroid.

Figure 17.S.1:Figure 17.S.2:

To remember these
formulas, be able to draw

Figures 17.S.1 and 17.S.2,
including the labels.

EXERCISES for 17.S Key: R–routine, M–moderate, C–challenging

1.[R] The temperature at the point (x, y) at time t is T (x, y, t) = e−tx sin(x+ 3y).
Let f(t) be the average temperature in the rectangle 0 ≤ x ≤ π, 0 ≤ y ≤ π/2 at
time t. Find df/dt.

2.[R] Let f be a function such that f(−x, y) = −f(x, y).
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Key Facts

Formula Significance∫
R

1 dA Area of R∫
R

1 dV Volume of RR
R f(P ) dA

Area of R
or

R
R f(P ) dV

Volume of R
Average value of f over R∫

R
σ(P ) dA or

∫
R
δ(P ) dV Total mass of R, M (σ and

δ denote density)∫
R
yσ(P ) dA,

∫
R
xσ(P ) dA Moments, Mx and My about

x and y axes, respectively.
(A moment can be com-
puted around any line in the
plane.)∫

R
f(P )σ(P ) dA,

∫
R
f(P )σ(P ) dV

where f(P ) is the square of the distance
from P to some fixed line L

Moment of inertia around L
for planar and solid regions,
respectively.∫

R
x2σ(P ) dA,

∫
R
y2σ(P ) dA Second moments, Mxx and

Myy about x and y axes, re-
spectively.(

My

M
, Mx

M

)
Center of mass, (x̄, ȳ)∫

R
zδ(P ) dV Moment Mxy∫

R
yδ(P ) dV Moment Mxz∫

R
xδ(P ) dV Moment Myz(

Myz

M
, Mxz

M
, Mxy

M

)
Center of mass of solid,
(x̄, ȳ, z̄)

Table 17.S.2:

Relations Between Rectangular Coordinates and Spherical or Cylindrical
Coordinates

x = ρ sin(φ) cos(θ) x = r cos(θ)
y = ρ sin(φ) sin(θ) y = r sin(θ)
z = ρ cos(φ) z = z

Table 17.S.3:
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(a) Give some examples of such functions.

(b) For what type regions R in the xy plane is
∫
R f(x, y) dA certainly equal to 0?

3.[R] Find
∫
R(2x3y2 + 7) dA where R is the square with vertices (1, 1), (−1, 1),

(−1,−1), and (1,−1). Do this with as little work as possible.

4.[R] Let f(x, y) be a continuous function. Define g(x) to be
∫
R f(P ) dA, where R

is the rectangle with vertices (3, 0), (3, 5), (x, 0), and (x, 5), x > 3. Express dg/dx
as a suitable integral.

5.[R] Let R be a plane lamina in the shape of the region bounded by the graph of
the equation r = 2a sin(θ) (a > 0). If the variable density of the lamina is given by
σ(r, θ) = sin(θ), find the center of mass R.

In Exercises 6 to 9 find the moment of inertia of a homogeneous lamina of mass M
of the given shape, around the given line.
6.[R] A disk of radius a, about the line perpendicular to it through its center.
7.[R] A disk of radius a, about a line perpendicular to it through a point on the
circumference.
8.[R] A disk of radius a, about a diameter.
9.[R] A disk of radius a, about a tangent.

10.[C] Let S be the sphere of radius a and center at the origin. The integral∫
S(xz + y2)dS can be done with little effort.

(a) Why is
∫
S xzdS = 0?

(b) Why is
∫
S x

2dS =
∫
S y

2dS =
∫
S z

2dS?

(c) Why is
∫
S y

2dS =
∫
S(a2/3)dS?

(d) Show that
∫
S(xz + y2)dS = 4πa2/3.

11.[C] Let f(P ) and g(P ) be continuous functions defined on the plane region R.

(a) Show that∫
R

f(P )g(P ) dA

2

≤

∫
R

f(P )2 dA

∫
R

g(P )2 dA

 .

Hint: Review the proof of the Cauchy-Schwarz inequality presented in the
CIE on Average Speed and Class Size on page 682.
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(b) Show that if equality occurs in the inequality in (a), then f is a constant times
g.

12.[C] (Courtesy of G. D. Chakerian.) A solid region S is bounded below by the x−
y plane, above by the surface z = f(P ), and the sides by the surface of a cylinder, as

shown in Figure 17.S.3.

Figure 17.S.3:
The volume of S is V . If V is fixed, show that the top surface that minimizes the
height of the centroid of S is a horizontal plane. Note: Water in a glass illustrates
this, for nature minimizes the height of the centroid of the water. Hint: See Exer-
cise 11.

Exercises 13 to 19 explore the average distance for all points on a curve or in a
region. Recall that the distance from a point to a curve is the shortest distance
from the point to the curve.
13.[M] Find the average distance from points in a disk of radius a to the center of
the disk.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

14.[M] Find the average distance from points in a square of side a to the center of
the square.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

Calculus December 4, 2010



1506 CHAPTER 17 PLANE AND SOLID INTEGRALS

15.[M] Find the average distance from points in a ball of radius a to the center of
the ball.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in spherical coordinates.

(c) Evaluate the easier integral in (a) and (b).

16.[M] Find the average distance from points in a cube of side a to the center of
the cube.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

17.[M] Find the average distance from points in a square of side a to the border
of the square.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

18.[M] Find the average distance from the points in a disk of radius a to the
circular border.

(a) Before doing any calculations, decide whether the average distance is greater
than a/2 or less than a/2. Explain how you made this decision.

(b) Carry out the calculation using a convenient coordinate system.

19.[C] Let A and B be two points in the xy-plane. A curve (in the xy-plane)
consists of all points P such that the sum of the distances from P to A and P to B
is constant, say 2a. Consider the distance from P to A as a function of arclength
on the curve. Find the average of that distance.
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Calculus is Everywhere # 22

Solving the Wave Equation

In the The Wave in a Rope Calculus is Everywhere in the previous chapter
we encountered the partial differential equation

∂2y

∂x2
=

1

c2

∂2y

∂t2
. (C.22.1)

Now we will solve this equation to find y as a function of x and t. First, we
solve some simpler equations, which will help us solve (C.22.1).

EXAMPLE 6 Let u(x, y) satisfy the equation ∂u/∂x = 0. Find the form
of u(x, y).
SOLUTION Since ∂u/∂x is 0, u(x, y), for a fixed value of y, is constant.
Thus, u(x, y) depends only on y, and can be written in the form h(y) for some
function h of a single variable.

On the other hand, any function u(x, y) that can be written in the form
h(y) has the property that ∂u/∂x = 0 is any function that can be written as
a function of y alone. �

EXAMPLE 7 Let u(x, y) satisfy

∂2u

∂x∂y
= 0. (C.22.2)

Find the form of u(x, y).
SOLUTION We know that

∂
(
∂u
∂y

)
∂x

=
∂2u

∂x∂y
= 0.

By Example 6,
∂u

∂y
= h(y) for some function h(y).

By the Fundamental Theorem of Calculus, for any number b,

u(x, b)− u(x, 0) =

b∫
0

∂u

∂y
dy =

b∫
0

h(y)dy.
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Let H be an antiderivative of h. Then

u(x, b)− u(x, 0) = H(b)−H(0).

Replacing b by y shows that

u(x, y) = u(x, 0) +H(y)−H(0).

That tells us that u(x, y) can be expressed as the sum of a function of x and
a function of y,

u(x, y) = f(x) + g(y). (C.22.3)

�
We will solve the wave equation (C.22.1) by using a suitable change of

variables that transforms that equation into the one solved in Example 7.
The new variables are

p = x+ ct and q = x− ct.

One could solve these equations and express x and t as functions of p and q.x = 1
2(p+ q) and

t = 1
2c(p− q). We will apply the chain rule, where y is a function of p and q and p and q are

Figure C.22.1:

functions of x and t, as indicated in Figure C.22.1. Thus y(x, t) = u(p, q).
Keeping in mind that

∂p

∂x
= 1,

∂p

∂t
= c,

∂q

∂x
= 1, and

∂q

∂t
= −c,

we have
∂y

∂x
=
∂u

∂p

∂p

∂x
+
∂u

∂q

∂q

∂x
=
∂u

∂p
+
∂u

∂q
.

Then

∂2y

∂x2
=

∂

∂x

(
∂u

∂p
+
∂u

∂q

)
=

∂

∂p

(
∂u

∂p
+
∂u

∂q

)
∂p

∂x
+

∂

∂q

(
∂u

∂p
+
∂u

∂q

)
∂q

∂x

=

(
∂2u

∂p2
+

∂2u

∂p∂q

)
· 1 +

(
∂2u

∂q∂p
+
∂2u

∂2q

)
· 1.

Thus
∂2y

∂x2
=
∂2u

∂p2
+ 2

∂2u

∂p∂q
+
∂2u

∂q2
. (C.22.4)

A similar calculation shows that

∂2y

∂t2
= c2

(
∂2u

∂p2
− 2

∂2u

∂p∂q
+
∂2u

∂q2

)
. (C.22.5)
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Substituting (C.22.4) and (C.22.5) in (C.22.1) leads to

∂2u

∂p2
+ 2

∂2u

∂p∂q
+
∂2u

∂q2
. =

1

c2

(
c2
)(∂2u

∂p2
− 2

∂2u

∂p∂q
+
∂2u

∂q2

)
,

which reduces to

4
∂2u

∂p∂q
= 0.

By Example 7, there are function f(p) and g(q) such that

y(x, t) = u(p, q) = f(p) + g(q).

or
y(x, t) = f(x+ ct) + g(x− ct). (C.22.6)

The expression (C.22.6) is the most general solution of the wave equation
(C.22.1).

What does a solution (C.22.6) look like? What does the constant c tell us?
To answer these questions, consider just

y(x, t) = g(x− ct). (C.22.7)

Here t represents time. For each value of t, y(x, t) = g(x − ct) is simply a
function of x and we can graph it in the xy plane. For t = 0, (C.22.7) becomes

y(x, 0) = g(x).

That is just the graph of y = g(x), whatever g is, as shown in Figure C.22.2(a).

(a) (b)

Figure C.22.2: (a) t = 0, (b) t = 1.

Now consider y(x, t) when t = 1, which we may think of as “one unit of
time later.” Then

y = y(x, 1) = g(x− c · 1) = g(x− c).
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The value of y(x, 1) is the same as the value of g at x − c, c units to the left
of x. So the graph at t = 1 is the graph of f in Figure C.22.2(a) shifted to the
right c units, as in Figure C.22.2(b).

As t increases, the initial “wave” shown in Figure C.22.2(a) moves further
to the right at the constant speed, c. Thus c tells us the velocity of the moving
wave. That fact will play a role in Maxwell’s prediction that electro-magnetic
waves travel at the speed of light, as we will see in the Calculus is Everywhere
at the end of Chapter 18.

EXERCISES

1.[R] Which functions u(x, y) have both ∂u/∂x and ∂u/∂y equal to 0 for all x and
y?

2.[R] Let u(x, y) satisfy the equation ∂2u/∂x2 = 0. Find the form of u(x, y).

3.[R] Show that any function of the form (C.22.3) satisfies equation (C.22.2).

4.[R] Verify that any function of the form (C.22.6) satisfies the wave equation.

5.[M] We interpreted y(x, t) = g(x− ct) as the description of a wave moving with
speed c to the right. Interpret the equation y(x, t) = f(x+ ct).

6.[M] Let k be a positive constant.

(a) What are the solutions to the equation

∂2y

∂x2
= k

∂2y

∂t2
?

(b) What is the speed of the “waves”?
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Chapter 18

The Theorems of Green, Stokes,
and Gauss

Imagine a fluid or gas moving through space or on a plane. Its density may
vary from point to point. Also its velocity vector may vary from point to point.
Figure 18.0.1 shows four typical situations. The diagrams shows flows in the
plane because it’s easier to sketch and show the vectors there than in space.

(a) (b) (c) (d)

Figure 18.0.1: Four typical vector fields in the plane.

The plots in Figure 18.0.1 resemble the slope fields of Section 3.6 but now,
instead of short segments, we have vectors, which may be short or long. Two
questions that come to mind when looking at these vector fields:

• For a fixed region of the plane (or in space), is the amount of fluid in the
region increasing or decreasing or not changing?

• At a given point, does the field create a tendency for the fluid to rotate?
In other words, if we put a little propeller in the fluid would it turn? If
so, in which direction, and how fast?

This chapter provides techniques for answering these questions which arise
in several areas, such as fluid flow, electromagnetism, thermodynamics, and
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gravity. These techniques will apply more generally, to a general vector field.
Applications come from magnetics as well as fluid flow.

Throughout we assume that all partial derivatives of the first and second
orders exist and are continuous.
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18.1 Conservative Vector Fields

In Section 15.3 we defined integrals of the form∫
C

(P dx+Q dy +R dz). (18.1.1)

where P , Q, and R are scalar functions of x, y, and z and C is a curve in
space. Similarly, in the xy-plane, for scalar functions of x and y, P and Q, we
have ∫

C

(P dx+Q dy).

Instead of three scalar fields, P , Q, and R, we could think of a single vector
function F(x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k. Such a function is
called a vector field, in contrast to a scalar field. It’s hard to draw a vector
field defined in space. However, it’s easy to sketch one defined only on a
plane. Figure 18.1.1 shows three wind maps, showing the direction and speed
of the winds for (a) the entire United States, (b) near Pierre, SD and (c) near
Tallahassee, FL on April 24, 2009.

(a) (b) (c)

Figure 18.1.1: Wind maps showing (a) a source and (b) a saddle. Ob-
tained from www.intellicast.com/National/Wind/Windcast.aspx on April
23, 2009. [Another idea for these sample plots is to use maps from Hurricane
Katrina.]

Introducing the formal vector dr = dxi+dyj+dzk, we may rewrite (18.1.1)
as ∫

C

F · dr.

The vector notation is compact, is the same in the plane and in space, and
emphasizes the idea of a vector field. However, the clumsy notations∫
C

(P dx+Q dy+R dz) and

∫
C

(P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz)

do have two uses: to prove theorems and to carry out calculations.
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Conservative Vector Fields

Recall the definition of a conservative vector field from Section 15.3.

DEFINITION (Conservative Field) A vector field F defined in
some planar or spatial region is called conservative if∫

C1

F · dr =

∫
C2

F · dr

whenever C1 and C2 are any two simple curves in the region with
the same initial and terminal points.

An equivalent definition of a conservative vector field F is that for any
simple closed curve C in the region

∮
C

F · dr = 0, as Theorem 18.1.1 implies.
A closed curve is a curve that begins and ends at the same point, forming a
loop. It is simple if it passes through no point — other than its start and
finish points — more than once. A curve that starts at one point and ends
at a different point is simple if it passes through no point more than once.
Figure 18.1.2 shows some curves that are simple and some that are not.

Figure 18.1.2:

Theorem 18.1.1. A vector field F is conservative if and only if
∮
C

F · dr = 0
for every simple closed curve in the region where F is defined.

Proof

Assume that F is a conservative and let C be simple closed curve that starts
and ends at the point A. Pick a point B on the curve and break C into two
curves: C1 from A to B and C∗2 from B to A, as indicated in Figure 18.1.3(a).

Let C2 be the curve C∗2 traversed in the opposite direction, from A to B.
Then, since F is conservative,Note the sign change. ∮

C

F · dr =

∫
C1

F · dr +

∫
C∗2

F dr =

∫
C1

F · dr−
∫
C2

F · dr = 0.
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On the other hand, assume that F has the property that
∮
C

F · dr = 0 for
any simple closed curve C in the region. Let C1 and C2 be two simple curves
in the region, starting at A and ending at B. Let −C2 be C2 taken in the
reverse direction. (See Figures 18.1.3(b) and (c).) Then C1 followed by −C2

is a closed curve C from A back to A. Thus

(a) (b) (c)

Figure 18.1.3:

0 =

∮
C

F · dr =

∫
C1

F · dr +

∫
−C2

F · dr =

∫
C1

F · dr −
∫
C2

F · dr.

Consequently, ∫
C1

F · dr =

∫
C2

F · dr.

This concludes both directions of the argument. •

In this proof we tacitly assumed that C1 and C2 overlap only at their
endpoints, A and B. Exercise 26 treats the case when the curves intersect
elsewhere also.

Every Gradient Field is Conservative

Whether a particular vector field is conservative is important in the study of
gravity, electro-magnetism, and thermodynamics. In the rest of this section
we describe ways to determine whether a vector field F is conservative.

The first method that may come to mind is to evaluate
∮

F · dr for every
simple closed curve and see if it is always 0. If you find a case where it is
not 0, then F is not conservative. Otherwise you face the task of evaluating
a never-ending list of integrals checking to see if you always get 0. That is a
most impractical test. Later in this section partial derivatives will be used to
obtain a much simpler test. The first test involves gradients.
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Gradient Fields Are Conservative

The fundamental theorem of calculus asserts that
∫ b
a
f ′(x) dx = f(b) − f(a).

The next theorem asserts that
∫
C
∇f ·dr = f(B)−f(A), where f is a function of

two or three variables and C is a curve from A to B. Because of its resemblance
to the fundamental theorem of calculus, Theorem 18.1.2 is sometimes called
the fundamental theorem of vector fields.

Any vector field that is the gradient of a scalar field turns out to be conser-
vative. That is the substance of Theorem 18.1.2, which says, “The circulation
of a gradient field of a scalar function f along a curve is the difference in values
of f at the end points.”

Theorem 18.1.2. Let f be a scalar field defined in some region in the plane
or in space. Then the gradient field F = ∇f is conservative. In fact, for any
points A and B in the region,∫

C

∇f · dr = f(B)− f(A).

Proof

For simplicity take the planar case. Let C be given by the parameterization
r = G(t) for t in [a, b]. Let G(t) = x(t)i + y(t)j. Then,

∫
C

∇f · dr =

∫
C

(
∂f

∂x
dx+

∂f

∂y
dy

)
=

b∫
a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt.

The integrand (∂f/∂x)(dx/dt) + (∂f/∂y)(dy/dt) is reminiscent of the chain
rule in Section 16.3. If we introduce the function H defined by

H(t) = f(x(t), y(t)),

then the chain rule asserts that

dH

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

Thus
b∫

a

(
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt

)
dt =

b∫
a

dH

dt
dt = H(b)−H(a)

by the fundamental theorem of calculus. But

H(b) = f(x(b), y(b)) = f(B)
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and
H(a) = f(x(a), y(a)) = f(A).

Consequently, ∫
C

∇f · dr = f(B)− f(A), (18.1.2)

and the theorem is proved. •
In differential form Theorem 18.1.2 reads

If f is defined as the xy-plane, and C starts at A and ends at B,∫
C

(
∂f

∂x
dx+

∂f

∂y
dy

)
= f(B)− f(A) (18.1.3)

If f is defined in space, then,∫
C

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
= f(B)− f(A). (18.1.4)

Note that one vector equation (18.1.2) covers both cases (18.1.3) and
(18.1.4). This illustrates an advantage of vector notation.

It is a much more pleasant task to evaluate f(B)− f(A) than to compute
a line integral.

EXAMPLE 1 Let f(x, y, z) = 1√
x2+y2+z2

, which is defined everywhere ex-

cept at the origin. (a) Find the gradient field F = ∇f , (b) Compute
∫
C

F · dr
where C is any curve from (1, 2, 2) to (3, 4, 0).
SOLUTION (a) Straightforward computations show that

∂f

∂x
=

−x
(x2 + y2 + z2)3/2

,
∂f

∂y
=

−y
(x2 + y2 + z2)3/2

,
∂f

∂z
=

−z
(x2 + y2 + z2)3/2

.

So

∇f =
−zi− yj− zk

(x2 + y2 + z2)3/2
. (18.1.5)

If we let r(x, y, z) = xi + yj + zk, r = ‖r‖, and r̂ = r/r, then (18.1.5) can
be written more simply as

F = ∇f =
−r

r3
=
−r̂

r2
.
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(b) For any curve C from (1, 2, 2) to (3, 4, 0),∫
C

∇f · dr = f(3, 4, 0)− f(1, 2, 2) =
1√

32 + 42 + 02
− 1√

12 + 22 + 22

=
1

5
− 1

3
= − 2

15
.

�
For a constant k, positive or negative, any vector field, F = kr̂/r2, is called

an inverse square central field. They play an important role in the study
of gravity and electromagnetism.

In Example 1 ‖∇f‖ = ‖−r‖
r3

= r
r3

= 1
r2

and f(x, y, z) = 1
r
. In the study of

gravity, ∇f measures gravitational attraction, and f measures “potential.”

EXAMPLE 2 Evaluate
∮
C

(y dx + x dy) around a closed curve C taken
counterclockwise.

SOLUTION In Section 15.3 it was shown that if the area enclosed by a curve
C is A, then

∮
C
x dy = A and

∮
C
y dx = −A. Thus,∮

C

(y dx+ x dy) = −A+ A = 0.

A second solution uses Theorem 18.1.2. Note that

∇(xy) =
∂(xy)

∂x
i +

∂(xy)

∂y
j = yi + xj,

that is, the gradient of xy is yi + xj.
Hence, byTheorem 18.1.2, if the endpoints of C are A and B∮

C

(y dx+ x dy) =

∮
C

∇(xy) · dr = xy|BA .

Because C is a closed curve, A = B and so the integral is 0. �
A differential form P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz is called exact

if there is a scalar function f such that P (x, y, z) = ∂f/∂x, Q(x, y, z) = ∂f/∂y,
and R(x, y, z) = ∂f/∂z. In that case, the expression takes the form

∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz.

That is the same thing as saying that the vector field F = P (x, y, z)i +
Q(x, y, z)j +R(x, y, z)k is a gradient field: F = ∇f .

December 4, 2010 Calculus



§ 18.1 CONSERVATIVE VECTOR FIELDS 1519

If F is Conservative Must It Be a Gradient Field?

The proof of the next theorem is similar to the proof of the second part of
the Fundamental Theorem of Calculus. We suggest you review that proof FTC II states that every

continuous function has an
antiderivative.

(page 534) before reading the following proof.
The question may come to mind, “If F is conservative, is it necessarily the

gradient of some scalar function?” The answer is “yes.” That is the substance
of the next theorem, but first we need to introduce some terminology about
regions.

A region R in the plane is open if for each point P in R there is a disk
with center at P that lies entirely in R. For instance, a square without its
edges is open. However, a square with its edges is not open.

An open region in space is defined similarly, with “disk” replaced by “ball.”
An open region R is arcwise-connected if any two points in it can be

joined by a curve that lies completely in R. In other words, it consists of just
one piece.

Theorem 18.1.3. Let F be a conservative vector field defined in some arcwise-
connected region R in the plane (or in space). Then there is a scalar function
f defined in that region such that F = ∇f .

Proof

Consider the case when F is planar, F = P (x, y)i +Q(x, y)j. (The case where
F is defined in space is similar.) Define a scalar function f as follows. Let
(a, b) be a fixed point in R and (x, y) be any point in R. Select a curve C in
R that starts at (a, b) and ends at (x, y).

Figure 18.1.4:

Define f(x, y) to be
∫
C

F · dr. Since F is conservative, the number f(x, y)
depends only on the point (x, y) and not on the choice of C. (See Figure 18.1.4.)

All that remains is to show that ∇f = F; that is, ∂f/∂x = P and ∂f/∂y =
Q. We will go through the details for the first case, ∂f/∂x = P . The reasoning
for the other partial derivative is similar.

Let (x0, y0) be an arbitrary point in R and consider the difference quotient
whose limit is ∂f/∂x(x0, y0), namely,

f(x0 + h, y0)− f(x0, y0)

h
,

for h small enough so that (x0 + h, y0) is also in the region.

Figure 18.1.5:

Let C1 be any curve from (a, b) to (x0, y0) and let C2 be the straight path
from (x0, y0) to (x0 + h, y0). (See Figure 18.1.5.) Let C be the curve from
(0, 0) to the point(x0 + h, y0) formed by taking C1 first and continuing on C2.
Then

f(x0, y0) =

∫
C1

F · dr,
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and

f(x0 + h, y0) =

∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr.

Thus

f(x0 + h, y0)− f(x0, y0)

h
=

∫
C2

F · dr
h

=

∫
C2

(P (x, y) dx+Q(x, y) dy)

h
.

On C2, y is constant, y = y0; hence dy = 0. Thus
∫
C2
Q(x, y) dy = 0. Also,

∫
C2

P (x, y) dx =

x+h∫
x

P (x, y) dx.

By the Mean-Value Theorem for definite integrals, there is a number x∗ be-See Section 6.3 for the
MVT for Definite Integrals tween x and x+ h such that

x+h∫
x

P (x, y) dx = P (x∗, y0)h.

Hence

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h

= lim
h→0

1

h

x0+h∫
x0

P (x, y0) dx = lim
h→0

P (x∗, y0) = P (x0, y0).

Consequently,
∂f

∂x
(x0, y0) = P (x0, y0),

as was to be shown.
In a similar manner, we can show that

∂f

∂y
(x0, y0) = Q(x0, y0).

•

For a vector field F defined throughout some region in the plane (or space)
the following three properties are therefore equivalent: Figure 18.1.6 tells us
that any one of the three properties, (1), (2), or (3), describes a conservative
field. We used property (3) as the definition.
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Figure 18.1.6: Double-headed arrows (⇔) mean “if and only if” or “is equiv-
alent to.” (Single-headed arrows (⇒) mean “implies.”)

Almost A Test For Being Conservative

Figure 18.1.6 describes three ways of deciding whether a vector field F =
P i + Qj + Rk is conservative. Now we give a simple way to tell that it is
not conservative. The method is simpler than finding a particular line integral∫
C

F · dr that is not 0.

Remember that we have assumed that all of the functions we encounter in
this chapter have continuous first and second partial derivatives.

The test depends on the fact that the two orders in which are may compute
a second-order mixed partial derivative give the same result. (We used this
fact in Section 16.8 in a thermodynamics context.)

Consider an expression of the form P dx+Q dy +R dz (or equivalently a
vector field F = P i +Qj +Rk). If the form is exact, then F is a gradient and
there is a scalar function f such that

∂f

∂x
= P,

∂f

∂y
= Q,

∂f

∂z
= R.

Since
∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
,

we have
∂P

∂y
=
∂Q

∂x
.

Similarly we find
∂Q

∂z
=
∂R

∂y
and

∂P

∂z
=
∂R

∂x
.

To summarize,
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If the vector field F = P i +Qj +Rk is conservative, then

∂Q

∂x
− ∂P

∂y
= 0,

∂R

∂y
− ∂Q

∂z
= 0,

∂R

∂x
− ∂P

∂z
= 0. (18.1.6)

If at least one of these three equations (18.1.6) doesn’t hold, then P dx +
Q dy +R dz is not exact (and F = P i +Qj +Rk is not conservative).

EXAMPLE 3 Show that cos(y) dx+sin(xy) dy+ln(1+x) dz is not exact.
SOLUTION Checking whether the first equation in (18.1.6) holds we com-
pute

∂(sin(xy))

∂x
− ∂(cos(y))

∂y
,

which equals

y cos(xy) + sin(y),

which is not 0. There’s no need to check the remaining two equations in
(18.1.6). The expression sin(xy) dx + cos(y) dy + ln(1 + x) dz is not exact.
(Equivalently, the vector field sin(xy)i + cos(y)j + ln(1 + x)k is not a gradient
field, hence not conservative.) �

Notice that we completed Example 3 without doing any integration.

We can restate the three equations (18.1.6) as a single vector equation, by
introducing a 3 by 3 formal determinant i j k

∂
∂x

∂
∂y

∂
∂z

P Q R

 (18.1.7)

Expanding this as though the nine entries were numbers, we get

i

(
∂R

∂y
− ∂Q

∂z

)
− j

(
∂R

∂x
− ∂P

∂z

)
+ k

(
∂Q

∂x
− ∂P

∂y

)
. (18.1.8)

If the three scalar equations in (18.1.6) hold, then (18.1.8) is the 0-vector. In
view of the importance of the vector (18.1.8), it is given a name.

DEFINITION (Curl of a Vector Field) The curl of the vector
field F = P i + Qj + Rk is the vector field given by the formula
(18.1.7) or (18.1.8). It is denoted curl F.
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The formal determinant (18.1.7) is like the one for the cross product of two
vectors. For this reason, it is also denoted∇×F (read as “del cross F”). That’s
a lot easier to write than (18.1.8), which refers to the components. Once again
we see the advantage of vector notation.

The definition also applies to a vector field F = P (x, y)i + Q(x, y)j in the
plane. Writing F as P (x, y)i + Q(x, y)j + 0k and observing that ∂Q/∂z = 0
and ∂P/∂z = 0, we find that

∇× F =

(
∂Q

∂x
− ∂P

∂y

)
k.

EXAMPLE 4 Compute the curl of F = xyzi + x2j− xyk.
SOLUTION The curl of F is given by i j k

∂
∂x

∂
∂y

∂
∂z

xyz x2 −xy,


which is short for(

∂

∂y
(−xy)− ∂

∂z
(x2)

)
i−
(
∂

∂x
(−xy)− ∂

∂z
(xyz)

)
j +

(
∂

∂x
(x2)− ∂

∂y
(xyz)

)
k

= (−x− 0)i− (−y − xy)j + (2x− xz)k

= −xi + (y + xy)j + (2x− xz)k.

�

If any case, in view of (18.1.6), for vector fields in space or in the xy-plane
we have this theorem.

Theorem 18.1.4. If F is a conservative vector field, then ∇× F = 0.

You may wonder why the vector field curl F obtained from the vector field
F is called the “curl of F.” Here we came upon the concept purely mathe-
matically, but, as you will see in Section 18.6 it has a physical significance: If
F describes a fluid flow, the curl of F describes the tendency of the fluid to
rotate and form whirlpools — in short, to “curl.”

The Converse of Theorem 18.1.4 Isn’t True
Warning: The converse of
Theorem 18.1.4 is false.It would be delightful if the converse of Theorem 18.1.4 were true. Unfor-

tunately, it is not. There are vector fields F whose curls are 0 that are not
conservative. Example 5 provides one such F in the xy-plane. Its curl is 0 but
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it is not conservative, that is, ∇ × F = 0 and there is a closed curve C with∮
C

F · dr not zero.

EXAMPLE 5 Let F = −yi
x2+y2

+ xj
x2+y2

. Show that (a) ∇×F = 0, but (b) F
is not conservative.
SOLUTION (a) We must compute

det

 i j k
∂
∂x

∂
∂y

∂
∂z

−y
x2+y2

x
x2+y2

0


which equals (

∂(0)

∂y
− ∂

∂z

(
x

x2 + y2

))
i−
(
∂(0)

∂x
− ∂

∂z

(
−y

x2 + y2

))
j

+

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
k.

The i and j components are clearly 0, and a direct computation shows that
the k component is

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0.

Thus the curl of F is 0.
(b) To show that F is not conservative, it suffices to exhibit a closed curve

C such that
∮
C

F · dr is not 0. One such choice for C is the unit circle
parameterized counterclockwise by

x = cos(θ), y = sin(θ), 0 ≤ θ ≤ 2π.

On this curve x2 + y2 = 1. Figure 18.1.7 shows a few values of F at points on
C. Clearly

∫
C

F · dr, which measures circulation, is positive, not 0. However,
if you have any doubt, here is the computation of

∫
C

F · dr:Recall that, on C,
x2 + y2 = 1. ∮

C

F · dr =

∮
C

(
−y dx
x2 + y2

+
x dy

x2 + y2

)

=

2π∫
0

(− sin θ d(cos θ) + cos θ d(sin θ))

=

2π∫
0

(sin2 θ + cos2 θ) dθ =

2π∫
0

dθ = 2π.

This establishes (b), F is not conservative. �
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Figure 18.1.7:

The curl of F being 0 is not enough to assure us that a vector field F
is conservative. An extra condition must be satisfied by F. This condition
concerns the domain of F. This extra assumption will be developed for planar
fields in Section 18.2 and for spatial fields F in Section 18.6. Then we will
have a simple test for determining whether a vector field is conservative.

Summary

We showed that a vector field being conservative is equivalent to its being the
gradient of a scalar field. Then we defined the curl of a vector field. If a field
is denoted F, the curl of F is a new vector field denoted curl F or ∇× F. If
F is conservative, then ∇× F is 0. However, if the curl of F is 0, it does not
follow that F is conservative. An extra assumption (on the domain of F) must
be added. That assumption will be described in the next section.
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EXERCISES for Section 18.1 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4 answer “True” or “False” and explain.
1.[R] “If F is conservative, then ∇× F = 0.”

2.[R] “If ∇× F = 0, then F is conservative.”

3.[R] “If F is a gradient field, then ∇× F = 0.”

4.[R] “If ∇× F = 0, then F is a gradient field.”

5.[R] Using information in this section, describe various ways of showing a vector
field F is not conservative.

6.[R] Using information in this section, describe various ways of showing a vector
field F is conservative.

7.[R] Decide if each of the following sets is open, closed, neither open nor closed,
or both open and closed.

(a) unit disk with its boundary

(b) unit disk without any of its boundary points

(c) the x-axis

(d) the entire xy-plane

(e) the xy-plane with the x-axis removed

(f) a square with all four of its edges (and corners)

(g) a square with all four of its edges but with its corners removed

(h) a square with none of its edges (and corners)

8.[R] In Example 1 we computed a certain line integral by using the fact that the
vector field (−xi − yj − zk)/(x2 + y2 + z2)3/2 is a gradient field. Compute that
integral directly, without using the information that the field is a gradient.

9.[R] Let F = y cos(x)i + (sin(x) + 2y)j.

(a) Show that curl F is 0 and F is defined in an arcwise-connected region of the
plane.

(b) Construct a “potential function” f whose gradient is F.
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10.[R] Let f(x, y, z) = e3x ln(z+y2). Compute
∫
C ∇f · dr, where C is the straight

path from (1, 1, 1) to (4, 3, 1).

11.[R] We obtained the first of the three equations in (18.1.6). Derive the other
two.

12.[R] Find the curl of F(x, y, z) = ex
2
yzi + x3 cos2 3yj + (1 + x6)k.

13.[R] Find the curl of F(x, y) = tan2(3x)i + e3x ln(1 + x2)j.

14.[R] Using theorems of this section, explain why the curl of a gradient is 0, that
is, curl(∇f) = 0 (∇×∇f = 0) for a scalar function f(x, y, z). Hint: No computa-
tions are needed.

15.[R] By a computation using components, show that for the scalar function
f(x, y, z), curl∇f = 0.

16.[R] Let f(x, y) = cos(x + y). Evaluate
∫
C ∇f · dr, where C is the curve that

lies on the parabola y = x2 and goes from (0, 0) to (2, 4).

17.[R] In Example 5 we computed
∮
C F · dr, where F = −yi+xj

x2+y2
and C is the unit

circle with center at the origin. Compute the integral when C is the circle of radius
5 with center at the origin.

18.[M] In Example 5 we computed
∮
C F · dr where F = −yi+xj

x2+y2
and C is the unit

circle with center at the origin.

(a) Without doing any new computations, evaluate
∮
C F ·dr where C is the square

path with vertices (1, 0), (2, 0), (2, 1), (1, 1), (1, 0).

(b) Evaluate the integral in (a) by a direct computation, breaking the integral
into four integrals, one over each edge.

19.[M] If F and G are conservative, is F + G?

20.[M] By a direct computation, show that curl(fF) = ∇f × F + f curl F.

21.[M] By a direct computation, show that curl(F×G) = (G · ∇)F− (F · ∇)G +
F(∇ · G) − G(∇ · F). Each of the first two terms has a form not seen before
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now in this text. Here is how to interpret them when F = F1i + F2j + F3k and
G = G1i +G2j +G3k:

(G · ∇)F = G1
∂F1

∂x
+G2

∂F2

∂y
+G3

∂F3

∂z
.

22.[M] If F and G are conservative, is F×G?

23.[M] Explain why the curl of a gradient field is the zero vector, that is, ∇×∇f =
0.

24.[M] Assume that F(x, y) is conservative. Let C1 be the straight path from
(0, 0, 0) to (1, 0, 0), C2 the straight path from (1, 0, 0) to (1, 1, 1). If

∫
C1

F dr = 3
and

∫
C2

F dr = 4, what can be said about
∫
C F dr, where C is the straight path

from (0, 0, 0) to (1, 1, 1)?

25.[M] Let F(x, y) be a field that can be written in the form

F(x, y) = g(
√
x2 + y2)

xi + yj√
x2 + y2

where g is a scalar function. If we denote xi+yj as r, then F(x, y) = g(r)r̂, where r =
‖r‖ and r̂ = ‖r‖/r. Show that

∮
C F· dr = 0, for any path ABCDA of the form shown

in Figure 18.1.8. (The path consists of two circular arcs and parts of two rays from

the origin.)

Figure 18.1.8:

26.[M] In Theorem 18.1.1 we proved that ∂f/∂x = P . Prove that ∂f/∂y = Q.

27.[C] In view of the previous exercise, we may expect F(x, y) = g(
√
x2 + y2) xi+yj√

x2+y2

to be conservative. Show that it is by showing that F is the gradient of G(x, y) =
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H(
√
x2 + y2), where H is an antiderivative of g, that is, H ′ = g.

28.[C] The domain of a vector field F is all of the xy-plane. Assume that there
are two points A and B such that

∫
C F dr is the same for all curves C from A to B.

Deduce that F is conservative.

29.[C] A gas at temperature T0 and pressure P0 is brought to the temperature
T1 > T0 and pressure P1 > P0. The work done in this process is given by the line
integral in the TP - plane ∫

C

(
RT dP

P
−R dT

)
,

where R is a constant and C is the curve that records the various combinations of
T and P during the process. Evaluate this integral over the following paths, shown
in Figure 18.1.9.

Figure 18.1.9:

(a) The pressure is kept constant at P0 while the temperature is raised from T0

to T1; then the temperature is kept constant at T1 while the pressure is raised
from P0 to P1.

(b) The temperature is kept constant at T0 while the pressure is raised from P0

to P1; then the temperature is raised from T0 to T1 while the pressure is kept
constant at P1.

(c) Both pressure and temperature are raised simultaneously in such a way that
the path from (P0, T0) to (P1, T1) is straight.

Because the integrals are path dependent, the differential expression RT dP/P −
R dT defines a thermodynamic quantity that depends on the process, not just on
the state. Vectorially speaking, the vector field (RT/P )i − Rj is not conservative.
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30.[C] Assume that F(x, y) is defined throughout the xy-plane and that
∮
C F(x, y) · dr = 0

for every closed curve that can fit inside a disk of diameter 0.01. Show that F is
conservative.

31.[C] This exercise completes the proof of Theorem 18.1.1 in the case when C1

and C2 overlap outside of their endpoints A and B. In that case; introduce a third
simple curve from A to B that overlaps C1 and C2 only at A and B. Then an
argument similar to that in the proof of Theorem 18.1.1 can dispose of this case.

32.[C] We proved that lim
R x0+h
x0

P (x,y0) dx

h equals P (x0, y0), by using the Mean
Value Theorem for definite integrals. Find a different proof of this result that uses
a part of the Fundamental Theorem of Calculus.
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18.2 Green’s Theorem and Circulation

In this section we discuss a theorem that relates an integral of a vector field
over a closed curve C in a plane to an integral of a related scalar function over
the region R whose boundary is C. We will also see what this means in terms
of the circulation of a vector field.

Statement of Green’s Theorem
There are two analogs of
Green’s Theorem in space;
they are discussed in
Sections 18.5 and 18.6.

We begin by stating Green’s Theorem and explaining each term in it. Then
we will see several applications of the theorem. Its proof is at the end of the
next section.

Green’s Theorem
Let C be a simple, closed counterclockwise curve in the xy-plane, bounding
a region R. Let P and Q be scalar functions defined at least on an open set
containing R. Assume P and Q have continuous first partial derivatives. Then∮

C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

Recall, from Section 18.1, that a curve is closed when it starts and ends at
the same point. It’s simple when it does not intersect itself (except at its start
and end). These restrictions on C ensure that it is the boundary of a region
R in the xy-plane.

Since P and Q are independent of each other, Green’s Theorem really
consists of two theorems:∫

C

P dx = −
∫
R

∂P

∂y
dA and

∮
C

Q dy =

∫
R

∂Q

∂x
dA. (18.2.1)

EXAMPLE 1 In Section 15.3 we showed that if the counterclockwise curve
C bounds a region R, then

∮
C
y dx is the negative of the area of R. Obtain

this result with the aid of Green’s Theorem.
SOLUTION Let P (x, y) = y, and Q(x, y) = 0. Then Green’s Theorem says
that ∮

C

y dx = −
∫
R

∂y

∂y
dA.

Since ∂y/∂y = 1, it follows that
∮
y dx is −

∫
R 1 dA, the negative of the area

of R. �
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Green’s Theorem and Circulation

What does Green’s Theorem say about a vector field F = P i + Qj? First of
all,

∮
C

(P dx+Q dy) now becomes simply
∮
C

F · dr.
The right hand side of Green’s Theorem looks a bit like the curl of a vector

field in the plane. To be specific, we compute the curl of F: i j k
∂x ∂y ∂z

P (x, y) Q(x, y) 0

 = 0i− 0j +

(
∂Q

∂x
− ∂P

∂y

)
k

Thus the curl of F equals the vector function(
∂Q

∂x
− ∂P

∂y

)
k. (18.2.2)

To obtain the (scalar) integrand on the right-hand side of (18.2.2), we “dot
(18.2.2) with k,” ((

∂Q

∂x
− ∂P

∂y

)
k

)
· k =

∂Q

∂x
− ∂P

∂y
.

Green’s Theorem Expressed in Terms of Circulation

We can now express Green’s Theorem using vectors. In particular, circulation
around a closed curve can be expressed in terms of a double integral of the
curl over a region.

If the counterclockwise closed curve C bounds the region R, then∮
C

F · dr =

∫
R

(∇× F) · k dA.

Recall that if F describes the flow of a fluid in the xy-plane, then
∮
C

F · dr
represents its circulation, or tendency to form whirlpools. This theorem tells
us that the magnitude of the curl of F represents the tendency of the fluid to
rotate. If the curl of F is 0 everywhere, then F is called irrotational — there
is no rotational tendency.

This form of Green’s theorem provides an easy way to show that a vector
field F is conservative. It uses the idea of a simply-connected region. Informally
“a simply-connected region in the xy-plane comes in one piece and has no
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holes.” More precisely, an arcwise-connected region R in the plane or in space
is simply-connected if each closed curve in R can be shrunk gradually to a
point while remaining in R.

Figure 18.2.1 shows two regions in the plane. The one on the left is simply-
connected, while the one on the right is not simply connected. For instance, the

(a) (b)

Figure 18.2.1: Regions in the plane that are (a) simply connected and (b)
not simply connected.

xy-plane is simply connected. So is the xy-plane without its positive x-axis.
However, the xy-plane, without the origin is not simply connected, because
a circular path around the origin cannot be shrunk to a point while staying
within the region.

If the origin is removed from xyz-space, what is left is simply connected.
However, if we remove the z-axis, what is left is not simply connected.

Figure 18.2.2(b) shows a curve that cannot be shrunk to a point while
avoiding the z-axis.

Now we can state an easy way to tell whether a vector field is conservative.

Theorem. If a vector field F is defined in a simply-connected region in the
xy-plane and ∇× F = 0 throughout that region, then F is conservative.

Proof

Let C be any simple closed curve in the region and R the region it bounds.
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(a) (b)

Figure 18.2.2: (a) xyz-space with the origin removed is simply connected. (b)
xyz-space with the z-axis removed is not simply connected.

We wish to prove that the circulation of F around C is 0. We have∮
C

F · dr =

∫
R

(curl F) · k dA.

Since curl F is 0 throughout R, it follows that
∮
C

F · dr = 0. •

In Example 5 in Section 18.1, there is a vector field whose curl is 0 but is
not conservative. In view of the theorem just proved, its domain must not be
simply connected. Indeed, the domain of the vector field in that example is
the xy-plane with the origin deleted.

EXAMPLE 2 Let F(x, y, z) = exyi + (ex + 2y)j.

1. Show that F is conservative.

2. Exhibit a scalar function f whose gradient is F.

SOLUTION

1. A straightforward calculation shows that ∇×F = 0. Since F is defined
throughout the xy-plane, a simply-connected region, Theorem 18.2 tells
us that F is conservative.

2. By Section 18.1, we know that there is a scalar function f such that
∇f = F. There are several ways to find f . We show one of these
methods here. Additional approaches are pursued in Exercises 7 and 8.

December 4, 2010 Calculus



§ 18.2 GREEN’S THEOREM AND CIRCULATION 1535

The approach chosen here follows the construction in the proof of Theo-
rem 18.1.3. For a point (a, b), define f(a, b) to equal

∫
C

F ·dr, where C is
any curve from (0, 0) to (a, b). Any curve with the prescribed endpoints
will do. For simplicity, choose C to be the curve that goes from (0, 0) to
(a, b) in a straight line. (See Figure 18.2.3.) When a is not zero, we can
use x as a parameter and write this segment as: x = t, y = (b/a)t for
0 ≤ t ≤ a. (If a = 0, we would use y as a parameter.) Then

Figure 18.2.3:

f(a, b) =

∫
C

(exy dx+ (ex + 2y) dy) =

a∫
0

(
et
b

a
t dt+

(
et + 2

b

a
t

)
b

a
dt

)

=
b

a

a∫
0

(
tet + et + 2

b

a
t

)
dt =

b

a

(
(t− 1)et + et +

b

a
t2
)∣∣∣∣a

0

=
b

a

(
tet +

b

a
t2
)∣∣∣∣a

0

= bea + b2.

Since f(a, b) = bea + b2, we see that f(x, y) = yex + y2 is the desired
function. One could check this by showing that the gradient of f is indeed yex + y2 + k for any

constant k, also would be a
potential.

exyi + (ex + 2y)j. Other suitable potential functions f are exy + y+k for
any constant k.

�
The next example uses the cancellation principle, which is based on the

fact that the sum of two line integrals in opposite direction on a curve is zero.
This idea is used here to develop the two-curve version of Green’s Theorem
and then several more times before the end of this chapter. Green’s Theorem — The

Two-Curve Case
EXAMPLE 3 Figure 18.2.4(a) shows two closed counterclockwise curves
C1, and C2 that enclose a ring-shaped region R in which ∇ × F is 0. Show
that the circulation of F over C1 equals the circulation of F over C2.
SOLUTION Cut R into two regions, each bounded by a simple curve, to
which we can apply Theorem 18.2. Let C3 bound one of the regions and C4

bound the other, with the usual counterclockwise orientation. On the cuts, C3

and C4 go in opposite directions. On the outer curve C3 and C4 have the same
orientation as C1. On the inner curve they are the opposite orientation of C2.
(See Figure 18.1.2(b).) Thus∫

C3

F · dr +

∫
C4

F · dr =

∫
C1

F · dr −
∫
C2

F · dr. (18.2.3)

By Theorem 18.2 each integral on the left side of (18.2.3) is 0. Thus∫
C1

F · dr =

∫
C2

F · dr (18.2.4)
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(a) (b)

Figure 18.2.4:

�
Example 3 justifies the “two-curve” variation of Green’s Theorem:

Two-Curve Version of Green’s Theorem
Assume two nonoverlapping curves C1 and C2 lie in a region where curl F
is 0 and form the border of a ring. Then, if C1 and C2 both have the same
orientation, ∮

C1

F · dr =

∮
C2

F · dr.

This theorem tells us “as you move a closed curve within a region of zero-
curl, you don’t change the circulation.” The next Example illustrates this
point.

EXAMPLE 4 Let F = −yi+xj
x2+y2

and C be the closed counterclockwise curve

bounding the square whose vertices are (−2,−2), (2,−2), (2, 2), and (−2, 2).
Evaluate the circulation of F around C as easily as possible.
SOLUTION This vector field appeared in Example 5 of Section 18.1. Since
its curl is 0, at all points except the origin, where F is not defined, we may use
the two-curve version of Green’s Theorem. Thus

∮
C

F·dr equals the circulation
of F over the unit circle in Example 5, hence equals 2π.

This is a lot easier than integrating F directly over each of the four edges
of the square. �

How to Draw ∇× F

For the planar vector field F, its curl, ∇×F, is of the form z(x, y)k. If z(x, y)
is positive, the curl points directly up from the page. Indicate this by the
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symbol �, which suggests the point of an arrow or the nose of a rocket. If
z(x, y) is negative, the curl points down from the page. To show this, use
the symbol ⊕, which suggests the feathers of an arrow or the fins of a rocket.
Figure 18.2.5 illustrates their use. This is standard notation in

physics.

Figure 18.2.5:

Summary

We first expressed Green’s theorem in terms of scalar functions∮
C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

We then translated it into a statement about the circulation of a vector field;∮
C

F · dr =

∫
R

(∇× F) · k dA.

In this theorem the closed curve C is oriented counterclockwise.
With the aid of this theorem we were able to show the following important

result:

If the curl of F is 0 and if the domain of F is simply connected, then F is
conservative.

Also, in a region in which ∇×F = 0, the value of
∮
C

F · dr does not change
as you gradually change C to other curves in the region.
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EXERCISES for Section 18.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 through 4 verify Green’s Theorem for the given functions P and Q
and curve C.
1.[R] P = xy, Q = y2 and C is the border of the square whose vertices are (0, 0),
(1, 0), (1, 1) and (0, 1).
2.[R] P = x2, Q = 0 and C is the boundary of the unit circle with center (0, 0).
3.[R] P = ey, Q = ex and C is the triangle with vertices (0, 0), (1, 0), and (0, 1).
4.[R] P = sin(y), Q = 0 and C is the boundary of the portion of the unit disk with
center (0, 0) in the first quadrant.

5.[R] Figure 18.2.6 shows a vector field for a fluid flow F. At the indicated points
A, B, C, and D tell when the curl of F is pointed up, down or is 0. (Use the
� and ⊕ notation.) Hint: When the fingers of your right hand copy the di-
rection of the flow, your thumb points in the direction of the curl, up or down.

Figure 18.2.6:

6.[R] Assume that F describes a fluid flow. Let P be a point in the domain of F
and C a small circular path around P .

(a) If the curl of F points upward, in what direction is the fluid tending to turn
near P , clockwise or counterclockwise?

(b) If C is oriented clockwise, would
∮
C F · dr to be positive or negative?

7.[R] In Example 2 we constructed a function f by using a straight path from (0, 0)
to (a, b). Instead, construct f by using a path that consists of two line segments,
the first from (0, 0) to (a, 0), and the second, from (a, 0) to (a, b).
8.[R] In Example 2 we constructed a function f by using a straight path from (0, 0)
to (a, b). Instead, construct f by using a path that consists of two line segments,
the first from (0, 0) to (0, b), and the second from (0, b) to (a, b).
9.[R] Another way to construct a potential function f for a vector field F = P i+Qj
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is to work directly with the requirement that ∇f = F. That is, with the equattions

∂f

∂x
= P (x, y) and

∂f

∂y
= Q(x, y).

(a) Integrate ∂f
∂x = exy with respect to x to conclude that f(x, y) = exy + C(y).

Note that the “constant of integration” can be any function of y, which we
call C(y). (Why?)

(b) Next, differentiate the result found in (a) with respect to y. This gives two
formulas for ∂f

∂y : ex +C ′(y) and ex + 2y. Use this fact to explain why C ′(y) =
2y.

(c) Solve the equation for C found in (b).

(d) Combine the results of (a) and (c) to obtain the general form for a potential
function for this vector field.

In Exercises 10 through 13

(a) check that F is conservative in the given domain, that is ∇×F = 0, and the
domain of F is simply connected

(b) construct f such that ∇f = F, using integrals on curves

(c) construct f such that ∇f = F, using antiderivatives, as in Exercise 9.

10.[R] F = 3x2y vi+ x3j, domain the xy-plane
11.[R] F = y cos(xy) vi+ (x cos(xy) + 2y)j, domain the xy-plane
12.[R] F = (yexy + 1/x)i + xexyj, domain all xy with x > 0

13.[R] F = 2y ln(x)
x i + (ln(x))2j, domain all xy with x > 0

14.[R] Verify Green’s Theorem when F(xy) = xi + yj and R is the disk of radius
a and center at the origin.

15.[R] In Example 1 we used Green’s Theorem to show that
∮
C y dx is the negative

of the area that C encloses. Use Green’s Theorem to show that
∮
C x dy equals that

area. (We obtained this result in Section 15.3 without Green’s Theorem.)

16.[R] Let A be a plane region with boundary C a simple closed curve swept out
counterclockwise. Use Green’s theorem to show that the area of A equals

1
2

∮
(−y dx+ x dy).
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17.[R] Use Exercise 16 to find the area of the region bounded by the line y = x
and the curve {

x = t6 + t4

y = t3 + t
for t in [0, 1].

18.[R] Assume that curl F at (0, 0) is −3. Let C sweep out the boundary of a cir-
cle of radius a, center at (0, 0). When a is small, estimate the circulation

∫
C F ·dr.

19.[R] Which of these fields are conservative:

(a) xi− yj

(b) xi−yj
x2+y2

(c) 3i + 4j

(d) (6xy − y3)i + (4y + 3x2 − 3xy2)j

(e) yi−xj
1+x2y2

(f) xi+yj
x2+y2

20.[R] Figure 18.2.7 shows a fluid flow F. All the vectors are parallel, but their
magnitudes increase from bottom to top. A small simple curve C is placed in the
flow.

Figure 18.2.7:

(a) Is the circulation around C positive, negative, or 0? Justify your opinion.

(b) Assume that a wheel with small blades is free to rotate around its axis, which
is perpendicular to the page. When it is inserted into this flow, which way
would it turn, or would it not turn at all? (Don’t just say, ”It would get wet.”)
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21.[R] Let F(x, y) = y2i.

(a) Sketch the field.

(b) Without computing it, predict when (∇× F) · k is positive, negative or zero.

(c) Compute (∇× F) · k.

(d) What would happen if you dipped a wheel with small blades free to rotate
around its axis, which is perpendicular to the page, into this flow.

22.[R] Check that the curl of the vector field in Example 2 is 0, as asserted.

23.[R] Explain in words, without explicit calculations, why the circulation of the
field f(r)r̂ around the curve PQRSP in Figure 18.2.8 is zero. As usual, f is a scalar
function, r = ||r||, and r̂ = r/r.

Figure 18.2.8: ARTIST: Please color the four sides of the closed curve.

In Exercises 24 to 27 let F be a vector field defined everywhere in the plane except a
the point P shown in Figure 18.2.9. Assume that ∇×F = 0 and that

∫
C1

F · dr = 5.
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Figure 18.2.9:

24.[R] What, if anything, can be said about
∫
C2

F · dr?

25.[R] What, if anything, can be said about
∫
C3

F · dr?

26.[R] What, if anything, can be said about
∫
C4

F · dr?

27.[R] What, if anything, can be said about
∫
C F ·dr, where C is the curve formed

by C1 followed by C3?

In Exercises 28 to 31 show that the vector field is conservative and then construct
a scalar function of which it is the gradient. Use the method in Example 2.
28.[R] 2xyi + x2j

29.[R] sin(y)i + (x cos(y) + 3)j

30.[R] (y + 1)i + (x+ 1)j

31.[R] 3y sin2(xy) cos(xy)i + (1 + 3x sin2(xy) cos(xy))j

32.[R] Show that

(a) 3x2y dx+ x3 dy is exact.

(b) 3xy dx+ x2 dy is not exact.

33.[R] Show that (x dx + y dy)/(x2 + y2) is exact and exhibit a function f such
that df equals the given expression. (That is, find f such that ∇f · dr agrees with
the given differential form.)

34.[R] Let F = r̂/‖r‖ in the xy plane and let C be the circle of radius a and center
(0, 0).

(a) Evaluate
∮
C F · n ds without using Green’s theorem.
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(b) Let C now be the circle of radius 3 and center (4, 0). Evaluate
∮
C F · n ds,

doing as little work as possible.

35.[R] Figure 18.2.10(a) shows the direction of a vector field at three points. Draw
a vector field compatible with these values. (No zero-vectors, please.)

(a) (b) (c)

Figure 18.2.10:

36.[R] Consider the vector field in Figure 18.2.10(b). Will a paddle wheel turn at
A? At B? At C? If so, in which direction?

37.[R] Use Exercise 16 to obtain the formula for area in polar coordinates:

Area =
1
2

β∫
α

r2 dθ.

Hint: Assume C is given parametrically as x = r(θ) cos(θ), y = r(θ) sin(θ), for
α ≤ θ ≤ β.

38.[M] A curve is given parametrically by x = t(1 − t2), y = t2(1 − t3), for t in
[0, 1].

(a) Sketch the points corresponding to t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, and use
them to sketch the curve.

(b) Let R be the region enclosed by the curve. What difficulty arises when you try
to compute the area of R by a definite integral involving vertical or horizontal
cross sections?

(c) Use Exercise 16 to find the area of R.

39.[M] Repeat Exercise 38 for x = sin(πt) and y = t− t2, for t in [0, 1]. In (a), let
t = 0, 1/4, 1/2, 3/4, and 1.

40.[C] Assume that you know that Green’s Theorem is true when R is a triangle
and C its boundary.
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(a) Deduce that it therefore holds for quadrilaterals.

(b) Deduce that it holds for polygons.

41.[C] Assume that ∇× F = 0 in the region R bounded by an exterior curve C1

and two interior curves C2 and C3, as in Figure 18.2.11. Show that
∫
C1

F · dr =∫
C2

F · dr +
∫
C3

F · dr.

Figure 18.2.11:
42.[C] We proved that

∫
R
∂Q
∂y dA =

∫
C Q dy in a special case. Prove it in this more

general case, in which we assume less about the region R. Assume that R has the
description a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x). Figure 18.2.10(c) shows such a region,
which need not be convex. The curved path C breaks up into four paths, two of
which are straight (or may be empty), as in Figure 18.2.10(c).

43.[C] We proved the second part of (18.2.1), namely that
∮
C Q dy =

∫
R ∂Q/∂x dA.

Prove the first part,
∮
C P dx = −

∫
R ∂p/∂y dA.
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18.3 Green’s Theorem, Flux, and Divergence

In the previous section we introduced Green’s Theorem and applied it to dis-
cover a theorem about circulation and curl. That concerned the line integral
of F · T, the tangential component of F, since F · dr is short for (F · T) ds.
Now we will translate Green’s Theorem into a theorem about the line integral
of F · n, the normal component of F,

∮
F · n ds. Thus Green’s Theorem will

provide information about the flow of the vector field F across a closed curve
C (see Section 15.4).

Green’s Theorem Expressed in Terms of Flux

Let F = M i +N j and C be a counterclockwise closed curve. (We use M and
N now, to avoid confusion with P and Q needed later.) At a point on a closed
curve the unit exterior normal vector (or unit outward normal vector)
n is perpendicular to the curve and points outward from the region enclosed
by the curve. To compute F · n in terms of M and N , we first express n in
terms of i and j.

Figure 18.3.1:

The vector

T =
dx

ds
i +

dy

ds
j

is tangent to the curve, has length 1, and points in the direction in which
the curve is swept out. A typical T and n are shown in Figure 18.3.1. As
Figure 18.3.1 shows, the exterior unit normal n has its x component equal
to the y component of T and its y component equal to the negative of the x
component of T. Thus

n =
dy

ds
i− dx

ds
j.

Consequently, if F = M i +N j, then∮
C

F · n =

∮
C

(M i +N j) ·
(
dy

ds
i− dx

ds
j

)
ds =

∮
C

(
M
dy

ds
−N dx

ds

)
ds

=

∮
C

(M dy −N dx) =

∮
C

(−N dx+M dy). (18.3.1)

In (18.3.1), −N plays the role of P and M plays the role of Q in Green’s
Theorem. Since Green’s Theorem states that∮

C

(P dx+Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA

we have ∮
C

(−N dx+M dy) =

∫
R

(
∂M

∂x
− ∂(−N)

∂y

)
dA
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or simply, if F = M i +N j, then∮
C

F · n ds =

∫
R

(
∂M

∂x
+
∂N

∂y

)
dA.

In our customary “P and Q” notations, we have

Green’s Theorem Expressed in Terms of Flux
If F = P i +Qj, then ∮

C

F · n ds =

∫
R

(
∂P

∂x
+
∂Q

∂y

)
dA

where C is the boundary of R.

The expression
∂P

∂x
+
∂Q

∂y
,

the sum of two partial derivatives, is call the divergence of F = P i + Qj. It
is written div F or ∇ · F. The latter notation is suggested by the “symbolic”
dot product (

∂

∂x
i +

∂

∂y
j

)
· (P i +Qj) =

∂P

∂x
+
∂Q

∂y
.

It is pronounced “del dot eff”. Theorem 18.3 is called “the divergence theorem
in the plane.” It can be written as

Divergence Theorem in the Plane∮
C

F · n ds =

∫
R

div F dA

where C is the boundary of R.

EXAMPLE 1 Compute the divergence of (a) F = exyi + arctan(3x)j and
(b) F = −x2i + 2xyj.
SOLUTION

(a) ∂
∂x
exy + ∂

∂y
arctan(3x) = yexy + 0 = yexy

(b) ∂
∂x

(−x2) + ∂
∂y

(2xy) = −2x+ 2x = 0.
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�
The double integral of the divergence of F over a region describes the

amount of flow across the border of that region. It tells how rapidly the fluid
is leaving (diverging) or entering the region (converging). Hence the name
“divergence”.

In the next section we will be using the divergence of a vector field defined
in space, F = P i + Qj + Rk, where P , Q and R are functions of x, y, and z.
It is defined as the sum of three partial derivatives

∇ · F =
∂P

∂x
+
∂Q

∂y
+
∂R

∂z
.

It will play a role in measuring flux across a surface.

EXAMPLE 2 Verify that
∮
C

F · n ds equals
∫
R
∇ · F dA, when F(x, y) =

xi+yj, R is the disk of radius a and center at the origin and C is the boundary
curve of R.

Figure 18.3.2:

SOLUTION First we compute
∮
C

F · n ds, where C is the circle bounding
R. (See Figure 18.3.2.)

Since C is a circle centered at (0, 0), the unit exterior normal n is r̂:

n = r̂ =
xi + yj

‖xi + yj‖
=
xi + yj

a
.

Thus, remembering that
∮
C
ds is just the arclength of C,∮

C

F · n ds =

∮
C

(xi + yj) ·
(
xi + yj

a

)
ds =

∮
C

x2 + y2

a
ds

=

∮
C

a2

a
ds = a

∮
C

ds = a(2πa) = 2πa2. (18.3.2)

Next we compute
∫
R

(
∂P
∂x

+ ∂Q
∂y

)
dA. Since P = x and Q = y, ∂P/∂x +

∂Q/∂y = 1 + 1 = 2. Then∫
R

(
∂P

∂x
+
∂Q

∂y

)
dA =

∫
R

2 dA,

which is twice the area of the disk R, hence 2πa2. This agrees with (18.3.2).
�

As the next example shows, a double integral can provide a way to compute
the flux:

∮
F · n ds.
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Figure 18.3.3:

EXAMPLE 3 Let F = x2i + xyj. Evaluate
∮

F · n ds over the curve that
bounds the quadrilateral with vertices (1, 1), (3, 1), (3, 4), and (1, 2) shown in
Figure 18.3.3.

SOLUTION The line integral could be evaluated directly, but would require
parameterizing each of the four edges of C. With Green’s Theorem we can
instead evaluate an integral over a single plane region.

Let R be the region that C bounds. By Green’s theorem∮
C

F · n ds =

∫
R

∇ · F dA =

∫
R

(
∂(x2)

∂x
+
∂(xy)

∂y

)
dA

=

∫
R

(2x+ x) dA =

∫
R

3x dA.

See Exercise 15.

Then ∫
R

3x dA =

3∫
1

y(x)∫
1

3x dy dx,

where y(x) is determined by the equation of the line that provides the top edge
of R. We easily find that the line through (1, 2) and (3, 4) has the equation
y = x+ 1. Therefore,

∫
R

3x dA =

3∫
1

x+1∫
1

3x dy dx.

The inner integration gives

x+1∫
1

3x dy = 3xy|y=x+1
y=1 = 3x(x+ 1)− 3x = 3x2.

The second integration gives

3∫
1

3x2 dx = x3
∣∣3
1

= 27− 1 = 26

�
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A Local View of div F

We have presented a “global” view of div F, integrating it over a region R
to get the total divergence across the boundary of R. But there is another
way of viewing div F, “locally.” This approach makes uses an extension of the
Permanence Principle of Section 2.5 to the plane and to space.

Let P = (a, b) be a point in the plane and F a vector field describing fluid
flow. Choose a very small region R around P , and let C be its boundary. (See
Figure 18.3.4.) Then the net flow out of R is∮

C

F · n ds.

By Green’s theorem, the net flow is also∫
R

div F dA.

Now, since div F is continuous and R is small, div F is almost constant

Figure 18.3.4:

throughout R, staying close to the divergence of F at (a, b). Thus∫
R

div F dA ≈ div F(a, b) Area(R).

or, equivalently,
Net flow out of R

Area of R
≈ div F(a, b). (18.3.3)

This means that
div F at P

is a measure of the rate at which fluid tends to leave a small region around
P . Hence another reason for the name “divergence.” If div F is positive, fluid
near P tends to get less dense (diverge). If div F is negative, fluid near P
tends to accumulate (converge).

Moreover, (18.3.3) suggests a different definition of the divergence div F at
(a, b), namely Diameter is defined in

Section 17.1.

Local Definition of div F(a, b)

div F(a, b) = lim
Diameter of R→0

∮
C

F · n ds

Area of R
where R is a region enclosing (a, b) whose boundary C is a simple closed curve.
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This definition appeals to our physical intuition. We began by defining
div F mathematically, as ∂P/∂x + ∂Q/∂y. We now see its physical meaning,
which is independent of any coordinate system. This coordinate-free definition
is the basis for Section 18.9.

EXAMPLE 4 Estimate the flux of F across a small circle C of radius a if
div F at the center of the circle is 3.
SOLUTION The flux of F across C is

∮
C

F ·n ds, which equals
∫
R div F dA,

where R is the disk that C bounds. Since div F is continuous, it changes little
in a small enough disk, and we treat it as almost constant. Then

∫
R div F dA

is approximately (3)(Area of R) = 3(πa2) = 3πa2. �

Proof of Green’s Theorem

As Steve Whitaker of the chemical engineering department at the University
of California at Davis has observed, “The concepts that one must understand
to prove a theorem are frequently the concepts one must understand to apply
the theorem.” So read the proof slowly at least twice. It is not here just
to show that Green’s theorem is true. After all, it has been around for over
150 years, and no one has said it is false. Studying a proof strengthens one’s
understanding of the fundamentals.

In this proof we use the concepts of a double integral, an iterated integral,
a line integral, and the fundamental theorem of calculus. So the proof provides
a quick review of four basic ideas.

We prove that
∮
RQ dy =

∫
R
∂Q
∂x

dA. The proof that
∮
C
P dx = −

∫
∂P
∂y

dA
is similar.

To avoid getting involved in distracting details we assume thatR is strictly
convex: It has no dents and its border has no straight line segments. The
basic ideas of the proof show up clearly in this special case. Thus R has the
description a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), as shown in Figure 18.3.5. We will
express both

∫
R
∂Q
∂y
dA and

∫
C
Q dy as definite integrals over the interval [a, b].

First, we have ∫
R

∂Q

∂y
dA =

b∫
a

y2(x)∫
y1(x)

∂Q

∂y
dy dx.

By the Fundamental Theorem of Calculus,

y2(x)∫
y1(x)

∂Q

∂y
dy = Q(x, y2(x))−Q(x, y1(x)).
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Figure 18.3.5: ARTIST: Please change A with R.

Hence ∫
R

∂Q

∂y
dA =

b∫
a

(Q(x, y2(x))−Q(x, y1(x))) dx. (18.3.4)

Next, to express
∫
C
−Q dx as an integral over [a.b], break the closed path

C into two successive paths, one along the bottom part of R, described by
y = y1(x), the other along the top part of R, described by y = y2(x). Denote
the bottom path C1 and the top path C2. (See Figure 18.3.6.)

Figure 18.3.6:

Then ∮
C

(−Q) dx =

∫
C1

(−Q) dx+

∫
C2

(−Q) dx. (18.3.5)

But ∫
C1

(−Q) dx =

∫
C1

(−Q(x, y1(x))) dx =

b∫
a

(−Q(x, y1(x))) dx,

and∫
C2

(−Q) dx =

∫
C2

(−Q(x, y2(x))) dx =

a∫
b

(−Q(x, y2(x))) dx =

b∫
a

Q(x, y2(x)) dx.

Thus by (18.3.5),∮
C

(−Q) dx =

b∫
a

−Q(x, y1(x)) dx+

b∫
a

Q(x, y2(x)) dx

=

b∫
a

(Q(x, y2(x))−Q(x, y1(x))) dx.
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This is also the right side of (18.3.4) and concludes the proof.

Summary

We introduced the “divergence” of a vector field F = P i + Qj, namely the
scalar field ∂P

∂x
+ ∂Q

∂y
denoted div F or ∇ · F.

We translated Green’s Theorem into a theorem about the flux of a vector
field in the xy-plane. In symbols, the divergence theorem in the plane says
that ∮

C

F · n ds =

∫
R

div F dA.

“The integral of the normal component of F around a simple closed curve
equals the integral of the divergence of F over the region which the curve
bounds.”

From this it follows that

div F(P ) = lim
diameter of R→0

∮
C

F · n ds

Area of R
= lim

diameter of R→0

Flux across C

Area of R

where C is the boundary of the region R, which contains P .
We concluded with a proof of Green’s theorem, that provides a review of

several basic concepts.
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EXERCISES for Section 18.3 Key: R–routine, M–moderate, C–challenging

1.[R] State the divergence form of Green’s Theorem in symbols.

2.[R] State the divergence form of Green’s Theorem in words, using no symbols to
denote the vector fields, etc.

In Exercises 3 to 6 compute the divergence of the given vector fields.
3.[R] F = x3yi + x2y3j

4.[R] F = arctan(3xy)i + (ey/x)j

5.[R] F = ln(x+ y)i + xy(arcsin y)2j

6.[R] F = y
√

1 + x2i + ln((x+ 1)3(sin(y))3/5ex+y)j

In Exercises 7 to 10 compute
∫
R div F dA and

∮
C F · n ds and check that they are

equal.
7.[R] F = 3xi + 2yj, and R is the disk of radius 1 with center (0, 0).

8.[R] F = 5y3i− 6x2j, and R is the disk of radius 2 with center (0, 0).

9.[R] F = xyi + x2yj, and R is the square with vertices (0, 0), (a, 0) (a, b) and
(0, b), where a, b > 0.

10.[R] F = cos(x+y)i+sin(x+y)j, and R is the triangle with vertices (0, 0), (a, 0)
and (a, b), where a, b > 0.

In Exercises 11 to 14 use Green’s Theorem expressed in terms of divergence to eval-
uate

∮
C F · n ds for the given F, where C is the boundary of the given region R.

11.[R] F = ex sin yi + e2x cos(y)j, and R is the rectangle with vertices (0, 0), (1, 0),
(0, π/2), and (1, π/2).

12.[R] F = y tan(x)i + y2j, and R is the square with vertices (0, 0), (1, 0), (1, 1),
and (0, 1).

13.[R] F = 2x3yi − 3x2y2j, and R is the triangle with vertices (0, 1), (3, 4), and
(2, 7).

14.[R] F = −i
xy2

+ j
x2y

, and R is the triangle with vertices (1, 1), (2, 2), and (1, 2).
Hint: Write F with a common denominator.

15.[R] In Example 3 we found
∮
C F ·n ds by computing a double integral. Instead,

evaluate the integral
∮
C F · n ds directly.

16.[R] Let F(x, y) = i, a constant field.

(a) Evaluate directly the flux of F around the triangular path, (0, 0) to (1, 0), to
(0, 1) back to (0, 0).

(b) Use the divergence of F to evaluate the flux in (a).
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17.[R] Let a be a “small number” and R be the square with vertices (a, a), (−a, a),
(−a,−a), and (a,−a), and C its boundary. If the divergence of F at the origin is 3,
estimate

∮
C F · n ds.

18.[R] Assume ‖F(P )‖ ≤ 4 for all points P on a curve of length L that bounds a
region R of area A. What can be said about the integral

∫
R∇ · F dA?

19.[R] Verify the divergence form of Green’s Theorem for F = 3xi+ 4yj and C the
square whose vertices are (2, 0), (5, 0), (5, 3), and (2, 3).

A vector field F is said to be divergence free when ∇·F = 0 at every point in the
field.
20.[R] Figure 18.3.7 shows four vector fields. Two are divergence-free and two are
not. Decide which two are not, copy them onto a sheet of drawing paper, and sketch
a closed curve C for which

∮
C F · n ds is not 0.

Figure 18.3.7:

21.[R] For a vector field F,

(a) Is the curl of the gradient of F always 0?

(b) Is the divergence of the gradient of F always 0?

(c) Is the divergence of the curl of F always 0?

(d) Is the gradient of the divergence of F always 0?

22.[R] Figure 18.3.8 describes the flow F of a fluid. Decide whether ∇·F is positive,
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negative, or zero at each of the points A, B, and C.

Figure 18.3.8:

23.[R] If div F at (0.1, 0.1) is 3 estimate
∮
C F · n ds, where C is the curve around

the square whose vertices are (0, 0), (0.2, 0), (0.2, 0.2), (0, 0.2).

24.[M] Find the area of the region bounded by the line y = x and the curve{
x = t6 + t4

y = t3 + t

for t in [0, 1]. Hint: Use Green’s Theorem.

25.[M] Let f be a scalar function. Let R be a convex region and C its boundary
taken counterclockwise. Show that∫

R

(
∂2f

∂x2
+
∂2f

∂y2

)
dA =

∮
C

(
∂f

∂x
dy − ∂f

∂x
dx

)
.

26.[M] Let F be the vector field whose formula in polar coordinates is F(r, θ) = rnr̂,
where r = xi+yj, r = ‖r‖, and r̂ = r/r. Show that the divergence of F is (n+1)rn−1.
Hint: First express F in rectangular coordinates. Note: See also Exercise 46 in Sec-
tion 18.8.

27.[M] A region with a hole is bounded by two oriented curves C1 and C2,
as in Figure 18.3.9. which shows typical exterior-pointing unit normal vectors.
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Figure 18.3.9:
Find an equation expressing

∫
R∇ · F dA in terms of

∮
C1

F · n ds and
∮
C2

F · n ds.
Hint: Break R into two regions that have no holes, as in Exercises 34 and 35.

28.[M] The region R is bounded by the curves C1 and C2, as in Figure 18.3.10.

Figure 18.3.10:

(a) Show that
∮
C1

F · n ds−
∫
C2

F · n ds =
∫
R(∇ · F) dA.

(b) If ∇ · F = 0 in R, show that
∫
C1

F · n ds =
∫
C2

F · n ds.

29.[M] Let F be a vector field in the xy-plane whose flux across any rectangle is
0. Show that its flux across the curves in Figure 18.3.11(a) and (b) is also 0.

(a) (b)

Figure 18.3.11:

30.[M] Assume that the circulation of F along every circle in the xy-plane is 0.
Must F be conservative?

31.[C] The field F is defined throughout the xy-plane. If the flux of F across every
circle is 0, must the flux of F across every square be 0? Explain.

32.[C] Let F(x, y) describe a fluid flow. Assume ∇·F is never 0 in a certain region
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R. Show that none of the stream lines in the region closes up to form a loop within
R. Hint: At each point P on a stream line, F(P ) is tangent to that streamline.

33.[C] Let R be a region in the xy-plane bounded by the closed curve C. Let
f(x, y) be defined on the plane. Show that∫

R

(
∂2f

∂x2
+
∂2f

∂x2

)
dA =

∮
C

Dn(f) ds.

34.[C] Assume that F is defined everywhere in the xy-plane except at the origin
and that the divergence of F is identically 0. Let C1 and C2 be two counterclockwise
simple curves circling the origin. C1 lies within the region within C2. Show that∮
C1

F · n ds =
∫
C2

F · n ds. (See Figure 18.3.12(a).)

(a) (b)

Figure 18.3.12:
Hint: Draw the dashed lines in Figure 18.3.12(b) to cut the region between C1 and
C2 into two regions.

35.[C] (This continues Exercise 34.) Assume that F is defined everywhere in the
xy-plane except at the origin and that the divergence of F is identically 0. Let C1

and C2 be two counterclockwise simple curves circling the origin. They may inter-
sect. Show that

∮
C1

F ·n ds =
∮
C2

F ·n ds. The message from this Exercise is this: if
the divergence of F is 0, you are permitted to replace an integral over a complicated
curve by an integral over a simpler curve.

36.[C]

(a) Draw enough vectors for the field F(x, y) = (xi + yj)/(x2 + y2) to show what
it looks like.

(b) Compute ∇ · F.

(c) Does your sketch in (a) agree with what you found for ∇ · F. in (b)? (If not,
redraw the vector field.)
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18.4 Central Fields and Steradians

Central fields are a special but important type of vector field that appear in
the study of gravity and the attraction or repulsion of electric charges. These
fields radiate from a point mass or point charge. Physicists invented these
fields in order to avoid the mystery of “action at a distance.” One particle
acts on another directly, through the vector field it creates. This comforts
students of gravitation and electromagnetism by glossing over the riddle of
how an object can act upon another without any intervening object such as a
rope or spring.

Figure 18.4.1:

Central Fields

A central field is a continuous vector field defined everywhere in the plane
(or in space) except, perhaps, at a point O, with these two properties:

1. Each vector points towards (or away from) O.

2. The magnitudes of all vectors at a given distance from O are equal.

O is call the center, or pole, of the field. A central field is also called
“radially symmetric.” There are various ways to think of a central vector
field. For such a field in the plane, all the vectors at points on a circle with
center O are perpendicular to the circle and have the same length, as shown
in Figures 18.4.1 and 18.4.2.

The same holds for central vector fields in space, with “circle” replaced by
“sphere.”

Figure 18.4.2:

The formula for a central vector field has a particularly simple form. Let

the field be F and P any point other than O. Denote the vector
−→
OP by r and

its magnitude by r and r/r by r̂. Then there is a scalar function f , defined
for all positive numbers, such that

F(P ) = f(r)r̂.

The magnitude of F(P ) is ‖f(r)‖. If f(r) is positive, F(P ) points away
from O. If f(r) is negative, F(P ) points toward O.

To conclude this introduction to central fields we point out that a central
field is a vector-valued function of more than one variable. Because the point

P with coordinates (x, y, z) is also associated with the vector r =
−→
OP =

xi + yj + zk we may denote F(P ) as F(x, y, z) or F(r).

December 4, 2010 Calculus



§ 18.4 CENTRAL FIELDS AND STERADIANS 1559

Central Vector Fields in the Plane

Using polar coordinates with pole placed at the point O, we may express a
central field in the form

F(r) = f(r)r̂,

where r = ‖r‖ and r̂ = r/r. The magnitude of F(r) is |f(r)|.
We already met such a field in Section 18.1 in the study of line integrals.

In that case, f(r) = 1/r; the “field varied as the inverse first power.” When, See page 1237.

in Section 15.4, we encountered the line integral for the normal component of
this field along a curve we found that it gives the number of radians the curve
subtends.

The vector field F(r) = (1/r)r̂ can also be written as

F(r) =
r

r2
. (18.4.1)

When glancing too quickly at (18.4.1), you might think its magnitude is in-
versely proportional to the square of r. However, the magnitude of the vector
r in the numerator is r; the magnitude of r/r2 is r/r2 = 1/r, the reciprocal of
the first power of r.

Figure 18.4.3:

EXAMPLE 1 Evaluate the flux
∮
C

F · n ds for the central field F(x, y) =
f(r)r̂, where r = xi + yj, over the closed curve shown in Figure 18.4.3. We
have a < b and the path goes from A = (a, 0) to B = (b, 0) to C = (0, b), to
D = (0, a) and ends at A = (a, 0).
SOLUTION On the paths from A to B and from C to D the exterior normal,
n, is perpendicular to F, so F ·n = 0, and these integrands contribute nothing
to the integral. On BC, F equals f(b)r̂. There r̂ = n, so F · n = f(b) since
r · n = 1. Note that the length of arc BC is (2πb)/4 = πb/2. Thus

C∫
B

F · n ds =

C∫
B

f(b) ds = f(b)

C∫
B

ds ==
πb

2
f(b)

On the arc DC, r̂ = −n. A similar calculation shows that

C∫
D

F · n ds = −π
2
af(a).

Hence ∮
C

F · n ds = 0 +
π

2
bf(b) + 0− π

2
af(a) =

π

2
(bf(b)− af(a)).

Calculus December 4, 2010



1560 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

�
In order for a central field f(r)r̂ to have zero flux around all paths of the

special type shown in Figure 18.4.3, we must have

f(b)b− f(a)a = 0,

for all positive a and b. In particular,

f(b)b− f(1)1 = 0 or f(b) =
f(1)

b
.

Thus f(r) must be inversely proportional to r and there is a constant c such
that

f(r) =
c

r
.

If f(r) is not of the form c/r, the vector field F(x, y) = f(r)r̂ does not have
zero flux across these paths. In Exercise 5 you may compute the divergence of
(c/r)r̂ and show that it is zero.

The only central vector fields with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the distance
from the origin.

We underline “in the plane,” because in space the only central fields with
zero flux across closed surfaces have a magnitude inversely proportional to the
square of the distance to the pole, as we will see in a moment.

Knowing that the central field F = r̂/r has zero divergence enables us to
evaluate easily line integrals of the form

∮
C
br·n
r
ds, as the next example shows.

EXAMPLE 2 Let F(r) = r̂/r. Evaluate
∮
C

F · n ds where C is the coun-
terclockwise circle of radius 1 and center (2, 0), as shown in Figure 18.4.4.

Figure 18.4.4:

SOLUTION Exercise 5 shows that the field F has 0-divergence throughout
C and the region R that C bounds. By Green’s Theorem, the integral also
equals the integral of the divergence over R:∮

C

F · n ds =

∫
R

∇ · F dA. (18.4.2)

Since the divergence of F is 0 throughout R, the integral on the right side of
(18.4.2) is 0. Therefore

∮
C

F · n ds = 0. �
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The next example involves a curve that surrounds a point where the vector
field F = r̂/r is not defined.

EXAMPLE 3 Let C be a simple closed curve enclosing the origin. Evaluate∮
C

F · n ds, where F = r̂/r.
SOLUTION Figure 18.4.5 shows C and a small circleD centered at the origin

Figure 18.4.5:

and situated in the region that C bounds. Without a formula describing C,
we could not compute

∮
C

F ·n ds directly. However, since the divergence of F
is 0 throughout the region bounded by C and D, we have, by the Two-Curve See page 1237 in

Section 15.4.Case of Green’s Theorem, ∮
C

F · n ds =

∮
D

F · n ds. (18.4.3)

The integral on the right-hand side of (18.4.3) is easy to compute directly. To
do so, let the radius of D be a. Then for points P on D, F(P ) = r̂/a. Now, r̂
and n are the same unit vector. So r̂ · n = 1. Thus∮

D

F · n ds =

∮
D

r̂ · n
a

ds =

∫
D

1

a
ds =

1

a
2πa = 2π.

Hence
∮
C

F · n ds = 2π. �

Figure 18.4.6:

Central Fields in Space

A central field in space with center at the origin has the form F(x, y, z) =
F(r) = f(r)r̂ We show that if the flux of F over any surface bounding certain
special regions is zero then f(r) must be inversely proportional to the square
of r.

Consider the surface S shown in Figure 18.4.6. It consists of an octant of
two concentric spheres, one of radius a, the other of radius b, a < b, together
with the flat surfaces on the coordinate planes. LetR be the region bounded by
the surface S. On its three flat sides F is perpendicular to the exterior normal.
On the outer sphere F(x, y, z) · n = f(b). On the inner sphere F(x, y, z) · n =
−f(a). Thus Surface area of a sphere of

radius r is 4πr2.∮
S

F · n dS = f(b)(
1

8
)(4πb2)− f(a)(

1

8
)(4πa2) =

π

2
(f(b)b2 − f(a)a2).

Since this is to be 0 for all positive a and b, it follows that there is a constant
c, such that Compare with Example 1.

f(r) =
c

r2
.

The magnitude must be proportional to the “inverse square.”
The following fact is justified in Exercise 28:
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The only central vector field with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the distance
from the origin.

A Geometric Application
See Sections 18.7 and 18.9.

As we will see later in this chapter an “inverse square” central field is at
the heart of gravitational theory and electrostatics. Now we show how it is
used in geometry, a result we will apply in both areas.

In Section 15.4 we showed how radian measure could be expressed in terms
of the line integral

∫
C

(r̂/r) · n ds, that is, in terms of the central field whose
magnitude is inversely proportional to the first power of the distance from
the center. That was based on circular arcs in a plane. Now we move up
one dimension and consider patches on surfaces of spheres, which will help us
measure solid angles.

Let O be a point and S a surface such that each ray from O meets S in at
most one point. Let S∗ be the unit sphere with center at O. The rays from O
that meet S intersect S∗ in a set that we call R, as shown in Figure 18.4.7(a).
Let the area of R be A. The solid angle subtended by S at O is said to have
a measure of A steradiansSteradians comes from

stereo, the Greek word for
space, and radians.

For instance, a closed surface S that encloses O subtends a solid angle of
4π steradians, because the area of the unit sphere is 4π.

(a) (b)

Figure 18.4.7:

EXAMPLE 4 Let S be part of the surface of a sphere of radius a, Sa, whose
center is O. Find the angle subtended by S at O. (See Figure 18.4.7(b).)
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SOLUTION The entire sphere Sa subtends an angle of 4π steradians because
it has an area 4πa2. We therefore have the proportion

Angle S subtends

Angle Sa subtends
=

Area of S
Area of Sa

,

or
Angle S subtends

4π
=

Area of S
4πa2

.

Hence

Angle S subtends =
Area of S

a2
steradians.

�

EXAMPLE 5 Let S be a surface such that each ray from the point O
meets S in at most one point. Find an integral that represents in steradians
the solid angle that S subtends at O.
SOLUTION Consider a very small patch of S. Call it dS and let its area

Figure 18.4.8:

be dA. If we can estimate the angle that this patch subtends at O, then we
will have the local approximation that will tell us what integral represents the
total solid angle subtended by S.

Let n be a unit normal at a point in the patch, which we regard as es-
sentially flat, as in Figure 18.4.8. Let dA be the projection of the patch dS
on a plane perpendicular to r, as shown in Figure 18.4.8. The area of dA is
approximately dA, where

dA = r̂ · n dS.

Now, dS and dA subtend approximately the same solid angle, which ac-
cording to Example 4 is about

r̂ · n
‖r‖2

dS steradians.

Consequently S subtends a solid angle of∫
S

r̂ · n
‖r‖2

dS steradians.

�

The following special case will be used in Section 18.5.
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Let O be a point in the region bounded by the closed surface S. Assume each
ray from O meets S in exactly one point, and let r denote the position vector
from O to that point. Then ∫

S

r̂ · n
r2

dS = 4π. (18.4.4)

Incidentally, (18.4.4) is easy to establish when S is a sphere of radius a
and center at the origin. In that case r̂ = n, so r̂ · n = 1. Also, r = a. Then
(18.4.4) becomes

∫
S(1/a2) dS = (1/a2)4πa2 = 4π. However, it is not obvious

that (18.4.4) holds far more generally, for instance when S is a sphere and the
origin is not its center, or when S is not a sphere.

Figure 18.4.9:

EXAMPLE 6 Let S be the cube of side 2 bounded by the six planes x = ±1,
y = ±1, z = ±1, shown in Figure 18.4.9. Find

∮
S
br·n
r2

dS, where S is one of
the six faces of the cube.
SOLUTION Each of the six faces subtends the same solid angle at the origin.
Since the entire surface subtends 4π steradians, each face subtends 4π/6 =
2π/3 steradians. Then the flux over each face is∫

S

r̂ · n
r2

dS =
2π

3
.

�

Figure 18.4.10:

In physics books you will see the integral
∫
S
br·n
r2

dS written using other nota-
tions, including:∫

S

r̂ · n
r3

dS,

∫
S

r̂ · dS
r2

,

∫
S

r · dS
r3

,

∫
S

cos(r,n)

r2
dS.

The symbol dS is short for n dS, and calls to mind Figure 18.4.10, which shows
a small patch on the surface, together with an exterior normal unit vector.

Recall that cos(r,n)
denotes the cosine of the

angle between r and n; see
also Section 14.2. December 4, 2010 Calculus
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Summary

We investigated central vector fields. In the plane the only divergence-free
central fields are of the form (c/r)r̂ where c is a constant, “an inverse first
power.” In space the only incompressible central fields are of the form (c/r2)r̂,
“an inverse second power.” The field r̂/r2 can be used to express the size of
a solid angle of a surface S in steradians as an integral:

∫
S r̂ · n/r2 dS. In

particular, if S encloses the center of the field, then
∫
S r̂ · n/r2 dS = 4π. Incompressible vector fields

have divergence zero, and
are discussed again in
Section 18.6.
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EXERCISES for Section 18.4 Key: R–routine, M–moderate, C–challenging

1.[R] Define a central field in words, using no symbols.

2.[R] Define a central field with center at O, in symbols.

3.[R] Give an example of a central field in the plane that

(a) does not have zero divergence,

(b) that does have zero divergence.

4.[R] Give an example of a central field in space that

(a) that is not divergence-free,

(b) that is divergence-free.

5.[R] Let F(x, y) be an inverse-first-power central field in the plane F(x, y) = (c/r)r̂,
where r = xi+yj. Compute the divergence of F. Hint: First write F(x, y) as cxi+cyj

x2+y2
.

6.[R] Show that the curl of a central vector field in the plane is 0.

7.[R] Show that the curl of a central vector field in space is 0.

8.[R] Let F(r) = r̂/r. Evaluate
∮
C F ·n ds as simply as you can for the two ellipses

in Figure 18.4.11.

(a) (b)

Figure 18.4.11:
9.[R] Figure 18.4.12 shows a cube of side 2 with one corner at the origin.

December 4, 2010 Calculus



§ 18.4 CENTRAL FIELDS AND STERADIANS 1567

Figure 18.4.12:
Evaluate as easily as you can the integral of the function r̂ · n/r2 over

(a) the square EFGH,

(b) the square ABCD,

(c) the entire surface of the cube.

10.[R] Let F(r) = r̂/r3. Evaluate the flux of F over the sphere of radius 2 and
center at the origin.

11.[R] A pyramid is made of four congruent equilateral triangles. Find the stera-
dians subtended by one face at the centroid of the pyramid. (No integration is
necessary.)

12.[R] How many steradians does one face of a cube subtend at

(a) One of the four vertices not on that face?

(b) The center of the cube? Note: No integration is necessary.

13.[M] In Example 2 the integral
∮
C r̂ ·n/r ds turned out to be 0. How would you

explain this in terms of subtended angles?

14.[M] Let F and G be central vector fields in the plane with different centers.

(a) Show that the vector field F + G is not a central field.

(b) Show that the divergence of F + G is 0.
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15.[M] In Example 6, we evaluated a surface integral by interpreting it in terms
of the size of a subtended solid angle. Evaluate the integral directly, without that
knowledge.

16.[M] Let S be the triangle whose vertices are (1, 0, 0), (0, 1, 0), (0, 0, 1). Evaluate∫
S
br·n
r2

dS by using steradians.

17.[M] Evaluate the integral in Exercise 16 directly.

18.[M] Let F(x, y, z) = xi+yj+0k
x2+y2

be a vector field in space.

(a) What is the domain of F?

(b) Sketch F(1, 1, 0) and F(1, 1, 2) with tails at the given points.

(c) Show F is not a central field.

(d) Show its divergence is 0.

Exercises 19 to 26 are related.
19.[M] Let F be a planar central field. Show that ∇ × F is 0. Hint: F(x, y) =
g(
√
x2+y2(xi+yj))√

x2+y2
for some scalar function g.

20.[M] (This continues Exercise 19.) Show that F is a gradient field; to be specific,
F = ∇g(

√
x2 + y2).

21.[C] Carry out the computation to show that the only central fields in space that
have zero divergence have the form F(r) = cr̂/r2, if the origin of the coordinates is
at the center of the field.

22.[C] If we worked in four-dimensional space instead of the two-dimensional plane
or three-dimensional space, which central fields do you think would have zero diver-
gence? Carry out the calculation to confirm your conjecture.

23.[C] Let F = r̂/r2 and S be the surface of the lopsided pyramid with square
base, whose vertices are (0, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1).

(a) Sketch the pyramid.

(b) What is the integral of F · n over the square base?

(c) What is the integral of F · n over each of the remaining four faces?
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(d) Evaluate
∮
S F · n dS.

24.[C] Let C be the circle x2 + y2 = 4 in the xy-plane. For each point Q in the
disk bounded by C consider the central field with center Q, F(P ) =

−−→
PQ/‖PQ‖2.

Its magnitude is inversely proportional to the first power of the distance P is from
Q. For each point Q consider the flux of F across C.

(a) Evaluate directly the flux when Q is the origin (0, 0).

(b) If Q is not the origin, evaluate the flux of F.

(c) Evaluate the flux when Q lies on C.

25.[C] Let F be the central field in the plane, with center at (1, 0) and with mag-
nitude inversely proportional to the first power of the distance to (1, 0): F(x, y) =

(x−1)i+yj
‖(x−1)i+yj‖2 . Let C be the circle of radius 2 and center at (0, 0).

(a) By thinking in terms of subtended angle, evaluate the flux
∮
C F · n ds.

(b) Evaluate the flux by carrying out the integration.

26.[C] This exercise gives a geometric way to see why a central force is conservative.
Let F(x, y) = f(r)r̂. Figure 18.4.13 shows F(x, y) and a short vector

−→
dr and two

circles.

Figure 18.4.13:

(a) Why is F(x, y) · dr approximately f(r) dr, where dr is the difference in the
radii of the two circles?
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(b) Let C be a curve from A to B, where A = (a, α) and B = (b, β) in polar
coordinates. Why is

∫
C F · dr =

∫ b
a f(r) dr?

(c) Why is F conservative?

Skill Drill

27.[R] Show that the derivative of 1
3 tan3(x)− tan(x) + x is tan4(x).

28.[R] Use integration by parts to show that∫
tann(x) dx =

tann−1(x)
n− 1

−
∫

tann−2(x) dx.

29.[R] Entry 16 in the Table of Antiderivatives in the front cover of this book is:∫
dx

x(ax+ b
=

1
b

ln
∣∣∣∣ x

ax+ b

∣∣∣∣ .
(a) Use a partial fraction expansion to evaluate the antiderivative.

(b) Use differentiation to check that this formula is correct.

30.[R] Repeat Exercise 29 for entry 17 in the Table of Antiderivatives:∫
dx

x(ax+ b)
=

1
b

ln
∣∣∣∣ x

ax+ b

∣∣∣∣ .

31.[R] Show that x arccos(x)−
√

1− x2 is an integral of arccos(x).

32.[R] Find
∫

arctan(x).

33.[R]

(a) Find
∫
xeax dx.
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(b) Use integration by parts to show that∫
xmeax dx =

xmeax

a
− m

a

∫
xm−1eax dx.

(c) Verify the equation in (b) by differentiating the right hand side.
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18.5 The Divergence Theorem in Space (Gauss’

Theorem)

In Sections 18.2 and 18.3 we developed Green’s theorem and applied it in two
forms for a vector field F in the plane. One form concerned the line integral
of the tangential component of F,

∮
C

F · T ds, also written as
∮
C

F · dr. The
other concerned the integral of the normal component of F,

∮
C

F ·n ds. In this
section we develop the Divergence Theorem, an extension of the second
form from the plane to space. The extension of the first form to space is
the subject of Section 18.6. In Section 18.7 the Divergence Theorem will be
applied to electro-magnetism.

The Divergence (or Gauss’s) Theorem

Consider a region R in space bounded by a surface S. For instance, R may be
a ball and S its surface. This is a case encountered in the elementary theory of
electro-magnetism. In another case, R is a right circular cylinder and S is its
surface, which consists of two disks and its curved side. See Figure 18.5.1(a).
Both figures show typical unit exterior normals, perpendicular to the surface.

(a) (b)

Figure 18.5.1:

The Divergence Theorem relates an integral over the surface to an integral
over the region it bounds.

Theorem. Divergence Theorem —One-Surface Case. Let V be the region in
space bounded by the surface S. Let n denote the exterior unit normal of V
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along the boundary S. Then∫
S

F · n ds =

∫
V

∇ · F dV

for any vector field F defined on V.
State the Theorem aloud.

In words: “The integral of the normal component of F over a surface equals
the integral of the divergence of F over the region the surface bounds.”

The integral
∫
S F · n dS is called the flux of the field F across the surface

S.

If F = P i+Qj+Rk and cos(α), cos(β), and cos(γ) are the direction cosines
of the exterior normal, then the Divergence Theorem reads∫
S

(P i+Qj+Rk)·(cos(α)i+cos(β)j+cos(γ)k) dS =

∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV.

Evaluating the dot product puts the Divergence Theorem in the form Direction cosines are
defined in Section 14.4.∫

S

(P cos(α) +Q cos(β) +R cos(γ)) dS =

∫
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dV.

When the Divergence Theorem is expressed in this form, we see that it amounts
to three scalar theorems:∫
S

P cos(α) dS =

∫
V

∂P

∂x
dV,

∫
S

Q cos(β) dS =

∫
V

∂Q

∂y
dV, and

∫
S

R cos(γ) dS =

∫
V

∂R

∂z
dV.

(18.5.1)

As is to be expected, establishing these three equations proves the Diver-
gence Theorem. We delay the proof to the end of this section, after we have
shown how the Divergence Theorem is applied.

You could have guessed the result in this Example by thinking in terms of
the solid angle and steradians. Why?

Figure 18.5.2:

Two-Surface Version of the Divergence Theorem

The Divergence Theorem also holds if the solid region has several holes like a
piece of Swiss cheese. In this case, the boundary consists of several separate
closed surfaces. The most important case is when there is just one hole and
hence an inner surface S1 and an outer surface S2 as shown in Figure 18.5.2.
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Theorem (Divergence Theorem — Two-Surface Case.). Let V be a region in
space bounded by the surfaces S1 and S2. Let n∗ denote the exterior normal
along the boundary. Then∫

S1

F · n∗ dS +

∫
S2

F · n∗ dS =

∫
V

div F dV

for any vector field defined on V.
Compare with (18.2.4) in

Exercise 3 in Section 18.2. The importance of this form of the Divergence Theorem is that it allows
us to conclude that the flux across each of the surfaces are the same provided
these surfaces form the boundary of a solid where div F = 0.

Let S1 and S2 be two closed surfaces that form the boundary of the region V .
Let F be a vector field defined on V such that the divergence of F, ∇ ·F, is 0
throughout V . Then ∫

S1

F · n dS =

∫
S2

F · n dS (18.5.2)

The proof of this result closely parallels the derivation of (18.2.4) in Sec-
tion 18.2.

The next example is a major application of (18.5.2), which enables us, if
the divergence of F is 0, to replace the integral of F · n over a surface by an
integral of F · n over a more convenient surface.

EXAMPLE 1 Let F(r) = r̂/r2, the inverse square vector field with center
at the origin. Let S be a convex surface that encloses the origin. Find the flux
of F over the surface,

∫
S F · n dS.

SOLUTION Select a sphere with center at the origin that does not intersect
S. This sphere should be very small in order to miss S. Call this spherical
surface S1 and its radius a. Then, by (18.5.2),∫

S

F · n dS =

∫
S1

F · n dS

But
∫
S1 F ·n dS is easy because the integrand (r̂/r2) ·n equals r·n

r2
. Then, r ·n

is just 1. Thus:∫
S1

F · n dS =

∫
S1

1

a2
dS =

1

a2

∫
S1

dS =
1

a2
4πa2 = 4π.

December 4, 2010 Calculus



§ 18.5 THE DIVERGENCE THEOREM IN SPACE (GAUSS’ THEOREM) 1575

�

A uniform or constant vector field is a vector field where vectors at every
point are all identical. Such fields are used in the next example.

EXAMPLE 2 Verify the Divergence Theorem for the constant field F(x, y, z) =
2i+3j+4k and the surface S of a cube whose sides have length 5 and is situated
as shown in Figure 18.5.3.

Figure 18.5.3:

SOLUTION To find
∫
S F · n dS we consider the integral of F · n over each

of the six faces.

On the bottom face, ABCD the unit exterior normal is −k. Thus

F · n = (2i + 3j + 4k) · (−k) = −4.

So ∫
ABCD

F · n dS =

∫
ABCD

(−4) dS = −4

∫
ABCD

dS = (−4)(25) = −100.

The integral over the top face involves the exterior unit normal k instead of
−k. Then

∫
EFGH

F · n dS = 100. The sum of these two integrals is 0. Similar
computations show that the flux of F over the entire surface is 0.

The Divergence Theorem says that this flux equals
∫
R div F dV , where R

is the solid cube. Now, div F = ∂(2)/∂x+ ∂(3)/∂y+ ∂(4)/∂z = 0 + 0 + 0 = 0.
So the integral of div F over R is 0, verifying the divergence theorem. �
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Why div F is Called the Divergence

Let F(x, y, z) be the vector field describing the flow for a gas. That is,
F(x, y, z) is the product of the density of the gas at (x, y, z) and the velocity
vector of the gas there.

The integral
∫
S F · n dS over a closed surface S represents the tendency of

the gas to leave the region R that S bounds. If that integral is positive the gas
is tending to escape or “diverge”. If negative, the net effect is for the amount
of gas in R to increase and become denser.

Let ρ(x, y, z, t) be the density of the gas at time t at the point P , with units
mass per unit volume. Then

∫
R ρ dV is the total mass of gas in R at a given

time. So the rate at which the mass in R changes is given by the derivative

d

dt

∫
R

ρ dV.

If ρ is sufficiently well-behaved, mathematicians assure us that we may
“differentiate past the integral sign.” Then

d

dt

∫
R

ρ dV =

∫
R

∂p

∂t
dV.

Therefore ∫
R

∂p

∂t
dV =

∫
S

F · n dS

since both represent the rate at which gas accumulates in or escapes from R.
But, by the Divergence Theorem,

∫
S F · n dS =

∫
R∇ · F dV , and so∫

R

∇ · F dV =

∫
R

∂p

∂t
dV

or, ∫
R

(∇ · F− ∂p

∂t
) dV = 0. (18.5.3)

From this is it possible to conclude that ∇ · F− ∂p
∂t

= 0?
Recall that the Zero-Integral Principle (see Section 6.3) says: If a contin-

uous function f on an interval [a, b] has the property that
∫ d
c
f(x) dx = 0 for

every subinterval [c, d] then f(x) = 0 on [a, b]. A natural extention of the
Zero-Integral Principle (see Exercise 27) is:

Zero-Integral Principle in Space
Let R be a region in space, that is, a set of points in space that is bounded
by a surface, and let f be a continuous function on R. Assume that for every
region S in R,

∫
S f(P ) dS = 0. Then f(P ) = 0 for all P in R.
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Equation 18.5.3 holds not just for the solid R but for any solid region
within R. By the Zero-Integral Principle in Space, the integrand must be zero
thoughout R, and we conclude that

∇ · F =
∂p

∂t
.

This equation tells us that div F at a point P represents the rate gas is
getting denser or lighter near P . That is why div F is called the “divergence
of F”. Where div F is positive, the gas is dissipating. Where div F is negative,
the gas is collecting. See Exercise 20 in

Section 18.3.For this reason a vector field for which the divergence is 0 is called incom-
pressible. An incompressible is also called “divergence free”.

We conclude this section with a proof of the Divergence Theorem.

Proof of the Divergence Theorem

We prove the theorem only for the special case that each line parallel to an
axis meets the surface S in at most two points and V is convex. We prove the
third equation in (18.5.1). The other two are established in the same way.

We wish to show that∫
V

R cos(γ) dS =

∫
V

∂R

∂z
dV. (18.5.4)

Let A be the projection of S on the xy plane. Its description is

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x).

The description of V is then

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Figure 18.5.4:

Then (see Figure 18.5.4)

∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

z2(x,y)∫
z1(x,y)

∂R

∂z
dz dy dx. (18.5.5)

The first integration gives

z2(x,y)∫
z1(x,y)

∂R

∂z
dz = R(x, y, z2)−R(x, y, z1),
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by the Fundamental Theorem of Calculus. We have, therefore,

∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

(R(x, y, z2)−R(x, y, z1)) dy dx,

hence ∫
V

∂R

∂z
dV =

∫
A

(R(x, y, z2)−R(x, y, z1)) dA.

This says that, essentially, on the “top half” of V , where 0 < γ < π/2, dA =
cos(γ) dS is positive. And, on the bottom half of V , where π/2 < γ < π,
dA = − cos(γ) dS. According to (17.7.1) in Section 17.7, the last integral
equals ∫

S

R(x, y, z) cos(γ) dS.

Thus ∫
V

∂R

∂z
dV =

∫
S

R cos γ dS,

and (18.5.4) is established.
Similar arguments establish the other two equations in (18.5.1).

Summary

We stated the Divergence Theorem for a single surface and for two surfaces.
They enable one to calculate the flux of a vector field F in terms of an integral
of its divergence ∇ · F over a region. This is especially useful for fields that
are incompressible (divergence free). The most famous such field in space is
the inverse-square vector field: r̂/r2. The flux across a surface of such a field
depends on whether its center is inside or outside the surface. Specifically, if

the center is at Q and the field is of the form c
−−→
QP

‖
−−→
QP‖3

, its flux across a surface

not enclosing Q is 0. If it encloses Q, its flux is 4π. This is a consequence
of the divergence theorem. It also can be explained geometrically, in terms of
solid angles.
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EXERCISES for Section 18.5 Key: R–routine, M–moderate, C–challenging

1.[R] State the Divergence Theorem in symbols.

2.[R] State the Divergence Theorem using only words, not using symbols, such as
F, ∇ · F, n, S, or V.

3.[R] Explain why ∇ · F at a point P can be expressed as a coordinate-free limit.

4.[R] What is the two-surface version of Gauss’s theorem?

5.[R] Verify the divergence theorem for F(x, y, z) = xi + yj + 0k and the surface
x2 + y2 + z2 = 9.

6.[R] Verify the divergence theorem for the field F(x, y, z) = xi and the cube whose
vertices are (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 2, 0), (0, 0, 2), (2, 0, 2), (2, 2, 2), (0, 2, 2).

7.[R] Verify the divergence theorem for F = 2i+3j+4k and the tetrahedron whose
four vertices are (0, 0, 0), (1, 0, 0), (0, 1, 0) and (0, 0, 1).

8.[R] Verify the two-surface version of Gauss’s theorem for F(x, y, z) = (x2 + y2 +
z2)(xi + yj + zk) and the surfaces are the spheres of radii 2 and 3 centered at the
origin.

9.[R] Let F = 2xi + 3yj + (5z + 6x)k, and let G = (2x+ 4z2)i + (3y + 5x)j + 5zk.
Show that ∫

S

F · n dS =
∫
S

G · n dS,

where S is any surface bounding a region in space.

10.[R] Show that the divergence of r̂/r2 is 0. Hint: r = xi + yj + zk.

In Exercises 11 to 18 use the Divergence Theorem.
11.[R] Let V be the solid region bounded by the xy plane and the paraboloid
z = 9 − x2 − y2. Evaluate

∫
S F · n dS, where F = y3i + z3j + x3k and S is the

boundary of V.
12.[R] Evaluate

∫
V ∇ · F dV for F =

√
x2 + y2 + z2(xi + yj + zk) and V the ball

of radius 2 and center at (0, 0, 0).

In Exercises 13 and 14 find
∫
S F · n dS for the given F and S.

13.[R] F = z
√
x2 + z2i + (y+ 3)j−x

√
x2 + z2k and S is the boundary of the solid
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region between z = x2 + y2 and the plane z = 4x.
14.[R] F = xi + (3y + z)j + (4x + 2z)k and S is the surface of the cube bounded
by the planes x = 1, x = 3, y = 2, y = 4, z = 3 and z = 5.

15.[R] Evaluate
∫
S F · n dS, where F = 4xzi − y2j + yzk and S is the surface of

the cube bounded by the planes x = 0, x = 1, y = 0, z = 0, and z = 1, with the
face corresponding to x = 1 removed.
16.[R] Evaluate

∫
S F · n dS, where F = xi + yj + 2xk and S is the boundary of

the tetrahedron with vertices (1, 2, 3), (1, 0, 1) (2, 1, 4), and (1, 3, 5).
17.[R] Let S be a surface of area S that bounds a region V of volume V . As-
sume that ‖F(P )‖ ≤ 5 for all points P on the surface S. What can be said about∫
V ∇ · F dV ?

18.[R] Evaluate
∫
S F · n dS, where F = x3i + y3j + z3k and S is the sphere of

radius a and center (0, 0, 0).

In Exercises 19 to 22 evaluate
∫
S F ·n dS for F = r̂/r2 and the given surfaces, doing

as little calculation as possible.
19.[R] S is the sphere of radius 2 and center (5, 3, 1).
20.[R] S is the sphere of radius 3 and center (1, 0, 1).
21.[R] S is the surface of the box bounded by the planes x = −1, x = 2, y = 2,
y = 3, z = −1, and z = 6.
22.[R] S is the surface of the box bounded by the planes x = −1, x = 2, y = −1,
y = 3, z = −1, and z = 4.

23.[M] Assume that the flux of F across every sphere is 0. Must the flux of F
across the surface of every cube be 0 also?
24.[R] If F is always tangent to a given surface S what can be said about the
integral of ∇ · F over the region that S bounds?
25.[M] Let F(r) = f(r)r̂ be a central vector field in space that has zero divergence.
Show that f(r) must have the form f(r) = a/r2 for some constant a. Hint: Con-
sider the flux of F across the closed surface in Figure 18.5.5.
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Figure 18.5.5:
26.[M] Let F be defined everywhere except at the origin and be divergence-
free. Let S1 and S2 be two closed surfaces that enclose the origin. Explain why∫
S1 F · n dS =

∫
S2 F · n dS. (The two surfaces may intersect.)

27.[M] Provide the details for the proof of the Zero-Integral Principle in Space.
Hint: You need to consider the two cases when f > 0 and f < 0.

28.[M] Show that the flux of an inverse-square central field cr̂/r2 across any closed
surface that bounds a region that does not contain the origin is zero.

29.[C]

(a) Show that the proof in the text of the Divergence Theorem applies to a tetra-
hedron. Hint: Choose your coordinate system carefully.

(b) Deduce that if the Divergence Theorem holds for a tetrahedron then it holds
for any polyhedron. Hint: Each polyhedron can be cut into tetrahedra.

30.[C] In Exercise 25 you were asked to show generally that the only central fields
with zero divergence are the inverse square fields. Show this, instead, by computing
the divergence of F(x, y, z) = f(r)r̂, where r = xi + yj + zk.

31.[C] Let F be defined everywhere in space except at the origin. Assume that

lim
‖r‖→∞

F(r)
‖r‖2

= 0

and that F is defined everywhere except at the origin, and is divergence free. What
can be said about

∫
S F · n dS, where S is the sphere of radius 2 centered at the

origin?

We proved one-third of the Divergence Theorem. Exercises 32 and 33 concern the
other two-thirds.
32.[C] Prove that ∫

S

Q cos(β) dS =
∫
V

∂Q

∂y
dV.

33.[C] Prove that ∫
S

P cos(α) dS =
∫
V

∂P

∂x
dV.
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34.[C] Let f be a scalar function F(x, y, z) = f(r)r̂, where r = ‖r} and r =
xi + yj + zk. Show that if ∇ · F = 0, then f(r) = c/r2 for some constant c.
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18.6 Stokes’ Theorem

In Section 18.1 we learned that Green’s theorem in the xy-plane can be written
as ∮

C

F · dr =

∫
R

(curl F) · k dA,

where C is counterclockwise and C bounds the region R. The general Stokes’
Theorem introduced in this section extends this result to closed curves in space.
It asserts that if the closed curve C bounds a surface S, then

Figure 18.6.1:

∮
C

F · dr =

∫
S

(curl F) · n dS.

As usual, the vector n is a unit normal to the surface. There are two such
normals at each point on the surface. In a moment we describe how to decide
which unit normal vector to use. The choice depends on the orientation of C.

In words, Stokes’ theorem reads, “The circulation of a vector field around
a closed curve is equal to the integral of the normal component of the curl of
the field over any surface that the curve bounds.”

Stokes’ published his theorem in 1854 (without proof, for it appeared as a
question on a Cambridge University examination). By 1870 it was in common
use. It is the most recent of the three major theorems discussed in this chapter,
for Green published his theorem in 1828 and Gauss published the divergence
theorem in 1839.

Figure 18.6.2:

Choosing the Normal n

In order to state Stokes’ theorem precisely, we must describe what kind of
surface S is permitted and which of the two possible normals n to choose.

The typical surfaces S that we consider have the property that it is possible
to assign, at each point on S, a unit normal n in a continuous manner. On
the surface shown in Figure 18.6.2, there are two ways to do this. They are
shown in Figure 18.6.3.

(a) (b)
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Figure 18.6.3:
But, for the surface shown in Figure 18.6.4 (a Möbius band), it is impossible

to make such a choice. If you start with choice (1) and move the normal
continuously along the surface, by the time you return to the initial point on
the surface at stage (9), you have the opposite normal. A surface for which
a continuous choice can be made is called orientable or two-sided. Stokes’
theorem holds for orientable surfaces, which include, for instance, any part of
the surface of a convex body, such as a ball, cube or cylinder.Right-hand rule for choosing

n. Consider an orientable surface S, bounded by a parameterized curve C so
that the curve is swept out in a definite direction. If the surface is part of a
plane, we can simply use the right-hand rule to choose n: The direction of n
should match the thumb of the right hand if the fingers curl in the direction
of C and the thumb and palm are perpendicular to the plane. If the surface

Figure 18.6.4: Follow the
choices through all nine
stages — there’s trouble.

is not flat, we still use the right-hand rule to choose a normal at points near
C. The choice of one normal determines normals throughout the surface.
Figure 18.6.5 illustrates the choice of n. For instance, if C is counterclockwise
in the xy-plane, this definition picks out the normal k, not −k.

(a) (b)

Figure 18.6.5:

Theorem 18.6.1 (Stokes’ theorem). Let S be an orientable surface bounded
by the parameterized curve C. At each point of S let n be the unit normal
chosen by the right-hand rule. Let F be a vector field defined on some region
in space including S. Then∮

C

F · dr =

∫
S

(∇× F) · n dS. (18.6.1)

Some Applications of Stokes’ Theorem

Stokes’ theorem enables us to replace
∫
S(curl F) · n dS by a similar integral

over a surface that might be simpler than S. That is the substance of the
following special case of Stokes’ theorem.
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One way to evaluate some
surface integrals is to
choose a simpler surface.

Let S1 and S2 be two surfaces bounded by the same curve C and oriented so
that they yield the same orientation on C. Let F be a vector field defined on
both S1 and S2. Then∫

S1

(curl F) · n dS =

∫
S2

(curl F) · n dS (18.6.2)

The two integrals in (18.6.2) are equal since both equal
∮
C

F · dr.

EXAMPLE 1 Let F = xezi + (x+ xz)j + 3ezk and let S be the top half of
the sphere x2 + y2 + z2 = 1. Find

∫
S(curl F) · n dS, where n is the outward

normal. (See Figure 18.6.6.)

Figure 18.6.6: ARTIST:
Add an arrow to indicate
the unit circle in the plane
is to be oriented coun-
terclockwise. Also add
“counterclockwise” to the
text label for C.

SOLUTION Let S∗ be the flat base of the hemisphere. By (18.6.2),∫
S

(∇× F) · n dS =

∫
S∗

(∇× F) · k dS.

(On S∗ note that k, not −k, is the correct normal to use.)
A straightforward calculation shows that

∇× F = −xi + xezj + (z + 1)k,

hence (∇× F) · k = z + 1. On S∗, z = 0, so∫
S∗

(∇× F) · k dS =

∫
S∗

dS = π.

thus the original integral over S is also π. �
Just as there are two-curve versions of Green’s Theorem and of the Diver-

gence Theorem, there is a two-curve version of Stokes’ Theorem.

Stokes’ Theorem for a Surface Bounded by Two Closed Curves Two-curve version of
Stokes’s TheoremLet S be an orientable surface whose boundary consists of the two closed

curves C1 and C2. Give C1 an orientation. Orient S consistent with the the
right-hand rule, as applied to C1. Give C2 the same orientation as C1. (If C2

is moved on S to C1, the orientations will agree.) Then∮
C1

F · dr−
∮
C2

F · dr =

∫
S

(∇× F) · n dS. (18.6.3)
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Proof

Figure 18.6.7(a) shows the typical situation.

(a) (b) (c)

Figure 18.6.7:
The cancellation principle

was introduced in
Section 18.2.

We will obtain (18.6.3) from Stokes’s theorem with the aid of the cancella-
tion principle. Introduce lines AB and CD on S, cutting S into two surfaces,
S∗ and S∗∗. (See Figure 18.6.7(c).) Now apply Stokes’s theorem to S∗ and
S∗∗. (See Figure 18.6.7(c).)

Let C∗ be the curve that bounds S∗, oriented so that where it overlaps C1

it has the same orientation as C1. Let C∗∗ be the curve that bounds S∗∗, again
oriented to match C1. (See Figure 18.6.7(c).)

By Stokes’ theorem, ∮
C∗

F · dr =

∫
S∗

(curl F) · n dS (18.6.4)

and ∮
C∗∗

F · dr =

∫
S∗∗

(curl F) · n dS. (18.6.5)

Adding (18.6.4) and (18.6.5) and using the cancellation principle gives∮
C1

F · dr−
∮
C2

F · dr =

∫
S

(curl F) · n dS.

•
Recall, from Section 18.2,

that F is irrotational when
curl F = 0.

In practice, it is most common to apply (18.6.3) when curl F = 0. This is
so important we state it explicitly:
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Let F be a field such that curl F = 0. Let C1 and C2 be two closed curves
that together bound an orientable surface S on which F is defined. If C1 and
C2 are similarly oriented, then∮

C1

F · dr =

∮
C2

F · dr. (18.6.6)

Equation (18.6.6) follows directly from (18.6.3) since
∫
S(curl F) ·n dS = 0.

EXAMPLE 2 Assume that F is irrotational and defined everywhere except
on the z-axis. Given that

∮
C1

F · dr = 3, find (a)
∮
C2

F · dr and (b)
∮
C3

F · dr.

(See Figure 18.6.8.)

Figure 18.6.8:

SOLUTION (a) By (18.6.6),
∮
C2

F · dr =
∮
C1

F · dr = 3. (b) By Stokes’

theorem, (18.6.1),
∮
C3

F · dr = 0. �

Curl and Conservative Fields

In Section 18.1 we learned that if F = P i+Qj is defined on a simply connected
region in the xy-plane and if curl F = 0, then F is conservative. Now that we
have Stokes’ theorem, this result can be extended to a field F = P i +Qj +Rk
defined on a simply connected region in space.

Theorem 18.6.2. Let F be defined on a simply connected region in space. If
curl F = 0, then F is conservative.

Proof

We provide only a sketch of the proof of this result. Let C be a simple closed
curve situated in the simply connected region. To avoid topological com-
plexities, we assume that it bounds an orientable surface S. To show that∮
C

F · dr = 0, we use the same short argument as in Section 18.2:∮
C

F · dr =

∫
S

(∇× F) · n dS =

∫
S

0 dS = 0.

•
It follows from Theorem 18.6.2 that every central field F is conservative

because a straightforward calculation shows that the curl of a central field
is 0. (See Exercises 6 and 7 in Section 18.4.) Moreover, F is defined either
throughout space or everywhere except at the center of the field.
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Exercise 26 of Section 18.4 presents a purely geometric argument for why
a central field is conservative.

In Sections 18.7 and 18.9 we will show how Stokes’s theorem is applied in
the theory of electromagnetism.

Figure 18.6.9:

Why Curl is Called Curl

Let F be a vector field describing the flow of a fluid, as in Section 18.1. Stokes’s
theorem will give a physical interpretation of curl F.

Consider a fixed point P0 in space. Imagine a small circular disk S with
center P0. Let C be the boundary of S oriented in such a way that C and n
fit the right-hand rule. (See Figure 18.6.9)

Now examine the two sides of the equation∫
S

(curl F) · n dS =

∮
C

F ·T ds. (18.6.7)

The right side of (18.6.7) measures the tendency of the fluid to move along

Figure 18.6.10:

C (rather than, say, perpendicular to it.) Thus
∮
C

F ·T ds might be thought
of as the “circulation” or “whirling tendency” of the fluid along C. For each
tilt of the small disk S at P0 — or, equivalently, each choice of unit normal
vector n – the line integral

∮
C

F ·T ds measures a corresponding circulation.
It records the tendency of a paddle wheel at P0 with axis along n to rotate.
(See Figure 18.6.10.)

Consider the left side of (18.6.7). If S is small, the integrand is almost
constant and the integral is approximately

(curl F)P0 · n · Area of S, (18.6.8)

where (curl F)P0 denotes the curl of F evaluated at P0.
Keeping the center of S at P0, vary the vector n by tilting the disk S. For

which choice of n will (18.6.8) be largest? Answer: For that n which has the
same direction as the fixed vector (curl F)P0 . With that choice of n, (18.6.8)
becomes

‖(curl F)P0‖ Area of S .

Thus a paddle wheel placed in the fluid at P0 rotates most quickly when itsThe physical interpretation
of curl axis is in the direction of curl F at P0. The magnitude of curl F is a measure

of how fast the paddle wheel can rotate when placed at P0. Thus curl F
records the direction and magnitude of maximum circulation at a given point.
If curl F is 0, there is no tendency of the fluid to rotate; that is why such
vector fields are called irrotational.
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A Vector Definition of Curl

In Section 18.1 curl F was defined in terms of the partial derivatives of the
components of F. By Stokes’ theorem, curl F is related to the circulation,∮
C

F · dr. We exploit this relation to obtain a new view of curl F, free of
coordinates.

Let P0 be a point in space and let n be a unit vector. Consider a small
disk Sn(a), perpendicular to n, whose center is P0, and which has a radius
a. Let Cn(a) be the boundary of Sn(a), oriented to be compatible with the
right-hand rule. Then ∫

Sn(a)

(curl F) · n dS =

∮
Cn(a)

F · dr.

As in our discussion of the physical meaning of curl, we see that

(curl F)(P0) · n · Area of Sn(a) ≈
∮

Cn(a)

F · dr,

or

(curl F)(P0) · n ≈

∮
Cn(a)

F · dr
Area of Sn(a)

.

Thus

(curl F)(P0) · n = lim
a→0

∮
Cn(a)

F · dr
Area of Sn(a)

. (18.6.9)

Equation (18.6.9) gives meaning to the component of (curl F)(P0) in any
direction n. So the magnitude and direction of curl F at P0 can be described
in terms of F, without looking at the components of F.

The magnitude of (curl F)P0 is the maximum value of

lim
a→0

∮
Cn(a)

F · dr
Area of Sn(a)

, (18.6.10)

for all unit vectors n.
The direction of (curl F)P0 is given by the vector n that maximizes the limit
(18.6.10).

EXAMPLE 3 Let F be a vector field such that at the origin curl F =
2i + 4j + 4k. Estimate

∮
C

F · dr if C encloses a disk of radius 0.01 in the
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xy-plane with center (0, 0, 0). C is swept out clockwise. (See Figure 18.6.11.)

Figure 18.6.11:

SOLUTION Let S be the disk whose border is C. Choose the normal to
S that is consistent with the orientation of C and the right-hand rule. That
choice is −k. Thus

(curl F) · (−k) ≈
∮
C

F · dr
Area of S

.

The area of S is π(0.01)2 and curl F = 2i + 3j + 4k. Thus

(2i + 3j + 4k) · (−k) ≈
∮
C

F · dr
π(0.01)2

.

From this it follows that ∮
C

F · dr ≈ −4π(0.01)2.

�

In a letter to the mathematician Tait written on November 7, 1870, Maxwell
offered some names for ∇× F:

Here are some rough-hewn names. Will you like a good Divinity
shape their ends properly so as to make them stick? . . .

The vector part ∇×F I would call the twist of the vector func-
tion. Here the word twist has nothing to do with a screw or helix.
The word turn . . . would be better than twist, for twist suggests
a screw. Twirl is free from the screw motion and is sufficiently
racy. Perhaps it is too dynamical for pure mathematicians, so for
Cayley’s sake I might say Curl (after the fashion of Scroll.)

His last suggestion, “curl,” has stuck.

Proof of Stokes’ Theorem

We include this proof because it reviews several basic ideas. The proof uses
Green’s theorem, the normal to a surface z = f(x, y), and expressing an inte-
gral over a surface as an integral over its shadow on a plane. The approach
is straightforward. As usual, we begin by expressing the theorem in terms of
components. We will assume that the surface S meets each line parallel to an
axis in at most one point. That permits us to project S onto each coordinate
plane in an one-to-one fashion.
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To begin we write F(x, y, z) as P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, or,
simply F = P i + Qj + Rk. We will project S onto the xy-plane, so write the
equation for S as z − f(x, y) = 0. A unit normal to S is

n =
−∂f
∂x

i− ∂f
∂y

j + k√(
∂f
∂x

)2
+
(
∂f
∂y

)2

+ 1

.

(Since the k component of n is positive, it is the correct normal, given by
the right-hand rule.) Let C∗ be the projection of C on the xy-plane, swept
out counterclockwise. See Exercise 9.

A straightforward computation shows that Stokes’ theorem, expressed in
components, reads∫

C

P dx+Q dy +R dz

=

∫
S

(
∂R
∂x
− ∂Q

∂z

) (
−∂f
∂x

)
−
(
∂R
∂x
− ∂P

∂z

) (
−∂f
∂y

)
+
(
∂Q
∂x
− ∂P

∂y

)
(1)√(

∂f
∂x

)2
+
(
∂f
∂y

)2

+ 1

dS.

As expected, this equation reduces to three equations, one for P , one for Q,
and one for R.

We will establish the result for P , namely∫
C

P dx =

∫
S

∂P
∂z

(−∂f
∂y

)− ∂P
∂y

(1)√
(∂f
∂x

)2 + (∂f
∂y

)2 + 1
dS. (18.6.11)

To change the integral over S to an integral over its projection, S∗, on
the xy-plane, we replace dS by

√
(∂f/∂x)2 + (∂f/∂y)2 + 1 dA. At the same

time we project C onto a counterclockwise curve C∗. The square roots cancel
leaving us with this equation in the xy-plane:∫

C∗

P (x, y, f(x, y)) dx =

∫
R

(
−∂P
∂z

∂f

∂y
− ∂P

∂y

)
dA. (18.6.12)

Finally, we apply Green’s theorem to the left side of (18.6.12), and obtain:∫
C∗

P (x, y, f(x, y)) dx =

∫
S∗

−∂P (x, y, f(x, y))

∂y
dA.

Be sure you understand
each of the four steps in
this proof, and why they are
valid.Calculus December 4, 2010
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But
∂P (x, y, f(x, y))

∂y
=
∂P

∂y
+
∂P

∂z

∂f

∂y
. (18.6.13)

Combining (18.6.12) and (18.6.13) completes the proof of (18.6.11).
In this proof we assumed that the surface S has a special form, meeting

lines parallel to an axis just once. However, more general surfaces, such as the
surface of a sphere or a polyhedron can be cut into pieces of the type treated
in the proof. Exercise 48 shows why this observation then implies that Stokes’
Theorem holds in these cases also.

Summary

Stokes’ Theorem relates the circulation of a vector field over a closed curve C
to the integral over a surface S that C bounds. The integrand over the surface
is the component of the curl of the field perpendicular to the surface,∫

C

F · dr =

∫
S

(curl F) · n dS.

The normal n is the normal vector to S given by the right-hand rule.
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EXERCISES for Section 18.6 Key: R–routine, M–moderate, C–challenging

1.[C] We dealt only with the component P . What is the analog of (18.6.11) for
Q? Prove it. Hint: The steps would parallel the steps used for P .

2.[R] State Stokes’ Theorem (symbols permitted).

3.[R] State Stokes’ Theorem in words (symbols not permitted).

4.[M] Explain why (18.6.5) holds if S1 and S2 together form the boundary surface
S of a solid region R. Use the Divergence Theorem, not Stokes’ Theorem.

5.[R] Let F (r) be an antiderivative of f(r). Show that f(r)r̂ is the gradient of
F (r), hence is conservative. Note: f(r)r

r = f(r)r̂.

6.[M] Show that a central field f(r)r̂ is conservative by showing that it is irrota-
tional and defined on a simply connected region. Hint: Express r̂ in terms of x, y
and z. Note: See also Exercise 47.

7.[R]

(a) Use the fact that a gradient, ∇f , is conservative, to show that its curl is 0.

(b) Compute ∇×∇f in terms of components to show that the curl of a gradient
is 0.

8.[C] (See also Exercises 5 and 6.)

Sam: The only conservative fields in space that I know are the “inverse square
central fields” with centers anywhere I please.

Jane: There are a lot more.

Sam: Oh?

Jane: Just start with any scalar function f(x, y, z) with continuous partial deriva-
tion of the first and second orders. Then its gradient will be a conservative
field.

Sam: O.K. But I bet there are still more.

Jane: No. I got them all.
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Question: Who is right?

Exercises 9 to 14 concern the proof of Stokes’ Theorem.
9.[C] Carry out the calculations in the proof that translated Stokes’ Theorem into
an equation involving the components P , Q, and R.

10.[C] Draw a picture of S, S∗, C and C∗ that appear in the proof of Stokes’
Theorem.

11.[C] Write the four steps involved in the proof of Stokes’ Theorem, giving an
explanation for each step.

12.[C] In the proof of Stokes’ Theorem we used a normal n. Show that it is the
“correct” one, compatible with counterclockwise orientation of C∗.

13.[C]

(a) State Stokes’ Theorem for
∫
C Q dy.

(b) Prove Stokes’ Theorem for
∫
C Q dy.

(c) State Stokes’ Theorem for
∫
C R dz.

(d) Prove Stokes’ Theorem for
∫
C R dz.

14.[C] Draw a picture of S, S∗, C and C∗ that appear in the proof.

Exercises 15 to 17 prepare you for Exercise 18.
15.[M] Assume that G is the curl of another vector field F, G = ∇×F. Let S be
a surface that bounds a solid region V . Let C be a closed curve on the surface S
breaking S into two pieces S1 and S2.

16.[M] Using the Divergence Theorem, show that
∫
SG · n dS = 0.

17.[M] Using Stokes’ Theorem, show that
∫
SG · n dS = 0. Hint: Break the inte-

gral into integrals over S1 and S2.

18.[R] Let F = exyi + tan(3yz)j + 5zk and S be the tetrahedron whose vertices
are (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Let S1 be the base of S in the xy-plane
and S2 consist of the other three faces. Find

∫
S(∇× F) · n dS. Hint: think about

the preceding two exercises.

19.[R] Assume that F is defined everywhere except on the z-axis and is irrotational.
The curves C1, C2, C3, and C4 are as shown in Figure 18.6.12. What, if anything,
can be said about∮

C1

F · dr,
∮
C2

F · dr,
∮
C3

F · dr, and
∮
C4

F · dr.
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Figure 18.6.12:

In Exercises 20 to 23 verify Stokes’ Theorem for the given F and surface S.
20.[R] F = xy2i + y3j + y2zk; S is the top half of the sphere x2 + y2 + z2 = 1.

21.[R] F = yi + xzj + x2k; S is the triangle with vertices (1, 0, 0), (0, 1, 0) and
(0, 0, 1).

22.[R] F = y5i+x3j+z4k; S is the portion of z = x2 +y2 below the plane z = 1.

23.[R] F = −yi+xj+zk, S is the portion of the cylinder z = x2 inside the cylinder
x2 + y2 = 4.

24.[R] Evaluate as simply as possible
∫
S F · n dS, where F(x, y, z) = xi − yj and

S is the surface of the cube bounded by the three coordinate planes and the planes
x = 1, y = 1, z = 1, exclusive of the surface in the plane x = 1. (Let n be outward
from the cube.)

25.[R] Using Stokes’ Theorem, evaluate
∫
S(∇ × F) · n dS, where F = (x2 + y −

4)i + 3xyj + (2xz+ z2)k, and S is the portion of the surface z = 4− (x2 + y2) above
the xy plane. (Let n be the upward normal.)

In each of Exercises 26 to 29 use Stokes’ Theorem to evaluate
∮
C F · dr for the given

F and C. In each case assume that C is oriented counterclockwise when viewed
from above.
26.[R] F = sin(xy)i; C is the intersection of the plane x + y + z = 1 and the
cylinder x2 + y2 = 1.

27.[R] F = exj; C is the triangle with vertices (2, 0, 0), (0, 3, 0) and (0, 0, 4).
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28.[R] F = xyk; C is the intersection of the plane z = y with the cylinder
x2 − 2x+ y2 = 0.

29.[R] F = cos(x + z)j; C is the boundary of the rectangle with vertices (1, 0, 0),
(1, 1, 1), (0, 1, 1), and (0, 0, 0).

30.[R] Let S1 be the top half and S2 the bottom half of a sphere of radius a in
space. Let F be a vector field defined on the sphere and let n denote an exterior
normal to the sphere. What relation, if any, is there between

∫
S1(∇×F) ·n dS and∫

S2(∇× F) · n dS?

31.[R] Let F be a vector field throughout space such that F(P ) is perpendicular
to the curve C at each point P on C, the boundary of a surface S. What can one
conclude about ∫

S

(∇× F) · n dS?

32.[R] Let C1 and C2 be two closed curves in the xy-plane that encircle the origin
and are similarly oriented, as in Figure 18.6.13.

Figure 18.6.13:
Let F be a vector field defined throughout the plane except at the origin. Assume
that ∇× F = 0.

(a) Must
∮
C F · dr = 0?

(b) What, it any, relation exists between
∮
C1

F · dr and
∮
C2

F · dr?

33.[R] Let F be defined everywhere in space except on the z-axis. Assume also
that F is irrotational,

∮
C1

F · dr = 3, and
∮
C2

F · dr = 5. (See Figure 18.6.14.) What
if, anything, can be said about

December 4, 2010 Calculus



§ 18.6 STOKES’ THEOREM 1597

(a)
∮
C3

F · dr,

(b)
∮
C4

F · dr?

Figure 18.6.14:

34.[R] Which of the following sets are connected? simply connected?

(a) A circle (x2 + y2 = 1) in the xy-plane

(b) A disk (x2 + y2 ≤ 1) in the xy-plane

(c) The xy-plane from which a circle is removed

(d) The xy-plane from which a disk is removed

(e) The xy-plane from which one point is removed

(f) xyz-space from which one point is removed

(g) xyz-space from which a sphere is removed

(h) xyz-space from which a ball is removed

(i) A solid torus (doughnut)

(j) xyz-space from which a solid torus is removed

(k) A coffee cup with one handle

(l) xyz-space from which a solid doughnut is removed

35.[R] Which central fields have curl 0?
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36.[R] Let V be the solid bounded by z = x+ 2, x2 + y2 = 1, and z = 0. Let S1 be
the portion of the plane z = x+ 2 that lies within the cylinder x2 + y2 = 1. Let C
be the boundary of S1, with a counterclockwise orientation (as viewed from above).
Let F = yi + xzj + (x+ 2y)k. Use Stokes’ Theorem for S1 to evaluate

∮
C F · dr.

37.[R] (See Exercise 36.) Let S2 be the curved surface of V together with the base
of V. Use Stokes’ Theorem for S2 to evaluate

∮
C F · dr.

38.[R] Verify Stokes’ theorem for the special case when F has the form ∇f , that
is, is a gradient field.

39.[R] Let F be a vector field defined on the surface S of a convex solid. Show
that

∫
S(∇× F) · n dS = 0

(a) by the Divergence Theorem,

(b) by drawing a closed curve on C on S and using Stokes’ Theorem on the two
parts into which C divides S.

40.[R] Evaluate
∮
C F · dr as simply as possible if F(x, y, z) = (−yi + xj)/(x2 + y2)

and C is the intersection of the plane z = 2x+ 2y and the paraboloid z = 2x2 + 3y2

oriented counterclockwise as viewed from above.

41.[R] Let F(x, y) be a vector field defined everywhere in the plane except at the
origin. Assume that ∇×F = 0. Let C1 be the circle x2 + y2 = 1 counterclockwise;
let C2 be the circle x2 + y2 = 4 clockwise; let C3 be the circle (x − 2)2 + y2 = 1
counterclockwise; let C4 be the circle(x − 1)2 + y2 = 9 clockwise. Assuming that∮
C1

F · dr is 5, evaluate

(a)
∮
C2

F · dr

(b)
∮
C3

F · dr

(c)
∮
C4

F · dr.

42.[M] Let F(x, y, z) = r/‖r‖a, where r = i +uj + zk and a is a fixed real number.

(a) Show that ∇× F = 0.

(b) Show that F is conservative.

(c) Exhibit a scalar function f such that F = ∇f .
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43.[M] Let F be defined throughout space and have continuous divergence and
curl.

(a) For which F is
∫
S F · n dS = 0 for all spheres S?

(b) For which F is
∮
C F · dr = 0 for all circles C?

44.[M] Let C be the curve formed by the intersection of the plane z = x and the
paraboloid z = x2 + y2. Orient C to be counterclockwise when viewed from above.
Evaluate

∮
C(xyz dx+ x2 dy + xz dz).

45.[M] Assume that Stokes’ Theorem is true for triangles. Deduce that it then
holds for the surface S in Figure 18.6.15(a), consisting of the three triangles DAB,
DBC, DCA, and the curve ABCA.

(a) (b)

Figure 18.6.15:
46.[C] A Möbius band can be made by making a half-twist in a narrow rectangular
strip, bringing the two ends together, and fastening them with glue or tape. See
Figure 18.6.15(b).

(a) Make a Möbius band.

(b) Letting a pencil represent a normal n to the band, check that the Möbius
band is not orientable.

(c) If you form a band by first putting in a full twist (360◦), is it orientable?

(d) What happens when you cut the bands in (a) and (c) down the middle? one
third of the way from one edge to the other?

47.[C]

(a) Explain why the line integral of a central vector field f(r)r̂ around the path
in Figure 18.6.16(a) is 0.
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(b) Deduce from (a) and the coordinate-free view of curl that the curl of a central
field is 0.

(a) (b)

Figure 18.6.16:
48.[C]

(a) The proof of Stokes’ Theorem we gave would not apply to surfaces that are
more complicated, such as the “top three fourths of a sphere,” as shown in
Figure 18.6.16(b). However, how could you cut S into pieces to each of which
the proof applies? (Describe them in general terms, in words.)

(b) How could you use (a) to show that Stokes’ Theorem holds for C and S in
Figure 18.6.16(b)

49.[M] Sam has a different way to make the choice of n.

Sam: I think the book’s way of choosing n is too complicated.

Jane: OK. How would you do it?

Sam: Glad you asked. First, I would choose a unit normal n at one point on the
orientable surface.

Jane: That’s a good start.

Sam: Then I choose unit normals in a continuous way everywhere on the surface
starting at my initial choice.

Jane: And how would you finish?

Sam: My last step is to orient the boundary curve to be compatible with the right-
hand rule.

Would this proposal work? If it does, would it agree with the approach in the text.
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18.7 Connections Between the Electric Field

and r̂/‖r‖2

Even if you are not an engineer or physicist, as someone living in the 21st cen-
tury you are surrounded by devices that depend on electricity. For that reason
we now introduce one of the four equations that explain all of the phenomena of
electricity and magnetism. Later in the chapter we will turn to the other three
equations, all of which are expressed in terms of vector fields. The chapter
concludes with a detailed description of how James Clerk Maxwell, using just
these four equations, predicted that light is an electromagnetic phenomenon.
Our explanation does not assume any prior knowledge of physics.

The Electric Field Due To a Single Charge

The starting point is some assumptions about the fundamental electrical charges,
electrons and protons. An electron has a negative charge and a proton has a
positive charge of equal absolute value. Two like charges exert a force of
repulsion on each other; unlike charges attract each other.

Let C and P denote the location of charges q and q0, respectively. Let r be
the vector from C to P , as in Figure 18.7.1, so r = ‖r‖ is the distance between
the two charges.

Figure 18.7.1: ARTIST:
Please modify labeling to
reflect that the charges are
located at C and P with
charges q and q0, respec-
tively.

If both q and q0 are protons or both are electrons, the force pushes the
charges further apart. If one is a proton and the other is an electron, the
force draws them closer. In both cases the magnitude of the force is inversely
proportional to r2, the square of the distance between the charges.

Assume that q is positive, that is, is the charge of a proton. The magnitude
of the force it exerts on charge q0 is proportional to q and also proportional
to q0. It is also inversely proportional to r2. So, for some constant k, the
magnitude of the force is of the form

k
q q0

r2
.

It is directed along the vector r. If q0 is also positive, it is in the same direction
as r. If q0 is negative, it is in the direction of −r. We can summarize these
observations in one vector equation

F = k
q q0

r2
r̂ (18.7.1)

where the constant k is positive. Read ε0 as “epsilon zero” or
“epsilon null.”For convenience in later calculations, k is replaced by 1/(4πε0) The value

of ε0 depends on the units in which charge, distance, and force are measured.
Then (18.7.1) is written

F =
q q0

4πε0r2
r̂.
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Physicists associate with a charge q a vector field. This field in turn exerts
a force on other charges.

Consider a positive charge q at point C.
It “creates” a central inverse-square vector field E with center at C. It is

defined everywhere except at C. Its value at a typical point P is

E(P ) =
q r̂

4πε0r2

where −→r =
−→
CP , as in Figure 18.7.2.

(a) (b) (c)

Figure 18.7.2:

The value of E depends only on q and the vector from C to P .
To find the force exerted by charge q on charge q0 at P just multiply E by

q0, obtaining

F = q0E (18.7.2)

The field E, which is a sheer invention, can be calculated in principle by
putting a charge q0 at P , observing the force F and then dividing F by q0.
The field E enables the charge q to “act at a distance” on other charges. It
plays the role of a rubber band or a spring.

The Electric Field Due to a Distribution of Charge

Electrons and protons usually do not live in isolation. Instead, charge may be
distributed on a line, a curve, a surface or in space.

Imagine a total charge Q occupying a region R in space. The density of
the charge varies from point to point. Denote the density at P by δ(P ). Like
the density of mass it is defined as a limit as follows. Let V (r) be a small ball
of radius r and center at P . Then we have the definition

δ(P ) = lim
r→0+

charge in V (r)

volume of V (r)
.
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The charge in V (r) is approximately the volume of V (r) times δ(P ). We
will be interested only in uniform charges, where the density is constant, with
the fixed value δ. Thus the charge in a region of volume V is δV .

The field due to a uniform charge Q distributed in a region R is the sum
of the fields due to the individual point charges in Q.

To describe that field we need the concept of the integral of a vector field.
The definition is similar to the definition of the definite integral in Section 6.2.
Let F(P ) be a continuous vector field defined on some solid region R. Break
R into regions R1, R2, . . . , Rn and choose a point Pi in Ri, 1 ≤ i ≤ n.
Let the volume of Ri be Vi. The sums

∑n
i=1 F(Pi)Vi have a limit as all Ri

are chosen smaller and smaller. This limit, denoted
∫
R

F(P ) dV is called
the integral of F over R. Computationally, this integral can be computed
componentwise. For example, if F = F1i + F2j + P3k then RF(P ) then∫
R

F dV =
∫
R
F1 dV i +

∫
R
F1 dV j +

∫
R
F1 dV k. Similar definitions hold for

vector fields defined on surfaces or curves.

Figure 18.7.3:

To estimate this field we partition R into small regions R1, R2, . . .Rn and
choose a point Pi in Ri, i = 1, 2 . . . , n. The volume of Ri is Vi. The charge
in Ri is δVi, where δ is the density of the charge. Figure 18.7.3 shows this
contribution to the field at a point P .

Let ri be the vector from Pi to P , and ri = |ri|. Then the field due to the
charge in this small patch Ri is approximately

δ r̂i Vi
4πε0 r2

i

.

As an estimate of the field due to Q, we have the sum

n∑
i=1

δ r̂i Vi
4πε0r2

i

.

Taking limits as all the regions Ri are chosen smaller, we have

E(P ) = Field at P =

∫
R

δ r̂

4πε0r2
dV

Factoring out the constant δ/4πε0, we have

E(P ) =
δ

4πε0

∫
R

r̂

r2
dV

That is an integral over a solid region. If the charge is just on a surface S
with uniform surface density σ, the field would be given by

E(P ) =
σ

4πε0

∫
S

r̂

r2
dS.
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If the charge lies on a line or a curve C, with uniform density λ, then

E(P ) =
λ

4πε0

∫
C

r̂

r2
ds.

To illustrate the definition we compute one such field value directly. In
Example 2 we solve the same problem much more simply.

EXAMPLE 1 A charge Q is uniformly distributed on a sphere of radius a,
S. Find the electrostatic field E at a point B a distance b > a from the center
of the sphere.
SOLUTION We evaluate

σ

4πε0

∫
S

r̂

r2
dS. (18.7.3)

Note that σ = Q/4πa2, since the charge is uniform over an area of 4πa2.
Place a rectangular coordinate system with its origin at the center of the

sphere and the z-axis on B, so that B = (0, 0, b), as in Figure 18.7.4(a).
Before we start to evaluate an integral, let us use the symmetry of the sphere

(a) (b)

Figure 18.7.4:

to predict something about the vector E(B). Could it look like the vector v,
which is not parallel to the z-axis, as in Figure 18.7.4(b)?

If you spin the sphere around the z-axis, the vector v would change. But
the sphere is unchanged and so is the charge. So E(B) must be parallel to the
z-axis. That means we know its x- and y-components are both 0. So we must
find just its z-component, which is E(B) · k.
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Let (x, y, z) be a typical point on the sphere S. Then

r = (0i + 0j + bk)− (xi + yj− zk) = −xi− yj + (b− z)k. (18.7.4)

So

r̂

r2
=

r

r3
=

−xi− yj + (b− z)k

(
√
x2 + y2 + b2 − 2bz + z2)3

=
−xi− yj + (b− z)k

(a2 + b2 − 2bz)3/2
. (18.7.5)

We need only the z-component of this,

b− z
(a2 + b2 − 2bz)3/2

.

The magnitude of E(B) is therefore

σ

4πε0

∫
S

b− z
(a2 + b2 − 2bz)3/2

dS. (18.7.6)

We evaluate the integral in (18.7.6). To do this, introduce spherical coordi-
nates in the standard position. We have dS = a2 sin(φ)dφ dθ and z = a cos(φ).
So (18.7.6) becomes

π∫
0

2π∫
0

(b− a cosφ)a2 sinφ

(a2 + b2 − 2ab cosφ)(3/2)
dθ dφ;

which reduces, after the first integration with respect to θ, to

2πa2

π∫
0

(b− a cosφ) sinφ dφ

(a2 + b2 − 2ab cosφ)3/2
(18.7.7)

Let u = cos(φ), hence du = − sin(φ) dφ. This transforms (18.7.7) into

−2πa2

−1∫
1

(b− au) du

(a2 + b2 − 2abu)3/2
. (18.7.8)

Then we make a second substitution, v = a2 + b2 − 2abu.
As you may check, this changes (18.7.8) into

2πa2

4ab2

(b+a)2∫
(b−a)2

v + b2 − a2

v3/2
dv (18.7.9)
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Write the integrand as the sum of 1/
√
v and (b2 − a2)/v3/2, and use the

Fundamental Theorem of Calculus, to show that (18.7.8) equals 4πa2/b2.
Combining this with (18.7.9) shows that

E(B) =
σ

4πε0

4πa2

b2
k =

Q

4πε0b2
k.

�

The result in this example, Q/(4πε0b
2)k is the same as if all the charge

Q were at the center of the sphere. In other words, a uniform charge on a
sphere acts on external particles as though the whole charge were placed at its
center. This was discovered for the gravitational field by Newton and proved
geometrically in his Principia of 1687.

Using Flux and Symmetry to Find E

We included Example 1 for two reasons. First, it reviews some integration
techniques. Second, it will help you appreciate a much simpler way to find the
field E due to a charge distribution.

Picture a charge Q distributed outside the region bound by a surface S, as
in Figure 18.7.5.

Figure 18.7.5:

The flux of E associated with a point charge q over a closed surface S is∫
S

E(P ) · n dS =

∫
S

r̂ · n
4πε0r2

dS =
1

4πε0

∫
S

r · n
r2

dS.

As we saw in Section 18.5 the integral is 4π when the charge is inside the
solid bounded by the surface and 0 if the charge is outside. (See Exercise 28
in that section). Thus the total flux is q/ε0 if the charge is inside and 0 if it is
outside.
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Consider a charge Q contained wholly within the region bounded by S. We
will find the flux of a total charge Q distributed in a solid R inside a surface
S. (See Exercise 6 for the case when the charge is outside S.)

Chop the solid R that the charge occupies into n small regions R1, R2,
. . . , Rn. In region Ri select a point Pi. Let the density of charge at Pi be
δ(Pi). Thus the charge in Ri produces a flux of approximately δ(Pi)Vi/ε0.
Consequently

n∑
i=1

δ(Pi)Vi
ε0

estimates the flux produced by Q. Taking limits, we see that

Flux across S produced by Q =

∫
R

δ(Pi)

ε0
dV

But
∫
R
δ(Pi) dV is the total charge Q. Thus we have

Flux =
Q

ε0
.

Figure 18.7.6:

Thus we have one of the four fundamental equations of electrostatics:

Gauss’ Law
The flux produced by a distribution of charge across a closed surface is the
charge Q in the region bounded by the surface divided by ε0.

The charge outside of S produces no flux across S. (More precisely, the
negative flux across S cancels the positive flux.)

Let’s illustrate the power of Gauss’ Law by applying it to the case in
Example 1.

EXAMPLE 2 A charge Q is distributed uniformly on a sphere of radius a.
Find the electrostatic field E at a point B at a distance b from the center of a
sphere of radius a, with b > a.
SOLUTION We don’t need to introduce a coordinate system in Figure 18.7.6.

Figure 18.7.7:

By symmetry, the field at any point P outside the sphere is parallel to the vec-

tor
−→
CP . Moreover, the magnitude of the field is the same for all points at a

given distance from the origin C. Call this magnitude, f(r), where r is the
distance from C. We want to find f(b).

To do this, imagine another sphere S∗, with center C and radius b, as in
Figure 18.7.7.

The flux of E across S∗ is
∫
S∗

E · n dS.
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But E · n is just f(b) since E and n are parallel and E(P ) has magnitude
f(b) for all points P on S∗. Thus

∫
S∗

E · n dS =
∫
S∗
f(b) dS = f(b)

∫
S∗

dS =
f(b)4πb2.

By Gauss’ Law
Q

ε0
= f(b)(4πb2).

That tells us that

f(b) =
Q

4πε0b2
.

This is the same result as in Example 1, but compare the work in each
case. Symmetry and Gauss’ Law provide an easy way to find the electrostatic
field due to distribution of charge. �

The same approach shows that the field E produced by the spherical charge
in Examples 1 and 2 inside the sphere is 0. Let f(r) be the magnitude of E
at a distance r from the center of the sphere. For r > a, f(r) = Q/(4πε0r

2);
for 0 < r < a, f(r) = 0. The graph of f is shown in Figure 18.7.8.

Figure 18.7.8:

If you are curious about f(a) and f(0), see Exercises 8 and 9.

Summary

The field due to a point charge q at a point C is given by the formula E(P ) =
1

4πε0

qbr
r2

, where r =
−→
OP . This field produces a force q0E(P ) on a charge q0

located at P .
The field due to a distribution of charge is obtained by an integration over

a surface of solid region, depending where this charge is distributed.
We showed that a charge Q outside a surface produces a net flux of zero

across the surface. However the flux produced by a charge within the surface
is simply Q/ε0. That is Gauss’s Law.

We used Gauss’s Law to find the field produced by a spherical distribution
of charge.
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EXERCISES for Section 18.7 Key: R–routine, M–moderate, C–challenging

1.[R] The charge q is positive and produces the electrostatic field E. In what
direction does E point at a charge q0 that is (a) positive and (b) negative?

2.[R] Fill in the omitted details in the calculation in Exercise 1.

3.[R] Describe to a friend who knows no physics the field E produced by a point
charge q.

4.[R] State Gauss’s Law aloud several times.

5.[R] Why do you think that the constant k was replaced by 1/4πε0. Note: Later
we will see why it is convenient to have ε0 in the denominator.

6.[R] Show that a charge Q distributed in a solid region R outside a closed surface
S induces zero-flux across S.

7.[R] A charge is distributed uniformly over an infinite plane. For any part of this
surface of area A the charge is kA, where k is a constant. Find the field E due to
the charge at any point P not in the plane.

(a) Use symmetry to say as much as you can about it. Be sure to discuss its
direction.

(b) Show that the magnitude is constant by applying Gauss’s Theorem to a cylin-
der whose axis is perpendicular to the plane and which does not intersect the
plane.

(a) (b)

Figure 18.7.9:

(c) Find the magnitude of E by applying Gauss’s Theorem to the cylinder in
Figure 18.7.9(b). Let the area of the circular cross section be A and the area
of its curved side be B.
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8.[R] Find the field E of the charge in Example 1 at a point on the surface of the
sphere. Why is Gauss’s Law not applicable here? Hint: Let the point be (0, 0, a).

9.[R] Find the field E of the charge in Example 1 at the center of the sphere.
Hint: Use symmetry, don’t integrate.

10.[R] Complete the graph in Figure 18.7.8. That is, fill in the function values
corresponding to r = 0 and r = a.

11.[R] A charge is distributed uniformly along an infinite straight wire. The charge
on a section of length l is kl. Find the field E due to this charge.

(a) Use symmetry to say as much as you can about the direction and magnitude
of E.

(b) Find the magnitude by applying Gauss’s Law to the cylinder of radius r and
height h shown in Figure 18.7.10

(c) Find the force directly by an integral over the line, as in Example 1.

Figure 18.7.10:
12.[R] Figure 18.7.11(a) shows four surfaces. Inside S1 is a total charge Q1, and
inside S2 is a total charge Q2. Find the total flux across each of the four surfaces.

(a) (b)

Figure 18.7.11:
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13.[R] Imagine that there is a uniform distribution of charge Q throughout a ball
of radius a. Use Gauss’ Law to find the electrostatic field E produced by this charge

(a) at points outside the ball,

(b) at points inside the ball.

14.[R] Let f(r) be the magnitude of the field in Exercise 13 at a distance r from
the center of the ball. Graph f(r) for r ≥ 0.

15.[R] A charge Q lies partly inside a closed surface S and partly outside. Let Q1

be the amount inside and Q2 the amount outside, as in Figure 18.7.11(b). What is
the flux across S of the charge Q?

16.[R] In Exercise 11 you found the field E due to a charge uniformly spread on
an infinite line. If the charge density is λ, E at a point at a distance a from the line
is (λ/(2πaε0)) j.
Now assume that the line occupies only the right half of the x-axis, [0,∞).

(a) Using the result in Exercise 11, show that the j-component of E(0, a) is
(λ/4πaε0)j.

(b) By integrating over [0,∞), show that the i-component of E at (0, a) is λ/(4πaε0)i.

(c) What angle does E(0, a) make with the y-axis?

(d) Why is Gauss’ Law of no use in determining the i-component of E in this
case.

17.[M] We showed that E(P ) = δ
4πε0

∫
R
br
r2
dV if the charge density is constant.

Find the corresponding integral for E(P ) when the charge density varies.

18.[C] In Example 1, we used an integral to find the electrostatic field outside a
uniformly charged sphere. Carry out similar calculation to find the field inside the
sphere. Hint: Is the square root of (b− a)2 still b− a?

19.[C] Use the approach in Example 2 to find the electrostatic field inside a uni-
formly charged sphere.

20.[C] Graph the magnitude of the field in Example 1 as a function of the distance
from the center of the sphere. This will need the results of Exercises 18 and 19.
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21.[C] Find the field E in the Exercise 7 by integrating over the whole (infinite)
plane. (Do not use Gauss’s Theorem.)
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18.8 Expressing Vector Functions in Other Co-

ordinate Systems

We have expressed the gradient, divergence, and curl in terms of rectangular
coordinates. However, students who apply vector analysis in engineering and
physics courses will see functions expressed in polar, cylindrical, and spherical
coordinates. This section shows how those expressions are found.

The Gradient in Polar Coordinates

Figure 18.8.1:

Let g(r, θ) be a scalar function expressed in polar coordinates. Its gradient

has the form A(r, θ)r̂ + B(r, θ)θ̂, where r̂ and θ̂ are the unit vectors shown in
Figure 18.8.1. The unit “radial vector” r̂ points in the direction of increasing r.
The unit “tangential vector” θ̂ points in the direction determined by increasing
θ. Note that θ̂ is tangent to the circle through (r, θ) with center at the pole.

Our goal is to find A(r, θ) and B(r, θ), which wedenote simply as A and B.
One might guess, in analogy with rectangular coordinates, that A(r, θ)

would be ∂g/∂r and B(r, θ) would be ∂g/∂θ. That guess is part right and
part wrong, for we will show that

grad g =
∂g

∂r
r̂ +

1

r

∂g

∂θ
θ̂ (18.8.1)

We reserve the use of ∇ for
rectangular coordinates, and
use grad in all other
coordinate systems.

Note the appearance of 1/r in the θ̂ component.
One way to obtain (18.8.1) is labor-intensive and not illuminating: express

g, r̂, and θ̂ in terms of x, y, i, j and use the formula for gradient in terms
of rectangular coordinates, then translate back to polar coordinates. This
approach, whose only virtue is that it offers good practice applying the chain
rule for partial derivatives, is outlined in Exercises 17 and 18.

We will use a simpler way, that easily generalizes to the cylindrical and
spherical coordinates. It exploits the connection between a gradient and direc-
tional derivative of g at a point P in the direction u. In particular, it shows
why the coefficient 1/r appears in (18.8.1).

Recall that if u is a unit vector, the directional derivative of g in the
direction u is the dot product of grad g with u:

Dug = grad g · u.

In particular,
Dbrg = (Ar̂ +Bθ̂) · r̂ = A
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and
Dbθg = (Ar̂ +Bθ̂) · θ̂ = B.

So all we need to do is find Dbrg and Dbθg.
First,

Dbr(g) = lim
∆r→0

g(r + ∆r, θ)− g(r, θ)

∆r
=
∂g

∂r
.

So A(r, θ) = ∂g/∂r(r, θ). That explains the expected part of (18.8.1).
Now we will see why B is not simply the partial derivation of g with respect

to θ.
If we want to estimate a directional derivative at P of g in the direction u

we pick a nearby point Q a distance ∆s away in the direction of u and form
the quotient

g(Q)− g(P )

∆s
(18.8.2)

Then we take the limit of (18.8.2) as ∆s→ 0.

Now let u be θ̂, and let’s examine (18.8.2) in the case hwere P = (r, θ) and
Q = (r, θ + ∆θ). The numerator in (18.8.2) is

g(r, θ + ∆θ)− g(r, θ).

We draw a picture to find ∆s, as in Figure 18.8.2.

Figure 18.8.2:

The distance between P and Q is not ∆θ. Rather it is approximately r∆θ
(when ∆θ is small). That tells us that ∆s in (18.8.2) is not ∆θ but r∆θ.
Therefore

Dθg = lim
∆θ→0

g(r, θ + ∆θ)− g(r, θ)

r∆θ
=

1

r
lim

∆θ→0

g(r, θ + ∆θ)− g(r, θ)

∆θ
=

1

r

∂g

∂θ
.

Note r ∆θ in the denominator.
That is why there is a 1/r in the formula (18.8.1) for the gradient of g.

It occurs because a change ∆θ in the parameter θ causes a point to move
approximately the distance r∆θ.

Divergence in Polar Coordinates

The divergence of F(x, y) = P (x, y)i + Q(x, y)j is simply ∂P/∂x + ∂Q/∂y.
But what is the divergence of a vector field described in polar coordinates,
G(r, θ) = A(r, θ)r̂ +B(r, θ)θ̂. By now you are on guard, ∇ ·G is not the sum
of ∂A/∂r and ∂B/∂θ).

To find ∇ ·G, use the relation between ∇ ·G at P = (r, θ) and the flux
across a small curve C that surrounds P .

∇ ·G = lim
length of C→0

∮
C

G · n ds

Area within C
(18.8.3)
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Note that (18.8.3) provides a coordinate-free description of divergence in the
plane.

Figure 18.8.3: C is the
curve QRSTQ

We are free to choose the small closed curve C to make it easy to estimate
the flux across it. A curve C that corresponds to small changes ∆r and ∆θ is
convenient is shown in Figure 18.8.3. We will use (18.8.3) to find the divergence
at P = (r, θ). Now, P is not inside C; rather it is on C. However, since G is
continuous, G(P ) is the limit of values of G at points inside, so we may use
(18.8.3).

To estimate the flux across C, we estimate the flux across each of the four
parts of the curve. Because these sections are short when ∆r and ∆θ are small,
we may estimate the integral over each part by multiplying the value of the
integrand at any point of the section (even at an end point) by the length of
the section. As usual, n̂ denotes an exterior unit vector perpendicular to C.

On QR and ST , Bθ contributes to the flux (on RS and TQ it does not
since n · θ is 0). On QR, θ is parallel to n, as shown in Figure 18.8.4.

Figure 18.8.4:

However, on ST it points in the opposite direction, θ̂ · n̂ is −1. So, across
ST , the flux contributed by Bθ̂ is approximately

(Bθ̂ · n̂)∆r = −B(r, θ)∆r.

(We would get a better estimate by using B(r + ∆r
2
, θ) but B(r, θ) is good

enough since B is continuous.)

On QR, θ̂ and n̂ point in almost the same direction, hence θ · n̂ is close to
1 when ∆θ is small. So on ST , Bθ̂ contributes approximately B(r, θ+ ∆θ)∆r
to the flux.

All told, the total contribution of Bθ to the flux across C is

B(r, θ + ∆θ)∆r −B(r, θ)∆r (18.8.4)

The contribution of Ar̂ to the flux is negligible on QR and ST because there
r̂ and n̂ are perpendicular. On TQ, r̂ and n̂ point in almost directly opposite
directions, hence r̂ · n̂ is near −1. The flux of Ar̂ there, is approximately

A(r, θ)(r̂ · n̂)r∆θ = −A(r, θ)r∆θ. (18.8.5)

On RS, which has radius r + ∆r, r̂ and n̂ are almost identical, hence r̂ · n̂ is
near 1. The contribution on RS, which has radius r + ∆r is approximately

A(r + ∆r, θ)(r + ∆r)∆θ. (18.8.6)

Combining (18.8.4), (18.8.5) and (18.8.6), we see that the limit in (18.8.3)
is the sum of two limits:

lim
∆r,∆θ→0

A(r + ∆r, θ)(r + ∆r)∆θ − A(r, θ)r∆θ

r∆r∆θ
(18.8.7)
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andThe area within C is
approximately, r∆r∆θ.

lim
∆r,∆θ→0

B(r, θ + ∆θ)∆r −B(r, θ)∆r

r∆r∆θ
(18.8.8)

The first limit (18.8.7) equals

lim
∆r,∆θ→0

1

r

(r + ∆r)A(r + ∆r,∆θ)− rA(r, θ)

∆r
,

which is
1

r

∂(rA)

∂r
.

Note that r appears in the coefficient, 1/r, and also in the function, rA,
being differentiated.

The second limit (18.8.8) equals

lim
∆r,∆θ→0

1

r

B(r, θ + ∆θ)−B(r, θ)

∆θ
,

hence is
1

r

∂B

∂θ
.

Here r appears only once, in the coefficient.
All told, we have the desired divergence formula:Note the use of div, not ∇·.

div(Ar̂ +Bθ) =
1

r

∂(rA)

∂r
+

1

r

∂B

∂θ
. (18.8.9)

Curl in the Plane

The curl of F(x, y) = P (x, y)i + Q(x, y)j + 0k, a vector field in the plane, is
given by the formula

curl F =

(
∂Q

∂x
− ∂P

∂y

)
k.

What is the formula for the curl when the field is described in polar coordinates:
G(r, θ) = A(r, θ)r̂ + B(r, θ)n̂? To find out we will reason as we did with
divergence. This time we use

(curl G) · n̂ = lim
length of C→0

∮
C

G · k ds

Area bounded by C
.
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where C is a closed curve around a fixed point in the (r, θ) plane, and the See (18.6.9) on page 1589.

limit is taken as the length of C approaches 0. The curl is evaluated at a fixed
point, which is on or within C.

We compute the circulation of G = Ar̂ + Bθ around the same curve used
in the derivation of divergence in polar coordinates.

On TQ and RS, Ar̂, being perpendicular to the curve, contributes nothing
to the circulation of G around C. On QR it contributes approximately

A(r, θ)(r̂ ·T)∆r = A(r, θ)∆r.

On ST , since there r̂ ·T = −1, it contributes approximately

A(r, θ + ∆θ)(r ·T)∆r = −A(r, θ + ∆θ)∆r.

A similar computation shows that Bθ̂ contributes to the total circulation
approximately

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ.

Therefore (∇×G·)k in the sum of two limits:

lim
∆r,∆θ→0

A(r, θ)∆r − A(r, θ + ∆θ)∆r

r∆r∆θ
= −1

r

∂A

∂θ

and

lim
∆r,∆θ→0

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ

r∆r∆θ
=

1

r

∂(rB)

∂r
.

All told, we have Note the use of curl, not
∇×.

curl(Ar̂ +Bθ) =

(
−1

r

∂A

∂θ
+

1

r

∂(rB)

∂r

)
k. (18.8.10)

EXAMPLE 1 Find the divergence and curl of F = rθ2r̂ + r3 tan(θ)θ.
SOLUTION The calculations are direct applications of (18.8.9) and (18.8.10).
First, the divergence:

div F =
1

r

∂

∂r

(
r · rθ2

)
+

1

r

∂

∂θ

(
r3 tan(θ)

)
=

1

r

(
2rθ2

)
+

1

r

(
r3 sec2(θ)

)
= 2θ2 + r2 sec2(θ).

Calculus December 4, 2010



1618 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

And, the curl:

curl F =

(
−1

r

∂

∂θ

(
rθ2
)

+
1

r

∂

∂r

(
r · r3 tan(θ)

))
k

=

(
−1

r
(2rθ) +

1

r

(
4r3 tan(θ)

))
k =

(
−2θ + 4r2 tan(θ)

)
k.

�

Cylindrical Coordinates

In cylindrical coordinates the gradient of g(r, θ, z) is

grad g =
∂g

∂r
r̂ +

1

r

∂g

∂θ
θ̂ +

∂g

∂z
ẑ (18.8.11)

Here ẑ is the unit vector in the positive z direction, denoted k in Chapter 14.
Note that (18.8.11) differs from (18.8.1) only by the extra term (∂g/∂z)ẑ. You

can obtain (18.8.11) by computing directional derivatives of g along r̂, θ̂, and
ẑ. The derivation is similar to the one that gave us the formula for the gradient
of g(r, θ).

The divergence of G(r, θ, z) = Ar̂ +Bθ̂ + Cẑ is given by the formula

div G =
1

r

∂(rA)

∂r
+
∂B

∂θ
+
∂(rC)

∂z
. (18.8.12)

Note that the partial derivatives with respect to r and z are similar in that the
factor r is present in both ∂(rA)/∂r and ∂(rC)/∂r. You can obtain (18.8.12)
by using the relation between ∇ · G and the flux across the small surface
determined by small changes ∆r, ∆θ, and ∆z.

The curl of G = Ar̂ +Bθ + Cẑ is given by a formal determinant:

curl G =
1

r

∣∣∣∣∣∣
r̂ rθ̂ k
∂
∂r

∂
∂θ

∂
∂z

A rB C

∣∣∣∣∣∣ (18.8.13)
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To obtain this formula consider the circulation around three small closed curves
lying in planes perpendicular to r̂, θ̂ and k.

Figure 18.8.5:

Spherical Coordinates

In mathematics texts, spherical coordinates are denoted ρ, φ, θ. In physics and
engineering a different notation is standard. There ρ is replaced by r, θ is the
angle with z-axis, and φ plays the role of the mathematicians’ θ, switching the
roles of φ and θ. The formulas we state are in the mathematicians’ notation.

The three basic unit vectors for spherical coordinates are denoted ρ, φ, θ.
For instance, ρ points in the direction of increasing ρ. See Figure 18.8.5. Note
that, at the point P , φ and θ are tangent to the sphere through P and center
at the origin, while ρ is perpendicular to that sphere. Also, any two of ρ, φ, θ
are perpendicular.

Figure 18.8.6:

To obtain the formulas for ∇ · G and ∇ × G, we would use the region
corresponding to small changes ∆ρ, ∆φ, and ∆θ, shown in Figure 18.8.6.
That computation yields the following formulas:

If g(ρ, φ, θ) is a scalar function,

grad g =
∂g

∂ρ
ρ+

1

ρ

∂g

∂φ
φ+

1

ρ sin(φ)

∂g

∂θ
θ. (18.8.14)

If G(ρ, φ, θ) = Aρ+Bφ+ Cθ

div G =
1

ρ2

∂(ρ2A)

∂r
) +

1

ρ sin(φ)

∂(sin(φ)B)

∂φ
+

1

ρ sin(φ)

∂C

∂θ
. (18.8.15)

and

curl G =
1

ρ

(
1

sin(φ)

∂(sin(φ))C)

∂φ
− 1

ρ sin(φ)

∂B

∂θ

)
ρ

+
1

ρ

(
1

sin(φ)

∂A

∂θ
− ∂(ρC)

∂ρ

)
φ+

1

ρ

(
∂(ρB)

∂ρ
− ∂A

∂φ

)
θ

Each of these can be obtained by the method we used for polar coordinates.
In each case, keep in mind that the change in φ or θ is not the same as the
distance the corresponding point moves. However, a change in ρ is the same
as the distance the corresponding point moves. For instance, the distance
between (ρ, φ, θ) and (ρ, φ + ∆φ,∆θ) is approximately ρ∆φ and the distance
between (ρ, φ, θ) and (ρ, φ, θ + ∆θ) is approximately ρ sin(φ)∆θ.
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An Application to Rotating Fluids

Consider a fluid rotating in a cylinder, for instance, in a centrifuge. If it rotates
as a rigid body, then its velocity at a distance r from the axis of rotation has
the form

G(r, θ) = crθ,

where c is a positive constant.
Then

curl G =
1

r

∂(cr2)

∂r
k = 2ck.

The curl is independent of r. That means that an imaginary paddle held with
its axis held in a fixed position would rotate at the same rate no matter where
it is placed.

Now consider the more general case with

G(r, θ) = crnθ,

and n is an integer. Now

curl G =
1

r

∂(crn+1)

∂r
k = c(n+ 1)rn−1k.

We just considered the case n = 1. If n > 1, the curl increases as r increases.
The paddle wheel rotates faster if placed farther from the axis of rotation. The
direction of rotation is the same as that of the fluid, counterclockwise.

Next consider the case n = −2. The speed of the fluid decreases as r
increases. Now

curl G = c(−2 + 1)r−2−1k = −cr−3k.

The minus sign before the coefficient c tells us that the paddle wheel spins
clockwise even though the fluid rotates counterclockwise. The farther the
paddle wheel is from the axis, the slower it rotates.

Summary

We expressed gradient, divergence, and curl in several coordinate systems.
Even though the basic unit vectors in each system may change direction from
point to point, they remain perpendicular to each other. That simplified the
computation of flux and circulation. The formulas are more complicated than
those in rectangular coordinates because tha amount a parameter changes is
not the same as the distance the corresponding point moves.
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EXERCISES for Section 18.8 Key: R–routine, M–moderate, C–challenging

In Exercises 1 through 4 find and draw the gradient of the given functions of (r, θ)
at (2, π/4).
1.[R] r

2.[R] r2θ

3.[R] e−rθ

4.[R] r3θ2

In Exercises 5 through 8 find the divergence of the given function
5.[R] 5r̂ + r2θθ̂

6.[R] r3θr̂ + 3rθθ̂
7.[R] rr̂ + r3θ̂

8.[R] r sin(θ)r̂ + r2 cos(θ)θ̂

In Exercises 9 through 12 compute the curl of the given function.
9.[R] rθ̂

10.[R] r3θr̂ + erθ̂

11.[R] r cos(θ)r̂ + rθθ̂

12.[R] 1/r3θ̂

13.[R] Find the directional derivative of r2θ3 in the direction

(a) r̂

(b) θ̂

(c) i

(d) j

14.[R] What property of rectangular coordinates makes the formulas for gradient,
divergence, and curl in those coordinates relatively simple?

15.[R] Estimate the flux of rθvrhat = r2θ3θ̂ around the circle of radius 0.01 with
center at (r, θ) = (2, π/6).

16.[R] Estimate the circulation of the field in the preceding exercise around the
same circle.
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When translating between rectangular and polar coordinates, it may be necessary to
express r̂ and θ̂ in terms of i and j and also i and j in terms of r and θ̂. Exercise 17
and 18 concern this matter.
17.[R] Let (r, θ) be a point that has rectangular coordinates (x, y).

(a) Show that r̂ = cos(θ)i + sin(θ)j, which equals x/
√
x2 + y2i + y/

√
x2 + y2j =

xi+yj√
x2+y2

(b) Show that θ = − sin(θ)i+cos(θ)j, which equals −y/
√
x2 + y2i+x/

√
x2 + y2j.

(c) Draw a picture to accompany the calculations done in (a) and (b).

So we have r̂ and θ in terms of i and j: r̂ = xi+yj√
x2+y2

θ = −yi+xj√
x2+y2

(18.8.16)

18.[R] Show that if (x, y) has polar coordinates (r, θ), then{
i = cos(θ)θr̂− sin(θ)θ
j = sin(θ)θr̂ + cos(θ)θ

by solving the simultaneous equations (18.8.16) in the preceding exercise for i and
j.

In exercises 19 through 22

I. find the gradient of the given function, using the formula for gradient in rect-
angular coordinates,

II. find it by first expressing the function in polar coordinates and again for
gradient in polar coordinates. (18.8.1),

show that the two results agree.

19.[R] x2 + y2

20.[R]
√
x2 + y2

21.[R] 3x+ 2y
22.[R] x/

√
x2 + y2

In Exercises 23 through 26

I. find the gradient of the given function, using its formula in polar coordinates,
that is (18.8.1),

II. find it by first expressing the function in rectangular coordinates,
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III. show that the two results agree.

23.[R] r2

24.[R] r2 cos(θ)

25.[R] r sin(θ)

26.[R] er

In Exercise 27 and 28

I. find the divergence of the given vector field in rectangular coordinates,

II. find it by first expressing the function in polar coordinates and using (18.8.9),

III. show that the results agree.

27.[R] x2i + y2j

28.[R] xyi

In Exercises 29 and 30

I. find the curl of the given vector field in rectangular coordinates,

II. find it by first expressing the function in polar coordinates and using (18.8.10),

III. show that the two results agree.

29.[R] xyi + x2y2j

30.[R] (x/
√
x2 + y2)i

The next two exercises are useful in developing the formula for the gradient in
cylindrical and spherical coordinates.
31.[R] Approximately how far is it from the points (r, θ, z) to

(a) (r + ∆r, θ, z),

(b) (r, θ + ∆θ, z),

(c) (r, θ, z + ∆z).

32.[R] Approximate the distance from the point (ρ, φ, θ) to

Calculus December 4, 2010



1624 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

(a) (ρ+ ∆ρ, φ, θ),

(b) (ρ, φ+ ∆φ, θ),

(c) (ρ, φ, θ + ∆θ).

33.[M] Using the formulas for the gradient of g(r, φ, θ), find the directional deriva-
tive of g in the direction

(a) ρ̂,

(b) φ̂,

(c) θ̂.

34.[M] Using the formulas for the gradient of g(r, θ, z), find the directional deriva-
tive of g in the direction

(a) r̂,

(b) θ,

(c) k.

35.[M] Without using the formula for the gradient, do Exercise 33.

36.[M] Without using the formula for the gradient, do Exercise 34.

37.[M] Using as few mathematical symbols as you can, state the formula for the
divergence of a vector field given relative to r̂ and θ.

38.[M] Using as few mathematical symbols as you can, state the formula for the
curl of a vector field given relative to r̂ and θ.

39.[M] In the formula for the divergence of Ar̂+Bθ̂, why do the terms rA and 1/r
appear in (1/r)(∂(rA)/∂r and rA? Explain in detail why 1/r appears.

40.[M] Obtain the formula for the gradient in cylindrical coordinates.

41.[M] Obtain the formula for curl in cylindrical coordinates.
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42.[M] Obtain the formula for divergence in cylindrical coordinates.

43.[M] Obtain the formula for the gradient in spherical coordinates.

44.[M] Where did we use the fact that r̂ and θ̂ are perpendicular when developing
the expression for divergence in polar coordinates?

45.[M] Obtain the formula for the gradient of g(r, θ) in polar coordinates by starting
with the formula for the gradient of f(x, y) in rectangular coordinates. During the
calculations you will have some happy moments as complicated expressions cancel
and the identity cos2(θ) + sin2(θ) = 1 simplifies expressions. (See Exercise 18.8.16.)
Assume g(r, θ) = f(x, y), where x = r cos(θ) and y = r sin(θ). To express ∇f =
∂f/∂xi + ∂f/∂yj in terms of polar coordinates, it is necessary to express ∂f/∂x,
∂f/∂y, i, and j in terms of partial derivative of g(r, θ) and r̂ and θ.

(a) Show that ∂r/∂x = cos(θ), ∂r/∂y = sin(θ), ∂θ/∂x = −(sin(θ))/r, ∂θ/∂y =
(cos θ)/r.

(b) Use the chain rule to express ∂f/∂x and ∂f/∂y in terms of partial derivatives
of g(r, θ).

(c) Recalling the expression of i and j in terms of r̂ and θ̂ in Exercise 18 obtain
the gradient of g(r, θ) in polar coordinates.

46.[M] In Exercise 26 of Section 18.3, we found the divergence of F = rnr̂ us-
ing rectangular coordinates. Find the divergence using polar coordinates formally.
Note: The second way is much easier.

47.[M] In Exercise 6 of Section 18.6 we used rectangular coordinates to show that
an irrotational planar central field is symmetric. Use the formula for curl in polar
coordinates to obtain the same result. Note: This way is much easier.

48.[M] In Exercise 21 in Section 18.4 we used rectangular coordinates to show
that an incompressible symmetric central field in the plane must have the form
F(r) = (k/r)r̂. Obtain this result using the formula for divergence in polar coordi-
nates.
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18.9 Maxwell’s Equations

At any point in space there is an electric field E and a magnetic field B. The
electric field is due to charges (electrons and protons) whether stationary or
moving. The magnetic field is due to moving charges.

To assure yourself that the magnetic field B is everywhere, hold up a pocket
compass. The magnetic field, produced within the Earth, makes the needle
point north.

All of the electrical phenomena and their applications can be explained
by four equations, called Maxwell’s equations. These equations allow B
and E to vary in time. We state them for the simpler case when B and E
are constant: ∂B/∂t = 0 and ∂E/∂t = 0. We met the first equation in the
previous section. Here is the complete list

I.
∫
S

E · n dS = Q/ε0, where S is a surface bounding a spatial region and
Q is the change in that region. (Gauss’s Law for Electricity)

II.
∮
C

E · dr = 0 for any closed curve C. (Faraday’s Law of Induction)

III.
∫
S

B ·n dS = 0 for any surface S that bounds a spatial region. (Gauss’s
Law for Magnetism)

IV.
∮
C

B · dr = µ0

∫
S

J · n dS, where C bounds the surface S and J is the
electric current flowing through S. (Ampere’s Law)

The constants ε0 and µ0 (“myoo zero”) depend on the units used. They
will be important in the CIE on Maxwell’s Equations.

Each of the four statements about integrals can be translated into infor-
mation about the behavior of E or B at each point.

In derivative or “local” form the four principles read:

I’. div E = q/ε0, where q is the charge density (Coulomb’s Law)

II’. curl E = 0

III’. div B = 0

IV’. curl B = µ0J

It turns out that 1
µ0ε0

equals the square of the speed of light. Why that is
justified is an astonishing story told in CIE 23.
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Going Back and Forth Between “Local” and “Global.”

Examples 1 and 2 show that Gauss’s Law is equivalent to Coulomb’s.

EXAMPLE 1 Obtain Gauss’s Law for Electricity (I) from Coulomb’s Law
(I’).
SOLUTION Let V be the solid region whose boundary is S. Then∫

S E · n dS =
∫
V ∇ · E dV Divergence Theorem

=
∫
V

q
ε0
dV Coulomb’s Law

= 1
ε0

∫
V q dV = Q

ε0
.

Recall that the total charge in V is Q =
∫
V q dV . �

Does Gauss’s law imply Coulomb’s law? Example 2 shows that the answer
is yes.

EXAMPLE 2 Deduce Coulomb’s law (I’) from Gauss’s law for electricity
(I).
SOLUTION Let V be any spatial region and let S be its surface. Let Q be
the total charge in V . Then

Q

ε0
=

∫
S

E · n dS Gauss’s law

=

∫
V

∇ · E dV Divergence Theorem.

On the other hand,

Q =

∫
V

q dV,

where q is the charge density. Thus∫
V

q

ε0
dV =

∫
V

∇ · E dV, or

∫
V

(
q

ε0
−∇ · E

)
dV = 0,

for all spatial regions. Since the integrand is assumed to be continuous, the
“zero-integral principle” tells us that it must be identically 0. That is,

q

ε0
−∇ · E = 0,

which give us Coulomb’s law. �

EXAMPLE 3 Show that II implies II’. That is,
∮
C

E · dr = 0 for closed
curves implies curl E = 0.
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SOLUTION By Stokes’ theorem, for any orientable surface S bounded by a
closed curve, ∫

S

(curl E) · n dS = 0

The zero-integral principle implies that (curl E) · n = 0 at each point on the
surface. Choosing S such that n is parallel to curl E (if curl E is not 0),
implies that the magnitude of curl E is 0, hence curl E is 0. �

Maxwell, by studying the four equations, I’, II’, III’, IV’, deduced that
electromagnetic waves travel at the speed of light, and therefore light is an
electromagnetic phenomenon. In CIE 23 at the end of this chapter we show
how he accomplished this, in one of the greatest creative insights in the history
of science.

The exercises present the analogy of the four equations in integral form
for the general case where B and E vary with time. It is here that B and E
became tangled with each other; both appearing in the same equation. In this
generality they are known as Maxwell’s equations, in honor of James Clerk
Maxwell (1831-1879), who put them in their final form in 1865.

Mathematics and Electricity
Benjamin Franklin, in his book Experiments and Observations Made in
Philadelphia, published in 1751, made electricity into a science. For his ac-
complishments, he was elected a Foreign Associate of the French Academy of
Sciences, an honor bestowed on no other American for over a century. In 1865,
Maxwell completed the theory that Franklin had begun.

At the time that Newton Published his Principia on the gravitational field
(1687), electricity and magnetism were the subjects of little scientific study.
But the experiments of Franklin, Oersted, Henry, Ampère, Faraday, and oth-
ers in the eighteenth and early nineteenth centuries gradually built up a mass
of information subject to mathematical analysis. All the phenomena could be
summarized in four equations, which in their final form appeared in Maxwell’s
Treatise on Electricity and Magnetism, published in 1873. For a fuller treat-
ment, see The Feynman Lectures on Physics, vol. 2, Addison-Wesley, Reading,
Mass., 1964.

Summary

We stated the four equations that describe electrostatic and magnetic fields
that do not vary with time. Then we showed how to use the divergence theorem
or Stokes’ theorem to translate between their global and local forms. The
exercises include the four equations in their general form, where E and B vary
with time.
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EXERCISES for Section 18.9 Key: R–routine, M–moderate, C–challenging

1.[R] Obtain II from II’.

2.[R] Obtain III’ from III.

3.[R] Obtain III from III’.

4.[R] Obtain IV’ from IV.

5.[R] Obtain IV from IV’.

In Exercises 6 to 9 use terms such as “circulation,” “flux,” “current,” and “charge
density” to express the given equation in words.
6.[R] I
7.[R] II
8.[R] III
9.[R] IV

10.[R] Which of the four laws tell us that an electric current produces a magnetic
field?

11.[R] Which of the four laws tells us that a magnetic field produces an electric
current?

In this section we assumed that the fields E and B do not vary in time, that is,
∂E/∂t = 0 and ∂B/∂t = 0. The general case, in empty space, where E and B
depend on time, is also described by four equations, which we call 1, 2, 3, 4. Numbers
1 and 3, do not involve time; they are similar to I ′ and III ′.

1. ∇ ·E = q/ε0

2. ∇×E = −∂B/∂t

3. ∇ ·B = 0

4. ∇×B = µ0J + µ0ε0
dE
dt

(Here J is the current.)
12.[R] Which equation implies that a changing magnetic field creates an electric
field?

13.[R] Which equation implies that a changing electrostatic field creates a mag-
netic field?
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14.[R] Show that 2. is equivalent to∮
C

E · dt = − ∂

∂t

∫
S

B · n dS

Here, C bounds S. Hint: You may assume that ∂
∂t

∫
S B·n dS equals

∫
S(∂B/∂t) · n dS.

15.[R] Show that 4. is equivalent to∮
C

B · dr = µ0

∫
S

J · n dS + µ0ε0
∂

∂t

∫
S

E · n dS

(The circulation of B is related to the total current through the surface S that C
bounds and to the rate at which the flux of E through S changes.)
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18.S Chapter Summary

The first six sections developed three theorems: Green’s Theorem, Gauss’
Theorem (also called the Divergence Theorem), and Stokes’ Theorem. The
final four sections applied them to geometry and to physics and to expressing
various functions in terms of non-rectangular coordinate systems. These four
sections offer a way to deepen your understanding of the first six.

Name Mathematical Expression Physical Description
Green’s Theorem

∮
C

F · n ds =
∫
R∇ · F dA flux of F across C∮

C
(−Qdx+ Pdy) =

∫
R

(
∂P
∂x

+ ∂Q
∂y

)
dA differential form∮

C
F ·T ds =

∮
C

F · dr =
∫
R (∇× F) · k dA circulation of F around C∮

C
(Pdx+Qdy) =

∫
R

(
∂Q
∂x
− ∂P

∂y

)
dA

Gauss’ Theorem
(Divergence The-
orem)

∫
S F ·N dS =

∫
R
∇ · F dV

Stokes’ Theorem
∮
C

F ·T ds =
∫
S(∇× F) · n dS

(S is a surface bounded by C with n compat-
ible by orientation of C)

Green’s Theorem can be viewed as the planar version of either the Diver-
gence Theorem or Stokes’ Theorem.

Though div F and curl F were defined in terms of rectangular coordinates,
they also have a meaning that is independent of any coordinates. For instance,
if F is a vector field in space, the divergence of F at a point multiplied by the
volume of a small region containing that point approximates the flux of F
across the surface of that small region. More precisely,

div F at P equals the limit of

∫
S F · n ds

volume of R
as the diameter of R approaches 0

The curl of F at P is a vector, so it’s a bit harder to describe physically.
Let n be a unit vector and C a small curve that lies in a plane through P , is
perpendicular to n, and surrounds P . Then the scalar component of curl F at
P is the direction n multiplied by the area of the surface bounded by C gives
the circulation of F along C.

A field whose curl is 0 is called irrotational. A field whose divergence is 0
is called incompressible (or divergence-free).

Of particular interest are conservative fields. A field F is conservative if
its circulation on a curve depends only on the endpoints of the curve. If the
domain of F is simply connected, F is conservative if and only if its curl is 0.
A conservative field is expressible as the gradient of a scalar function.
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Among the conservative fields are the symmetric central fields. If, in addi-
tion, they are divergence-free, they take a very special form that depends on
the dimension of the problem.

General Form of Divergence-Free
Geometry Symmetric Central Fields Description

R2 (plane) cbr
r

inverse radial

R3 (space) c br
r2

inverse square radial

Rn c br
rn−1

In the case where curl F = 0 one can replace an integral
∫ B
A

F · dr by an
integral over another curve joining A and B. This is most beneficial when the
new line integral is easier to evaluate than the original one. Similarly, in a
region where ∇ · F = 0 we can replace an integral

∫
S F · n dSover the surface

S with a more convenient integral over a different surface.
In applications in space the most important field is the inverse square

central field, F = br
r2

. The flux of this field over a closed surface that does not
enclose the origin is 0, but its flux over a surface that encloses the origin is
4π. If one thinks in terms of steradians, it is clear why the second integral
is 4π: the flux of r̂/r2 also measures the solid angle subtended by a surface.
Also, the first case becomes clear when one distinguishes the two parts of the
surface where n · r is positive and where it is negative.

EXERCISES for 18.S Key: R–routine, M–moderate, C–challenging

1.[R] Match the vector fields given in mathematical symbols (a.-e.) with the written
description (1.-5.)

a. F(r) 1. an inverse cube central field
b. f(r)r̂ 2. a central field (center at origin)
c. f(r)r̂ 3. an arbitrary vector field
d. r̂/r2 4. a symmetric central field (center at origin)
e. r/r3 5. an inverse square central field

Note: There is not a one-to-one relation between the two columns.

2.[R] Use Green’s theorem to evaluate
∮
C(xy dx + ex dy), where C is the curve

that goes from (0, 0) to (2, 0) on the x-axis and returns from (2, 0) to (0, 0) on the
parabola y = 2x− x2.

3.[R] A curve C bounds a region R of area A.

(a) If
∮
C F · dr = −2, estimate ∇× F at points in R.

(b) Would you use � or ⊕ to indicate the curl?
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4.[R] A curve C bounds a region R of area A.

(a) If
∮
C F · n ds = −2, estimate ∇ · F at points in R.

(b) How did you decide whether ∇ · F is positive or negative?

5.[R] A field F is called uniform if all its vectors are the same. Let F(x, y, z) = 3i.

(a) Find the flux of F across each of the six faces of the cube in Figure 18.S.1 of
side 3.

(b) Find the total flux of F across the surface of the box.

(c) Verify the divergence theorem for this F.

Figure 18.S.1:
6.[R] Let F be the uniform field F(x, y, z) = 2i + 3j + 0k. Repeat Exercise 5 Carry
out the preceding exercise for this field.

7.[R] See Exercise 8. Suppose you placed the point at which E is evaluated at
(a, 0, 0) instead of at (0, 0, a).

(a) What integral in spherical coordinates arises?

(b) Would you like to evaluate it?
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In Exercises 8 to 11, F is defined on the whole plane but indicated only at points on
a curve C bounding a region R. What can be said about

∫
R∇ ·F dA in each case?

(a) (b) (c) (d)

Figure 18.S.2:

8.[R] See Figure 18.S.2(a).
9.[R] See Figure 18.S.2(b).
10.[R] See Figure 18.S.2(c).
11.[R] See Figure 18.S.2(d).

Exercises 12 to 15, F concern the same F as in Exercises 8 to 11. What can be said
about

∫
S ∇× F dA in each case?

12.[R] See Figure 18.S.2(a).
13.[R] See Figure 18.S.2(b).
14.[R] See Figure 18.S.2(c).
15.[R] See Figure 18.S.2(d).

16.[R] Let C be the circle of radius 1 with center (0, 0).

(a) What does Green’s theorem say about the line integral∮
C

(
(x2 − y3) dx+ (y2 + x3) dy

)
?

(b) Use Green’s theorem to evaluate the integral in (a).

(c) Evaluate the integral in (a) directly.

17.[M] Let F(x, y) = (x+ y)i +x2j and let C be the counterclockwise path around
the triangle whose vertices are (0, 0), (1, 1), and (−1, 1).

(a) Use the planar divergence theorem to evaluate
∫
C F · nds, where n is the

outward unit normal.

(b) Evaluate the line integral in (a) directly.
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18.[M] Let b and c be positive numbers and S the “infinite rectangle” parallel to
the xy-plane, consisting of the points (x, y, c) such that 0 ≤ x ≤ b and b ≥ 0.

(a) If b were replaced by ∞, what is the solid angle S subtends at the origin?
Hint: No integration is needed.

(b) Find the solid angle subtended by S when b is finite. Hint: See Exercise 93.

(c) Is the limit of your answer in (b) as b → ∞ the same as your answer in (a)?
Hint: It should be!

19.[M] Look back at the Fundamental Theorem of Calculus (Section 6.4), Green’s
Theorem (Section 18.2), the Divergence Theorem (Section 18.6), and Stokes’ Theo-
rem (Section 18.4). What single theme runs through all of them?
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Calculus is Everywhere # 23

How Maxwell Did It

In a letter to his cousin, Charles Cay, dated January 5, 1965, Maxwell wrote:

I have also a paper afloat containing an electromagnetic the-
ory of light, which, till I am convinced to the contrary, I hold to
be great guns. [Everitt, F., James Clerk Maxwell: a force for
physics, Physics World, Dec 2006, http://physicsworld.com/

cws/article/print/26527]

It indeed was “great guns,” for out of his theory has come countless in-
ventions, such as television, cell phones, and remote garage door openers. In
a dazzling feat of imagination, Maxwell predicted that electrical phenomena
create waves, that light is one such phenomenon, and that the waves travel at
the speed of light, in a vacuum.

In this section we will see how those predictions came out of the four
equations (I’), (II’), (III’), and (IV’) in Section 18.9.

First, we take a closer look at the dimensions of the constants ε0 and µ0

that appear in (IV’),
1

µ0ε0

∇×B =
J
ε0

.

The constant ε0 makes its appearance in the equation

Force = F =
1

4πε0

qq0

r2
. (C.23.1)

Since the force F is “mass times acceleration” its dimensions are

mass · length

time2 ,

or, in symbols

m
L

T 2
.

The number 4π is a pure number, without any physical dimension.
The quantity qq0 has the dimensions of “charge squared,” q2, and R2 has

dimensions L2, where L denotes length.
Solving (C.23.1) for ε0, we find the dimensions of ε0. Since

ε0 =
q2

4πFr2
,
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C.23– How Maxwell Did It 1637

its dimensions are (
T 2

mL

)(
q2

L2

)
=
T 2q2

mL3
.

To figure out the dimensions of µ0, we will use its appearance in calculating
the force between two wires of length L each carrying a current I in the same
direction and separated by a distance R. (Each generates a magnetic field that
draws the other towards it.) The equation that describes that force is

µ0 =
2πRF

I2L
.

Since R has the dimensions of length L and F has dimensions mL/T 2, the
numerator has dimensions mL2/T 2. The current I is “charge q per second,”
so I2 has dimensions q2/T 2. The dimension of the denominator is, therefore,

q2L

T 2
.

Hence µ0 has the dimension

mL2

T 2
· T

2

q2L
=
mL

q2
.

The dimension of the product µ0ε0 is therefore

mL

q2
· T

2q2

mL3
=
T 2

L2
.

The dimension of 1/µ0ε0, the same as the square of speed. In short,
1/
√
µ0ε0 has the dimension of speed, “length divided by time.”

Now we are ready to do the calculations leading to the prediction of waves
traveling at the speed of light. We will use the equations (I’), (II’), (III’),
and (IV’), as stated on page 1626, where the fields B and E vary with time.
However, we assume there is no current, so J = ′. We also assume that there
is no charge q.

Recall the equation (IV’)

∇×B = µ0ε0
∂E

∂t
.

Differentiating this equation with respect to time t we obtain

∂

∂t
(∇×B) = µ0ε0

∂2E

∂t2
. (C.23.2)

As is easy to check, the operator ∂
∂t

can be moved past the ∇× to operate
directly on B. Thus (C.23.2) becomes

∇× ∂B

∂t
= µ0ε0

∂2E

∂t2
. (C.23.3)
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Recall the equation (II’)

∇× E = −∂B

∂t
.

Taking the curl of both sides of this equation leads to

∇ (−∇× E) = ∇× ∂B

∂t
. (C.23.4)

Combining (C.23.3) and (C.23.4) gives us an equation that involves E alone:

∇× (−∇× E) = µ0ε0
∂2E

∂t2
. (C.23.5)

An identity concerning “the curl of the curl,” which tells us that

∇× (∇× E) = ∇ (∇ · E)− (∇ · ∇) E. (C.23.6)

But∇·E = 0 is one of the four assumptions, namely (I), on the electromagnetic
fields. By (C.23.5) and (C.23.6), we arrive at

(∇ · ∇) E = µ0ε0
∂2E

∂t2

or
∂2E

∂t2
− 1

µ0ε0

∇2E = 0. (C.23.7)

The expression ∇2 in (C.23.7) is short for

∇ · ∇ =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
·
(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(C.23.8)

In (∇ · ∇)E we apply (C.23.8) to each of the three components of E. Thus
∇2E is a vector. So is ∂2E/∂t2 and (C.23.8) makes sense.

For the sake of simplicity, consider the case in which E has only an x-
component, which depends only on x and t, E(x, y, z, t) = E(x, t)i, where E
is a scalar function. Then (C.23.8) becomes

∂2

∂t2
E(x, t)i− 1

µ0ε0

(
∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2

)
i = 0,

from which it follows

∂2

∂t2
E(x, t)− 1

µ0ε0

∂2E

∂x2
= 0. (C.23.9)
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Multiply (C.23.9) by −µ0ε0 to obtain

∂2E

∂x2
− µ0ε0

∂2E

∂t2
= 0.

This looks like the wave equation (see (16.3.11) on page 1296). The solutions
are waves traveling with speed 1/

√
µ0ε0.

Maxwell then compares
√
µ0ε0 with the velocity of light:

In the following table, the principal results of direct observation
of the velocity of light, are compared with the principal results of
the comparison of electrical units (1/

√
µ0v0).

Velocity of light (meters per second) Ratio of electrical units

Fizeau 314,000,000 Weber 310,740,000
Sun’s Parallax 308,000,000 Maxwell 288,000,000
Foucault 298,360,000 Thomson 282,000,000

Table C.23.1:

It is magnificent that the velocity of light and the ratio of the
units are quantities of the same order of magnitude. Neither of
them can be said to be determined as yet with such a degree of
accuracy as to enable us to assert that the one is greater or less
than the other. It is to be hoped that, by further experiment, the
relation between the magnitude of the two quantities may be more
accurately determined.

In the meantime our theory, which asserts that these two quan-
tities are equal, and assigns a physical reason for this equality, is
certainly not contradicted by the comparison of these results such
as they are. [reference?]

On this basis Maxwell concluded that light is an “electromagnetic dis-
turbance” and predicted the existence of other electromagnetic waves. In
1887, eight years after Maxwell’s death, Heinrich Hertz produced the predicted
waves, whose frequency placed them outside what the eye can see.

By 1890 experiments had confirmed Maxwell’s conjecture. First of all,
experiments gave the velocity of light as 299,766,000 meters per second and√

1/µ0ε0 as 299,550,000 meters per second.
Newton, in his Principia of 1687 related gravity on earth with gravity in the

heavens. Benjamin Franklin, with his kite experiments showed that lightning
was simply an electric phenomenon. From then through the early nineteenth
century, Faraday, ???, . . . showed that electricity and magnetism were insepa-
rable. Then Maxwell joined them both to light. Einstein, in 1905(?), also by a
mathematical argument, hypothesized that mass and energy were related, by
his equation E = mc2.
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Calculus is Everywhere # 24

Heating and Cooling

Engineers who design a car radiator or a home air conditioner are interested in
the distribution of temperature of a fin attached to a tube. We present one of
the mathematical tools they use. Incidentally, the example shows how Green’s
Theorem is applied in practice.

A plane regionA with boundary curve C is occupied by a sheet of metal. By
various heating and cooling devices, the temperature along the border is held
constant, independent of time. Assume that the temperature in A eventually
stabilizes. This steady-state temperature at point P in A is denoted T (P ).
What does that imply about the function T (x, y)?

First of all, heat tends to flow “from high to low temperatures,” that is, in
the direction of −∇T . According to Fourier’s law, flow is proportional to the
conductivity of the material k (a positive constant) and the magnitude of the
gradient ‖∇T‖. Thus ∮

C

(−k∇T ) · nds

measures the rate of heat loss across C.
Since the temperature in the metal is at a steady state, the heat in the

region bounded by C remains constant. Thus∮
C

(−k∇T ) · nds = 0.

Now, Green’s theorem then tells us that∫
A

∇ · (−k∇T )dA = 0

for any region A in the metal plate. Since ∇ ·∇T is the Laplacian of T and k
is not 0, we conclude that∫

A

(
∂2T

∂x2
+
∂2T

∂y2

)
dA = 0. (C.24.1)

By the “zero integrals” theorem, the integrand must be 0 throughout A,

∂2T

∂x2
+
∂2T

∂y2
= 0.
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This is an important step, since it reduces the study of the temperature dis-
tribution to solving a partial differential equation.

The expression
∂2T

∂x2
+
∂2T

∂y2
,

which is ∇·∇T , the divergence of the gradient of T , is called the Laplacian of
T . If T is a function of x, y, and z, then its Laplacian has one more summand,
∂2T/∂z2. However, the vector notation remains the same, ∇ · ∇T . Even
more compactly, it is often reduced to ∇2T . Note that in spite of the vector
notation, the Laplacian of a scalar field is again a scalar field. A function
whose Laplacian is 0 is called “harmonic.”

EXERCISES
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Summary of Calculus III
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Real Numbers

Summary
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1644 CHAPTER A REAL NUMBERS

EXERCISES for Section A.0 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]
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Graphs and Lines

Exercises 3 to 9 concern solving simultaneous equations. By way of illustration
we solve the equations

2c1 − 3c2 = 5

3c1 + 4c2 = 6

in two different ways. In one approach we solve for one of the unknowns in
terms of the other unknown (using one equation). Then we substitute the
results in the other equation. Thus c1 = (5 + 3c2)/s, using the first equation.
Substitution in the second equation gives 3(5 + 3c2)/2 + 4c2 = 6, an equation
in only one unknown. Solve it for c− 2, then get c1.

In another approach we multiply each equation by a constant so that the
coefficients of, say, c1 become equal. Then subtract one equation from another.
Thus

3(2c1 − 3c2) = 3 · 5
2(3c1 + 4c2) = 2 · 6

or 6c1 − 9c2 = 15

6c1 + 8c2 = 12.

Subtracting gives −17c2 = 3, hence c2 = 3
17

. Then obtain c1 using any of the
equations. Both approaches apply to three equations in three unknowns.

Summary
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EXERCISES for Section B.0 Key: R–routine, M–moderate, C–challenging

In Exercises 3 to 9 solve the simultaneous equations and check that your answers
satisfy the equations.
3.[R]

3c1 −2c2 = 3
c1 +c2 = 4

4.[R]
2c1 +5c2 = −3
3c1 −4c2 = 2

5.[R]
c1 +5c2 = 6

2c1 −3c2 = −2

6.[R]
5c1 +2c2 = 2
−3c1 +4c2 = 1

7.[R]
c1 +2c2 +c3 = 9
c1 −c2 = −1
c1 +c3 = 3

8.[R]
2c1 −c2 +c3 = −7
3c1 −c2 −2c3 = 5
c1 +c2 +c3 = −2

9.[R]
c1 +c3 = 4

c2 −c3 = −6
c1 +c2 +c3 = −1

Let P (x) be a polynomial with integer coefficients. If P (r) = 0, then x − r is a
factor of P (x). You may search for a root r by bisection method (Section 10.3) or
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Newton’s method (Section 10.4). There is an algebraic technique for determining
any rational roots of P (x) = 0. Let r = p/q, where p and q are integers with no
common divisor larger than 1. We may assume that q is positive. The rational root
test asserts that if p/q is a root of anxn + an−1x

n−1 + · · ·+ a0, then q must divide
an and p must divide a0.
For instance, consider P (x) = 3x3 + x2 + x − 2. If P (p/q) = 0, then p divides −2
and q divides 3. Then p must be 1, 2, or −2 and q must be 1 or 3. There are 8
combinations of p and q to check. For example, consider p = 1 and q = 1, that is
p/q = 1. Note that P (1) = 3, so 1/1 is not a root. It turns out that the choice
p = 2, q = 3 produces a root 2

3 . (Check that P (2/3) = 0.) Of course, a polynomial
of degree greater than 1 need not have a rational root.
10.[R] Determine all rational roots of the following polynomials:

(a) x2 + x− 12

(b) 2x3 − 11x2 + 17x− 6

(c) x4 + x3 + x2 + x+ 1

(d) 3x3 − 2x2 − 4x− 1

To factor a cubic P (x) = ax3+bx2+cx+d first find or estimate a root r. Then divide
x−r into P (x), obtaining a quotient Q(x), that is, a quadratic polynomial such that
P (x) = Q(x)(x− r). If Q(x) is reducible, factoring it completes the factorization of
P (x). If an integer is a root, it must divide the constant term (Why?). If a fraction
m/n, when m and n are relatively prime integers, is a root, then m divides the
constant term and n divides the coefficient of the highest power. (Why?) 11.[R]
Illustrate this procedure for

(a) 4x3 + 4x2 − 13x− 3

(b) 2x3 − x2 − x− 3

(c) x3 + x+ 1

(d) x3 − 8

12.[R] Factor each of the following expressions:

(a) x3 − 2x2 + x

(b) x4 − 2x2 + 1
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13.[M] This exercise outlines several ways to solve a system of simultaneous equa-
tions in several unknowns. You may recall learning a way to solve such systems
using a determinant. This exercise presents an alternative.
Solve for A, B, and C. 

2A +B +3C = 13
3A +B +2C = 11
A −B +4C = 11

(a) Subtract 2 times the second equation from 3 times the first equation. This
gives an equation in just B and C. Solve for B in terms of C. Substitute this
result into the second and third equations, which now involve only A and C.
Now, solve these equations for A and C, then find B.

(b) As in (a), except solve the equation involving B and C for C in terms of B.
Substitute this result into the second and third equations and proceed as in
(a).

(c) First, subtract the second equation from the first, obtaining an equation in A
and C. Then proceed as in (a).

(d) First, add the third equation to the second equation. Proceed as in (a).

In short, keep your eyes open for simplifications!

14.[C]

(a) In artithmetic, what is the analog of an irreducible polynomial?

(b) What is the analog of proper fractions of the partial fraction representation
of proper rational rational functions? Note: By the way, mathematicians
prove a single general theorem, which includes rational functions and rational
numbers as special cases.

15.[C]

(a) In artithmetic, what is the analog of the partial fraction representation?

(b) What would it be for 34
45?

SHERMAN: Insert Factor
Theorem here. See also,

Exercise 47.
16.[C] Prove that if a is a factor of the polynomial P (x), then P (a) = 0.
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Topics in Algebra

Summary
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1650 CHAPTER C TOPICS IN ALGEBRA

EXERCISES for Section C.0 Key: R–routine, M–moderate, C–challenging

17.[C]

18.[C]
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Appendix D

Exponentials (and Logarithms)

This section focuses on exponentials; a general review of logarithms is pre-
sented in Section 1.5.

Summary
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1652 CHAPTER D EXPONENTIALS (AND LOGARITHMS)

EXERCISES for Section D.0 Key: R–routine, M–moderate, C–challenging

19.[C]

20.[C]

December 4, 2010 Calculus



Appendix E

Trigonometry

• discuss radian measure (§1.2)

Summary
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1654 CHAPTER E TRIGONOMETRY

EXERCISES for Section E.0 Key: R–routine, M–moderate, C–challenging

21.[C]

22.[C]

December 4, 2010 Calculus



Appendix F

Logarithms and Exponentials
Defined Through Calculus

Summary
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1656 CHAPTER F LOGARITHMS AND EXPONENTIALS DEFINED THROUGH CALCULUS

EXERCISES for Section F.0 Key: R–routine, M–moderate, C–challenging

23.[C]

24.[C]
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Appendix G

Determinants

Summary
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1658 CHAPTER G DETERMINANTS

EXERCISES for Section G.0 Key: R–routine, M–moderate, C–challenging

25.[C]

26.[C]
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Appendix H

Jacobian and Change of
Coordinates for Multiple
Integrals

Summary
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EXERCISES for Section H.0 Key: R–routine, M–moderate, C–challenging

27.[C]

28.[C]
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Appendix I

Taylor Series for f (x, y)

Summary
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1662 CHAPTER I TAYLOR SERIES FOR F (X,Y )

EXERCISES for Section I.0 Key: R–routine, M–moderate, C–challenging

29.[C]

30.[C]
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Appendix J

Parameterized Surfaces

Summary
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EXERCISES for Section J.0 Key: R–routine, M–moderate, C–challenging

31.[C]

32.[C]
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Appendix K

The Interchange of Limits

Summary
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1666 CHAPTER K THE INTERCHANGE OF LIMITS

EXERCISES for Section K.0 Key: R–routine, M–moderate, C–challenging

33.[C]

34.[C]
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