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1098 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.1 Modeling and Differential Equations

We are now familiar with computing and interpreting derivatives of functions.
The derivative of a function at a point gives the slope of the graph of the func-
tion at that point (assuming the derivative exists). Points where the derivative
is zero (or does not exist) are the only possible locations for local extrema of
a function.

In this section we will see another use of derivatives: differential equations.
A differential equation is an equation that provides a relationship between
the derivatives of a function, the function, and the independent variables (input
to the function). Differential equations describe many physical situations, in
fact, differential equations are often referred to as the “language of science and
engineering”.

Get some specific  EXAMPLE 1  The radioactive substance Uranium-238 decays into Thorium-
substances and decay rates. 234 with a half-life of 4.5 x 10° years. The rate of change of the concentration
of Uranium-238 is always proportional to the current concentration. Let U(t)
Note that £ > 0 and U > 0, denote the concentration of U-239 at time ¢. Then
so that %&J < 0.

du
— = —kU 13.1.1

. _ In(2)
with k’ = I5x109" <o
Get specifics from Ledder. EXAMPLE 2  One model for a population subject that grows proportional

to its size but is also subject to a constant rate of reductions due to harvesting
is given by

— =kP—h 13.1.2
o (13.1.2)

where P = P(t) is the size of the unknown population at time ¢, k is a positive
growth rate, and h is a positive constant reflecting the harvesting rate. o

EXAMPLE 3 A model for the temperature of an object is

dT’
- = —k(T - 9) (13.1.3)

where T' = T'(t) is the temperature of the object at time ¢, k > 0 is a constant
reflecting the rate at which heat leaves the object and S is the temperature of
the surrounding air. o

Falling Obyed (y/<o) EXAMPLE 4 Newton’s Second Law of Motion states that the total force
J on a moving object is equal to the product of the object’s maas and accelera-

Fair=-le ; . . . . . .
, i . tion: F' = ma. For an object with height y = y(¢), the accelaration is a = y".
\;7&‘ J} rémv =hm3
— December 4, 2010 Calculus

Figure 13.1.1:



§ 13.1 MODELING AND DIFFERENTIAL EQUATIONS

1099

If this object has mass m and is under the influence of both gravity and the
resistance of the air F' = Fj,q, + Fy;. Let the object’s height be measured
from the ground. The force of gravity is constant and works to pull the object
back to the ground, so Fy,., = —mg. The force of air resistance is proportional
to velocity and works to retard the current motion, thus F,;, = —ky’. The
differential equation that expresses Newton’s Second Law of Motion is

my" = —mg — ky'. (13.1.4)

<

The first three examples, (13.1.1]), (13.1.2), and , are all first-order
differential equations. The fourth example ([13.1.4)) is a second-order differen-
tial equation. In general, the order of a differential equation is the order of
the highest derivative in the differential equation.

Differential equation is a nonlinear differential equation because it
involves N?2; the other three examples are all linear differential equations. More
generally, a linear differential equation is a differential equation that is
linear in the unknown function and its derivatives. A nonlinear differential
equation involves nonlinear terms such as y?, e, or cos(y).

Our current interest in differential equations is to recognize a differential
equation and to be able to make some basic classifications of the equation
(order, linear / nonlinear). We also want to begin to develop the ability to
write differential equations as a model of a real-world situation.

Absolute and Relative Rates of Change
When y(t) is the size of an object at time ¢, the absolute rate of change of

y is 9. The relateive rate of change of y, 2% reflects the overall size of
dt y dt
the object.

EXAMPLE 5 Find the differential equation for the size of a population
that is growing at a constant absolute rate of change. Classify the differential
equation. Find all solutions that satisfy this equation.

SOLUTION Let the size of the population at time ¢t be denoted by N =
N(t). The assumption that the population grows at a constant absolute rate

of change is expressed by
dN
— =k 13.1.5
where k is a positive constant.
The differential equation ((13.1.5)) is both first-order and linear.
Any function whose first derivative is the constant & is a solution to (13.1.5|).

In other words, any antiderivative of k is a solution to this differential equation.
Thus, N(t) = kt + C for any choice of the constant C. o

Calculus December 4, 2010
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Notice that the absolute
rate of change is not
constant — the larger N is,
the faster IV changes.

EXERCISE: Half-life,
doubling time

The size of any population with constant absolute rate of change is a linear
function. The slope of the solution is the constant k. The value of C' is the
size of the population at time ¢t = 0.

EXAMPLE 6 Find the differential equation for the size of a population
that is growing at a constant relative rate of change. Classify the differential
equation. Find all solutions that satisfy this equation.
SOLUTION When a population grows with a constant relative rate of change
k, ]lv% = k so that
dN
dt
The differential equation in (13.1.6)) is also linear and first-order.
An explicit formula for the solutions to ((13.1.6) can be found by noticing
that

= kN. (13.1.6)

1dN d

8 S |N@)).

AL NI
Thus, % (In|N(t)|) = k so that In | N(¢)| must be an antiderivative of k. This
means In |N(¢)| = kt+C'. Taking the exponential of both sides of this equation

yields

NGB kO
IN@)| = e
N(t) = e
N(t) = Aet
where A = +¢© can be any real number. o

Any function whose relative rate of change is constant is an exponential
function. When the relative rate of change, k, is positive the population grows
exponentially; when k is negative the population decays exponentially.

Summary

December 4, 2010 Calculus
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EXERCISES for Section 13.1 Key: R-routine, M-moderate, C—challenging

Calculus December 4, 2010
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13.2 Using Slope Fields to Analyze Differen-
tial Equations

e Use presentation and examples from ODE PowerTool

Summary

December 4, 2010 Calculus
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EXERCISES for Section 13.2 Key: R-routine, M-moderate, C—challenging
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13.3 Separable Differential Equations

Summary

December 4, 2010 Calculus
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EXERCISES for Section 13.3 Key: R-routine, M—moderate, C—challenging
Exercises in other sections

1.[C] that involve separable ODEs
include: Exercise [22] in
2.[C] Section [.6]

Calculus December 4, 2010
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13.4 FEuler’s Method

Summary

December 4, 2010 Calculus
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EXERCISES for Section 13.4 Key: R-routine, M-moderate, C—challenging
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13.5 Numerical Solutions to Differential Equa-
tions

This section will be written later.

Summary

December 4, 2010 Calculus



§ 13.5 NUMERICAL SOLUTIONS TO DIFFERENTIAL EQUATIONS 1109

EXERCISES for Section 13.5 Key: R-routine, M—moderate, C—challenging

Calculus December 4, 2010
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13.6 Picard’s Method

Summary

December 4, 2010 Calculus
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EXERCISES for Section 13.6 Key: R-routine, M—moderate, C—challenging

Calculus December 4, 2010
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13.S Chapter Summary

The text and exercises for the summary will be written after the organization
of the chapters is firmly settled.
EXERCISES for 13.S Key: R-routine, M-moderate, C—challenging

1.[M] Assume that the outdoors temperature increases linearly, h(t) =t + 1, for
simplicity. The temperature of the house starts at time ¢ = 0 to be ¢ < 0. Then it
warms up by Newton’s law. If that temperature is T'(¢), then T"(t) = k(t — T(t)).

(a) Find T'(t).

(b) Is the graph of T'(t) asymptotic to the graph of the outdoor temperature?

Explain why y is never decreasing.
Explain why y is bounded.
What is the largest value y can be? (Call this value L.)

Is it possible that limy_ y(t) < L?

)
)
)
)
e) Explain why y must cross the t-axis.
) What can be said about the angle where y crosses the t-axis?
) When is the curve concave up? concave down? HINT: Differentiate the ode.
) What might the graph of the solution look like?
)

Give an example of a specific function that satisfies the equation. HINT: Think
trigonometry.

3.[C] In CIE]20|(Chapter|15]) we found that the equation of a tractrix, which is the
path of the rear wheel in the preceding exercise. That analysis depends on showing

that ) )
dy y
) = ) 13.S.1
(M) a? — y? ( )
Obtain the equation by differentiating both sides of the equation
y(s) = ke

with respect to x.

December 4, 2010 Calculus
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Summary of Calculus II

Calculus December 4, 2010
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OVERVIEW OF CALCULUS III

Overview of Calculus II1

The first two parts of this book have focused on calculus of a single variable.
The final third of this book extends the basic calculus ideas — limit, derivative,
and integral — to two- and three-dimensions.

December 4, 2010 Calculus



Chapter 14

Vectors

Section [14.1lintroduces vectors and their arithmetic. Section[14.2] examines
the dot product, which is a number. This includes the geometry of the dot
product and its role in projections. (A projection is related to the shadow cast
by parallel rays of light.)

Section examines the cross product, which is a vector. Determinants
are reviewed, and the scalar triple product (a number) is introduced and used
to find the volume of a parallelepiped.

Section develops a number of fundamental properties of lines and
planes, in terms of vectors. The distance from a point to a line or plane is
developed, a parametric description of a line is given, using the dot and cross
product. These ideas are used to talk about flows.

This algebra was developed primarily in response to James Clerk Maxwell’s
Treatise on Electricity and Magnetism, published in 1873. Josiah Gibbs, who
in 1863 earned the first doctorate in engineering awarded in the United States
and became a mathematical physicist, put vector analysis in its present form.
His Elements of Vector Analysis, published in 1881, introduced the notation
used in this chapter. Maxwell’s contributions will be studied in greater detail

in Chapter

1115

Vectors are sometimes
represented as arrows.
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CHAPTER 14 VECTORS

14.1 The Algebra of Vectors

You have lived with vectors all your life. When you hanged a picture on wire
you dealt with three vectors: one describes the downward force of gravity
and two describe the force of the wires pulling up to oppose gravity, as in

Figure [14.1.1f(a)
W il W
T
¥ 5o

() (b)

Figure 14.1.1:

When you pull a wagon the force you use is represented by a vector, as in
Figure [14.1.1{(b). The harder you pull, the larger the vector.

Thie arrows jire shormer
where the siream is
- ide. simce e water
= — e H
= — moves more slowly there
— _,_,—'—'_,.'__';—

I'he arrivex are lnager where ""-\-\_\_\_\_H_ e

thes SCrEAM |5 NATTMW, SLNCE --\.\_\_\_q‘

the waber moves Faster e
1 P ey
here .

Figure 14.1.2:

A vector has a direction and a magnitude. You may think of it as an
arrow, whose length and direction carry information. Vectors are of use in
describing the flow of a fluid, as in Figure[14.1.2] or the wind, or the strength
and direction of a magnetic field.

Vectors in the Plane

A vector in the zy plane is an ordered pair of numbers x and y, denoted (z, y).
Its magnitude, or length, is /22 + y?. Though the notation resembles that for

December 4, 2010 Calculus
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a point, (z,y), we treat vectors quite differently. We can add them, subtract

them and multiply them by a number. Two additional products of vectors are
introduced in Sections [14.2] and [14.3|

We represent a vector by an arrow whose tail is at (0,0) and whose head
(or “tip”) is at (z,y), as in Figure [14.1.3]

More generally, we represent (x,y) by any pair of points P = (ay, az) and
Q = (b1, by) if by —a; = x and by — as =y, as in Figure [14.1.4]

We speak then of “the vector from P to Q7 and denote it P—Q> A vector

(x,y) will be denoted by bold face letters, such as A, B, r, v, and a. In
handwriting or on_ghe blackboard they are decorated with a bar or arrow on
top, for instance A or A. A vector of length 1 is called a unit vector and is
topped with a little hat, as in 7, which is read aloud as “r hat”.

Here is how we operate on vectors. Let A = (aj,as) and B = (by,by) be
vectors and let ¢ be a number.

Figure 14.1.6:

Calculus December 4, 2010
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Operation Definition Geometry
A+B (a3 + by,a2 +bg)  Figure|14.1.5

—A (—ay, —as) Figure (14.1.6(a)
A—-B (a3 —by,ay —by) Figure|14.1.6(b)
cA (cay, cas) Figure |14.1.6(c)
4 (@, ) Figure [14.1.6(d)
A AR
! ' <4
A A f‘f*i.*)

Figure 14.1.7:

Comment

The tail of B is placed at the
head of A

— A points in opposite direc-
tion of A

What you add to B to get A
Parallel to A and |c| times
as long as A

Parallel to A and % times as

long as A (¢ #0)

The operation of addition obeys the usual rules of addition of numbers.
For instance, A+ B = B+ A and A+ (B+C) = (A+B)+ C. Also
A — B = A + —B. This is easy to establish using the definitions. In terms of

arrows it makes sense; see Figure [14.1.7|(a).

A — B and A + (—B) appears as opposite sides of a parallelogram. Fig-
ure [14.1.7(a) shows both A + B and B + A; they are equal.

The magnitude of (z,y) is \/(cz)? + (cy)? = V2 /22 +y2, that is, |c|
times the magnitude of (x,y). If ¢ is positive (cx, cy) and (z,y) point in the
same direction. If ¢ is negative they point in opposite direction, as the arrows

in Figure [14.1.7(c) illustrate for ¢ = 2 or —2.

When talking about numbers, such as ¢, x, and y, in the context of vectors,

we call them scalars. Thus in ¢ A the scalar ¢ is multiplying the vector A.
The vector (0,0) is denoted 0 and is called the zero vector.

EXAMPLE 1 Let A =(1,2), B=(3,—1) and ¢ = —2. Complete A + B,

A — B and cA. Then draw the corresponding arrows.

SOLUTION
A+B = (1,2)+(3,-1) = (143,24 (1)) = (4,1)
A—B = (1,2) = (3,-1) = (1—3,2— (=1)) = (-2,3)
cA = =2(1,2) =(-2,(1),—2(2)) = (-2,—4)

December 4, 2010 Calculus
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Figure 14.1.8:

Note that A — B and A + B lie on the two diagonals of a parallelogram. (See

Figure [14.1.8]) o

Before we can make the similar definition for vectors in space, we must
introduce an appropriate coordinate system.

Coordinates in Space

First, pick a pair of perpendicular intersecting lines to serve as the x and y
axes. The positive parts of these axes are indicated by arrows. These two lines
determine the zy plane. The line perpendicular to the xy plane and meeting
the x and y axes will be called the z-axis. The point where the three axes
meet is called the orgin. The 0 of the z-axis will be put at the origin. But
which half of the z-axis will have positive numbers and which half will have
the negative numbers? It is customary to determine this by the right-hand
rule. Moving in the xy plane through a right angle from the positive x-axis
to the positive y-axis determines a sense of rotation around the z-axis. If the
fingers of the right hand curl in that sense, the thumb points in the direction
of the positive z-axis, as shown in Figure [14.1.9]

Any point @) in space is now described by three numbers: First, two num-
bers specify the z and y coordinates of the point P in the xy plane directly
below (or above) @Q; then the height of @ above (or below) the zy plane is
recorded by the z coordinate of the point R where the plane through ¢) and
parallel to the zy plane meets the z-axis. The point () is then denoted (z, vy, 2).
See Figure [14.1.10

The points (z,y, z) for which z = 0 lie in the xy plane. There are an infinite
number of these points. The points (z,y, z) for which z = 0 lie entirely in the

Calculus December 4, 2010
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plane determined by the y and x axes, which is called the yz plane. Similarly,
the equation y — 0 describe the xz plane. The xy, zz and yz planes are called
the coordinate planes.

EXAMPLE 2 Plot the point (1,2, 3).

A0
WL 2 3

Figure 14.1.11:

SOLUTION One way is to first plot the point (1,2) in the xy plane. Then,
on a line perpendicular to the xy plane at that point, show the point (1,2, 3)

as done in Figure [14.1.11|(a).

Another way is to draw a box whose edges are parallel to the axes and
which has the origin (0,0,0) and (1,2, 3) as done in Figure |14.1.11|(b). (This

time, the y and z axes make a right angle.) o

Just as the axes in the zy plane divide the plane with four quadrants, the
three coordinate planes divide space with eight octants.

Vectors in Space

The only difference between a vector in space and a vector in the zy plane is
that it has three components, z, y, and z, and is written (z,y, z). Its length or
magnitude is defined as /22 + y? + z2. The definition of the sum and differ-
ence of such vectors is so similar to the definition for planar vectors that we will
not list them. For instance, (ay, as, az)+ (b1, by, b3) is (a1 + by, as + by, az + bs).
The biggest difference is that they are harder to draw, even though each can
be suggested by our arrow. It may help visualize such a vector by drawing a
box in which it is a main diagonal. For instance, to draw the vector (2,3, —1)
you may draw the box shown in Figure

December 4, 2010 Calculus
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This representation of A has its tail at the arrow. Of course the arrow and
box could be drawn with the tail of the arrow anywhere else.

The Standard Unit Vectors

The three most important unit vectors indicate the positive directions of the
positive z, y, and z axes. They will be denoted i, j and k, respectively. For
instance, i = (1,0,0). The vectors (z,y, z) can also be written zi + yj + zk.

EXAMPLE 3 Draw i, j, k and i+ 2j + 3k.
SOLUTION Figure [14.1.13(a) shows i, j, k and Figure |{14.1.13(b) shows

J
Figure 14.1.13:

i+ 2j+ 3k o

The magnitude of A is indicated by ||A]|. ||A]|| is a scalar and A/||A|| is a
vector.

The vector ﬁ is a unit vector for any non-zero vector A. To see this, we
let A = (z,y,2) and compute A/||Al:

A (r.y,2)  _ z y 2

Al /22 4 o2 + 22 _<\/x2+y2+22’\/m2+y2+227\/x2+y2+22>.

The square of the length of A/[|A]| is

2 2 2
T N Y N > _$2+y2+22_1
/$2+y2_|_22 /$2+y2+22 /x2+y2+22 x2+y2_|_22

Thus A/||A|| is a unit vector.

Calculus December 4, 2010
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Figure 14.1.15:
Figure 14.1.14:

Example[d shows how vectors can be used to establish geometric properties.

EXAMPLE 4 Prove that the line which joins the midpoints of two sides

of a triangle is parallel to the third side and half as long.

SOLUTION Let the triangle have vertices P, ), and R. Let the midpoint

of side PQ be M and the midpoint of side PR be N as in Figure [14.1.14]
Introduce an zy coordinate system in the plane of the triangle. Through

its origin could be anywhere in the plane, we should put it at P in order to

simplify the calculations. (See Figure [14.1.15])
— —
We wish to show that the vector M N is %QR. To do so, we compute M N

and Cﬁ% in terms of vectors involving P, @), and R.
— — — —-—
First of all, PM = %PQ and PN = %PR. Thus

PG = (PR~ PG) = (QF).

— 1= 1

MN =—-PR — —

2 2

o

The next example shows the importance of thinking vectorally. Not think-
ing that way, one of the other had a picture fall and break a vase.

EXAMPLE 5 A picture weighing 10 pounds has a wire on the back, which
rests on a picture hook, as shown in Figure[14.1.16{(a). Find the force (tension)
on the wire.

SOLUTION There are three vectors involved. One is straight down, with
magnitude 10 Ibs. and two are along the wire, with unknown magnitude F"
Vil = F = [lval|.

j —
//ﬂ - y
LA e VA

L e
|
‘LJ_; l ™y

(a)

Figure 14.1.16:

To balance the downward force of gravity, each end of the wire must have a
vertical component of 5 Ibs. Since the angle with the horizontal is 10° we must
have F'sin(10°) = 5 or F' = 5/sin(10°) ~ 29 pounds. That is much greater

December 4, 2010 Calculus
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than the weight of the painting and creates quite a pull on the screws at the
bases of the wire. This force can (sadly, we learned) eventually pull a screw
out of the wall. o

Summary

We introduced the notion of a vector (x,y) in the zy plane or (z,y,z2) in
space and defined their addition and subtraction. Furthermore we defined the
operation of a scalar ¢ as a vector (z,v, z), as (cz, cy, cz).

We visualized vectors with the aid of arrows, which could be drawn any-
where in the zy plane or in space.

Each vector in the xy-plane can be written as xi+ yj. Vector in space can
be written as zi + yj + zk.

Calculus December 4, 2010
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EXERCISES for Section 14.1

Key: R-routine, M—moderate, C—challenging

In Exercises [I] and [2| use the plane of your paper as the zy plane.
1.[R] Draw the vector 2i+ 3j, placing its tail at (a) (0,0), (b) (—=1,2), (c) (1,1).

2.[R] Draw the vector —i+ 2j, placing its tail at (a) (0,0), (b) (3,0), (c) (—2,2).

In Exercises [3] to [6] draw the vector A and enough extra lines to show how it is

situated in space.
3.[R] A =2i+j+ 3k,

(a) tail at (0,0,0),

(b) tail at (1,1,1).

4.R] A=i+j+k,
(a) tail at (0,0,0),
(b) tail at (2,3,4).

5.R] A =-i-2j+ 2k,
(a) tail at (0,0,0),
(b) tail at (1,1,—1).

6.[R] A=j+k,
(a) tail at (0,0,0),

(b) tail at (—1,—1,—1).

. . —) . .
In Exercises 7| to [10| plot the points P and (), draw the vector P(Q), express it in the

form zi+ yj + zk, and find its length.
7.[R] P=(0,0,0),Q = (1,3,4)

8.[R] P=(1,2,3),Q=(2,5,4)

9.[R] P=(254),Q=(1,22)

December 4, 2010
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10.[R] P=(1,1,1),Q = (-1,3,-2)

In Exercises [11] and [12] express the vector A in the form xi+ yj. North is along the
positive y-axis and east is along the positive z-axis.

11.[R]

a) ||A|l =10 and A points northwest;

(a)

(b) ||A]| =6 and A points south;

(¢) ||A|| =9 and A points southeast;
)

(d) ||A|l =5 and A points east.

12.[R]
(a) |JA| =1 and A points southwest;
(b) ||A|l =2 and A points west;

(¢) ||A|| = v/8 and A points northeast;
)

(d) ||A]| =1/2 and A points south.

13.[M] The wind is 30 miles per hour to the northeast. An airplane is traveling
100 miles per hour relative to the air, and the vector from the tail of the plane to
its front tip points to the southeast. (See Figure [14.1.17])

(a) What is the speed of the plane relative to the ground?

(b) What is the direction of the flight relative to the ground?

Figure 37

Calculus December 4, 2010
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Figure 14.1.17:
14.]M] (See Exercise [L3]) The jet stream is moving 200 miles per hour to the

southeast. A plane with a speed of 550 miles per hour relative to the air is aimed
to the northwest.

(a) Draw the vectors representing the wind and the plane relative to the air.
(Choose a scale and make an accurate drawing.)

(b) Using your drawing, estimate the speed of the plane relative to the ground.

(¢) Compute the speed in (b) exactly.

15.[R] Compute A +B and A — B if
(a) A=(-1,2,3) and B = (7,0,2).

(b) A =3j+4k and B = 6i + 7j.

16.[R] Compute A+ B and A — B if
(a) A=(1/2,1/3,1/6) and B = (2,3,—-1/3).

(b) A =2i+3j+ 4k and B = —i + 5j + 6k.

17.[R] Compute and sketch cA if A —2i+3j+k and cis

18.[R] Express each of the following vectors in the form ¢(2i+ 3j+ 4k) for suitable
c:

(a) (4,6,8)
(b) —2i—3j— 4k

(c) O

December 4, 2010 Calculus
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(d) Fi+ i+ ik

=

19.[R] If ||A| = 6, find the length of the following vectors
—2A
A/3

)
)

(c) A/[IA]l
) —A
)

A +2A.

20.[R] If ||A] = 3, find the length of the following vecrps
(a) —4A
(b) 13A

)

)

(c) A/llA]

(d) A/0.05
) A

(e

21.[R]
(a) Find a unit vector u that has the same direction as A =i+ 2j + 3k.

(b) Draw A and u, with their tails at the origin.

22.[R]
(a) Find a unit vector u that has the same direction as A = 2i — 2j + 3k.

(b) Draw A and u, with their tails at the origin.

23.[R] Using the definition of addition of vectors A = (aj,a2,a3) and B =
(b1,b2,b3), show the A+ B=B+ A and A—-B=A + (—-B).
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24.[R] Using the definition of addition of vectors show that A + (B + C) =
(A+B)+C.

25.[R] Which unit vector points in the same direction as 2i + 3j + 4k?
26.[R| Sketch a unit vector pointing in the same direction as 3i + 4j.
27.]M]  (Midpoint formula) Let A and B be two points in space. Let M be their
— — —
midpoint. Let A = OA, B=0B, and M = OM.
(a) Show that M= A + (B — A).
(b) Deduce that M = (A 4+ B)/2. Hint: Draw a picture.

28.[M] Let A and B be two distinct points in space. Let C be the point on the
— —
line segment AB that is twice as far from A as it is from B. Let A = OA, B = OB,
—
and C = OC'. Show that C = %A + %B. Hint: Draw a picture.

29.]M] Show that 2i + 3j + 4k and 6i + 9j + 12k are parallel.
30.[M] Show that i — 3j 4+ 6k and —2i + 6j — 12k are parallel.

31.[M] This exercise outlines a proof of the distributive rule: ¢(A +B) = cA 4 ¢B.
Write A and B in components, and obtain the rule by expressing both ¢(A + B)
and cA + ¢B in components.

32.[M]

(a) Show that the vectors u; = 3i+ (v/3/2j and us = (v/3/2i — 3j are perpendic-
ular unit vectors. Hint: What angles do they make with the z-axis?

(b) Find scalars z and y such that i = zu; + yus.

33.[M]

(a) Show that the vectors u; = (v/2/2i) + (v/2/2j) and uz = (—v/2/2i) + (v/2/2j)
are perpendicular unit vectors. Hint: Draw them.

(b) Express i in the form of zu; + yus. Hint: Draw i,u;, and us.
(c) Express j in the form zu; + yus.

(d) Express —2i + 3j in the form zu; + yus.
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34.[M]
(a) Draw a unit vector u tangent to the curve y = sinz at (0,0).

(b) Express u in the form zi + yj.

35.]M]
(a) Draw a unit vector u tangent to the curve y = 22 at (1,1).

(b) Express u in the form zi + yj.

36.[M]
(a) What is the sum of the five vectors shown in Figure [14.1.18]:

(b) Sketch the figure corresponding to the sum A + C + D + E + B.

Figure 14.1.18:
37.[M] A rectangular box has sides of length z, y, and z. Show that the length
of a longest diagonal (arc joining opposite corner) is \/x? + y2 + 22. HINT: Use the
Pythogorean Theorem, twice.

38.[M] See Example |5 concerning hanging a picture. What would be the tension
in the wire if it were at an angle of
(a) 60° instead of 10° to the horizontal,

(b) 5° instead of 10° to the horizontal?
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39.[C]
(a) Draw the vectors A = 2i+j, B=4i—j, and C = 5i + 2j.

(b) With the aid of the drawing show that there are scalars x and y such that
C=zA+yB.

(¢) Using the drawing in (a), estimate x and y.

(d) Find x and y exactly.

40.[C] (See Exercise[13]) Let A and B be two nonzero and nonparallel vectors in
the xy plane. Let C be any vector in the zy plane. Show with the aid of a sketch
that there are scalars  and y such that C = zA + yB.

41.[C] Let A, B and C be three vectors that do not all lie in one plane. Let D be
any vector in space. Show with the aid of a sketch that there are scalars z, y, and
z such that D = zA + yB + 2C.

— —

42.[C] Let A, B and C be the vertices of a triangle. Let A = OA, B = OB, and
—

C=0cC.

(a) Let P be the point that is on the line segment joining A to the midpoint
of the edge BC' and twice as far from A as from the midpoint. Show that
—

OP=(A+B+C)/3.

(b) Use (a) to show that the three medians of a triangle are concurrent.

43.[C] The midpoints of a quadrilateral in space are joined to form another quadri-
lateral. Prove that this second quadrilateral is a parallelogram.

44.[C]

(a) Using an appropriate diagram, explain why |[|A + BJ| < ||A|| + ||BJ|. (This is
called the triangle inequality.

(b) For which pairs of vectors A and B is |A + B|| = ||A|| + | B]|?

45.[C] From Exercise 44| deduce that for any four real numbers z1, y1, x2, and yo,
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r1T2 + Y1y2 < \/x% +yf\/x§ + y3.

When does equality hold?
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The dot product is a
number, or scalar.

Figure 14.2.2:

14.2 The Dot Product of Two Vectors

The “dot product” or “scalar product” is a number that is defined for
every pair of vectors. Consider a rock being pulled along level ground by a

Figure 14.2.1:

rope inclined at at fixed angle to the ground. Let the force applied to the rock
be represented by the vector F. The force F can be expressed as the sum of a
vertical force Fy and a horizontal force Fy, as shown in Figure [14.2.1|(b).

How much work is done by the force F in moving the rock along the ground?
The physicist defines the work accomplished by a constant force F (whatever
direction it may have) as the product of the component of F in the direction
of motion and the distance traveled. Say that the force F, as shown in Fig-
ure [14.2.2] moves an object along a straight line from the tail to the head of
R.

By definition

Work = [[Fllcos(d) - |R]
S——— ~~~

Force in Direction of R Distance traveled

where 6 is the angle between R and F.
The force Fy in Figure [14.2.1] accomplishes no work. The work accom-
plished by F in pulling the rock is the same as that accomplished by F}.
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The Dot Product

This important physical concept illustrates the dot product of two vectors,

whic

The angle between i and j is 7/2. The angle between A = —i — j and
B = 3iis 37/4, as Figure|14.2.4| shows. The angle between k and —k is 7; the

h will be introduced after the following definition.

DEFINITION (Angle between two nonzero vectors.) Let A and
B be two nonparallel and nonzero vectors. They determine a tri-
angle and an angle 6, shown in Figure The angle between
A and B is 6. Note that

O<bl<m

If A and B are parallel, the angle between them is 0 (if they have
the same direction) or m (if they have opposite directions). The
angle between 0 and any other vector is not defined.

angle between 2i and 5i is 0.

The dot product satisfies several useful identities, which follow from the defi-

DEFINITION (Dot product) Let A and B be two nonzero vec-
tors. Their dot product is the number

I A[IBI| cos(8),

where 6 is the angle between A and B. If A or B is 0, their dot
product is 0. The dot product is denoted A - B. It is a scalar and
is also called the scalar product of A and B.

nition:
A-B = B-A (the dot product is commutative)
A-A = |Al
(cA)-B = ¢(A-B)=A-(cB) (cis ascalar)
0-A = 0.

For instance, to establish that A - A = ||A||?, we calculate A - A:

A-A=A][A]cos(®) = |A]*,

since the angle 6 between A and A is 0, and cos(0) = 1.

EXAMPLE 1 Find the dot product A - B if A = 3i+ 3j and B = —5i.
SOLUTION Inspection of Figure [14.2.5/ shows that 6, the angle between A

and

B, is 37/4. Also,
HAH =V 32432 = \/E and ||BH =524+ (02 =5.

Figure 14.2.3:

In the nextl :c,ection we
Gefimetianes ves prathuct of A
aos Bt e @ dfects(0).
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Recall that i and j are
perpendicular, be definition.

This is a special case of the
fact that A- A = ||A|%

Observe that, by definition,
the zero vector, 0, is
perpendicular to every
vector in the zy plane.

A test for perpendicularity

Thus

-2
A-B=|A||B]| cost = 18- (Tf> = —15.

EXAMPLE 2 Find

3. 2k - (—3K).
SOLUTION

1. The angle between i and j is 7/2. Thus

o e . . m
i§ = [llljfleos (5) =1-1-0=0.

2. The angle between i and i is 0. Thus

i-i = |i|||]i]jcos(0)=1-1-1=1.

3. The angle between 2k and —3k is w. Thus
2k - (=3k) = |[|2k]|||| — 3k]|/cos(m) =2-3-(—1) = —6.

o Computations like those in Example [2| show that ai - bi = ab, aj - bj = ab,

and ak - bk = ab, while ai-bj =0, ai- bk =0, and aj - bk = 0.
In particular,i-i=j-j=k-k=1, whilei-j=i-k=j-k=0.

The Geometry of the Dot Product

Let A and B be nonzero vectors and # the angle between them. Their dot

product is
A - B = [|A[[[[B]| cos(0).

The quantities ||A|| and ||B||, being the lengths of vectors, are positive.
However, cos(f) can be positive, zero, or negative. Note that cos(f) = 0 only
when 6 = 7/2, that is when A and B are perpendicular. So the dot product
provides a way of telling whether A and B are perpendicular:

December 4, 2010 Calculus



§ 14.2 THE DOT PRODUCT OF TWO VECTORS 1135

Let A and B be nonzero vectors. If A-B = 0, then A and B are perpendicular.
Conversely, if A and B are perpendicular, then A - B = 0.

As Figure [14.2.6|shows, A can be expressed as the sum of a vector parallel 'I:

to B and a vector perpendicular to B. / A—prejr’
The vector parallel to B we call the projection of A on B, denoted o1 -

projg A. The vector perpendicular to B is then A — projg A. P Jﬂj‘ B
The length of projg A is ||A]|| cos 6|, which equals %. If 0 is less than

7/2, projg A points in the same direction as B. Figure 14.2.6:

If 7/2 < 6 <, then projg A points in the direction opposite to that of B.
In either case, since B/||BJ|| is the unit vector in the direction of B, we have

Let A and B be vectors. projg A = ﬁ”:%”

e If A - B is positive, then the angle between the vectors is less than 7/2.
In this case projg A points in the same direction as B.

e If A - B is negative, then the angle between the vectors is greater than
7/2. In this case projg A points in the opposite direction as B.

If A - B is negative, then the angle between A and B is obtuse (greater

than 7/2). Figure [14.2.7| shows this situation. As Figure [14.2.7] illustrates, e W
projg A points in the direction opposite that of B. 0N

prafg A I

Computing A - B in Terms of Their Components

We defined A - B, using the geometric interpretation of A and B. But what Figure 14.2.7:
if A and B are given in terms of their components, A = (a;,as,a3) and
B = (b1, b, b3)? How would we find A - B in that case?

The answer turns out to be quite simple:

If A= <CL17 as, a3) and B = <b1, bQ, b3>7 then A -B = a1b1 + a/2b2 + agbg.

The dot product is the sum of three numbers. Each number is a product of
corresponding components.
For vectors in the xy-plane, the result is a bit shorter:
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A proof of the Law of
Cosines is defined in

Exercise [45]

If A= <CL1,CL2> and B = <bl7b2>, then A -B = albl + a2b2.

Figure 14.2.8:

For convenience we establish the second result. Our reasoning rests on
the Law of Cosines. It says that in a triangle where sides have lengths a, b,
and ¢, and angle 6 opposite the side with length ¢, as in Figure (b),
= a®+b? — 2abcos(0).

Then

IA =B = [[A]* + [B]]* — 2[|A[[[IB] cos(6),

which tells us that
|A—BJ? = Al + [BJ? - 2A - B, (14.2.1)

All that’s left is to complete the three squares and solve for A - B.
Translating (14.2.1)) into components, we have

(ay — b))+ (ag — by)* = ai +a; +b] + b5 —2A - B

or

a? —2a1by + b2 + a3 — 2asby + by = a] + a3 + b3 + b3 — 2A - B.

Thus
—2(0,11)1 + CLQbQ) = —2A . B,

from which it follows, as the night follows the day, that

A-B= albl + (Igbz.
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The argument in the case of space vectors is practically the same, as doing
Exercise B8 will show.

EXAMPLE 3 Find cos(A,B) when A = (6,3) and B = (—1,1).
SOLUTION We know that A - B = ||A]|||B|| cos(A, B). Thus

6-(—1)+3-(1) = V22+32y/(—1) + 12cos(A, B)

or —3 = V26cos(A,B),
e conclude that cos(A,B) = —3/V26.

o

Clearly 6 is an obtuse angle. A calculator would estimate 6, if we were
curious. Figure [14.2.9]shows that the answer is reasonable.
As Example [3] illustrates

Figure 14.2.9:

EXAMPLE 4
1. Find the projection of A =2i+j on B = —3i 4 2j.

2. Express A as the sum of a vector parallel to B and a vector perpendicular
to B.

SOLUTION

1. In this case
A-B B
IBI[ IB]
(2i4j) - (—3i+2j) —3i+2j
| —3i+2j] [ —2i42j|
(=6 + 2) (—3i+ 2j)
V13 V13
. 8

4 12
oA 1208
13 (73 20) = i 5

Figure [14.2.10, shows the vector A, B, and projg A. B
-,

In this case A - B is negative, the angle between A and B is obtuse, and e J:
projg A points in the direction opposite to the direction of B. —

projg A =

b
e N ;P"U:lgrﬂ\
Calculus December 4, 2010 ~
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2. The vector A — projg A is perpendicular to B and we have

A = (projg A)+ (A — projp A)
(12 8N (s (128
-\ RIT A T 1Y

— gl_é + El—f—g
- \13' 13! 13130

J/

vV vV
parallel to B perpendicular to B

o

The scalar A - (B/||BJ|) is the component of A in the direction of B,
denoted compg(A). It can be positive, negative, or zero. Its absolute value is
the length of projg(A).

EXAMPLE 5 Find projg(A) and compg(A) when A = i+3jand B = i—j.

1 SOLUTION Since |B||=vV12+12=v2and A-B=1-3= -2,

f
1
| , A-BB —2i-j . .
projg(A) = =——=—7=— = —= =—1+]
N =) =B B[ = 2 2
“u
II A and compg(A) = (A - B)/||B| = —2/\/§ = —+/2. This agrees with Fig-
| ure [4.2.111 o

Figure 14.2.11:
Properties of the Dot Product

With the aid of the formula for the dot product in terms of components, it is
easy to establish the following properties:

A-B = B-A commutative
A-B+C) = A-B+A-C  distributive
cA-B = ¢(A-B) ¢ a scalar.

A-B
cos(f) = cos(A,B) = TATIBI (14.2.2)
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Equation ([14.2.2) tells us how to find the cosine of the angle between two
vectors. With the aid of a calculator, we then can find the angle itself. Note
that if cos(f) > 0, then 0 < # < 7/2, and when cos(6) < 0, then 7/2 < § < 7.

EXAMPLE 6 Show that the vectors (2, —3,4) and (1,2, 1) are perpendic-

ular.

SOLUTION We want to show that the angle 6 between the vector in /2.
To do this we show cos(d) = 0. Now,

A'B  (1-2)+2(-3)+1-4 2-6+4

cos(f) = = = = 0.
|A[|B |A[|B |A[|B

Therefore the vectors are perpendicular. o

Example [0 illustrates this test for two vectors being perpendicular to each
other.

Two nonzero vectors are perpendicular if their dot product is 0.

Calculus December 4, 2010
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The Dot Product in Business and Statistics

Imagine that a fast food restaurant sells 30 hamburgers, 20 salads, 15 soft
drinks, and 13 orders of french fries. This is recorded by the four-dimensional
“vector” (30,20,15,13). A hamburger sells for $1.99, a salad for $1.50, a soft
drink for $1.00, and an order of french fries for $1.10. The “price vector”
is (1.99,1.50,1.00,1.10). The dot product of these two vectors, 30(1.99) +
20(1.50) 4+ 15(1.00) 4 13(1.10), would be the total amount paid for all items.
Descriptions of the economy use “production vectors,” “cost vectors,” “price
vectors,” and “profit vectors” with many more than the four componenets of
our restaurant example.

In statistics the coefficient of correlation is defined in terms of a dot prod-
uct. For instance, you may determine the height and weight of n persons.
Let the height of the ith person be h; and the weight be w;. Let h be
the average of the n heights and w be the average of the n weights. Let
H = (hy—hho—h,--- Jhy —h) and W = (w; —w,ws —w, -+ ,w, — w).
Then coefficient of correlation between the heights and weights is defined to
be

G

H W
E[HWI

In analogy with vectors in the plane or space,

n n

D (i = hRAW = | > (w; —w)2.

=1 =1

HW = 3 (b — 1)y — w), [H]| =

=1

It turns out that the coefficient of correlation is simply the cosine
of the angle between the points H = (hy —h,hy —h,---  h, —h) and
W(w, —w,wy —w, -+ ,w, —w) in n-dimensional space.

Summary

We defined the dot (scalar) product of two vectors A and B geometrically
as ||A|||B]| cos(#), where 6 is the angle between them. We then obtained a
formula for A -B in terms of their components, as (a1, as) - (b1, bs) = a1by +asby
and a similar formula for the dot product of two space vectors.

The dot product enabled us to express a vector A as the sum of a vector
parallel to B (projg A) and a vector perpendicular to B (A — projg A).

When their dot product is 0, two non-zero vectors are perpendicular.

The zero-vector, 0, is considered to be perpendicular to every vector.

More generally, we can use the dot product to find the angle 6 between two
vectors:
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A-B

cos(f) = cos(A,B) = TAIB|’
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EXERCISES for Section 14.2 Key: R-routine, M—moderate, C—challenging

In Exercises [I] to [4 compute A - B.
1.[R] A has length 3, B has length 4, and the angle between A and B is 7/4.

2.[R] A has length 2, B has length 3, and the angle between A and B is 37 /4.
3.[R] A has length 5, B has length %, and the angle between A and B is 7/2.
4.[R] A is the zero vector 0, and B has length 5.

In Exercises [f] to [§] compute A - B using the formula in terms of components.
5.R] A= -2i+3j, B=di+4j

6.[R] A =0.3i+0.5j, B = 2i— 1.5
7R] A=2i-3j—k B=3i+4j—k

8.R] A=i+j+kB=2i++3j—5k

(a) Draw the vectors 7i 4+ 12j and 9i — 5j.
(b) Do they seem to be perpendicular?
)

(c) Determine whether they are perpendicular by examining their dot product.

10.[R]
(a) Draw the vectors i+ 2j 4+ 3k and i+ j — k.
(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by examining their dot product.

11.[R]
(a) Estimate the angle between A = 3i+ 4j and B = 5i + 12j by drawing them.

(b) Find the angle between A and B.
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12.[R] Let P=(6,1), Q@ =(3,2), R=(1,3), and S = (4,5).
(a) Draw the vectors P—Q> and RS.
— —
(b) Using the diagram in (a) estimate the angle between P() and RS.

(c) Using the dot product, find the cos(P@, ]?9), that is, the cosine of the angle
— —
between PQ and RS.

(d) Using (c) and a calculator, find the angle in (b).

13.[R] Find the angle between 2i — 4j + 6k and i+ 2j + 3k.
14.[R] Find the angle betwen i+ j + 3k and 3i + 6j — 3k.

15.[R] Find the angle between AB and CD if A = (1,3), B = (7,4), C = (2,8),
and D = (1,-5).

16.[R] Find the angle between AB and CD it A = (1,2,-5), B = (1,0,1),
C =(0,—1,3), and D = (2,1,4).

17.[R] Find the length of the projection of —4i 4+ 5j on the line through (2,—1)
and (6,1).
(a) By making a drawing and estimating the length by eye.

(b) By using the dot product.

18.[R]

(a) Find a vector C parallel to i+ 2j and a vector D perpendicular to i+ 2j such
that —3i+4j = C + D.

(b) Draw the vectors in (a) to check that your answer is reasonable.

19.[R]

(a) Find a vector C parallel to 2i — j and a vector D perpendicular to 2i — j such
that 3i+ 4j = C + D.
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(b) Draw the vectors in (a) to check that your answer is reasonable.

20.]M] Give an example of a vector in the xy plane that is perpendicular to 3i—2j.

21.[M] Give an example of a vector that is perpendicular to 5i — 3j + 4k.

Exercises[22]to[26|refer to the cube in Figure|14.2.12

Figure 14.2.12:

— — — —
22.]M] Find cos(AC, BD), the cosine of the angle between AC' and BD.

—_— — —_— —
23.]M] Find cos(AF, BD), the cosine of the angle between AF and BD.

—_— —— — —_—
24.[M] Find cos(AC JAM ) the cosine of the angle between AC and AM.
25.]M] Find cos(MD7 MF ), the cosine of the angle between M D and MF'.
26.[M] Find cos(EF, BD) the cosine of the angle between EF and BD.

27.[R] How far is the point (1,2,3) from the line through the points (1,4,2) and
(2,1,—-4)7

28.[M] If A-B=A-C and A is not 0, must B=C?

29.[C] If |A]| =3 and ||B|| =5,
(a) how large can |A + B|| be?
(b) how small?

30.[C] By considering the dot product of the two unit vectors u; = cos1i+sin 61j
and ug = cos 21 + sin 05j, prove that

cos(f1 — 62) = cos 0 cos by + sin 0 sin 0.
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31.[C] Consider a tetrahedron (not necessarily regular). It has six edges. Show
that the line segment joining the midpoints of two opposite edges is perpendicular to
the line segment joining another pair of opposite edges if anly only if the remaining
two edges are of the same length.

32.[C] The output of a firm that manufactures x; washing machines, xo refrig-
erators, x3 dishwashers, x4 stoves, and x5 clothes dryers is recorded by the five-
dimensional production vector P = (x1,x9,x3, x4, x5). Similarly, the cost vector
C = (y1,Y2,Y3, Y4, Yys5) records the cost of producing each item; for instance, each
refrigerator costs the firm yo dollars.

(a) What is the economic significance of P-C = (20,0, 7,9, 15)-(50, 70, 30, 20, 10)?

(b) If the firm doubles the production of all items in (a), what is its new production
vector?

33.[C] Let P; be the profit from selling a washing machine and P», P3, Py, and P;
be defined analogously for the firm of Exercise (Some of the P’s may be nega-
tive.) What does it mean to the firm to have (P;, P», P3, Py, P5) “perpendicular” to
(21,9, T3, T4, T5)7

34.[C] 1If a1, a9, by, by are four numbers, explain why

|a1b1 + agbg‘ < \/a% + a%\/b% + b%

35.[R] Prove that A-B=B-A
(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms of components.

36.[R] Provethat A-(B+C)=A-B+A.-C
(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms of components.
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37.]C] Don’t try to obtain the equation A - (B+ C) = A-B+ A - C geometrically.
If you use the geometric definition of the dot product, what does that distributive
law say? Picture B and C in a horizontal plane and A not in that plane, as in Fig-

J"_\\

A

/8
&)

I

urell4.2.13

Figure 14.2.13:
It’s not so obvious is it?

38.[R] Prove that (a1, as,as)- (b1, b2, bs) = aiby + asbs + agbs HINT: Read the proof
in the case of planar vectors on page [1136

39.[C] Let uy, uz, and uz be unit vectors such that each two are perpendicular.
Let A be a vector.

(a) Draw a picture that shows that there are scalars x, y, and z such that A =
ru] + yuz + zus.

(b) Express x as a dot product.

(c) Express z — z as a dot product.

40.[M]
(a) Let A be a vector in the zy plane and u; and ug perpendicular unit vectors

in that plane. If A-u; =0 and A - us = 0, must A = 07

(b) Let vi and vy be nonparallel unit vectors in the zy plane. If A -v; and
A vy =0, must A =07

41.[C] A firm sells = chairs at C' dollars per chair and y desks at D dollars per
week. It costs the firm ¢ dollars to make a chair and d dollars to make a desk. What
is the economic interpretation of
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(a) Cz?
(b) (zi+yj)- (Ci+ Dj)?
(c) (zi+yj)- (ci+dj)?

(d) (zi+yj) - (Ci+ Dj) > (xi+yj) - (ci+dj)?

42.[C] A force F of 10 newtons has the direction of the vector 2i + 3j + k. This
force pushes an object on a ramp in a straight line from the point (3,1,5) to the
point (4, 3,7), where coordinates are measured in meters. How much work does the
force accomplish?

43.[C] Show that if the two diagonals of the parallelogram are perpendicular, then
the four sides have the same length (forming a rhombus). HINT: Use the dot prod-
uct.

44.]C] Some molecules consist of 4 atoms arranged as the vertices of a regular
tetrahedron, for instance at the points labeled A, B, C, and D in Figure

-
A
\
-' B=022)
(212!2‘\-‘ ’A ,_ ‘ = |
| o' L p- __;'}
i - 1Y) .
| !‘f/
P el i X
e ST

Figure 14.2.14:

(a) Show that A, B, C, and D are vertices of a regular tetrahedron. HINT: Show
that the four faces are equilateral triangles.

(b) Chemists are interested in the angle § = AEB. Show that cos(f) = —1/3.

(c) Find 6 (approximately).

45.[M] The key to obtaining the expression for the dot product in terms of compo-
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nents is from trigonometry: the Law of Cosines. In view of this, it makes sense to see
why the Law of Cosines is true. The proof is quite easy, since it consists just of two
applications of the Pythagorean Theorem. Figure shows a triangle with sides
a, b, ¢, with angle 6 opposite side c¢. (We are concerned, for the moment, in the case

when 6 is less than g

Figure 14.2.15:
(a) Show that h% = a® — a? cos?(6).
(b) Show that h? = c? — (b — acos(theta))?.

(c) By equating the two expressions for h? found in (a) and (b), obtain the Law
of Cosines.

46.[C] In the Exercise [45| the altitude of length h meets the side of length b. If
6 > m/2, that altitude has its base outside of side b. Prove the Law of Cosines in
this case.

47.[R] What is projg A if A =2i+j—3k and B=i+j+k?
48.[C] How far is the point (2,3,5) from the line through the origin and (1, —1,2)?

49.[R] Express the vector i+ j+ k as the sum of a vector parallel to i — j+ 2k and
a vector perpendicular to i — j + 2k.

50.[M]

Jane: I don’t like the way the author found how to express A as the sum of a vector
parallel to B and a vector perpendicular to B.

Sam: It was O.K. for me. But I had to memorize a formula.
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Jane: My goal is to memorize nothing. I simply write A = zB + C, when C is
perpendicular to A. Then I dot with B, getting

A-B=zB-B+C:B.
Since C is perpendicular to B, C - B = 0, and lo and behold, I have
_A'B

€Tr =

B-B’
. AB
So the vector parallel to B is 5.5 B.

Sam: Cool. So why did the author go through all that stuff?

Jane: Maybe they wanted to reinforce the definition of the dot product and the
rule of the angle.

Sam: O.K. But how do I get the vector C perpendicular to B?
Jane: Simple...

Complete Jane’s reply.
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This is like solving
2y 4+ 3z = 0 by letting
y=—3and z = 2.

14.3 The Cross Product of Two Vectors

The dot product of two vectors is a scalar. The product of two vectors we define
in this section is a vector. This vector has the property that it is perpendicular
to each of the given vector.

Definition of the Cross Product

Let A = aji+ asj + ask and B = byi + byj + bsk be two non-zero vectors that
are not parallel. We will construct a vector C that is perpendicular to both
A and B. Of course C is not unique since any vector parallel to C is also
perpendicular to A and B.

Let C =zi+yj+ zk. We want C- A and C - B to be 0. This gives us the
equations

ax +ay+azz = 0 (14.3.1)

We eliminate x by subtracting b; times (14.3.1)) from a; times (14.3.2), as
follows.

ay times ((14.3.2)) arbix + a1boy + arbsz = 0 (14.3.3)

by times ([14.3.1)) biarx + bragy + biazz = 0 (14.3.4)

Subtracting the bottom equation ((14.3.4]) from the top equation (|14.3.3)) gives

us
(albg — agbl)y + (albg - agbl)Z =0 (1435)

A simple non-zero solution of (|14.3.5)) is
Yy = —(61153 - a351)7 z = a1by — asb;

To find the corresponding x, substitute the value found for y and z into
(14.3.1)). As Exercise [39 shows, the straightforward algebra yields

xr = a2b3 — agbg.
So the vector
((lgbg — agbg)i — (a1b3 - agbl)j + (ale - agbl)k (1436)

is perpendicular to A and B. It is denoted A x B and is called the vector
product of A and B or the cross product of A and B. This vector is defined
even if A and B are parallel or if one of them is 0.
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Determinants and the Cross Product

The expression ([14.3.6|) for the cross product is not easy to memorize. Fortu-
nately, determinants provide a convenient memory aid.
Four numbers arranged in a square from a matrix of order 2, for instance

a1 as
b1 by
The determinant of this matrix is the number a,by — asb;, denoted
a; as ccay az
b by or det ( b, b2) .

Each term in the cross product, (14.3.6)), is itself the determinant of a matrix
of order 2, namely

Gz as

by b3

a1 as

by b3

ap as
and b by

Y Y

Nine numbers arranged in a square for a matrix of order 3, for instance

1 C2 C3
a; ag das
by by bs
Its determinant is defined with the aid of determinants of order 2:
as as ay as ap Qs
Upy by |72 by bs | T4 by by

The coefficient of each ¢; is plus or minus the determinant of the matrix of
order 2 that remains when the row and column in which ¢; appears are deleted,
as shown in Figure for the coefficient of ¢;.

Therefore we can write as a determinant of a matrix, and we have

i Kk
A xB= a; Gao as (1437)
by by b3

DEFINITION (Cross product (vector product).) Let
A = a1i + ask + azk and B = bi + byj + bsk.

The vector
Lok
;;a—ia2a3—a1a3+ka1a2
T T by by by by bi by
by by b3

= (CLng — a3bg>i — (albg — agbl)j + (CleQ — a2b1>k.

Calculus December 4, 2010
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is called the cross product (or vector product) of A and B. It
is denoted A x B.

The determinant for A x B is expanded along its first row:

I I

G e ks

Delete the two lines  Delete the two lines  Delete the two lines
through i. The through j. The through k. The
determinant of the determinant of the determinant of the
remaining square is ~ remaining square is ~ remaining square is
the coefficient of i in  the coefficient of j in the coefficient of k in
A x B. A x B. A x B.

EXAMPLE 1 Compute A x Bif A=2i—j+3k and B=3i+4j+k.
SOLUTION By definition,

i j k
-1 3 2 3 —1
AxB = |2 -1 3 |=i ‘—J’ ’—l—k' ‘
2 4 1 4 1 31 3 4
= —13i+T7j+ 11k
o
Recall: The zero vector is, The cross cross product has these properties:

by definition, perpendicular
to every vector.
1. A x B is perpendicular to both A and B.

2. AxB=—-(BxA).
3. Ax B =0if A and B are parallel or at least one of them is 0.

4. AxB+C)=AxB+AxC.

See Exercises and .

The first property holds because that is how we constructed the cross prod-
uct. The second and third are established by straightforward computations,

using (|14.3.7)). Exercises [16| and |17| take care of property 4.
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The Direction of A x B?
We know that A x B is perpendicular to A and B, but there are two possible
directions, as Figure [14.3.2] shows,
To find out, take a specific case and we compute i X j:
i j k
ixj=|10 0]|=0-0+k=k.
010
This suggests the general situation. The direction of A x B is given by the Left-handed people must
right hand rule: use their right hand here.

Curl the fingers of the right hand to go from A and B. The thumb points
in the direction of A x B.

EXAMPLE 2 Check that the right hand rule is correct in the case for j xi.
SOLUTION

In this case, j x i, points downward, the opposite of i X j.
The right hand rule is illustrated in Figure
The thumb indeed points downward. o

How Long is A x B

To find a geometric meaning for |A x B|| we will find |A x BJ|? with the aid
of (). That is, we will compute (A x B) x (A x B) and interpret the results.

ik )33 ~
jxi=|0 1 0[=0i-0j—k=—k -
100 A

By Check these ste£ 4\1
g out.

multip ﬂﬁgrgvle
|A x B||> = (axbz — azby)® + (azby — a1b3)? + (a1by — ashy)?
azb? + a%b2 + a2b? + a?bi + a2b3 + a3b? — 2(azazbebs + ayaszbibs + ajasbiby)
(a3 + a3 + a3) (b3 + b3 + b3) — (arby + azbs + azbs)?
IA7B]* - (A - B)2
[A[*IB]* — ([|A[[|B]| cos(8))?
= [JA[PIBIP(1 — cos?(9))
= [|A[PB]* sin*(6).

Then

|A xB| = [A]|||Bsin(d) sin(f) is not negative since 0 < § <
.
(14.3.8)
We then have

Calculus December 4, 2010
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L] I
. g
; : o

Figure 14.3.5: This figure

T e (©®)
& = i

@

In some texts the cross
F'guﬁﬁo&ﬂc‘%'@ defined
geometrically: It is the
vector where length is the
area of the parallelogram
mentioned above and where
direction is given by the
right and rule. Then the
author must obtain its
formula in terms of
components.

Figure 14.3.7:

Let A and B be nonzero vectors and # the angle between them. Then [|A X
B| = [[A[[[[B] sin(6).

With the aid of this fact we now give a simple geometric meaning for the length
of A x B. A glance at the parallelogram spanned by A and B shows that it
area is

||A|l ||B| sin(f) = area of parallelogram
~N N—

base height

So now we have a simple geometric description of the length of A x B.

The length of A x B is the area of the parallelogram spanned by A and B.

EXAMPLE 3 Find the area of the parallelogram spanned by A = a;i+ asj
and B = b11 + bg_]

SOLUTION First write A as a1i+ asj+ Ok and b; + byj + Ok. Then the area
of this parallelogram is the length of A x B. So we compute A x B.

i j k
AxB= a; Qo 0|= (ale — agbl)k.
by by O

The area is therefore |a;by — agby|. In other words, it is the absolute value of
the determinant

a; as
by by

¢ The next example is typical of the geometric applications of the cross

product.

EXAMPLE 4 Find a vector perpendicular to the plane determined by the
three points P = (1,3,2), @ = (4,—1,1), and R = (3,0,2).
— —
SOLUTION The vectors PQ and PR lie in a plane (see Figure (14.3.7)). The
— — — —
vector N = PQ) x PR beiﬁ perpendicular to b(ﬂl> PQ and PR, is perpendic-
ular to the plane. Now, PQ) = 3i —4j — k and PR = 2i — 3j + Ok.
Thus

i j k
N=|3 -4 -1 |=-3i—2j—k
2 -3 0
o
December 4, 2010 Calculus
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The Scalar Triple Product

The scalar A-(Bx C) is called the scalar triple product. It has an important

geometric meaning. (The vector A x (B x C) is also called the vector triple

product.) e -
The vectors A, B, and C span a parallelepiped, as shown in Figure [14.3.8 # —

The angle between B x C and A is 6 (which could be greater than m/2). '

The area of the base of the parallelogram is ||B x CJ|. The height of the 1A

parallelepiped is ||A]| cos(6)|. Thus its volume is the absolute value of <

|A|cosf |B x C| .
—— N——

Figure 14.3.8:
height  area of base
This is the definition of the dot of product of A and (B x C).
A - (B x C) is plus or minus the volume of the parallelepiped spanned by A,
B, and C.
The scalar triple product can also be expressed as a determinant. To see
why, note that the dot product of A and B x C is
_ by b3 bi b3 br by
A-BxC)=aq . as( o e )+ as o e (14.3.9)
Comparison of Dot Product and Vector Product
A-B A x B
B-B=B-A AxB=-BxA
A -B| = |[A]|B] cos(0)| |A x BJ| £ [|A[[[B] sin(9)
A -B =0 is a test for perpendicularity A x B =0 is a test for parallel vectors
formula in components involves a;b; (same indices) formula in components involves a;b; (unequal indices)
What faxn 1 you
Equation ([14.3.9)) can now be recognized the determinant of a matrix of cross : B oA rith a
order 3: mosqu L;r” You
a, Qaz a3 can't¢ 7 with a
A-BxC)=|b by b3 vector. ster
Ci Co C3 Summ e A
: W
So this determinant is plus or minus the volume of the parallelepiped ; 'ﬂ-"-’f_—?——-f
spanned by A, B, and C.
This should not be a surprise. As Example [3] showed, the determinant ]““
a; Qa9 . .
v by is plus or minus the area of the parallelogram spanned by the vectors Figure 14.3.0:

<CL1, a2> and <b1, b2>
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Item 5 appeared in finding
the length of A x B. It will
be used in the next
chapters.

Summary

We constructed a vector C perpendicular to vectors A and B by demanding
that C- A =0 and C:-B = 0. A convenient formula for such a vector

i j k
ay asg as
by by b3

It is denoted A x B and called the vector product or cross product of A
and B. It also may be described as the vector whose length is the area of
the parallelogram spanned by A and B and whose direction is given by the
right-hand rule (the finger curling from A and B). These are some of its
properties:

1. AxB=—(B x A) (anticommunitive)

2. A x (B x C) is not usually equal to (A x B) x C) (not associative)
3. Ax(BxC)=(C-A)B— (B-A)C (See Exercise )

4. (AxB)- (AxB)=(A-A)(B-B)—(A-B)(A:-B)

5. A - (B x C) = £ volume of parallelepiped spanned by A, B, and C.
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EXERCISES for Section 14.3 Key: R-routine, M-moderate, C—challenging

In Exercises [1| to [4| compute and sketch A - B. SHERMAN: Move some
1.R] A=k, B=j exercises about lines,
2.R] A=i+jB=i—j planes, etc. to Section [14.4
. .. or to Chapter Summary for
. A= k, B =
3-[R] it 1+ Chapter [14]
4R] A=k, B=i+]

In Exercises [§] and [f] find A x B and check that it is perpendicular to both A and
B.

5R] A=2—3j+k B=itj+2k

6.R] A=i—j B=j+4k

In Exercises [7] to [10] use the cross product to find the area of each region.
7.[R] The parallelogram three of whose vertices are (0,0,0), (1,5,4), and (2, -1, 3).

8.[R] The parallelogram three of whose vertices are (1,2, —1), (2,1,4), and (3,5, 2).

9.[R] The triangle two of whose sides are i + j and 3i — j.
10.[R] The triangle two of whose sides are i+ 2j + 3k and 2i — j + 2k.

In Exercises [11] to [14] find the volumes of the parallelepipeds spanned by the given
vectors.

11.[R] (2,1,3), (3,-1,2), (4,0, 3)

12.[R] 3i+4j+3k,2i+3j+4k,i—j— k.

_ s
13.[R] PQ, PR, PS, where P = (1,1,1), Q = (2,1,-2), R = (3,5,2), and

S=(1,-1,2)

_ - —
14.[R] PQ, PR, PS, where P = (0,0,0), @ = (3,3,2), R = (1,4,—1), and
S=(1,2,3)

15.[R] Evaluate A - (A x B).

16.[R] Prove that B x A = —(A x B) in two ways:
(a) using the algebraic definition of the cross product;

(b) using the geometric description of the cross product.

17.[R] Show that if B = cA, then A x B = 0:

(a) using the algebraic definition of the cross product;
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(b) using the geometric description of the cross product.

18.[M] Show that the points (0,0,0), (x1,y1,21), (x2,y2, 22) and (z3,ys, 23) lie on
a plane if and only if

1 Y1 21
T2 Y2 22 | =0.
T3 Ys =3

19.]M]
(a) If B is parallel to C, is A x B parallel to A x C?

(b) If B is perpendicular to C, is A x B perpendicular to A x C?

20.]M] Let A be a nonzero vector. If A x B=0 and A -B =0, must B =07
21.[R] Show that A x (A x B) = (A - B)A — (A - A)B.

22.[R] Show that (AxB)x(CxD) = ((AxB)-D)C—((AxB)-C)D. HINT: Think
of A x B as a single vector, E.

23.]M]
(a) Give an example of a vector perpendicular to the vector 3i — j + k.

(b) Give an example of a unit vector perpendicular to the vector 3i — j + k.

24.]M] Let u be a unit vector and B be a vector. What happens as you keep
“crossing by u,” that is, as you form the sequence B, u x B, u x (u x B) and so
on? (See Exercise

25.[C] (Crystallography) A crystal is described by three vectors vi, vo, and vs.
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They span a “fundamental” parallelepiped, whose copies fill out the crystal lattice.
(See Figure[14.3.10]) The atoms are at the corners. In order to study the diffraction
of x-rays and light through a crystal, crystallographers work with the “reciprocal lat-
tice,” as follows. Its fundamental parallelepiped is spanned by three vectors, ki, ks,
and ks. The vector k; is perpendicular to the parallelogram spanned by vy and v3
and has a length equal to the reciprocal of the distance between that parallelogram
and the opposite parallelogram of the fundamental parallelepiped. The vectors ko
and ks are defined similarly in terms of the other four faces of the fundamental paral-

lelepiped.
Figure 14.3.10:

(a) Show that ki, ko, and ks may be chosen to be

Vo X V3 V3 X V1 Vi X Vo
k= ——2" 28 =L g TRV
Vi - <V2 X V3) Vi - (Vg X V3) Vi - (V2 X V3)

(b) Show that the volume of the fundamental parallelopiped determined by kj,
ks, and k3 is the reciprocal of the volume of the one determined by vy, va,
and vs.

(c) Is the reciprocal of the reciprocal lattice the original lattice? For instance, is

ngkg

Vl:kl-(kQng).

26.[M] Let B and C be nonzero, nonparallel vectors and A a vector that is per-
pendicular neither to B nor C.

(a) Why are their scalars z and y such that

A x (BxC)=2B+yC?

(b) Why is 0 = 2(A - B) + y(A - C)?
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(c) Using (b), show that there is a scalar z such that

Ax(BxC)=:z[(A -C)B- (A B)C].

(d) It would be nice if there were a simple geometric way to show that z is a
constant and equals 1. Of course we could show that z = 1 by writing A, B,
and C in components and grinding out a tedious calculation. But that would
hardly be instructive. Can you figure out why z = 1 in a simpler way?

(This identity, known as Jacobi’s Identity, will come in handy in Chapter |18 when
dealing with electric currents and magnetic fields.)

OMIT? In this section A x B was defined in terms of components, and then its
geometric description was obtained. This is the opposite of the way we dealt with
the dot product. Exercises[27]to[29 outline a different approach to the cross product.
We define A x B as follows. If A or B is 0 or if A is parallel to B, we define A x B
to be 0. Otherwise, A x B is the vector whose direction is given by the right-hand
rule.

27.[R] Let A be a nonzero vector and B be a vector. Let B; be the projection
of B on a plane perpendicular to A. Let By be obtained by rotating By 90° in the
direction given by the right-hand rule with thumb pointing in the same direction as
A

(a) Show that A x B = A x B;. (Draw a clear diagram.)
(b) Show that A x B = ||A|Ba.

28.[R] Using Exercise27|(b), show that for A not 0, Ax (B4+C)=AxB+AxC.
HinT: Draw a large, clear picture.

29.[R]

(a) From the distributive law A x (B+ C) = A x B+ A x C, and the fact that
D x E = —E x D, deduce the distributive law (B+C) x A =B x A+ C x A.

(b) From the distributive law A x (B + C) = A x B 4+ A x C, deduce that
Ax(B+C+D)=AxB+AxC+ A xD. HINT: Think of B+ C as a
single vector E.

30.[R] Check that —13i+ 7j + 11k in Example (1| is perpendicular to A and to B.

31.[R] Show, using (14.3.7)), that 0 x B = 0.
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32.[R] Show, using (14.3.7), that B x A = —A x B.

33.[M] Using (14.3.7)), show that if B is parallel to A, then A xB = 0. Suggestion:
If B is parallel to A, there is a scalar ¢ such that B = tA.

34.[M] In finding |A x B|? we stated that
a%b% + a%b% + agb% + a%bg + a%b% + a%b% — 2(a2a3b2b3 + ajasbibs + alagblbg)
equals
a% + CL% + a%b? + b% + b% — (a1b1 + agby + a3b3).
Take nothing as faith. Check that the claim is correct.

35.[C] We showed that the direction of i x j is given by the right hand rule. Then
we said that the right hand rule hold for any non-zero vector A and B. Why is
such a leap justified? HINT: Imagine moving a gradually changing pair of vectors
through space, starting with i and j and ending with the pair A and B.

36.[C]

(a) Thinking in terms of parallelograms, explain why A - (B x C) is + or —
B-(CxA).

(b) Using properties of 3 by 3 determents, decide which it’s 4+ or —.

37.[C] In some expositions of the cross product, a x b is simply defined as the
determinant of a matrix of order 3. If we start with this definition, use a property
of determents to show that a x b is perpendicular to both a and b. (This approach
bypasses the need to consider simultaneous equations. On the other hand, it may
appear unmotivated.)

38.[M]

(a) How could you use cross products to produce a vector perpendicular to 2i +
3j + 4k? Give an example.

(b) How could you use cross product to produce two vectors perpendicular to
2i + 3j + 4k and to each other? Give an example.

39.[R] Use the exhibited values for y and z when solving equations ((14.3.3)) and
(14.3.4]). Substitute these values into ((14.3.1]) and solve for .
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40.[R] By carrying out the necessary calculations, show that A x (B + C) =
A x B+ A x C. If you wish, you may use properties of determinants.

41.]M] Let A and B be non zero, nonparallel vectors. Show that A x (A x B) is
never equal to (A x A x B). This shows that the cross product is not associative.
You cannot omit the parentheses in A x (B x C).
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14.4 Lines, Planes and Components
This section uses the dot product and cross product to deal with lines, planes
and projections (“shadows”) of a vector or a line or on a plane.
Equation of a Plane
}Q‘L tRJ’f C k

We find an equation of the plane through the point Py = (¢, yo, 20) and
perpendicular to the vector Ai + Bj + Ck, shown in Figure .

Let P = (x,y, z) be any point on the plane. The vector PyP is perpendic-
ular to Ai+ Bj + Ck. (Imagine sliding it so that Py coincides with the tail of
Ai+ Bj + Ck.) Thus

(Ai+ Bj+ Ck) - (z — xo)i+ (y — yo)J + (2 — 20)k) = 0.
So
Alx — x9) + B(y — yo) + C(z — z) = 0. (14.4.1)

In (14.4.1) we have an equation for the plane. The vector Ai 4+ Bj 4+ Ck is
called a normal to the plane.

EXAMPLE 1 Find an equation of the plane through (2, —3,4) and per-
pendicular to i+ 2j 4 3k.
SOLUTION An equation for the plane is

I(x—2)4+2(x—(-3)+3(x—4) =
which simplifies to
r+2y+32—-8=0
o

The graph of an equation of the form Ax + By + Cz + D = 0, where not
all of A, B, and C are 0 is a plane perpendicular to the vector Ai + Bj + Ck.
To show this, first pick any point (xg, 3o, 20) that satisfies the equation: Azq+
Buvy + Cy + D = 0. Subtracting this from the original equation gives

Alx — ) + By —yo) + C(z — 29) = 0,

which is an equation of the plane through (xg, yo, 20) perpendicular to Ai +
Bj + Ck.

Similarly, we have

f T e
=g

An equation for the line through (zo, yo) and perpendicular to the vector Ai+
Bjis A(x — x) + B(y —yo) = 0.

Calculus December 4, 2010
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cos(f) could be negative

Distance From a Point to the Line Ax + By + C = 0 or
Plane Ax+ By+Cz+ D =0

7 By

P=lc,d)

— Gey.) =
AM—ET*C;O
(find)
(a) (b)
Figure 14.4.2:
Let us find the distance from P = (c¢,d) to the line whose equation is

Az + By + C = 0, shown in Figure [14.4.2(a).
Pick any point Py = (20, yo) on the line and place Ai + Bj with its tail at

Py, as in Figure [14.4.2(b).
—
Let 6 be the angle between PyP and Ai + Bj. Then the distance from P
to the line is

., — (Ai+ Bj) - ((c — x0)i + (d — y0)j)
[ PoP||[ cos(6)] | PP 1P, P|[[| i + Bj|

_ Alc—x0) + B(d — yo)

- VBT

_ Ac+ Bd — (Azo + Byo)

B VA2 + B? '

Since Axg + Byg + C = 0, we have

Distance from (c, d) to the line Ax + By + C =0 is

|Ac+ Bd + C|
VA + B2

In short, to find that distance simply substitute the coordinates of the point
(¢,d) into the expression Az + By + C and divide by v/ A? + B? and take its
absolute value.

EXAMPLE 2 How far is the point (1,3) from the line 2z — 4y = 57
SOLUTION First, write the equation in the form 2z — 4y —5 = 0. Then the
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distance is
2(1) —4(3) =5 |—=15] 3V5
V22 4 42 V20 2

o A similar result holds for the distance from a point P = (xo, 3o, 20) to a

plane:

The distance from (z, yo, 20) to the plane Az + By + C =0 is

|ALEQ + Byo + O() + D|
JA B+ C?

Using Vectors to Parameterize a Line

Let L be the line through the point Py = (xg, yo, 20) parallel to the vector B,

shown in Figure [14.4.3(a).

% )] €
P

|
oL

Figure 14.4.3:

Let P be any point on L. Then the vector 1_'%]_)3 which is parallel to B, is
of the form ¢B for some scalar t. See Figure |14.4.3(b).

The OP = OFy + PoP = OF, + tB. As t varies the vector from 0 to P
varies, thus parameterizing the line L.

EXAMPLE 3 The line L passes through the point (1, 1,2) and is parallel
to the vector 3i 4 4j + bk. _U—SS this information to parameterize the line.
SOLUTION 1In this case OFy =i+ j+ 2k and B = 3i + 4j + 5k. Thus

OP = i+j+2k+ f(3i+4j+5k)
= (Bt+1)i+ (4t+1)j+ (5t+2)k.

Calculus December 4, 2010
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One vector equation does
the work of three scalar
equation.

Figure 14.4.4:

Figure 14.4.5:

If P is the point (z,y, z), then OP is the vector zi +yj + zk.
Thus

r = 3t+1
y = 4t+1
z = bt+ 2.

Describing the Direction of Vectors and Lines

The direction of a vector in the plane is described by a single angle, the angle
it makes with the positive z-axis. The direction of a vector in space involves
three angles, two of which almost determine the third.

DEFINITION (Direction of a vector.) Let A be a nonzero vector
in space. The angle between

A and i is denoted «,
A and j is denoted [,
A and k is denoted 7.

The angles «, [ and 7 are called the direction angles of A. (See

Figure [14.4.4])

DEFINITION (Direction cosines of a vector) The direction
cosines of a vector are the cosines of its direction angles, cos(a),
cos(3), and cos(7).

EXAMPLE 4 The angle between a vector A and k is /6. Find v and
cos(y) for

1. A,

2. —A.

SOLUTION

1. By definition, the direction angle v for A is 7/6. It follows that cos(y) =
cos(m/6) = 1/3/2.

2. To find v and cos(v) for —A, we draw Figure [14.4.5, For —A, v = 57/6
and cos(y) = cos(5w/6) = —+/3/2.
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o
As Example [f] illustrates, if the direction angles of A are «, (3, 7, then the
direction angles of —A are m — a, m — 3, and m — 7. The direction cosines of
—A are the negatives of the direction cosines of A.
The three direction angles are not independent of each other, as is shown
by the next theorem. Two of them determine the third up to sign.
Theorem 14.4.1. If o, (3, v are the direction angles of the vector A, then
cos?(a) + cos?(3) + cos?(y) = 1. ol
Proof T 2.1 dk ;
IS }—I.!'}"T\ | o ik

It is no loss of generality to assume that A is a unit vector. Its component on
the y-axis, for instance, is cos(3), as the right triangle OPQ in Figure
shows. A lies along the hypotenuse.

Since A is a unit vector, |A|*> = 1, and we have cos?(a)+cos?(3)+cos?(y) =
12 =1. °

EXAMPLE 5 The vector A makes an angle of 60° with the  and y axes.
What angle does it make with the z-axis?
SOLUTION Here a = 60° and § = 60°; hence

cos(a) = % and cos(f3) = %

Since
cos?(a) + cos?(B) + cos? () = 1,

it follows that

)+ () +eos’(n) = 1,
1
2 — —
cos“(y) = 5
Thus
V2 V2
cos(y) = — or cos(y)=——.
2 2
Hence
v =45 or -~ =135°.
Figures|14.4.7(a) and (b) show the two possibilities for A. o
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&
|

Figure 14.4.7:

i1

v Lbd)
._/<'/-|j"" '.-i 7
"iu G !

(b) (c)

Figure 14.4.8:
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Dot Products and Flow

Let the vector v whose magnitude is v describe the velocity of a river, as
in Figure (a). Place an imaginary horizontal stick of length L in the
water. The amount of water crossing the stick depends on the position of the
stick. If the stick is parallel to v, no water crosses the stick. If the stick is
perpendicular to v water crosses it. The question then arises, “How does the
angle at which we place the stick affect the amount of water that crosses in a
given time?

To answer this question, we begin by introducing a unit vector n perpen-
dicular to the stick, and record its position, as in Figure (b) Let the
angle between n and v be 6.

The amount of water that crosses the stick during time At is proportional to
the area of the parallelogram in Figure (c) The base of the parallelogram
has length vAt (speed times time). The height is Lcos(#). The area of the
parallelogram is therefore

vL cos(0)

But vL cos(f) is equal to v -n. So v - n measures the tendency of water to
cross the stick.

As a check, when the stick is parallel to v, § = 7/2 and cos(7/2) = 0.
Then v-n = 0 and no water crosses the stick. When the stick is perpendicular
tov, 8 =0, and v-n = v. For any angle § < 7/2, v-n = vcos(f) which is
less than v. For any unit vector n and vector A the scalar A - n is called the

—i ™=

Figure 14.4.9:

scalar component of A along n. It equals ||[vA|| cos(#), where @ is the angle
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between A and n. It can be positive or negative, as shown in Figure [14.4.9]

EXAMPLE 6 When a stick is perpendicular to v, water crosses it at the
rate of 100 cubic feet per second. When the stick is placed at an angle of 7/6
to v at what rate does water cross it?

SOLUTION Figure shows the position of the stick P(Q).
'

4 |: = -

The angle between the normal to the stick, n, and v is 7/2 — 7/6 = 7/3.
Let z be the rate at which the water crosses the stick. Since the rate of flow
normal n and v, we have

across the stick is proportional to vcos(f), where 6 is the angle between the

100

x
vcos(0)  wceos(m/3)
this tells us that
. 100 x
Flgure 14.4.10: v - ('U)(l/Z)’
have x = 50. The flow is half the maximum possible.
Summary

We used the dot product to obtain an equation of a plane (or line in the zy
plane) and to find the distance from a point to a line or plane. We also showed

how to parameterize a line with the aid of a vector parallel to the line.

Direction angles and cosines of a vector were defined. Finally, we showed
how the dot product describes the rate of flow across a line segment, a concept
curves and surfaces.

that will be needed in Chapters and where we deal with flows across
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EXERCISES for Section 14.4 Key: R-routine, M-moderate, C—challenging

In each of Exercises [I] to [4] find an equation of the line through the given point and
perpendicular to the given vector.
1.[R] (2,3),4i+5j

2.[R] (1,0), 2i —
3.[R] (4,5), i+ 3j
4.[R] (2,-1),1+ 3]

In each of Exercises [p| to 8| find a vector in the zy plane that is perpendicular to the
given line.
5.[R] 2x—3y+8=0
R] 7z —2y=T1
7.R] y=3z+7
8.[R] 2(x—1)+5(y+2)=0
9.[M] Find an equation of the plane through (1,2,3) that contains the line given
—
parametrically as OP = 2i — j + 3k + ¢t(3i + 2j + k).

10.[M] Is the point (21, —3,28) on the line given parametrically as OP =i+ 2j+
3k +t(4i — j+ 5k)?

11.[M] A line segment has projections of lengths a, b, and ¢ on the coordinates
axes. What, if anything, can be said about its length, L?

12.[C] A line segment has projections of lengths d, e, and f on the coordinates
planes. What, if anything, can be said about its length, L7

13.[C] Explain why the projection of a circle is an ellipse. HINT: Set up coordinate
systems in the plane of the circle and in the plane of its shadow (which might as
well be taken to be the zy plane). Choose the axes for these coordinate systems to
be as convenient as possible. Then express the equation of the shadow in terms of
x and y by utilizing the equation of the circle.

14.[R] Find a vector perpendicular to the plane through (2,1,3), (4,5,1) and
(_27 2a 3)
15.[R] How far is the point (1,2, 2) from the plane through (0,0,0), (3,5, —2), and
(2,-1,3)7
16.[R] How far is the point (1,2, 3) from the line through (-2, —1,3), and (4, 1,2)?

17.[R] Find the parametric equations of the line through (1,1, 2) and perpendicular
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to the plane 3x —y + 2z = 6.

18.[R] How far apart are the lines whose vector equations are 2i+4j+k-+t(i+j+k)
and i+ 3j + 2k + s(2i — j — k)?

19.[R] Find the point on the line through (1,2,1) and (2, —1, 3) that is closest to
the line through (3,0, 3) and parallel to the vector i + 2j + 5k.

20.[R]

(a) Describe how you would find an equation for the plane through points P, =
(z1,91,21), P2 = (72,2, 22), and Py = (x3,y3,23)?

(b) Find an equation for the plane through (2,2,1), (0,1,5) and (2, —1,0).

21.[R]

(a) Describe how you would decide whether the line through P, = (x1,y1,21)
and Py = (x2,y2,292), is parallel to the line through P3; = (z3,ys,23) and
Py = (w4,y4, 24)7

(b) Isthe line through (1,2, —3) and (5,9, 4) parallel to the line through (-1, —1, 2)
and (1,3,5)7

22.[R]

(a) Describe how you would decide whether the line through P; = (z1, 91, 21) and
Py = (x2,y2, 22) is parallel to the plane Az + By + Cz + D = 07

(b) Isthe line through (1, -2, 3) and (5, 3, 0) parallel to the plane 2z—y+2z+3 = 07

23.[R]

(a) Describe how you would decide whether the line through P, and P; is parallel
to the plane through Q1, @2, and Q37

(b) Is the line through (0,0,0) and (1, 1, —1) parallel to the plane through (1,0, 1),
(2,1,0), and (1, 3,4)?

24.[R]

(a) How would you decide whether the plane through P;, P, and P is parallel to
the plane through @1, Q2, and Q37
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(b) Is the plane through (1,2,3), (4,1,—1), and (2,0,1) parallel to the plane
through (2,3,4), (5,2,0), and (3,1,2)?

25.[M]

(a) How would you find the angle between the planes Ajx + Byy+ Ciz+ D1 =0
and Axx + Boy + Caz + Dy = 07

(b) Find the angle between z —y —z—1=0and x +y+2+2=0.

26.[C] Assume that the planes Ajx+B1y+Ciz+D; = 0 and Asx+ Boy+Coz+ Do =
0 met in a line L.

(a) How would you find a vector parallel to L?
(b) How would you find a point on L?

(¢) Find parametric equations for the line that is the intersection of the planes
2c —y+32+4=0and 3x+2y+52+2=0.

27.[C]

(a) How would you decide whether the four points P, = (x1,y1, 21), P2 = (x2, y2, 22),
Ps = (x3,ys,23) and Py = (x4, Y4, z4) lie in a plane?

(b) Do the points (1,2,3), (4,1,—5), (2,1,6), and (3,5, 3) lie in a plane?

28.[C] What is the angle between the line through (1,2,1) and (—1,3,0) and the
plane z +y — 2z =07
29.[M]

(a) If you know the coordinates of point P and parametric equations of line L,
how would you find an equation of the plane that contains P and L? (Assume
P is not on L.)

(b) Find an equation for the plane through (1,1, 1) that contains the line

r = 24t
y = 3—1
z = 442t
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30.[R]
(a) How many unit vectors are perpendicular to the plane Az+ By+Cz+D = 0?
(b) How would you find one of them?
(c¢) Find a unit vector perpendicular to the plane 3z — 2y + 4z + 6 = 0.

31.[R]

(a) How would you go about producing a specific point on the plane Az + By +
Cz+D =07

(b) Give the coordinates of a specific point that lies on the plane 3z—y+z+10 = 0.

32.[R]

(a) How would you go about producing a specific point that lies on both planes
Az + By + Ciz + Dy =0 and Aoz + Boy + Coz + Dy = 07

(b) Find a point that lies on both planes 3z + z+2=0and z —y — 2+ 5= 0.

33.[C] The planes A1z + By + Ciz + D; = 0 and Asz + Boy + Coz + Doy = 0
intersect in a line L. Find the direction cosines of a vector parallel to L.

34.[R]

(a) Let A and B be vectors in space. How would you find the area of the paral-
lelogram they span?

(b) Find the area of the parallelogram spanned by (2,3,1) and (4, —1,5).

35.[C] How far is the point (2,1, 3) from the line through (1,5,2) and (2, 3,4)?
36.[C] How far is the point P from the line through @ and R.

37.[C] How far apart are the lines given parametrically as 2i+j—3k+¢(3i—5j+2k)
and 3i+j+5k+s(2i4+6j+7k)? (We use different letters, s and ¢, for the parameters
because they are independent of each other.)

38.]M]
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(a) Sketch four points P, @, R, and S, not all in one plane, such that PQ) and
—
RS are not parallel. Explain way there is a unique pair of parallel planes one
of which contains P and ) and are of which contains R and S.

(b) Express a normal vector to these planes in terms of P, @, R, and S.

39.[M] Find an equation for the plane through P; that is parallel to the non-parallel
segments P, P3 and P, Ps.

40.[C]

(a) Using properties of determinents, show that

z y 1
ap a9 1 =0
by b 1

is the equation of a line through the points (a1, as) and (by, b2).

(b) What determinant of order 4 would give an angular equation for the plane
through these given points?

41.[C]
(a) Review the Folium of Descartes in Section on page

(b) Show that the part in the fourth quadrant is asymptotic to the line z+y+1 =
0.

42.[M] Find where the line L through Py = (2,1,3) and P, = (4,—2,5) meets the
plane whose equation is 2x +y — 42+ 5 = 0.
43.[M]

(a) Graph the line and the parabola. Identify, graphically, the point on the
parabola closest to the line.

(b) Find, analytically, the point on the parabola y = x? closest to the line y =
z—3.

(c) The tangent to the parabola at the point found in (b) looks as if it might be
parallel to the line. Is it?
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44.]C] Let f be a differential function and L a line that does not meet the graph
of F. Assume that Py is the point as the graph that is nearest the line.

(a) Using calculus, show that the tangent there is parallel to L.

(b) Why is the result in (a) to be expected?

In Exercises and [46] find the distance from the given point to the given line.
45.[R] The point (0,0) to 3z +4y —10=0

46.[R] The point (3/2,2/3) to 2z —y+5=0

In Exercises 7] and 48] find a normal and a unit normal to the given planes.

47.R] 2z —-3y+42+11=0

48.R] z=2zx-3y+4

In Exercises 9] to [52] find the distance from the given point to the given plane.
49.]R] The point (0,0,0) to the plane 2z —4y +32+2=0

50.[R] The point (1,2,3) to the plane z + 2y — 3z + 5 = 0.

51.[R] The point (2,2,—1) to the plane that passes through (1,4,3) and has a
normal 2i — 7j + 2k.

52.[R] The point (0,0,0) to the plane that passes through (4,1,0) and is perpen-
dicular to the vector i+ j + k.

53.[R] Find the direction cosines of the vector 2i 4 3j + 4k.
54.[R] Find the direction cosines of the vector from (1,3,2) to (4,—1,5).

55.[R] Let Py = (2,1,5) and P; = (3,0,4). Find the direction cosines and direction
angles of

(a) PyP and

(b) PiR.

56.[R] Give parametric equations for the line through (1/2,1/3,1/2) with direction
numbers 2, —5 and 8 in
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(a) scalar form,

(b) vector form.

57.[R] Give parametric equations for the line through (1,2,3) and (4,5,7) in
(a) scalar form,

(b) vector form.

58.[R] Give symmetric equations for the line through the points (7,—1,5) and
59.[R] A vector A has direction angles « = 70° and # = 80°. Find the third
direction angle v and show the possibile angles for v on a diagram.

60.[M] Suppose that the three direction angles of a vector are equal. What can
they be? Draw the cases.

61.[R] Find the angle between the line through (3,2,2) and (4,3,1) and the line
through (3,2,2) and (5,2,7).

62.[R] Find the angle between the planes 2z 4+ 3y + 4z = 11 and 3z —y + 2z = 13.
The angle between two planes is the angle between their normals.

63.[R] Find where the line through (1,2) and (3,5) meets the line through (1, —1)
and (2, 3).

64.[M] Find where the line through (1,2,1) and (2,1, 3) meets the plane that is
perpendicular to the vector 2i + 5j + 7k and passes through the point (1,—2,—3).

65.[M] Are the three points (1,2, —3), (1,6,2), and (7,14, 11) on a single line?

66.[R] Where does the line through (1,2,4) and (2,1, —1) meet the plane = + 2y +
5z =07

67.[R] Give parametric equations for the line through (1,3, —5) that is perpendic-
ular to the plane 2x — 3y 4+ 42z = 11.
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68.[R] Give parametric equations for the line through (1,3,4) that is parallel to
the line through (2,4, 6) and (5,3, —2).

69.[C] A square of a side a lies in the plane 2z + 3y + 2z = 8. What is the area of
its projection

(a) on the xy plane?
(b) on the yz plane?

(c) on the zz plane?

70.]M] If o, 3, and ~ are direction angles of a vector, what is sin?(«) + sin?(3) +
sin?(7)?

Y
71.]M] Find the angle between the line through (1,3,2) and (4,1,5) and the plane

r—y—2z+15=0.

72.]C] A disk of radius a is situated in the plane x4 3y +4z = 5. What is the area
of its projection in the plane 2z + y — z = 67

73.[M] What point on the line through (1,2,5) and (3,1,1) is closest to the point
(27 _17 5)?

74.]C] Does the line through (5,7,10) and (3,4,5) meet the line through (1,4,0)
and (3,6,4)7 If so, where?

WARNING (Do Not Confuse Parameters from Different Curves) Use
parametric equations but give the parameters of the lines different names,
such as t and s.

75.[C] Develop a general formula for determining the distance from the point
P, = (x1,y1,21) to the line through the point Py = (xq,yo, 20) and parallel to the
vector A = a1i+ 20+ ask. The formula should be expressed in terms of the vectors

e
POP1 and A.

76.]C] How far is the point (1,2,—1) from the line through (1,3,5) and (2,1, —3)?

(a) Solve by calculus, minimizing a certain function.

(b) Solve by vectors.
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77.[R] Find the direction cosines of the vector A shown in Figure(14.4.11] HINT: First

draw a large diagram.

Figure 14.4.11:

78.[C] How small can the largest of three direction angles ever be?

79.[C] A plane 7 is tilted at an angle 6 to a horizontal plane. A convex region R in 7
has area A. Show that the area of its shadow (“projection”) on the horizontal plane
is Acos(f). Assume that the rays of light are perpendicular to the horizontal plane.

[

(See Figure|14.4.12])

Figure 14.4.12:

80.[M]
(a) Find the point on the curve y = sin(z), 0 < x < 7, nearest the line y = x/2+2.

(b) Check your answer by sketching the curve to the line.

81.[M]
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(a) Find the point on the curve y = sinz, 0 < x < m, nearest the line y = 2z + 4.

(b) Check your answer by drawing the curve and the line.

82.[R] Three points P = (z1,y1,21), P> = (x2,y2,22), and P3 = (x3,y3,23) are
the vertices of a triangle.

(a) What is the area of that triangle?

(b) What is the area of the projection of that triangle on the xy plane?

83.]M] How can you decide whether the line through P and @ is parallel to the
plane Az + By + Cz+ D =07

84.[M] Find where the line through (1, 1) and (2, 3) meets the line x+2y+3 = 0.

85.[R] Show that the line through (1,1,1) and (2, 3,4) is perpendicular to the plane
1 +2y+32+4=0.

86.[C] How would you decide whether the angle and a point P = (zg, yo, 20) are
on the same side or opposite sides of the plane Az + Bx + Cz+ D = 07

87.[M]
(a) Give an example of a vector perpendicular to the plane 2z + 3y — 2z + 4 = 0.

(b) Give an example of a vector parallel to that plane.

88.[C] How would you decide whether the points P and () are on the same side,
or opposite sides, of the plane Az + By + Cz+ D = 07

89.[R] A plane contains the points Py, P;, and P, which do not lie on a line. Find
a vector perpendicular to the plane

90.[C] Devise a procedure for determining whether the point P = (x,y) is inside
the triangle whose three vertices are P; = (z1,y1), P» = (22,y2) and P3 = (z3,y3).

91.[C] Devise a procedure for determining whether the point P = (z,y,x) is in-
side the four vertices are Py = (x1,y1,21), P2 = (22,y2,22) P3 = (x3,y3,23) and
Py = (24,1, 24).
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92.[M] How far apart are the planes Az+By+Cz+D = 0 and Az+By+Cz+E = 07
Explain.

93.[R] We showed that the distance from (c,d) to the line Az + By + C = 0 is

%/%S'. Show, following a similar argument, that the distance from (c,d,e) to

|Ac+Bd+Ce+D|

the plane Ax + By +Cx + D =0 is AT BTICT

94.[M] What is the ratio of the flows across the two sticks in Figure[14.4.13(a) and
(b)?

Figure 14.4.13:
95.[R] Why is the angle § shown in Figure [14.4.13| the same as the angle between

— o~
v and n.

96.[R] How far is the point (1,5) from the line through (4, 2) and (3, 7)? HINT: Draw
a picture and think in terms of vectors.

97.[R] How far is the point (1,2, —3) from the line through (2,1, 4) and (1,5, —2)?

98.[C] (Contributed by Melvyn Kopald Stein.) An industrial hopper is shaped as
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shown in Figure Its top and bottom are squares of different sizes. The angle
between the plane ABD and the plane BDC' is 70°. The angle between the plane
ABD and the plane ABC' is 80°. What is the angle between plane ABC and plane
BCD? NoTE: The angle is needed during the fabrication of the hopper, since the
planes ABC and BC'D are made from a single piece of heavy-gauge sheet metal bent

along the edge BC.

Figure 14.4.14:

99.(C]

(a) Let L; be the line through P; and @ and let Lo be the line through P» and
Q2. Assume that Ly and Lo are skew lines. How would you find the point R;
—_—
on L; and point Ry on Lo such that RqRs is perpendicular to both L and
Lo?

(b) Find R1 and R2 when P1 = (3,2, 1), Ql == (1,1,1), P2 = (0,2,0), RQ =
(2,1,-1).
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14.S Chapter Summary

Because there are no limits in this chapter, it is, strictly speaking, not part
of calculus. In the next chapter, which concern derivatives of functions whose
inputs are scalars and whose outputs are vectors, we return to calculus.

The following table summarizes the basic concepts of vectors in space.

DOUG/SHERMAN:
Mention cos(A,B) in text.

For plane vectors, disregard
e thigd component.

A = a1i+ agj + ask,

B = b1i + boj + bsk, and

Symbol Name Geometric Descriptions C = al Kgdbti#<Formula
A Vector Direction and magnitude aii+ asj + ask or {(ay, as, as)
(Figure)
A Length  (norm, Length of A Vai+ a3+ a3
magnitude)
—-A Negative, or op- Figure —aii — agj — azk or (—ay, —as, —
posite, of A
A+B Sum of A and B  Figure (aq + b1)i+ (az + b2)j + (a3 + b))k or {(ay + by,
A-B Difference of A Figure (a1 — b1)i+ (a2 — b2)j + (as — bg)k or (a; — by,
and B
cA Scalar multiple of Figure caii + casj + cask or (cay, cas, ca
A
A-B Dot, or scalar, [[A[l||B] cos(f) arby + asbs + asbs
product
i k
A xB Cross, or vector, Magnitude: area of paral- a; as  ag
product lelogram spanned by A and by by b+3

B, ||A|]||B|| sin() Direction:
perpendicular to A and B,
direction by right-hand rule
projg A (Vector) Projec- Figure
tion of A on B

A - (BxC) Scalar triple £ volume of parallelepiped
product spanned by A, B, and C
A x (B xC) Vector triple
product
Table 14.S.1:

Some Common Applications and Definitions

Calculus December 4, 2010
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A-B=0 A is perpendicular to B (assuming neither A nor F
A - (x —x0,y — Yo, 2 — 20) = 0 plane through (¢, yo, 20) perpendicular to A

\/% distance from the plane Az + By + Cz+ D =0 to
‘Ax\l/;fzgzizcljm distance from the plane Az + By+Cz+ D = 0 to th
—IIISH'III?BII = cos(6) 6 is the angle between A and B, 0 <6 <7

When the angles between a vector A and i, j, vk are respectively «, 3, and
7, the numbers cos(«), cos(3), and cos(7y) are called the direction cosines of
A. They are linked by the equation cos(a)? + cos(3)? + cos(y)? = 1.

The line through Py = (o, yo, 20) parallel to A = a1i + asj + ask is given
parametrically as

r = o+ ait
Yy = Yo+ agl
z = zp+ ast,

or vectorially as

— —
OP = OF, + tA.

Assuming none of a1, az,  Also, the line has the description in the symmetric form
and ag are zero.

T—To  Y—Y _ = %0
(3] a2 as '

EXERCISES for 14.S Key: R-routine, M-moderate, C—challenging

[R]
.[R] Find a vector perpendicular to the plane determined by the points (1,3, —1),
[R]

Find a vector that is perpendicular to the line through the points (3,6,1)
and (2,7,2) and also to the line through the points (2,1,4) and (1, -2, 3).

4.[R] Find a vector perpendicular to the line through (1,2, 1) and (4, 1,0) and also
to the line through (3,5,2) and (2,6, —3).

5.[C] Figure [14.S.1] shows a tetrahedron O ABC with three edges of the indicated
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lengths.

Figure 14.5.1:

(a) Find the coordinates of A, B, and C.
(

b) Find the volume of the tetrahedron.

(
d

)
)
c¢) Find the area of triangle ABC.
) Find the distance from O to the plane in which triangle ABC lies.
)

(e) Find the cosine of angle ABC.

Calculus December 4, 2010
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For vector-algebra chapter

Erucke ball
WY
LMY e
Qc © 5
Tomph Z0mgh
Figure C.16.1:

If P ="70i and v = —304i,
we have the vector

2(70i) — (—30i) = 170i, the
case of the ball and truck.

Calculus is Everywhere # 16
Space Flight: The Gravitational Slingshot

In a “slingshot” or “gravitational assist” a spacecraft picks up speed as
it passes near a planet and exploits the planet’s gravity. For instance, New
Horizons, launched on January 19, 2006, enjoys a gravitational assist as it
passed by Jupiter, February 27, 2007 on its long journey to Pluto. With
the aid of that slingshot the speed of the spacecraft increased from 47,000 to
50,000 miles per hour (mph). As a result, it will arrive near Pluto in 2015,
instead of 2018.

Before we see how this technique works, let’s look at a simple situation on
earth that illustrates the idea. Later we will replace the truck with a planet’s
gravitational field.

A playful lad throws a perfectly elastic tiny ball at 30 mph directly at a
truck approaching him at 70 miles per hour, as shown in Figure .

The truck driver sees the ball coming toward her at 70 + 30 = 100 mph.
The balls hits the windshield and, because the ball is perfectly elastic, the
driver sees it bounce off at 100 mph in the opposite direction.

However, because the truck is moving in the same direction as the ball, the
ball is moving through the air at 100 + 70 = 170 mph as it returns to the boy.
The ball has gained 140 mph, twice the speed of the truck.

Now, instead of picturing a truck, think of a planet whose velocity relative
to the solar system is represented by the vector P. A spacecraft, moving in
the opposite direction with the velocity v relative to the solar system comes
close to the planet.

An observer on the planet sees the spacecraft approaching with velocity
—vP + v. The spacecraft swings around the planet as gravity controls its
orbit and sends it off in the opposite direction. Whatever speed it gained as it
arrived, it loses as it exits. Its velocity vector when it exits is —(—vP +v) =
P — v, as viewed by the observer on the planet. Since the planet is moving
through the solar system with velocity vector P, the spacecraft is now moving
through the solar system with velocity P+(P—v) = 2P —v. See Figure .

But the direction of the spacecraft as it arrives may not be exactly opposite
the direction of the planet. To treat the more general case, assume that P = pi,
where p is positive and v makes an angle 6, 0 < 6 < 7/2, with —i, as shown
in Figure [C.16.3|a). Let v = |v| be the speed of the spacecraft relative to
the solar system. We will assume that the spacecraft’s speed (relative to the
planet) as it exits is the same as its speed relative to the planet on its arrival.
(Figure[C.16.3|(b)) shows the arrival and exit vectors. Note that E and v — P
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I8
P

Figure C.16.2: (a) The velocity vector relative to the solar system. (b) The
velocity vector relative to the planet.

P =pT i
Y s v
> e [T
x< v ‘v‘\;usf}

Figure C.16.3:

Calculus December 4, 2010



1188

CHAPTER 14 VECTORS

“Near” in the case of the
slingshot around Jupiter
means 1.4 million miles. If
the spacecraft gets too
close, the atmosphere slows
down or destroys the craft.

have the same y-components, but the x-component of E is the negative of the
x-component of v — P.

Figure [C.16.3|(c) shows the arrival vector relative to the solar system. So,
v = —wcos(f)i+ vsin(h)j.

Relative to the planet we have

Arrival Vector: v —P = —pi+ (—vcos(f)i+ vsin(6)j)
Exit Vector: E = pi+vcos(theta)i+ vsin(6)j

The exit vector relative to the solar system, E, is therefore
E = (2p + v cos(0))i + vsin(theta)j.

The magnitude of E is

V (2p 4+ v cos(#))? + (vsin(theta))? = \/v? + 2pv cos(0) + 4p2.

When 6 = 0, we have the case of the truck and ball or the planet and
spacecraft in Figure . Then cos(f) = 1 and |E| = \/v2 + 2pv + 4p? =
v + 2p, in agreement with our earlier observations.

The scientists controlling a slingshot carry out much more extensive cal-
culations, which take into consideration the masses of the spacecraft and the
planet, and involve an integration while the spacecraft is near the planet.
Incidentally, the diameter of Jupiter is 86,000 miles.

The gravity assist was proposed by Michael Minovitch in 1963 when he
was still a graduate student at UCLA. Before then it was felt that to send a
spacecraft to the outer solar system and beyond would require launch vehicles
with nuclear reactors to achieve the necessary thrust.
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Calculus is Everywhere # 17

How to Find Planets around Stars

Astronomers have discovered that other stars than the sun have planets circling
them. How do they do this, given that the planets are too small to be seen?
It turns out that they combine some vector calculus with observations of the
star. Let us see what they do.

Imagine a star S and a planet P in orbit around S. To describe the sit-
uation, we are tempted to choose a coordinate system attached to the star.
In that case the star would appear motionless, hence having no acceleration.
However, the planet exerts a gravitational force F' on the star and the equa-
tion force = mass x acceleration would be violated. After introducing the
appropriate mathematical tools, we will choose a proper coordinate system.

Let X be the position vector of the planet P and Y be the position vector
of the star S, relative to our inertial system. Let M be the mass of the sun
and m the mass of planet P. Let r = X — Y be the vector from the star to
the planet, as shown in Figure [C.17.1]

The gravitational pull of the star on the planet is proportional to the prod-
uct between them:

—GmMr
F = —s
Here G is a universal constant, that depends on the units used to measure mass,
length, time, and force. Equating the force with mass times acceleration, we
have

" —GmMr
" - r
Thus X" = =CGmr

Similarly, by calculating the force that the planet exerts on the star, we

have

v Gmr

r3

The center of gravity of the system consisting of the planet and the star,
which we will denote C' (see Figure [C.17.2)), is given by

o MY +mX
- M+m

The center of gravity is much closer to the start than to the planet. In the
case of our sun and Earth, the center of gravity is a mere 300 miles from the
center of the sun.
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The acceleration of the center of gravity is

o — MY"+mX" 1 <M (Gmr) e (—Gmr)) o
M +m M +m r3 r3

Because the center of gravity has 0-acceleration, it is moving at a constant
velocity relative to the coordinate system we started with. Therefore a coor-
dinate system rigidly attached to the center of gravity may also serve as an
inertial system in which the laws of physics still hold.

We now describe the position of the star and planet to this new coordinate
) system. Star S has the vector x from C to it and planet P has the vector y
e ) v from C to it, as shown in Figure Note that r = x — y.
= To obtain a relation between x and y, we first express each in terms of r.

We have

- MY —mX
y:Y—OO:Y— m = m Y + m
Figure C.17.3: M+m M+m M+m

Letting k = m/M, a very small quantity, we have

k —k
- " (Y _X)=
Y= 15! )= 157

r. (C.17.1)

Since r = x — vy, it follows that x = r + y, hence

—k 1
— — = ) A7.2
X r+<1+k>r e (C.17.2)

Combining ((C.17.1)) and (C.17.2)) shows that

y = —kx. (C.17.3)

SHERMAN: First use of
“second inertial system;” Equation ((C.17.3) tells us a good deal about the relation between the orbits
what is the first?  of the star and planet in terms of the second inertial system:

1. The star and planet remain on opposite sides of C' on a straight line
through C.

2. The star is always much closer to C' than the planet is.

3. The orbit of the star is similar in shape to the orbit of the planet, but
smaller and reflected through C.
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4. If the orbit of the star is periodic so is the orbit of the planet, and both
have the same period.

Equation is the key to the discover of planets around stars. The
astronomers look for a star that “wobbles” a bit. That wobble is the sign
that the star is in orbit around the center of gravity of it and some planet.
Moveover, the time it takes for the planet to orbit the star is simply the time
it takes for the star to oscillate back and forth once.

The reference cited below shows that the star and the planet sweep out
elliptical orbits in the second coordinate system (the one relative to C).

Astronomers have found over two hundred stars with planets, some with
several planets. A registry of these exoplanets is maintained at http://
exoplanets.org/.

Reference: Robert Osserman, Kepler’s Laws, Newton’s Laws, and the Search
for New Planets, Am. Math. Monthly 108 (2001), pp. 813-820.

EXERCISES 1.[R] The mass of the sun is about 330,000 times that of Earth.

The closest Earth gets to the sun is about 91,341,000 miles, and the farthest from
it is about 94,448,000 miles. What is the closest the center of the sun gets to the
center of gravity of the sun-Earth system? What is the farthest it gets from it?
HINT: It lies within the sun itself.

2.[M] Find the condition that must be satisfied if the center of gravity of a sun-
planet system will lie outside the sun.
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Chapter 15

Derivatives and Integrals of
Vector Functions

In Section we studied parametric curves in the plane. With the aid of
calculus we saw how to compute arc length, speed and curvature. For instance,
we defined curvature as the rate at which a certain angle changes as a function
of arc length.

In this chapter we examine curves in the plane or in space. Of particular
interest will be velocity and acceleration. For a particle moving along a straight
line, say, the z-axis, these were simply the derivatives dx/dt and d*x/dt*. For
a particle moving in space, velocity and acceleration involve both magnitude
and direction. How should we calculate them?

How can we define curvature for a curve that does not lie in a plane? While
arc length still makes sense, there is no angle to differentiate with respect to
arc length.

While we could answer these questions using the cumbersome component
notation for parameterization (z(t), y(t)) or (z(t), y(t), x(t)), we will emphasize
the efficient vector notation, where a vector-valued concept is denoted by one
letter. We will resort to the component notation to carry out computations
or a proof. This point of view becomes increasingly important in the final
chapters, particularly in Chapter [18]
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In the case of motion on a
horizontal line the derivative
of position with respect to
time is sufficient to describe
the motion of the particle.
If the derivative is positive,
the particle is moving to the
right. If the derivative is
negative, the particle is
moving to the left. The
speed is simply the absolute
value of the derivative. But
the study of motion in the
plane or in space depends
on the concept of the
derivative of a vector
function.

Figure 15.1.1:

Figure 15.1.2:

15.1 The Derivative of a Vector Function: Ve-
locity and Acceleration

In this section we introduce the calculus of a vector function and apply it
to motion along a curve in a plane or in space.

Assume that a curve in the plane is parameterized as (z(t),y(t)) or, in
space, by (z(t),y(t),z(t)). Let P = P(t) be the point corresponding to ¢,
which we may think of as “time,” though it can be any parameter, such as arc
length.

We introduce the position vector, r = r(t), whose tail is at the origin O

—
and whose tip is at P. Then r = OP, as shown in Figure|15.1.1
We will assume that r(¢) is continuous, in that each of its components is
continuous. The limit of r(¢) as t approaches a we define as the vector
(lim x(t), %im y(t), %im z(t)).

t—a

We denote this as lim,_, r(t). Figure shows this geometrically. As t
approaches a, the vector r(t) — r(a) gets shorter and shorter as it approaches
the zero vector 0.

We will say that r(¢) is differentiable at ¢ = a if its components are differ-
entiable at ¢ = a. Then the derivative of r(¢) is defined as the vector.

(2'(a),y'(a), '(a)).
In vector notation,

r(t) —r(a)

o ;o . r(a+At) —r(a)
o) =lim——— o rila)= fim ——o——

and, if Ar = r(r + At) —r(r), r'(a) = lima;o 25. When ¢ is near a (or At
is near 0) the vector in the numerator will be short. However, it is divided by
t —a (or At), which is small, so the quotient could be a vector of any size.

Some Derivative Formulas

In order to exploit the efficient vector notation when computing, we state some
of the useful identities:

If r and s are differentiable vector functions, and f is a differentiable scalar,
then

(r+s) = r'+5¢
(rxs) = rxs+rxs differentiate a cross product
(r-s)) = (r'-s)+(r-s’) differentiate a dot product
(fr) = fr+ fr product rule (f is a scalar function)
(r(f(2)) = x(f(t)f'(t) Chain Rule.
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The proofs are straightforward calculations. We prove the formula for (r -s)’
in both the component notation and vector notation. For convenience, as-
sume r(t) and s(t) are vectors in the xy plane: r(t) = (x(t),y(t)) and s(t) =
(u(t), v(t)).
Proof in components language:
(r-s) = (z(®)u(t)+yt)v()) =2'u+zu' + y'v+yo
= (du+yv)+Wr+iy)=r"-s+r-s.
Now, the same proof, but in vector language:
(r-s) — lim r(a+ At) - s(a + At) —r(a) - s(a)
At—0 At
. (r(a) + Ar) - (s(a) + As) —r(a) - s(a)
= lim
At—0 At
. r(a)-s(a)+ Ar-s(a) + r(a)As + Ar - As — r(a) - s(a)
= lim
At—0 At
. Ar As As
= [l Ry sl )G+ A5
= 1'(a)-s'(a) +r(a)-s'(a) +0-5'(a)
= 1'(a)-s(a) +r(a)- s'(a).
This is almost the same as the proof for the derivative of the product in
Section . °
EXAMPLE 1 At the time ¢, a particle has the position vector r(t) = :
3 cos(2mt)i + 3sin(27t)j + 5tk. Describe its path.
SOLUTION At time t the particle is at the point .
r = 3cos(2nt) ¢
y = 3sin(27t) ey
z = bt.
Notice that 22 + y? = (3cos(27t))? + (3sin(27t))? = 9. Thus the point is : _
. Figure 15.1.3:
always above or below the circle
? +yt=09.
Moreover, as t increases, z = 5t increases. A biology building on the

The path is thus the spiral spring sketched in Figure [15.1.3. When ¢ in-  University of California at
creases by 1, the angle 27t increases by 27, and the particle goes once around — Davis campus contains a
the spiral. This type of corkscrew path is called a helix. You see it in the large exact-to-scale model

spiral on the cardboard tube inside a roll of kitchen paper towels and in a

of the DNA molecule,

DNA molecule. o 18 inches in diameter and
48 feet long. For additional

information, please visit

Calculus December 4, 2010  http://biosci.ucdavis.
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== AB =T los AD-T(a)

Figure 15.1.4:

The Meaning of r’ and r”
The vector r'(a) is the limit of

r(a+ At) —r(a)
At

as At — 0. The numerator r(a + At) — r(a) = Ar is shown in Figure [15.1.4]

Since Ar coincides with a chord, it points almost along the tangent line at
the head of r(a) when At is small. Dividing a vector by a scalar (in this case,
by At) produces a parallel vector. The corresponding position vector is r(t),
so the vector

r(a+ At) —r(a)
At
approximates a vector tangent to the curve at a. We conclude that

, r(t + At) —r(a
r<a>:§?30( A)t =

is a vector tangent to the curve at r(a). That is the geometric meaning of the
derivative r':

r’ is tangent to the curve.

To see what r’ means when we interpret the parameter ¢ as time, we com-
pute the length of r'(¢).
Since r'(t) = (2'(t),y'(t), 2/(t)), its length is

V(@ () + (' (5)2) + (#(1)?2).

As we saw in Section this is the speed of the moving particle.

The length of r'(t), ||r'(t)]|, is the speed.

Since 1/(t) points in the direction of motion and its length is the speed, we call
r’(t) the velocity vector. Note that velocity is a vector, while speed is a
scalar. That is a big distinction. The velocity carries much more information
than speed: it also tells the direction of the motion.

The velocity r'(t) is also denoted v or v(¢). The speed is ||v||, denoted v or

v(t).
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The acceleration vector, a(t) is the derivative of the velocity vector:

The acceleration is a(t) = v/(t) = & =1"(t) = %.

EXAMPLE 2 Let r(t) = (¢, ).
(a) Draw, and label, r, v, and a at t = 1.

(b) Draw v(1.1).

SOLUTION A BLL)
(a) r(t) = (t,t%), v(t) = (1,3t?) and a = (0,6t). So r(1) = (1,1), v(1) = I
(1,3) and a(1) = (0,6). We show these in Figure [15.1.5] | /vw,
(b) Before we compute v(1.1), let us predict how it may change from v(1). T |/
We think of the acceleration vector as representing a force. Since it’s 1 /

almost in the direction of v(1), we would expect it to be speeding up the
moving particle. That is, v(1, 1) should be longer than v(1).

Also, it would tend to rotate the velocity vector counterclockwise. So the
direction of v(1,1) should be a bit counterclockwise from that of v(1).
To check, we compute v(1,1) = (1,3(1.1)?) = (1, 3.63).

It is longer than v(1) = (1, 3) since /1 + (3.63)? is larger than v/1 + 32.
Figure([15.1.6{shows that it is turned a bit counterclockwise, as expected.
Its tail is placed at

r(1.1) = (1.1,1.331) = 1.1i + 1.331j.

o
EXAMPLE 3 Find the speed at time t of the particle described in Exam- Figure 15.1.6:
ple [T}
SOLUTION

Speed = ||'(t)|| = +/(—6msin27t)2 + (6 cos 27t)2 + 52

= \/ 3672(sin® 27t + cos? 2nt) + 25 = /3672 + 25.

The particle travels at a constant speed along it helical path. In ¢ units of
time it travels the distance v/3672 + 25t¢.
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Note that the velocity vector is not constant; its direction always changes.
However, its length remains constant, and so the speed is constant. o

EXAMPLE 4 Sketch the path of a particle whose position vector at time
t > 0is r(t) = cos(t?)i + sin(¢?)j. Find its speed at time ¢.

SOLUTION Note that

Ie(t)]] = /eos2(t2) + sin?(£2) = 1.

So the path of the particle is on the circle of radius 1 and center (0,0). The
speed of the particle is

v =K' @O = || = 2¢sin(t?)i + 2t cos(£)j]]
= /(—2tsin(t2))2 + (2t cos(t2))?
= [2e]y/sin®(£2) + cos2(t2) = 21.

The particle travels faster and faster around a circle of radius 1. o

EXAMPLE 5 If the acceleration vector is always perpendicular to the ve-
locity vector, show that the speed is constant.

SOLUTION The speed is ||v||. Rather than writing this in terms of com-
ponents and showing that its derivative is zero, let’s use a trick that will be
useful later.

We will show that the square of the speed, ||v||?, is constant by showing
that its derivative, with respect to time, is zero. Since ||v||*> = v - v, we have

d d
%(HVHz):E(V'V) = v.v+v-vV=2v-v =2v-a.

Since a is perpendicular to v: v-a = 0.
Thus v - v is constant. This implies that the speed is constant. o

The force of a magnetic field on a moving electron is perpendicular to the
velocity vector that describes the motion of the electron. Since the acceleration
vector is parallel to the vector representing the force, the speed of the electron
remains constant (unless affected by other forces). Its direction, however,
changes.

The calculation in Example [5| implies that if r(¢) is always perpendicular
to r'(t), then the length of r(¢) is constant. The converse of this is also true:
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If the length of r(t) is constant, then its derivative r'(¢) is perpendicular to

r(t).

This is not surprising. When r(¢) lies on a sphere of radius ¢ (centered at
the origin), the length of r(t) always has the same value, c. A tangent to the
curve at the typical point P is tangent to the sphere. The tangent vector at P
is perpendicular to the radius to P, as indicated in Figure (a), and the

result follows.

Figure 15.1.7:

EXAMPLE 6 Is the particle shown in Figure [15.1.7(b) speeding up or

slowing down? Is its direction turning clockwise or counterclockwise?

SOLUTION Think of a as the sum of two vectors, one parallel to v, and the
other perpendicular to v, as shown in Figure (c) Since b is in the same
direction as v, the particle is speeding up. The direction of ¢ indicates that
the direction is shifting counterclockwise. o

Summary

Instead of parameterizing a curve by displaying the varying components (x(t), y(t))
or (z(t),y(t), 2(t)), we introduced the position vector OP = r(t). If r(t) de-
scribes the position of a moving particle at “time” ¢, then r'(¢) is the velocity
of the particle and ||r'(¢)|| is its speed. The acceleration a(t) is the second
derivative of r(¢): a = r”. One may think of it as being proportional to the
force operating in the particle.

Also, we showed that if r(t) and r/(¢) are perpendicular, then the length of
r(t), ||r(t)], is constant. The converse holds: If r(¢) has constant length, then
r’(t) is perpendicular to r(t), and r(¢) - r'(t) = 0.
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EXERCISES for Section 15.1 Key: R-routine, M-moderate, C—challenging

1.[R]

6.[R]

At time ¢ a particle has the position vector r(t) = ti + 72j.
Compute and draw r(1), r(2) and r(3).

Show that the path is a parabola.

At time t a particle has the position vector r(t) = (2t + 1)i + 4¢j.
Compute and draw r(0), r(1) and r(2).

Show that the path is a straight line.

Let r(t) = 2ti + t3j.
Compute and draw r(1.1), r(1) and their difference Ar = r(1.1) — r(1).
Compute and draw Ar/0.1, where Ar is defined in part (a).

Compute and draw r’(1). NOTE: Use one set of axes for all of the graphs.

Let r(t) = 3ti + t2j.
Compute and draw Ar = r(2.01) — r(2).
Compute and draw Ar/0.01.

Compute and draw r/(2). NOTE: Use one set of axes for all the graphs.

At time ¢ the position vector of a thrown ball is r(t) = 32ti — 16¢2j.
Draw r(1) and r(2).
Sketch the path.

Compute and draw v(0), v(1), and v(2). In each case place the tail of the
vector at the head of the corresponding position vector.

At the time ¢t > 0 a particle is at the point = 2t, y = 4t°.
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(a) What is the position vector r(t) at time t?

(b) Sketch the path.

(c) How fast is the particle moving when ¢ = 17
)

(d) Draw v(1) with its tail at the head of r(1).

7.[R] Let r(¢) describe the path of a particle moving in the zy plane. If r(1) =
2.3i +4.1j and r(1.2) = 2.31i 4 4.05j, estimate

(a) how much does the position of the particle change during the time interval
[1,1.2].

(b) the slope of the tangent vector to the path at r(1).
(c) the velocity vector r'(1).

(d) the speed of the particle at time ¢ = 1.

8.[R] Let r(t) describe the path of a particle moving in space. If r(2) = 1.7i +
3.6j + 8k and r(2.01) = 1.73i + 3.59j + 8.02k, estimate

(a) how far the particle moves during the time interval [2,2.01].
(b) the velocity vector r'(2).

(c) the speed of the particle at time ¢ = 1.

In Exercises [0] and [I2] compute the velocity vectors and speeds for the given paths.
9.[R] r(t) = cos3ti+ sin 3tj + 6tk.

10.[R] r(t) = 3cos5ti+ 2sin5tj + t2k.
1L[R] r(t) =In(1 + t%)i+ e¥j + 250k,
[ (

1+2t
[R]

r(t) = sec? 3ti + V1 + t2j.

Y
N

13.[R] At time ¢ the position vector of a particle is

r(t) = 2cos(4mt)i+ 2sin(4nt)j + tk.

(a) Sketch its path.
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(b) Find its speed.

(c) Find a unit tangent vector to the path at time t¢.

In each of Exercises [T4] to [2] the figure shows a velocity vector and an acceleration
vector. Decide whether (a) the particle is speeding up, slowing down, or neither,
(b) the velocity vector is turning clockwise, counter-clockwise, or neither, at the
moment.

14.[R] Figure|[15.1.8(a)

=
&
=

e
=]
=
—
o]
=
L]
@
—
o
—_
O
—~ N N N N N Y
£

N = e
e © ® X
= = = =

o
=
j=s)

Figure 15.1.8:

(a) (b) () (d)

Figure 15.1.9:
22.[R] At time t a particle is at (4t, 16t2).
(a) Show that the particle moves on the curve y = 2.
(b) Draw r(t) and v(¢) for t =0,1/4,1/2.

(c) What happens to ||v(t)|| and the direction of v(t) for large t?

23.[R] At time t > 1 a particle is at the point (x,y) = (t,t71).
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(a) Draw the path of the particle.

)
(b) Draw r(1), r(2), and r(3).
(¢c) Draw v(1), v(2) and v(3).
)

(d) As times go on, what happens to dx/dt, dy/dt, ||v]|, and v?

24.[R] At time t a particle is at (2 cos(t?), sin(¢?)).
(a) Show that it moves on an ellipse.
(b) Compute v(t).

(c) How does ||v(t)|| behave for large 7 What does this say about the particle?

25.[R] An electron travels at constant speed clockwise in a circle of radius 100 feet
200 times a second. At time ¢ = 0 it is at (100, 0).

(a) Compute r(t) and v(t).
(b) Draw r(0), r(1/800), v(0), v(1/800).

(c) How do ||r(¢)]| and [|v(¢)|| behave as time goes on?

26.[R] A ball is thrown up at an initial speed of 200 feet per second and at an
angle of 50° from the horizontal. If we disregard air resistance, then at time t it is
at (100t,100v/3t — 16t2), as long as it is in flight. Compute and draw r(t) and v(t)
(a) when ¢t = 0, (b) when the ball reaches its maximum height, and (c) when the
ball strikes the ground.

27.[R] A particle moves in a circular orbit of radius a. At time ¢ its position vector
is
r(t) = acos(2mt)i + asin(27t)j.

(a) Draw its position vector when ¢ = 0 and when ¢ = 1.
b) Draw its velocity when ¢ = 0 and when ¢ = L.
y 4

(c) Show that its velocity vector is always perpendicular to its position vector.
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28.[R] Use a computer or graphing calculator to graph r = r(t) = (2cos(t) +
cos(3t))i + (3sin(t) + sin(3t))j; 0 <t < 27.

29.[R] If r(¢) is the position vector, v the velocity vector, and a the acceleration
vector, show that %(r XV)=rXa.

30.[M] Let r(t) = t%i + t3j.
(a) Sketch the vector Ar =r(1.1) —r(1).
(b) Sketch the vector Ar/At, where Ar is given in (a) and At = 0.1.
(c) Sketch r/(1).

(d) Find |[Ar/At —1/(1)||, where Ar is given in (a) and At — 0.1.

31.[M] Instead of time t, use the arc length s along the path as a parameter,
r =r(s).

(a) Show that dr/ds is a unit vector.

(b) Sketch Ar and the arc of length As. Why is it reasonable that ||Ar/As|| is
near 1 when As is small?

32.[M] A particle at time ¢t = 0 is at the point (xo, 9o, 20). It moves on the line
through that point in the direction of the unit vector u = cos(a)i+cos(3)j+cos(v)k.
It travels at the constant speed of 3 feet per second.

(a) Give a formula for its position vector r = r(t).

(b) Find its velocity vector v = r'(t).

33.[M] A rock is thrown up at an angle 6 from the horizontal and at a speed vy.

(a) Show that
r(t) = (vo cos(0))t + ((vosin(h))t — 16t2))j.

NOTE: At time ¢t = 0, the rock is at (90,0); the z-axis is horizontal. Time is
in seconds and distance is in feet.
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(b) Show that the horizontal distance that the rock travels by the time it returns
to its initial height is the same whether the angle is 6 or its complement

(m/2) — 6.
(c) What value of # maximizes the horizontal distance traveled?

(This is similar to Exercise [25in Section but this version uses vector ideas.)

34.[M]

2
(a) Solve Example [5 by writing the speed as \/(Céff + (%) + (%)2 and differ-

entiating.

(b) Which way do you prefer? The vector method in Example|5|or the component
method in (a)?

35.[C] At time ¢ the position vector of a particle is
r(t) = tcos(2mt)i + tsin(27t)j + tk.
Sketch the path of the particle.
36.[C] A spaceship outside any gravitational field is on the path r(t) = t%i + 3tj +

4t3k. At time t = 1 it shuts off it rockets and coasts along the tangent line to the
curve at that point.

(a) Where is it at time ¢t > 17
(b) Does it pass through the point (9,15, 50)?

(c¢) If not, how close does it get to that point? (At what time?)

37.[C] A particle traveling on the curve r(t) = In(¢)i + cos(3t)j, t > 1, leaves the
curve when t = 2 and travels through space along the tangent to the curve at r(2).
Where is it when ¢ = 37

38.[C] Drawing a picture of r(t), r(t + At), and r(t + At), explain why Hﬁ—‘; | is an
estimate of the speed of a particle moving on the curve r(t).

39.[C] The moment a ball is dropped straight down from a tall tree, you shoot an
arrow directly at it. Assume that there is no air resistance. Show that the arrow
will hit the ball. (Assume that the ball does not hit the ground first.)
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(a) Solve with the aid of the formulas in Exercise

(b) Solve with a maximum of intuition and a minimum of computation.

40.[C]

(a) At time t a particle has the position vector r(¢). Show that for small At the
area swept out by the position vector is approximately 3 ||r(t) x v(t)[|At. (See

Figure[15.1.10[) HINT: v(¢) is approximated by Ar/At.

(b) Assume that the curve in (a) is parameterized over the time interval [a,b].
Show that the arc length swept out is 3 f: lr x v| dt.

(¢) Must the curve in (a) and (b) lie in a plane for the formula in (b) to hold?

Figure 15.1.10:
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SKILL DRILL

In Exercises [41] to [47| v(¢) is the velocity vector at time ¢ for a moving particle and
r(0) is the particle’s position at time ¢ = 0. Find v(¢), the position vector of the
particle at time ¢. (These review the integration techniques of Chapter )
t

41.[C] v(t) =sin®(3t)i+ -5——j; r(0) =

€] v(t) = sin*(30)i + 25— 1(0) =

t . 1 o s

= ml"‘tan (Bt)J, r(0:l+J

3

43.0C] V(1) = t4t+ i In(t + 1)j; £(0) = 0

42.[C] v(t)

3
44.1C] v(t) = € sin(3t)i + ——3: 1(0) = i + 3]

3t+ 2
t . 2, L
45101 YO = e roar e T o T =1
n 3
16./c] v(t) = (tt:l”) i+ ﬂiTﬁjJrsecZ(st)k; r(0) =i+ +k

47.[C] v(t) =P+ (1+1)(2+1)j; r(0) = 2i —j
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15.2 Curvature and Components of Accelera-
tion

In Section we defined the curvature of a plane curve as the absolute value
of the derivative d¢/ds, where ¢ is the angle the tangent makes with the z-axis
and s is the arc length. This definition does not work for a curve that does not
lie in a plane. Why not? In this section we use vectors to define the curvature
of a curve, whether it lies in a plane or not. Curvature is then used to analyze
the acceleration vector.

Definition of Curvature

A particle whose position vector at the time ¢ is r(t) has velocity v(t). When
v(t) is not the zero vector, the unit vector in the direction of v(t) is

v )
0= = Por

To save writing so many “t”s’ we will just say

v r

T = = —
(N2

(assuming v # 0)

All that T does is record the direction of motion.

As the particle moves along the curve the direction of T changes most
rapidly where the curve is curviest. This suggests the following definition of
curvature for any curve in the plane or in space:

Let s denote the length of arc of a curve, measured from a fixed starting point.
dT

Then, curvature, s, is the length of Cg—f, K= T
s

We first check that this definition of curvature agrees with the definition
for curvature given in the case of a plane curve in Section We carry out
this check in Example [1}

EXAMPLE 1 Show that the definition of curvature as |dT/ds|| agrees with
the definition |d¢/ds| given earlier for plane curve.
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SOLUTION As Figure |15.2.1| shows, ¢ is the angle that T makes with the
z-axis. Since T is a unit vector, T = cos(¢)i + sin(¢)j. Thus

_ |4 d(cos ¢i +singj|l d(cos¢i+sin¢j)@ | '_,
s T ds N do ds sl
e dg] L dg| | do :

= |- g+ cosei) 57| = (- s + coseil |7 = | i oz —
dT d¢
so that ol = 12| o

Figure 15.2.1:
Define the radius of curvature, r, as the reciprocal of k as in Section[9.6] &

EXAMPLE 2 Compute the curvature of the helical path

r(t) = cos(t)i + sin(t)j + 3tk.

SOLUTION To find T we first must compute v = —sin(¢)i + cos(t)j + 3k
and [|v]| = /(=sin(t))2 + (cos(t))2 + 32 = V/10. Thus T = J%<_ sin(t)i +
cos(t)j + 3k).

Using the fact that speed is both v = ||v|| and the rate of change of arc
length, the curvature equals

| e e | eosti s gt
ds| - v V10 g T

The curvature is 1/10 and the radius of curvature is 10. For a helix the
curvature and radius of curvature are both constant. For this particular helix,

k=1/10 and r = 1/k = 10. o
Figure 15.2.2:

The Unit Normal N

Since T(t) is a constant length, dT/ds is perpendicular to T. By considering
small As and AT, as in Figure|15.2.2] we see that d'T'/ds points in the direction
in which T is turning. Since the length of dT/ds is the curvature k, we may
write

dT

— =&N ;

ds & 4
where N is a unit normal called the “principal normal.” That r is positive o
reminds us that dT'/ds and IN point in the same direction. The vectors T and :

N, if placed with their tails at a point P on the curve, determine a plane. The
part of the curve near P stays close to that plane. (See Figure|15.2.3])
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The Acceleration Vector and T and N

The acceleration vector, a, is defined as the second derivative of the position
vector, r. We will show that a is parallel to the plane determined by T and N.
That is, a can be written in the form ¢;T + ¢;IN, where ¢; and ¢, are scalars,
which we will express in terms of the motion of the particle.

Since a = Cfl—;’, we begin by computing v in terms of T and IN. This is easy:
by the definition of T, v = vT, where v = ||v||, the speed. N is not needed to
express the velocity vector v.

Thus
= D4t product rule
— %T +vdLds = & and chain rule
= LT 4 24T

Thus, replacing Ccll—r‘sr with kKN, we find

Acceleration in terms of T, N, and curvature (k)

ae Cop 2N (15.2.1)
= —F U K L.
at?

r=1/k (kK #0)

If k is not 0, then we have

Acceleration in terms of T, N, and radius of curvature (r)

d?s v?
= —T+ —N. 15.2.2
a 72 + ., ( )

Tangential component of

acceleration: a-T = % The tangential component of acceleration, %, is positive if the particle

Normal component of is speeding up and is negative if the particle is slowing down. The normal
acceleration: a- N = > component of acceleration, v?/r, is always positive.

' Figure [15.2.4] indicates how a may look relative to T and N. In both cases

T turns in the direction indicated by N. In Figure that means that T

is turning counterclockwise.

Computing Curvature,

We can compute the curvature directly from its definition. There is also a
shorter formula for k. To develop this formula, we compute

d2
Txa=T x (d—;T n U%N> . (15.2.3)
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Figure 15.2.4: The tangential and normal components of acceleration: (a)
d?s/dt* > 0 and (b) d?s/dt* < 0.

We do this for two reasons. First, T x T = 0. Second ||T x N| =1, since T
and N span a unit square. By (|15.2.3)), then, we have
T x a = kv*(T x N).

Thus
|T x a|| = kv?

Recalling that T = v /v, we have

X
Ivxal

(Y

and finally

Curvature in terms of speed, velocity and acceleration

— M (15.2.4)
v

We illustrate ((15.2.4]) by applying it to the helical path of Example .

EXAMPLE 3 Compute the curvature of the helical path r(t) = cos(t)i +

sin(t)j + 3tk using ([15.2.4)).
SOLUTION We compute v, v and a. First, v = —sinti + costj + 3k, so

v = +/(—sin(t))2 + (cos(t))? + 32 = v/10. Then
_dv
Codt

a = —cos(t)i — sin(?)j.
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Figure 15.2.5:

Next we compute v X a:

i ik
det | —sin(t) cos(t) 3 = 3sin(t)i — 3cos(t)j + (sin(t) + cos?(t))k
—cos(t) —sin(t) 0
= 3sin(t)i — 3cos(t)j + k.

Finally,

_ [vxal _ [3sin(t)i — 3cos(t)j + K|
v3 (v/10)3
v/ (3sin(t))? + (=3 cos(t))? + 12
\/m?,

k

<

Though curvature is defined as a derivative with respect to arc length s,
we seldom use that definition in computations.

First of all, we seldom can obtain a formula for the arc length. Second, if
the curve is described in terms of a parameter ¢, such as time or angle, then
we can use the chain rule to express dT/ds as the directly calculable

The Meaning of the Components of a

If no force acts as a moving particle, it would move in a line at a constant
speed. But if there is a force F, then, according to Newton, it is related to the
acceleration vector a by the equation F = ma (when the mass m is constant.)
So we can think of a as a representative of the force F.

If F is parallel to T, the particle moves in a line with an acceleration
dv/dt = d*s/dt*. So we would expect a to equal d*s/dt*T.

If F is perpendicular to T, it would not change the speed, but it would
push the particle away from a straight path, as shown in Figure [15.2.5

If you spin a pail of water at the end of a rope (or a discus at the end
of your arm) you can feel this force. It is proportional to the square of the
speed and inversely proportional to the length of the rope. No wonder driving
a car around a sharp curve too fast can cause it to skid: the friction of the tire
against road cannot supply the necessary force (whose magnitude is the speed
squared divided by the radius of the turn) to prevent skidding.
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The Third Unit Vector, B

The vector T x N has length 1 and is perpendicular to both T and N. We
may think of it as a normal to the plane through a given point P on the curve
parallel to T and N. The unit vector T x N is denoted B and is called the
binormal. It is shown in Figure [15.2.6

Figure 15.2.6:

The three vectors, T, N, and B, may change direction as the point P
moves along the curve. However, they remain a rigid frame, where T indicates
the direction of motion, N the direction of turning, and B the tilt of the plane
through T and N if their tails are at P.

Summary

We defined the curvature of a curve in space (or in the zy-plane) using vectors.
This definition agrees with the definition of curvature for curves in the zy-
plane given in Section 0.6l The curvature, or its reciprocal, the radius of the
curvature, appears in the normal component of the acceleration vector.

The section concluded with the definition of the binormal, B = T x N,
which records the tilt of the plane determined by T and IN.
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The plane that contains the
point P and the two vectors
T and N is called the
osculating plane. See also
Section 0.6

Several different formulas
for the curvature were found
in this section. More
formulas for k are found in
Exercises 21} 22] and 23] In
reality when given explicit
formulas for a curve, it is
often easiest to use a
computer algebra system
such as Mathematica or
Maple to find the curvature
and the vectors T, N, and
B.
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EXERCISES for Section 15.2 Key: R-routine, M-moderate, C—challenging

In Exercises [1| to |4} v denotes the velocity and a denotes the acceleration. Evaluate
the indicated scalar component.
1.[R] What is v-T?

2.[R] What isa-T?
3.[R] What is v- N7
4.[R] What is a- N?
5.[R]

(a) Why is T x N a unit vector?

(b) Why is N perpendicular to T?

In Exercises [0] and [7}, v and a are given at a certain instant. In each case, find the
(i) curvature, (ii) radius of curvature, and (iii) d%s/dt>.

6.[R] v=2i+3j+4k,a=i—-j+k

7.R] v=i+j+k,a=—-i+j+k

In Exercises [§ and [0] compute the curvature using the formula x = |dT/dt|/v.
8.[R] r(t)=ti+t}j+tk

9.[R] r(t) =3cos(2t)i+ 3sin(2t)j + 4t

In Exercises 10| and compute the curvature using the speed, velocity, and accel-
eration, that is, with the formula x = H\%a\\

10.[R] r(t) =ti+t%j+ 3k

11.[R] r(t) = 3cos(2t)i + 3sin(2t)j + 4tk

12.[R] We showed that d|v|/dt = v - a/|v|, using vectors. To emphasize the value
of the vector approach, derive the same result starting with the fact that

= (5 + () + ()

13.[R] Let a and b be constants. A particle moves in a helical path described by

r(t) = 3 cos(at)i+ 3sin(at)j + btk
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Compute its curvature.

(a
(b

As b — oo what happens to the curvature?
(
(d

)
)
c¢) Why is the answer to (b) reasonable?
) As a — oo, what happens to the curvature?
)

(e) Why is the answer to (d) reasonable?

14.[M] Show that the formula vl i) the case r(z) = zi+ f(x)j + 0k, gives the

03

formula in Section (9.6 for curvature of the curve y = f(x).

15.]M] Show that % is a unit vector,

(a) by drawing r(s + As) and r(s) and considering %‘2“”(3)

(b) by writing it as (dr/dt)/(ds/dt).

16.[M] Express the area of the parallelogram spanned by v and a in terms of the
curvature and speed.

17.]M] If a particle reaches a maximum speed at time to, must d?s/dt? be 0 at to?
Must d?r/dt? be 0 at tg? Assume the time interval is (—o0, c0).

18.[M] If r(t) is the position vector, is d?r/dt? parallel to d’r/ds?, where s denotes
arc length?

In Exercises [19] and [20] the figures show the velocity and acceleration vectors at a
point P and a curve. Use that information to find (i) v, (ii) d?s/dt?, (iii) kv?. Then
(iv) find 7, the radius of the curvature, (v) draw the osculating circle, and (vi) using
the osculating circle, draw an approximation of a short piece of the path near P.

19.]M] Figure [15.2.7(a)
20.[]M] Figure [15.2.7|(b)

Calculus December 4, 2010



1216

CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Figure 15.2.7:
21.[M]

Jane: After doing Exercises [19] and I have a simpler way to get a formula for
curvature. Just look at the right triangle whose hypotenuse has length ||all
and its component along v. By trigonometry,

kv® = ||al|| sin(a, v)]. (15.2.5)

All that’s left is getting sin(a, v) out and cos(a,v) in because we know how
to express cos(a, v) in terms of a dot product. Squaring (15.2.5)) gives

k2t = ||a|? (1- cos’*(a,v)) .

If you use the fact that

cos(a,v) =

~ lafl(v)”

and a little algebra, you get

My way is simpler than using the cross product. I guess the authors don’t
understand trigonometry.

(a) Fill in the missing steps.

(b) Check that Jane’s formula agrees with ([15.2.4)).

22.[M]

Sam: You used trigonometry. I can do it with just the Pythagorean Theorem. Look
at that triangle with hypotenuse |a|. Its two legs have lengths |d%s/dt?| and

kv2. So
d?s\ >
lall = (G ) + (2P

Solve this for k. JANE But you have to express everything in vectors. We're
in the chapter on vectors.

Sam: O.K. First |[al|? =a-aand v? = ||v|]? =v - V.

Jane: But d?s/dt??
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Sam: That’s dv/dt. So I just differentiate both sides of v? = v - v, getting 21)% =
2v-a. So dv/dt = (v-a)/v. So (dv/dt)? = (v-a)?/v? So
(v-a)
ara=-"—o-— + K2 (v?)%
Then solve for x2.

I get the same result that you got in Exercise It seems quite straightfor-
ward. The authors should have used my formula.

Find the formula for curvature that is obtained from this line of reasoning.

23.[M] This equation provides yet another way to find a formula for curvature.
Consider the right triangle whose hypotenuse is |a| and whose legs are parallel to T
and IN. Show that

RPot = () + () + (5)* - (8)%
NoTE: Two dots over a variable denotes the second derivative of the variable with
respect to t.

24.[M] Assume that you are prone to car sickness on curvy roads such as Highway
1 north of San Francisco or the small state highways in southern Ohio. Which mat-
ters more to you, |dT/ds| where s is arc length or |dT/dt| where t is time? Explain
the difference in the two quantities.

&r
ds?

25.[M] Let r = r(s), where s is arc length. Show that the curvature is k = ‘

26.[M] Consider curves situated on the surface of a sphere S of radius a. (Recall
that a sphere is the surface of a ball.)

(a) Show that there are curves on S that have very large curvature.
(b) Exhibit a curve whose curvature is as small as 1/a.

(c) Show that there are no curves with curvature smaller than 1/a. HINT: See

Exercise |Z5_| and start with r - r = a2.

The Frenet formulas concern the derivatives of T, B, and N with respect to arc

length s:
dT dB dN
ds 0 ds T ds phET
Here x is curvature and 7 is “torsion,” the measure of the tendency of the plane

through T and N to turn.

Exercises [27| and [28| develop the formulas for dB/ds and dN/ds.
27.[M] This exercise develops dB/ds.
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(a) Why is dB/ds perpendicular to B?
(b) Why are there scalars p and ¢ such that % = pT + gN?
¢ sing the rfact that B an are always perpendicular show that
Using the f hat B and T 1 dicular sh h

(pT +¢gN)—-T =0.

(d) From (c) show that p = 0. Thus dB/ds = gN. The scalar function ¢ is usually
denoted 7 (“tau”). Thus dB/ds = TN.

28.[M] This exercise develops dN/ds.
(a) Why are there scalars ¢ and d such that % =cT + dB?

(b) Using the fact that B and N are always perpendicular, show that 7N - N +
B (cT+dB)=0.

(¢) From (b) show that d = —7.

(d) Similarly, starting with T- N = 0, show that ¢ = —x. Thus % = —rT —7N.

29.[M] You are swinging a pail of water at the end of a rope. You slowly increase
the amount of rope until the radius of the circle the pail sweeps out doubles. Does
the force of your pull remain the same? Increase? Decrease? Explain.

30.[M] In Example [I| we used calculus to show that for a plane curve |dT/ds| =
|dp/ds|, when ¢ is the angle that T makes with the z-axis. This suggests that for
small values of As, |[A¢| = |¢(s + As) — ¢(s)| is a good approximate of |AT| =
T (s + As) — T(s)].

(a) Draw T(s+ As) and T(s) with their tails at the origin.

(b) Using the diagram in (a), show why you would expect |[AT| and |A¢| to be
close to each other in the sense that |AT/A¢| would be near 1.

31.[C] Show that a curve that has a constant curvature x = 0 is a line. HINT: Start
with the definition, x = |[dT/ds|. NOTE: Don’t say, “Oh, it’s a curve with infinite
radius of curvature. So it must be a line”.

32.[C] Express dT/ds in terms of the curvature and N.

33.[C]
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Sarah: I don’t like the way the authors got the formula for curvature. I'm sure
they didn’t need to drag in the components of the acceleration vector. It’s
not elegant.

Sam: They're trying to save space. Calculus books are too long.

Sarah: My way is neat and short: just calculate

|

To begin I write T as v/||v||. Then I just differentiate the quotient v/||v]|.
Along the way I'll need d||v||/dt, but I get that by differentiating ||v|* = v-v.
That will give me

d7T
ds

[Fall

_ ae
vl

dT via— (a-v)v

= e (15.2.6)

Sam: That’s a nice formula but its not got the cross product.

Sarah: If you like cross products, then use to find (dT)/ds-dT/ds and call
on that identity that appeared when getting the length of the cross product
|A x B|| (page[1153)). T'll let you fill in the steps. I don’t want to deprive you
of a little fun.

Fill in all the missing steps.
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Figure 15.3.1:

15.3 Line Integrals and Conservative Vector
Fields

In Section we defined the integral of a function f(z) over an interval [a, b]
as the limit of sums of the form ), f(¢;)Axz;. Now we use similar definitions
for integrals over curves. In the next section we apply these concepts to work,
fluid flow, and geometry.

The Integral with Respect to Arc Length s

Let r(t) be the position vector corresponding to a parameter value ¢ in [a, b].
Assume that r(t) sweeps out a curve C' with a continuous unit tangent vector
T(t). Let f be a scalar-valued function defined at least on C. We will define
the integral of f over C' with respect to arc length.
. D —_—
Partition [a,b] by tg = a, t1, ..., t, = b and let r(ty) = OP,, r(t;) = OP,
—) . . . . .
r(t,) = OP, be the corresponding position vector as shown in Figure [15.3.1]
The points Fy, P, ..., P, break the curve into n shorter curves of lengths
Asy, Asg, ..., As,. Then form the Riemann sum

zn:f(Pi)Asi (15.3.1)

The limit of sums of the form ((15.3.1)) as all the lengths As; are chosen smaller
and smaller is denoted [, f(P)ds. That is,

n

[ Py ds = Jim S sP)as
C i=

This limit does not depend on the particular parameterization. In particular
it does not depend on the direction in which the curve is swept out. For
computational purposes we have

C/ f(P) ds = / 7(P)

EXAMPLE 1 A fence is built as a semi-circle of radius a with center at
the origin. At the point on the circle of angle 6, its height is sin®(). What is
the area of one side of the fence?

SOLUTION Let f(P) be the height of the fence at P = (r,0) in polar
coordinates. (See Figure [15.3.2(a). Then f(r,0) = sin?(#). Let 6 be the

ds
— | dt
dt

December 4, 2010 Calculus



§ 15.3 LINE INTEGRALS AND CONSERVATIVE VECTOR FIELDS

1221

Figure 15.3.2:

parameter, 6 in [0, 7]. Let s = af be the arc length subtended by the angle 6,
as in Figure [15.3.2{b). Then ds = adf and we have

T w/2
Area = /sinz(e) ds = /sinz(ﬁ)a do =2 / sin?(0)a df = 2(1% = %a‘
c 0 0

The Integrals with Respect to z, y, or 2

The integral with respect to arc length is so similar to the integral over an
interval that it presents little novelty. However, the integrals with respect to
x, y, or z are quite different.

As before, we start with a parameterized curve C' and a scalar function
f defined at least on C'. We divide the interval [a,b] into n sections by ty =
a,ty, -+ ,t, = b. For convenience, take the sections to be of equal lengths.

Let r(t;) = (z(t:), y(t:), 2(:))-

Instead of considering the arc lengths As; of each short interval we consider
instead the change in the x coordinate, x;11 — xv; = Ax;. This change can be
positive or negative. We then make the following definition.

Calculus December 4, 2010



1222

CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

closed curve
simple curve

The integral of f over the curve C' with respect to z is the limit of sums of the
form

Z fx(ts), y(t:), 2(t:)) Az

as n approaches infinity. It is denoted

/f dr or C[f(x,y,z) dr or /f(P) dx

C C

For computational purposes, when C' is parameterized, |, o | dz is expressed as
S F(t),y(t), 2(8) % dt.

In contrast to an integral with respect to arc length, the value of fc f(P) dx
depends on the orientation in which the curve is swept out. If we reverse the
orientation, the expression x;.1 — x; changes sign. For instance, if z is an
increasing function of the parameter in one parameterization, then Ax; =
x;11 — x; is positive; but in the reverse orientation x is a decreasing function
of the parameter, so Ax; = z;,1 — x; is negative.

If —C' denotes the curve C' swept out in the opposite orientation, then

[Py ae=- [ 1Py as

In any case, it is necessary to pay attention to the orientation of C'.

If r(a) = r(b), that is, the finish is the same as the start, the curve is called
closed. If the curve does not intersect itself except, perhaps, at its endpoints,
we call the curve simple. These ideas are independent. A curve can be neither
closed nor simple, closed but not simple, simple but not closed, or both simple

and closed. (See Figure [15.3.3])

Figure 15.3.3: ARTIST: Please replace G with r, throughout.
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When C'is a closed curve we will usually use the notation 550 F - dr for a
line integral.

EXAMPLE 2 A smooth closed convex curve C' is situated in the first
quadrant, as shown in Figure |15.3.4] Find §Cy dz if the curve is oriented

counterclockwise.
SOLUTION Let A and B be the contact points of the two vertical tangents
to C. Break C' into a lower curve C'; from A to B and an upper curve Cs from
B to A, both swept out counterclockwise.

First we interpret fCl y dx. On Cy, Ax; = x;41 — x; is positive. Let y; be
the y-coordinate of some point on C; above [z;, z;11]. Then (x;11 — z;)y; ap-
proximates the area under C and above [z;, x;11], as shown in Figure (a)

rr
i

Figure 15.3.5:

We may think of “y dx” as the local approximation to the area under C}.
Thus
/ y dxr = area below ] and above the z-axis.

C1

On (s, x is a decreasing function of the parameter. Now Ax; = z;41 — z;

is negative, as Figure (b) suggests.

Again let y; be the y-coordinate of a point on the curve Cy above the
interval whose ends are x; and ;1. Now (z;11 — x;)y; is the negative of an
approximation of the area below 5y and above the z-axis. We conclude that

/ y dx = negative of the area below C5 and above the x-axis.
C1
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Since [,y dv = [, y dv+ [ y dw, it follows that when C' is oriented coun-
terclockwise

/ y dxr = negative of the area inside C'.

C
<

The integrals of f over a curve C' with respect to y or z are defined similarly
and denoted

/ f(x,y,2) dy and / flz,y,2) d.
C C

The integrals with respect to x, y, or z are called line integrals. It is
more natural to call them curve integrals, but by tradition, they are known as
line integrals.

The most general line integral is the sum of the three types,

/ (P(2,y,2) dz+ Q(x,y,2) dy + Rz, y, 2) dz) (15.3.2)

The “integrand” for this line integral, Pdx + Qdy+ Rdz = F - dr, is sometimes
referred to as a differential form. This language will be encountered again
in Chapter [18]

Of course, it we are dealing only with curves in the xy-plane, then the most
general line integral would be

[ (Ple.y.2) do+QUay. ) ). (15.3.3)
c
Both (15.3.2) and (|15.3.3]) are easily expressed in the compact language of

vectors.

A vector field assigns a vector to each point in some region of space (or
the plane). The use of the term “field” instead of “function” is in deference
to physicists and engineers, who speak of “magnetic field” and “electric field,”
both of which are examples of vector fields.

By comparison, a function that assigns a scalar (real number) to each point
in a region in space (or the plane) is called a scalar field. The function that
assigns the temperature at a point in space is a scalar function; so is the
function that describes the density at a point.

The typical vector field in space is F(z,y,2) = P(x,y,2)i + Q(z,y,2)j +
R(z,y, z)k where P(x,y, 2), Q(z,y, z), and R(x,y, z) are scalar fields. A vector
field F in the plane is described by two scalar fields: F(z,y) = P(z,y)i +

Q(x,y)j.
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To take advantage of vector notation, we write the formal vector dr =
dxi+ dyj + dzk. Then ((15.3.2)) becomes simply

/F(x,y,z) - dr or /F(r) -dr.

C C

/F-dr.

c
In this setting, the dot product F - dr is called a differential term.
For computational purposes, this may be written as

Or, even simpler yet,

[ Fa.gto). ) 5 e

a

or simply :

dr
F. —dt.
J*g

Line integrals in the plane, such as , would be expressed in exactly the
same way.

Another standard notation uses the unit vector T = %. Writing dr as Tds
we rewrite [, F-dras [,F-T ds. (Why is & = T?)

The integrand depends on the orientation of the curve because switching
the orientation changes T to —T.

The next example shows that different paths with the same initial point
and terminal point may yield different integrals.

EXAMPLE 3 Let C} be the path from (1,0) to (0,1) along the unit circle
with center at the origin. Let Cy be the path that starts at (1,0), goes to (1,1)
on the line x = 1, and then to (0,1) on the line y = 1. Compute fCl xy dx
and |, o LY dx.
SOLUTION Figure[15.3.6]shows the two paths C; and Cy, together with two
more curves, C3 and (4, that also will be used.

To compute fCl xy dz, we parameterize the circle by angle 6 in [0, 7/2].

Thus z = cos(d) and y = sin(f) and dz = -2 df = —sin(6) df

/2
/:By der = /(cos(@))(sin(@))(—sin(@)) db
ol 0
/2

_ / sin?(0) cos(9) df 5| =y

0
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We used u = sin(#) to find
an antiderivative of To calculate fcz xy dx we break Cy into two straight paths: C3 from (1,0)
sin®(6) cos(0). o (1,1) and Cy from (1,1) to (0,1). (See Figure [15.3.6])
On C5, z =1 and dxr = 0. Thus ng xy dxr = 0.
On Cy, y = 1 and = begins at 1 and ends at 0. A standard parameterization
of Cyisx=1—t,y=1for 0 <t <1. Then

1 1

/a:ydx:/(l—t)(l)(—dt):/(t—l):g—t

Cy 0 0

1

0

On C4 we could have used the parameter x itself, which starts at 1 and
1

1 z
Thus on the path C5 made up of C5 followed by C; we have f02 xy dxr =
0+ (-1/2) =—1/2.
The line integrals |, o Ty dz and [, o LY dx are not equal even though they
start at the same point (1,0) and end at the same point (0,1) and have the

same integrand. o

goes down to 0. In that case we would have fc4 xy dr = flo rdr = %2

As Example (3| shows, [ o Ty dx is not determined by the end points of the
curve C. This raises a question: Which line integrals [ o(Pdr+Q dy+ R dz)
depend only on the end points of C'7

EXAMPLE 4 Compute [, @j’;—jz{ﬂy on the two paths, C; and C5 in Ex-
ample [3]
SOLUTION On the circular path C; we use 6 as a parameter and have

/2 o
rdr+ydy (cos(#))(—sin(#) df) + sin(#)(cos(d)) dd [0
C/W N 0/ cos?(6) + sin?(6) = / 1d9 =0.

Next we compute the integral on the linear path from (1,0) to (1,1) to
(0,1). The path from (1,0) to (1,1) is C5. There = 1, so dz = 0. Therefore,
using y itself as the parameter, we find that

/xdx+ydy B /1-O+ydy_/ V4
2+yr i+ )1+

Cs C3 Cs
1
B / y dy _1n(1+y2) 1_ln2
) 1y 2 |, 2

0

On the path Cy, from (1, 1) to (0, 1), we use z as the parameter starting at
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r=1and y =1, so dy = 0 and we have

0
/azd:c—l—ydy _/ vde @@+ 1)°  In2
2492 ) 2241 2 L2
Cy 1
Thus f02 xadﬁ+§2dy = —ln72 + ln72 = 0. This is the same value as the integral
over the circular arc C}. o
In Section [18.1) we will show that |, xfﬁ—w depends only on the end
points of C'. That is, if C; and Cy are any two curves from point A to point
B then
/a:dx+ydy _/:de+ydy
22 4 12 o 2 + 2 )
C1 CQ

However, as Example |3 shows, fc xy dx does depend on the particular
curve C' joining two points.

An expression of the form P(z,y,z) de + Q(x,y,z2) dy + R(x,y,z) dz is
called conservative if its line integrals depend only on the endpoints of the
curves over which the integration takes place. For instance,

Y

——dr+ =" dy+0dz
1'2 + y2 1'2 + y2 Yy

is conservative. Better yet, in Section [18.6| we will develop a simple criterion

for determining whether a form P dr + @) dy + R dz is conservative. In

applications, such as gravity, conservative expressions are much easier to work
with.

Summary

We defined four integrals for curves in space (three for curves in the zy plane).
The first, [, (f(P)ds, is the limit of sums of the form »°" | f(P;)As;, which
is an integral defined in Chapter |§| The other three integrals [, f(P) dx,
Jo [(P) dy, [, f(P) dz are quite different. For instance, the first is the limit
of sums of the form )" | f(P;)Ax;, where x is the z-coordinate of a point on
the curve. Putting these three together we have the general line integral

/(P(:E,y,z) dx + Q(x,y,z) dy + R(x,y, z) dz) = /(P dx 4+ Q dy + R dz).
c c

Introducing the vector field F(z,y,2) = Pi+ Qj + Rk, we developed three
compact notations for a line integral [, F -dr, [, F-r'dt , and [, F-T ds.
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EXERCISES for Section 15.3 Key: R-routine, M—moderate, C—challenging

1.[R] Following the approach in Example |2 show that if C' were oriented clockwise,
then fc y dx would equal the area inside C.

2.[R] Let C in Example [2 be oriented counterclockwise. Show why fc x dy equals
the area inside C.

3.[R] Show that the area within a convex curve C is 3 ¢,(z dy — y dz) if C is
oriented counterclockwise.

4.[R] (See Example ) Compute fC xy dz on the path that goes from (1,0) di-
rectly to (0,0), and then directly on to (0,1).

5.[R] If F(P) is perpendicular to the curve C' at every point P on C, what is
Jo F - dr?
6.[R] If F(P) equals T(P) for P on the curve C, what is [ F - dr?

7.[R] Let a and b be positive numbers. Let C' be the curve bounding the rectangle
with vertices (0,0), (a,0), (a,b), and (0,b), where a and b are positive numbers. By
calculating fc x dy with C oriented counterclockwise, confirm the result of Exam-
ple 2l That is, check that the line integral over the closed curve C equals the area
of the rectangle.

8.[R] Let a and b be positive numbers. Let C' be the curve bounding the triangle
with vertices (0,0), (a,0), and (0,b). By calculating ¢,y dz with C oriented clock-
wise, show that the integral equals the area of the triangle.

9.[R] Let C be the curve bounding the circle of radius a with center at the origin.
By calculating fC x dy counterclockwise, check that the integral equals the area of
the circle.

10.[R] Let F(z,y,2) = zi+yj+ zk =r. Let C be any curve starting at (xo, yo, z0)
and ending at (z1,y1,21). Calculate [, F - dr by rewriting it as f;(F -1') dt. Note
that fC F - dr depends only on the endpoints of C.

In Exercises|11|to sketch the curve described by the given parameterization and
label its start and finish.
11.[R] r(t) =ti+%j, t in [0,1].

12.[R] r(t) = (1 —¢t)i+ (1—1)3j, tin [0,1].
13.[R] r(t) = (2t +1)i+ 3tj, ¢ in [0,2].
14.[R] r(t) =4costi+ 5sintj, ¢t in [0, 1].
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In Exercises [15] to [I8], parameterize the given curve with the indicated orientation.

15.[R] Figure a)
[R] Figure b)
17.[R] Figure c)
[R] Figure d)

—_— N /N /=

Figure 15.3.7:
In Exercises [19] to 2] evaluate the given line integrals.
19.[R] [,y dz, where C is the straight line from (1,1) to (3,

3)
20 [R] Jo@? dy, where C is the straight line from (2,0) to (2,5)
21.[R] [, a? dy, where C is the straight line from (3,2) to (7,2).
22.[R] [, (zy dz + 2? dy), where C is the straight line from (1,0) to (0,1).

In Exercises 23 to 26l evaluate with minimum effort. C' is a counterclockwise curve
bounding a region of area 5.
23.[R] ¢, 3y dx

24.R] $.(2y dx + 6z dy)
5.[R] ¢$[2z dz+ (z+y) dy|

2
26.R] §.[(x+2y+3) dr+ (2z — 3y +4) dy]

In Exercises the value of the line integral depends only on the endpoints, not on
the particular path that joins them. Exercises and are examples where the
path matters.

27.[R] Evaluate [, (zy dz + 7 dy) on

(a) the straight path from (1,1) to (2,4);

(b) the path from (1,1) to (2,4) that lies on the parabola y = x2.

28.[R] Evaluate [, dy on
(a) the straight path from (0,0) to (7/2,1);

(b) the path from (0,0) to (w/2,1) that lies on the curve y = sin(x).
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In Exercises [29] and [30] the values of certain line integrals are given for curves ori-
ented as shown. Use this information to find fc f dy. HINT: Pay attention to the
orientations. carefully.)

29.[R] Figure [15.3.8(a)
30.[R] Figure [15.3.8(b)

(a) (b)

Figure 15.3.8:
31.[M] Let the closed curve C bound the region R, which is broken into regions R,
1 < i <mn, and each R; is bounded by its own C;. Let F be a vector field in R. If all
the n+1 curves are swept out counterclockwise, show that ¢, F-dr = >, 5€Ci F.dr.

32.[M] Show that [, 5 _f;’; is not conservative by calculating [, % on two paths

joining (1,0) to (1,1) for which the integrals are not equal.
33.[M] Let k be a constant. Show that ¢,k dy = 0.

34.[C] Let r = r(t) describe a curve C in the plane or in space. What is the
geometric interpretation of
1
/Hr x T ds?
2
C

NOTE: See also CIE

35.[C] If ¢ represents time and r(t) describes a curve C, what is the meaning of
fc T - dr? HINT: Draw a picture of a small section of the curve.
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15.4 Four Applications of Line Integrals

In the previous section we defined line integrals and showed that j;c y dr and
550 x dy in the plane are related to the area of the region bounded by the closed
curve C'. In this section we show how line integrals occur in the study of work,
fluid flow, and in the angle subtended by a planar curve.

Each application will be developed by following the same basic idea as we
used when defining definite integrals: divide the domain into smaller pieces,
approximate the quantity on each piece, add the contribution form each piece,
and take a limit as the pieces get smaller and smaller.

Work Along a Curve

Consider a force F that remains constant (in direction and magnitude) and
—
pushes a particle in a straight line from A to B. Let R = AB. The work
accomplished by F' is defined as F - R:
Work = F - R.

This is the product of the scalar component of F in the direction of R and the
distance the particle moves. (See Figure |15.4.1])

But what if the force F varies and pushes the particle along a curve that

is not straight? (See Figure |[15.4.2|(a).)

Figure 15.4.2:

Let’s follow the process used in Section that led to line integrals.
Assume the curve, C, is parameterized by r(t) for ¢ in [a,b]. Partition [a, b] by
— — -—
to = a, tl, sy th = b and let I'(to) :O.Po, I'(tl) = Opl, ceey I'(tn) :OPn, be
the corresponding position vectors. (See Figure [15.4.2(b).) The points P, P,
..., P, break the curve into n shorter curves. The work done by F along C
_—

between P; and Py, is approximately F(r(¢;)) - Ar; where Ar; = P,P;1. The
total work done by F along C' is approximated by
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Figure 15.4.3:

Taking the limit as max; || Ar;|| approaches 0, we conclude

Work done by F along C' is /F - dr. (15.4.2)
C

If F = Pi+ Qj, where P and @ are functions of x and y, and dr = dxi + dyj,
then

Work done by F = Pi+ Qj along C' is /(P dx + Q dy).
C

Physicists and engineers commonly use as a starting point when ex-
pressing work.

The vector notation F - dr is far more suggestive than the scalar notation
P dx + @ dy. It reminds us that “work is the dot product of force and
displacement.” That implies that only the component of the force in the
direction of motion accomplishes work.

EXAMPLE 1 How much work is accomplished by the force F(x,y) = zyi+
yj in pushing a particle from (0,0) to (3,9) along the parabola y = x2?
SOLUTION

Figure |1 shows the path of the particle. Call this path C. Then

Work = /F~dr:/(ocyi+yj)'(dxi—l—dyj):/(xy dx +y dy).
C C C

To evaluate this line integral, let us use z as the parameter, with x in [0, 3].
Then y = 2% and dy = 2z dz, so

3 3
/(azydm—i—ydy) = /(x~x2d:1:—|—x (22 dx)) /3 =
0 0

C
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Circulation of a Fluid

Consider a fluid (liquid or gas) flowing on a portion of the xy plane. Let its
density and velocity at the point P be given by o(P) and v(P), respectively.
The product

F(P)=o(P)v(P)

represents the rate and direction of the flow of the fluid at P. Now put an
imaginary closed wire loop C' on the fluid as in Figure [15.4.4] or Figure [15.4.5
and keep it fixed. In Figure [15.4.4] C surrounds a whirlpool and there is a
tendency for fluid to flow along C' rather than across it. The opposite case is
shown in Figure [15.4.5] where most of the fluid flow is across C' rather than
parallel to it. The component of F parallel to the tangent vector determines
the tendency of the fluid to flow along C. Now, F - dr represents flow in the
direction of dr, a small section of the curve C'. Thus

]{F-dr

C

represents the tendency of the fluid to flow along C'. If C' is counterclockwise
and fo F - dr is positive, the flow of F would be counterclockwise as well. If
§CF - dr is negative, the flow would tend to be clockwise. The line integral
fo F - dr is called the circulation of F along C'.

Note that the very same integral, fo F - dr, occurs in the study of work and
in the study of fluids.

EXAMPLE 2 Find the circulation of the planar flow F(z,y) = zyi + yj
around closed curve that follows y = 2% from (0,0) to (3,9), then horizontally
to (0,9) and straight down to (0, 0).

SOLUTION The closed curve C' comes in three parts: C' = Cy + Cy + Cs
where Clisy =22 for 0 <2 <3, —Cyisy=19,0<x < 3,and —Csis x = 0,
0<y<9.

The circulation is

%F-dr = fF'dr+7{F~dr+7§F-dr

C Cq Co C3
= ]{F~dr—7{F-dr—]{F~dr.
Ch —Cy —C;5

Notice that we work with —C5 and —C'3 because they are easier to parameterize
than Cy and Cjs.

Calculus December 4, 2010
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Figure 15.4.6:

Figure 15.4.7:

By Example |l} ¢ F-dr = 213 And, by direct calculations:

]{F-dr =

—Cy

and
]{F'dr =

—C4

81
92 dx = —

(92,9) - (dx,0) = 5

o\w
o\w

O\w

9
81
(0,y)- <0,dy) = /y dy = -
0

The circulation of F around C' is fo F.dr = % — % — 871 = _781. o

Loss or Gain of a Fluid (Flux)

Imagine again that we place an imaginary wire loop C' on the surface of a
stream.

We raise the question: At what rate is fluid escaping or entering the region
R whose boundary is C'?

If the fluid tends to escape, then it is thinning out in R, becoming less
dense at some points. If the fluid tends to accumulate, it is becoming denser
at some points. (Think of this ideal fluid as resembling a gas rather than a
liquid; gases can vary widely in density while liquids tend to have constant
density.)

Since the fluid is escaping or entering R only along its boundary, it suffices
to consider the total loss or gain across C'. Where v, the fluid velocity, is
tangent to C', fluid neither enters nor leaves. Where v is not tangent to C,
fluid is either entering or leaving across C, as indicated in

The vector n is a unit vector perpendicular to the curve C' and pointing
away from the region it bounds. It is called the exterior normal or outward
normal. Recall that F = ov, the product of density and velocity, so F and v
have the same direction.

To find the total loss or gain of fluid past C| let us look at a very short
section of C, which we will vew as a vector dr. How much fluid crosses dr in
a short interval of time At.

During time At the fluid moves a distance ||v||At across dr. The fluid that
crosses dr during the time At forms approximately the parallelogram shown
in Figure [15.4.7]

The area of the parallelogram is the product of its height h and its base
||dr||. That is,

Area of parallelogram = || proj,(vA?)||||dr|| = (vAt) - n||dr|[(15.4.3)
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Since the density of the fluid is o,
Mass in parallelogram = o(vAt)-n|/dr|| = (ov) - n|/dr||At = F - n||dr||At
Thus the rate at which fluid crosses dr per unit time is approximately

F - n|dr||At

N F - nldr|. (15.4.4)

Since dr approximates a short piece of the curve, its length ||dr|| approximates
the length ds of a short piece of the curve. Therefore, the rate at which the
fluid crosses a short part of C, of length ds, is approximately

F -n ds.
Hence the line integral
% F-nds
c

represents the rate of net loss or gain of fluid inside R. It it is positive, fluid
tends to leave R, and the mass of fluid in R decreases. If it is negative, fluid
tends to enter R, and the mass of fluid in R increases. In short,

Net loss or gain of fluid inside the region bounded by C' is ]{ F -n ds.
R

The quantity fo F - n ds is called the flux of F across C. So flux is “the
integral of the normal component of F.” Circulation, 550 F - dr, on the other
hand, can be written as ¢, F - (T ds), where T is the unit tangent vector in
the direction of C. (T ds and dr have the same direction and same length ds,
so they may be used interchangeably.) Hence

The circulation across C' is 7{ F-T ds.

R
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Stop! Before doing any
calculations, what is your
answer?

Figure 15.4.8:

Flux is the “integral of the normal component of F.” Circulation is “the
integral of the tangential component of F.”

EXAMPLE 3 Let F = (24 2)i describe the flow of a fluid in the xy plane.
Does the amount of fluid within the circle C' of radius 2 and center (0,0) tend
to increase or decrease?

SOLUTION Figure shows the circle and a few of the vectors of F,
calculated by the formula F(z,y) = (2 + x)i. Since the flow increases as we
move to the right, there appears to be more fluid leaving the disk than entering.
We expect the flux fc F-n ds to be positive. To compute fc F-n ds, introduce
angle 6 as the parameter. Then

x = 2cos(d), y = 2sin(0) for 0 <6 < 2m.
Since the circle has radius 2, s = 26 and therefore

ds = 2d6.

The unit normal is parallel to the radius vector xi + yj. Therefore,

~ xityj  2cos(f)i+ 2sin(0)j

n= T 5 = cos(6)i + sin(0)j,
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which leads to the following calculation for the flux:

2
Flux = /F-nds:/[(2+x)i-n] 2d0
d
C 0 Fn S
2m 2m

You can evaluate these
definite integrals in your
head. Why is

027r cosfdf = 0 and

2 2 _om
o Cos 0do = 5?

HINT: f027r cos?(6) df =

= /(2 + 2 cos(f))i- (cos(6)i+ sin(0)j)2 db = /(4 cos(0) + 4 cos?(0))do  [7" sin(0) db.

0 0
2m

= /(4 cos(6) + 2 4 2cos(260))df = (4sin(0) + 20 + sin(20))[2" = 4.
0

As expected, the flux is positive since there is a net flow out of the disk. ¢

The Angle Subtended by a Curve

Our fourth illustration of a line integral concerns the angle subtended at a
point O by a curve C' in the plane. (We assume that each ray from O meets C
in at most one point.) We include this example as background for “the solid
angle subtended by a surface,” an important concept in Chapter

The curve C' in Figure [15.4.9(a) subtends an angle 6 at the point O. We
will show that 6 can be expressed as a line integral of a suitable function. Of
course, we do not need such an integral to find #. Just knowing the points A,
O, and B is enough. What is important is that # can be expressed as a line
integral. It is this idea that generalizes from a curve to a surface.

Figure 15.4.9:

First, recall the definition of radian measure of an angle whose vertex is at
O, as in Figure (b) One draws a circle of any radius, say, a, with center
at O. The angle intercepts an arc of length ¢ on the circle. The ratio ¢/a is
the radian measure of the angle.

To express 6 in Figure[15.4.9(a) as an integral over the curve C' we develop
the “local estimate,” df), of the radians subtended by a short part of the curve,
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of length ds, as shown in Figure|15.4.9(c). Here, DF is part of the curve, and
DFE is part of the circle of radius r. Treating them as being almost straight,

we have

DE ~ DF cos(f,n) = DF — = DFT-n~7T-n ds.
][ |||
Thus
DE 7t
g === ~ 1 gs,
T r

From this local estimate we conclude that

ds. (15.4.5)

T-n
r

The angle 6 subtended by arc C' is /
C

Therefore, the angle subtended by C' is the integral with respect to arclength
of the normal component of the vector function T/|r||. In short, it is the flux
of the vector field ¥/r (in the plane).

EXAMPLE 4 Verify ({15.4.5) for the angle subtended at the origin by the
line segment that joins (1,0) and (1,1).

SOLUTION The subtended angle 6 is shown in Figure [15.4.10|(a); obviously
0 =mr/4.

Figure 15.4.10:
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Now let us evaluate the integral in ((15.4.5]) in this instance. Figure|15.4.10(b)

shows that n =i and r =i+ yj. Using s = y,

i- i+yj

Il~/fd v/ 1+y?
- s = -~ @7
ST ET) A

1

1
dS:/1+y2 ds
c

1 _1 1 m
= /1+y2 dy = tan (y)‘ozz.
0
This agrees with our observation. o
Summary
Application Work Circulation Flux Angle Subtended
Integral /F-Tds:/F-dr J(I{F-Tds %F~nds /ﬂds
r
c c c c c
Description | integral of tangen- integral of tangential | integral of nor- | integral of nor-
tial component of component of flow F | mal component | mal component
force F along C around closed curve | of flow F along | of T/r along C
C closed curve C'
Common /(P dr + Q dy) /(de+Qdy+Rdz) ]{(—Q dz+P dy)
Notations ol ol b
if F=Pi+ Qj iftF=Pi+Qj+ Rk |if F = Pi+ Qj
(and C'is oriented
counterclockwise)

Calculus
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EXERCISES for Section 15.4 Key: R-routine, M-moderate, C—challenging
In Exercises [I] to [4] decide whether the work accomplished by the indicated vector

field in moving a particle along the curve from A to B is positive, negative, or zero.

1.[R] Figure[l5.4.11fa)
2.[R] Figure[15.4.11|b)
3.[R] Figure[15.4.11]c)
4.[R] Figure[15.4.11)d)

Figure 15.4.11:

In Exercises [5] to [§] decide whether fluid is tending to leave, or enter or neither.

Figure [15.4.12f(a)
Figure M(b)
Figure [15.4.12c)
Figure M(d)

® X
=

=)

(a) (b) (c) (d)

Figure 15.4.12:
In Exercises |§| to compute the work accomplished by the force F = z2yi + yj
along the given curve.
9.[R] From (0,0) to (2,4) along the parabola y = z2.
10.[R] From (0,0) to (2,4) along the line y = 2z.
11.[R] From (0,0) to (2,4) along the path in Figure [15.4.13|(a).
12.[R] From (0,0) to (2,4) along the path in Figure [15.4.13|(b).
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Figure 15.4.13:
13.[R] Verify (15.4.5) for the angle subtended at the origin by the line segment
that joins (2,0) to (2, 3).

14.[R] Verify (15.4.5) for the angle subtended at the origin by the line segment
that joins (1,0) to (0,1).

15.[R] Find the work done by the force —3j in moving a particle from (0,3) to
(3,0) along
(a) The circle of radius 3 with center at the origin.
(b) The straight path from (0, 3) to (3,0).
)

(c) The answers to (a) and (b) are the same. Will they by the same for all curves
from (0,3) to (3,0)?

16.[R] Figure [15.4.14)a) shows some representative vectors for the vector field F
and curve C'. Use this information to estimate

(a) the circulation of F along the boundary curve C' and
(b) the flux of F across C.

(Since you have no formula for F, there is a range of “correct” answers.)

(a) (b)

Figure 15.4.14:
17.]M] Repeat Exercise [16| for the vector field represented in Figure [15.4.14|(b).

18.[M] The gravitational force F of the earth, which is located at the origin (0, 0)
of a rectangular coordinate system, on a particle at the point (z,y) is

—xi —j —r -T

VPP (e P

Compute the total work done by F if the particles goes from (2,0) to (0, 1) along
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(a) the portion of the ellipse x = 2cos(t), y = sin(¢) in the first quadrant;

(b) the line parameterized as x = 2 — 2t, y = t.

19.M]

(a) Let W(b) be the work done by the force in Exercise [18|in moving a particle
along the straight line from (1,0) to (b,0).

(b) What is limy_,o, W(b)?

20.[M] Let the vector field describing a fluid flow have at the point (x,y) the value
(z + 1)%i + yj. Let C be the unit circle described parametrically as z = cos(t),
y = sin(t), for ¢ in [0, 27].

(a) Draw F at eight convenient, equally spaced points on the circle.

(b) Is fluid tending to leave or enter the region bounded by C; that is, is the
net outward flow positive or negative?” NOTE: Answer on the basis of your
diagram in (a).

(c) Compute the net outward flow with the aid of a line integral.

21.]M] Like Exercise 20| where F(z,y) = (2 — x)i + yj and C is the square with
vertices (0,0), (1,0), (1,1), and (0, 1).

22.]M] Let F(z,y) = ov, the fluid flow, and C be a closed curve in the zy plane.
If 550 F - dr is positive and C is counterclockwise, does the motion along C' tend to
be clockwise or counterclockwise?

23.]M] Let F(z,y) = ov, the fluid flow, and C be a closed curve in the zy plane.
If fCF -n ds is positive, is fluid tending to leave the region bounded by C or to
enter it?

24.[M] Let C be a closed convex curve that encloses the point O. Let r be the

—
position vector OP for points P on the curve. Determine the value of §,(f-n)/r ds,
where n is the outward unit normal to C.

25.]M] Let C be a closed convex curve. Let O be a point not on C and not in

—
the region C' bounds. Let r be the position vector OP for points P on the curve.
Determine the value of §,(r-n)/r ds, where n denotes the external unit normal to
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C. HINT: Draw a picture and pay attention to the angle between n and r.

26.[C] Write up in your own words and diagrams why | o F - dr represents the work
done by force F along the curve C.

27.[C] Write up in your own words and diagrams why |, o F - n ds represents the
net loss of fluid across C if F is the fluid flow and n is a unit external normal to C.
Include the definition of F.

28.[C] Explain why fC F - dr represents the tendency of a fluid to move along C,
if F is the fluid flow.

29.[C] Explain why [,(¥-n)/r ds represents the angle subtended by a curve C at
the origin. (Assume that each ray from the origin meets C' at most once.)

30.[C] Let C be a curve in space and C* its projection on the zy plane. Assume
that distinct points of C project onto distinct points of C*. The line integral fC 1ds
equals the arc length of C'. What integral over C equals the arc length of C*?

31.[C] Sam, Jane, and Sarah are debating a delicate issue.

Sam: Let C be the circle in the zy-plane whose polar equation is r = 2cos(6). It
is a unit circle that passes through the origin O. Let F be the inverse first
power central field ¥/r. What is the flux of F across C?

Jane: The field blows up at O, so the flux is an improper integral.

Sam: Yes, but if I move C rigidly just a tiny bit so O is inside it, the flux is 27. So
I say the flux across C' is 27.

Sarah: I say it’s 7. Just draw a figure 8 made of two copies of C joined smoothly

to form one curve, as in Figure [15.4.15(a).

(a) (b)

Figure 15.4.15:

The flux across the curve is 27. Each half must have flux 7. Since each half
looks like C, the flux across C must be 7.

Settle the issue by
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(a) Evaluating the integral fc F - n ds by the Fundamental Theorem of Calculus.

(b) Considering the flux across the curve C* obtained from C' by replacing the
small part of C' near O by a semicircle C, as in Figure [15.4.15(b).

(c) By considering the angle the curve C' subtends at O.

32.[C] Let F(P) = o(P)v(P) represent the flow of a fluid as described in the
discussion of circulation and flux. Let C by a closed curve that bounds the region
R. Let Q(t) be the total mass of the fluid in R at time ¢. Express d@/dt in terms
of a line integral.

SKILL DRILL

33.[R] Differentiate for practice.

(a) &=1In laz? 4 ¢|

(b) 282 flax + b)3

(c) §sin(az) — 5 sin’(az)

(d) g tan(az) -

(e) o cos(az) + ¢ sin(ax)

(f) zarctan(az) — 5= In(1 + a2z?)
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15.S Chapter Summary

This chapter concerns the derivatives of vector functions and integrals over
curves.

Let r(t) = (z(t),y(t),2(t)) be the position vector from the origin to a
point on a curve. We defined its derivative, r'(¢), in terms of the derivatives
of the components. But, we could just as well define it without mentioning
components:

Ar
T Ao AL
This definition reveals the underlying geometry, as Figure shows. For
small At, the direction of Ar is almost along the tangent. The length of Ar
is almost the same as the scalar length As along the curve. Thus, Ar/At
is a vector pointing almost in the direction of motion and with a magnitude
approximating the instantaneous speed.

The limit in is called the derivative of the function r(¢). If we think
of ¢t as time, then r’ is called the velocity vector, denoted v. The derivative of
v is the acceleration vector: v/ = a.

The vector T = r'/||r’|| is a unit tangent vector. The magnitude of its
derivative with respect to arclength, s, is the curvature, x, of the path, as
suggested by Figure Keep in mind that the curve may not lie in a
plane. Nevertheless, this figure resembles Figure [15.2.6] in Section [I5.2]

(15.8.1)

Figure 15.5.2:
It was shown that curvature equals ||v x al|/||v]|3.

The vector dT/ds is perpendicular to T. (Why?) The unit vector N =
% is called the principal normal to the curve at the given point. The
vector T x N = B is the third unit vector forming a frame that moves along
the curve, with T and N indicating the plane in which the curve locally “almost

lies.”

Calculus December 4, 2010
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Checking that this follows
from the definition of
curvature provides a good
review of the derivative of a
vector function.
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The acceleration vector a, even for space curves, can be expressed relative
to T and N (B is not involved):

d*s v?
a= i T+ " N
where r = 1/k is the radius of curvature. The first coefficient is to be expected.
The second is more complicated, indicating the force needed to keep the par-
ticle in the path is proportional to the square of the velocity and inversely
proportional to the radius of curvature.

This chapter then introduced four types of integrals involving a curve C"

/f(P) ds, /f(P) dz, /f(P) dy, and /f(P) dz,
c c C c

whose definitions resemble those in Chapter [6] for definite integrals. In the last
three the orientation of the curve matters: switching the direction in which
the curve is swept out changes the sign of dx, dy, and dz, and thus puts a
minus sign in front of the integral.

In particular, for a closed curve taken counterclockwise 550 y dx is the neg-
ative of the area enclosed by the curve. (Why?) On the other hand, fc x dy
taken counterclockwise is the area enclosed.

The most general integral considered is

/ (P(2,y.2) do+ Q(z,y,2) dy + Riz,y, =) d=)
C

The integrand in this form is called a differential form. For F = (P, Q, R),
this can be written much more compactly as f o F - dr. However, in proofs or
computations one must often return to the longer differential form.

If [ o F -dr depends only on the ends of C, F is called a conservative vector
field, a concept that will be important in Chapter [I8]

Line integrals were applied to work, circulation, flux, and the angle sub-
tended by a curve (the last in preparation for the “solid angle” subtended by
a surface).

EXERCISES for 15.S Key: R-routine, M—-moderate, C—challenging

In Exercises |1| to @ evaluate | o F - dr for the given vector field F and given curve

1.[R] F(z,y) = 2zi and C is a semicircle, r() = 3cosfi+ 3sinfj, 0 < 6 < .
2.[R] F(x,y) = 2%i+2zyj and C is a line segment, r(t) = 2t%i + 3t2j, 1 <t < 2.
3.[R] F(z,y,z) =xi+yj+zk and C is a helix, r(t) = costi+sintj+3tk, 0 < t < 47.
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4.[R] F(w,y,2) = 2%i+xyj+ 3k and C is a line segment, r(t) = 2ti+ (3t + 1)j +tk,
1<t <2

5.[R] F(r) =7/|r||?> and C is a line, r(t) = 2ti + 3tj + 4tk, 0 < ¢t < 2.

6.[R] F(r) =r and C is the circle, r(t) = cos0i +sinfj + 2k, 0 < 6 < 2.

7.[R] Figure|15.S.3(a) shows T and N for one point P on a curve C. The curve is
not shown. Sketch what a short part of C' may look like.

P= (wshldy, w.\'\m)

Figure 15.5.3:
8.[M]

(a) Express the area under the hyperbola 22 — 4> = 1 and above the interval
[1,cosh(t)] as a line integral.

(b) Evaluate the line integral found in (a).
(¢) What is the area of the shaded region in Figure [15.S.3(b)?

NOTE: See also Exercises [64] in Section [6.5] and [77] in Section [R.6]

The CIE at the end of Chapter [3| developed the reflection properties of parabolas
and ellipses. Exercises [9] and [I0] show how vectors provide a much shorter way to
obtain those results.

9.[C] A parabola consists of the points P equidistant from a fixed point F' and
fixed line L, as in Figure [15.5.4

Let O be some point_o}n L and 1et_)u be a unit vector perpendicular to L aimed
toward P. Let r = OP and F = OF. (We assume the curve is parameterized in
such a manner that there is a well-defined tangent vector, r'.)

(a) Show that |[r —F| =r-u.
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Figure 15.5.4:

(b) From (a) deduce that
r—F y /
—_— .1 =71 -
v —F]|

(¢) From (b) deduce that

']l cos(x’, v — F) = [[rf| cos(x’, w).

(d) From (c) deduce the reflection principle of a parabola.

This proof, which starts with the geometric definition of a parabola rather than
the equation y = 22, appears in Harley Flanders’, “The Optical Properties of the
Conics,” American Mathematics Monthly, 1968, p. 399.

10.[C] This exercise develops the reflection property of an ellipse. Start with its
geometric definition as the locus of points such that the sum of its distances from two
fixed points is constant. Let p and q be the position vectors of the two fixed points
and r the position vector for a typical point P on the ellipse, which is parameterized
so we may speak of r/, a tangent vector.

(a) Differentiate both sides of ||r — p|| + ||r — q|| = ¢, a constant.

(b) Let uj be the unit vector in the direction of ||r — p|| and ug be the unit vector
in the direction of ||r — q||. Show that u; -r' + uy -/ = 0.

(c) Show that uj + ug is normal to the curve at P.
(d) Show that u; and uz make equal angles with u; + us.

(e) From (d) deduce the reflection property of an ellipse.
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SKILL DRILL

In Exercises |11] to a(t) is the acceleration vector at time ¢ for a moving particle
and r(tg) and a(tg) are the particle’s position and acceleration at time ¢ = ty. Find
the velocity and position vectors, v(t) and r(t), of the particle at time ¢. (These
review the integration techniques of Chapter )

11.[C] a(t) = t108 (In(t))* i + In(1 + 2)j + t arctan(t)k; r(1) = 19i — j + 4(7 — 2 —
In(2))k, v(1) =271 — 2j + 6(7 — 2)k

tan(t) + sin(¢). tt 2t—4
1200 a() = — 5 it e d T e a s

v(0) = 51+ 4j + 6k

r(0) = 1i+j— 8k,

13.[C] a(t) = (t* + 4t +5) "'+ t* cos(t)j + k; r(0) = 6j, v(0) = arctan(2)i

244
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The ellipse got a cold
reception.

The inverse square law was
conjectured.

Calculus is Everywhere # 18

Newton’s Law Implies Kepler’s Three Laws

After hundreds of pages of computation based on observations by the as-
tronomer Tycho Brahe (1546—1601) in the last 30 years of the sixteenth cen-
tury, plus lengthy detours and lucky guesses, Kepler (1571-1630) arrived at
these three laws of planetary motion:

Kepler’s Three Laws

1. Every planet travels around the sun in an elliptical orbit such that the
sun is situated at one focus (discovered in 1605, published in 1609).

2. The velocity of a planet varies in such a way that the line joining the
planet to the sun sweeps out equal areas in equal times (discovered 1602,
published 1609).

3. The square of the time required by a planet for one revolution around
the sun is proportional to the cube of its mean distance from the sun
(discovered 1618, published 1619).

The work of Kepler shattered the crystal spheres which for 2,000 years had
carried the planets. Before him astronomers admitted only circular motion
and motion compounded of circular motions. Copernicus (1473-1543), for
instance, used five circles to describe the motion of Mars.

The ellipse was not welcomed. In 1605 Kepler complained to a skeptical
astronomer:

You have disparaged my oval orbit . ... If you are enraged because I
cannot take away oval flight how much more you should be enraged
by the motions assigned by the ancients, which I did take away .. ..
You disdain my oval, a single cart of dung, while you endure the
whole stable. (If indeed my oval is a cart of dung.)

But the astronomical tables that Kepler based on his theories, and pub-
lished in 1627, proved to be more accurate than any other, and the ellipse
gradually gained acceptance.

The three laws stood as mysteries alongside a related question: If there
are no crystal spheres, what propels the planets? Bullialdus (1605-1694), a
French astronomer and mathematician, suggested in 1645:
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The force with which the sun seizes or pulls the planets, a physical
force which serves as hands for it, is sent out in straight lines into all
the world’s space ...; since it is physical it is decreased in greater
space; ...the ratio of this distance is the same as that for light,
namely as the reciprocal of the square of the distance.

In 1666, Hooke (1635-1703), more of an experimental scientist than a math-
ematician, wondered:

why the planets should move about the sun ...being not included
in any solid orbs ...nor tied to it ...by any visible strings .... I
cannot imagine any other likely cause besides these two: The first
may be from an unequal density of the medium ... ; if we suppose
that part of the medium, which is farthest from the centre, or sun,
to be more dense outward, than that which is more near, it will
follow, that the direct motion will be always deflected inwards, by
the easier yielding of the inwards . ...

But the second cause of inflecting a direct motion into a curve may
be from an attractive property of the body placed in the center;
whereby it continually endeavours to attract or draw it to itself.
For if such a principle be supposed all the phenomena of the planets
seem possible to be explained by the common principle of mechanic
motions. ...By this hypothesis, the phenomena of the comets as
well as of the planets may be solved.

In 1675, Hooke, in an announcement to the Royal Society, went further:

All celestial bodies have an attraction towards their own centres,
whereby they attract not only their own parts but also other ce-
lestial bodies that are within the sphere of their activity .... All
bodies that are put into direct simple motion will so continue to
move forward in a single line till they are, by some other effectual
powers, deflected and bent into a motion describing a circle, ellipse,
or some other more compound curve .... These attractive pow-
ers are much more powerful in operating by how much the nearer
the body wrought upon is to their own centers .... It is a notion
which if fully prosecuted as it ought to be, will mightily assist the
astronomer to reduce all the celestial motions to a certain rule .. ..

Trying to interest Newton in the question, Hooke wrote on November 24,
1679: “I shall take it as a great favor if ...you will let me know your thoughts
of that of compounding the celestial motion of planets of a direct motion by
the tangent and an attractive motion toward the central body.” But four days
later Newton replied:

Calculus December 4, 2010

Hooke pressed Newton to
work on the problem.



1252

CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

Halley, of Halley's comet,
paid for publication of the
Principia.

My affection to philosophy [science] being worn out, so that I am
almost as little concerned about it as one tradesman used to be
about another man’s trade or a countryman about learning. I
must acknowledge myself averse from spending that time in writing
about it which I think I can spend otherwise more to my own
content and the good of others . ...

In a letter to Newton on January 17, 1680, Hooke returned to the problem
of planetary motion:

It now remains to know the properties of a curved line (not circular

..) made by a central attractive power which makes the velocities
of descent from the tangent line or equal straight motion at all
distances in a duplicate proportion to the distances reciprocally
taken. I doubt not that by your excellent method you will easily
find out what that curve must be, and its properties, and suggest
a physical reason for this proportion.

Hooke succeeded in drawing Newton back to science, as Newton himself
admitted in his Principia, published in 1687: “I am beholden to him only for
the diversion he gave me from the other studies to think on these things and
for his dogmaticalness in writing as if he had found the motion in the ellipse,
which inclined me to try it.”

It seems that Newton then obtained a proof — perhaps containing a mis-
take (the history is not clear) — that if the motion is elliptical, the force varies
as the inverse square. In 1684, at the request of the astronomer Halley, New-
ton provided a correct proof. With Halley’s encouragement, Newton spent the
next year and a half writing the Principia.

In the Principia, which develops the science of mechanics and applies it to
celestial motions, Newton begins with two laws:

1. Every body continues in its state of rest, or of uniform motion in a
straight line, unless it is compelled to change this state by forces im-
pressed upon it.

2. The change of momentum is proportional to the motive force impressed,
and is made in the direction of the straight line in which that force is
impressed.

To state these in the language of vectors, let v be the velocity of the body,
F the impressed force, and m the mass of the body. The first law asserts that
v is constant if F is 0. Momentum is defined as mv; the second law asserts

that
F = i(mv)
Cdt '
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If m is constant, this reduces to
F = ma,

where a is the acceleration vector.

Newton assumed a universal law of gravitation. Any particle P exerts
an attractive force on any other particle ), and the direction of the force is
from @ toward P. Then assuming that the orbit of a planet moving about the
sun (both treated as points) is an ellipse, he deduced that this force is inversely
proportional to the square of the distance between the particles P and Q).

Nowhere in the Principia does he deduce from the inverse-square law of
gravity that the planets’ orbits are ellipses. (However, there are general theo-
rems in Principia on the basis of which this deduction could have been made.)
In the Principia he showed that Kepler’s second law (concerning areas) was
equivalent to the assumption that the force acting on a planet is directed
toward the sun. Finally, he deduced Kepler’s third law.

Newton’s universal law of gravitation asserts that any particle, of mass
M, exerts a force on any other particle, of mass m, and that the magnitude
of this force is proportional to the product of the two masses, mM, inversely
proportional to the square of the distance between them, and is directed toward
the particle with the larger mass. (Here, we assume M > m.)

Assume that the sun has mass M and is located at point O and that the
planet has mass m and is located at point P. (See Figure ) Lett = OP
and r = ||r||. Then the sun exerts a force F on the planet given by the formula

GmM

F=—"7

r, (C.18.1)

where (G is a universal constant. It is convenient to introduce the unit vector

u = r/r, which points in the direction of r. Then (C.18.1)) reads

GmM
2

F=- u.

Now, F = ma, where a is the acceleration vector of the planet. Thus

GmM

from which it follows that u
a=_1 (C.18.2)

R
r2

where ¢ = GM is independent of the planet.

The vectors u, r, and a are indicated in Figure [C.18.1]

The following exercises show how to obtain Kepler’s three laws from the
single law of Newton, a = —qu/r?.
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EXERCISES

Exercises [1] to [3] obtain Kepler’s “area” law.
1.[R] Let r(t) be the position vector of a given planet at time ¢. Let Ar =
r(t + At) — r(t). Show that for small At,

1
— [jr x Ar]|
2

approximates the area swept out by the position vector during the small interval of
time At. HINT: Draw a picture.

Figure C.18.2:
2.[R] From Exercise |1| deduce that % Hr X %H is the rate at which the position

vector r sweeps out area. (See Figure|C.18.2])

Let v = dr/dt. The vector r x v will play a central role in the argument leading to
Kepler’s area law. (See also Exercise [34] in Section [15.3])
3.[R] With the aid of (C.18.2)), show that the vector r x v is constant, independent

of time.

Since r x v is constant, 3 [[r x v|| is constant. In view of Exercise [2] it follows that
the radius vector of a given planet sweeps out area at a constant rate. To put
it another way, the radius vector sweeps out equal areas in equal times.
This is Kepler’s second law.

Introduce an xyz-coordinate system such that the unit vector k, which points in the
direction of the positive z axis, has the same direction as the constant vector r x v.
Thus there is a positive constant h such that

r x v = hk. (C.18.3)

Exercises [ to [I3] obtain Kepler’s “ellipse” law.
4.[R] Show that h in ((C.18.3)) is twice the rate at which the position vector of the
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planet sweeps out area.

5.[R] Show that the planet remains in the plane perpendicular to k that passes
through the sun.

By Exercise [} the orbit of the planet is planar. We may assume that the orbit lies
in the xy plane; for convenience, locate the origin of the zy coordinates at the sun.
Also introduce polar coordinates in this plane, with the pole at the sun and the
polar axis along the positive z axis, as in Figure

Figure C.18.3:
6.[R]

(a) Show that during the time interval [to,t] the position vector of the planet

sweeps out the area
¢
1 5 df
= —dt.
2 / "t
to

(b) From (a) deduce that the radius vector sweeps out area at the rate ir

2d0
2" dt-

Henceforth use the dot notation for differentiation with respect to time. Thus 1 = v,
S ) __ db

v=a,and 0 = 7. '

7.[R] Show that r x v = r2fk.

8.[R] Show that u = Cé—‘@‘é and is perpendicular to u. Recall that u is defined as

r/|r].-
9.[R] Recalling that r = ru, show that hk = r2(u x ).

10.[R] Using (C.18.2) and Exercise [0} show that a x hkk = qu. HINT: What is the
vector identity for A x (B x C)?
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11.[R] Deduce from Exercise [L0| that v x hk and qu differ by a constant vector.

By Exercise there is a constant vector C such that
v X hk = qu + C. (C.18.4)

Then the angle between r and C is the angle € of polar coordinates.
The next exercise requires the vector identity (A x B) - C = A - (B x C), which is
valid for any three vectors A, B, and C.

12.[R]
(a) Show that (r x v) - hk = h2.
(b) Show that r- (v x hk) =rqg+r-C.

(c) Combining (a) and (b), deduce that h? = rq + rccos(f), where ¢ = ||C||

It follows from Exercise that the polar equation for the orbit of the planet is
given by

h2
" g+ccos(d)

r(0) (C.18.5)

13.[R] By expressing ((C.18.5) in rectangular coordinates, show that it describes a
conic section.

Since the orbit of a planet is bounded and is also a conic section, it must
be an ellipse. This establishes Kepler’s first law.

Kepler’s third law asserts that the square of the time required for a planet to com-
plete one orbit is proportional to the cube of its mean distance from the sun.

First the term mean distance must be defined. For Kepler this meant the average
of the shortest distance and the longest distance from the planet to the sun in its
orbit. Let us compute this average for the ellipse of semimajor axis a and semiminor
axes b, shown in Figure The sun is at the focus F, which is also the pole
of the polar coordinate system we are using. The line through the two foci contains
the polar axis.
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Figure C.18.4:

Recall that an ellipse is the set of points P such that the sum of the distances from
P to the two foci F' and F” is constant, 2a. The shortest distance from the planet
to the sun is FQ = a — d and the longest distance is EF = a + d. Thus Kepler’s
mean distance is

(a—d)+ (a+4d)

2

Now let T' be the time required by the given planet to complete one orbit. Kepler’s
third law asserts that T2 is proportional to a3. Exercises [14]to [18| establish this law
by showing that 7?2/a? is the same for all planets.
14.[R] Using the fact that the area of the ellipse in Figure is mab, show that
Th/2 = mab, hence that

2mab
T = 7;“ , (C.18.6)

The rest of the argument depends only on (C.18.5) and (C.18.6) and the “fixed sum
of two distances” property of an ellipse.

15.[R] Using (C.18.5)), show that f in Figure |C.18.4|equals h?/q.

16.[R] Show that b* = af, as follows:
(a) From the fact that F'A + F A = 2a, deduce that a? = b% + d>.
(b) From the fact that F’B + F B = 2a, deduce that d? = a® — af.

(c) From (a) and (b), deduce that b> = af.

17.[R] From Exercises |15 and [16] deduce that b* = ah?/q.

18.[R] Combining (C.18.6) and Exercise [L7, show that
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Since 472/q is a constant, the same for all points, Kepler’s third law is
established.
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Calculus is Everywhere # 19
The Suspension Bridge and the Hanging Cable

In a suspension bridge the roadway hangs from a cable, as shown in Fig-
ure We will use calculus to find the shape of the cable. To begin, we
assume that the weight of any section of the roadway is proportional to its
length. That is, there is a constant k such that z feet of the roadway weighs
kx pounds. We will assume that the cable itself is weightless. That is justified
for it weighs little in comparison to the roadway.

We introduce an zy-coordinate system with origin at the lowest point of
the cable, and consider a typical section of the cable, which goes from (0, 0)
to (z,y), as shown in Figure [C.19.2(a). Three forces act on this section. The

Figure C.19.2:

force at (0,0) is horizontal and pulls the cable to the left. Call its magnitude
T. Gravity pulls the cable down with the force kz (the weight of the roadway
beneath the cable). At the top of the section, at (x,y) the cable above it pulls
the cable to the right and upward, along the tangent line to the cable.

The section does not move, neither up nor down, neither to the left nor
to the right. That means the horizontal part of the force at (z,y) must have
magnitude 7" and the vertical part of the force must have magnitude kx, as
shown in Figure[C.19.2(b). (Think of one person pulling horizontally at (z,y)
and another pulling vertically to duplicate the effect of the part of the cable
above (x,y) that is pulling on the section.)

Since the force at the point (x,y) is directed along the tangent line there,
we have

dy kx

— == (C.19.1)
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Therefore,

kx?
y—T—f—C.

for some constant C. Since (0,0) is on the curve, C' = 0, and the cable has
the equation
B ka?
Y= 9T
The cable forms a parabola.

But what if, instead, we have the cable but no roadway? That is the case
with a laundry line or a telephone wire or a hanging chain. In this case the
downward force is due to the weight of the cable. If s feet of cable weighs ks
pounds, reasoning almost identical to the case of the suspension bridge leads
to the equation

dy ks
= = —. C.19.2
de T ( )
Since
= 1 =1 d
S / + (dm) T
0
we have the equation
€T 2
dy kST 1+(2) de
dy _ Ky (&) . (C.19.3)

dr T
We get rid of the integral by differentiating both sides of (C.19.3)), and using

part of the fundamental theorem of calculus, obtaining

P2y k dy\”
LAY e 19.4
dz? T * (dx) (C-19-4)

This equation is solved in a differential equations course, where it is shown
that

k [ ke —ka k

This curve is called a catenary, after the Latin “catena,” meaning “chain.”
(Hence the word “concatenation,” referring to a chain of events.) It may look
like a parabola, but it isn’t. The 630-foot tall Gateway Arch in St. Louis,
completed October 28, 1965, is the most famous catenary.

EXERCISES
1.[M] Check that the solution to
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2 2
ey k[ (ay
de?2 T dx

that passes through (0,0) is

(C.19.6)
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o)

Figure C.20.1:

Calculus is Everywhere # 20
The Path of the Rear Wheel of a Scooter

When the front wheel of a scooter follows a certain path, what is the path of
the rear wheel? This question could be phrased in terms of a bicycle or car,
but the scooter is more convenient for carrying out real-life experiments.

In we considered the special case when the front wheel moves in a
straight line, as may occur when parking a car. Now, using vectors, we will
look at the case when the front wheel sweeps out a circular path.

The Basic Equation

Figure shows the geometry at any instant. Let s denote the arc
length of the path swept out by the rear wheel as measured from its starting
point. Let a be the length of the wheel base, that is, the distance between the
front and rear axels. The vector r(s) records the position of the rear wheel
and f(s) records the position of the front wheel. Because the rear wheel is
parallel to f(s) — r(s), the vector r'(s) points directly toward the front wheel
or directly away from it. Note that r'(s) is a unit vector.

Thus

f(s) =r(s) + ar'(s) (C.20.1)

or

f(s) =r(s) —ar'(s). (C.20.2)

In short, we will write f(s) = r(s) £ ar'(s).
Assume that the front wheel moving, say, counterclockwise traces out a
circular path with center O and radius c¢. Because

f(s) - f(s) =,

we have

(r(s) £ar'(s)) - (r(s) £ ar'(s)) = &
By distributivity of the dot product,

r(s) - r(s) + a’r'(s) - 1'(s) &+ 2ar(s) - 1'(s) = . (C.20.3)
Letting r(s) = ||r(s)||, we may rewrite as
(r(s))* +a® £ 2ar(s) - v'(s) = . (C.20.4)
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Differentiating r(s) - r(s) = r(s)? to obtain, r(s) - r'(s) = r(s)r'(s), which
changes ((C.20.3) to an equation involving the scalar function r(s). For sim-
plicity, we write r(s) as r and r/(s) as 77, obtaining

r? + a* £ 2arr’ = 2. (C.20.5)

This is the basic equation we will use to analyze the path of the rear wheel of
a scooter.

The Direction of r’

Before going further we examine when r’ points towards the front wheel and
when it points away from the front wheel.

The movement of the back wheel is determined by the projection of £’ on
the line of the scooter. That projection is the same as r’.

Thus, when the angle 6 between the front wheel and the line of the scooter
is obtuse, as in Figure[C.20.2(a), r’ points towards the front wheel. When 6 is

acute, the scooter backs up and r’ points away from the front wheel, as shown

in Figure [C.20.2(b).
N

Q‘ )

Figure C.20.2: The direction of r’ depends on the angle 6 between the front
wheel and the line of the scooter. (a) 6 is obtuse, (b) 6 is acute.

When the direction of r’ abruptly shifts from pointing towards the front
wheel to pointing away from the front wheel, the path of the rear wheel also
abruptly changes, as shown in Figure [C.20.3]

The path of the rear wheel is continuous but the unit tangent vector r’ is
not defined at the point where its direction suddenly shifts. The path is said
to contain a “cusp” and the point at which r’(s) shifts direction by the angle
7 is the “vertex” of the cusp.
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The Path of the Rear Wheel for a Short Scooter

Assume that the wheel base, a, is less than the radius of the circle, ¢, that,
initially, 6 is obtuse, and that 72 is less than ¢ — a?. Thus, ¢ — a®? — 72 is
positive. (Exercise [1| shows the special significance of ¢* — a?.)
We rewrite the equation ¢ = a? + r% 4 2rr’a in the form
—2rr -1
= —. (C.20.6)

2 —a?—r? a
Integration of both sides of (C.20.6)) with respect to arc length s shows that

there is a constant k such that

In(c® —a® —1r?) = — + k,
a

hence
A —a?—r?=ekes/e, (C.20.7)

Equation ((C.20.7)) tells us that r? increases but remains less than ¢? — a?, and

approaches ¢? — a? as s increases. Thus the rear wheel traces a spiral path
that gets arbitrarily close to the circle of radius v/¢? — a? and center O, as in

Figure [C.20.4]

The Path of the Rear Wheel for a Long Scooter

Assume that the wheel base is longer than the radius of the circle on which
the front wheel moves, that is, a > ¢. Assume also that initially the scooter is
moving forward, so we again have the equation

¢ =a’+1r*+2rr'a. (C.20.8)

The initial position is indicated in Figure [C.20.5(a).

Now ¢? — a? — 72 is negative, and we have
2rr! -1
a? +r? —c? a’

where the denominator on the left-hand side is positive. Thus there is a con-
stant k£ such that
a? + 12 — 2 = eke¥/e, (C.20.9)

If s gets arbitrarily large, implies that r? approaches ¢* — a?. But,
c? —a? is negative, so this cannot happen. Our assumption that holds
for all s must be wrong. Instead, there must be a cusp and the governing
equation switches to

¢ =a®+r*—2arr.
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1=0. =1.2500
fls) (s) —— scooter —— path (rear) | f(s) (s) —— scooter —— path (rear) |
2 24
e k7 =~ N e v =~ ~N
4 ' N 7 i N
/ \ / \
/ \ / \
I ) I
[WE )2 20 o vy 2
k4 Y
\\ ' / \\ 1 /
~ 7 ~ s
~ —_ ~_1. -~

=10.000
fi(s). (s) —— scooter —— path (rear) |

[ f)  5) — scooter — path (rean)] [

1=2.5000

fis)

(s) —— scooter —— path (rear) |

1=15.000

fis)

1(s) —— scooter —— path (rear)

Figure C.20.4: The path of the rear wheel of a scooter with length a = 1,
whose front wheel moves counter-clockwise around the circle with radius ¢ = 2
from the point (2,0) with the line of the scooter at an angle § = —37/4 with
the front wheel. The snapshots are taken when (a) s = 0, (b) s = 1.25,
(¢) s = 250, (d) s = 5.0, (e) s = 10.0, and (f) s = 15.0. Because this
is a short scooter (a < c¢), the rear wheel approaches the circle with radius
r=+/c® —a? = /3. (Recall that s is the arclength of the rear wheel’s path.)

Calculus
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1=0. 1=3.0000 £=9.0000
scooter —— path (rear) | [ (s) (s) —— scooter —— path (rear) |

Scooter Path: =2, a=4, theta=7

Figure C.20.5: The path of the rear wheel of a scooter with length a = 4,
whose front wheel moves counter-clockwise around the circle with radius ¢ = 2
from the point (2,0) with the line of the scooter at an angle § = pi with the
front wheel. The snapshots are taken when (a) s =0, (b) s =3, (¢c) s =9, (d)
s =18, (e) s = 36, and (f) s = 72. Because this is a long scooter (a > c¢), the
rear wheel travels along path that has cusps whenever r = c+a and f = |c—al.
(Recall that s is the arclength of the rear wheel’s path.)
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This leads to the equation
a? + 1% — & = eked/a, (C.20.10)

Equation ((C.20.10) implies that as s increases r becomes arbitrarily large.
However, r can never exceed ¢ + a. So, another cusp must form.
It can be shown that the cusps occur when r = a — ¢ (assuming a > ¢) and
r = a+ c. At the vertex of a cusp, r’ is not defined; it changes direction by 7.
Figure [C.20.5(b) shows the shape of the path of the rear wheel for a long
scooter, a > ¢. (For a > 2¢, that path remains outside the circle.)

EXERCISES
1.[R]

(a) Assume a and c¢ are positive numbers with ¢ > a and that the front wheel
moves on a circle of radius ¢. Show that when the front wheel moves along a
circle of radius ¢ the rear wheel could remain on a concentric circle of radius

b=/(c® —a?).

(b) Draw the triangle whose sides are a, b, and ¢ and explain why the result in
(a) is plausible.

2.[M] We assumed in the case of the short scooter that initially r? < ¢? — a?.
Examine the case in which initially 72 > ¢ — a®. Again, assume that initially the
scooter is not backing up.

3.[M] We assumed in the case of the short scooter that initially r? < ¢? — a? and
that the scooter is not backing up. Investigate what happens when we assume that
initially 2 < ¢? — a? and the scooter is backing up.

(a) Draw such an initial position.
(b) Predict what will happen.

(c) Carry out the mathematics.

4.[R] Tt is a belief among many bicyclists that the rear tire wears out more slowly
than the front tire. Decide whether their belief is justified. (Assume both tires
support the same weight.)

5.[M] Show that if the path of the front wheel is a circle and a cusp forms in the
path of the rear wheel, the scooter at that moment lies on a line through the center
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of the circle.

6.[M] In the case of the long scooter, a > ¢, do cusps always form, whatever the
initial value of r and 67

7.[C] Extend the analysis of the scooter to the case when a = c.

8.[C] Assume that the path of the front wheel is a straight line. For convenience,
choose that line as the z-axis. Write r(s) as z(s)i + y(s)j.
(a) Show that y(s) +1/(s)a = 0.

(b) Deduce that there is a constant k such that y(s) = ke~*/®. Thus the distance
from the rear wheel to the x-axis “decays” exponentially.
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Chapter 16

Partial Derivatives

The use of contour lines to help understand a function whose domain is part
of the plane goes back to the year 1774. A group of surveyors had collected a
large number of the elevations of points on Mount Schiehalli in Scotland. They
were doing this in order to estimate its mass and by its gravitational attraction,
the mass of the earth. They asked the mathematician Charles Hutton for help
in using the data entered as a map. Hutton saw that if he connected points
on the map that showed the same elevation, the resulting curves — contour
lines — suggested the shape of the mountain.

1269
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This is similar to what we
did for vector fields.

contours and level curves

16.1 Picturing a Function of Several Variables

The graph of y = f(z), a function of just one variable, z, is a curve in the
zy-plane. The graph of a function of two variables, z = f(z,y) is a surface in
space. It consists of the points (x,y, z) for which z = f(z,y). For instance, if
z = 2x + 3y, the graph is the plane 2x 4 3y — z = 0.

A vector field in the zy-plane is a vector-valued function of x and y. We
pictured it by drawing a few vectors with their tails placed at the arguments.

This section describes some of the ways of picturing a scalar-valued func-
tions of two or three variables.

Contour Lines

For a function, z = f(x,y), the simplest method is to attach at some
point (x,y) the value of the function, z = f(x,y). For instance, if z = zy,
Figure [16.1.1f shows this method. This conveys a sense of the function. Its

Figure 16.1.1:

values are positive in the first and third quadrants, negative in the second and
fourth. For (z,y) far from the origin near the lines y = x or y = —x the values
are large.

Rather than attach the values at points, we could indicate all the points
where the function has a specific fixed value. In other words we could graph,
for a constant ¢, all the points where f(z,y) = ¢. Such as graph is called a
contour or level curve.

For the function z = xy, the contours are hyperbolas zy = c¢. In Fig-
ure [16.1.2)(a) the contours corresponding to ¢ = 2, 4, 6, 0, —2, —4, —6 are
shown.

Many newspapers publish a daily map showing the temperature throughout
the nation with the aid of contour lines. Figure [16.1.2(b) is an example.
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Figure 16.1.2:

At a glance you can see where it is hot or cold and in what direction to
travel to warm up or cool off.

Traces

Another way to get some idea of what the surface z = f(z, y) looks like is to
sketch the intersection of various planes with the surface. These intersections
(or cross sections) are called traces.

For instance, Figure[16.1.3|exhibits the notion of a trace by a plane parallel
to the xy-coordinate plane, namely, the plane z = £k This trace is an exact copy

of the contour f(z,y) = k, as shown in Figure[16.1.3

Figure 16.1.3:

EXAMPLE 1 Sketch the traces of the surface z = xy with the planes
1. z =1,
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2.z =1,
3. y=uz,
4. y= —ux,
5. x =0
SOLUTION

1. The trace with the plane z = 1 is shown in Figure [16.1.4] For points
(x,y,z) on this trace xzy = 1. The trace is a hyperbola. In fact, it is
just the contour line xy = 1 in the xy plane raised by one unit as in

Figure [16.1.4(a)

2. The trace in the plane x = 1 satisfies the equation z =1-y =y. It is a
straight line, shown in Figure [16.1.4|(b)
2

3. The trace in the plane y = =z satisfies the equation z = z°. It is the

parabola shown in Figure [16.1.4{c).
2

4. The trace in the plane y = —x satisfies the equation z = z(—x) = —2°.
It is an “upside-down” parabola, shown in Figure [16.1.4{d).

5. The intersection with the coordinate plane x = 0 satisfies the equation
z=0-y=0. It is the y-axis, shown in Figure [16.1.4|(e).

Figure 16.1.4:

So the surface can be viewed as made up of lines, or of parabolas or of
hyperbolas.

The surface z = zy is shown in Figure [16.1.5| with some of the traces drawn
on it. o

The surface z = xy looks like a saddle or the pass between two hills, as
shown in Figure [16.1.6}
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Figure 16.1.6:

Functions of Three Variables

The graph of y = f(z) consists of certain points in the zy plane. The graph
of z = f(x,y) consists of certain points in the zyz space. But what if we
have a function of three variables, v = f(z,y,z)? (The volume V of a box
of sides x,y, z is given by the equation V = zyz; this is an example of the
function of three variables.) We cannot graph the set of points (z,y, z, u)
where u = f(z,y, z,u) since we live in space of only three dimensions. What
we could do is pick a constant k£ and draw the “level surfaces,” the set of points
where f(z,y,2) = k. Varying k may give an idea of this function’s behavior,
just as varying the k of f(x,y) = k yields information about the behavior of a
function of two variables.

For example, let T" = f(z,y,z) be the temperature (Fahrenheit) at the
point (x,y, z). Then the level surface

68 = f(z,y, 2)

consists of all points where the temperature is 68°.

EXAMPLE 2 Describe the level surfaces of the function v = 2% +y? + 22.

SOLUTION For each k we examine the equation u = 2% + y* + 22, If k is
negative, there are no points in the “level surface.” If k& = 0, there is only
one point, the origin (0,0,0). If k = 1, the equation 1 = z? + y? + 22, which
describes a sphere of radius 1 center (0,0,0). If k is positive, the level surface
f(z,y,2) = k is a sphere of radius vk, center (0,0,0). See Figure o

Summary

We introduced the idea of a function of two variables z = f(P) is in some
region in the xy plane. The graph of z = f(P) is usually a surface. But it is

Calculus December 4, 2010



1274 CHAPTER 16 PARTIAL DERIVATIVES

Figure 16.1.7:

often more useful to sketch a few of its level curves than to sketch that surface.
Each level curve is the projection of a trace of the surface in a plane of the
form z = k. Note that at all points (z,y) on a level curve the function have
the same value. In other words, the function f is constant on a level curve.

In particular, we used level curves to analyze the function z = zy whose
graph is a saddle.

For functions of three variables u = (z,y,z), we defined level surfaces.
When considered on a level surface, k = f(z,y, z) such a function is constant,
with value k.
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EXERCISES for Section 16.1 Key: R-routine, M-moderate, C—challenging

In Exercises [1] to [I0] graph the given function.

LR] f(z,y)=y

2.[R] f(z,y)=xz+1
3.R] flz,y)=3

4.[R] f(z,y) =2

5.R] f(z,y) =a?

6.[R] f(z,y) =y’

7.R] flz,y)=xz+y+1
8.[R] f(z,y)=2x—y+1
9.[R] f(x,y) = 2%+ 2y

In Exercises [11] to [14] draw for the given functions the level curves corresponding to
the values —1, 0, 1, and 2 (if they are not empty).

1L[R] f(z,y) =z +y
12.[R] f(z,y) =2 +2y
13.R] f(r,y) = 2+ 20
14.[R]  f(z,y) = 2" — 2y

In Exercises [15|to [18 draw the level curves for the given functions that pass through
the given points.

15.[R] f(z,y) = 22 + y? through (1,1) HINT: First compute f(1,1).
16.[R] f(=z,y) = 2%+ 3y? through (1,2)

17.[R] f(z,y) = 2® — y? through (3,2)

18.[R] f(z,y) = 2> — y? through (2, 3)

19.[R]

(a) Draw the level curves for the functions f(x,y) = x? + 2 corresponding to the
values £k =0,1,...,9.

(b) By inspection of the curves in (a), decide where the functions changing most
rapidly. Explain why you think so.

20.[R] Let f(P) be the average daily solar radiation at the point P (measured in
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langleys). The level curves corresponding to 350, 400, 450, and 500 langley are shown

in Figure|16.1.8

Figure 16.1.8:

(a) What can be said about the ratio between the maximum and minimum solar
radiation at points in the United States?

(b) Why are there rather sharp bends in the level curves in two areas?

21.[R] Let u = g(z,y, z) be a function of three variables. Describe the level surface
g(z,y,2) = 1if g(w,y,2) is

(a) z+y+=z
(

)

b) z? +y* 4 2*

(C) x2+y2_22
)

(d) 2% —y? — 22 HINT: For (c) and (d) are examples of quadric surfaces.

! RN . v
g 3N ._.\" ‘:I Il II"\. i
e e
; T — H"'\—"f ¥
I \ b € VN e
22.[R] - T h
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Figure 16.1.9:
The daily weather map shows the barometric pressure function by a few well-chosen
level curves (called isobars), as in Figure[16.1.9] In this case, the function is ‘pressure

at (z,y).”

(a) Where is the lowest pressure?
(b) Where is the highest pressure?

(c) Where do you think the wind at ground level is the fastest? Why?

23.[R] A map of August, 26, 2005 showing isobars and wind vectors, day of Katrina
and some questions.

24.[R] Questions about the map in Figure [16.1.2(b).

25.[M]
(
(

a) Sketch the surface z = 2% + 3.

)
b) Show that all the traces by planes parallel to the zz plane are parabolas.
)

(c

Show that the parabolas in (b) are all congruent. (So the surface is made up
of identical parabolas.)

(d) What kind of curve is a trace in a plane parallel to the xy plane?

26.[M] Consider the surface z = 22 4+ 4y%?. What type of curve is produced by a
trace by a plane parallel to

(a) the zy plane,
(b) the zz palne,

(c) the yz plane.

27.[C]

2

(a) Is the parabola y = 22 congruent to the parabola y = 42%?

(b) Is the parabola y = z? similar to the parabola y = 42%? (One figure is

similar to another if one is simply the other magnified by the same factor in
all direction.)
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SHERMAN: There are more
new ideas for limits than
derivatives. In fact, partial

Figure 16.2.1:

Figure 16.2.2:

16.2 The Many Derivatives of f(x,y).

The notions of limit, continuity and derivative carry over with similar defi-
nitions from functions f(z) of one variable to functions of several variables
f(z,y). However, the derivatives of functions of several variable involves some
new ideas.

Limits and Continuity of f(z,y)

The domain of function f(x,y) is the set of points where it is defined.
The domain of f(x,y) = x+y is the entire zy plane. The domain of f(z,y) =
/1 — 22 — 42 is much smaller. In order for the square root of 1 — 2% — 3% to
be defined, 1 — 2% — y? must not be negative. In other words, we must have
22 +1? < 1. The domain is the disk bounded by the circle 2% + y? = 1, shown
in Figure [16.2.1]

A point F, is on the boundary of a set if every disk centered at Fy, no

matter how small, contains points in the set and points not in the set. (See
Figure ) The boundary of the circle z2 +y? < 1 is the circle 22 + 32 = 1.
The domain of f(x,y) = /1 — 22 — y? includes every point on its boundary.

The domain of f(z,y) = 1/4/1 — 2% — y? is even smaller. Now we must
not let 1 — 22 —4? be 0 or negative. The domain of 1/4/1 — 22 — y?2 consists of
the points (x,y) such that 2% +y* < 1. Tt is the disk in Figure without
its boundary.

The function f(z,y) = 1/(y — x) is defined everywhere except on the line
y —x = 0. Its domain is the zy plane from which the line y = = is removed.
(See Figure )

The domain of a function of interest to us will either be the entire xy plane
or some region bordered by curves or lines, or perhaps such a region with a
few points omitted. Let P, be a point in the domain of a function f. If there is

Figure 16.2.3:
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a disk with center P, that lies within the domain of f, we call F an interior
point of the domain. (See Figure [16.2.3(b).) When F, is an interior point of
the domain of f, we know that f(P) is defined for all points P sufficiently near
Fy. Every point Py in the domain not on its boundary is an interior point. A
set R is called open if each point P of R is an interior point of R. The entire
xy plane is open. So is any disk without its circumference. More generally,
the set of points inside some closed curve but not on it forms an open set.

The definition of the limit of f(x,y) as (z,y) approaches Py = (a,b) will
not come as a surprise.

DEFINITION (Limit of f(x,y) at Py = (a,b)) Let f be a func-
tion defined at least at every point in some disk with center P,
except perhaps at Py. If there is a number L such that f(P) ap-
proaches L whenever P approaches Py we call L the limit of f(P)
as P approaches F,. We write

lim f(P)=1L

P—Py

or
f(P)—L as P — P

We also write
lim x,y) = L.
(z.y)—(a,b) f@:9)
For most of the functions of interest the limit will always exist throughout
its domain. However, even a formula that is easily defined may not have a
limit at some points.

EXAMPLE 1 Let f(z,y) = %=%. Determine whether limp_ ) f(P)

1'2 +y2 .
exists.

SOLUTION The function is not defined at (0,0). When (z,y) is near (0, 0),
both the numerator and denominator of (2 —y?)/(x*+y?) are small numbers.
There are, as in Chapter [2| two influences. The numerator is pushing the
quotient towards 0 while the denominator is influencing the quotient to be
large. We must be careful.

We try a few inputs near (0,0). For instance, (0.01,0) is near (0,0) and

(0.01)% — 02 9
0.01,0) = ————+0°=1
Also, (0,0.01) is near (0,0) and
0% — (0.01)?
0,001) = ——F—-—""F5 = —1
1(0,000) = G5 on e
Calculus December 4, 2010
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More generally, for x # 0,

fz,0) =1;
while, for y # 0,

f(0,y) = -1

Since x can be as near 0 as we please and y can be as near 0 as we please, it
is not the case that limp_. ) f(P) exists. Figure [16.2.4 shows the graph of

_ x?—y? &

2 +y2 .

Continuity of f(z,y) at Py = (a,b)

With only slight changes, the definition of continuity for f(z) in Section
easily generalizes to the definition of continuity for f(z,y).

DEFINITION (Continuity of f(x,y) at Py = (a,b)). Assume
that f(P) is defined throughout some disk with center Py. Then f
is continuous at Py if limp_.p, f(P) = f(P).

This means

1. f(P) is defined (that is, Py is in the domain of f),
2. limp_,p, f(P) exists, and
3. hmp_)po f(P) = f(Po)
Continuity at a point on the boundary of the domain can be defined

similarly. A function f(P) is continuous if it is continuous at
every point in its domain.

EXAMPLE 2 Determine whether f(z,y) = iz;zz is continuous at (1,1).
SOLUTION This is the function explored in Example [I] First, f(1,1) is
defined. (It equals 0.) Second, lim a1 i;;zz (It is g = 0.) Third,
lim )~ fl2,y) = f(1,1).

Hence, f(z,y) is continuous at (1,1). o

In fact, the function of Example [2|is continuous at every point (z,y) in its
domain. We do not need to worry about the behavior of f(z,y) when (z,y) is
near (0,0) because (0,0) is not in the domain. Since f(z,y) is continuous at
every point in its domain, it is a continuous function.
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The Two Partial Derivatives of f(z,y)

Let (a,b) be a point on the domain of f(z,y). The trace on the surface
z = f(z,y) by a plane through (a,b) and parallel to the z-axis is a curve, as
shown in Figure [16.2.5]

If f is well behaved at the point P = (a,b, f(a,b)) the trace has a slope.
This slope depends on the plane through (a,b). In this section we consider
only the two planes parallel to the coordinate planes y = 0 and x = 0. In the
next section we treat the general cases.

Consider the function f(x,y) = z*y3. If we hold y constant and differenti-
ate with respect to x, we obtain d(z?y?)/dx = 2zy3. This derivative is called
the “partial derivative” of 2%y® with respect to 2. We could hold x fixed instead
and find the derivative of z?y3 with respect to y, that is, d(z%y?®)/dy = 3z2y>.
This derivative is called the “partial derivative” of 22y3 with respect to y. This \/
example introduces the general idea of partial derivative. First we define them.
Then we will see what they mean in terms of slope and rate of change.

DEFINITION (Partial derivatives.) Assume that the domain of

f(z,y) includes the region within some disk with center (a,b). If Figure 16.2.5:
lim f((l+Al’7b) _f(av b)
Az—0 Az

exists, this limit is called the partial derivative of f with re-
spect to x at (a,b). Similarly, if

fla,b+ Ay) — f(a,b)

I
Armo Ay
exists, it is called the partial derivative of f with respect to
y at 9a,b).
The following notations are used for the partial derivatives of z = f(x,y)
with respect to x: Notations for partial
dz Of derivatives.
a v rJa ) or Zy-
ox’ dy Jes 1

And the following are used for partial derivative of z = f(x,y) with respect to

y:
0z Of

oy 0y
Since physicists and engineers use the subscript notation in study of vectors,
they prefer to use
of

oz

7fy7f2> or Zy-

and

dy
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to denote the two partial derivatives. The symbol 00 f/0x may be viewed as
“the rate at which the function f(z,y) changes when x varies and y is kept
fixed.” The symbol df/dy records “the rate at which the function f(z,y)
changes when y varies and x is kept fixed.”

The value of 0f /0x at (a,b) is denoted

of
ox (@b)

In the middle of a sentence, we will write it as f,(a,b) or 9f/0x(a,b).
EXAMPLE 3 If f(z,y) = sin(2?y), find

1. 0f oz,

2. 0f /0y, and

3. Of /0y at (1,m/4).

SOLUTION

1. To find %(sin x?y), differentiate with respect to z, keeping y constant:

L(sinz?y) = cos(z?y)2(z?y)  chain rule
= cos(z?y)(2zy) y is constant
= 2xycos(z?y).

2. To find %(sin 2?y), differentiate with respect to y, keeping z constant:

9

gy (sina?y) = cos(xzy)a%(xzy) chain rule
= cos(2?y)(2?) x is constant
= 27 cos(2?y).
3. By (b)
0 T
8—5(1,7?/4) = g2 cos(xzy)|(177r/4) = 1%cos (1°2) = ‘/75

o

As Example [3] shows, since partial derivatives are really ordinary deriva-
tives, the procedures for computing derivatives of a function f(x) of a single
variable carry over to functions of two variables.

December 4, 2010 Calculus



§ 16.2 THE MANY DERIVATIVES OF F(X,Y). 1283

Higher-Order Partial Derivatives

Just as there are derivatives of derivatives, so are there partial derivatives of
partial derivatives. For instance, if

2z = 2x + 5a'y”,

then
0z 3.7 46
— =2+ 202"y and — = 35x7y".
ox Oy

We may go on and compute the partial derivatives of dz/0x and dz/dy:

0 (0z _ 7 0 oz _
o [ 0z _ 3,,6 o [ 9z _ 4,5

There are four partial derivatives of the second order:

0 (92) 0 (0:\ 0 [0\ b (0
Ox \Ox ) Oy \Ox) oy \dy/) 0x \Oy/)

These are usually denoted, in the same order, as

0%z 0%z 0%z 0%z
0x2’ Oydx’ Oy?’ Oxdy’

To compute 9?z/0xdy, you first differentiate with respect to y, then with
respect to . To compute §%z/0ydz, you first differentiate with respect to ,
then with respect to y. In both cases, “differentiate from right to left in the
order that the variables occur.”

The partial derivative % is also denoted f, and g—?j is denoted f,. The
second partial derivative % = % = (fy)s is denoted f,,. In this case you

differentiate from left to right, “first f,, then (f,),.” In short, f,. = (f,)z, The subscript notation, fy.,
fyy = (fy)y, and fz,, = (f2),. In both notations the mixed partial is computed is generally preferred in the
in the order that resembles its definition (with the parentheses removed), Thus midst of other text.

o0 f o (of
_ — _— d Ty = T
Oxdy Oz (6y> and oy = (fe)y
are the two different mixed second partial derivatives of f. Equality of the mixed

In the computations just done, the two mixed partials z,, and z,, are partials
equal. For the functions commonly encountered, the two mixed partials are
equal. (For a proof, see Appendix ) SHERMAN: V had an
appedix on interchanging

limits. How will we deal
with this in VI?

Calculus December 4, 2010



1284 CHAPTER 16 PARTIAL DERIVATIVES

Exercise [27] presents a function for which the two mixed particles are not
equal. Such a special case mathematicians call “pathological”, though the
function does not view itself as sick.

0?2 0?2 0?2
EXAMPLE 4 Compute oz foz m = fay, and 920y = 2y, for
z = ycos(zy).
SOLUTION First compute
0%z 0 [0z 0 5 . 5
922 on (%) = %(_y sin(zy)) = —y” cos(zy).
Then
2
aayazx = % (%) = gy(—gf cos(zy)) = —2ysin(xy) — zy? cos(zy).
Finally,
0z 0 [0z 9, ,
v = 3 (50) = g(wesinGen) + costan)

—y%(m sin(zy) + (%(Cos(xy)) = —y(xy cos(zy) + sin(zy)) — ysin(zy)
= —ay*cos(zy) — ysin(zy) — ysin(xy) = —2y sin(zy) — xy* cos(zy).

Notice that while the work required to compute the mixed partials is very
different, the two derivatives are, as expected, are equal. o

Functions of More Than Two Variables

A quantity may depend on more than two variables. For instance, the volume
of a box depends on three variables: the length [, width w, and height h,
V = lwh. The “chill factor” depends on the temperature, humidity, and wind
velocity. The temperature T at any point in the atmosphere is a function of
To differentiate, hold all  the three space coordinates, x, y, and z: T = f(z,y, 2).
variables constant except The notions and notations of partial derivatives carry over to functions of
one. more than two variables. If u = f(x,y, 2,t), there are four first-order partial
derivatives. For instance, the partial derivative of v with respect to x, holding
Y, z, and t fixed, is denoted

ou Of "
ax Y ax ) X
Insert CIE on the Vibrating Higher-ordered partial derivatives are defined and denoted similarly. Many

String.  basic problems in chemistry and physics, such as vibrating string are examined
in terms of equations involving partial derivatives (known as PDEs).

ete.
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Summary

We defined limit, continuity, and derivatives for functions of several variables.
These notions are all closely related to the one variable versions.

A key difference is that a partial derivative with respect to one variable, say
x, is found by treating all other variables as constants and applying the stan-
dard differentiation rules with respect to x. Higher-order partial derivatives
are also defined much like higher-order derivatives. An important property of
higher-order partial derivatives is that the order in which the partial deriva-
tives are applied can be important, but not for the functions usually met in
applications.

Calculus December 4, 2010
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SHERMAN: Move some of
these to Chapter Summary.
Emphasis is on partial
derivatives.

EXERCISES for Section 16.2

In Exercises [1| to |8 evaluate the limits, if they exist.

r+y
1.[R S
g (ew)m(23) 72+ 42
2
X
2.[R li -
g (ew)m(11) 22+ 42
2
X
3.R li -
g (20)(0.0) T2 + 12
. Ty
4.R 1 7
g (e0)=(00) 22 + 12
5.[R] lim oY
(@,9)—(2,3)
6.R lim x2)Y
g <x,y>~<0,o>( )
7.[R li 1 1/(zy)
g <x,y>lgfo,o>( )
8.R]  lim (1+a)/¥
(@,9)—(0,0)

In Exercises [9] to (a) describe the domain of the given functions and (b) state

whether the functions are continuous.

9.R] flz.y)=1/(z+y)

10.[R] f(z,y) =1/(2* +2y°)
LR flry) = 1/(9— 2 — )
12.[R] f(z,y) = Va2 +y?—25
13.[R] f(z,y) = /16 — 22 — g2
14.[R] f(z,y) = /49 — 22 — ¢?

In Exercises [T5] to 20} find the boundary of the given region R.

15.[R] R consists of all points (z,y) such that 22 +3? < 1.

16.[R] R consists of all points (z,y) such that 22 + 32 < 1.

17.[R] R consists of all points (z,y) such that 1/(z? + 3?) is defined.
18.[R] R consists of all points (z,y) such that 1/(z + y) is defined.
19.[R] R consists of all points (z,y) such that y < z2.

20.[R] R consists of all points (x,y) such that y < x.

In Exercises [21] to 24] concern the precise definition of lim, ) p, f(7,y).
21.[R] Let f(z,y) =x+y.

(a) Show that if P = (z,y) lies within a distance 0.01 of (1, 2), then | —1] < 0.01

and |y — 2| < 0.01. (See Figure [16.2.6)).

Key: R-routine, M—moderate, C—challenging
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(b) Show that if |z — 1| < 0.01 and |y — 2| < 0.01, then |f(x,y) — 3| < 0.02.

(c¢) Find a number 6 > 0 such that if P = (z,y) is in the disk of center (1,2) and
radius ¢, then |f(z,y) — 3| < 0.001.

(d) Show that for any positive number €, no matter how small, there is a positive
number 0 such that when P = (x,y) is in the disk of radius § and center (1, 2),
then |f(z,y) — 3| < e. (Give § as a function of e.)

(e) What may we conclude on the basis of (d)?

Figure 16.2.6:

22.[R] Let f(x,y) =2z + 3y.

(a) Find a disk with center (1, 1) such that whenever P is in that disk, | f(P)—5| <
0.01

(b) Let € be any positive number. Show that there is a disk with center (1,1) such
that whenever P us in that disk, |f(P) — 5| < e. (Give ¢ as a function of e.)

(c) What may we conclude on the basis of (b)?

23.[R] Let f(z,y) = s%y/(x* + 2y?).
(a) What is the domain of f7

(b) Fill in this table:

(z,) | (0.01,0.01) (0.01,0.02) (0.001,0.003)
flx,y) |

(c) On the basis of (b), do you think limp_, g0y f(P) exists? If so, what is its
value?

Calculus December 4, 2010
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(d) Fill in this table:

(x,9) | (0.5,0.25) (0.1,0.01) (0.001,0.000001)
f(z,y) |

(e) On the basis of (d), do you think limp_, g0y f(P) exists? If so, what is its
value?

(f) Does limp_, (o) f(P) exist? If so, what is it? Explain.

24.[R] Let f(z,y) = bz?y/(2x* + 3y?).
(a) What is the domain of f?
(b) As P approaches (0,0) on the line y = 2z, what happens to f(P)?

)
) (

(c) As P approaches (0,0) on the line y = 3z, what happens to f(P)?

(d) As P approaches (0,0) on the parabola y = 22, what happens to f(P)?
)

(e) Does limp_, g o) f(P) exist? If so, what is it? Explain.

25.[R] Show that for any polynomial P(z,y), Py, equals Py,. Suggestion: It is
enough to show it for an arbitrary monomial ax™y"™, where a is constant and m and n
are non-negative integers. The case where m or n is 0 should be treated separately.

26.[M] Let T'(z,y,2) = 1/y/a? + y?> + 22, if (z,y, 2) is not the origin (0, 0,0). Show
that
WT+ﬁT+WT
ox2  Oy?2 022

This equation arises in the theory of heat as we will show in Section [16.4

=0

27.]C] This exercise presents a function f(x,y) such that its two mixed partial
derivatives at (0,0) are not equal.

(a) Let g(x,y) = 2+‘Z for (x,y) not (0,0). Show that limy_,o(limp—o g(h, k)) =
—1 but limp_o(limg_—g g(h, k) =1

(b) Let f(z,y) = zyg(z,y) if (z,y) is not (0,0) and f(0,0) = 0. Show that
f(z,y) =0if x or y is 0.

(c) Show that fy,(0,0) = limy_o M‘

(d) Show that fu,(0,0) = limg_g (hmh—>0 f(h,k)—f(j,k)};cf(h,O)-S-f(0,0)).
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(e) Show that f.,(0,0) = —1.
(f) Similarly, show that f;,(0,0) = 1.

(g) Show that in polar coordinates the value of f at the point (r, #) is 72 sin(46) /4.

Calculus December 4, 2010
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(116.3.1)) is clear algebraically
because the two

f(a+ Az, b) terms cancel.

16.3 Change and the Chain Rule

For a function of one variable, f(z), the change in the value of the function as
the input changes from a to a + Az is approximately f’(a)Az. In this section
we estimate the change in f(z,y) as (x,y) moves from (a,b) to (a+Ax, b+ Ay).

That type of estimate is the key to obtaining the chain rule for functions
of several variables. We will find that the chain rule involves the sum of terms
that resemble the product % . % that appear in the chain rule for a function
of one variable.

Estimating the Change of Af

Let z = f(z,y) be a function of two variables with continuous partial deriva-
tives at least throughout a disk centered at the point (a,b). We will express
Af = fla+ Az, b+ Ay) — f(a,b) in terms of f, and f,. This change is shown
in Figure [16.3.1] We can view this change as obtained in two steps. First, the

Figure 16.3.1:

change as x goes from a to a + Az, that is, f(a+ Ax,b) — f(a,b). Second, the
change from f(a+ Az,b) to f(a+ Ax,b+ Ay), as y changes from b to b+ Ay.
In short,

Af = (f(a+ Az,b) — f(a, b))+ (fla+ Az, b+ Ay) — f(a+ A,b)). (16.3.1)

By the mean-value theorem, there is a number ¢; between a and a + Az such
that
of

fla+ Az,b) — f(a,b) = %(cl, b)Ax (16.3.2)

Similarly, applying the mean-value theorem to the second bracket expres-
sion as ((16.3.2)), we see that there is a number c3 between b and b + Ay such
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that

fla+ Az,b+ Ay) — f(a+ Ax,b) = %( + Az, o) Ay. (16.3.3)

Combining ((16.3.1)), (16.3.2) and ((16.3.3]) we obtain

Af = %(01, b)Ax + %( + Az, ca)Ay. (16.3.4)

When both Az and Ay are small, the points (c;,b) and (a+Ax, ¢y) are near
the point (a,b). If we assume that the partial derivatives f, are continuous at
(a,b), then we may conclude that

of of of of

=L = L - A = = 16.3.
8x(cl’b) 8x(a’b)+€1 and ay( + Az, ) ay(a,b)—i—eg, (16.3.5)

where both €; and €5 approach 0 as Ax and Ay approach 0.
Combining (16.3.4])) and (16.3.5)) gives the key to estimating the change in

the function f. We state this important result as a theorem.

Theorem 16.3.1. Let f have continuous partial derivatives f, and f, for all
points within some disk with center at the point (a,b). Then Af, which is the
change f(a+ Az, b+ Ay) — f(a,b), can be written

Af = %(a, b)Ax + g—g(a, b)Ay + e;Ax + e2Ay, (16.3.6)

where €, and €3 approach 0 as Az and Ay approach 0. (Both € and €y are
functions of the four variables a, b, Ax and Ay.)

The term f,(a,b)Az estimates the change due to the change in the z-
coordinate, while f,(a,b)Ay estimates the change due to the change in the
y-coordinate.

We will call f(z,y) differentiable at (a, b) if holds. In particular if
the partial derivatives f, and f, exist in a disk around (a, b) and are continuous
at (a,b), then f is differentiable at (a,b).

Since €; and €y in both approach 0 as Az and Ay approach 0,

0 af

Af ~ %(a, b)Ax + a—y(a, b)Ay, (16.3.7)

Calculus December 4, 2010
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DOUG: Yol"& &K 3gineldeds
more with “app.%%*?#%%@:
SHERMAN: What do you
mean by this?

The approximation (16.3.7)) gives us a way to estimate Af when Az and
Ay are small.

EXAMPLE 1 Estimate (2.1)%(0.95).

SOLUTION Let f(x,y) = z%y®. We wish to estimate f(2.1,0.95). We know
that f(2,1) equals 2213 = 4. We use to estimate Af = f(2.1,0.95) —
f(2,1). We have

d(x*y?) d(x%y?)

— 9 — 3422
o xy and 3y 3x*y
Then o7 o7
—(2,1)=4 —(2,1) =12.
2D =1 and @)

Since Az = 0.1 and Ay = —0.05, we have
Af = 4(0.1) +12(~0.05) = 0.4 — 0.6 = —0.2.
Thus (2,1)%(0.95)® is approximately 4 + (—0.2) = 3.8. o

The Chain Rule

We begin with two special cases of the chain rule for functions of more than one
variable. Afterward we will state the chain rule for functions of any number
of variables.

The first theorem considers the case when z = f(zy) and z and y are
functions of just one variable . The second theorem is more general, where x
and y may be functions of two variables, ¢ and u.

Theorem. Chain Rule — Special Case #1 Let z = f(x,y) have continuous
partial derivatives f, and f,, and let v = x(t) and y = y(t) be differentiable
functions of t. Then z is a differentiable function of t and

dz Ozdx Ozdy
e 16.3.
dt  oxdt = oydt (16.3.8)
Proof

By definition,
dz . Az

— = lim —.
dt At—0 At
Now, At induces changes Ax and Ay in z and y, respectively. According to

Theorem ,
of

0
Az = 8_£(I’ y)Ax + 8—y(x, Y)Ay + 1Az + e2Ay,
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where ¢; — 0 and €5 — 0 as Az and Ay approach 0. (Keep in mind that x
and y are fixed.) Thus

Az 8_f Az Of Ay Ax Ay

Ao WA T oy YA TR A
and d A of d af d d d
z ) z T Y € Y
— = lim — = —= —+ = — +0—=.
g A A T WY T g, Y0 0y
This proves the theorem. °

MEMORY AID: Each path produces one summand. And, each leg in each
path produces one factor in that summand.

The two summands on the right-hand sides of ((16.3.8) remind us of the
chain rule for functions of one variable. Why is there a “+” in (16.3.8)7 The

“+7 first appears in and you can trace it back to Figure .

The diagram in Figure helps in using this special case of the chain
rule . There are two paths from the top variable z down to the bottom variable
t. Label each edge with the appropriate partial derivative (or derivative). For
each path there is a summand in the chain rule. The left-hand path (see

Figure [16.3.3)) gives us the summand
0z dx
Ox dt”
The right-hand path (see Figure [16.3.4]) gives us the summand

0z dy
8y dt

Then dz/dt is the sum of those two summands.

EXAMPLE 2 Let 2 = 2% z = 3t?, and y = t/3. Find dz/dt when t = 1.
SOLUTION In order to apply the special case of the chain rule, compute z,,
2y, dz/dt, and dy/dt:

0z 0z
= _9 3 -~ =3 2,2
ox wy Jy oy
dr y dy 1
dt d 3
Calculus December 4, 2010
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By the special case of the chain rule,

dz 1
_:2 3. t 22'_.
o xy” - 6t 4+ 327y 3

In particular, when t = 1, x is 3 and vy is % Therefore, when t =1,
dz _ 41 36 gl 21_36+27_7
dt 3 3) 3 21 21 3

In Example , the derivative dz/dt can be found without using the theorem.
To do this, express z explicitly in terms of ¢:

3
z = 2%y = (3t%)? <E> = i

o

3 3
Then
dz B Tt6
a3
When ¢ = 1, this gives
dz B 7
dt 3

in agreement with the first computation.

EXAMPLE 3 The temperature at the points (z,y) on a window is T'(z, y).
A bug wandering on the window is at the point (z(t),y(t)) at time t. How fast
does the bug observe that the temperature of the glass changes as he crawls
about?
SOLUTION The bug is asking us to find d7'/dt. The chain rule tells
us that

dI'  0T'dx 0T dy

At " Ordi aydt
The bug can influence this rate by crawling faster or slower. He may want to
know the direction he should choose in order to cool off as quickly as possible.
But we will not be able to tell him how to do this until the next section,

Section [16.41 o

The proof of the next chain rule is almost identical to the proof of Theo-

rem [16.3] (See Exercise [24])

Theorem. Chain Rule — Special Case #2 Let z = f(x,y) have continuous
partial derivatives, f, and f;. Let v = x(t,u) and y = (t,u) have continuous
partial derivatives

Ox Ox dy dy

ot’ ou’ ot’ ou’
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Then
0z 0z0x  0z0y p 0z 0z0x  0z0y

o ozot oyot ou 0xou  oyou

The variables are listed in Figure [16.3.5

To find z;, draw all the paths from z down to ¢t. Label the edges by the
appropriate partial derivative, as shown in Figure [16.3.6]

Each path from the top variable down to the bottom variable contributes a
summand in the chain rule. The only difference between Figure[16.3.2|and Fig-
ure is that ordinary derivatives dx/dt and dy/dt appear in Figure
while partial derivatives x; and y; appear in Figure .

In the first special case of the chain rule there are two middle variables and
one bottom variable. In the second chain rule there are two middle variables
and two bottom variables. The chain rule holds for any number of middle
variables and any number of bottom variable. For instance, there may be
three middle variables and, say, four bottom variables. In that case there are
three summands for each of four partial derivatives.

In the next example there is only one middle variable and two bottom
variables.

EXAMPLE 4 Let z = f(u) be a function of a single variable. Let u =
2z + 3y. Then z is a composite function of x and y. Show that

0z 0z
2— = 3—. 16.3.
5 o (16.3.9)

SOLUTION We will evaluate both z, and z, by the chain rule and then
check whether ((16.3.9) is true.

To find z, we consider all paths from z down to z. There is only one middle
variable so there is only one path. Since v = 2x + 3y, u, = 2. Thus

0: _dzou_ds , _d:
Or dudx du - Tdu

(Note that one derivative is ordinary, while the other is a partial derivative.)
Next we find z,. Again, there is only one summand. Since u = 2z + 3y,
uy = 3. Thus
0: dzou _d: . .d
oy dudy du = du
Thus 2z, = 2dz/du and z, = 3dz/du. Substitute these into the equation

0z 0z
25 =35,

Calculus December 4, 2010
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The wave equation also
appears in the study of
sound or light.

Figure 16.3.7:

to see whether we obtain a true equation:

2 (33—;) =3 (Qj—z) . (16.3.10)

Since (|16.3.10|) is true, we have verified (|16.3.9)). o

An Important Use of the Chain Rule

There is a fundamental difference between Example 2] and Example [d In the
first example, we were dealing with explicitly given functions. We did not
really need to use the chain rule to find the derivative, dz/dt. As remarked
after the example, we could have shown that z = t7/3 and easily found that
dz/dt = 7t°/3. But in Example [} we were dealing with a general type of
function formed in a certain way: We showed that holds for every
differentiable function f(u). No matter what f(u) we choose, we know that
22y = 37z,.

Example [4] shows why the chain rule is important. It enables us to make
general statements about the partial derivatives of an infinite number of func-
tions, all of which are formed the same way. The next example illustrates this
use again.

D’Alembert in 1746 obtained the partial differential equation for a vibrating
string:

Py ,0%

o2 oz
(See Figure in the CIE about the Wave in a Rope.) This “wave equa-
tion” created a great deal of excitement, especially since d’Alembert showed
that any differentiable function of the form

(16.3.11)

g(x + kt) + h(z — kt)

is a solution.
Before we show that d’Alembert is right, we note that it is enough to check
it for g(z + kt). If you replace k by —k in it, you will also have a solution since

replacing k£ by —k in (16.3.11)) doesn’t change the equation.

EXAMPLE 5 Show that any function y = g(x + kt) satisfies the partial
differential equation (|16.3.11])).

SOLUTION 1In order to find the partial derivatives y,, and y; we express
y = g(x + kt) as a composition of functions:

y = g(u) where u=2x+ kt.

Note that g is a function of just one variable. Figure [16.3.7] lists the variables.
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We will compute y,, and y; in terms of derivatives of g and then check
whether ((16.3.11)) holds. We first compute y,,. First of all,

Oy dydu dy 1_dy
or  dudr du = du’
(There is only one path from y down to x. See Figure [16.3.7.) In (16.3.12))

dy/du is viewed as a function of x and ¢; that is, u is replaced by = + kt. Next,

Py 0 (oy\ 0 [dy

0x2  Ox \Ox) Oz \du/’
Now, dz/du, viewed as a function of x and ¢, may be expressed as a composite
function. Letting w = dy/du, we have

(16.3.12)

w= f(u), where u=x+ kt.
Therefore
Py _ 9 (@) — ow
ox? glmv %Tu T oz
= dw.ou (only one path down to z)
d (@) ou _ dy 1.
du \du/ Ox du? )
hence 92 P
Y Y
gy _ay 16.3.13
ox?  du? ( )

Then we also express y; in terms of d?y/du?, as follows. First of all,

Oy dydu dy k:—kdy
ot  dudt du = du
(See Figure [16.3.9])
Then
2y _ 9 (8y) _ 9 (1.4
o = o (o) = o (FG)
= ké Wy . ou (only one path down to t)
kLY k-
du2 )
hence P P
Y 202
— =k*— 16.3.14
ot? du? (16.3.14)
Comparing ((16.3.13) and (|16.3.14]) shows that
Pz dPz
o2 da?
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Some_advice

L1

: -
-."'\. ) y .

1 Isulc 1UV.D.1V.

Figure 16.3.11:

-

Summary

The section opened by showing that under suitable assumptions on f(z,y)

0 0
Af = —f(a, b)Az + —f(a, b) + e1Ax + ea Ay, (16.3.15)

ox dy
where €; and e approach 0 as Ax and Ay approach 0. This gave us a way to
estimate A f, namely

of of
Af~—(a,b)A —(a,b)A
fa Gh(@b)Ar + S a.b)Ay

“The change is due to both the change in z and the change in y.” (16.3.15))
generalizes to any number of variables and also is the basis for the various
chain rules for partial derivatives. This is the general case:

If z is a function of xq,xo, ...z, and each z; is a function of t1,t5...1,,
then there are n partial derivatives of 0z/0t;. Each is a sum of m products
of the form (0z/0x;)(0x;/0t;). To do the bookkeeping, first make a roster
as shown in Figure [16.3.10L To compute 0z/0t;, list all paths from z down
to t;, as shown in Figure [16.3.11l Each path that starts at 2 and goes down
to t; “contributes” a product. You do not have to be a great mathematician
to apply the chain rule. However, you must do careful bookkeeping. First,
display the top, middle, and bottom variables. Second, keep in mind that the
number of middle variables determines the number of summands.

December 4, 2010 Calculus
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EXERCISES for Section 16.3 Key: R-routine, M—moderate, C—challenging

In Exercises [1| to [4] verify the chain rule (Special Case #1, on page|1292)) by comput-
ing dz/dt two ways: (a) with the chain rule, (b) without the chain rule (by writing
z as a function of t).

1.R] z=2%3 2=t y=13

2.R] z=we¥,x=t,y=1+3t

3.[R] z=cos(zy?), v = €%, y = sec(3t)
4.[R] z=1In(x+ 3y), = = t?, y = tan(3t).

In Exercises |5| and |§| verify the chain rule (Special Case #2, on page [1294]) by
computing dz/dt two ways: (a) with the chain rule, (b) without the chain rule (by
writing z as a function of ¢ and u).

5.[R] z=2%, 2 —3t+4u,y=>5—u
6.[R] z=sin(z+3y), z=t/u,y =Vt +Vu

7.[R] Assume that z = f(x1,x2, 23,24, 25) and that each z; is a function of 1, to,

List all variables, showing top, middle, and bottom variables.

Draw the paths involved in expressing 0z/dt3 in terms of the chain rule.

)
)
(c) Express 0z/0ts in terms of the sum of products of partial derivatives.
(d) When computing 0z/dte, which variables are constant?

)

When computing 0z/0ts, which variables are constant?

8.[R] If z = f(g(t1,t2,13), h(t1,t2,13))
) How many middle variables are there?
b) How many bottom variables?
)

What does the chain rule say about dz/0t3? (Include a diagram showing the
paths.)

9.[R] Find dz/dt if z, =4, z, = 3, dz/dt = 4, and dy/dt = 1.

Calculus December 4, 2010
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10.[R] Find dz/dt if z, =3, 2z, = 2, dx/dt = 4, and dy/dt = —3.

11.[R] Let z = f(x,y), x =u+v, and y = u — v.
(a) Show that (2;)? — (2y)? = (24)(2y). (Include diagrams.)

(b) Verify (a) when f(z,y) = 2% + 2y3.

12.[R] Let z = f(x,9), v = u? —v? and y = v? — .

(a) Show that
0z 0z 0

Yov " ou T

(Include diagrams.)

(b) Verify (a) when f(zy) = sin(z + 2y).

13.[R] Let z = f(t —u,—t + u).
(a) Show that % + % = 0 (Include diagrams.)

(b) Verify (a) when f(z,y) = 22y

14.[R] Let w= f(z —y,y — 2,2 — x).
(a) Show that %’C’ + %—Z + %—f = 0. (Include diagrams.)

(b) Verify (a) in the case f(s,t,u) = s? + 2 — u.

15.[R| Let z = f(u,v) where u = az + by, v = cx + dy, and a, b, ¢, d are constants.

Show that
(a) gj; =a’ gjj; + 2ac 38551} + ngj}];
(b) g;z = ngiJ; + 2bdaajgv + d2gj}‘§
(c) 82,’282;(/ = abgij; + (ad + be) 88551; + Cd?}j}];
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16.[R] Let a, b, and ¢ be given constants and consider the partial differential
equation
02z 0%z 0%z _o
“or2 b 0x0y te 83/
Assume a solution of the form z = f(y + ma), where m is a constant. Show that
for this function to be a solution, am? + bm + ¢ must be 0.

17.[R)

(a) Show that any function of the form z = f(z + y) is a solution of the partial
differential equation
0%z 0%z 0%z
Ox? oxdy  Oy?

(b) Verify (a) for z = (x + y)3.

18.[R| Let u(z,t) be the temperature at point x along a rod at time t. The function
u satisfies the one-dimensional heat equation for a constant k:

ou_
ot 0z
(a) Show that u(x,t) = eklg(x) satisfies the heat equation if g(x) is any function
such that ¢’ (z) = ( ).
(b) Show that if g(z) = 3¢~ + 4e”, then ¢"(z) = g(x).

19.[R]

(a) Show that any function of the form z = f(x 4+ y) + ¥ f(x — y) is a solution of
the partial differential equation

(b) Check (a) for z = (z + y)? + ¥ sin(z — y).

20.[R] Let z = f(z,y) denote the temperature at the point (z,y) in the first
quadrant. If polar coordinates are used, then we would write z = f(r,0).

Calculus December 4, 2010
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(a) Express z, in terms of z, and x,. HINT: What is the relation between rect-
angular coordinates (z,y) and polar coordinates (r,0)?

(b) Express zp in terms of z, and z,.
0:\!, (02\F_(0:\F, 1 (02’
Ox oy)  \or r2\00)

21.[R] Let u= f(r) and r = (22 + y% + 2?)'/2. Show that

(c) Show that

Pu, Fu_ Fu_fu 2
ox?  Oy2 022 dr?  rdr

22.[R] At what rate is the volume of a rectangular box changing when its width
is 3 feet and increasing at the rate of 2 feet per second, its length is 8 feet and
decreasing at the rate of 5 feet per second, and its height is 4 feet and increasing at
the the rate of 2 feet per second?

23.[R] The temperature T at (x,y, z) in space is f(x,y, z). An astronaut is traveling
in such a way that his x and y coordinates increase at the rate of 4 miles per second
and his z coordinate decreases at the rate of 3 miles per second. Compute the rate
dT'/dt at which the temperature changes at a point where

or _, or T

pd— - = d .
Ox T Oy 7. an 0z )

24.[M] We proved Special Case #1 of the chain rule (page [1292)), when there are
two are two middle variables and one bottom variable. Prove Special Case #2 of
the chain rule (page [1294)), where there are two middle variables and two bottom
variables.

25.[M] To prove the general chain rule when there are three middle variables, we
need an analog of Theorem concerning Af when f is a function of three
variables.

(a) Let y = f(z,y,x) be a function of three variables. Show that

Af = f(x+A3:,y+Ay,z+Az)—f(x,y,z)
= (f(.%’—i—A:L‘,y,Z) —f(x,y,z))—l—(f(ac—l—Ax,y—i—Ay,z) —f(.%'—i-AiL‘,y,Z))
+(f(z+Az,y+ Ay, 2+ Az) — f(z + Az, y + Ay, 2)).
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(b) Using (a) show that

of of of

Af = 7(.%'73/,2)A.7}+ @(x7y7 Z)Ay+ ) (I’,y,Z)AZ+61A$—|—62Ay+63A27

Oz Dz
where €1, €2, €3 — 0 as Az, Ay, Az — 0.

(c) Obtain the general chain rule in the case of three middle variables and any
number of bottom variables.

26.[M] Let z = f(z,y), where x = rcos(f) and y = rsin(f). Show that

0%z o O f , 0% f
52 = cos (0) == + 2cos(0) Sm(e)ax@y

*f
0x2 '

+ sin? () 952

27.]M] Let u = f(x,y), where z = rcos(f) and y = rsin(6). Verify the following
equation, which appears in electromagnetic theory,
10 ( 8u> 1 0% 0% 0%u

var Uar =

T e T o2 T o

28.[M] Let u be a function of z and y, where = and y are both functions of s and t.
Show that

0y 0%u (856)2 5 0%u 0x 0y  0%u <8y>2 oud’x  Oud?y

952~ 022 \ s 920y 05 0z | 0y \0z) 0z 052 T oy o2

29.[C] Let (r,0) be polar coordinates for the point (z,y) given in rectangular
coordinates.

(a) From the relation r = y/22 + y2, show that dr/0z = cos(h).
(b) From the relation r = z/ cos #, show that dr/0x = 1/ cos(f).

(c) Explain why (a) and (b) are not contradictory.

30.[C] In developing (16.3.6), we used the path that started at (z,y), went to
(x + Az,y), and ended at (x + Az,y + Ay). Could we have used the path from
(z,y), through (z,y + Ay), to (x + Az, y + Ay) instead? If “no”, explain why. If

. b

yes,” write out the argument, using the path.

Calculus December 4, 2010
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In Exercises |31 to |34] concern homogeneous functions. A function f(z,y) is homo-
geneous of degree r if f(kx, ky) = k" f(x,y) for all k > 0.

31.[R] Verify that each of the following functions is homogeneous of degree 1 and
also verify that each satisfies the conclusion of Euler’s theorem (with r = 1):

flay) =g + v

(a) fz,y) =3 +4y

(b) flay) =2’y
(¢) fla,y) = we™¥

32.[M] Show that each of the following functions is homogeneous, and find the
degree 7.

(a) f(z,y) =2*(Inz —Iny)
(b) flz,y) =1/v/2* +y?
(¢) f(z,y) =sin (%)

33.[C] (See Exercise [81]) Show that if f is homogeneous of degree r, then
xfr +yfy =rf. This is the general form of Euler’s theorem.

34.[C] (See Exercise[33]) Verify Euler’s theorem for each of the functions in Exer-
cise

35.[C] (See Exercise[32]) Show that if f is homogeneous of degree 7, then 0 f/0z
is homogeneous of degree r — 1.
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16.4 Directional Derivatives and the Gradient

In this section we generalize the notion of a partial derivative to that of a
directional derivative. Then we introduce a vector, called “the gradient,” to
provide a short formula for the directional derivative. The gradient will have
other uses later in this chapter and in Chapter [18|

Directional Derivatives

If z = f(z,y), the partial derivative 0f/0x tells us how rapidly z changes as
we move the input point (z,y) in a direction parallel to the z-axis. Similarly,
fy tells how fast z changes as we move parallel to the y-axis. But we can ask,
“How rapidly does z change when we move the input point (z,y) in any fixed
direction in the xy plane?” The answer is given by the directional derivative.

Consider a function z = f(x,y), let’s say the temperature at (z,y). Let
(a,b) be a point and let u be a unit vector in the xy plane. Draw a line through
(a,b) and parallel to u. Call it the t-axis and let its positive part point in the
direction of u. Place the 0 of the t-axis at (a,b). (See Figure [16.4.1]) Each
value of ¢ determines a point (z,y) on the t-axis and thus a value of z. Along
the t-axis, z can therefore be viewed as a function of ¢, z = g(t). The derivative
dg/dt, evaluated at t = 0, is called the directional derivative of z = f(x,y)
at (a,b) in the direction u. It is denoted D, f. The directional derivative is the
slope of the tangent line to the curve z = g(t) at t = 0. (See Figure[16.4.1)(c).)

Figure 16.4.1: ARTIST: Improved figures are needed here.

When u = i, we obtain the directional derivative D, f, which is simply fz.
When u = j, we obtain Djf, which is f,.

The directional derivative generalizes the two partial derivatives f, and f,.
After all, we can ask for the rate of change of z = f(z,y) in any direction in
the zy plane, not just the directions indicated by the vectors i and j.

The following theorem shows how to compute a directional derivative.

Calculus December 4, 2010
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Figure 16.4.3:

Check (16.4.1)) when 8 =0

Check (16.4.1) when 6 = =«

Check ((16.4.1)) when 0 =

0l

Theorem. (Directional Derivatives) If f(x,y) has continuous partial deriva-

tives f, and f,, then the directional derivative of f at (a,b) in the direction of

u = cos(0)i+ sin(6)j where 6 is the angle between u and i is
of of

—(a, b) cos(#) + =(a,b) sin(0).

5 3 (16.4.1)

Proof

The directional derivative of f at (a,b) in the direction u is the derivative of
the function

g(t) = f(a+tcos(h),b+ tsin(h))

when t = 0. (See Figure and Figure )

Now, g is a composite function

B r = a-+tcos(d)
9(t) = f(xy) where { y = b+tsin(f).
The chain rule tells us that
"(t) = 6_fd_x (9_fd_y
TV = 5t Oy dt
Moreover,
Z—f = cos(0) and Z—ZZ = sin(6).
Thus of of
g'(0) = %(a, b) cos + a—y(a, b) sin 6,
and the theorem is proved. °
When 6 = 0, that is, u =i, (16.4.1)) becomes
of of, - of of of
am (CL, b) COS(O) + ay (CL, b) SIH(O) - 81‘ (CL, b)(l) + 8y (a’ b) (O) - ax ((l, b)
When 6 = 7, that is, u = —i, becomes
of of : of of of
=L 2L - 2L )4+ 2L = —2L(a,b).
S b eos(m) + @, sin(m) = Lan(=1)+ Z@n©) = -Za)

(This makes sense: If the temperature increases as you walk east, then it
decreases when you walk west.)

. When 6 = 7, that is, u = j, (16.4.1) asserts that the directional derivative
is

9 9 0 0 0
a—i(a,b) cos(Z) + a—“;(a,b) sin(7) = 8—£<a, b)(0) + a—;(a,b)(l) _ a—zm,b).
December 4, 2010 Calculus
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which also is expected.

EXAMPLE 1 Compute the derivative of f(z,y) = z?y* at (1,2) in the di-
rection given by the angle 7/3. (That is, u = cos(7/3)i+sin(7/3)j.) Interpret
the results if f describes a temperature distribution.

SOLUTION First of all,

of 3 of 2,2
2 _9 i
o xy® and Jy 37y
Hence o/ of
%(1,2) =16 and 8_y(1’2) =12
Second,
T 1 LT \/3
cos <§> =5 and  sin (§> =5

Thus the derivative of f in the direction given by § = 7/3 is

1
16 (5) +12 (?) — 8+ 63~ 18.3923.

If 2%y3 is the temperature in degrees at the point (z,y), where z and y are
measured in centimeters, then the rate at which the temperature changes at
(1,2) in the direction given by # = 7/3, is approximately 18.4 degrees per
centimeter. &

The Gradient

Equation (16.4.1)) resembles the formula for the dot product. To exploit this
similarity, it is useful to introduce the vector whose scalar components are

fz(a,b) and f,(a,b).
DEFINITION (The gradient of f(x,y).) The vector

af .. Of ..
%(aa b)l + a_y(aa b)]

is the gradient of f at (a,b) and is denoted V f. (It is also called
“del f,” because of the upside-down delta V.)

The del symbol is in boldface to emphasize that the gradient of f is a
vector. For instance, let f(z,y) = 2® +y*. We compute and draw V f at a few
points, listed in the following table:

Figure shows V f, with the tail of Vf placed at the point where V f
is computed.

In vector notation, Theorem [16.4] reads as follows:

Calculus December 4, 2010
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The meaning of |V f]|| and
the direction of V f

Figure 16.4.5:

(v,y) =20 P =2 Vf

1,2) 2 1 2i+4j

(3,0) 6 0 6i

2,-1) 4 =2 4i- 2]
Table 16.4.1:

Theorem. Directional Derivative - Rephrased If z = f(x,y) has continuous
partial derivatives f, and f,, then at (a,b)

Duf = Vf(a, b) "u= (fz(a7 b)i + fy(a> b)J) .

The gradient is introduced not merely to simplify the computation of di-
rectional derivatives. Its importance is made clear in the next theorem.

A Different View of the Gradient

The gradient vector provides two important pieces of geometric information
about a function. The gradient vector, V f(a,b), always points in the direction
in which the function increases most rapidly from the point (a,b). In the
same way, the negative of the gradient vector, —V f(a, b), always points in the
direction in which the function decreases most rapidly from the point (a,b).
And, the length of the gradient vector, ||V f(a,b)||, is the largest directional
derivative of f at (a,b).

Theorem. Significance of Vf Let z = f(x,y) have continuous partial deriva-
tives f, and f,. Let (a,b) be a point in the plane where V f is not 0. Then the
length of V[ at (a,b) is the largest directional derivative of f at (a,b). The
direction of V f is the direction in which the directional derivative at (a,b) has
its largest value.

Proof

By the definition of the directional derivative, if u is a unit vector, then, at
(a,b),
D,f=Vf-u.

By the definition of the dot product
Vf-u=|Vflull cos(a),

where « is the angle between Vf and u, as shown in Figure [16.4.5] Since
‘u‘ =1,
Dyf = ||V f] cos(a). (16.4.2)
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The largest value of cos(a) for 0 < o < 7, occurs when cos(a) = 1; that
is, when a = 0. Thus, by (16.4.2)), the largest directional derivative of f(z,y)
at (a,b) occurs when the direction is that of Vf at (a,b). For that choice of
u, D, f =||Vf||. This proves the theorem. o

What does this theorem tell a bug wandering around on a flat piece of
metal? If it is at the point (a,b) and wishes to get warmer as quickly as
possible, it should compute the gradient of the temperature function and then
go in the direction indicated by that gradient.

EXAMPLE 2 What is the largest direction derivative of f(x,y) = 2%y® at
(2,3)? In what direction does this maximum directional derivative occur?
SOLUTION At the point (x,y),

Vf = 2xy’i + 32%9%j.

Thus at (2, 3),
Y/ = 108i + 108,

which is sketched in Figure [16.4.6| (not to scale). Note that its angle 6 is
7/4. The maximal directional derivative of z%y* at (2,3) is ||V f|| = 108v/2 ~
152.735. This is achieved at the angle § = /4, relative to the x-axis, that is,

for
2 2
u = cos (%)i—l—sin(%)j = £i—l-\/—_j.

<

Incidentally, if f(x,y) denotes the temperature at (z,y), the gradient V f
helps indicate the direction in which heat flows. It tends to flow “toward the
coldest,” which boils down to the mathematical assertion, “Heat tends to flow
in the direction of =V f.”

The gradient and directional derivative have been interpreted in terms of
a temperature distribution in the plane and a wandering bug. It is also in-
structive to interpret these concepts in terms of a hiker on the surface of a
mountain.

Consider a mountain above the xy plane. The elevation of the point on
the surface above the point xz,y) will be denoted by f(z,y). The directional
derivative D, f indicates the rate at which altitude changes per unit change in
horizontal distance in the direction of u. The gradient V f at (a,b) points in
the compass direction the hiker should choose to climb in the direction of the
steepest ascent. The length of V f tells the hiker the steepest slope available.

(See Figure [16.4.7])

Calculus December 4, 2010
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Generalization to f(z,y, 2)

The notions of directional derivative and gradient can be generalized with
little effort to functions of three (or more) variables. It is easiest to interpret
the directional derivative of f(x,y,z) in a particular direction in space as
indicating the rate of change of the function in that direction in space. A
useful interpretation is how fast the temperature changes in a given direction.

Let u be a unit vector in space, with direction angles «, 3, and . Then
u = cos ai + cos 3j + cosvk. We now define the derivative of f(x,y,z) in the
direction u.

DEFINITION (Directional Derivative of f(x,y,z).) The direc-
tional derivative of f at (a, b, ¢) in the direction of the unit vector

u = cos()i+ cos(B)j + cos(y)k is ¢'(0), where g is defined by
g(t) = fa+tcos(a),b+tcos(B),c+ tcos(y)).
It is denoted Dy f.

Note that ¢ is the measure of length along the line through (a,b,c) with
direction angles «, (3, and . Therefore D,f is just a derivative along the
t-axis.

The proof of the following theorem for a function of three variables is like
those given earlier in this section for functions of two variables.

Theorem. Directional Derivative of f(x,y, z) If f(z,y, z) has continuous par-
tial derivatives fy, fy, and f., then the directional derivative of f at (a,b,c)
in the direction of the unit vector u = cos(a)i + cos(/3)j + cos(y)k is

g—i(a, b, c) cos(a) + g—‘;(a, b, c) cos() + g—]zc(a, b, c) cos(7).

DEFINITION (The gradient of f(z,y,z).) The vector

of . Of . Of
2 (a,b,c)i+ By (a,b,c)j P (a,b,c)k

is the gradient of f at (a,b,c) and is denoted V f.

This theorem thus asserts that

the derivative of f(x,y,z) in the direction of the unit vector u equals the dot
product of u and the gradient of f:

Dyf=Vf-u

December 4, 2010 Calculus




§ 16.4 DIRECTIONAL DERIVATIVES AND THE GRADIENT 1311

Just as in the case of a function of two variables, V f evaluated at (a, b, ¢),
points in the direction u that produces the largest directional derivative at
(a,b,c). Moreover ||V f]| is that largest directional derivative. Just as in
the two variable case, the key steps in the proof of this theorem are writing
Vf-u=|Vf]lul] cos(Vf,u) and recalling that u is a unit vector.

EXAMPLE 3 The temperature at the point (z,y,2) in a solid piece of
metal is given by the formula f(z,y, z) = ¢**T¥3% degrees. In what direction
at the point (0,0,0) does the temperature increase most rapidly?

SOLUTION First compute

g — 26293-"-y—|—3z7 % — 62:c+y+3z7 % _ 362x+y+3z‘
Ox dy 0z

Then form the gradient vector:
Vf — 2€2x+y+3zi + €2x+y+3zj + 362$+y+32k.

At (0,0,0),
Vf=2i+j+3k.

Consequently, the direction of most rapid increase in temperature is that given
by the vector 2i + j + 3k. The rate of increase is then
121 4 j + 3k|| = V14 degrees per unit length.

If the line through (0,0,0) parallel to 2i + j + 3k is given a coordinate system
so that it becomes the t-axis, with ¢ = 0 at the origin and the positive part in
the direction of 2i + j + 3k, the df /dt = v/14 at 0. o

The gradient was denoted A by Hamilton in 1846. By 1870 it was denoted V,
an upside-down delta, and therefore called “atled.” In 1871 Maxwell wrote,
“The quantity VP is a vector. I venture, with much diffidence, to call it the
slope of P.” The name “slope” is no longer used, having been replaced by
“gradient.” “Gradient” goes back to the word “grade,” the slope of a road or
surface. The name “del” first appeared in print in 1901, in Vector Analysis, A

text-book for the use of students of mathematics and physics founded upon the
lectures of J. Willard Gibbs, by E.B. Wilson.
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Summary

We defined the derivative of f(z,y) at (a, b) in the direction of the unit vector u
in the zy plane and the derivative of f(x,y, 2) at (a, b, ¢) in the direction of the
unit vector u in space. Then we introduced the gradient vector V f in terms
of its components and obtained the formula

Dyf=Vf-u.

By examining this formula we saw that the length and direction of V f at
a given point are significant:

e V f points in the direction u that maximizes D, f at the given point

e ||V f] is the maximum directional derivative of f at the given point.
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EXERCISES for Section 16.4 Key: R-routine, M-moderate, C—challenging

As usual, we assume that all functions mentioned have continuous partial derivatives.
In Exercises 1| and [2| compute the directional derivatives of x*y® at (1,1) in the
indicated directions.

1.[R] (a) i, (b) —i, (c) cos(m/4)i+ sin(7/4)j
2.[R] (a)j, (b) —j, (c) cos(m/3)i+ sin(m/3)j

In Exercises |3| and 4| compute the directional derivatives of z2y? in the directions of
the given vectors.

3R] () (b) k. ()
4.[R] (a)i+j+k, (b) 2i—j+2k, (c) i+k NOTE: These are not unit vectors. First
construct a unit vector with the same direction.
5.[R] Assume that, at the point (2,3),0f/0x =4 and df/dy = 5.
(a) Draw Vf at (2,3).
(b) What is the maximal directional derivative of f at (2,3)7
)

(c¢) For which uis Dyf at (2,3) maximal? (Write u in the form zi + yj.)

6.[R] Assume that, at the point (1,1),0f/0x = 3 and 0f /0y = —3.
(a) Draw Vf at (1,1).
(b) What is the maximal directional derivative of f at (1,1)?
)

(c¢) For which uis Dyf at (1,1) maximal? (Write u in the form zi + yj.)

In Exercises [7] and [§] compute and draw V[ at the indicated points for the given
functions.

[R] f(z,y) =2 at (a) (2,5), (b) (3,1)
[R] flz,y) =1/va? +y? at (a) (1,2), (D) (3,0)

o

9.[R] If the maximal directional derivative of f at (a,b) is 5, what is the minimal
directional derivative there? Explain.

10.[R] For a given function f(z,y) at a given point (a, b) is there always a direction

Calculus December 4, 2010



1314 CHAPTER 16 PARTIAL DERIVATIVES

in which the directional derivative is 07 Explain.

11.[R] If (0f/0z)(a,b) = 2 and (0f/0t)(a,b) = 3, in what direction should a
directional derivative at (a,b) be computed in order that it be

(a) 07

(b) as large as possible?

(c) as small as possible?

12.[R| If, at the point (a,b,c), Of/0x = 2, Of /0y = 3, Of/0z = 4, what is the
largest directional derivative of f at (a,b,c)?
13.[R] Assume that f(1,2) =2 and f(0.99,2.01) = 1.98.

(a) Which directional derivatives Dy f at (1,2) can be estimated with this infor-
mation? (Give u.)

(b) Estimate the directional derivatives in (a).

14.[R] Assume that f(1,1,1) =3 and f(1.1,1.2,1.1) = 3.1.

(a) Which directional derivatives Dy f at (1,1,1) can be estimated with this in-
formation? (Give u.)

(b) Estimate the directional derivatives in (a).

15.[R] When a bug crawls east, it discovers that the temperature increases at the
rate of 0.02° per centimeter. When it crawls north, the temperature decreases at
the rate of —0.03° per centimeter.

(a) If the bug crawls south, at what rate does the temperature change?
(b) If the bug crawls 30° north of east, at what rate does the temperature change?

(¢) If the bug is happy with its temperature, in what direction should it crawl to
try to keep the temperature the same?

16.[R] A bird is very sensitive to the temperature. It notices that when it flies
in the direction i, the temperature increases at the rate of 0.03° per centimeter.
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When it flies in the direction j, the temperature decreases at the rate of 0.02° per
centimeter. When it flies in the direction k the temperature increases at the rate of
0.05° per centimeter. It decides to fly off in the direction of the vector (2,5,1). Will
it be getting warmer or colder?

17.[R] Assume that f(1,2) = 3 and that the directional derivative of f at (1,2) in
the direction of the (nonunit) vector i+ j is 0.7. Use this information to estimate

F(1.1,2.1).

18.[R] Assume that f(1,1,2) = 4 and that the directional derivative of f at (1,1,2)
in the direction of the vector from (1,1,2) to (1.01,1.02,1.99) is 3. Use this infor-
mation to estimate f(0.99,0.98,2.01).

In Exercises to find the directional derivative of the function in the given
direction and the maximum directional derivative.

19.[R] ayz? at (1,0,1);i+j+k

20.[R] 23yz at (2,1,—1); 2i —k

21.[R] ™50 at (1,1,7/4); i+j+ +3k
22.[R] arctan(y/z2 +y + 2) at (1,1,1); —i
23.[R] In(1+ zyz) at (2,3,1); =i+
24.[R] 2%ye®” at (1,1,0);i—j+k

25.[R] Let f(x,y,2) =2z + 3y + z.
(a) Compute Vf at (0,0,0) and at (1,1,1).

(b) Draw Vf for the two points in (a), in each case putting its tail at the point.

26.[R] Let f(z,y,2) = 2% + y* + 2°.
(a) Compute Vf at (2,0,0), (0,2,0) and (0,0, 2).

(b) Draw V f for the three points in (a), in each case putting its tail at the point.

27.[M] Assume that Vf at (a,b) is not 0. Show that there are two unit vectors u;
and ug, such that the directional derivatives of f at (a,b) in the direction of u; and
uy are 0.

28.[M] Assume that Vf at (a,b,c) is not 0. How many unit vectors u are there
such that Dy f = 0?7 Explain.
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SHERMAN: Exercises 28
and 35 are similar, but
different. Should (27 and)
28 be moved later, and
classified as M? Or, one
moved to the Chapter
Summary?

29.[R] Let T'(x,y, z) be the temperature at the point (x,y, z). Assume that V1" at
(1,1,1) is 2i + 3j + 4k.

(a) Find DT at (1,1,1) if u is in the direction of the vector i — j + 2k.

(b) Estimate the change in temperature as you move from the point (1,1,1) a
distance 0.2 in the direction of the vector i — j + 2k.

(c) Find three unit vectors u such that D,7 =0 at (1,1,1).

30.[R] A bug at the point (1,2) is very sensitive to the temperature and observes
that if it moves in the direction i the temperature increases at the rate of 2° per
centimeter. If it moves in the direction j, the temperature decreases at the rate of
2° per centimeter. In what direction should it move if it wants

(a) to warm up most rapidly?
(b) to cool off most rapidly?

(¢) to change the temperature as little as possible?

31.[R] Let f(x,y) = 1/y/2? + y?; the function f is defined everywhere except at
(0,0). Let r = (z,y).

)
(a) Show that Vf = —r/||r|>.
(b) Show that |V f] = —1/|r|?*

32.[R] Let f(z,y,2) = 1/y/2? + 3% + 22, which is defined everywhere except at
(0,0,0). (This function is related to the potential in a gravitational field due to a
point-mass.) Let r = zi+ yj + zk. Express V[ in terms of r.

33.[R] Let f(x,y) = 22+ 4> Prove that if (a,b) is an arbitrary point on the curve
22 +9? =9, then Vf computed at (a,b) is perpendicular to the tangent line to that
curve at (a,b).

34.[R] Let f(z,y,2) equal temperature at (z,y,2). Let P = (a,b,c) and @ be a

—
point very near (a,b,c). Show that Vf - PQ is a good estimate of the change in
temperature from point P to point Q.

35.[R]
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(a) If (Of/0x)(a,b,c) =2, (0f/0y)(a,b,c) =3 and (0f/0z)(a,b,c) = 1, find three
different unit vectors u such that Dy f at (a,b,c) is 0.

(b) How many unit vectors u are there such that Dy f at (a,b,c) is 07

36.[C] Let f(x,y) = xy.
(a) Draw the level curve xy = 4 carefully.

(b) Compute V f at three convenient points on that level curve and draw it with
its tail at the point where it is evaluated.

(c) What angle does V f seem to make with the curve at the point where it is
evaluated?

(d) Prove that the angle is what you think it is.

37.[]M] Let (z,y) be the temperature at (x,y). Assume that Vf at (1,1) is 2i + 3j.
A bug is crawling northwest at the rate of 3 centimeters per second. Let g(t) be
the temperature at the point where the bug is at time ¢ seconds. Then dg/dt is the
rate at which temperature changes on the bug’s journey (degrees per second.) Find
dg/dt when the bug is at (1,1).

38.[R] If f(P) is the electric potential at the point P, then the electric field E at
P is given by —1/c?V f. Calculate E if f(x,y) = sin(ax) cos(By), where a and f3
are constants.

39.[R] The equality 9% f/0z0y = 9% f /Oydx can be written as D;(D;f) = Dj(Dif).
Show for any two unit vectors u; and ug that Dy,(Dy, f) = Du, (Du, f). (Assume
that all partial derivatives of f of all orders are continuous.)

40.[C] Without the aid of vectors, prove that the maximum value of

g(0) = 0f/0x(a,b) cos(0) + Of /Oy(a,b) sin(0)

is \/(0f/0x(a,b))2 + (0f/Oy(a,b))2. NoTe: This is the first part of the theorem
about the significance of the gradient, on page [L308]

41.[R] Figure [16.4.8 shows two level curves of a function f(z,y) near the point
(1,2), namely f(z,y) =3 and f(z,y) = 3.02. Use the diagram to estimate

)
(a) Dif at (1,2),
(b) Djf at (1,2),

Calculus December 4, 2010
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(c) Draw Vf at (1,2).

L/
:

N LR I A

Figure 16.4.8:

42.[C] Why is a unit vector u in the xy-plane described by a single angle 6, but a
unit vector in space is described by three angles?

43.[M] Let f and g be two vector functions defined throughout the zy-plane. As-
sume they have the same gradient, Vf = Vg. Must f = g7 Is there any relation
between f and g7
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16.5 Normals and Tangent Planes

In this section we first find how to obtain a normal vector to a curve given
implicitly, as a level curve f(z,y) = k. Then we find how to obtain a normal
to a surface given implicitly, as a level surface f(x,y, z) = k. With the aid of
this vector we define the tangent plane to a surface at a given point on the
surface.

Normals to a Curve in the xy Plane

We saw in Section [[4.4l how to find a normal vector to a curve when the curve
is given parametrically, r = G(¢). Now we will see how to find a normal when
the curve is given implicitly, as a level curve f(z,y) = k. Throughout this
section we assume that the various functions are “well behaved.” In particular,
curves have continuous tangent vectors and functions have continuous partial
derivatives.

Theorem. The gradient V f at (a,b) is a normal to the level curve of f passing
through (a,b).

Proof

Let G(t) = x(t)i + y(t)j be a parameterization of the level curve of f that
passes through the point (a,b). On this curve, f(z,y) is a constant and has
the value f(a,b). Let G/(ty) be the tangent vector to the curve at (a,b) and
let the gradient of f at (a,b) be Vf(a,b) = fi(a,b,)i— f,(a,b)j. We wish to
show that

Vf-G'(to) =0;

that is,
of dx af dy B
o (a,b) o (to) + Jy (a,b) 7 (to) = 0. (16.5.1)

The left side of ((16.5.1]) has the form of a chain rule. To make use of this fact,
introduce the function wu(t) defined as

Note that u(t) is the value of f at a point on the level curve that passes through
(a,b). Hence u(t) = f(a,b). What is more important is that u(t) is a constant
function. Therefore, du/dt = 0.
Now, u = f(z,y), where x and y are functions of ¢. The chain rule asserts
that
du  Ofdx Ofdy
At dxdt " Oydt

Calculus December 4, 2010
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Figure 16.5.1:

Figure 16.5.2:

Since du/dt = 0, (16.5.1)) follows. Hence V f, evaluated at (a,b), is a normal
to the level curve of f that passes through (a,b). .

What does this theorem say about the daily weather map that shows the
barometric pressure? A level curve, or contour, shows the points where the
pressure has a prescribed value. The gradient V f at anyplace on such a curve
points in the direction in which the pressure increases most rapidly. So —V f
points where the pressure is decreasing most rapidly. Since the wind tends to
go from high pressure to low pressure, we can think of —V f as representing
the wind.

Figure [16.5.1] shows a typical level curve and gradient. The gradient is
perpendicular to the level curve. Moreover, as we saw in Section [16.4] the
gradient points in the direction in which the function increases most rapidly.

EXAMPLE 1 Find and draw a normal vector to the hyperbola zy = 6 at
the point (2, 3).
SOLUTION Let f(x,y) = xy. Then f, =y and f, = z. Hence,

Vf=yi+uaj.
In particular
Vf(2,3)=3i+2j.
This gradient and level curve zy = 6 are shown in Figure [16.5.2} o

EXAMPLE 2 Find an equation of the tangent line to the ellipse 22 +2y? =

7 at the point (2,1).

SOLUTION  As we saw in Section [14.4] we may write the equation of a line

in the plane if we know a point on the line and a vector normal to the line.

We know that (2,1) lies on the line. We use a gradient to produce a normal.
The ellipse 2?4+ 3y* = 7 is a level curve of the function f(x,y) = 2% + 3y

Since f, = 2z and f, = 6y, Vf = 2zi + 6yj. In particular

V£(2,1) =4i+ 6j.
Hence the tangent line at (2,1) has an equation
4(x—2)+6(y—1)=0 or 4x + 6y = 14.

The level curve, normal vector, and tangent line are all shown in Figure[16.5.3|
o
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Normals to a Surface

We can construct a vector perpendicular to a surface f(x,y,z) = k at a given
point P = (a,b,c) as easily as we constructed a vector perpendicular to a
planar curve. It turns out that the gradient vector V f, evaluated at (a,b,c),
is perpendicular to the surface f(x,y, z) = k. The proof of this result is similar
to the proof for normal vectors to a level curve, given earlier in this section.

Before going on, we must state what is meant by a “vector being perpen-
dicular to a surface.”

DEFINITION (Normal vector to a surface) A vector is perpen-
dicular to a surface at the point (a, b, ¢) on this surface if the vector
is perpendicular to each curve on the surface through the point
(a,b,c). Such a vector is called a normal vector.

Theorem. Normal vectors to a level surface The gradient V f at (a,b,c) is a
normal to the level surface of f passing through (a,b,c).

Proof

Let G(t) = z(t)i+y(t)j+ z(t)k be the parameterizations of a curve in the level
surface of f that passes through the point (a, b, ¢). Assume G(to) = ai+bj+ck.
Then G'(to) is the tangent vector to the curve at the point (a,b,c) and the
gradient at (a,b,c) is

V= oo+ 5o+ F @b ok
We wish to show that
that is
of / of : of oy
5 (a,b,c)x'(ty) + By (a,b,c)y'(to) + 5 (a,b,c)z'(tg) = 0. (16.5.2)
(See Figure [16.5.4]) Introduce the function u(t) defined by
u(t) = f(x(t), y(t), 2(1)).
By the chain rule,
du af / of / of /
- = =L - — = 16.5.
dt s or (Cl, b7 C):[" (tO) + 8y (a7 bv C)y (tO) + Oz (CI,, ba C)Z (tO) 0 ( 6.5 3)

However, since the curve G(t) lies on a level surface of f, u(t) is constant. [In
fact, u(t) = f(a,b,c).] Thus du/dt = 0, and the right side of (16.5.3)) is 0, as
required. °
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o
Loaies
Figure 16.5.5:

A simple check of this result is to see whether it is correct when the level
surfaces are just planes. Consider f(z,y,z) = Az + By + Cz + D. The plane
Az + By + Cz + D = 0 is the level surface f(x,y,z) = 0. According to the
theorem, Vf is perpendicular to this surface. Now, f, = A, f, = B, and
f. = C. Hence,

of, [ of. 9of

= —i+—j+=k=Ai+ Bj k.
Vf 8x1+6’y‘]+8z i+Bj+C

This agrees with the fact that Ai + Bj + Ck = 0, as we saw in Section [14.4]

EXAMPLE 3 Find a normal vector to the ellipsoid #? + 3?/4 + 2%/9 = 3
at the point (1,2, 3).
SOLUTION The ellipsoid is a level surface of the function

2 2
_2,. Y =
f(a:,y,z)—x+4+9.

The gradient of f at the point (z,y, z) is

LY. 2z
Vf=2z1+ %]+ —k.
f xi 5 5
At (1,2,3)

Vf=2i+j+2/3k.
This vector is normal to the ellipsoid at (1,2, 3). o

Tangent Planes to a Surface

Now that we can find a normal to a surface we can define a tangent plane at
a point on the surface.

DEFINITION (Tangent plane to a surface) Consider a surface
that is a level surface of a function u = f(z,y,2). Let (a,b,c) be
a point on this surface where V f is not 0. The tangent plane to
the surface at the point (a,b, ¢) is that plane through (a, b, ¢) that
is perpendicular to the vector V f evaluated at (a,b,c).

The tangent plane at (a, b, ¢) is the plane that best approximates the surface
near (a,b,c). It consists of all the tangent lines at (a,b,c) to curves in the
surface that pass through the point (a,b,c). See Figure .

Note that an equation of the tangent plane to the surface f(x,y,z) = k at
(a,b,c) is

of af

8—x(a,b, c)(x —a)+ g—z(a,b, c)(y—10b)+ &(a, b,c)(z—c) =0.
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EXAMPLE 4 Find an equation of the tangent plane to the ellipsoid x? +
y?/4 + 2?/9 = 3 at the point (1,2, 3).

SOLUTION By Example|3| the vector 2i+ j+ 2/3k is normal to the surface
at the point (1,2,3). The tangent plane consequently has an equation

20z —1)+1(u—12)+2/3(z—3) =0

Normals and Tangent Planes to z = f(z,y)

A surface may be described explicitly in the form z = f(z,y) rather than
implicitly in the form f(z,y,z) = k. The techniques already developed enable
us to find the normal and tangent plane in the case z = f(z,y) as well.

We need only rewrite the equation z = f(z,y) in the form z — f(x,y) = 0.
Then define g(z,y,2) to be z — f(x,y). The surface z — f(x,y) is simply
the particular level surface of g given by g(x,y,z) = 0. There is no need to
memorize an extra formula for a vector normal to the surface z = f(z,y). The
next example illustrates this advice.

EXAMPLE 5 Find a vector perpendicular to the saddle z = y? — 22 at the
point (1,2, 3).

SOLUTION 1In this case, rewrite z = y> — 22 as z + 2% —y? = 0. The surface
in question is a level surface of g(x,y, z) = z+x?—y*. Hence Vg = 2zi—2yj+k
is perpendicular to the surface at the point (1,2, 3).

This surface looks like a saddle near the origin. The surface and the normal
vector 2i — 4j + k are shown in Figure [16.5.6] o

Estimates and the Tangent Planes

In the case of a function of one variable, y = f(x), the tangent line at (a, f(a))
closely approximates the graph of y = f(x). The equation of the tangent
line y = f(a) + f'(a)(x — a) gives us a linear approximation of f(z). (See
Section [5.3])

We can use the tangent plane to the surface z = f(z,y) similarly. To find
the equation of the plane tangent at (a, b, f(a,b)), we first rewrite the equation
of the surface as

g(fL’,y,Z) = f(:v,y) —2=0.

Then Vg is a normal to the surface at (a,b, f(a,b)). Now,

Vg = Slit Shi-k,

December 4, 2010
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Figure 16.5.7:

where the partial derivatives are evaluated at (a,b).
The equation of the tangent plane at (a,b, f(a,b)) is therefore

of of
G (@)@ =)+ G @by~ ) - (=~ fla.b) =0

We can rewrite this equation as

z = f(a,b) + %(a, b)(z —a) + g—‘;(a, b)(y —b). (16.5.4)

Letting Ax = x — a and Ay =y — b, (16.5.4]) becomes

0 0
= a—i(a, b)Ax + a—‘;j(a, b)Ay.

z

This tells us that the change of the z coordinate on the tangent plane, as the
x coordinate changes from a to a + Ax and the y coordinate changes from b
to b+ Ay is exactly

of of

%(a, b)Ax + a—y(a, b)Ay.

By (16.3.1)) in Section [16.3] this is an estimate of the change Af in the
function f as its argument changes from (a,b) to (a + Ax,b + Ay). This is

another way of saying that “the tangent plane to the surface z = f(x,y) at
(a,b, f(a,b)) looks a lot like that surface near that point.” See Figure

The expression f,(a,b) dz + f,(a,b) dy is called the differential of f at
(a,b). For small values of dz and dy it is a good estimate of Af = f(a +
dz,b+ dy) — f(a,b).

EXAMPLE 6 Let 2z = f(x,y) = 2%y. Let Az = f(1.01,2.02) — f(1,2) and

let
_of of

dz=—-(1,2)-0.0+ a_y(l’ 2) - 0.02.

Compute Az and dz.
SOLUTION

Az = (1.01)%(2.02) — 122 = 2.060602 — 2 = 0.060602
Since f, = 2zy and f, = 2%, we have f, =4 and f, =1 at (1,2). Hence,
dz = (4)(0.01) + (1)(0.02) = 0.06.

Note that dz is a good approximation of Az. o
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Function Level Curve/Surface Normal Tangent
f(z,y)  level curve: Vf=fi+f,j Tangent line at (a,b) is
fla,y) =k fo(a,b)(x —a) + fy(a,b)(y —b) =
f(a,b)
f(z,y,2) level surface: Vf=fi+ f,j+ f.k Tangent plane at (a,b,c) is
flx,y,z) =k fa(a,b,c)(x — a) + fy(a,b,c)(y —

b) + fz(avb> C)(Z — C) - f(a> b)

Table 16.5.1: t15-5-1

Summary

This table summarizes mot of what we did concerning normal vectors.
To find a normal and tangent plane to a surface given in the form z =
f(z,y), treat the surface as a level surface of the function z — f(x, y), normally

We also showed that the differential approximation of Af in Section [16.3
is simply the change along the tangent plane. DOUG: Must get implicit

diff in partials somewhere??
SHERMAN: Exercises??
Maybe back in the Chain
Rule section, with a few
more exercises in this
section. Or, in §16.8.
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EXERCISES for Section 16.5 Key: R-routine, M—moderate, C—challenging

1.[R] In estimating the value of a right circular cylindrical tree trunk, a lumber
jack may make a 5 percent error in estimating the diameter and a 3 percent error in
measuring the height. How large an error may he make in estimating the volume?

2.[R] Let T denote the time it takes for a pendulum to complete a back-and-forth
swing. If the length of the pendulum is L and g the acceleration due to gravity, then

L
T =2m—.
g

A 3 percent error may be made in measuring L and a 2 percent error in measuring g.
How large an error may we make in estimating 7'7

3.[R] Let A(x,y) = zy be the area of a rectangle of sides z and y. Compute AA
and dA and show them in Figure [16.5.8

oy

Figure 16.5.8:

The differential of a function v = f(x,y, 2) is defined to be f,Azx + fyAy + f.Az,
in analogy with the differential of a function of two variables.

4.[R] Let V(z,y,z) = xyz be the volume of a box of sides z, y, and z. Compute
AV and dV and show them in Figure [16.5.9]
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Figure @

Figure 16.5.9:

5.[R] Let u= f(z,y,2) and r = G(t). Then u is a composite function of t. Show

that p
U
— =V/f -G'(t),
=G
where V f is evaluated at G(t). For instance, let y = f(x,y, z) and let G describe the
journey of a bug. Then the rate of change in the temperature as observed by the but

is the dot product of the temperature gradient V f and the velocity vector v = G'.

6.[R] We have found a way to find a normal and a tangent plane to a surface. How
would you find a tangent line to a surface? Illustrate your method by finding a line
that is tangent to the surface z = zy at (2, 3,6).

7.[R] Suppose you are at the point (a,b,c) on the level surface f(z,y,2) = k. At
that point VF = 2i + 3j — 4k.

(a) If u is tangent to the surface at (a,b,c), what would Dy, f equal?

(b) If u is normal to the level surface at (a,b, c), what would Dy equal? (There
are two such normals.)

(a) Draw three level curves of the function f defined by f(x,y) = zy. Include the
curve through (1,1) as one of them.

2

(b) Draw three level curves of the function g defined by g(z,y) = 22 —y2. Include

the curve through (1, 1) as one of them.

(c) Draw three level curves of the function g defined by g(z,y) = 22 —y2. Include
the curve through (1,1) as one of them.
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(d) Prove that each level curve of f intersects each level curve of g at a right
angle.

(e) If we think of f as air pressure, how may we interpret the level curves of g7

) Draw a level curve for the function 222 + y2.
b) Draw a level curve for the function y?/z.
)

Prove that any level curve of 222 +y? crosses any level curve of y2/z at a right
angle.

10.[R] The surfaces #?yz = 1 and xy + yz + 2z = 3 both pass through the point
(1,1,1). The tangent planes to these surfaces meet in a line. Find parametric equa-
tions for this line.

11.[R] Let T'(z,y,2) be the temperature at the point (z,v, z), where VT is not 0.
A level surface T'(z,y, z) — k is called an isotherm. Show that if you are at the point
(a,b,c) and wish to move in the direction in which the temperature changes most
rapidly, you would move in a direction perpendicular to the isotherm that passes
through (a, b, c).

12.[R] Two surfaces f(z,y,z) =0 and g(z,y, z) = 0 both pass through the point
(a,b,c). Their intersection is a curve. How would you find a tangent vector to that
curve at (a,b,c)?

13.[R] Write a short essay on the wonders of the chain rule. Include a description
of how it was used to show that Dy, f = Vf - u and in showing that V f is a normal
to the level surface of f at the point where it is evaluated.

The angle between two surfaces that pass through (a,b,c) is defined as the angle
between the two lines through (a, b, ¢) that are perpendicular to the two surfaces at
the point (a, b, c¢). This angle is taken to be acute. Use this definition in Exercises
to

14.[R]
(a) Show that the point (1,1,2) lies on the surfaces xyz = 2 and x3yz? = 4.

(b) Find the angle between the surfaces in (a) at the point (1,1, 2).
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15.[R]
(a) Show that the point (1,2, 3) lies on the plane
20 +3y—2=5

and the sphere
2?2 422 =14,

(b) Find the angle between them at the point (1,2, 3).

16.[R]
(a) Show that the surfaces z = 22y3 and z = 2zy pass through the point (2,1,4).

(b) At what angle do they cross at that point?

17.[R] Let z = f(x,y) describe a surface. Assume that at (3,5), 2 =7, 0z/0z = 2,
and 0z/0y = 3.

(a) Find two vectors that are tangent to the surface at (3,5,7).
(b) Find a normal to the surface at (3,5,7).

(c) Estimate f(3.02,4.99).

18.[R] This map shows the pressure p(z,y) in terms of level curves called isobars.
Where is the gradient of p, Vp the longest? In what direction does it point? In
which direction (approximately) would the wind vector point?

Figure 16.5.10:  Source: http://www.walltechnet.com/b_f/Weather/
USAIsobarMap.htm (18 July 2008)
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19.[M] How far is the point (2, 1, 3) from the tangent plane to z = xy at (3,4,12)?

20.[C] The surface j—; + 7;—3 + i—; = 1 is called an ellipsoid. If a®> = v = c? it is a
sphere. Show that if a2, b, and ¢? are distinct, then there are exactly six normals

on the ellipsis that pass through the origin.

21.[C] Let S be a surface with the property that its target planes are always per-
pendicular to r. Must S be a sphere?
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16.6 Critical Points and Extrema

In the case of a function of one variable, y = f(x), the first and second deriva-
tives were of use in searching for relative extrema. First, we looked for critical
numbers, that is, solutions of the equation f’(z) = 0. Then we checked the
value of f”(z) at each such point. If f”(x) were positive, the critical number
gave a relative minimum. If f”(z) were negative, the critical number gave a
relative maximum. If f”(x) were 0, then anything might happen: a relative
minimum or maximum or neither. (For instance, at 0 the functions z*, —x%,
and 22 have both first and second derivatives equal to 0, but the first function
has a relative minimum there, the second has a relative maximum, and the
third has neither.) In such a case, we have to resort to other tests.

This section extends the idea of a critical point to functions f(z,y) of two
variables and shows how to use the second-order partial derivatives fu., fyy,
and f;, to see whether the critical point provides a relative maximum, relative
minimum, or neither.

Extrema of f(z,y)

The number M is called the maximum (or global maximum) of f over a
set R in the plane if it is the largest value of f(z,y) for (z,y) in R. A relative
maximum (or local maximum) of f occurs at a point (a,b) in R if there is
a disk around (a, b) such that f(a,b) > f(x,y) for all points (z,y) in the disk.
Minimum and relative (or local) minimum are defined similarly.

Let us look closely at the surface above a point (a,b) where a relative
maximum of f occurs. Assume that f is defined for all points within some
circle around (a,b) and possesses partial derivatives at (a,b). Let L; be the
line y = b in the xy plane; let Ly be the line x = a in the zy plane. (See
Figure Assume, for convenience, that the values of f are positive.)

Let C be the curve in the surface directly above the line L;. Let C5 be
the curve in the surface directly above the line Ls. Let P be the point on the
surface directly above (a,b).

Since f has a relative maximum at (a,b), no point on the surface near P
is higher than P. Thus P is a highest point on the curve C; and on the curve
Cy (for points near P). The study of functions of one variable showed that
both these curves have horizontal tangents at P. In other words, at (a,b) both
partial derivatives of f must be 0:

of
ox

of

(a,b) =0 8_y(a’ b) = 0.

and

This conclusion is summarized in the following theorem.
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means the graph of f is
concave down.

Remember that g = fo.
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Theorem. Relative Extremum of f(x,y) Let f be defined on a domain that
includes the point (a,b) and all points within some circle whose center is (a,b).
If f has a relative mazimum (or relative minimum) at (a,b) and f, and f, exist
at (a,b), then both these partial derivatives are 0 at (a,b); that is,

or _ 9

oz (a,5) =0 dy

(a,b),

In short, the gradient of f, Vf is O at a relative extremum.

A point (a,b) where both partial derivatives f, and f, are 0 is clearly of
importance. The following definition is analogous to that of a critical point of
a function of one variable.

DEFINITION (Critical point) If f,(a,b) = 0 and f,(a,b) = 0,
the point (a,b) is a critical point of the function f(z,y).

You might expect that if (a,b) is a critical point of f and the two second
partial derivatives f,, and f,, are both positive at (a,b), then necessarily has
a relative minimum at (a,b). The next example shows that the situation is
not that simple.

EXAMPLE 1 Find the critical points of f(z,y) = 2? + 3zy + y* and
determine whether there is an extremum there.

SOLUTION  First, find any critical points by setting both f, and f, equal
to 0. This gives the simultaneous equations

20 +3y =0 and 3+ 2y =0.

Since the only solution of these equations is (z,y) = (0,0), the function has
one critical point, namely (0, 0).

Now look at the graph of f for (z,y) near (0,0).

First, consider how f behaves for points on the x axis. We have f(z,0) =
224+ 3204 0* = 22 Therefore, considered only as a function of x, the
function has a minimum at the origin. (See Figure (a).)

On the y-axis, the function reduces to f(0,y) = y*, whose graph is another
parabola with a minimum at the origin. (See Figure[16.6.2(b).) Note also that
fzz =2 and f,,, = 2, so both are positive at (0,0).

So far, the evidence suggests that f has a relative minimum at (0,0). How-
ever, consider its behavior on the line y = —x. For points (z,y) on this line

fa.y) = flo,—z) = 2" + 22(—2) + (—2)* = —2”.

On this line the function assumes negative values, and its graph is a parabola
opening downward, as shown in Figure [16.6.2(c).
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Figure 16.6.2:

Thus f(z,y) has neither a relative maximum nor minimum at the origin.
Its graph resembles a saddle. o

Example [l| shows that to determine whether a critical point of f(z,y)
provides an extremum, it is not enough to look at f,, and f,, The criteria
are more complicated and involve the mixed partial derivative f,, as well.
Exercise outlines a proof of the following theorem. At the end of this
section a proof is presented in the special case when f(x,y) is a polynomial of
the form Ax? + Bxy + Cy?, where A, B and C are constants.

Theorem 16.6.1. Second-partial-derivative test for f(x,y) Let (a,b) be a crit-
ical point of the function f(x,y). Assume that the partial derivatives fy, fy,
faz, foy, and fy, are continuous at and near (a,b). Let

o 9% f o2 f 2
D_@(a’b)(‘)_y?(a’b)_ (Gzay(a’w) )

1. If D >0 and fy.(a,b) >0, then f has a relative minimum at (a,b).

2. If D >0 and f.(a,b) <0, then f has a relative mazimum at (a,b).

3. If D <0, then f has neither a relative minimum nor a relative maximum
at (a,b). (There is a saddle point at (a,b).)

If D = 0, then anything can happen; there may be a relative minimum,
a relative maximum, or a saddle. These possibilities are illustrated in Exer-
cise 43

To see what the theorem says, consider case 1, the test for a relative mini-
mum. It says that f,.(a,b) > 0) (which is to be expected) and that

o2 f o2 f o2 f 2
G gten - (7 Lan) »o
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Memory aid regarding size
of fry

Or equivalently,

O f O f, O
<8x8y(a’b)) < gz b)a—yQ(a,b). (16.6.1)

Since the square of a real number is never negative, and f,.(a,b) is positive,
it follows that f,,(a,b) > 0, which was to be expected. But inequality
says more. It says that the mized partial f,,(a,b) must not be too large. For
a relative maximum or minimum, inequality must hold. This may be
easier to remember than “D > 0.”

EXAMPLE 2 Examine each of these functions for relative extrema:
L f(z,y) =2 + 32y + y7,
2. g(z,y) = 2+ 2zy + 1%,
3. hz,y) = 2> + xy + 2.

SOLUTION

1. The case f(x,y) = 2% + 3zy + y* is Example [l The origin is the only
critical point, and it provides neither a relative maximum nor a relative
minimum. We can check this by the use of the discriminant. We have

o0 f o0 f 0 f

—=(0,0) =2, ——(0,0) = 3, and —=(0,0) = 2.

552 (0;0) a:an( ) 8y2( )
Hence D = 2 -2 — 32 = —5 is negative. By the second-partial-derivative
test, there is neither a relative maximum nor a relative minimum at the
origin. Instead, there is a saddle there.

2. It is straightforward matter to show that all the points on the line x+y =
0 are critical points of g(x,y) = 2 + 2zy + y*>. Moreover,

0%g 0%g 0%g
@(xvy) :27 8x8y(x7y):2’ and a_yz('ray) = 2.

Thus the discriminant D = 2-2 — 22 = 0. Since D = 0, the discriminant
gives no information.

Note, however, that 22 + 22y + y? = (x + y)? and so, being the square
of a real number, is always greater than or equal to 0. Hence the origin
provides a relative minimum of z? + 2zy + y*. (In fact, any point on the
line x +y = 0 provides a relative minimum. Since g(z,y) = (z +v)?, the
function is constant on each line x +y = ¢, for any choice of the constant

c. See Figure [16.6.3])
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3. For h(z,y) = * + xy + y?, again the origin is the only critical point and

we have
0?h 0*h 0*h
w(o, 0) = 2, 81’—8y(07 O) = 1, and a—yQ(O, 0) = 2.

In this case, D = 2 -2 — 12 = 3 is positive and h,,(0,0) > 0. Hence
22 + 2y + y? has a relative minimum at the origin.

The graph of A is shown in Figure |16.6.4 :
o

EXAMPLE 3 Examine f(z,y) = x +y + 1/(zy) for global and relative
extrema.

SOLUTION When z and y are both large positive numbers or small positive
numbers, then F'(x,y) may be arbitrarily large. There is therefore no global
maximum. By allowing x and y to be negative numbers of large absolute

values, we see that there is no global minimum. Function has i]g glzbal
Any local extrema will occur at a critical point. We have extrema8U"e +0-9-%
0 1 1
—le—— and ﬁ:1——.
Ox x2y dy xy?

Setting these derivatives equal to 0 gives

1 1
=1 and

— = =1 16.6.2
= (16.6.2)

xy?
Hence 2%y = xy?. Since the function f is not defined when z or y is 0, we
may assume zy # 0. Dividing both sides of 2%y = zy? by xy gives x = v.
By (either equation), 1/2® = 1; hence # = 1. Thus there is only one
critical point, namely, (1,1).

To find whether it is a relative extremum, use Theorem [16.6.1 We have

of_ 2  of 1 « 2r_2
02 a3y’ 0xdy  x2y?’ an o2 xyd
Thus at (1,1),
P >f P
9?2 dxdy . and oy* ?

Therefore,
D=2.-2-12=3>0.

Since D > 0 and f,.)(1,1) > 0, the point (1,1) provides a relative mini-
mum. o
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Extrema on a Bounded Region

In Section [4.3] we saw how to find a maximum of a differentiable function,
y = f(z), on an interval [a, b]. The procedure is as follows:

1. First find any numbers x in [a,b] (other than a or b) where f'(x) =
0. Such a number is called a critical number. If there are no critical
numbers, the maximum occurs at a or b.

2. If there are critical numbers, evaluate f at them. Also find the values of
f(a) and f(b). The maximum of f in [a,b] is the largest of the numbers:
f(a), f(b), and the values of f at critical numbers.

o We can similarly find the maximum of F(z,y) in a region R in the plane
: \ﬁnl bounded by some polygon or curve. (See Figure [16.5.7) It is assumed that R

0 : \ includes its border and is a finite region in the sense that it lies within some
e disk. (In advanced calculus, it is proved that a continuous function defined on
et imen opd e such a domain has a maximum — and a minimum — value.) If f has continuous
R AR R T partial derivatives, the procedure for finding a maximum is similar to that for
maximizing a function on a closed interval.
Figure 16.6.5:

1. First find any points that are in R but not on the boundary of R where
both f, and f, are 0. These are called critical points. (if there are no
critical points, the maximum occurs on the boundary.)

2. If there are critical points, evaluate f at them. Also find the maximum
of f on the boundary. The maximum of f on R is the largest value of f
on the boundary and at critical points.

A similar procedure finds the minimum value on a bounded region.

EXAMPLE 4 Maximize the function f(z,y) = zy(108—2x—2y) = 108zxy—
222y — 2zy? on the triangle R bounded by the z-axis, the y-axis, and the line

x +y = 54. (See Figure [16.6.6])

“I*Eind all critical points.  SOLUTION First find any critical points. We have
0
a—f(x, y) = 108y —4ay — 2y* =0 (16.6.3)
x
of 2
a—y(m, y) = 108z —22° —4xy =0 (16.6.4)
which give the simultaneous equations
Figure 16.6.6: 2y(b4 — 2z —y) = 0, (16.6.5)
20(54 —x — 2y) = 0. (16.6.6)
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By the first equation, y = 54—2z. Substitution of this into the second equation
gives: 54 —x — 2(54 — 22) =0, or —54 + 3z = 0. Hence x = 18 and therefore
y=>54—2-18=18.

The point (18, 18) lies in the interior of R, since it lies above the z-axis,
to the right of the y-axis, and below the line x + y = 54. Furthermore,
£(18,18) = 18- 18(108 — 2 - 18 — 2 - 18) = 11, 664.

Next we examine the function f(z,y) = zy(108 — 22 — 2y) on the boundary
of the triangle R. On the base of R, y =0, so f(x,y) = 0. On the left edge of
R, z =0, so again f(x,y) = 0. On the slanted edge, which lies on the same
line z + y = 54, we have 108 — 2z — 2y = 0, so f(z,y) = 0 on this edge also.
Thus f(x,y) = 0 on the entire boundary.

Therefore, the local maximum occurs at the critical point (18, 18) and has
the value 11, 664. o

EXAMPLE 5 The combined length and girth (distance around) of a pack-
age sent through the mail cannot exceed 108 inches. If the package is a rect-
angle box, how large can its volume be?

SOLUTION Introduce letters to name the quantities of interest. We label
its length (a longest side) z and the other sides x and y, as in Figure
The volume V' = xyz is to be maximized, subject to girth plus length at most
108, that is,

2z 4+ 2y 4+ z < 108.

Since we want the largest box, we might as well restrict our attention to boxes
for which
2x 4 2y + z = 108. (16.6.7)

By , 2z =108 — 2z — 2y. Thus V = zyz can be expressed as a function
of two variables:

V = f(z,y) = zy(108 — 2x — 2y).
This function is to be maximized on the triangle described by x > 0, y > 0,
2x 4+ 2y < 108, that is, x + y < 54.

These are the same function and region as in the previous example. Hence,
the largest box has z = y = 18 and z = 108 =22 —2y = 108 —2-18 —2-18 = 36;
its dimensions are 18 inches by 18 inches by 36 inches and its volume is 11, 664
cubic inches. o

Remark: In Example [5| we let z be the length of a longest side, an
assumption that was never used. So if the Postal Service regula-
tions read “The length of one edge plus the girth around the other
edges shall not exceed 108 inches,” the effect would be the same.
You would not be able to send a larger box by, say, measuring the
girth around the base formed by its largest edges.
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Why is cos(6) not 07

EXAMPLE 6 Find the maximum and minimum values of f(x,y) = 2% +
y*> — 2x — 4y on the disk R of radius 3 and center (0, 0).

SOLUTION First, find any critical points. We have

of of
o x an dy Y
The equations
20 —2 =0
2y—4 =0

have the solutions x = 1 and y — 2. This point lies in R (since its distance
from the origin is v/12 + 22 = /5, which is less than 3). At the critical point
(1,2), the value of the function is 12 + 2% — 2(1) — 4(2) =5 -2 — 8 = —5.

Second, find the behavior of f on the boundary, which is a circle of radius
3. We parameterize this circle:

x = 3cos(h)
= 3sin(0).

On this circle,

flay) = 2" +y" — 20— 4y
= (3cos(6))? + (3sin(f))* — 2(3 cos(8)) — 4(3sin(0))
= 9cos*(0) + 9sin*(#) — 6 cos(f) — 12sin(6)
= 9—6cos(d) — 12sin(0).
We now must find the maximum and minimum of the single-variable func-
tion ¢g(0) =9 — 6 cos(f) — 12sin(#) for 6 in [0, 27].
To do this, find ¢'(6):
g (0) = 6sinf — 12 cosb.
Setting ¢'(0) = 0 gives

0 = 6sin(f) — 12 cos(6)

or
sin(f) = 2 cos(). (16.6.8)
To solve (16.6.8)), divide by cos(#) (which will not be 0), getting
sin(0) _y
cos(6)
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or
tan(f) = 2.
There are two angles 6 in [0, 27] such that tan(f) = 2. One is in the first
quadrant, § = arctan(2), and the other is in the third quadrant, =+ arctan(2).
To evaluate g(6) = 9 — 6cos(f) — 12sin(f) at these angles, we must compute
their cosine and sine. The right triangle in Figure [16.6.8| helps us do this.
Inspection of Figure [16.6.8) shows that for § = arctan(2),
@)= ad  sin0)=-
cos(f) = — an sin(f) = —.
V5 V5 iy
For this angle
1 2 30
arctan(2)) = 9-6(—%=)—-12| —=| =9 - —= ~ —4.41641. —
sortan) = 9-6( ) —12 () -0 2 /
When 6 = 7 + arctan(2),
. 5 Figure 16.6.8:
cos(f) = — and sin(f) = —.
(6) 7 (6) 7
So
(7 + arctan(2)) 9 6(_1) 12(_2>
7 4 arctan = 9-6(—=|— —
! Vs Vs
=9+ L 22.41641
7 : :
Since g(27) = ¢g(0) = 9—6(1) —12(0) = 3, the maximum of f on the border
of R is about 22.41641 and the minimum is about —4.41641. (Recall that at
the critical point the value of f is —5.)
We conclude that the maximum value of f on R is about 22.41641 and the
minimum value is —5 (and it occurs at the point (1,2), which is not on the
boundar)]. See Figure [16.6.9, o -
; -"’___"“;'.{j-
Proof of Theorem [16.6.1] in a Special Case s, /J b
| Y | -
We will prove Theorem [16.6.1]in case f(z,y) is a second-degree polynomial of k? '
the form T 4
f(z,y) = Az® + By + Cy*.
Theorem 16.6.2. Let f(x,y) = Ax® + Bxy + Cy?, where A, B, and C' are ‘x
constants. Then (0,0) is a critical point. Let
Figure 16.6.9:

o f, OPf 0% f ?
p-2L0.0500- (FLoo) .
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We multiply by A to
simplify completing the
square on the next step.

1. If D> 0 and f,,(0,0) > 0, then f has a relative minimum at (0,0).
2. If D> 0 and f,.(0,0) <0, then f has a relative mazimum at (0,0).

3. If D <0, then f has neither a relative minimum nor a relative maximum,
at (0,0).

Proof

We prove Case 1, leaving Cases 2 and 3 for Exercises [60] and [61]
First, compute the first- and second-order partial derivatives of f:

of af

9] —oAr+ B 9 Br 42

O x + By, ay x4 2Cy,
0% f 0% f 0% f

9T 9 _B, <l _oc
Ox? T 0xdy T Oy? ¢

Note that both f, and f, are 0 at (0,0). Hence (0,0) is a critical point and
f£(0,0) = 0. We must show that f(z,y) > 0 for (x,y) near (0,0). [In fact we
will show that f(z,y) > 0 for all (z,y).]

Next, expressing Case 1 in terms of A, B, and C, we have

D = f4:(0,0) f,,(0,0) — f2,(0,0) = (24)(2C) — B> = 4AC — B> > 0.

and f,,(0,0) = 24 > 0. In short, we are assuming that 4AC — B? > 0 and
A > 0, and want to deduce that f(z,y) = Ax? + Bay + Cy? > 0, for (z,y)
near (0,0).

Since A is positive, this amounts to showing that

A(Ax* + By + Cy?) > 0. (16.6.9)
Now we complete the square,

A(A2® + Bry + Cy?) = A%2® + ABwy + ACY?
B? B?
= A?2” + ABay + IyQ — Iyz + ACy?
B B?
= (Az+ Zy)’ + (AC = )y
B 4AC — B?
= (Az+ )’ + (— "

Now, (Aa: + gy)Q > 0 and y? > 0 since they are squares of real numbers.
But by our assumption on D, 4AC — B? is positive. Thus ((16.6.9) holds for
all (z,y), not just for (z,y) near (0,0) varies Case 1 of the theorem is proved.
[ ]

December 4, 2010 Calculus



§ 16.6 CRITICAL POINTS AND EXTREMA 1341

Summary

We defined a critical point of f(x,y) as a point where both partial derivatives
fz and f, are 0. Even if f,, and f,, are negative there, such a point need not
provide a relative maximum. We must also know that f;, is not too large in
absolute value.

o If f., <0 and l?y < faafyy, then there is indeed a relative maximum at
the critical point. (Note that the two inequalities imply f,, < 0.)

e Similar criteria hold for a relative maximum: if f,, > 0 and gfy < faoaFyy,
then this critical point is a relative minimum.

e The critical point is a saddle point when fy, > fizfyy-

2 o o, . . . .
e When f7 = fizfyy, the critical point may be a relative maximum, rela-
tive minimum, or neither.

We also saw how to find extrema of a function defined on a bounded region.
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EXERCISES for Section 16.6 Key: R-routine, M—moderate, C—challenging
SHERMA hheltasengeuntard
varoedpteaditstisbexerdisesé  Use Theorems [16.6| and [16.6.1] to determine any relative maxima or minima of the

problems in your earlier
books? We can look, but |
don't believe it's too critical
to be creative here.

functions in Exercises [ to [0

1.[R] 2%+ 3zy+y?

2.R] f(r,y) =a® —

3.[R] f(z,y) =2 —2xy + 2% + 4z
4.[R] f(z,y) =2*+82% +y*> — 4y
5.R] f(z,y) =2 —zy+y°

6.[R] f(z,y) =2+ 2zy + 2y + 4z
7.[R] f(z,y) = 22? + 2zy + 5y? + 4z
8.[R] f(z,y) = —42? — 2y — 3y
9.R] flz,y)=4/z+2/y+uzy
10.[R] f(z,y) =23 — y> + 32y

Let f by a function of = and y such that at (a,b) both f, and f, equal 0. In each of
Exercises |11 to values are specified for fi,, fry, and fyy at (a,b). Assume that
all these partial derivatives are continuous. On the basis of the given information
decides whether

1. f has a relative maximum at (a, b),
2. f has a relative minimum at (a, b),
3. f has a saddle point at (a,b),

4. there is inadequate information.

11.[R]  foy =4, fox =2, fyy =38
12'[R] fmy:_gy fxx:27 fyy:4
13'[R] fzy = 3a fzx = 27 fyy =4
14.[R] foy =2, foe =3, fyy =4
15'[R] f:cy = _27 fxx = _37 fyy =—4
16'[R] fzy = *2, fxx =3, fyy =—4

In Exercises [17] to [24] find the critical points and the relative extrema of the given
functions.

zy
18.[R] 3xy — 2% — o3
19.[R] 12zy — a3 —¢?
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20.[R] 6xy — 2%y — xy?
21.[R] exp(z® +y?)
22.[R] 2%

23.[R] 3z + xy + 2%y — 2y
24.R] z+y+ 2

25.[R] Find the dimensions of the open rectangular box of volume 1 of smallest
surface area. Use Theorem [16.6.1] as a check that the critical point provides a min-
imum.

26.[R] The material for the top and bottom of a rectangular box costs 3 cents
per square foot, and that for the sides 2 cents per square foot. What is the least
expensive box that has a volume of 1 cubic foot? Use Theorem [16.6.1] as a check
that the critical point provides a minimum.

27.[R] UPS ships packages whose combined length and girth is at most 165 inches
(and weighs at most 150 pounds).

(a) What are the dimensions of the package with the largest volume that it ships?

(b) What are the dimensions of the package with maximum surface are that UPS
will ship?

28.[R] Let P, = (a:l,yl), Py, = (l‘g,yg), P; = (xg,yg), and Py = (x4,y4). Find the
coordinates of the point P that minimizes the sum of the squares of the distances
from P to the four points.

29.[R] Find the dimensions of the rectangle box of largest volume if its total surface
area is to be 12 square meters.

30.[R] Three nonnegative numbers z, y, and z have the sum 1.
(a) How small can 22 + 32 + 22 be?

(b) How large can it be?

31.[R] Each year a firm can produce r radios and ¢ television sets at a cost of
2r2 + rt + 2t2 dollars. It sells a radio for $600 and a television set for $900.

(a) What is the profit from the sale of r radios and ¢ television sets? NOTE: Profit
is revenue less the cost.
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(b) Find the combination of r and ¢ that maximizes profit. Use the discriminant
as a check.

32.[R] Find the dimensions of the rectangular box of largest volume that can be
inscribed in a sphere of radius 1.

33.[R] For which values of the constant k does z? + kzy + 3y? have a relative
minimum at (0,0)?

34.[R] For which values of the constant k does the function kz? + 5zy + 4y? have
a relative minimum at (0,0)?

35.[R] Let f(z,y) = (222 + y?)e = ~V".

(a) Find all critical points of f.

(b) Examine the behavior of f when 22 + y? is large.
(¢) What is the minimum value of f7

)

(d) What is the maximum value of f?

36.[R] Find the maximum and minimum values of the function in Exercise |35 on
the circle

(a) 2 +y? =1,
(b) 2? +y* =4.

HiNT: Express the function in terms of 6.

37.[R] Find the maximum value of f(z,y) = 322 — 4y* + 22y for points (x,y) in
the square region whose vertices are (0,0), (0,1), (1,0), and (1,1).

38.[R] Find the maximum value of f(z,y) = zy for points (x,y) in the triangular
region whose vertices are (0,0), (1,0), and (0, 1).

39.[R] Maximize the function —x + 3y + 6 on the quadrilateral whose vertices are
(1,1), (4,2), (0,3), and (5,6).

40.]M]

(a) Show that z = 22 — y? + 22y has no maximum and no minimum.
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(b) Find the minimum and maximum of z if we consider only (z,y) on the circle
of radius 1 and center (0,0), that is all (z,y) such that 2?2 + 3 = 1.

(c¢) Find the minimum and maximum of z if we consider all (z,y) in the disk of
radius 1 and center (0,0), that is, all (z,y) such that 22 + ¢y* < 1.

41.[M] Suppose z is a function of x and y with continuous second partial deriva-
tives. If, at the point (2o,%0), 22 = 0 = 2y, 2z = 3, and zyy = 12, for what values
of 2y is it certain that z has a relative minimum at (xo, yo)?

42.[M] Let U(z,y, 2) = x'/?yY/321/6 be the “utility” or “desirability” to a given
consumer of the amounts x, y, and z of three different commodities. Their prices
are, respectively, 2 dollars, 1 dollar, and 5 dollars, and the consumer has 60 dollars
to spend. How much of each product should he buy to maximize the utility?

43.[M] This exercise shows that if the discriminant D is 0, then any of the three
outcomes mentioned in Theorem [16.6.1| are possible.

(a) Let f(z,y) = 2* + 2zy +y?. Show that at (0,0) both f, and f, are 0, f,, and
fyy are positive, D = 0, and f has a relative minimum.

(b) Let f(z,y) = 2% + 22y + y*> — 2* Show that at (0,0) both f, and f, are 0,
fze and fy, are positive, D = 0, and f has neither a relative maximum nor a
relative minimum at (0, 0).

(c) Give an example of a function f(z,y) for which (0,0 is a critical point and
D = 0 there, but f has a relative maximum at (0, 0).

44.[M] Let f(x,y) = ax + by + ¢, for constants a, b, and ¢. Let R be a polygon
in the zy plane. Show that the maximum and minimum values of f(z,y) on R are
assumed only at vertices of the polygon.

45.[M] Two rectangles are placed in the triangle whose vertices are (0,0), (1,1),
and (—1,1) as shown in Figure [16.6.10(a).

Figure 16.6.10:
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Show that they can fill as much as 2/3 of the area of the triangle.

46.[]M] Two rectangles are placed in the parabola y = 2 as shown in Fig-

ure [16.6.10(b). How large can their total area be?

47.[M] Let Py = (a,b,c) be a point not on the surface f(z,y,z) = 0. Let P be the
—

point on the surface nearest Py. Show that PP, is perpendicular to the surface at P.

HiNT: Show it is perpendicular to each curve on the surface that passes through P.

48.[C] Let (z1,y1), (x2,92), ..., (Zn,yn) be n points in the plane. Statisticians
define the line of regression as the line that minimizes the sum of the squares of
the differences between y; and the ordinates of the line at z;. (See Figure )
Let the typical line in the plane have the equation y = max + b.

(a) Show that the line of regression minimizes the sum Y7, (y; — (ma; + b))
considered as a function of m and b.

(b) Let f(m,b) = 32", (y; — (max; + b))%, Compute f,, and f,.

(c) Show that when f,, = 0 = fyb, we have

n n n
mszz +b2x1 = z::clyz
i=1 =1 i=1
and

n n
msz +nb= Zyi.
i=1 i=1

(d) When do the simultaneous equations in (c¢) have a unique solution for m and
b?

(e) Find the regression line for the points (1, 1), (2,3), and (3,5).

¥ ¢k a
' line thal
MInImesgs 1N
=
%4 Vil sum L
- ..-'_'__—l-'-_.
il'l'l:l |!l —I—'--_'-_'_T_-
= | |" (A
| it E *
r_.l—'- IJ-‘ 1 i I'l |
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Figure 16.6.11:
49.[C] If your calculator is programmed to compute lines of regression, find and
draw the line of regression for the points (1,1), (2,1.5), (3,3), (4,2) and (5,3.5).

50.1C] Let f(z,y) = (y — 2%)(y — 222).
(a) Show that f has neither a local minimum nor a local maximum at (0, 0)

(b) Show that f has a local minimum at (0,0) when considered only on any fixed
line through (0, 0).

Suggestion for (b): Graph y = 22 and y = 22% and show where f(x,%) is positive
and where it is negative.

51.[C] Find (a) the minimum value of zyz, and (b) the maximum value of zyz, for
all triplets of nonnegative real numbers x, y, z such that z +y 4+ z = 1.

52.[C]

(a) Deduce from Exercise [51] that for any three nonegative numbers a, b, and c,
Vabc < (a+b+c)/3. NOTE: This exercise asserts that the “geometric mean”
of three numbers is not larger than their ‘arithmetic mean”.

(b) Obtain a corresponding result for four numbers.

53.[C] Prove case 2 of Theorem [16.6.2
54.[C] Prove case 3 of Theorem [16.6.2

55.[C] The three dimensions of a box are x, y, and z. The girth plus length are at
most 165 inches. If you are free to choose which dimension is the length, which would
you choose if you wanted to maximize the volume of the box? Assume z < y < z.

56.[C] A surface is called closed when it is the boundary of a region R, as a balloon
surrounds the air within it. A surface is called smooth when it has a continuous
outward unit normal vector at each point of the surface. Let S be a smooth closed
surface. Show that for any point Py in R, there are at least two points on .S such
that f—’o?’ is normal to S. NOTE: It is conjectured that if Py is the centroid of R,
then there are at least four points on S such that PyP is normal to S.

57.[C] Find the point P on the plane Ax + By + Cz + D = 0 nearest the point
Py = (x0, Y0, 20), which is not on that plane.
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(a) Find P by calculus.

(b) Find P by using the algebra of vectors. (Why is WD perpendicular to the
plane?)

58.[C] This exercise outlines the proof of Theorem in the case fyz(a,b) >
0 and fuz(a,b)fyy(a,b) — fay?(a,b) > 0. Assuming that fuu, fyy, and f, are
continuous, we know by the permanence principle that fz; and fiz fyy — fy2, remain
positive throughout some disk R whose center is (a,b). The following steps show
that f has a minimum (a,b) on each line L through (a,b). Let u = cos(#) + sin(0)
be a unit vector. Show that D, (D, f) is positive throughout the part of L that lies
in the dark.

) Show that D, f(a,b) = 0.

) Show that Dy (Dyf) = frzcos?(0) + 2fz, sin(0) cos(0) + f,, sin?(0) .

(¢) Show that fiuDu(Dyf) = (frzcos(0) + fzy sin(@))Q + (feafyy — f:%y) Sin2<9) :
)

Deduce from (b) that f is concave up as the part of each line through (a,b)
inside the disk R.

(e) Deduce that f has a relative minimum at (a, b).

59.[C] Let f(x) have period 27 and let
a s © .
S(z) = ?0 + kzl ay, cos(kx) + kzl b, sin(kx)

be the series that minimizes the integral

[ (@) = 5)* a. (16.6.10)

—T

Show that S(x) is the Fourier series associated with f(x). NOTE: You may assume
that in this case you may “differentiate past the integral sign,” that is

b b
0 e
8y/g(av,y) da;—/ay dx.

The quantity in (16.6.10) measures the total squared error between S(x) and f(x)

over the interval [—m, 7].
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60.[C] Prove Case 2 of Theorem [16.6.2

61.[C] Prove Case 3 of Theorem [16.6.2
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See http://en.
wikipedia.org/wiki/
Joseph_Louis_Lagrange.

Figure 16.7.2:

A, lambda, Greek letter L.

16.7 Lagrange Multipliers

Another method of finding maxima or minima of a function is due to Joseph
Louis LaGrange (1736-1813). It makes use of the fact that a gradient of a
function is perpendicular to the level curves (or level surfaces) of that function.

The Essence of the Method

We introduce the technique by considering the simplest case. Imagine that
you want to find a maxima or a minima of f(z,y) for points (x,y) on the line
L that has the equation g(z,y) = C. See Figure [16.7.1]

Imagine that f(z,y), for points on L has a maximum or minimum at the
point (a,b). Let Vf be the gradient of f evaluated at (a,b). What can we say
about the direction of V 7 (See Figure

Assume that V f is not perpendicular to L. Let u be a unit vector parallel
to L. Then Dy, f = (Vf)-uisnot 0. If D, f is positive then f(z,y) is increasing
in the direction u, which is along L. In the direction —u, f(x,y) is decreasing.
Therefore the point (a,b) could not provide either a maximum or a minimum
of f(z,y) for point (z,y) on L. That means V f must be perpendicular to L.
But Vg is perpendicular to L, since g(z,y) = C' is a level curve of g. Since
V f and Vg are parallel there must be a scalar A such that

V/f=AVy (16.7.1)

The scalar A is called a Lagrange multiplier.

EXAMPLE 1 Find the minimum of 22y? on the line z +y = 2.
SOLUTION Since x? +2y? increases without bound in both directions along
the line it must have a minimum somewhere.
Here f(z,y) = 2* + 2y* and g(z,y) = + y so
V[ =2+ 4yj and Vg=1i+]
At the minimum, the gradients of f and g must be parallel. That is, there is
a scalar A such that

Vf=AVg,

This means

2xi + dyj = A1 +j). (16.7.2)
This single vector equation leads to the 2 equations
2r = A\ equating i components
{ 94 = A equating j components (16.7.3)
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But we also have the constraint,
T+y=2 (16.7.4)

From (16.7.3)), 2x = 4y or x = 2y. Substituting this into (16.7.4) gives 2y+y =
2ory = 2/3, hence z = 2y = 4/3. The minimum is f (%, %) = (%)2—1-(%)2 =2
There is no need to find X its there just to help us compute. Its task, done, it

gracefully departs. o

The General Method

Let us see why Lagrange’s method works when the constraint not a line, but
a curve. Consider this problem:
Maximize or minimize u = f(z,y), given the constraint g(z,y) = k.
The graph of g(z,y) = k is in general a curve C, as shown in Figure
Assume that f, considered only on points of C', takes a maximum (or minimum)
value at the point P,. Let C' be parameterized by the vector function G(t) =

z(t)i+y(t)j. Let G(to) = O—PS. Then w is a function of ¢:

u= f(z(t),y(t)),
and, as shown in the proof of Theorem of Section [16.5],

du ,
- = VI Glto). (16.7.5)

Since f, considered only on ', has a maximum at G(t),

du

— = tt=0.

o 0 a 0
Thus, by ((16.7.5)),

This means that V f is perpendicular to G'(ty) at Py. But Vg, evaluated at
Py, is also perpendicular to G'(ty), since the gradient Vg is perpendicular to
the level curve g(z,y) = 0. (We assume that Vg is not 0.) (See Figure|16.7.4])
Thus

V f is parallel to Vg.
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In other words, there is a scalar A such that Vf = AVg.

EXAMPLE 2 Maximize the function x2y for points (z, ) on the unit circle
2 +y? = 1.

SOLUTION We wish to maximize f(z,y) = x?y for points on the circle
g(z,y) = 2* +y* = 1. Then

Vf=V(z*y) = 2zyi + 2°]

and
Vg =V (2® 4+ y*) = 22i + 2yj

At an extreme point of f, Vf = AVg for some scalar A\. This gives us two
scalar equations:

2zy = A(272) i component (16.7.6)
2 = \2) j component (16.7.7)

The third equation is the constraint,
2 +y? =1 (16.7.8)

Since the maximum does not occur when x = 0, we may assume x is not 0.

Dividing both sides of ((16.7.6) by x, we get 2y = 2\ or y = A. Thus (|16.7.7))

becomes
r? = 2y°. (16.7.9)
Combining this with ((16.7.8)), we have
2y +y* =1
or .
2 — —
Yy = 3
Thus
V3 V3
= — or = ——.
Y73 Y773
By (16.7.9),

T = \/§y or T = —\/§y.

There are only four points to be considered on the circle:

V6 V3) (=vB vB) (=vB —v3) (VB -3
33 )\ 33 )\ 3o s )
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At the first and second points 2%y is positive, while at the third and fourth
22y is negative. The first two points provide the maximum value of 2%y on the
circle % + y? = 1, namely

V6\ V3 243
3) 3 o

The third and fourth points provide the minimum value of 2%y namely,

_2\/5
5

More Variables

In the preceding examples we examined the maximum and minimum of f(x,y)
on a curve g(z,y) = k. But the same method works for dealing with extreme
values of f(x,y,z) on a surface g(x,y,z) = k. If f has, say, a minimum at
(a, b, c), then it does on any level curve on the surface g(z,y,z) = k. Thus V f
is perpendicular to any curve on the surface through P. But so is Vg. Thus
V f and Vg are parallel, and there is a scalar A such that the Vf = AVyg. So
we will have four scalar equations: three from the vector equation Vf = AVyg
and one from the constraint g(x,y, z) = k. That gives four equations in four
unknowns, z, y, z and A, but it is not necessary to find A though it may be
useful to determine it. Solving these four simultaneous equations may not be
feasible. However, the exercises in this section lead to fairly simple equations
that are relatively easy to solve.

EXAMPLE 3 Find the rectangle box with the largest volume, given that
its surface area is 96 square feet.
SOLUTION Let the three dimensions be z, y and z and the volume be V,
which equals xyz. The surface area is 2xy + 2z2z + 2yz. See Figure [16.7.5]
We wish to maximize V(x,y, z) = zyz subject to the constraint : =

g9(z,y, z) = 2xy + 2x2 + 2yz = 96. (16.7.10) |

Now
VV =yzi+ 2zj + xyk

and Figure 16.7.5:

Vg=(2y+22)i+ (2z+22)j+ (2z + 2y)k.
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The vector equation VV = AV g provides three scalar equations

yz = A2y -+ 22)
rz = M2z +22)
xy = M2z +2y)

The fourth equation is the constraint,

22y + 2x2 + 2yz = 96.

Solving for A in ((16.7.11]) and in (16.7.11)), and equating the results gives

yz  xz
242z 242z

Why not?  Since z will not be 0, we have

y
2 +2z  2x 42z

Clearing denominators gives

20y + 2yz = 2xy+ 222
20z = 2xz.

Since z # 0, we reach the conclusion that
r=1y.

Since x, y and z play the same roles in both the volume zyz and in the
surface area, 2(zy + xz + yz), we conclude also that

Tr = Z.

Then x = y = z. The box of maximum volume is a cube.
To find its dimensions we return to the constraint, which tells us that
622 = 96 or x = 4. Hence y and z are 4 also. o

More Constraints

Lagrange multipliers can also be used to maximize f(x,y,z) subject to more
than one constraint; for instance, the constraints may be

g(x,y,2) =k and hz,y, z) = k. (16.7.11)
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The two surfaces ((16.7.11)) in general meet in a curve C, as shown in Fig-
ure [16.7.6] Assume that C' is parameterized by the function G. Then at a

maximum (or minimum) of f at a point Py(xg, yo, 20) on C,
Vi-G'(ty) =0.

Thus Vf, evaluated at Py, is perpendicular to G'(ty). But Vg and Vh,
being normal vectors at Py to the level surfaces g(x,y, z) = K; and h(zx,y, z) =
K, respectively, are both perpendicular to G'(ty). Thus

Vf, Vg, and Vh are all perpendicular to G'(g) at (zo, Yo, 20)-

(See Figure ) Consequently, V f lies in the plane determined by the
vectors Vg and Vh (which we assume are not parallel). Hence there are scalars
A and p such that

Vf=AVg+ uVh.

This vector equation provides three scalar equations in A, i, z, y, z. The two
constraints give two more equations. All told: five equations in five unknowns.
(Of course we find A and p only if they assist the algebra.)

A rigorous development of the material in this section belongs in an ad-
vanced calculus course. If a maximum occurs at an endpoint of the curves in
question or if the two surfaces do not meet in a curve or if the Vg and Vh are
parallel, this method does not apply. We will content ourselves by illustrating
the method with an example in which there are two constraints.

EXAMPLE 4 Minimize the quantity 2% +1%+ 22 subject to the constraints
r+2y+3z=6and z+ 3y +92=09.

SOLUTION There are three variables and two constraints. Each of the two
constraints mentioned describes a plane. Thus the two constraints together
describe a line. The function 2% + 3% + 22 is the square of the distance from
(x,y, z) to the origin. So the problem can be rephrased as “How far is the origin
from a certain line?” (It could be solved by vector algebra. See Exercises
and ) When viewed this way, the problem certainly has a solution; that is,
there is clearly a minimum.
In this case

flz,y,2) = 2>+ + 22 (16.7.12)
g(x,y,z) = x+2y+3z (16.7.13)
hz,y,z) = x4 3y+9z. (16.7.14)
Thus
Vf = 2xi+42yj+ 22k (16.7.15)
Vg = i+2j+3k (16.7.16)
Vh = i+3j+9%. (16.7.17)
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One way is to use software
programs that solve
simultaneous linear

equations.

There are constants A\ and p so

Vf=AVg+ uVh.

Therefore, the five equations for z, y, z, A, and u are

2 = A+pu
2y = 2\+3u
2z = 33X+

r+2y+32 = 6
r+3y+9z = 9

There are several ways to solve these equations.

One way is to use the first three of the five equations: to express z, y, and
z in terms of A and . Then substitute these values in the last two equations,
getting an old friend from high school “two simultaneous equations in two

unknowns”

By (16.7.18), (16.7.19), and (16.7.20)),

A+ p 2\ + 3 3\ + 9
r=—" = z

2 Y y 2 Y
Equations (16.7.21) and (|16.7.22)) then become

A 220 +3p)  3(3A+9pu)
2 * 2 * 2

and

A4 32X +3p) 93N+ 9u)
+ +
2 2 2
which simplify to

14X +34p = 12

and 34X 4+ 91p = 18.
Solving (16.7.23]) and (|16.7.24)) gives
24
A= —0 W= —@.
59 59
Thus
Apo 81
= — T = — ~1.37288
! 2 59 !
20+ 3 123
= = — =~ 2.08475
Y 2 59 !
3A+9u 9
= = — ~ 0.15254.
‘ 2 59

=6

:97

(16.7.23)
(16.7.24)
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The minimum of x? + y? + 22 is this
S1\? /123\? 9\* 21,771 369
— —_— — = = — = 6.24542.
(59) - < 59 ) * (59) 3,481 59

In Example 4] there were three variables, x, y, and z, and two constraints.
There may, in some cases, be many variables, xy, =9, ...x,, and many con-
straints. If there are m constraints, g1, ¢o . . . g,, introduce Lagrange multipliers
A1, A9, ... Ay, one for each constraints. So there would be m + n equations, n
from the equation

o

Vf=MVg + Vg + -+ A Vgn

and m more equations from the m constraints. There would be m 4+ n un-
knowns, A1, Ao, ..., A, 1, T,y - .., Ty

Summary

The basic idea of Lagrange multipliers is that if f(z,y,2) (or f(z,y)) has an
extreme value on a curve that lies on the surface g(x,y, z) = C (or the curve
g(x,y) = k), then V f and Vg are both perpendicular to the curve at the point
where the extreme value occurs. If there is only one constraint, then V f and
Vg are parallel. If there are two constraints g(z,y, z) = ki and h(z,y, z) = ke,
then V f lies on the plane of Vg and Vh. In the first case there is a scalar
A such that Vf = AVg. In the second case, there are scalars A and p such
that Vf = AVg+ uVh. These vector equations, together with the constraints,
provide simultaneous scalars equations, which must then be solved.

Calculus December 4, 2010
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EXERCISES for Section 16.7 Key: R-routine, M—moderate, C—challenging

In the exercises use Lagrange multipliers unless otherwise suggested.
1.[R] Maximize zy for points on the circle 22 + 3? = 4.

2.[R] Minimize x? 4 y? for points on the line 2z + 3y = 6.

3.[R] Minimize 22+ 3y on the portion of the hyperbola xy = 1 in the first quadrant.

4.[R] Maximize z + 2y on the ellipse 2? + y* = 8.
5.[R] Find the largest area of all rectangles whose perimeters are 12 centimeters.

6.[R] A rectangular box is to have a volume of 1 cubic meter. Find its dimensions
if its surface area is minimal.

7.[R] Find the point on the plane x 4+ 2y + 3z = 6 that is closest to the origin.
HINT: Minimize the square of the distance in order to avoid square roots.

8.[R] Maximize x 4+ y + 2z on the sphere 22 + 3222 = 9.

9.[R] Minimize the distance from (x,y,z) to (1,3,2) for points on the plane
2r+y+z=>5.

10.[R] Find the dimensions of the box of largest volume whose surface area is to
be 6 square inches.

11.[R] Maximize 2y?z2 subject to the constraint 2 4+ 2 + 22 = 1.
12.[R] Find the points on the surface xyz = 1 closest to the origin.

13.[R] Minimize 22 4+ y?+ 22 on the line common to the two planes z +2y+3z = 0
and 2z + 3y + z = 4.

14.[R] The plane 2y + 4z — 5 = 0 meets the cone 22 = 4(z? 4 %?) in a curve. Find
the point on this curve nearest the origin.

In Exercises[L5]to[1§]solve the given exercise in Section by Lagrange multipliers.
15.[R] Exercise

16.[R] Exercise
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17.[R] Exercise
18.[R] Exercise

19.[R] Solve Example [4| by vector algebra.

20.[R] Solve Exercise [L3| by vector algebra.

21.[R]
(a) Sketch the elliptical paraboloid z = x2 + 2y2.
(b) Sketch the plane z +y + z = 1.

)
)

(c) Sketch the intersection of the surfaces in (a) and (b).
)

(d) Find the highest point on the intersection in (c).

22.[R]
(a) Sketch the ellipsoid 22 + y?/4 + 22/9 = 1 and the point P(2,1,3).
(b) Find the point @ on the ellipsoid that is nearest P.

(¢) What is the angle between PQ and the tangent plane at Q7

23.[R]
(a) Sketch the hyperboloid 22 —4?/4—2%/9 = 1. (How many sheets does it have?)
(b) Sketch the point (1,1,1). (Is it “inside” or “outside” the hyperboloid?)

(c) Find the point on the hyperboloid nearest P.

24.[R] Maximize 2® + y> + 223 on the intersection of the surfaces x? + y2 + 22 = 4
and (z —3)* +y? + 22 =4.

25.[R] Show that a triangle in which the product of the sines of the three angles
is maximized is equilateral. HINT: Use Lagrange multipliers.

26.[R] Solve Exercise 25| by labeling the angles x,y, and 7 — 2 — y and minimizing
a function of z and y by the method of Section [16.6

Calculus December 4, 2010
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27.[R] Maximize = + 2y + 3z subject to the constraints x? + y? + 22 = 2 and
z+y+z2=0.
28.[C]

(a) Maximize x1z,--x, subject to the constraints that » ; ;a; = 1 and all
T > 0.

(b) Deduce that for nonnegative numbers ay, as, ..., an, Yaiaz---a, < (a1+az+
-+ ap)/n. (The geometric mean is less than or equal to the arithmetic
mean.)

29.[C]

(a) Maximize > I ; z;y; subject to the constraints Y & 2? =1and Y, y? = 1.

(b) Deduce that for any numbers a1, ag, ..., a, and bi,ba,...by, > i jab; <
>Xr, a?)l/2 (> b?)l/Z, which is called the Schwarz inequality. HINT: Let
% = e 2 =

(¢) How would you justify the inequality in (b), for n = 3, by vectors?

30.[C] Let ai,as...ay, be fixed nonzero numbers. Maximize ) . ; a;x; subject to
>zl =1

31.[C] Let p and g be positive numbers that satisfy the equation 1/p +1/q = 1.
Obtain Holder’s inequality for nonnegative numbers a; and b;,

n n 1/p n 1/q
San< (X)) ()
i=1 i=1 i=1
as follows.
(a) Maximize Y i ; z;y; subject to Y iz =1 and >yl = 1.

(b) By letting x; = 7 and y; = ——2i—— obtain Holder’s inequality.

a;
ity af) (i )/
Note that Holder’s inequality, with p = 2 and ¢ = 2, reduces to the Schwarz in-
equality in Exercise

32.[C] A consumer has a budget of B dollars and my purchase n different items.
The price of the ith item is p; dollars. When the consumer buys x1 units of the ith
item, the total cost is . | p;x;. Assume that ;" | p;z; = B and that the consumer
wishes to maximize her utility u(z1,zs...zy).
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(a) Show that when z1,...,z,, are chosen to maximize utility, then
Oou/0x;  Ou/0x;
Di pi

(b) Explain the result in (a) using just economic intuition. HINT: Consider a
slight change in z; and z;, with the other x;’s held fixed.

33.[C] The following is quoted from Colin W. Clark in Mathematical Bioeconomics,
Wiley, New York, 1976:

[SJuppose there are N fishing grounds. Let H' = H'(R!, E*) denotes
the production function for the total harvest H* on the ith ground as a
function of the recruited stock level R? and effort E* on the ith ground.
The problem is to determine the least total cost Zf\; L ¢ EY at which a
given total harvest H = > I | H® can be achieved. This problem can
be easily solved by Lagrange multipliers. The result is simply

1 0H'
C; 6El

= constant

[independent of i].

Verify his assertion. The ¢;‘s are constants. The superscripts name the functions;
they are not exponents.

34.[C] (Computer science) This exercise is based on J. D. Ullman, Principles of
Database Systems, pp. 82—-83, Computer Science Press, Potomac, Md., 1980. It
arises in the design of efficient “bucket” sorts. (A bucket sort is a particular way
of rearranging information in a database.) Let p1, p2, ..., pr and B be positive
constants. Let by, b, ..., b be k nonnegative variables satisfying Z?:l b; = B.
The quantity 2?21 Dj - 2B-b; represents the expected search time. What values of
b1, ba, ..., by does the method of Lagrange multipliers suggest provide the minimum
expected search time?

35.[C] Assume that f(z,y,z) has an extreme value at Py on the level surface
9(z,y,2) =k

(a) Why is Vg evaluated at Py perpendicular to the surface at Py?

(b) Why is Vf evaluated at Py perpendicular to the surface at Py?

36.[C] Solve Example [35 by vector algebra (or just algebra).

Calculus December 4, 2010



1362

CHAPTER 16 PARTIAL DERIVATIVES

Review the Chain Rule, if
necessary.

This notation is standard
practice in thermodynamics,
though it offends some
mathematicians.

‘/an%e inx a
ng also in

ch
cbl(ectly a

because it cawuses-a change
in z, Which affects f.

Figure 16.8.1:

16.8 What Everyone Who Will Study Ther-
modynamics Needs to Know

The basic equations of thermodynamics follow from the Chain Rule and the
equality of the mixed partial derivatives. We will describe the mathematics
within the thermodynamics context.

Implications of The Chain Rule

We start with a function of three variables, f(x,y,z), which we assume has
first partial derivatives

of
Ox

of
dy

of
0z

z,Y

Y,z 4

The subscripts denote the variables held fixed.

Without this explicit reminder it is necessary to remember the other vari-
ables. At this point this is not difficult. But, when additional information is
included, it can become more difficult to keep track of all of the variables in
the problem.

Now assume that z is a function of z and y, z = g(x,y). Then f(z,y,2) =
f(z,y,g9(x,y)) is a function of only two variables. This new function we name
h(z,y): h(z,y) = f(x,y,g(x,y)). There are only two first partial derivatives

of h:
oh

dx

oh
dy

and

Yy X
Let the value of f(z,y,z) be called u, u = f(x,y,2). But z, y, and z are
functions of z and y: x =z, y =y, and z = g(x,y).
Figure [16.8.1| provides a pictorial view of the relationship between the dif-
ferent variables. Both x and y appear as middle and independent variables.

We have u = f(x,y, z) and also u = h(z,y). By the Chain Rule Then

_of of of
y_ ox dy 0z

@
ox

oz

- oz

dy

- ox

dg

vy ox

Y Y Y

Since z and y are independent variables, dz/0x = 1 and dy/0x = 0 and we
have

oh|  Of af dg
oz |, - Ox ye 0zl 0|’ (16:8.1)
or simply
Oh _ 0f + 01 99 (16.8.2)

or  Or | 0z0x
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When the subscripts are omitted we have to look back at the definitions of f,
g, and h to see which variables are held fixed.

EXAMPLE 1 Let’s check (|16.8.2) when

f(z,y,2) =2%y2° and g(z,y) = 22 + 3y.

SOLUTION We have h(z,y) = f(z,y,9(z,y)) = 2**(2x + 3y)5. Then

o _ 221325 and or _ 5x2y324. Also 99 _ 2.
ox 0z ox
Computing 0h/0x directly gives
Ooh
8
= ¢ p (2 (22 + 3y)°)
= y® (22(2z 4 3y)° + 2* (5(2z + 3y)*(2)))
= 2xy3(2x + 3y)° + 1Ox2y3(23: + 3y)*. (16.8.3)

On the other hand, by (16.8.2)), we have

Oh _ Of Lo of 9g
dr ~ Ox 020z
= 22y°2° + (52%y*2")(2)
= 211322 + 3y)° + 10273 (22 + 3y)*,

which agrees with ((16.8.3)). o

What If 2z = g(z,y) Makes f(z,y,2) Constant?

Next, assume that when z is replaced by g¢(z,y), the function h(z,y) =
f(x,y,g(x,y)) is constant: h(z,y) = f(x,y,g(z,y)) = C. This happens when
we use the equation f(z,y,z) = C to determine z implicitly as a function of
x and y.

Then

oh oh

8$y 9y |,

In this case, which occurs frequently in thermodynamics, (16.8.1]) becomes (116.8.4)) will be the
foundation for deriving

(16.8.9) and (76.8.10), key

mathematical relationships
used in thermodynamics.

=0 and = 0.

of

0
o + o
ZL’y

0z

dg

0= 79
ey (9xy

(16.8.4)
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Solving (|16.8.4)) for g_g we obtain
x
y

or

dg ~ Brly.

2 = =y 16.8.5)
o7 (

a.l’ Y $|5L‘,y

Equation ((16.8.5)) expresses the partial derivative of g(z,y) with respect to x
in terms of the partial derivatives of the original function f(x,y, z).

EXAMPLE 2 Let f(x,y, 2) = 23y°27. Define g(z, y) implicitly by 23¢°(g(x,y))" =

1. That is, g(x,y) = 2=/ Ty=>/7. Verify ((16.8.5)).

SOLUTION  First of all, 99 = *7355_10/73/_5/7. Then

oz |,
0
—f =32%52" and ZL| = Ta*ytLS
ox e 0z -
Substituting in ([16.8.5)), we have
of
ax Y,Z B (3‘r2y5z7>
g T3y 20
0z
z,y
3 1
== ?l' z
3
= —?x_lx_3/7y_5/7 because z3y°27 = 1
3
_ —?x_10/7y_5/7
99 N
= so ([16.8.5) is satisfied.
Tly
o
The Reciprocity Relations
In a thermodynamics text you will see equations of the form
ox 1
—| = —=—. 16.8.6
0z|, 0z ( )
oz |,
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We will explain where this equation comes from, presenting the mathematical
details often glossed over in the applied setting. There is a function f(z,y, 2)
with constant value C', f(x,y,2) = C. It is assumed that this equation deter-
mines z as a function of x and y, or, similarly, determines x as a function of y
and z, or y as a function of x and z. There are six first partial derivatives:

@
ox

0z
Y ay

Ox
Y ay

ox

Oz 9y
0z

ox

%
0z

z

(16.8.7)

Y x z y T

An equation analogous to ((16.8.5)) holds for each of them. For instance,

_of
ox 0z 2y
& y — a_f—. (16.8-8)
ox .

Combining (]16.8.5[) and (]16.8.8[) verifies that

ox 1

= == 16.8.

azy % (689)
8:By

Equation (|16.8.9)) is an example of a reciprocity relation: The partial deriva-
tive of one variable with respect to a second variable is the reciprocal of the
partial derivative of the second variable with respect to the first variable.

EXAMPLE 3 Let f(z,y,2) = 2x + 3y + 5z = 12. Verify that 9z/0x is the
reciprocal of 0z/0z.
SOLUTION Since 2x + 3y + 5z = 12, z = (12 — 22 — 3y) /5. Then 0z/0x =
—2/5.

Also, z = (12 — 3y — 52)/2, so dx/0z = —5/2, which is, as predicted, the
reciprocal of 0z/0x. o

The Cyclic Relations

With the aid of equations like (|16.8.8)) it is easy to establish the surprising
relation
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See Exercise

This is to be expected, for

Az : Az
‘A= is the reciprocal of X7.

The Cyclic Relation, also
known as the Triple Product
Rule, the Cyclic Chain Rule,
or Euler's Chain Rule. See
http://en.wikipedia.
org/wiki/Triple_
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v is the reciprocal of density

van der Waal’s equation is
only one example of an
equation of state. See also
Exercises [[T] and 12

ox

dx| Oy
oy

, Oz

0z
—| = —1. 16.8.1
& (16.8.10)

Y

Equation ((16.8.10|) results from the use of three versions of (|16.8.8)). The left-
hand side of (16.8.10f) can be expressed as

_of _of _of
ay T,z 82 T,y (92 z,Y
57 57 57 (16.8.11)
ox vz dy - ox yr

Cancellation reduces (|16.8.11)) to -1.

EXAMPLE 4 Let f(z,y,2) = 2x+3y+52z = 12. This equation determines
implicitly each of the variables in terms of the two others. Verify in
this case.

SOLUTION By the equation 2x + 3y + 5z = 12,

12 -3y — 5z 12—-22 -5z

12 -2 -3y
2 v

z =

3 )
Then 0x/0y = —3/2, dy/0z = —5/3, and 0z/0x = —2/5, and we have

Ov Oy 0z (=3 (=5 (=2 _
dy 9z dxr  \ 2 3 5 )

If two of the three partial derivatives in (16.8.10|) are easy to calculate,
then we can use to find the third, which may otherwise be hard to
calculate. We illustrate this use of the cyclic relationship with an example
from thermodynamics. In this context T' denotes temperature, p, pressure,
and v the mass per unit volume.

Equations (16.8.4] (16.8.9)), and are the 15sential mathematical
relationships used in thermodynamics. We now show their use in a few typical
thermodynamics problems.

T

o

EXAMPLE 5 In van der Waal’s equation p, T', and v are all related by the
relation

T
RT _a. (16.8.12)
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R, a and b are constants. Use a cyclic relation to find (9v/9T),.
SOLUTION We use the cyclic relation

ovl| oT| OJp

oT ) dp |, Ov
Looking at ((16.8.12)), we see that (Op/dT), is easier to calculate than (07/0p),.
So (16.8.13)) becomes

=—1. (16.8.13)
T

R
oT » ov | -
9p
oT'|,
and therefore
9p
ov or'|,
5T = o (16.8.14)
ol

Since p is given as a function of v and T, it is easy to calculate the numerator
and denominator in ((16.8.14)):

Y _ R and oy _ —RT +2_a
or), wv-—b o), (v=>b2 v¥

Thus, by ((16.8.14)),

(g_;)p - —RT/_(f i(112)2_41?2(1/@:%'

Using the Equality of the Mixed Partial Derivatives

Having shown how the Chain Rule provides some of the basic equations in
thermodynamics, let us show how the equality of the mixed partials leads to
other basic equations.

We resume our consideration of a thermodynamic process in which the
pressure is denoted by P, the temperature by 7', and the volume per unit
mass by v. Other common variables are

thermal energy per unit mass
entropy per unit mass

Helmholtz free energy per unit mass
Gibbs free energy per unit mass
enthalpy per unit mass

S (| »n |
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When you look at your
thermometer, remember
that you are gazing at the
value of a partial derivative.

In other contexts we will say
that dz = Mdx + Ndy is
an exact differential.

That is a total of 8 variables of interest. If they were independent, the possible
states would be part of an eight-dimensional space. However, they are very
interdependent. In fact any two determine all the others.

U
For instance, u may be viewed as a function of s and v, and we have —
s

v

which is the definition of temperature, T. Thermodynamic texts either state

or derive the “Gibbs relation”

du =T ds — P dv.

)

This equation involving differentials tells us that u is viewed as a function of
s and v, and that

u Ju
—| =T d —| =-P.
0s |, o v |,
Equating the mixed second partial derivatives then gives us
Ou O u lity of mixed partials of u(s, )
== equall OI Mmixe artials or u(s,v
dvds dDsOv ARy P ’
9 ou 9 ou
D (my = 2 (o
oT J(—P) ou ou
%S = 95 | because gv—Tand %S——P
or| )
o, Js |,

Several thermodynamic statements that equate two partial derivatives are
obtained this way. The starting point is an equation of the form

dz= M dxr+ N dy

where M is ad and N is % . Then, because
ox y 9y |,
0z 0Oz
0xdy  Oyoz’
it is found that
oM|  ON
dy |, Ox y'

Summary

We showed how the Chain Rule in the special case where an intermediate vari-
able is also a final variable justifies certain identities, namely, the reciprocal
and cyclic relations used in thermodynamics. Then we showed how the equal-
ity of the mixed partial derivatives is used to derive other equations linking
various partial derivatives.
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EXERCISES for Section 16.8 Key: R-routine, M—moderate, C—challenging

1.[R] Letu=a?+y?>+2%andlet z =2 +y.

ou
(a) The symbol . has two interpretations. What are they?
x

(b) Evaluate % in both cases identified in (a).

2.[R] Let z =rst and let r = st.

0
(a) The symbol a—j has two interpretations. What are they?

(b) Evaluate gi in both cases identified in (a).

3.[R] Let u= f(x,y,2) and z = g(z,y). Then u is indirectly a function of x and

0

of y. Express au’ in terms of partial derivatives of f. (Supply all the steps.)

T
y

4.[R] Assume that the equation f(z,y,z) = C, a constant, determines x as a func-
ox
tion of y and z: x = h(y,z). Express 50 in terms of partial derivatives of f.

z

(Supply all the steps.)

5.[R] What is the product of the six partial derivatives in (16.8.7)7

0
6.[R] Using the function f from Example verify the analog of (16.8.8]) for 8—;

T

7.[R] Let f(x,y,2) = 2z + 4y + 3z. The equation f(x,y,z) = 7 determines any
variable as a funciton of the other two. Verify (16.8.8]), where z is viewed as a func-
tion of x and y.

8.[R] Obtain the cyclic relation

@
0z

0z

0z| 9y
yay

= —1.
L, Oz

z

HiINT: Duplicate the steps leading to (16.8.10]).

9.[R] Verify (16.8.10) in the case f(x,y,2) = 23y2" = 1.
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10.[R] Verify (16.8.10) in the case f(x,y,2z) =2z + 4y + 3z =T.
11.[R] The equation of state for an ideal gas is pv = RT. Find (9v/9T),,.

12.[R] The Redlich-Kwang equation

RT a
v—>b w(v+b)TH2

p:

is an improvement upon the van der Waal’s equation of state (16.8.12f) for gases and
liquids. Find (9v/9T),,. NOTE: Do a Google search for "Redlich Kwang equation”,
or visit http://en.wikipedia.org/wiki/Equation_of_state.

13.[R] Find (9v/9T), in Example 5| by differentiating both sides of (16.8.12) with
respect to T', holding p constant.

14.[R] One might try to find (Ov/0T )p in Example [5| by first finding an equation
that expresses v in terms of 7" and p. What unpleasantness happens when you try
this approach?

15.[R] In Example 5] find (Ov/0p)y, (0T /0v),, and (01/0p),.

16.[M] In thermodynamics there is the Gibbs relation

dh =T ds+ v dP.

oT
= v. Deduce that —
v. Deduce that =

oh ov
—Tanda— S_a

It is understood that %
0 » D

S

s P

17.[R] Consider the thermodynamic equation

OE| _ 0F
or|, orT

L OE
» 0P

oP

= . (16.8.15)
T or v

(a) What is the dependent variable?
(b) What are the independent variables?
(¢) What are the intermediate variables?

(d) Draw a diagram showing all the paths from the dependent variables to the
independent variables.

(e) Use the Chain Rule to complete the derivation of (16.8.15]).
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18.[M] Show that g];

v

19.[M] Show that

_ o

8£
p Ov

() %

P

OE|  OF

oT oF
® 35 = ar

7_1_7
p 0P|, 0P

T

oP| oT
20.[M] Show that —| ——=| = 1. HINT: Express each of the partial derivaties as
oT|, oP

a quotient of partial derivatives, as in Exercise

21.[M] Show that g—];

oT| Ov

=2 =1
, Ov|p OP

T

22.[M] Let u = F(z,y,2) and z = f(z,y). Thus u is a (composite) function of x
and y: u = G(z,y) = F(z,y, f(,y)). Assume that G(z,y) = x?y. Obtain a formula

for == in terms of —, —, and ——. (All three need not appear in your answer.)

Ox ox’ Oy 0z

23.[M] Letu = F(z,y,z)and x = f(y, z). Thus u is a (composite) function of y and
ziu=G(y,2) = F(f(y,2),y,2). Assume that G(y, z) = 2y + z2. Obtain a formula

for — in terms of —, —, and —. (All three need not appear in your answer.
0z oz’ Oy 0z ( bp Y wer.)

24.[C] Two functions u and v of the variables x and y are defined implicitly by the
two simultaneous equations

F(u,v,z,y) =0 and G(u,v,z,y)=0.

0
Assuming all necessary differentiability, find a formula for 8—u in terms of the partial
x
derivatives of F' and of G.
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See the CIE section on
Maxwell's equations at the
end of Chapter [18]

16.S Chapter Summary

This chapter extends to functions of two or more variables the notions of rate
of change and derivative originally in Chapter [3] For a function of several
variables a “partial derivative” is simply the derivative with respect to one of
the variables, when all the other variables are held constant.
The precise definition rests on a limit. For instance, the partial derivative
with respect to x of f(z,y) at (a,b) is
of fla+ Az,b) — f(a,b)

(9_1:<a’ b) = Alglcrilo Azx

Just as there are higher-order derivatives, there are higher-order partial deriva-
tives, for instance:

Pf 0 (0f\ OPf 0 (f\ @f 0 (of\ _ Of 0
8$8w_%< )’&Lﬁy_%( )’8y8w_8_y< )’ oy

ox

dy

ox

o dydy Oy

For functions usually encountered in applications, the two “mixed partialas,”
0?f /020y and 0% f/OyOx, are equal; we can therefore not worry about the
order of the differentiation.

Also, for common functions “differentiation under the integral sign” is legal:

b

b
if g(y) = /f(a:,y) dz, then ;l_zg/ = /g—g(x,y) dx.

a

For a function of one variable, f(x), with a continuous derivative,
Af = fla+Az)—f(a) = f'(c)Az = (f'(a)+€)Az = f'(a)Az+eAx. (16.5.1)

Here ¢ is in [a,a + Az] and € — 0 as Az — 0. The analog of ((16.S.1)) for a
function of two or more variables is the basis for the chain rule for functions
of several variables:

(

of
oy

)

Af = fla+Ax, b+Ay)—f(a,b) = (f(a+ Az, b+ Ay) — f(a, b+ Ay))+(f(a,b+ Ay)

(16.5.2)
where €; and €3 — 0 as Deltaxr and Ay — 0.

The chain rule showed then, if g(u) and h(u) are differentiable functions,
then y = g(x + kt) + h(xz — kt), k constant, satisfies the partial differential
equation (PDE) 8%y/0t* = k*0%y/0x?. This PDE was the key to Maxwell’s
conjecture that light is an electro-magnetic phenomenon.

The gradient, a vector function, was defined in terms of partial derivatives:

Vf = (fs, fy) or, for a function of three variables: Vf = (f;, f,, f.). The
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gradient points in the direction a function increases most rapidly. The rate
at which f(z,y) changes in the direction of a unit vector u is Vf - u. The
gradient is perpendicular to the level curve (or level surface) passing through
a given point. At a critical point the gradient vanishes.

For a function of one variable the sign of the second derivative helps tell
whether a critical point is a maximum or a minimum. For a function of two
variables, the test also involves all three second derivatives. In particular, the
signs of fu, and fu.f,, — (fzy)? are important.

Maximizing a function f subject to a constraint g depends on the obser-
vation that at an extremum V f is parallel to Vg. Hence there is a number A
such that Vf = AVg.

The final section showed that the chain rule is the bases of two facts in
thermodynamics. It also shows how to apply the chain rule when a middle
variable is also a final variable.

EXERCISES for 16.S Key: R-routine, M-moderate, C—challenging

1.[R] Let f(x,y) = 2* —y? and g(z,y) = 2xy. Show that

of _ d
(a) %—(TZ
af _ d
(b) 5, =52
92f | 9°f

2 2
(d) GH+54=0

2.[R] Repeat Exercisefor f(z,y) =1n <\/x2 + y2> and g(z,y) = arctan (y/x).

3.[M] Let f and g be functions of x and y that have continuous second derivatives.
Assume the first partial derivatives of f and ¢ satisfy:

af g of  dg

Show that 52 52 o2 52
fLooF g, g _
@ + 87@/2 =0 and 61‘2 + 8y2 = 0 (1684)

NOTE: The two equations in (|16.S.3|) are known as the Cauchy—Riemann equations.
A pair of functions that satisfy (16.S.4)) are called a conformal pair of functions.

In Exercises[d]to[I2]assume the functions have continuous partial derivatives through-
out the xy plane.

Calculus December 4, 2010
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4.[R] If fy(z,y) = 0 for all points (z,y) in the plane, must f be constant? If not,
describe f.

5.R] If fu(z,y) = 0 and fy(z,y) = 0 for all points (x,y) in the plane, must f be
constant? If not, describe f.

6.[R] The function 3z+g(y), for any differentiable function g(y) satisfies the partial
differential equation df/0x = 3. Are there any other solutions to that equation?
Explain your answer.

7.[R] Find all functions f such that 0f/0z = 3 and also Jy/0Jx = 3 are satisfied.

8.[R] Show that there is no function f such that df/0x = 3y and df/dy = 4x.
9.[R] Find all functions such that f,,(z,y) =0.

10.[R] Find all functions such that f..(z,y) =0 and fy,(z,y) = 0.

11.[R] Find all functions such that f,,(z,y) = 0.

12.[R] Find all functions such that f.,(z,y) = 1.

13.[M] A hiker is at the origin on a hill whose equation is z = x. If he walks south,
along the positive x-axis the slope of his path would be steep, 1, with angle /4. If
he walked along the y-axis, the slope would be 0.

(a) If he walked NE what would the slope of his path be?

(b) In what direction should he walk in order that his path would have a slope of
0.27

14.[C] This exercise outlines a proof that the two mixed partials of f(x,y) are
generally equal. It suffices to show that f,,(0,0) = f,+(0,0). We assume that all
the first and second partial derivatives are continuous in some disk with center (0, 0).

(a) Why is fz,(0,0) equal to
L Ll0.8) = £2(0,0),

lim ; (16.8.5)
(b) Why is (16.S.5)) equal to
lim (hm (f(h7 k) — f(07 k)) — (f(h7 0) — f(()?())))? (16.8.6)
k—0 \ h—0 hk
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(c) Let u(y) = f(h,y) — f(0,y). Show that the fraction in (16.S.6) equals

u(k) — u(0)
hk

and this fraction equals u/(k)/h for some k between 0 and k.

Why is /(k) = f,(h, k) — £,(0,k)?

Why is u/(k)/h equal to (fy)(H, K) for some H between 0 and h?
Deduce that f;,(0,0) = fy2(0,0).

)
)
)
(g) Did this derivation use the continuity of fy,? If so, how?
(h) Did this derivation use the continuity of f,? If so, how?
) Did we need to assume f,, exists? If so, where was this assumption used?
)

Did we need to assume fy, exists? If so, where was this assumption used?

15.[C] The assertion that it is safe to “differentiate across the integral sign,”
amounts to the statement that two definite integrals are equal. To illustrate this,
translate the assertion into the language of limits:

b b
jt/f(x,t) dx:/aatf(m,t) dx. (16.5.7)

(a) Why is the derivative on the left an ordinary derivative, d()/dt, but the deriva-
tive on the right is a partial derivative?

(b) Using the definitions of ordinary derivatives and partial derivatives as limits,

show what (16.S.7) says about limits.
(c) Verify (16.5.7) for f(z,t) = 27t*.
(d) Verfiy (16.S.7) for f(z,t) = cos(zt).

Exercise [16] provides another motivation for the definition of the Fourier series of a
function f defined on the interval [0, 27].
16.[C] For a particular integer n consider all functions S(z) of the form

S(x) = % + Z (ay cos(kx) + by sin(kx)) ,
k=1
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Let f(z) be a continuous function defined on [0, 27]. The definite integral

/ (f(z) - 5(x))? de

0

is a measure of how close S(x) is to f(x) on the interval [0,27]. The integral can
never be negative. (Why?) The smaller the integral, the better S approximates f
on [0,27]. Show that the S(x) that minimizes the integral is precisely a front-end
of the Fourier series associated with f(z).
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Calculus is Everywhere # 21
The Wave in a Rope

We will develop what may be the most famous partial differential equation.
In the CIE of the next chapter we will solve that equation and, then, use it
in the final chapter to show how it helped Maxwell discover that light is an
electrical-magnetic phenomenon.

As Morris Kline writes in Mathematical Thought from Ancient to Modern
Times, “The first real success with partial differential equations came in re-
newed attacks on the vibrating string problem, typified by the violin string.
The approximation that the vibrations are small was imposed by d’Alembert
(1717-1783) in his papers of 1746.”

Imagine shaking the end of a rope up and down gently, as in Figure

That motion starts a wave moving along the rope. The individual molecules
in the rope move up and down, while the wave travels to the right. In the case
of a sound wave, the wave travels at 700 miles per hour, but the air just
vibrates back and forth. (When someone says “good morning” to us, we are
not struck with a hurricane blast of wind.)

To develop the mathematics of the wave in a weightless rope, we begin
with some simplifying assumptions. First, each molecule moves only up and
down. Second, the distance each one moves is very small and the slope of the
curve assumed by the rope remains close to zero. (Think of a violin string.)

At time t the vertical position of the molecule whose z-coordinate is x is
y = y(z,t), for it depends on both x and ¢. Consider a very short section of
the rope at time ¢, shown as P(Q) in Figure [C.21.2]

We assume that the tension T is the same throughout the rope. Apply
Newton’s Second Law, “force equals mass times acceleration,” to the mass in
PQ.

If the linear density of the rope is A, the mass of the segment is A times the
length of the segment. Because we are assuming small displacements, we will
approximate that length by Ax. The upward force exerted by the rope on the
segment is T'sin(f + Af) and the downward force is T'sin(#). The net vertical
force is T'sin(6 + Af) — T'sin(#). Thus

2
Tsin(0 + Af) — T'sin(f) = Mz 8—52/ : (C.21.1)
e mass S~~~

net vertical force .
acceleration

(Because y is a function of x and ¢, we have a partial derivative, not an ordinary
derivative.)
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Next we express sin(f) and sin(6 + Af) in terms of the partial derivative
Jy/ 0.

First of all, because 6 is near 0, cos(f) is near 1. Thus sin(f) is approxi-
mately sin(6)/ cos(f) = tan(f), the slope of the rope at time ¢ above (or below)
x, which is 0y/0x at z and ¢. Similarly, sin(f + A#f) is approximately dy/0x

at © + Az and t. So (C.21.1)) is approximated by

79y dy ]
8:16 —(z+ Az, t) — T@x (x,t) = Az o —(z,1). (C.21.2)

Dividing both sides of (C.21.2)) by Ax gives

T (% (zx+ Az, t) — 9(z,t)) 0y
Ao )\(9152 (z,1). (C.21.3)
Letting Az in ((C.21.3]) approach 0, we obtain
Dy Dy
T8$2( t) = /\w(x t). (C.21.4)

Since both 1" and A are positive, we can write ((C.21.4)) in the form

0%y 1 0%y

@ — EW' (0.21.5)

This is the famous wave equation. It relates the acceleration of the molecule
to the geometry of the curve; the latter is expressed by 0%y /0x*. Since we are

assuming that the slope of the rope remains near 0, 2 5. is approximately

Py
Oz2

(Viv@r)

which is the curvature at a given location and time. At the curvier part of the
rope, the acceleration is greater.

As the CIE in the next chapter shows, the constant ¢ turns out to be the
velocity of the wave.

EXERCISES

1.[M] Figure shows a vibrating string whose ends are fixed at A and B.
Assume that each part of the string moves parallel to the y-axis (a reasonable ap-
proximation of the vibrations are small.) Let y = f(z,t) be the height of the string
at the point with abscissa x at time ¢, as shown in the figure. In this case, the partial
derivatives are denoted dy/0z and dy/0t.
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/U

Figure C.21.3:

(a) What is the meaning of y,?

(b) What is the meaning of y;?
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Chapter 17

Plane and Solid Integrals

In Chapter 2| we introduced the derivative, one of the two main concepts in
calculus. Then in Chapter[I5|we extended the idea to higher dimensions. In the
present chapter, we generalize the concept of the definite integral, introduced
in Chapter [0} to higher dimensions.

Take a moment to review the definite integral. Instead of using the notation
of Chapter [0, we will restate the definition in a notation that easily generalizes
to higher dimension.

We started with an interval [a, b], which we will call I, and a continuous
function f defined at each point P of I. Then we cut I into n short intervals
I, I, ..., I,, chose a point P, in Iy, P,in I, ..., P, in I,,. See Figure|17.0.1
Denoting the length of I; by L;, we formed the sum

Zf(Pi)Li.

The limit of these sums as all the subintervals are chosen shorter and shorter
is the definite integral of f over interval I. We denoted it fba f(z) dz. We now
denote it [ f(P)dL. This notation tells us that we are integrating a function,
f, over an interval I. The dL reminds us that the integral is the limit of
approximations formed as the sum of products of the function value and the
length of an interval.

We will define integrals of functions over plane regions, such as square and
disks, over solid regions, such as tubes and balls, and over surfaces such as the
surface of a ball, in the same way. You can probably conjecture already what
the definition will be. These integrals are needed to compute total mass if we
know the density at each point, or total gravitational attraction, or center of
gravity, and so on.

It is one thing to define these higher-dimensional integrals. It is another to
calculate them. Most of our attention will be devoted to seeing how to compute

1381
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them with the aid of so-called “iterated integrals,” which involve integrals over
intervals, the type defined in Chapter [6]
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17.1 The Double Integral: Integrals Over Plane

Areas
We suggest you re-read the

The goal of this section is to define the integral of a function defined in a  introduction to this chapter
region of a plane. With only a slight tweaking of this definition, we will define and the definition of the

. . b
later in the chapter integrals over surfaces and solids. definite integral [ f(z) dx
before going on.

Volume Approximated by Sums

Let R be a region in the xy plane, bounded by curves. For convenience, assume
R is convex (no dents), for example, an ellipse, a disk, a parallelogram, a
rectangle, or a square. We draw R in perspective in Figure|17.1.1[a). Imagine

Figure 17.1.1:

that there is a surface above R (perhaps an umbrella). The height of the
surface above point P on R is f(P), as shown in Figure [17.1.1|(b)

If you know f(P) for every point P how would you estimate the volume,
V', of the solid under the surface and above R?

Just as we used rectangles to estimate the area of regions back in Sec-
tion [6.1, we will use cylinders to estimate the volume of a solid. Recall, from
Section [7.4], that the volume of a cylinder is the product of its height and the
area of its base.

Inspired by the approach in Section [6.1], we cut R into n small regions R,
Rsy, ..., R,. Each R; has area A;. Choose points P, in Ry, P, in Rs, ..., B,
in R,. Then we build a cylinder over each little region R;. Its height will be
f(F;). There will then be n cylinders. The total volume of these cylinders is

if(Pi)Ai. (17.1.1)

As we choose the regions Ry, Rs, ..., R,, smaller and smaller, the sum ({17.1.1))
approaches the volume V', if f is a continuous function.

EXAMPLE 1 Estimate the volume of the solid under the saddle z = zy
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SHERMAN: Changed left
edge from 0 to 1 so that
base and height are not the
same.

and above the rectangle R whose vertices are (1,0), (2,0), (2,3), and (1, 3).

SOLUTION  Figure [17.1.2(a) shows the solid region in question.

Figure 17.1.2:

The highest point is above (2,3), where z = 6. So the solid fits in a box
whose height is 6 and whose base has area 4. So we know the volume is at
most 4 - 6 = 24.

To estimate the volume we cut the rectangular box into four 1 by 1 squares
and evaluate z = xy at, say, the center of the squares, as shown in Fig-
ure [17.1.2|(b).

Then we form a cylinder for each square. The base is the square and the
height is determined by the value of xy at the center of the square. These are
shown in Figure [17.1.2)(c). (The cylinder over rectangle boxes.)

Then the total volume is

3 5 9 15

O e .1 = . 1 =8
“~~ area of base @~ area of base =~ area of base area of base
height height height height

(17.1.2)
This estimate is then 8 cubic units. We know this is an overestimate (Why?)
By cutting the base into smaller pieces and using more cylinders we could
make a more accurate estimate of the volume of the solid. o

Density

Before we consider a “total mass” problem we must define the concept of
“density.” Consider a piece of sheet metal, which we view as part of a plane.
It is homogeneous, “the same everywhere.” Let R be any region in it, of area
A and mass m. The quotient m/A is the same for all regions R, and is called
the “density.”

It may happen that the material, unlike sheet metal is not uniform. For
instance, a towel that was just used to dry dishes. As R varies, the quotient
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m/A, or “average density in R,” also varies. Physicists define the density at
a point as follows.

They consider a small disk R of radius r and center at P, as in Figure
Let m(r) be the mass in that disk and A(r) be the area of the disk (77?). The

“Density at P” = 71&1[1) TZ((:))

Thus density is denoted o(P), “sigma of P,”

With the physicists, we will assume the density o(P) exists at each point
and that it is a continuous function. In addition, we will assume that if R is a
very small region of area A and P is a point in that region then the product
o(P)A is an approximation of the mass in R.

Total Mass Approximated by Sums

Assume that a flat region R is occupied by a material of varying density. The
density at point P in R is o(P). Estimate M, the total mass in R.

As expected, we cut R into n small regions Ry, Ry, ..., R; has area A;.
We next choose points P, in Ry, P, in Ry, ..., P, in R,. Then we estimate
the mass in each little region R;, as shown in Figure . The mass in R; is
approximately

density area

Thus

i o(P)A; (17.1.3)

=1

is the total estimate. As we divide R into smaller and smaller regions, , the
sums (|17.1.2)) approaches the total mass M, if o is a continuous function.

EXAMPLE 2 A rectangular lamina, of varying density occupies the rect-
angle with corners at (0,0), (2,0), (2,3), and (0, 3) in the xy plane. Its density
at (z,y) is zy grams per square cm. Estimate its mass by cutting it into six 1
by 1 squares and evaluating the density at the center of each square.

SOLUTION One such square is shown in Figure [17.1.5 The density at its
1

center is 3 - % = }1. Since its area is 1 x 1 = 1, an estimate of o, its mass, is
1 1 1
- = — grams.
4 ~~ 4 &
~~ area
density
Calculus December 4, 2010
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the initial letter of
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Similar estimates for the remaining six small squares gives a total estimate of

1 3 3 9 5 15
1421+ 1+214+42 14201 =09
g Tyttt Bratis
Thus sum is identical to the sum ({17.1.2), which estimates a volume. o

The arithmetic in Examples [1] and [2] show that totally unrelated problems,
one in volume, the other in mass, lead to the same estimates. Moreover, as
the rectangle is cut into smaller pieces, the estimate would become closer and
closer to the volume or the mass. These estimates, similar to the estimates
> (f(e;)Az; that appears in the definition of the definite integral f: f(z) dx,
brings us to the definition of “double integral”. It is called the double integral

because the domain of the function is in the two-dimensional plane.

The Double Integral

The definition of the double integral is almost the same as that of f: f(x) dx,
the integral over an interval. The only differences are:

1. instead of dividing an interval into smaller intervals, we divide a planar
region into smaller planar regions,

2. instead of a function defined on an interval, we have a function defined
on a planar region, and

3. we need a quantitative way to say that a “little” region is “small.”

To meet the need described in (3) we define the “diameter” of a planar
region. The diameter of a region bounded by a curve is the maximum distance
between two points in the region. For instance, the diameter of a square of
side s is sv/2 and the diameter of a disk is the same as its traditional diameter
that we know from geometry.

With that aside taken care of, we are ready to define a double integral.

DEFINITION (Double Integral) Let R be a region in a plane
bounded by curves and f a continuous numerical function defined
at least on R. Partition R into smaller regions R, Rs, ..., R, of
respective areas A;, As, ..., A,. Choose a point P; in Ry, P5 in
Ry, ..., P, in R, and form the approximating (Riemann) sum

zn:f(Pi)Ai. (17.1.4)
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Form a sequence of such partitions such that as one goes out in
the sequence of partitions, the sequence of diameters of the largest
region in each partition approaches 0. Then the sums (|17.1.4)

approach a limit, which is called “the integral of f over R” or the
“double integral” of f over R. It is denoted

R/ F(P) dA.

Before looking at some examples, we make four brief remarks:

1. It is called a double integral because R lies in a plane, which has dimen-
sion 2.

2. We use the notion of a diameter of a region only to be able to define the
double integral.

3. It is proved in advanced calculus that the sums do indeed approach a
limit.

4. Other notations for a double integral are discussed near the end of this
section.

Our discussion of integrals over a plane region started with two important
illustrations . The rest of this section is devoted to these applications in the
context of double integrals.

Volume Expressed as a Double Integral

Consider a solid S and its projections (“shadows”) R on a plane, as in Fig-
ure(17.1.6l Assume that for each point P in R the line through P perpendicular
to R intersects S in a line segment of length C'(P). Then L

“The double integral of cross-section is the volume.” / \\-\/.

Volume of S = /C’(P) dA.

R

Plane perpendicular 1o L

Figure 17.1.6: ARTIST:
Delete the line L, and the
Calculus December 4, 2010  current caption. Add a
point P in R and draw
the vertical line through P,
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F&

Figure 17.1.7:

Figure 17.1.8:

_R

Mass Expressed as a Double Integral

Consider a plane distribution of mass through a region R, as shown in Fig-
ure [I7.1.7, The density may vary throughout the region. Denote the density
at P by o(P) (in grams per square centimeters). Then

“The double integral of density is the total mass.”

Mass in R = /J(P) dA
R

Average Value as a Double Integral

The average value of f(x) for x is the interval [a, b] was defined in Section

fab f(x) dz

length of interval.

We make a similar definition for a function defined on a two-dimensional region.

DEFINITION (Average value) The average value of f over the

region R is
Jr f(P) dA
Area of R
If f(P) is positive for all P in R, there is a simple geometric interpretation
of the average of f over R. Let S be the solid situated below the graph of f (a
surface) and above the region R. The average value of f over R is the height
of the cylinder whose base is R and whose volume is the same as the volume

of S. (See Figure|17.1.8, The integral fR ) dA is called “an integral over a

plane region” to distinguish it from fa f(x dx, which, for contrast, is called,
“an integral over an interval.”

/mnoteSHERMAN Duplicitous? Or needed7 Shorten to margin note?
Recall that [, f R ) dA is often denoted [/, f R ) dA, with the two integral
signs emphas1zmg that the integral is over a plane set. However, the symbol
dA, which calls to mind areas, is an adequate reminder.

The integral of the function f(P) = 1 over a region is of special interest.
The typical approximating sum ., f(P;)A; then equals " | 1- A, = A +
As+---+ A,, which is the area of the region R that is being partitioned. Since
every approximating sum has this same value, it follows that

lim Z f(P;)A; = Area of R.

December 4, 2010 Calculus
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Integral Interpretation
Jr1 dA Area of R
[r0(P) dA, o(P) = density Mass of R
[rc dA ¢(P) = length of cross section of solid  Volume of R
Table 17.1.1:
Consequently The integral of a constant

function, 1, gives area.

/1 dA = Area of R.
R

This formula will come in handy on several occasions. The 1 is often omitted,
in which case we write | r dA = Area of R. This table summarizes some of
the main applications of the double integral [ r dA:

Properties of Double Integrals

Integrals over plane regions have properties similar to those of integrals over
intervals:

L [pcf(P)dA= ch ) dA for any constant c.
2. [alf( )] dA = [, f(P) dA+ [, g(P) dA.
3. If f(P) < g(P) for all points P in R, then [, f(P) dA < [, g(P) dA.

4. If R is broken into two regions, R, and Ry, overlapping at most on their
boundaries, then

/f(P) dA:/f(P) dA+/f(P dA

For instance, consider 3 when f(P) and g(P) are both positive. Then [, f(P) dA
is the volume under the surface z = f(P) and above R in the zy plane. Simi-
larly [ r9(P) dA is the volume under z = f(P) and above R. Then 3 asserts
that the Volume of a solid is not larger than the volume of a solid that contains

it. (See Figure|17.1.9}) SHERMAN:=This summary

needs to be written. . .

Calculus December 4, 2010 D=
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Summary

A Word about 4-Dimensional Space

We can think of 2-dimensional space as the set of ordered pairs (z,y) of real
numbers. The set of ordered triplets of real numbers (x,y, z) represents 3-
dimensional space. The set of ordered quadruplets of real numbers (z,y, z, t)
represents 4-dimensional space.

It is easy to show that 4-dimensional space is a very strange place.

In 2-dimensional space the set of points of the form (x,0), the z-axis, meets
the set of points of the form (0,y), the y-axis, in a point, namely the origin
(0,0). Now watch what can happen in 4-space. The set of points of the form
(x,y,0,0) forms a plane congruent to our familiar zy-plane. The set of points
of the form (0,0, z, ) forms another such plane. So far, no surprise. But notice
what the intersection of those two planes is. Their intersection is just the point
(0,0,0,0). Can you picture two endless planes meeting in a single point? If so,

tell us how.
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EXERCISES for Section 17.1 Key: R-routine, M—moderate, C—challenging

1.[R] In the estimates for the volume in Example 1| the centers of the squares were
used as the P;’s. Make an estimate for the volume in Example [I] by using the same
partition but taking as P;

(a) the lower left corner of each R;,
(b) the upper right corder of each R;.

(c) What do (a) and (b) tell about the volume of the solid?

2.[R] Estimate the mass in Example [2/ using the partition of R into six squares and
taking as the P;’s

(a) upper left corners,

(b) lower right corners.

3.[R] Let R be a set in the plane whose area is A. Let f be the function such that
f(P) =5 for every point P in R.

(a) What can be said about any approximating sum ;" ; f(P;)A; formed for this
R and this f?

(b) What is the value of [, f(P) dA?

4.[R] Let R be the square with vertices (1, 1), (5,1), (5,5), and (1,5). Let f(P) be
the distance from P to the y-axis.

(a) Estimate [, f(P) dA by partitioning R into four squares and using midpoints
as sampling points.

(b) Show that 16 < [, f(P) dA < 80.

5.[R] Let f and R be as in Example [I| Use the estimate of [, f(P) dA obtained
in the text to estimate the average of f over R.

6.[R] Assume that for all P in R, m < f(P) < M, where m and M are constants.

Calculus December 4, 2010
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Let A be the area of R. By examining approximating sums, show that

mA < /f(P) dA < MA.
R

(a) Let R be the rectangle with vertices (0,0), (2,0), (2,3), and (0,3). Let

f(z,y) = /x +y. Estimate fR vz + 1y dA by participating R into six squares
and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f over R.

(a) Let R be the square with vertices (0,0), (0.8,0), (0.8,0.8), and (0,0.8). Let
f(P) = f(z,y) = Y. Estimate [,e™ dA by partitioning R into 16 squares
and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f(P) over R.
(¢) Show that 0.64 < [, f(P) dA < 0.64¢°%4,

(a) Let R be the triangle with vertices (0,0), (4,0), and (0,4) shown in Fig-
ure [17.1.10, Let f(x,y) = z?y. Use the partition into four triangles and
sampling points shown in the diagram to estimate [, f(P) dA.

(b) What is the maximum value of f(x,y) in R?

(¢) From (b) obtain an upper bound on [, f(P) dA.

Figure 17.1.10:

December 4, 2010 Calculus




§ 17.1 THE DOUBLE INTEGRAL: INTEGRALS OVER PLANE AREAS

1393

10.[R]
(a) Sketch the surface z = \/2? + y2.

(b) Let V be the region in space below the surface in (a) and above the square R
with vertices (0,0), (1,0), (1,1), and (0,1). Let V be the volume of V. Show
that V' < v/2.

(c) Using a partition of R with 16 squares, find an estimate for V' that is too
large.

(d) Using the partition in (c), find an estimate for V that is too small.

11.[R] The amount of rain that falls at point P during one year is f(P) inches.
Let R be some geographic region, and assume areas are measured in square inches.

(a) What is the meaning of [, f(P) dA?

(b) What is the meaning of
Jr f(P) dA?
Area of R

12.[M] A region R in the plane is divided into two regions R; and Ry. The function
f(P) is defined throughout R. Assume that you know the areas of R; and Ry (they
are A; and Ag) and the average of f over R; and the average of f over Ry (they are

fi and f»). Find the average of f over R. (See Figure[17.1.11fa).)

Figure 17.1.11:

13.[M] A point @ on the xy plane is at a distance b from the center of a disk R
—

of radius a(a < b) in the zy plane. For P in R let f(P) = 1/PQ. Find positive

numbers ¢ and d such that:

c</f(P) dA < d.

R

Calculus December 4, 2010
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(The numbers ¢ and d depend on a and b.) See Figure|17.1.11{(b).

14.[M] Figure [17.1.12(a) shows the parts of some level curves of a function z =
f(z,y) and a square R. Estimate [ g f(P) dA, and describe your reasoning.

bl

Figure 17.1.12:

15.[M] Figure [17.1.12(b) shows the parts of some level curves of a function z =
f(z,y) and a unit circle R. Estimate |, g f(P) dA, and describe your reasoning.

16.[C]

(a) Let R be a disk of radius 1. Let f(P), for P in R, be the distance from P to
the center of the disk. By cutting R into narrow circular rings with center at
the center of the disk, evaluate [ f(P) dA.

(b) Find the average of f(P) over R.

Exercises [[7 and [I§ introduce an idea known as Monte Carlo methods for esti-
mating a double integral using randomly chosen points. These methods tend to be
rather inefficient because the error decreases on the order of 1/y/n, where n is the
number of random points. That is a slow rate. These methods are used only when
it’s possible to choose n very large.

17.[C] This exercise involves estimating an integral by choosing points randomly.
A computing machine can be used to generate random numbers and thus random
points in the plane which can be used to estimate definite integrals, as we now
show. Say that a complicated region R lies in the square whose vertices are (0,0),
(2,0), (2,2), and (0,2), and a complicated function f is defined in R. The machine
generated 100 random points (z,y) in the square. Of these, 73 lie in R. The average
value of f for these 73 points is 2.31.

(a) What is a reasonable estimate of the area of R?

(b) What is a reasonable estimate of [, f(P) dA?
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18.[C] Let R be the disk bounded by the unit circle 22 + y? = 1 in the xy plane.
Let f(z,y) = €Y be the temperature at (z,y).

(a) Estimate the average value of f over R by evaluating f(z,y) at twenty random
points in R. (Adjust your program to select each of x and y randomly in the
interval [—1,1]. In this way you construct a random point (z,y) in the square
whose vertices are (1,1), (—=1,1), (—=1,—1), (1,—1). Consider only those points
that lie in R.)

(b) Use (a) to estimate [, f(P) dA.
(¢) Show why 7/e < frf(P) dA < me.

19.[C] Sam is heckling again. “As usual, the authors made this harder than
necessary. They didn’t need to introduce “diameters.” Instead they could have
used good old area. They could have taken the limit as all the areas of the little
pieces approached 0. I'll send them a note.”

Is Sam right?

In making finer and finer partitions as n — oo we saw that each R; is small in the
sense it fits in a disk of radius r,, where 7, — 0 as n — oco. The Exercises to
in this section explore another way to control the size of a region.

20.[C] Consider a region R in the plane. The diameter, d of R, is defined as the
greater distance between two points in R. Find the diameter of

(a) a disk of radius r,
(b) and equilateral triangle of side length s,

(c) a square whose sides have length s.

21.[C]
(a) Show that a region of diameter d can always fit into a disk of diameter 2d.

(b) Can it alway fit into a disk of diameter d?

22.[C] If a region has diameter d,

(a) how small can its area be?

Calculus December 4, 2010
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SHERMAN: Is this in polar (b) show that area is less than or equal to wd?/2.
coordinate area? If so, move

to Section or Chapter

Summary.
23.[C] The unit square can be partitioned with nine congruent squares.

(a) What is the diameter of each of these small squares?

(b) Tt is possible to partition that square into nine regions whose largest diameter
is 5/11. Show that 5/11 is smaller than the diameter in (a).

24.[R] Some practice differentiates.

25.[R] Some practice integrals, e.g. [ ”’2*3'1 dx, etc.

xT
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17.2 Computing [, f(P) dA Using Rectangular
Coordinates

In this section, we will show how to use rectangular coordinates to evaluate
the integral of a function f over a plane region R, | » J(P) dA. This method
requires that both R and f be described in rectangular coordinates. We first
show how to describe plane regions R in rectangular coordinates.

Describing R in Rectangular Coordinates

Some examples illustrate how to describe planar regions by their cross sections
in terms of rectangular coordinates.

EXAMPLE 1 Describe a disk R of radius a in a rectangular coordinates.

[ b The largess v for &
Eivan & 05 al U lop
of the chond

Figure 17.2.1:

SOLUTION Introduce an xy coordinate system with its origin at the center
of the disk, as in Figure [17.2.1(a). A glance at the figure shows that z ranges
from —a to a. All that remains is to tell how y varies for each x in [—a, a).

Figure [17.2.1(b) shows a typical « in [—a, a] and corresponding cross sec-
tion. The circle has the equation 2% +y? = a?. The top half has the description
y = va? — 22 and the bottom half, y = —/2% — y2. So, for each z in [—a,al,
y varies from —va? — 22 to Va®> — 2%, (As a check, test x = 0. Does y
vary from —va? —0? = —a to va? — 02 = a? It does, as an inspection of
Figure [17.2.1(b) shows.)

All told, this is the description of R by vertical cross sections:

—a<z<a, —Vva?—x? <y <va?— 22
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O

EXAMPLE 2 Let R be the region bounded by y = 22, the z-axis, and the
line z = 2. Describe R in terms of cross sections parallel to the y-axis.

SOLUTION A glance at R in Figure [17.2.2a) shows that for points (z,y)
in R, x ranges from 0 to 2. To describe R completely, we shall describe the
behavior of y for any x in the interval [0, 2].

Hold x fixed and consider only the cross section above the point (z,0). It
extends from the x-axis to the curve y = 2?; for any z, the y coordinate varies
from 0 to 22. The compact description of R by vertical cross sections is:

0<z<2,  0<y<a’

Figure 17.2.2:

EXAMPLE 3 Describe the region R of Example[2| by cross sections parallel
to the z-axis, that is, horizontal cross sections.

SOLUTION A glance at R in Figure [17.2.2(b) shows that y varies from 0
to 4. For any y in the interval [0, 4], x varies from a smallest value z1(y) to a
largest value xo(y). Note that z5(y) = 2 for each value of y in [0,4]. To find
71(y), utilize the fact that the point (z1(y),y) is on the curve y = 2, that is,

z1(y) = VY.
The compact description of R in terms of horizontal cross sections is

0<y<4, Vy <z <2
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EXAMPLE 4 Describe the region R whose vertices are (0,0), (0,6), (4,2),
and (0, 2) by vertical cross sections and then by horizontal cross sections. (See

Figure )

SOLUTION Clearly, x varies between 0 and 6. For any x in the interval
[0,4], y ranges from 0 to 2 (independently of z). For z in [4, 6], y ranges from
0 to the value of y on the line through (4,2) and (6,0). This line has the
equation y = 6 — x. The description of R by vertical cross sections therefore
requires two separate statements:

Use of horizontal cross sections provides a simpler description. First, y
goes from 0 to 2. For each y in [0, 2], z goes from 0 to the value of x on the
line y = 6 — x. Solving this equation for x yields x =6 — y.

The compact description in terms of horizontal cross-sections is much
shorter:

o

These examples are typical. First, determine the range of one coordinate,
and then see how the other coordinate varies for any fixed value of the first
coordinate.

Evaluating [, f(P) dA by Iterated Integrals

We will offer an intuitive development of a formula for computing double in-
tegrals over plane regions.

We first develop a way for computing a double integral over a rectangle.
After applying this formula in Example [f], we make the slight modification
needed to evaluate double integrals over more general regions.

Consider a rectangular region R whose description by cross sections is

as shown in Figure(17.2.4(a). If f(P) < 0 for all P in R, then [, f(P) dA is the
volume V' of the solid whose base is R and which has, above P, height f(P).
(See Figure [17.2.4(b).) Let A(x) be the area of the cross section made by a

Calculus December 4, 2010
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An integral over a rectangle
expressed an iterated
integral

Figure 17.2.4:

plane perpendicular to the z-axis and having abscissa z, as in Figure|17.2.4{(c).
As was shown in Section [5.1

V= /aA(x) dx.

But the area A(x) is itself expressible as a definite integral:

d
Alx) = / f(x.y) dy.

Note that z is held fixed throughout the integration to find A(z). This rea-
soning provides an iterated integral whose value is V = | » f(P) dA, namely,

b

/f(P) dA—V—/A(x) dx—/b /df(:c,y) dy | dx.

a a

In short

b

[rpyaa= [ /d f(a,y) dy | do.

R a

Of course, cross sections by planes perpendicular to the y-axis could be used.
Then similar reasoning shows that

[ rpyaa- /d /b f(e,y) do | dy.
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The quantities ff (fcdf(x, ) dy) dx and fcd (fabf(x, ) dx) dy are called
iterated integrals. Usually the brackets are omitted and are written fab fcd f(z,y) dy dz

and fcd fabf(m,y) dz dy. The order of dz and dy
matters; the differential that
EXAMPLE 5 Compute the double integral [, f(P) dA, where R is the is on the left tells which

rectangle shown in Figure [17.2.5(a) and the function f is defined by f(P) = integration is performed

AP first.

Figure 17.2.5:

SOLUTION Introduce zy coordinates in the convenient manner depicted in
Figure [17.2.5(b). Then f has this description in rectangular coordinates:

fla,y) = AP = 22 + 2.

To describe R, observe that x takes all values from 0 to 4 and that for each
x the number y takes all values between 0 and 2. Thus

2

/f(P)dA=/4 /(:E2+y2)dy dx.
R 0

0

We must first compute the inner integral The cross-sectional area
A(z).

2
/ 2* +y?) dy, where z is fixed in [0, 4].
0

To apply the Fundamental Theorem of Calculus, first find a function F'(z,y)
such that
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Keep in mind that z is constant during this first integration.
3
F(z,y) =x2y+y§

is such a function. The appearance of x in this formula should not disturb us,
since x is fixed for the time being. By the Fundamental Theorem of Calculus,

2
3\ [v=2 3 3
2 2 2 Y 2 2 2 0 2, 8
dy = A = 24+ =] - 0+ ) =2 3
/(x+y)y (:Ey+3) (m +3) (x +3) x+3
0
The notation |Zz(2) reminds

y=0
us that y is replaced by 0 The formula 2z* 4 3 is the area A(x) discussed earlier in this section.
and 2. Now compute

4 4

/A(x) dz = /(2x2 + §> dz.

0
By the Fundamental Theorem of Calculus,

/4<2x2+§> dx = (2—963;—1—8—%) 4:@
3 3 3 /1 3
How do these compare with 0
the estimates in Hence the two-dimensional definite integral has the value %. The volume
Section [Z1?  of the region in Problem 1 of Sec. 16.1 is % cubic inches. The mass in
Problem 2 is 1;20 grams. o

If R is not a rectangle, the repeated integral that equals [,, f(P) dA differs
from that for the case where R is a rectangle only in the intervals of integration.
If R has the description

a<z<b y(r) <y < yo(x),

by cross sections parallel to the y-axis, then

b | y2(x)

/f(P) dA:/ flz,y) dy| dz.

R a  |yi(z)

Similarly, if R has the description
= ; c<y<d zi(y<r < a2(y),

by cross sections parallel to the z-axis, then

= - == December 4, 2010 Calculus
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[ 1P aa- / 7y)f(w,y) dz | dy.
c z1(y)

R

The intervals of integration are determined by R; the function f influences

only the integrand. (See Figure [17.2.7])
2

In the next example R is the region bounded by y = x°, x = 2, and
y = 0; the function is f(z,y) = 3zy. The integral [, 3zy dA has at least three
interpretations:

1. If at each point P = (z,y) in R we erect a line segment above P of
length 3zy, then the integral is the volume of the resulting solid. (See

Figure [17.2.8])

2. If the density of matter at (z,y) in R is 3zy, then [, 3zy dA is the total
mass in R.

3. If the temperature at (z,y) in R is 3zy then [, 3zy dA divided by the
area of R is the average temperature in R.

EXAMPLE 6 Evaluate [ r 37y dA over the region R shown in Figure(17.2.9

SOLUTION If cross sections parallel to the y-axis are used, then R is de-
scribed by

Thus
2 x?
/3J;y dA:/ /3xy dy | dex,
R 0 \o

which is easy to compute. First, with z fixed,

2

/Bxy dy = <3x—)
2 ) ly=o
; y
3 6
/— der = — *

Calculus December 4, 2010
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:3x(x) 3 =22
2 2 2

Then,
2
= 16.

Figure 17.2.8:

This ig the same R as in
Examples [2] and |§|

Figure 17.2.9:
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Figure 17.2.10:

Figure [17.2.10(a) shows which integration is performed first.

The region R can also be described in terms of cross sections parallel to
the z-axis:

0<y<4 Jy<az<2

In this case, the double integral is evaluated as:

4 [ 2
/Bxy dA :/ /331;3/ dr | dy,
R 0o\
which, as the reader may verify, equals 16. See Figure [17.2.10(b). o

In Example |§| we could evaluate [, f(P) dA by cross sections in either
direction. In the next example we don’t have that choice.

i 1) Fi n EXAMPLE 7 A triangular lamina is located as in Figure [17.2.11] Its
:-' density at (z,y) is ¢*’. Find its mass, that is [, f(P) dA, where f(z,y) = €”’.

0. s SOLUTION The description of R by vertical cross sections is

0<zr<2, S <y<l1
Figure 17.2.11: 2
Hence
2 [ 1
/f(P) dA:/ /ey dy | dx
R 0 z/2
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Since e¥” does not have an elementary antiderivative, the Fundamental Theo-
rem of Calculus is useless in computing

1

/ eV’ dy.

x/2

So we try horizontal cross sections instead. The description of R is now

This leads to a different iterated integral, namely:

/f(P) dA:/1 7&2 dz | dy.
R 0 0

The first integration, f02 eV dz, is easy, since y is fixed; the integrand is
constant. Thus

2y 2y
2 2 o |T=2 2
eV dx = ¢ lder=¢e"zx =e¥ 2y.
=0
0 0

The second definite integral in the repeated integral is thus fol e¥*2y dy, which
can be evaluated by the Fundamental Theorem of Calculus, since d(e?’)/dy =
6922y:
1
/ey22ydy: e’ 12612—602 =e—1.
/ 0
The total mass is e — 1. o

Notice that computing a definite integral over a plane region R involves,
first, a wise choice of an xy-coordinate system; second, a description of R
and f relative to this coordinate system; and finally, the computation of two
successive definite integrals over intervals. The order of these integrations
should be considered carefully since computation may be much simpler in one
than the other. This order is determined by the description of R by cross
sections.

Summary

We showed that the integral of f(P) over a plane region R can be evaluated
by an iterated integral, where the limits of integration are determined by R

Calculus December 4, 2010
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(not by f). If each line parallel to the y-axis meets R in at most two points
then R has the description

a<x<b, yi(z) <y < yo(z)

/f(P) dA:/b yQ/(x)f(a:,y) dy | d.
R o \yi(a)

If each line parallel to the z-axis meets R in at most two points, then,
similarly, R can be described in the form

and

c<y<d r1(y) < < 29(y)

and
d [ x2f

[rpyaa= | y)f(:r,y) dz | dy.
)

R c z1(y

A Few Words on Notation
We use the notation [ f(P) dA or [, f(P) dA for a (double) integral over
a plane region, [ f(P) dS or [ f(P) dS for an integral over a surface, and
J f(P) aV or [, f(P)dV for a (triple) integral over a region in space. The
symbols dA, dS, and dV indicate the type of set over which the integral is
defined.

Many people traditionally use repeated integral signs to distinguish di-
mensions.  For instance they would write [ f(P) dA as [[ f(P)dA or
[[ f(x,y) dedy. Similarly, they denote a triple integral by [[[ f(P) dxdydz.

We use the single-integral-sign notation for all integrals for three reasons:
1. it is free of any coordinate system

2. it is compact (uses the fewest symbols): [ for “integral”, f(P) or f for
the integrand, and dA, dS, or dV for the set

3. it allows the symbols [[ and [[[ to be reserved for use exclusively for
iterated integrals.

Iterated integrals are a completely different mathematical object. Each integral
in an iterated integral is an integral over an interval. Note that this means we
we write dx (or dy or dz) only when we are talking about an integral over an
interval.
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EXERCISES for Section 17.2 Key: R-routine, M—moderate, C—challenging

Exercises [1] to [12] provide practice in describing plane regions by cross sections in
recangular coordinates. In each exercise, describe the region by (a) vertical cross
sections and (b) horizontal cross sections.

1.[R] The triangle whose vertices are (0,0), (2,1), (0,1).

2.[R] The triangle whose vertices are (0,0), (2,0), (1,1).

3.[R] The parallelogram with vertices (0,0), (1,0), (2,1), (1,1).

4.[R] The parallelogram with vertices (2,1), (5,1), (3,2), (6,2).

5.[R] The disk of radius 5 and center (0,0).

6.[R] The trapezoid with vertices (1,0), (3,2), (3,3),(1,6).

7.[R] The triangle bounded by the lines y = =, x + y = 2, and = + 3y = 8.
8.[R] The region bounded by the ellipse 422 + y? = 4.

9.[R] The triangle bounded by the lines x = 0, y = 0, and 2z + 3y = 6.

10.[R] The region bounded by the curves y =e*, y =1 —z, and =z = 1.
11.[R] The quadrilateral bounded by the linesy =1,y =2,y =z, y = z/3.
12.[R] The quadrilateral bounded by the linesx =1, 2 =2,y =z, y =5 — x.

In Exercises [I3] to [I6] draw the regions and describe them by horizontal cross sec-

tions.

13.R] 0<x<22x<y<3zx

14.R] 1<2<2, 23 <y<22?

15.R] 0<z<7/4,0<y<sinzandn/4<z<7/2,0<y<cosz
16.R] 1<z<e, (x—1)/(e—17<y<Inz

In Exercises [I7) to [22) evaluate the iterated integrals.
17.[R] fo (Jg (x+2y) dy) da

18.R] [7 (2 dy) do
19.[R] 02 ( 1 2y dy) dx
20.[R] [7(J¥ €Y dz) dy
21.[R] jf( ya dm) dy
22.[R] [} ()7 ysin(rz) dy) dz

23.[R] Complete the calculation of the second iterated integral in Example [6]

24.[R]

(a) Sketch the solid region S below the plane z = 14z +y and above the triangle
R in the place with vertices (0,0), (1,0), (0,2).
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(b) Describe R in terms of coordinates.
(c) Set up an iterated integral for the volume of S.

(d) Evaluate the expression in (c¢), and show in the manner of Figure [17.2.10|(a)
and [17.2.10(b) which integration you performed first.

(e) Carry out (c) and (d) in the other order of integration.

25.[R] Let S be the solid region below the paraboloid z = x? + 2y? and above
the rectangle in the zy plane with vertices (0,0), (1,0), (1,2), (0,2). Carry out the
steps of Exercise [24] in this case.

26.[R| Let S be the solid region below the saddle z = zy and above the triangle in
the zy plane with vertices (1, 1), (3,1), and (1,4). Carry out the steps of Exercise
in this case.

27.[R] Let S be the solid region below the saddle z = zy and above the region n
the first quadrant of the 2y plane bounded by the parabolas y = z? and y = 222
and the line y = 2. Carry out the steps of Exercise [24]in this case.

28.[R] Find the mass of a thin lamina occupying the finite region bounded by
y = 222 and y = 5z — 3 and whose density at (z,y) is xy.

29.[R] Find the mass of a thin lamina occupying the triangle whose vertices are
(0,0), (1,0), (1,1) and whose density at (x,y) is 1/(1 + 22).

30.[R] The temperature at (z,y) is T'(x,y) = cos(x + 2y). Find the average tem-
perature in the triangle with vertices (0,0), (1,0), (0, 2).

31.[R] The temperature at (z,y) is T'(z,y) = e*~Y. Find the average temperature
in the region in the first quadrant bounded by the triangle with vertices (0,0), (1, 1),
and (3,1).

In each of Exercises[32] to[35] replace the given iterated integral by an equivalent one
with the order of integration reversed. First sketch the region R of integration.

s2.8] Jf; (Ji oy dy) deo

33.[R] [77 (f<7 a2 dy) da

34R] [y ([2pey dy) dot [7 ([, oy dy) do

35.R] [° s (J 7 @by dy) dot [} (S @by dy) da
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In Exercises [36] to [39] evaluate the iterated integrals. First sketch the region of inte-
gration.

36.[R] fol(
37.[R] [, (
38.R] Jy (f
39.R] J7 (JV 2 dz) dy+ f24(

40.[R] Let f(z,y) = y26y2 and let R be the triangle bounded by y = a, y = /2,
and y = x. Assume that a is positive.

2 nx
fy/2 17 dm) dy

(a) Set up two repeated integrals for [, f(P) dA.

(b) Evaluate the easier one.

41.[R] Let R be the finite region bounded by the curve y = \/z and the line y = x.
Let f(z,y) = (sin(y))/y if y # 0 and f(x,0) = 1. Compute [, f(P) dA.
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Figure 17.3.2:

17.3 Computing [, f(P) dA Using Polar Coor-
dinates

This section shows how to evaluate || r f(P) dA by using polar coordinates.
This method is especially appropriate when the region R has a simple de-
scription in polar coordinates, for instance, if it is a disk or cardioid. As in
Section [17.2] we first examine how to describe cross sections in polar coordi-
nates. Then we describe the iterated integral in polar coordinates that equals

[ f(P) dA.

Describing R in Polar Coordinates

In describing a region R in polar coordinates, we first determine the range of 6
and then see how r varies for any fixed value of 6. (The reverse order is seldom
useful.) Some examples show how to find how r varies for each 6.

EXAMPLE 1 Let R be the disk of radius a and center at the pole of a
polar coordinate system. (See Figure ) Describe R in terms of cross
sections by rays emanating from the pole.

SOLUTION To sweep out R, 6 goes from 0 to 27. Hold € fixed and con-
sider the behavior of r on the ray of angle 6. Clearly, r goes from 0 to a,

independently of 6. (See Figure [17.3.1}) The complete description is
0<6< 27, 0<r<a.

o

EXAMPLE 2 R Let R be the region between the circles r = 2cosf and
r = 4cosf. Describe R in terms of cross sections by rays from the pole. (See
Figure |17.3.2})

SOLUTION To sweep out this region, use the rays from § = —7/2 to 6 =
7/2. for each such 6, r varies from 2 cosf to 4 cosf. The complete description
is

—— <0< -, 2cosf <r < 4cosb.

bo| 3
bo | 3

o

As Examples|[I]and [2|suggest, polar coordinates provide simple descriptions
for regions bounded by circles. The next example shows that polar coordinates
may also provide simple descriptions of regions bounded by straight lines,
especially if some of the lines pass through the origin.

EXAMPLE 3 Let R be the triangular region whose vertices, in rectangular
coordinates, are (0,0), (1,1), and (0,1). Describe R in polar coordinates.
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SOLUTION Inspection of R in Figure shows that 6 varies from 7 /4
to /2. For each 6, r goes from 0 until the point (r, ) is on the line y = 1, that
is, on the line rsin(f) = 1. Thus the upper limit of r for each 6 is 1/sin(0).
The description of R is

1
sin(f)’

v T
—<ph< = N<r<
1="=9 ==

o In general, cross sections by rays lead to descriptions of plane regions of the

form:
a<6<p, r1(0) < r < ry(0).

A Basic Difference Between Rectangular and Polar Co-
ordinates

Before we can set up an iterated integral in polar coordinates for [, f(P) dA
we must contrast certain properties of rectangular and polar coordinates.
Consider all points (x,y) in the plane that satisfy the inequalities

ro<wx<wxo+Ar and  yo <y <yt Ay,
where zg, Az, yo and Ay are fixed numbers with Az and Ay positive. The
set is a rectangle of sides Az and Ay shown in Figure [17.3.4(a). The area of
this rectangle is simply the product of Az and Ay; that is,
Area = AzAy. (17.3.1)

This will be contrasted with the case of polar coordinates.

Figure 17.3.4:
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The exact area is found in
Exercise B2

Notice the factor r in the
integrand.

Consider the set in the plane consisting of the points (r,6) such that
ro <r <rg+ Ar and Oy <6 <60y+ AD,

where rq, Ar, 0y and A0 are fixed numbers, with ry, Ar, 8y and A# all positive,
as shown in Figure[17.3.4]Db).

When Ar and Af are small, the set is approximately a rectangle, one side
of which has length Ar and the other, rgAf. So its area is approximately
roArAf. In this case,

Area ~ 1o ArAf. (17.3.2)

The area is not the product of Ar and A#. (It couldn’t be since Af is in
radians, a dimensionless quantity — “arc length subtended on a circle divided
by length of radius” — so ArA# has the dimension of length, not of area.) The
presence of this extra factor rq will be reflected in the integrand we use when
integrating in polar coordinates.

It is necessary to replace dA by r dr df, not simply by dr df.

How to Evaluate [, f(P) dA by an Iterated Integral in
Polar Coordinates
The method for computing [, f(P) dA with polar coordinates involves an iter-

ated integral where the dA is replaced by r dr df. A more detailed explanation
of why the » must be added is given at the end of this section.

Evaluating [, f(P) dA in Polar Coordinates

1. Express f(P) in terms of r and 0: f(r,0).

2. Describe the region R in polar coordinates:

a<6<p, r1(0) < r < ry(0).

3. Evaluate the iterated integral:

B r2(0)

/ / F(r,0)r dr db.

o rp (9)
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EXAMPLE 4 Let R be the semicircle of radius a shown in Figure [17.3.5
Let f(P) be the distance from a point P to the z-axis. Evaluate [, f(P) dA
by an iterated integral in polar coordinates.

SOLUTION In polar coordinates, R has the description

0<o0<m, 0<r<a.

The distance from P to the z-axis is, in rectangular coordinates, y. Since

y =rsin(d), f(P) = rsin(d). Thus, Notice the extra r in the
integrand.
/f(P) dA :/ /(r sin(0))r dr | db.
R 0o \o

From here on the
The calculation of the iterated integral is like that for an iterated integral calculation are like those in

in rectangular coordinates. First, evaluate the inside integral: the preceding section.
r ; 3N [® 3
r a” sin(6
/7'2 sin(f) dr = sin(0) /7‘2 dr =sin(f) | — || = (6)
3 /1, 3
0 0

The outer integral is therefore

A 3 o 3 I 3
/“ Snb 1o = a—/sme o = 2 (—sin0)
3 3
0

™

3 0

= %[(—COS?T) — (—cos0)] = %(1 +1)= 2%-

2a3
dA = —.
/y 3

R

Thus

O

Example [5| refers to a ball of radius a. Generally, we will distinguish be-
tween a ball, which is a solid region, and a sphere, which is only the surface
of a ball.

EXAMPLE 5 A ball of radius a has its center at the pole of a polar co-
ordinate system. Find the volume of the part of the ball that lies above the
plane region R bounded by the curve r = acos(f). (See Figure[17.3.6])
SOLUTION 1t is necessary to describe R and f in polar coordinates, where Pe
f(P) is the length of a cross section of the solid made by a vertical line through
P. R is described as follows: 7 goes 0 to acos(f) for each 6 in [—7/2,7/2],
that is,

<0<

,  0<r<acosé. -

N[N
NN
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To express f(P) in polar coordinates, consider Figure|17.3.7, which shows the
" top half of a ball of radius a. By the Pythagorean Theorem,
B o o Fir, @] 7/124_(][‘(7”?9))2:(12'
E .::', -
' B Thus
f(r,0) = vVa%—r2.
Consequently,
Figure 17.3.7: 7/2 / acos(6)
Volume = /f(P) dA = / / Vz2—=rirdr ] do.
R —n/2 0

Remember to double.

We remembered.

Exploiting symmetry, compute half the volume, keeping 6 in [0, 7/2], and then
double the result:

acos(0)
/ vVaz —r2rdr = M

0

acos(0) B ((a2 — a2 0082(9))3/2

= —(1—sin’*(9)).

(The trigonometric formula used above, sin(d) = /1 — cos?(#), is true when
0 <6 < m/2but not when —7/2 <6 <0.)
Then comes the second integration:

w/2

w/2 5
[Sa-s@)a = 5 1= o) si) db

3

3 0
= %3 (e 4 cos(8) — COSg(”)

2 (D)

The total volume is twice is large:

1 —sin(#) — cos®(6) sin(theta) df

I
S
\%o

w/2

0

18
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EXAMPLE 6 A circular disk of radius a is formed of a material which had
a density at each point equal to the distance from the point to the center.

(a) Set up an iterated integral in rectangular coordinates for the total mass
of the disk.

(b) Set up an iterated integral in polar coordinates for the total mass of the
disk.

(c) Compute the easier one.

SOLUTION The disk is shown in Figure [17.3.§ /x-”' “\
(a) (Rectangular coordinates) The density o(P) at the point (P) = (x,y) is ‘n'f i | (a 3
/2% + y2. The disk has the description \ ~ Pole xr

—a<zx<a, —Va? —x? <y<+va?-— a2 \\____,«/

Thus

Figure 17.3.8:
a \% x

222
/ Vi +ytdy | de.
a2

R —a \_/a2—z2

(b) (Polar coordinates) The density o(P) at P = (r,0) is r. The disk has
the description
0 <6< 2m, 0<r<a.

Thus

Mass = /O‘(P) dA

R 0 0 0 0

|
—
—
<
5
s
3
I~y
>
|
—
—
<
[\
Y
3
I~y
o

(¢) Even the first integration in the iterated integral in (a) would be tedious.
However, the iterated integral in (b) is a delight: The first integration

gives
a

3
/T‘QdTZT—
3

0

a3
3

a
0
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The second integration gives

The total mass is 2wa®/3.

A Fuller Explanation of the Extra r in the Integrand

Consider [ » f(P) dA as the region in the plane bound by the circle 7 = a and
r = b and the range § = o and § = 3. Break it into n? little pieces with
the aid of the partitions ro = a,ry,r;,r, = b and 6y = «,0,,0;,0, = 3. For
convenience, assume that all 7, —7;_; are equal to Ar and all §; —6;_, are equal

to Af. (See Figure [17.3.9(a).) The typical patch, shown in Figure [17.3.9(b),

/ |
Fd \

Y
/ / |
Villin il R e
SAK I".I
Fi r, 4

i /‘/ 1
s X -~ '||I
‘_/ _’./
by F=
- =

W ™
\ o
. B o
\
N
"
\
\
\
\

2

Figure 17.3.9: (b) By is (%%)

has area, exactly

, T+ Ti-
Aij = (g2—31)m —1j-1) (0 = 0i1),
as shown in Exercise [6l
Then the sum of the n® terms of the form f(P;)A;; is an estimate of
[ f(P) dA.

Let us look closely at the summand for the n patches between the rays

-"‘- . 0 =0, 1 and 0 = 0;, as shown in Figure [17.3.10]
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The sum is

n

> f <7°j i 0+ eil) . +2rj+1ATA0, (17.3.3)
=1

2 ’ 2

In (17.3.3)), 0;, 0;_1, and A0 are constants. If we define g(r, ) to be f(r,0)r,

then the sum is
(So(mi t)a) o e

i—1

The sum in brackets in ((17.3.4) is an estimate of

b
/g (r, %) dr.

a

Thus the sum, corresponding to the region between the rays § = 6; and 0 =

(91'717 18
Z/ ( b +87’ 1) dr AG. (17.3.5)
Now let h(0) = f;g(r, 0) dr. Then (17.3.5)) equals

i h (—8" +29“> A

i=1
This is an estimate of fab f(0) df. Hence the sum of all n? little terms of the
form f(P;;)A;; is an approximation of

b

B B B /b
/h(e) o = / /g(r,&) dr dQ:/ /f(r,&)r dr | db.

« « a o

The extra factor r appears as we obtained the first integral, ff flr,0)r dr.
The sum of the n? terms A;;, which we knew approximated the double integral
[ f(P) dA, we now see approximate also the iterated integral (17.3.6). Taking
limits as n — oo show that the iterated integral equals the double integral.

Summary

We saw how to calculate an integral [ » f(P) dA by introducing polar coordi-
nates. In this case, the plane region R can be described, in polar coordinates,
as

a<h<pg, r1(0) < r <ry(0)

Calculus December 4, 2010



1418 CHAPTER 17 PLANE AND SOLID INTEGRALS

then
B r2(0

/f ) dA = //fr@rdrd@

a r1(0)

The extra r in the integrand is due to the fact that a small region corresponding
to changes dr and df has area area approximately r dr df (not dr df). Polar
coordinates are convenient when either the function f or the region R has a
simple description in terms of r and 6.
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EXERCISES for Section 17.3 Key: R-routine, M—moderate, C—challenging

In Exercises [1] to [6] draw and describe the given regions in the form a < 6 < £,
r1(0) <7 < ry(6).

[R] The region inside the curve r = 3 + cos(6).

[R]

.[R] The triangle whose vertices have the rectangular coordinates (0, 0),(1,1), and
1,V3).

4.[R] The circle bounded by the curve r = 3sin(6).

1
2 The region between the curve r = 3+ cos(f) and the curve r = 1+ sin(0).
3
(

5.[R] The region shown in Figure|17.3.11{

Figure 17.3.11:

6.[R] The region in the loop of the three-leaved rose, r = sin(36), that lies in the
first quadrant.

7.[R]
(a) Draw the region R bounded by the lines y =1,y =2,y =2, y = 2//3.
(

b) Describe R in terms of horizontal cross sections,

(c
(d

Describe R in terms of vertical cross sections,

)
)
)
) Describe R in terms of cross sections by polar rays.

8.[R]

(a) Draw the region R whose description is given by
—2<y<2,  —ViA-yr<z<VA-yR

(b) Describe R by vertical cross sections.

Calculus December 4, 2010
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(c) Describe R by cross sections obtained using polar rays.

9.[R] Describe in polar coordinates the square whose vertices have rectangular co-
ordinates (0,0), (1,0), (1,1), (0,1).

0.[R] Describe the trapezoid whose vertices have rectangular coordinates (0, 1),
( »1): (2,2), (0,2).
(a) in polar coordinates,
(b) by horizontal cross sections,
)

(¢) by vertical cross sections.

In Exercises [5| to draw the regions and evaluate | R r2 dA for the given regions

R.

11.[R] —7/2<0<7/2,0<7r < cos(f)
12.[R] 0<60<7/2,0<r <sin?(0)
13.[R] 0<0<2m, 0<r<1+4cos(d)
14.[R] 0<0<03,0<r <sin2(f)

In Exercises [15| to [L8 draw R and evaluate [ R y? dA for the given regions R.
15.[R] The circle of radius a, center at the pole.

16.[R] The circle of radius a with center at (a,0) in polar coordinates.
17.[R] The region within the cardioid r = 1 + sin 6.
18.[R] The region within one leaf of the four-leaved rose r = sin 26.

In Exercises 19| and use iterated integrals in polar coordinates to find the given
point.

19.[R] The center of mass of the region within the cardioid r = 1 + cos(6).

20.[R] The center of mass of the region within the leaf » = cos 3() that lies along
the polar axis.

The average of a function f(P) over a region R in the plane is defined as [, f(P) dA
divided by the area of R. In each of Exercises [2I] to[24] find the average of the given
function over the given region.

21.[R] f(P) is the distance from P to the pole; R is one leaf of the three-leaved
rose, r = sin(30).

22.[R] f(P) is the distance from P to the x-axis; R is the region between the rays
0 =m/6,0 =m/4, and the circles r = 2, r = 3.
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23.[R] f(P) is the distance from P to a fixed point on the border of a disk R of
radius a. (HINT: Choose the pole wisely.)

24.[R] f(P) is the distance from P to the z-axis; R is the region within the cardioid
r =1+ cos(h).

In Exercises [25] to [28] evaluate the given iterated integrals using polar coordinates.
Pay attention to the elements of each exercise that makes it appropriate for evalu-
ation in polar coordinates.

25.R] Jy (i Vo247 dy) do
26.[R| fol ( 0\/@ 3 dy) dx
27.[R] fol <fm xy dy) dx

28.R] [} ([05(% + 92 dy) da

29.[R] Evaluate the integrals over the given regions.

a) [ cos(x? +y?) dA; R is the portion in the first quadrant of the disk of radius
a centered at the origin.

b) [r V2% +y? dA; R is the triangle bounded by the line y = x, the line z = 2,
and the z-axis.

30.[R] Find the volume of the region above the paraboloid z = 22 + 92 and below
the plane z =z + y.

31.[R] The area of a region R is equal to [ 1 dA. Use this to find the area of a
disk of radius a. (Use an iterated integral in polar coordinates.)
32.[R] Find the area of the shaded region in Figure [17.3.4(b) as follows:

(a) Find the area of the ring between two circles, one of radius rg, the other of
radius rg + Ar.

(b) What fraction of the area in (a) is included between two rays whose angles
differ by A§?

(c) Show that the area of the shaded region in Figure|17.3.4(b) is precisely

<r0 + A) ArA6.
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33.[R] Evaluate the repeated integral

w/2 [ acos(H)
/ / vVaZ—r2rdr| do
—7/2 0

directly. The result should still be a®(37 — 4)/9. (In Example [5| we computed half
the volume and doubled the result.)

Caution: Use trigonometric formulas with care.
Prior to beginning Exercise consider the following two quotes:

Once when lecturing to a class he [the physicist Lord Kelvin] used the
word “mathematician” and then interrupting himself asked the class:
“Do you know what a mathematician is?” Stepping to his blackboard
he wrote upon it: ffooo e~ dy = /7. Then putting his finger on what
he had written, he turned to his class and said, “A mathematician is
one to whom this is as obvious as that twice two makes four is to you.”

S. P. Thompson, in Life of Lord Kelvin (Macmillan, London, 1910).

Many things are not accessible to intuition at all, the value of fooo e da
for instance.

J. E. Littlewood, “Newton and the Attraction of the Sphere”, Mathematical Gazette,
vol. 63, 1948.

34.[M] This exercise shows that [;* e dr = @ Let Ri, Ro, and R3 be the
three regions indicated in Figure and f(P) = e~ where 7 is the distance

from P to the origin. Hence, f(r,0) = e in polar coordinates and in rectangular
coordinates f(x,y) = e~**=¥*. NOTE: Observe that Ry is inside Ry and Ry is inside
Rs.

(a) Show that le f(P)dA=17% (1 _ e—a2) and that ng f(P)dA = 7% (1 _ e_2a2),

(b) By considering |’ r, /(P) dA and the results in (a), show that

00 2

% (1 — e_“2> < /e_’”2 dr | < % (1 — 6_2“2) .

0

5 -

B EH B

Quadrant of a circle Square Quadrant of a circle

() (b) ()

(¢) Show that [} e~ dy = VLT
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Figure 17.3.12:
35.[R] Figure|17.3.13|shows the “bell curve” or “normal curve” often used to assign
grades in large classes. Using the fact established in Exercise (34| that fooo e dy =

\/7/2, show that the area under the curve in Figure[17.3.13|is 1.

Figure 17.3.13:

36.[R] (The spread of epidemics.) In the theory of a spreading epidemic it is
assumed that the probability that a contagious individual infects an individual D
miles away depends only on D. Consider a population that is uniformly distributed
in a circular city whose radius is 1 mile. Assume that the probability we mentioned
is proportional to 2 — D. For a fixed point Q let f(P) = 2 — PQ. Let R be the
region occupied by the city.

(a) Why is the exposure of a person residing at @ proportional to [ rf(P) dA,
assuming that contagious people are uniformly distributed throughout the
city?

(b) Compute this definite integral when @ is the center of town and when @ is
on the edge of town.

(¢) In view of (b), which is the safer place?

Transportation problems lead to integrals over plane sets, as Exercises to [0]
illustrate.

37.[R] Show that the average travel distance from the center of a disk of area A
to points in the disk is precisely 2v/A/(3\/)m = 0.376v/A.

38.[R] Show that the average travel distance from the center of a regular hexagon
of area A to points in the hexagon is

V2A /1 1n3
T <3 + 4> ~ 0.377TVA.
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39.[R] Show that the average travel distance from the center of a square of area A
to points in the square is (v/2 + In(tan(37/8)))+/A/6 ~ 0.383v/A.

40.[R] Show that the average travel distance from the centroid of an equilateral
triangle of area A to points in the triangle is

;ﬁ <2f +1n(tan(i2))> ~ 0.404V'A

NOTE: The centroid of a triangle is its center of mass.

In Exercises |37| to |40 the distance is the ordinary straight-line distance. In cities the
usual street pattern suggests that the “metropolitan” distance between the points
(z1,y1) and (x2,y2) should be measured by |z — za| + |y1 — Y2l

41.]M] Show that if in Exercise |37 metropolitan distance is used, then the average
is 8v/A/(373/2) ~ 0.470V/A.

42.]M] Show that if in Exercise 40| metropolitan distance is used, then the average
is v/A/2. In most cities the metropolitan average tends to be about 25 percent
larger than the direct-distance average.

43.[C]

Sam: The formula in this section for integrating in polar coordinates is wrong. I'll
get the right formula. We don’t need the factor r.

Jane: But the book’s formula gives the correct answers.

Sam: I don’t care. Let f(r,0) be positive and I'll show how to integrate over the
set R bounded by »r = band r = a, b > a, and § = § and § = o. We have
I r f(P) dA is the volume under the graph of f and above R. Right?

Jane: Right.

Sam: The area of the cross-section corresponds to a fixed angle 4 is ff f(r,0) dr.
Right?

Jane: Right.

Sam: So I, just integrate cross-sectional areas as 6 goes from « to [, and the
volume is therefore [ f ( f; f(r,0) dr) df. Perfectly straightforward. I hate to
overthrow a formula that’s been around for three centuries.

What does Jane say next?

44.[C]
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Jane: I won’t use a partition. Instead, look at the area under the graph of f and

Sam:

Jane

Sam:

Jane

above the circle of radius r. I'll draw this fence for you (see Figure|17.3.14(a).

Figure 17.3.14:

To estimate its area I'll cut the arc AB into n sections of equal length by
angle by =a....

Then break AB into n short area, each of length rAf. (Remember, Sam, how
radians are defined.) The typical small approach to the shaded area looks like

Figure [17.3.14(b). That’s just an estimate of fff(r,@)r df. Here r is fixed.

Then I integrate the cross-sectional area as r goes from a to b. The total
volume is then fab ff f(r,0)r dd dr. But [ f(r,0) dA is the volume.

All right.
: At least it gives the r factor.
But you had to assume f is positive.

: Well, if it isn’t just add a big positive number k& to f, then ¢ = f 4+ k is
positive. From then on its easy. If it’s so far ¢ it’s so far f.

Check that Jane is right about g and f.
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17.4 The Triple Integral: Integrals Over Solid
Regions

In this section we define integrals over solid regions in space and show how to
compute them by iterated integrals using rectangular coordinates. Throughout
we assume the regions are bounded by smooth surfaces and the functions are
continuous.

The Triple Integral

Let R be a region in space bounded by some surface. For instance, R could
be a ball, a cube, or a tetrahedron. Let f be a function refined at least on R.
For each positive integer n break R into n small region Ry, Rs,...R,.

Choose a point P, in Ry, P, in Ry, ..., P, in R,. Let the volume of R;
be V;. Then
lim »  f(P)V;
i=1

exists. It is denoted
/ £(P) v (17.4.1)
R

and is called the integral of f over R or the triple integral of f over R.

NOTE:

1. As in the preceding section, we define small. For each n let r, be the
smallest number such that each R; in the partition fits inside a ball of
radius r,,. We assume that r,, — 0 as n — oo.

2. The notation [ [ [, f(P) dV is commonly used, but, we stick to using
one integral sign, [ r f(P) dV to emphasize that the triple integral is not
a repeated integral.

3. The notation [ [ [ f(z,y,z) dV is also used, but, again, we prefer not
to refer to a particular coordinate system.

EXAMPLE 1 If f(P) =1 for each point P in a solid region R, compute
[ f(P) dV.

SOLUTION  Each approximating sum »_._, f(P;)V; has the value

Zl'V;'=V1+V2+---+V7L:VolumeofR.
i=1
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Hence
/f(P) dV = Volume of R,
R

a fact that will be useful for computing volumes.

The average value of a function f defined on a region R in space is defined

as
[o1adV

Volume of R’

This is the analog of the definition of the average of a function over an interval
(Section or the average of a function over a plane region (Section .
If f describes the density of matter in R, then the average value of f is the
density of a homogeneous solid occupying R and having the same total mass
as the given solid.

Think about it. If the number

fR f(P) dV
Volume of R

is multiplied by the volume of R, the result is
[ Py av
R

which is the total mass.

“Density” at a point is defined for lamina; with balls replacing disks. For
a positive number r, let m(r) be the mass in a ball with center P and radius
r. Let V(r) be the volume of the ball of radius r. Then the density at P is
defined as

lim m(r)

V()

An Interpretation of [, f(P) dV.

Triple integrals appear in the study of gravitation, rotating bodies, centers of
gravity, and electro-magnetic theory. The simplest way to think of them is to
interpret f(P) as the density at P of some disturbance of matter and, then,
[ f(P) dV is the total mass in a region R.

We can’t picture || r f(P) dV as measuring the volume of something. We
could do this for [, f(P) dA, because we could use two dimensions for de-
scribing the region of integration and then the third dimension for the values
of the function, obtaining a surface in three-dimensional space. However, with

Calculus December 4, 2010

Average of a function

SHERMAN: | have a feeling
I've read this before, but
didn’t find it in a quick
search. Is this a repeat? If,
should one be removed?



1428

CHAPTER 17 PLANE AND SOLID INTEGRALS

This is the order z, y, then
z. There are six possible
orders, as you may check.

(X, ¥ (¥
J Solid region
R

~ | | y
~
Projection

of Ron
xy plane

Figure 17.4.1:

f » J(P) dV, we use up three dimensions just describing the region of integra-
tion. We need four-dimensional space to show the values of the function. But
it’s hard to visualize such a space, no matter how hard we squint.

A Word about Four-Dimensional Space
We can think of 2-dimensional space as the set of ordered pairs (z,y) of real
numbers. The set of ordered triplets of real numbers (x,y, z) represents 3-
dimensional space. The set of ordered quadruplets of real numbers (z,y, z,t)
represents 4-dimensional space.
It is easy to show 4-D space is a very strange place.
In 2-dimensional space the set of points of the form (z,0), the y-axis, meets
the set of points of the form (0,y), the y-axis, in a point, namely the origin
(0,0). Now watch what can happen in 4-space. The set of points of the form
(,9,0,0) forms a plane congruent to our familiar zy-plane. The set of points
of the form (0,0, z,t) forms another such plane. So far, no surprise. But notice
what the intersection of those two planes is. Their intersection is just the point
(0,0,0,0). Can you picture two endless planes meeting in a single point? If
so, please tell us how.

Describing a Solid Region

In order to evaluate triple integrals, it is necessary to describe solid regions in
terms of coordinates.
A description of a typical solid region in rectangular coordinates has the
form
a<z<b, yi(z) <y <ys(z), z1(z,y) < 2 < z(x,y).
The inequalities on x and y describe the “shadow” or projection of the region
on the xy plane. The inequalities for z then tell how z varies on a line parallel

to the z-axis and passing through the point (x,y) in the projection. (See

Figure [17.4.1})

EXAMPLE 2 Describe in terms of z, y, and z the rectangular box shown

in Figure|17.4.2(a).

SOLUTION The shadow of the box on the xy plane has a description 1 <
r <2, 0 <y < 3. For each point in this shadow, z varies from 0 to 2, as
shown in Figure [17.4.2(b). So the description of the box is

1<x <2,

0<y <3, 0<2<2,
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Figure 17.4.2:

which is read from left to right as “x goes from 1 to 2; for each such z, the
variable y goes from 0 to 3; for each such z and y, the variable z goes from 0
to 2.7

Of course, we could have changed the order of x and y in the description
of the shadow or projected the box on one of the other two coordinate planes.
(All told, there are six possible descriptions.) o

EXAMPLE 3 Describe by cross sections the tetrahedron bounded by the
planes t =0, y =0, 2 =0, and x + y + z = 1, as shown in Figure [17.4.3(a).

|[U 0,1)

:U G bhtdmll .
tetrahedron

on xz plane }

/ \ Al this point (x, , 2)
onsurfacex + y +z=1
) A y= - g
(1.0, l] 0 1.0) (1.0, H 22
)

(a) (b)

Figure 17.4.3:

SOLUTION For the sake of variety, project the tetrahedron onto the xz
plane. The shadow is shown in Figure [17.4.3[(b). A description of the shadow
is

0<z<1, 0<2<1 —x,

since the slanted edge has the equation  + z = 1. For each point (z,z) in
this shadow, y ranges from 0 up to the value of y that satisfies the equation
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r+y+z=1,thatis, uptoy = 1 —z—z. (See Figure|17.4.3|(c).) A description
of the tetrahedron is

0<x<1, 0<2<1—r, 0<y<l—z—=z

That is, x goes from 0 to 1; for each x, z goes from 0 to 1 — x; for each x and
z,y goes from 0 to 1 —x — z. o

EXAMPLE 4 Describe in rectangular coordinates the ball of radius 4
whose center is at the origin.

SOLUTION The shadow of the ball on the xy plane is the disk of radius 4
and center (0,0). Its description is

—4 <x <4, —V16 — 22 <y < V16 — 22

Hold (z,y) fixed in the zy plane and consider the way z varies on the line
parallel to the z-axis that passes through the point (x,y,0). Since the sphere
that bounds the ball has the equation

2+ y* + 2* = 16,
for each appropriate (x,y), z varies from

(x.¥)in _\/16_I'2_y2 to \/16—I2—y2.

vy plane
This describes the line segment shown in Figure [17.4.4]
The ball, therefore, has a description

-

(0,4, 0)
|

@oo | 4<z<4,  —VI6-22<y<VI6—22, 16— 22—y2 <2< \/16— a2 -

Figure 17.4.4: o

Iterated Integrals for [, f(P) dV

The iterated integral in rectangular coordinates for [, f(P) dV is similar to
that for evaluating integrals over plane sets. It involves three integrations
instead of two. The limits of integration are determined by the description of
R in rectangular coordinates. If R has the description

(lSJZSb, yl(x) S?JSQQ(I)y Zl(xay) §Z§Z2(xay)7

then

y2(z) [ z2(zy

/f(P) dV:/b/ /)f(a:,y,z) dz | dy dx.
R ay

1) \e1(z,y)
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An example illustrates how this formula is applied. In Exercise|[31{an argument
for its plausibility is presented.

EXAMPLE 5 Compute | r 2 AV, where R is the tetrahedron in Example

SOLUTION A description of the tetrahedron is
0<y<, 0<z<1—y, 0<z2<81—-2—y.

Hence
1-y /1—-2—y

1
/de—/ / /zdz de | dy.
R 0 \o 0

Compute the inner integral first, treating x and y as constants. By the
Fundamental Theorem,

l-z—y

2
/ zdz:z—
2

0

T (—a—yp
_dosoaf

z=0

The next integration, where y is fixed, is

7%1—x—yfdm__ e Y L o Ot R

6+ 6 6

2 N 6

=0
0

The third integration is

1

(1—y)? (1—y)*
e

! 0 14 1

o1 T T o

0
0

This completes the calculation that

1
AV = —.
/z \%4 51

R

Summary

We defined |’ r f(P) dV, where R is aregion in space. The volume of a solid re-
gion Ris [, dV and, if f(P) is the density of matter near P, then [, f(P) dV
is the total mass. We also showed how to evaluate these integrals by introduc-
ing rectangular coordinates.
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There are six possible
orders. The general approach is to, first, describe R, for instance, as

a<ux<b, v (2) <y < yo(a), z1(2,y) < 2 < zo(w,y).

Then

y2(z) [ z2(z.y)

/f(P)dVZ/b / /f(x,y,z)dx dy | dex.

1(x) z1(z,y)
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EXERCISES for Section 17.4 Key: R-routine, M—moderate, C—challenging

Exercises 1| to {4 concern the definition of [, f(P) dV.
1.[R] A cube of side 4 centimeters is made of a material of varying density.
Near one corner A it is very light; at the opposite corner it is very dense. In

fact, the density f(P) (in grams per cubic centimeter) at any point P in the cube
is the square of the distance from A to P (in centimeters). See Figure [17.4.5

Figure 17.4.5:

(a) Find upper and lower estimates for the mass of the cube by partitioning it
into eight cubes.

(b) Using the same partition as in (a), estimate the mass of the cube, but select
as the P;’s the centers of the four rectangular boxes.

(c) Estimate the mass of the cube described in the opening problem by cutting
it into eight congruent cubes and using their centers as the P;’s.

(d) What does (c) say about the average density in the cube?

2.[R] How would you define the average distance from points of a certain set in
space to a fixed point Py?

3.[R] If Risaball of radius r and f(P) = 5 for each point in R, compute [, f(P) dV
by examining approximating sums. Recall that the ball has volume 4/37r3.

4.[R] If R is a three-dimensional set and f(P) is never more than 8 for all P in R.

(a) what can we say about the maximum possible value of [, f(P) dV?

(b) what can we say about the average of f over R?
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In Exercises [B to [[Q] draw the solids described.

5[R] 1<2<3,0<y<20<z<x

6.R] 0<z<1,0<y<1,1<z<l+z+y

7R] 0<y<1,0<z<y’y<z<2y

8R] 0<y<1l,¢y?<z<y,0<z<z+y

9.R] -1<2<1, —V1-22<z<V1-2% -J<y<vi—a2-2:2

10.[R] 0<2<3,0<y<v9—220<x<9—y?—22

In Exercises [11] to [14] evaluate the iterated integrals.

11.[R] fl f2 (fy = dz) dy) dr.

12.[R] fo (fx3 < vt dz) dy) dx.

13.[R] f2 (fmx (fo (x +2) dz) dy) dx.

14.[R] fol (fox (f03($2 +9°) dz) dy) da.

15.[R] Describe the solid cylinder of radius a and height A shown in Figure(17.4.6{a)
in rectangular coordinates

(a) in the order first x, then y, then z,

(b) in the order first z, then z, then y.

T
x@
\

T

\
3
< \

Figure 17.4.6:

16.[R] Describe the prism shown in Figure|17.4.6(b) in rectangular coordinates, in
two ways:

(a) First project it onto the xy plane.

(b) First project it onto the xz plane.

17.[R] Describe the tetrahedron shown in Figure [17.4.7|(a) in rectangular coordi-
nates in two ways:
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(a) First project it onto the xy plane.

(b) First project it onto the zz plane.

A

/‘*‘!\ 4

x

(a)

Figure 17.4.7:

18.[R] Describe the tetrahedron whose vertices are given in Figure [17.4.7(b) in

rectangular coordinates as follows:
(a) Draw its shadow on the xy plane.
(b) Obtain equations of its top and bottom planes.

(c) Give a parametric description of the tetrahedron.

19.[R] Let R be the tetrahedron whose vertices are (0,0,0), (a,0,0), (0,b,0), and

(0,0, c), where a, b, and c are positive.
(a) Sketch the tetrahedron.
(b) Find the equation of its top surface.

(c) Compute [pz dV.

20.[R] Compute [’ % dV, where R is the region above the rectangle whose vertices

are (0,0,0), (2,0,0), (2,3,0), and (0,3,0) and below the plane z = = + 2y.

21.[R] Find the mass of the cube in Exercise |1} (See Figure|17.4.1])

22.[R] Find the average value of the square of the distance from a corner of a cube

of side a to points in the cube.

23.[R] Find the average of the square of the distance from a point P in a cube of
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side a to the center of the cube.

24.[R] A solid consists of all points below the surface z = zy that are above the
triangle whose vertices are (0,0,0), (1,0,0), and (0,2,0). If the density at (z,y, 2)
is  + y, find the total mass.

25.[R] Compute [, zy dV for the tetrahedron of Example

26.[R]

(a) Describe in rectangular coordinates the right circular cone of radius r and
height A if its axis is on the positive z-axis and its vertex is at the origin.
Draw the cross sections for fixed x and fixed = and y.

(b) Find the z coordinate of its centroid.

27.[R] The temperature at the point (z,y, z) is e *~¥~*. Find the average temper-
ature in the tetrahedron whose vertices are (0, 0,0), (1,1,0), (0,0, 2), and (1,0, 0).

28.[R] The temperature at the point (x,y,2), y > 0, is e7*/,/y. Find the average
temperature in the region bounded by the cylinder y = 2, the plane y = 1, and the
plane z = 2y.

29.[R] Without using a repeated integral, evaluate f pT dV, where R is a spherical
ball whose center is (0,0,0) and whose radius is a.

30.[R] The work done in lifting a weight of w pounds a vertical distance of = feet is
wz foot-pounds. Imagine that through geological activity a mountain is formed con-
sisting of material originally at sea level. Let the density of the material near point
P in the mountain be g(P) pounds per cubic foot and the height of P be h(P) feet.
What definite integral represents the total work expended in forming the mountain?
This type of problem is important in the geological theory of mountain formation.

31.[R] In Section an intuitive argument was presented for the equality

[ 1Py aa— /b ij)f(w) dy | do.
R a  \yi(x)

Here is an intuitive argument for the equality

zo [ y2(z) [ z2(z,Y)

/f(P)dV:/ / /f(x,y,z)dz dy | dz.
R

1 1(z) 1(z,y)
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To start, interpret f(P) as “density.”

(a) Let R(x) be the plane cross section consisting of all points in R with abscissa
x. Show that the average density in R(x) is

fy2 (‘/E)yl (.’L’) [(fziQ((x‘f’yy)) f(xv y? Z) dZ) dy
Area of R(z)

(b) Show that the mass of R between the plane sections R(z) and R(z + Az) is

approximately
y2(z) [ z2(zy)

flx,y,2) dz | dy Az.

y1(z) \e1(z,y)

(c) From (b) obtain a repeated integral in rectangular coordinates for [, f(P) dV.
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Figure 17.5.1:

ok

17.5 Cylindrical and Spherical Coordinates

Rectangular coordinates provide convenient descriptions of solids bounded by
planes. In this section we describe two other coordinate systems, cylindrical —
ideal for describing circular cylinders — and spherical — ideal for describing
spheres, balls, and cones. Both will be used in the next section to evaluate
multiple integrals by iterated integrals.

CYLINDRICAL COORDINATES

Cylindrical coordinates combine polar coordinates in the plane with the z
of rectangular coordinates in space. Each point P in space receives the name
(r,0,z) as in Figure We are free to choose the direction of the polar
axis; usually it will coincide with the z-axis of an (z,y, z) system. Note that
(r,0, 2) is directly above (or below) P* = (r,6) in the 6 plane. Since the set
of all points P = (r,0, z) for which r is some constant is a circular cylinder,
this coordinate system is convenient for describing such cylinders. Just as with
polar coordinates, cylindrical coordinates of a point are not unique.

Figure 17.5.2:

Figure [17.5.2| shows the surfaces § = k, r = k, and z = k, where k is a

positive number.

EXAMPLE 1 Describe a solid cylinder of radius a and height A in cylindri-
cal coordinates. Assume that the axis of the cylinder is on the positive z-axis
and the lower base has its center at the pole, as in Figure [17.5.3]

SOLUTION The shadow of the cylinder on the 76 plane is the disk of radius
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a with center at the pole shown in Figure [17.5.4] Its description is
0<6<L 27, 0<r<a.

For each point (r,0) in the shadow, the line through the point parallel to
the z-axis intersects the cylinder in a line segment. On this segment z varies
from 0 to h for every (r,0). (See Figure [17.5.5]) Thus a description of the
cylinder is

0<60<2m, 0<r<a, 0<z<h.

o

EXAMPLE 2 Describe in cylindrical coordinates the region in space formed
by the intersection of a solid cylinder of radius 3 with a ball of radius 5 whose
center in on the axis of the cylinder. Place the cylindrical coordinate system
as shown in Figure .
SOLUTION Note that the point P = (1,0, z) is a distance v/r% 4 22 from the
origin O, for, by the pythagorean theorem, r?+ 22 = OP2. (See Figure )
We will use this fact in a moment.

Now consider the description of the solid. First of all, 6 varies from 0 to
27 and r from 0 to 3, bounds determined by the cylinder. For fixed € and
r, the cross section of the solid is a line segment determined by the sphere
that bounds the ball, as shown in Figure [17.5.7(b). Now, since the sphere has
radius 5, for any point (7,0, z) on it,

r2 4+ 22 =25 or 2+ V25 —r2.

Thus, on the line segment determined by fixed r and 6, z varies from —+/25 — 12
to v/25 — r2.

The solid has this description:

0<6<2m, 0<r<3, —V25 — 12 <z < V25— 12,

EXAMPLE 3 Describe a ball of radius a in cylindrical coordinates.

SOLUTION  Place the origin at the center of the ball, as in Figure [17.5.7|(a).
The shadow of the ball on the (r,0) plane is a disk of radius a, shown in
Figure [17.5.7(b) in perspective. This shadow is described by the equations

0<6<L 27, 0<r<a.

All that is left is to see how z varies for a given r and . In other words,
how does z vary on the line AB in Figure |[17.5.7(c)?
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Figure 17.5.7:
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Figure 17.5.8:
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If r is a, then z “varies” from 0 to 0, as Figure[17.5.7|(c) shows. If r is 0, then
z varies from —a to a. The bigger r is, the shorter AB is. Figure[17.5.8 presents
the necessary geometry, first in perspective. With the aid of Figure [I7.5.8] we
see that z varies from —v/a2 — r2 to va? — 2. You can check this by testing
the easy cases, r = 0 and r = a. All told,

OSQSQW,OST‘SCL,:\/CLQ—TQSZS\/CI?—T‘E

TV
The shadow Range of z for each 6 and r

EXAMPLE 4 Draw the region R bounded by the surfaces r? + 22 = a?,
0 = /6, and 0 = 7/3, situated in the first octant.

SOLUTION 1In the rz-plane, r?+ 2% = a? describes a circle of radius a, center
at the origin. There is no restriction on 6. Thus it is a circular cylinder with
its axis along the polar axis, as shown in Figure [17.5.9(a) in perspective. The
shadow of R, which lies in the first octant, on the rz-plane is a quarter circle,

shown in Figure [17.5.9(b).

Figure 17.5.9:

Next we draw the half planes § = 7/6 and 6 = /3, as in Figure [17.5.9|c)
showing at least the part in the first octant.

Finally we put Figure [17.5.9(a) and (c) together in (d), to show R.

R has three planar surfaces and one curved surface. The two curved edges
are parts of ellipses, not parts of circles.

The description of R is

0<r<a, 0<z<+Va?—r1r? /6 <0 <m/3.

Calculus December 4, 2010
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THE VOLUME SWEPT OUT BY Ar, A, and Af

To use polar coordinates to evaluate an integral over a plane set we needed
to know that the area of the little region corresponding to small changes Ar
and A# is roughly rArAf. In order to evaluate integrals over solids using
an iterated integral in cylindrical coordinates, we will need to estimate the
volume of the small region correspond to small changes Ar, Af, Az in the
three coordinates.

¥ _'1‘.';’—' I'\'-_H
r— 1
ML i \ s

'J". A - L) L .:h'
Ly _—--’j A= l-% - _
W i \ i

PR a e

A y "\..H , [ -

Figure 17.5.10:

The set of all points (r, 8, z) whose r coordinates are between r and r+ Ar,
whose 0 coordinates are between 6 and 6 + Af, and whose z coordinates are
between z and z+ Az is shown in Figure [17.5.10a). It is a solid with four flat
surfaces and two curved surfaces.

When Ar is small, the area of the flat base of the solid is approximately
rArAf, as shown in Section [9.2] and as we saw when working with polar
coordinates in the plane. Thus, when Ar, Af, and Az are small, the volume

AV of the solid in Figure [17.5.10(b) is
AV = (Area of base)(height) ~ rArA6Az.

That is,

AV =~ rArAG0Az.

Just as the factor r appears in iterated integrals in polar coordinates, the
same factor appears in iterated integrals in cylindrical coordinates.
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SPHERICAL COORDINATES

The third standard coordinate system in space is spherical coordinates,
which combines the 6 of cylindrical coordinates with two other coordinates.

In spherical coordinates a point P is described by three numbers: p is pronounced “row” or
“roe”; it is the Greek letter
for r. The letter ¢ is
pronounced “fee” or “fie.”

p the distance from P to the origin O, 6 the same angle as in cylindrical
coordinates, ¢ the angle between the positive z-axis and the ray from O to P.

In physics and engineering r is used instead of p.
The point P is denoted P = (p, 0, ¢). Note the order: first p, then 6, then

¢. See Figure [17.5.11] Note that ¢ is the same as the direction angle of OP i 3
with k, 0 < ¢ < m. The surfaces p = k (a sphere), ¢ = k (a cone), and 6 = k . :,j:
(a half plane) are shown in Figure [17.5.12] p 15
o ,-f’"':f”f 'x\\ :
. f; b, _'\\:
! i, x N
" Bk - ':: i
" ‘ (
— e | a { Figure 17.5.11:
s 2 e
fo Gt S i ..#___.--" . I:I
(\{r’ st f.l] Iy D " |
J"’(x = ----H-F/ o i L— II
e ;. = - e “J

Hall plane: 8 = &

(a) (b) (c)
Figure 17.5.12: (a) 6 and ¢ vary, (b) p and 6 vary, (c¢) p and ¢ vary.

When ¢ and 6 are fixed and p varies, we describe a ray, as shown in Fig-

RELATION TO RECTANGULAR COORDINATES _,f.f’

Figure displays the relation between spherical and rectangular coordi- " 1" T
nates of a point P = (p,0, ¢) = (z,y, 2). ’

Note, in particular, right triangle OSP has hypotenuse OP and a right Figure 17.5.13:
angle at S, and right triangle OQR has a right angle at Q.

Calculus December 4, 2010
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She |
B . "_“__,‘-?
I #

Ei’\ | AV ’:Iﬁ‘ ..-"/ :\ 9 = T
(.)_._/\‘\ N Ll P .
L B __xt 0 Cor ey P
T,\g rj.lbﬁ;,t'ﬂ.ft. uoh prospd e beu OR =57 = pEyp

(a) (b) (d)

Figure 17.5.14:

First of all, z = pcos(¢). Then OR = psin(¢). Finally © = ORcos(f) =
psin(¢) cos(f) And y = ORsin(6) = psin(¢) sin(0).

EXAMPLE 5 Figure|17.5.15|shows a point given in spherical coordinates.
Find its rectangular coordinates.

Figure 17.5.15:

SOLUTION In this case, p=2,0 =7/3, ¢ = 7/6. Thus

T 11 1
x sin(m/6) cos 3 5573
. T, . T 1 V323
y = 2Sln<g) Sln(g) =2- 5 ?7
z = 200s(76r —2£ V3.
As a check, 2?2 + y* + 22 should equal p?, and it does, for (1/2)? + (‘/73) +
(VBRE=i+ita=i=2 :
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The next example exploits spherical coordinates to describe a cone and a
ball.

EXAMPLE 6 The region R consists of the portion of a ball of radius a that
lies within a cone of half angle 7/6. The vertex of the cone is at the center of
the ball.

J  prrspechve I

(a) (b)

Figure 17.5.16:

SOLUTION R is shown in Figure . It resembles an ice cream cone,
the dry cone topped with spherical ice cream.

Because R is a solid of revolution (around the z-axis), 0 < 6 < 2w. The
section of R corresponding to a fixed angle 6 is the intersection of R with a
half plane, shown in Figure[17.5.16

In this sector of a disk, ¢ goes from 0 to 7/6, independent of . Finally, a
fixed € and ¢ determine a ray on which p goes from 0 to a, as in Figure|17.5.18
o

The next example describes a ball in rectangular and spherical coordinates.

EXAMPLE 7 Describe a ball of radius a in rectangular and spherical co-
ordinates.

SOLUTION 1In each case we put the origin of the coordinate system at the
center of the ball.

Rectangular coordinates: The shadow of the ball on the zy-plane is a disk
of radius a, described by

—‘/CLQ—.’L’Q Syg ’/CL2—I2.

—a < x < a,

Calculus December 4, 2010
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For each point (x,y) in that projection, z varies along the line AB in Fig-

kf = ure [7.5.19
/ | £ S Since the equation of the sphere is 22+y?+2% = a? at A, zis —/22 — 22 — 42,
| !
{ s Y and at B is y/a? — 22 — y2. The entire description is
.l —_—t ——T S—

l I i L
n'v.-\/ )T —a<a<a, V@ -2 <y<Val—a?, V-2 -2 <2</ a2

Spherical coordinates: This time the shadow on the xy-plane plays no role.
Instead, we begin with

Figure 17.5.19:
0<6<2m, 0<o<m,

which sweeps out all the rays from the origin. On each such ray p goes from
0 to a. The complete description involves only constants as bounds:

0<0<2m, 0<o<m, 0<p<a.

Since the range of each variable is not influenced by other variables, the three
restraints can be given in any order. o

THE VOLUME SWEPT OUT BY Arho, Aphi, and Af

In the next section we will need an estimate of the volume of the little curvy
“box-like” region bounded by spheres with radii p and p + Ap, the half-planes
with angles 6 and # + Af, and the cones with half-angles ¢ and ¢ + A¢. This
region is shown in Figure[17.5.20, Two of its surfaces are flat, two are spherical,
and two are patches on cones.

iy —
.\. g _] i _-r_," ) l'I--
L Ve - | P
WAk 1 E ._."'{- ) 2 k.
w AL S =L '
5 .-'.-.. = i =] .
\|/ & 4 7 Y-
W \ &
& Sl H'\-\. e
/ o
& L=

Figure 17.5.20:
AB and AD are arcs of
circles, while AC' is straight
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Figure 17.5.21:

The product of the length of AB, AC' and AD is an estimate of the volume
of the little box. Figure[17.5.21] shows how to find these lengths.

Therefore the volume of the small box is approximately (psin(¢)Af)(pAp)(Ap):

AV = p?sin(¢) ApApAl

Just as we added an r to an integrand in polar coordinates, we must, in the
next section, and the factor p?sin(¢) to an integrand when using an iterated
integral in spherical coordinates.

Summary

This section described cylindrical and spherical coordinates. The volume of the
small box corresponding to small changes in the three cylindrical coordinates
is approximately rArA0Az. Because of the presence of the factor r, we must
adjoin an r to the integrand when using an iterated integral in cylindrical
coordinates.

Similarly, p?sin(¢) must be added to an integrand when using an iterated
integral in spherical coordinates.

The next section illustrates the computations using these coordinates.

Calculus December 4, 2010
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DOUG: Perhaps there
should be examples and
exercises with the bounds
involving variables more??
(See Stewart)

EXERCISES for Section 17.5 Key: R-routine, M—moderate, C—challenging

1.[R] On the region in Example [2| draw the set of points described by (a) z = 2,
b) z =3, (c) z = 4.5.

2.[R] For the cylinder in Example[I|draw the set of points described by (a) r = a/2,
b) 0 =x/4, (c) z=h/3.
3.[R]
(a) In the formula AV =~ rArAfAz, which factors have the dimension of length?

(b) Why would you expect three such factors?

4.[R]
(a) In the formula AV = p? ApAGA¢, which factors have the dimension of length?

(b) Why would you expect three such factors?

5.[R] Drawing one clear, large diagram, show how to express rectangular coordi-
nates in terms of cylindrical coordinates.

6.[R] Drawing one clear, large diagram, show how to express rectangular coordi-
nates in terms of spherical coordinates.

7.[R] Find the cylindrical coordinates of (z,y,2) = (3,3,1), including a clear dia-
gram.

8.[R] Find the spherical coordinates of (z,y,2) = (3,3,1),including a clear dia-
gram.

In Exercises [9] to [L1] (a) draw the set of points described, and (b) describe that set
in words.

9.[R] p and ¢ fixed, 0 varies.
[R] p and 6 fixed, ¢ varies.
11.[R] 6 and ¢ fixed, p varies.
12.[R] What is the equation of a sphere of radius a centered at the origin in

(a) spherical,

December 4, 2010 Calculus
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(b) cylindrical ,

(c) rectangular coordinates?

13.[R] Explain why if P = (z,yz) = (p,0,¢), in spherical coordinates, that
z? + 1?4+ 22 = p?. HINT: Draw a box.

14.[R] Describe the region in Example |§| in cylindrical coordinates in the order
a <0< B, ri(0) <7 <ryf), 21(r,0) < z < 25(r, 0).

15.[R] Like Exercise but in the order a < z < b, 61(2) < 0 < 0s(2), r1(0,2) <
r <ry(f,z).

16.[R] Sketch the region in the first octant bounded by the planes § = § and 6 =
and the sphere p = a.

coln

17.[R] Estimate the area of the bottom face of the curvy box shown in Fig-
ure [17.5.20] It lies on the sphere of radius p.

18.[A] cone of half-angle 7/6 is cut by a plane perpendicular to its axis at a distance
4 from its vertex.

(a) Place it conveniently on a cylindrical coordinate system.

(b) Describe it in cylindrical coordinates.

19.[R] Like the preceding exercise, but use spherical coordinates.

20.[R] A cone has its vertex at the origin and its axis along the positive z-axis. It
is made by revolving a line through the origin that has an angle A with the z-axis,
about the z-axis. Describe it in

(a) spherical coordinates,
(b) cylindrical coordinates, and

(c) rectangular coordinates.

21.[R] Use spherical coordinates to describe the surface in Figure[17.5.22| It is part

Calculus December 4, 2010
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of a cone of half vertex angle B with the z-axis as its axis, situated within a sphere of

v

radius a centered at the origin.

Figure 17.5.22:

22.[R] A triangle ABC is inscribed in a circle, with AB a diameter of the circle.
(a) Using elementary geometry, show that angle AC'B is a right angle.

(b) Instead, using the equation of a circle in rectangular coordinates, show that
AC and BC' are perpendicular.

(c) Use (a) or (b) to show that the graph in the plane of r = bcos(f) is a circle
of diameter b.

(d) In view of the preceding exercise, show that the equation of the circle in

Figure [17.5.22|is 7 = 2a cos(6).

23.[R] (See Exercise 22]) A ball of radius a has a diameter coinciding with the
interval [0, 2a] on the z-axis. Describe the ball in spherical coordinates.

us us

24.[R] The ray described in spherical coordinates by § = § and ¢ = 7 makes an
angle A with the x-axis.

(a) Draw a picture that shows the three angles.

(b) Find cos(A).

25.[R]

(a) If you describe the region in Example [2[in the order 0 < 6 < 27, z1(f) < z <
z9(0), r1(0, z) <r < ry(f,z), what complication arises?
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(b) Describe the region using the order given in (a).

By differentiating, verify the equations in Exercises [26] to
26.[R] [ |fracdr(x3v/22 + 22 = — a’t+a? | ﬁ In |&tvastzs ‘;2“'952 |.

2a2+x2

21d
27.[R] f;ﬂl:; = ﬁln]if—’; — %arctan%.

28.[R] What is the distance between P; = (p1, 01, ¢1) and Py = (p2, 02, ¢2)?

29.[R] The points P, = (p1,01,¢1) and P» = (p1, 02, ¢2) both lie on a sphere of
radius p;. Assuming that both are in the first octant, find the great circle distance
between them. NOTE: If the sphere is the earth’s surface, p is approximately 3960
miles, ¢ is the complement of the latitude, and 0 is related to longitude.

30.[R] At time t a particle moving along a curve is at the point (p(t),6(t), ¢(t))
What is its speed?

31.[R] How far apart are the points (1,601, 21) and (72,02, 22) in the first octant?

(a) Draw a large clear diagram.

(b) Find the distance.

32.[R] A bug is wandering on the surface of a cylinder whose description is
0 <6 <2m0<7r<30<z<2 Itisat the point (3,0,2) and wants the
shortest route on the surface to (3,7,0). The bug plans to go straight down, keep-
ing # = 0, and then taking a straight path on the base along a diameter. Is that the
shortest path? If not, what is?

Calculus December 4, 2010
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—_ et

= ""._‘ '\I.I. :.
1 £ .'- ""\- I
) .
Polkar Note, as with polar

céordinates, the extra factor
.

Figure 17.6.1:

17.6 Iterated integrals for [, f(P) dV in Cylin-
drical or Spherical Coordinates

In Section we evaluated an integral of the form [ r f(P) dA by an iterated
integral in polar coordinates. In this method it is necessary to multiply the
integrand by an “r.” This is necessary because the small patch determined
by small increments in r and 6 is not ArA# but rArAf. Similarly, when
developing iterated integrals using cylindrical coordinates, an extra r must be
adjoined to the integrand. In the case of spherical coordinates one must adjoin
p’psin(¢). These adjustments are based on the estimates of the volumes of
the small curvy boxes made in the previous section.

A few examples will illustrate the method, which is: Describe the solid R
and the integrand in the most convenient coordinate system. Then use that
description to set up an iterated integral, being sure to include the appropriate
extra factor in the integrand.

ITERATED INTEGRALS IN CYLINDRICAL COOR-
DINATES

To evaluate [, f(P) dV in cylindrical coordinates we express the integrand in
cylindrical coordinates and describe the region R in cylindrical coordinates.
It must be kept in mind that dV is replaced by r dz dr df. There are six
possible orders of integration, but the most common one is: z varies first, then
r, finally 6:

[ f(P) dV = ff fr?((:)) <f;2(5:’99)) f(r,0,2)r dz) dr db.

EXAMPLE 1 Find the volume of a ball R of radius a using cylindrical
coordinates.

SOLUTION Place the origin of a cylindrical coordinate system at the center

of the ball, as in Figure [17.6.1]
The volume of the ball is [ 1 dV. The description of R in cylindrical
coordinates is

0 <6 <2, 0<r<a, Va2 —r2<z<+vVa?-r2
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The iterated integral for the volume is thus

27 a Va2—r2
/1dV:/ / / 1-rdz| dr| df.
R 0 0 —vaZ—rs

Evaluation of the first integral, where r and 6 are fixed, yields

Va2
rdz = rz[_"Y % = 2rva? —r2.
Va2
Note that the order of
Evaluation of the second integral, where 6 is fixed, yields integration is determined by
. the order of the variables in
_9(a2 — r2)3/2"7% 943 describing R.
/wmd?«: @ —r)7f 2
3 0 3
0
Finally, evaluation of the third integral gives
2w 3 3 21 3 4
2a 2a 2a
“——df) = = | df = = cdot2r = —7a’.
/ 3 3 / 3 3
0 0

<

EXAMPLE 2 Find the volume of the region R inside the cylinder 2% +y? =
a, above the xy-plane, and below the plane z = x 4+ 2y + 9. Use cylindrical
coordinates.

SOLUTION We wish to evaluate | r 1 dV over the region R described in
cylindrical coordinates R by

0<0 <2, 0<r<3, 0 <z <rcos(f)+ 2rsin(f) + 9.

(Here we replace the equation z = z + 2y + 9 by z = rcos(f) + 2rsin(d) +9.) Note, as with polar

The iterated integral takes the form coordinates, the extra factor
or / 3/ rcos(6)+2rsin(6)+9 "
/ / / l-rdz| dr| db.
0 \o 0
Integration with respect to z gives r and 6 are constant
r cos(8)+2r sin(6)+9 7 cos(6)-+2r sin(8)+9
/ rdz = r / dz = r* cos(6) + 2r*sin(0) + 9r.
0 0

Calculus December 4, 2010
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Hall of mxlus a

Figure 17.6.2:

Then comes integration with respect to r, with 6 constant:

3

r? 273 9r2|?
/ (r* cos(0) + 2r?sin(6) + 9r) dr = 3 cos(f) + 5 sin(6) + 5 ) = 9 cos(f)+18sin
0
Finally, integration with respect to 6 gives
2
/ (9 cos(f) + 18sin(6) + %) de. (17.6.1)
0

Because f027r cos(6) df = 0 = [*"sin(6) db, (17.6.1)) reduces to f027r 8 df = 81m.

0
The volume is 817. S

Computing fRf(P) dV in Spherical Coordinates

To evaluate a triple integral || » J(P) dV in spherical coordinates, first describe
the region R in spherical coordinates. Usually this will be in the order:

a§‘9§57 ¢1<0) §¢§¢2(‘9)7 p1(6,¢) Spﬁpz(p,(g)

Sometimes the order of p and ¢ is switched:

a0 pi(0) < p<pa(0) $1(p,0) < ¢ < ha(p, 0).

Then set up an iterated integral, being sure to express dV as p? sin(¢) dp d¢ d
(or p?sin(¢) do dp db).

EXAMPLE 3 Find the volume of a ball of radius a, using spherical coor-
dinates.

SOLUTION Place the origin of spherical coordinates at the center of the
ball, as in Figure [17.6.2l The ball is described by

0<f@<2r, 0<oé<m 0<p<a.
Hence
2r ™ a
Volume of ball = /1 dv = ///p2 sin(¢) dp d¢ db.
R 0 0 0
The inner integral is
a a 3 .
/p2 sin(¢) dp = sinqb/p2 dp = %n(qb).
0 0
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The next integral is

ja3sin(¢) i - —a®sin(¢) |”

3 3 0 3 3
0
The final integral is
2 3 3 2 3 3
2 2 2 4
/ide = g = =TT
3 3 3 3
0 0

An Integral in Gravity

The next example is of importance in the theory of gravitational attraction.
It implies that a homogeneous ball attracts a particle (or satellite) as if all the
mass of the ball were at its center.

EXAMPLE 4 Let A be a point at a distance H from the center of the ball,
H > a. Compute [ r(0/q) dV, where § is density and ¢ is the distance from a

point P in R to A. (See Figure[17.6.3])

Bl T
i F J- '
: e —_ e ..'1-"':'-.._
.:"‘.-. 0 -"'- L :|,..':'J.. : k|
I q 1
\ e o |3 e g
K“'\. prd % T T
B S -, a b et
i ", *' F F
S o (5]
(a) (b)

Figure 17.6.3:

SOLUTION First, express ¢ in terms of spherical coordinates. To do so,
choose a spherical coordinate system whose origin is at the center of the sphere

and such that the ¢ coordinate of A is 0. (See Figure |[17.6.3|(b).)
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A case where integration
with respect to p is not first

Let P = (p, 0, ¢) be a typical point in the ball. Applying the law of cosines
to triangle AOP, we find that

a® = H* + p* — 2pH cos(¢).

Hence

q = /H?+ p? — 2pH cos(¢).
Since the ball is homogeneous,

5— M 3M
N §7ra3 dmad
Hence 5 3 M (1
- dV = dV = - dV. 17.6.2
/q /47ra3q 47ra3/q ( )
R R R
Now evaluate .
/ —dVv
q
R

by an iterated integral in spherical coordinates:

2w a ™
1 2 si
/ S v = / / psin(9) do | dp | do.
A q s \0\Y VH? + p* — 2pH cos(¢)

We integrate with respect to ¢ first, rather than p, because it is easier in
this case.

Evaluation of the first integral, where p and 6 are constants, is accomplished
with the aid of the fundamental theorem:

/ﬂ p* sin ¢ 6 - py/H? + p? — 2pH cos(¢)
V2

+ p? — 2pH cos(¢) H o
p

= ﬁ(\/m + p2 4 2pH — \/H? + p? — 2pH.

Now, \/H2+ p2+2pH = H + p. Since p < a < H, H — p is positive and
VH?+ p2—2pH = H — p.
Thus the first integral equals

p=m

FIH +p) = (H = p)] = T

Evaluation of the second integral yields

[ -2
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Evaluation of the third integral yields

eH 3H
0
Hence ;
1 drra
- dV =
/q 3H
R
By (17.6.2))
/édV: 3M 4ra® :%‘
q 4dma® 3H H

R

This result, M/ H, is exactly what we would get if all the mass were located
at the center of the ball. o

THE MOMENT OF INERTIA ABOUT A LINE

In the study of rotation of a object about an axis, one encounters the “moment
of inertia”, I of the object. It is defined as follows. The object occupies a region
R. The density of the object at a typical point P is (P), so the mass of the
object is M = [, 6(P) dV. Usually the density is constant, in which case it is
M divided by the volume of R (or M divided by the area of R if R is planar).
Let r(P) be the distance from P to a fixed line L. Then, by definition,

I = Moment of Inertia = / (r(P))*§(P) dV.
R

A similar definition holds for objects distributed on a planar region. The only
difference is that dV is replaced by dA.

EXAMPLE 5 Compute the moment of inertia of a uniform mass M in the
form of a ball of radius a around a diameter L.
SOLUTION  The density 6(P), being constant, is M/(37a
diameter L along the z-axis, as in Figure

Because the distance r(P) is just r in cylindrical coordinates, we will first
work in those coordinates. Then we will calculate the moment of inertia in
spherical coordinates.

One description of the ball is

3). We place the

0<86<2m, —a<z<a, 0<r<+va?-—22
Calculus December 4, 2010

Newton obtained this
remarkable result in 1687.

SHERMAN: Compare this
with your version. What is
your M7 | thought it was
the object, i.e., the region
together with its density,
but you are using it also as
the mass of the object. If
you want the latter, you
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Then
I = [, E%TQ dV = 437% I r? dV Note the introduction of the extra
3
M 27 pra  pVaZ2-—z2
= a0 Sl ko r® dr dz df

The first integration is

Va2—22 " fa2_ 22 (a2 B 22)2
rddr = — =
/ 41, 4
The second is
/ (a® — 2?)? i — / at —2a?2% + 2* do = 2 (ats 2a°2°  2° o
4 4 3 5

The third is

Then remembering to include the factor 3M/4mwa®, we have

M 8m o 2
= - —a’ = =Md®.

dra® 150 50

Because spherical coordinates provide a simple description of the ball, we
will also use them to find I to see if the computations are easier. Now the
distance r(P) has a more complicated form, §(P) = d(p, 0, @) = psin(¢). The

integral for the moment of inertia is

3M o
I= o (psin(¢)” dV.
R

The iterated integral for this multiple integral is

2]pi T a

/ / / (psin(¢))” p*sin(¢) dp | do | do.

0 0 0

The first integration is

a
5 p=a 5

4 -3 _ P .3 _ a
O/ (o) dp = o' 0)| | =i
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The second is

Since the exponent, 3, is odd, we write sin®(¢) as (1—cos?(¢)) sin(¢) and have

™ ™

3 ™
st ds = [(sinfo) - cos9)sin) = (~cos(o) +
0 0 0
(—1)3 1 4
= -1 1+-)=-.
(~(-1)+ S5 - (14 3) =3
The final integration is just
2w 5
4
L
5 3 15
0 Note that this is 2/5 of our
And, as expected, gives, again upper estimate, hence is
j (2/5)Ma2. plausible.

Summary

A multiple integral f »f(P) dV may be evaluated by an iterated integral in
cylindrical or spherical coordinates. In cylindrical coordinates the iterated
integral takes the form

05 r2(0) [ 22(r,0)

/ / /rf(r,@,z)dz dr | as.

01 \r1(0) \e1(r,0)
The description of the region determines the range of integration on each
of the three integrals over intervals. (Changing the order of the description of
R changes the order of the integrations.) The factor r must be inserted into

the integrand.
In spherical coordinates the iterated integral usually takes the form

Oz [ ¢2(8) [ p=2(6,9)
/ / / F(r,0,8)psin(6) do | do | do.
01 \¢1(9) 1(0,9)

In this form, integration with respect to p is first, but as Example 4| illus-
trates, it may be convenient to integrate first with respect to ¢. The factor
p*sin(¢) must be inserted in the integrand.
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EXERCISES for Section 17.6 Key: R-routine, M—moderate, C—challenging

In Exercises|I{to[4t (a) draw the region, (b) set up an iterated integral in cylindrical
coordinates for the given multiple integrals, and (c) evaluate the iterated integral.
1.[R] [;7r? dV, R is bounded by the cylinder r = 3 and the planes z = 2z and
z = 3x.

2.[R] [z dV, R is bounded by the sphere 22 4+ 12 = 25, the 76 coordinate plane,
and the plane z = 2.

3.[R] fR rz dV, R is the part of the ball bounded by 7%+ 22 = 16 in the first octant.

4.[R] [pcos#/dV, R is bounded by the cylinder r = 2cos(f) and the paraboloid
z =72

5.[R] Compute the volume of a right circular cone of height h and radius r using
(a) spherical coordinates, (b) cylindrical coordinates, and (c¢) using rectangular co-
ordinates.

6.[R] Find the volume of the region above the xy plane and below the paraboloid
2z = 9 — r? using cylindrical coordinates.

7.[R] A right circular cone of radius a and height h has a density at point P equal
to the distance from P to the base of the cone. Find its mass, using spherical coor-
dinates.

In Exercises [§| to |§| draw the region R and give a formula for the integrand f(P)
such that [ g dV is described by the given iterated integrals.

8.[R]  [T2[[T4(feon¢ b sin2(0) sin(¢) dp) dgp] d.

9.R] [y [T/ (o p* sin(0) cos(¢) dp) de] do.

10.[R] Let R be the solid region inside both the sphere 2% + 32 + 22 = 1 and the
cone z = /x? 4+ y2. Let the density at (z,y,z) be f(x,y,2) = 2. Set up iterated
integrals for the mass in R using (a) rectangular coordinates, (b) cylindrical coor-
dinates, (c) spherical coordinates. (d) Evaluate the iterated integral in (c).

11.[R] Find the average temperature in a ball of radius a if the temperature is the
square of the distance from a fixed equatorial plane.

In each of Exercises [12] to [L3] evaluate the iterated integral.
12.[R] 027r (fol (frl zr3 cos? 0 dz) dr) o

13.[R] OQW <f01 (f% 22r dz) dr) do
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14.[R] Let R be the solid region inside both the sphere 2% + 32 + 22 = 1 and the
cone z = /z2 + y2. Let the density at (z,y,2) be f(z,y,2) = z. Using cylindrical
coordinates, find the mass of R.

15.[R] Using cylindrical coordinates, find the volume of the region below the plane
z =y + 1 and above the circle in the zy plane whose center is (0,1,0) and whose
radius is 1. (Include a drawing of the region.) HINT: What is the equation of the
circle in polar coordinates when the polar axis is along the positive z-axis?

16.[R] Find the average distance from the center of a ball of radius a to other
points of the ball by setting up appropriate iterated integrals in the three types of
coordinate systems and evaluating the easiest.

17.[R] A solid consists of that part of a ball of radius a that lies within a cone of
half-vertex angle ¢ = /6, the vertex being at the center of the ball. Set up iterated
integrals for [ % dV in all three coordinate systems and evaluate the simplest.

In Exercises [18] to [23] evaluate the multiple integrals over a ball of radius a with
center at the origin, without using an iterated integral (¢,0, and z are cylindrical or
spherical coordinates).

18.[R] [y cos(#) dV

19.R] [p cos? 6 dV
20.[R] [pzdV

21.[R] [R(3+2sin(f) dV
22.[R] [sin®(¢) dV
23.[R] [psin(¢) dV

24.[R] In polar, cylindrical, and spherical coordinates one must introduce an extra
factor in the integrand when using an iterated integral. Why is that not necessary
when using rectangular coordinates?

25.[R] Is Va2 always equal to a?

26.[R| Using the method of Example {4/ find the average value of ¢ for all points P in
the ball. Note that it is not the same as if the entire ball were placed at its center.

27.[C] Show that the result of Example 4] holds if the density §(P) depends only
on p, the distance to the center. (This is approximately the case with the planet
Earth, which is not homogeneous.) Let g(p) denote d(p, 8, ¢).
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In Exercises [28] to 29kheck the equations by differentiation.

28.[R] tan (%)= HdTI(E)
29.[R] ztan(§)+2Infcos (5)| = [ 1t
30.[R]

(a) Find the exact volume of the little curvy box corresponding to the changes

Ap, NG, Ag.

(b) One hopes that the ratio between that exact volume and our estimate, p? sin(¢)ApAf .
approaches 1 as Ap, A, A¢ approach 0. Show that it does. HINT: Recall the
definition of a derivative.

(c) Show that the exact volume in (a) can be written in the form (p*t)? sin(¢*) ApA@AS,
where p* is between p and p + Ap and ¢* is between ¢ and ¢ + Ad.

31.[R] The kinetic energy of an object with mass m moving at the velocity v is
mv?/2. An object moving in a circle of radius r at the angular speed w radians
per unit time has velocity rw. (Why?) Thus its kinetic energy is (mr?/2)w?. Now
consider a mass M that occupies the region R in space. Its density is A(P), which
may vary from point to point. (If it is constant, it equals M /(Volume of R).) Let
f(P) be the distance from P to a fixed line L. If the mass is spinning around the
axis L at the angular rate w, show that its total kinetic energy is

1
[ Sz do.
R

This can be written as

1
Kinetic Energy = (iluﬂ.

Thus I plays the same role in rotational motion that mass m plays in linear motion
in the formula (mov?.

Every spinning ice skater knows this. When spinning with her arms extended she
has a certain amount of kinetic energy. If she suddenly puts her arms to her sides
she decreases her moment of inertia but has not destroyed her kinetic energy. That
forces her angular speed to increase. The larger the mass m is, the harder it is to
start it moving and to stop it when it is moving. Similarly, the larger I is, the harder

it is to stop the mass from spinning and to stop it when it is spinning.

In Exercises [32] to |36| the objects have a homogeneous (constant density) mass M.
Find I.

32.[R] A rectangular box of dimensions, a, b, ¢ around a line through its center
and perpendicular to the face of dimensions a and b.

33.[R] A solid cylinder of radius a and height h around its axis.
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34.[R] A solid cylinder of radius a and height h around a line on its surface.

35.[R] A hollow cylinder of height h, inner radius a, and outer radius b, about its
axis.

36.[R] A solid cylinder of radius @ and height h around a diameter in its base.

37.[R] In Example [2] what unpleasantness occurs when you describe the region in
the order of the form a < 0 <b, z1(0) < z < 22(0), r1(0,2) <1 <12(0,2)?

38.[R] Solve Example [2 using rectangular coordinates.

39.[R] Evaluate the moment of inertia in Example [5{ using the description 0 < 6 <

2m, 0<r <a, —va2—1r?<z<+Va?—-r2

40.[R] Let R be a solid ball of radius a with center at the origin of the coordinate
system

(a) Explain why [, z? dV = %IR(.%‘Q +y?2+2%) dV.
(b) Evaluate the second integral by spherical coordinates.

(c) Use (b) to find [ 2? dV.

41.]M] Show that [(z* +y* + 2%) dV = 0, where R is a ball whose center is the
origin of a rectangular coordinate system. NOTE: Do not use an iterated integral.
HiNT: Use symmetry.

42.[R] A homogeneous object with mass M occupies the region R between con-
centric spheres of radii @ and b, a < b. Let A be a point at a distance H from their
center, H < a. Evaluate | R g dV , where 0 is the density and ¢ = ¢(P) is the distance
from H to any point P in R. (That the value of the integral does not involve H has
an important consequence: A uniform hollow sphere exerts no gravitational force
on objects in its interior.)

43.[R] In Example H is greater than a. Solve the same problem for H less than a.
NOTE: For some p, \/H? + p2A — 2pH equals H — p and for some it equals p— H.

44.[C] (See Example [43]) Let A be a point in the plane of a disk but outside the
disk. Is the average of the reciprocal of the distance from A to points in the disk
equal to the reciprocal of the distance to the center of the disk?

45.[C] A certain ball of radius a is not homogeneous. However, its density at P
depends only on the distance from P to the center of the ball. That is, there is
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a function f(p) such that the density at P = (p,0,¢) is f(p). Using an iterated
integral, show that the mass of the ball is

47T/f(p/2, dp.
0

46.[C] Let R be the part of a ball of radius a removed by a cylindrical drill of
diameter a whose edge passes through the center of the sphere.

(a) Sketch R.

(b) Notice that R consists of four congruent pieces. Find the volume of one of
these pieces using cylindrical coordinates. Multiply by four to get the volume
of R.

47.[C] Let R be the ball of radius a. For any point P in the ball other than the
center of the ball, define f(P) to be the reciprocal of the distance from P to the ori-
gin. The average value of r over R involves an improper integral, since the function
blows up near the origin. Does this improper integral converge or diverge? What
is the average value of f over R? Suggestion: Examine the integral over the region
between concentric spheres of radii a and ¢, and let ¢t — 0.
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17.7 Integrals Over Surfaces

In this section we define an integral over a surface and then show how to
compute it by an iterated integral.

Definition of a Surface Integral

Consider a surface S such as the surface of a ball or part of the saddle z = xy.
If f is a numerical function defined at least on S, we will define the integral
Js f(P) dS. The definition is practically identical with the definition of the
double integral, which is the special case when the surface is a plane.

We assume that the surfaces we deal with are smooth, or composed of a
finite number of smooth pieces, and that the integrals we define exist.

DEFINITION (Definite integral of a function f over a surface
S.) Let f be a function that assigns to each point P in a surface
S a number f(P). Consider the typical sum

J(P1)Sy + f(P2)Sa + -+ + f(Pn)Sh,

formed from a partition of S, where S; is the area of the ith re-
gion in the partition and P; is a point in the ith region. (See
Figure ) If these sums approach a certain number as the S;
are chosen smaller and smaller, the number is called the integral
of f over § and is written

/ £(P) ds.

If f(P) is 1 for each point P in S then [¢ f(P) dS is the area of S. If S is
occupied by material of density o(P) at P then [;o(P) dS is the total mass
of .

First we show how to integrate over a sphere.

Integrating over a Sphere

If § is a sphere or part of a sphere, it is often convenient to evaluate an integral
over it with the aid of spherical coordinates.

If the center of a spherical coordinate system (p, 8, ¢) is at the center of a
sphere of radius a, then p is constant on the sphere p = a. As Figure
suggests, the area of the small region on the sphere corresponding to slight
changes dfl and d¢ is approximately

(a do) (asin(¢) df) = a*sin(¢) do de.
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Figure 17.7.2:

Thus we may write
dS = a*sin(¢) df do

JEGES

in terms of a repeated integral in ¢ and 6. Example|l|illustrates this technique.

and evaluate

EXAMPLE 1 Let S be the top half of the sphere with radius a. Evaluate
[szdS.

SOLUTION Since the sphere has radius a, p = a. The top half of the sphere
is described by 0 < # < 27 and 0 < ¢ < 7/2. And, in spherical coordinates,
z = pcos(¢) = acos(¢). Thus

2r [ /2
/z ds = /(acos(gb)) ds = / /(a cos(¢))a®sin(¢) de | db.
S S 0 \0
Now,
7 T (~cost () [
/(a cos(¢))a?sin(¢) dp = a® / cos(¢) sin(¢) do = a3+ )
= 0= =
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so that

n—_

2#@3
zdS:/? df = wa®.
0

<

We can interpret the result in Example [1| in terms of average value. The
average value of f(P) over a surface S is defined as

[s f(P) dS
Area of S

Example [1| shows that the average value of z over the given hemisphere is

fsz dsS Ta’ a

Areaof S 2ma® 2

“The average height above the equator is exactly half the radius.”

A General Technique

When we faced an integral over a curve, f o [ ds, we evaluated it by replacing
it with f; f % dt, an integral over an interval [a, b].

We will do something similar for an integral over a surface: We will replace
an surface integral by a double integral over a set in a coordinate plane.

The basic idea is to replace a small patch on the surface S by its projection
(shadow) or, say, the zy-coordinate plane. The area of the shadow is not the
same as the area of the patch. With the aid of Figure [17.7.3| we will express
the area of the shadow in terms of the tilt of the patch.

The unit normal vector to the patch is n. The angle between n and k is
. Call the area of the patch, dS, and the area of its projection, dA. Then

dA =~ | cos(v)| dS.

Notice that the angle v is one of the direction angles of the unit normal
vector, k.

For instance, if v = 0, then dA = dS. If v = 7/2, then dA = 0. We use
the absolute value of cos(7), since 7 could be larger than 7 /2.

It follows, if cos(7y) is not 0, that
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Figure 17.7.4:

Replacing an integral over a
surface with an integral over
a planar region.

Figure 17.7.5:

dA

S = ———
| cos(v)]

(17.7.1)

With the aid of , we replace an integral over S with an integral over
its shadow in the zy plane.

The replacement is visible in the approximating sums involved in the inte-
gral over a surface.

Let S be a surface that meets each line parallel to the z-axis at most once.
Let f be a function whose domain includes S.

Consider an approximating sum for [¢ f(P) dS, namely Y7, f(pi)AS;.
The partition is shown in Figure

Let R be the projection of § in the zy plane. The patch §; with area S;,
projects down to R;, of area A;, and the point P; on &; points down to ); in
R;. Let v; be the angle between the normal at P; and k.

Then f(P)S; is approximately 1(Py)

| cos(vi)l

. b
> |£(()87>-|Ai' (17.7.2)
i=1 v

is

Theorem 17.7.1. Let S be a surface and let A be its projection on the xy
plane. Assume that for each point Q) on A the line through Q) parallel to the z-
axis meets S in exactly one point P. Let f be a function defined on §. Define
a function h on A by

Q) = f(P)
Then hO)
S/f(P) dS:A/—| cos())] dA.

In this equation ~ denotes the angle between k and a wvector normal to the

surface of S at P. (See Figure )

In order to apply this result, we need to be able to compute cos(7).

Computing cos(7)

We find a vector perpendicular to the surface in order to compute cos(vy). If
S is the level surface of g(z,y, z), that is g(z,y, z) = ¢, for some constant c,
then the gradient Vg is such a vector.
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If the surface S is given in the form z = f(xz,y), rewrite it as z— f(z,y) = 0.
That means that S is a level surface of g(x,y,z) = z— f(z,y), Theorem[17.7.2]
shows what the formulas for cos(y) look like. However, it is unnecessary, even
distracting, to memorize them. Just remember that a gradient provides a
normal to a level surface.

Theorem 17.7.2. (a) If the surface S is part of the level surface g(z,y, z) =
c, then
|22

Oz )
VD2 + (302 + (3072

(b) If the surface S is given in the form z = f(x,y), then

| cos(7)] =

| cos(y)] =

Proof

(a) A normal vector to S at a given point is provided by the gradient

dg.  9dg. 0Og
=i+ —2j+ —k.
V9 8x1+ oy * 0z

The cosine of the angle between k and Vg is
k-Vg k- (Gh+ g+ 5k
IVl ™ 1) (20 + e+ (327

hence

| cos(y)] =

(b) Rewrite z = f(x,y) as z — f(z,y) = 0. The surface z = f(x,y) is thus
the level surface g(x,y,z) = 0 of the function g(z,y,2) = 2z — f(z,y).
Note that

g _ of og_ of . 05 _

- _ = =1.
Ox ox’ oy oy 0z

By the formula in (a),

| cos(y)] =
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Figure 17.7.6:

The area of S is

Theorem [17.7.2]is stated for projections on the xy plane. Similar theorems
hold for projections on the zz or yz plane. The direction angle v is then
replaced by the corresponding direction angle,  or «, and the normal vector
is dotted into j or i. Just draw a picture in each case; there is no point in
trying to memorize formulas for each situation.

EXAMPLE 2 Find the area of the part of the saddle z = xy inside the
cylinder 22 + 4% = o
SOLUTION Let S be the part of the surface z = xy inside 22 + 3% = a®.

Then
Area of S = /1 dsS.
S

The projection of S on the zy plane is a disk of radius a and center (0, 0). Call
it A, as in Figure [17.7.6, Then

1
Area of § = /1 dS = /— dA. (17.7.3)
J T Teosto)

To find the normal to S rewrite z = xy as z — zy = 0. Thus § is a level
surface of the function g(z,y,2) = z — xy. A normal to S is therefore

dg. 0Jdg. OJg

= Y5 995 Yy

V9= it a) T e
= —yi—axj+k

Then
k-Vyg k- (—yi—zj+k)

1
cos(y) = = = .
™ 1 Z IR /-rur s S v e

[/ (0F [0x)F + (0f Joy)? + 1 dABy (I7.7.3),

Area of S = / VY2 + 22+ 1 dA. (17.7.4)

A
Use polar coordinates to evaluate the integral in (|17.7.4)):

2 a

/\/y2+$2+1dA://VT2+1Tde9.
A 00
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The inner integration gives

. (T2+1)3/2 a <1+a2)3/2_1
ViR ifdr = ———2—| = .
/ r2+1f dr 3
0

3 0

The second integration gives

2

1 23/2_1 9
/(+a) d@z%((l—l—az)?’/z—l).
0

3
o
Summary
After defining [ f s f(P) dS, an integral over a surface, we showed how to com-
pute it when the surface is part of a sphere. Replace dS by

If each line parallel to the z-axis meets the surface S in at most one point, a?sin(¢) d¢ df, where a is

an integral over S can be replaced by an integral over A, the projection of S the radius of the sphere.
on the xy plane:
h
/f ) dS = / (Q) dA
| cos(7)]

To find cos(7), use a gradient. If the surface is a level surface of, g(z,y, z) = ¢,
use Vg. If it has the equation z = f(x,y), rewrite the equation as z — f(x,y) =
0. As a special case, if S is the graph of z = f(x,y), then the area of S

Area of § = /dS /\/8f/8x (0f/0y)? + 1 dA.
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EXERCISES for Section 17.7 Key: R-routine, M—moderate, C—challenging

1.[R] A small patch of a surface makes an angle of /4 with the zy plane. Its
projection on that plane has area 0.05. Estimate the area of the patch.

2.[R] A small patch of a surface makes an angle of 25° with the yz plane. Its
projection on that plane has area 0.03. Estimate the area of the patch.
3.[R]

(a) Draw a diagram of the part of the plane = + 2y + 3z = 12 that lies inside the
cylinder 22 + 4% = 9.

(b) Find as simply as possible the area of the part of the plane x 4+ 2y + 3z = 12
that lies inside the cylinder 22 4+ y% = 9.

4.[R]

(a) Draw a diagram of the part of the plane z = x+ 3y that lies inside the cylinder
r =1+ cosb.

(b) Find as simply as possible the area of the part of the plane z = x + 3y that
lies inside the cylinder r = 1 4 cos 6.

5.[R] Let f(P) be the square of the distance from P to a fixed diameter of a sphere
of radius a. Find the average value of f(P) for points on the sphere.

6.[R] Find the area of that part of the sphere of radius a that lies within a cone of
half-vertex angle m/4 and vertex at the center of the sphere, as in Figure [17.7.7

.-".d:’:. Y
] L o %
.". o o )
| o .
e
[ ez ")
- |
L — EA— —-—
T
k|
p N
e
-

Figure 17.7.7:
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In Exercises [7| and [§ evaluate [¢ F -n dS for the given spheres and vectors fields (n
is the outward unit normal.)

7.[R] The sphere 22 + 32 + 22 = 9 and F = 22i + y%vj + 2%k.

8.[R] The sphere 22 + y* + 22 =1 and F = 23i + ?j.

9.[R] Find the area of the part of the spherical surface 22 + y% + 22 = 1 that lies
within the vertical cylinder erected on the circle r = cos § and above the zy plane.

10.[R] Find the area of that portion of the parabolic cylinder z = %xg between the
three planes y =0, y = x, and x = 2.

11.[R] Evaluate |, S 22y dS, where S is the portion in the first octant of a sphere
with radius ¢ and center at the origin, in the following way:

(a) Set up an integral using x and y as parameters.

(b) Set up an integral using ¢ and 6 as parameters.

(c) Evaluate the easier of (a) and (b).

12.[R] A triangle in the plane z = x + y is directly above the triangle in the xy
plane whose vertices are (1,2), (3,4), and (2,5). Find the area of

(a) the triangle in the zy plane,

(b) the triangle in the plane z = = + y.

13.[R] Let S be the triangle with vertices (1,1,1), (2,3,4), and (3,4, 5).
(a) Using vectors, find the area of S.

(b) Using the formula
Area of § = /1 ds,
S

find the area of S.

14.[R] Find the area of the portion of the cone 22 = z2 + y? that lies above one

loop of the curve r = /cos2(0).

15.[R] Let S be the triangle whose vertices are (1,0,0), (0,2,0), and (0,0,3). Let
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f(z,y,2) = 3z 4 2y + 2z. Evaluate [ f(P) dS.

In Exercises [16| and [L7] let S be a sphere of radius a with center at the origin of a
rectangular coordinate system.
16.[R] Evaluate each of these integrals with a minimum amount of labor.

(a) [gz dS
(b) [ga® dS

2x+4y°
(©) Js Vorerag @5

17.[R]

(a) Why is fsxz dsS = fsyQ dsS?
(

)
b) Evaluate [¢(2? 4 y* + 2?) dS with a minimum amount of labor.
(¢) In view of (a) and (b), evaluate [gz* dS.

)

d) Evaluate 222 + 3y3) dS.
S

18.[R] An electric field radiates power at the rate of k(sin?(¢)/p? units per square
meter to the point P = (p, 0, ¢). Find the total power radiated to the sphere p = a.

19.[R] A sphere of radius 2a has its center at the origin of a rectangular coordinate
system. A circular cylinder of radius a has its axis parallel to the z-axis and passes
through the z-axis. Find the area of that part of the sphere that lies within the
cylinder and is above the xy plane.

Consider a distribution of mass on the surface S. Let its density at P be o(P). The
moment of inertia of the mass around the z-axis is defined as [¢(z*+y?)o(P) dS.
Exercises [20] and [21] concern this integral.

20.[R] Find the moment of inertia of a homogeneous distribution of mass on the
surface of a ball of radius @ around a diameter. Let the total mass be M.

21.[R] Find the moment of inertia about the z-axis of a homogeneous distribution
of mass on the triangle whose vertices are (a,0,0), (0,b,0), and (0,0,c). Take a, b,
and c to be positive. Let the total mass be M.

22.[R] Let S be a sphere of radius a. Let A be a point at distance b > a from the
center of S. For P in S let 6(P) be 1/q, where ¢ is the distance from P to A. Show
that the average of §(P) over S is 1/b.
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23.[R] The data are the same as in Exercise 22/ but b < a. Show that in this case
the average of 1/q is 1/a. (The average does not depend on b in this case.)

Exercises [24] to [20] concern integration over the curved surface of a cone. Spherical
coordinates are also useful for integrating over a right circular cone. Place the origin
at the vertex of the cone and the “¢ = 0” ray along the axis of the cone, as shown
in Figure[17.7.8|a). Let o be the half-vertex angle of the cone.

On the surface of the cone ¢ is constant, ¢ = «, but p and € vary. A small “rectan-
gular” patch on the surface of the cone corresponding to slight changes df and dp
has area approximately

(psin(a) df) dp = psin(a) dp db.
See Figure[17.7.8]) So we may write
( g y

dS = psina dp db.

ch16/f16-7-9

Figure 17.7.8:
24.[R] Find the average distance from points on the curved surface of a cone of
radius a and height h to its axis.

25.[R] Evaluate [ 2? dS, where S is the entire surface of the cone shown in Fig-

ure [17.7.8(b), including its base.

26.[R] Evaluate |, s 22 dS, where S is the curved surface of the right circular cone
of radius 1 and height 1 with axis along the z-axis.

Integration over the curved surface of a right circular cylinder is easiest in cylindrical
coordinates. Consider such a cylinder of radius @ and axis on the z-axis. A small
patch on the cylinder corresponding to dz and df has area approximately dS =
a dz df. (Why?) Exercises [27] and |28 illustrate the use of these coordinates.

27.[R] Let S be the entire surface of a solid cylinder of radius a and height h. For
P in S let f(P) be the square of the distance from P to one base. Find [ f(P) dS.
Be sure to include the two bases in the integration.
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28.[R] Let S be the curved part of the cylinder in Exercise Let f(P) be the
square of the distance from P to a fixed diameter in a base. Find the average value
of f(P) for points in S.

29.[R] The areas of the projections of a small flat surface patch on the three coor-
dinate planes are 0.01, 0.02, and 0.03. Is that enough information to find the area
of the patch? If so, find the area. If not, explain why not.

30.[R] Let F describe the flow of a fluid in space. (See Section for fluid flow
in a planar region.) F(P) = 6(P)v(P), where §(P) is the density of the fluid at P
and v(P) is the velocity of the fluid at P. Making clear, large diagrams, explain
why the rate at which the fluid is leaving the solid region enclosed by a surface S is
/ s F-n dS, where n denotes the unit outward normal to S.

31.[R] Let S be the smooth surface of a convex body. Show that [ zcos(y) dS is
equal to the volume of the solid bounded by &. HINT: Break S into two parts. In
one part cos(y) is positive; and the other it negative.

32.[M] Let R(z,y,z) be a scalar function defined over a closed surface S. (See

Figure [17.7.9])
(a) Show that

/ R(x,y, 2) cos(y) dS = / (P(2,,22) — Play, 21)) dA,
S A

where A is the projection of S on the zy plane and the line through (x,y,0)
parallel to the z-axis meets S at (z,y, z1) and (z,y, z2), with z; < 2.

(b) Let S be a surface of the type in (a). Evaluate [qxcos~y dS.

Figure 17.7.9:
33.[C]
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(a) Let g be a differentiable function such that g((z + y)/2) = ((g9(x) + g(y))/2
for all z and y. Show that g(z) = kx + ¢ for some constraints k£ and c.
HinT: Differentiate.

(b) Let f be a differentiable function such that (z+y)f(z+vy)+(x—y)f(zr—y) =
2z f(x) for all x and y. Deduce that there are constraints k& and ¢ such that
fx)=k+c/z.

34.[C] (Suggested by Exercises 22 and [23]) The function f(z) = 1/z has the
remarkable property that the average value of f(d(P)) over a sphere is the same
as f(H). Here d(P) is the distance from P to a fixed point at a distance H for
the center of a sphere, of radius a, a < H. Show that the only functions with this
property have the form k + ¢/x for some constraints k& and ¢. HINT: Use part of
the Fundamental Theorem of Calculus to remove integration. Then the Exercise
many come in handy.
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Figure 17.8.1:

17.8 Magnification, Jacobian, and Change of
Coordinates

We now consider functions whose domain and range are parts of planes, curved

surfaces, or spatial regions. Of particular interest is how much they magnify

or shrink the areas (or volumes) of small regions. This magnifying factor

will be used in Chapter to simplify some definite integrals over two- and

three-dimensional sets.
Throughout we assume the functions have continuous derivatives.

Mappings

Figure 17.8.2:

EXAMPLE 1 Let F be the mapping that assigns to the point (u,v) the
point (2u, 3v).

(a) Describe the mapping geometrically.
(b) Find the image of the line v = u.

(c) Find the image of the square in the uv-plane whose vertices are (0,0),
(1,0), (1,1), and (0, 1).

SOLUTION

(a) In this case, x = 2u and y = 3v. The table below records the effect of the
(w,v) (0,0) (1,0) (1,1) (0,1)

mapping on the points listed in (c): (2u,30) | (0,0) (2,0) (2,3) (0,3)

In the notation F'(u,v) = (x,y), these data read

F(0,0) = (2:0,3-0) = (0,0); F(1,0) = (2-1,3:0) = (2,0); F(1,1) = (21,31) = (:
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Note that the first coordinate of (x,y) = F(u,v) is * = 2u, twice the
first coordinate of (u,v). Thus the mapping magnifies horizontally by a
factor of 2. Similarly, it stretches vertically by a factor of 3. This causes
a six-fold magnification of areas.

Let P = (u,v) be on the line v = u. Then F(P) = F(u,v) = (z,y), with
x = 2u and y = 3v. Thus

x Yy
_ — d p— —_—.
u 5 an v 3
Since v = u,
Yy T o 3
S == r = —.
372 Y73

The image of the line v = u in the uv-plane is the line y = 3x/2 in the

xy-plane. (See Figure|17.8.3])

Figure 17.8.3:

A similar argument shows that for this mapping the image of any line
Au + Bv 4+ C = 0 in the uv-plane is a line in the zy-plane, namely, the
line Ax/2 + By/3+ C = 0.

If P is a point in the square R whose vertices are
(0,0) (1,0), (1,1), (0,1),

then the image of P is a point in the rectangle S whose vertices are
(0,0) (2,0), (2,3), (0,3).

(See Figure [17.8.4])

Think of (u,v) as a point on a slide and (2u,3v) as its image on the

screen. Then the mapping F' projects the square R on the slide onto a
rectangle S on the screen. (See Figure|17.8.5])
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Summary
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EXERCISES for Section 17.8 Key: R-routine, M—moderate, C—challenging

In Exercises [I] to [4] compute mp by the mappings at the given points in the uv-
plane.

1.[R] F(u,v) = (uv,v?), u, v >0, at (a) (1,2) and (b) (3,1).

2.[R] F(u,v) = (1/u,1/v), u, v >0, at (a) (2, 3) and (b) (3.4).

3.[R] F(u,v) = (e“cosv,e*sinv), 0 < vL[2], at (a) (1,7/4) and (b)
(2,7/6).

211[13% F(u,v) = (u/(u?+v?),v/(u?+0v?)), u? +v? # 0, at (a) (3,1) and (b)

5.[R] Let a, b, ¢, and d be constants such that ad — be # 0. Let
x = au + bv, y = cu+ dv.

Show that the determinant Jacobian of the mapping is ad — be at all points.

6.[R] The magnification of a mapping is 3 at (2,4). Let R be a small region around
(2,4) of area 0.05. Approximately, how large is the image of R under the mapping?
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17.9 Moments, Centers of Mass, and Centroids

Now that we can integrate over planar regions, surfaces, and solid regions, we
can define and calculate the center of mass of a physical object. The center of
mass is important in the eyes of a naval architect, who wants his ships not to
tip over easily. A pole vaulter hopes that as she clears the bar her center of
mass goes under it. Archimedes, the first person to study the center of mass,
was interested in the stability of floating paraboloids.

The Center of Mass

A small boy on one side of a seesaw (which we regard as weightless) can
balance a bigger boy on the other side. For example, the two boys in Fig-
ure balance. (According to physical laws, each boy exerts a force on the
seesaw, due to gravitational attraction, proportional to his mass.)

The small mass with the long lever arm balances the large mass with the Figure 17.9.1:
small lever arm. FEach boy contributes the same tendency to turn-but in
opposite directions.

This tendency is called the moment:

Mass of 41 pourls Wass of 90 pounds
-

S
Iy

[ -
- feer P

Moment = (Mass) - (Lever arm),

where the lever arm can be positive or negative. To be more precise, introduce
on the seesaw an z-axis with its origin 0 at the fulcrum, the point on which
the seesaw rests. Define the moment about 0 of a mass m located at the point
x on the x-axis to be the product mz. Then the bigger boy has a moment
(90)(4), which the smaller boy has a moment (40)(—9). The total moment of
the lever-mass system is 0, and the masses balance. (See Figure ) L N v e [(medim)

If a mass m is located on a line with coordinate x, we define its moment ’
about the point having coordinate k as the product m(z — k).

Now consider several point masses mi, ms, ..., m;. If mass m; is located at
z;, with ¢ = 1, 2, ..., n, then >  m;(x; — k) is the total moment of all the
masses about the point k. If a fulcrum is placed at k, then the seesaw rotates
clockwise if the total moment is greater that 0, rotates counterclockwise if it is

less than 0, and is in equilibrium if the total moment is 0. See Figure|17.9.3,
o)

Figure 17.9.2:

To find where to place the fulecrum so that the total tendency to turn is 0,

we find k such that . "
i=1 \

n n
i=1 i=1

we see that Figure 17.9.3:

Writing this as
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k= %ﬂ (17.9.1)
i=1 T

The number k given by is called the center of mass or center of
gravity of the system of masses. It is the point about which all the masses
balance. The center of mass is found by dividing the total moment about O by
the total mass. It is usually denoted Z.

Figure 5

Figure 17.9.4:

Finding the center of mass of a finite number of “point masses” involves
only arithmetic, no calculus. For example, suppose three masses are placed
on a seesaw as in Figure (a). Introduce an z-axis with origin at mass
my; = 20 pounds. Two additional masses are located at x5 = 4 feet and
x3 = 14 feet with masses mo = 10 pounds and ms = 50 pounds, respectively.
The total moment about x = k is

M = 20(0 — k) + 10(4 — k) + 50(14 — k) = 740 — 80k.
This moment vanishes when M = 0, that is, when k = 740/80 = 9.25.

This is consistent with the formula for the center of mass:

mizy + moxa +marz  0+40+700 740 9.95
mi+me+mg 10420450 &0 T

T =

The seesaw balances when the fulcrum is placed 9.25 feet from the first
mass. (See Figure [17.9.4(b).)

Now let us turn our attention to finding the center of mass of a continuous
distribution of matter in a plane region. For this purpose, we consider double
integrals.

Let R be a region in the plane occupied by a thin piece of metal whose
density, o(P), varies. Let L be a line in the plane, as shown in Figure[17.9.5(a).
We will find a formula for the unique line parallel to L, around which the mass
in R balances.
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Figure 17.9.5:

To begin, let L’ be any line parallel to L. We will compute the moment
about L’ and then see how to choose L’ to make that moment equal to 0. To
compute the moment of R about L', introduce an z-axis perpendicular to L
with its origin at its intersection with L. Assume that L’ passes through the
r-axis at the pointz = k, as in Figure (b) In addition, assume that
each line parallel to L meets R either in a line segment or at a point on the
boundary of R. The lever arm of the mass distributed throughout R varies
from point to point.

We partition R into n small regions Ry, R, ..., R,. Call the area of R;, A;.
In each of these regions the lever arm around L’ varies only a little. So, if we
pick a point P, in Ry, P, in Ry, ..., P,, in R,, and the z-coordinate of P; is
x;, then

(w; — k) o(P)A;

—— ——

lever arm mass in R;
is a local estimate of the turning tendency.

Thus

n

> (zi = k)o(P)A; (17.9.2)

=1

would presumably be a good estimate of the total turning tendency around
L’. Taking the limit of (17.9.2)) as all R; are chosen smaller and smaller, we
expect

/ (z — k)o(P) dA (17.9.3)

to represent the turning tendency of the total mass around L’. The quantity
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(117.9.3)) is called the moment of torque of the mass distribution around L'.

EXAMPLE 1 Let R be the region under y = z? and above [0,1] DOUG
with the density o(z,y) = zy. Find its moment around the line x = 1/2.

SOLUTION R is shown in Figure [17.9.6f The moment ((17.9.3|) equals

4

Figure 17.9.6:

[ (e Yo 1o
R

We evaluate this double integral by the iterated integral

2

e

0 0

See Exercise . The first integration gives

2 2

7(96_%)@@ = (1‘—1/2)96/ydy:(T

The second integration is

1 1
(a: — l) x® 228 — P 5
2 = der = —.
2 4 168
0 0

Since the total moment (|17.9.4)) is positive, the object would rotate clockwise
around the line z = % o

December 4, 2010 Calculus



§ 17.9 MOMENTS, CENTERS OF MASS, AND CENTROIDS

1487

Now that we have a way to find the moment around any line parallel to
the y-axis we can find the line around which the moment is zero, the so-called
“balancing line.” We just solve for k£ in the equation

/(x —k)o(P) dA =0.

R

Thus
/a:a(P) A = k/a(P) dA,

from which we find that

_ Jrpro(P) dA

= (17.9.5)

The denominator is the total mass. The numerator is the total torque. So we
can think of k£ as “the average lever arm as integrated by the density.”

That is therefore a unique balancing line parallel to the y axis. Call its
x-coordinate T (read: “x bar”). Similarly, there is a unique balancing line
parallel to the x axis. Call its y-coordinate 7. The point (Z,7) is called the
center of mass of the region R. We have:

The center of mass of a region R with density o(P) has coordinates (Z,%)

where
fR xo(P) dA o _ fR yo(P) dA
[.o(P) dA Y= a(PydA”

T =

The integral [, zo(P) dA is called the moment of R around the y-axis,
and is denoted M,. Similarly, M, = [,yo(P) dA.

If the density o(P) is constant, say, equal to 1 everywhere in R, then the
two equations reduce to

dA dA
fo and Y= fRy .
fR dA fR dA

In this case the center of mass R is also called the centroid of the region, a
purely geometric concept:

T =
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Figure 17.9.7:

The centroid of the plane region R has the coordinates (z,y) where

[y dA
Area of R)’

fo dA
Area of R

T = and y= (17.9.6)

EXAMPLE 2 Find the center of mass of the region in Example [T}
SOLUTION The density at (z,y) in R is given by 0 = xy. We compute three
double integrals: the mass [, 2y dA and the two moments M, = [, z(zy) dA
and M, = [, y(zy) dA.

We have
6
1
/xyd x7y dy | dx 2daz T

R 0 0 0

Then
1 /1 .
T 1
/ Ty / / xy dy x / 5 4T =15
R 0 \o 0
Finally,
0 /0 L
9 9 T 1
dA = d dr = | — dx = —.
/ Ty / / xy” dy x / 5 dr=o,
R 1 \1 0
Thus . .
7 O 57 1
=2 =_  and gy=2=_.
! 2
It is not surprising that T is greater than 1/2, since in Example [17.9.1] we
found that the object rotates clockwise around the line x = 1/2. o

An Important Point About an Important Point
We defined the center of mass (Z,7) by first choosing an xy coordinate system.
What if we choose an z'y’ coordinate system at an angle to the zy coordinate
system? Would the center of mass computed in this system, (Z',7’) be the
same point as (7,y)? See Figure . Fortunately, it is, as Exercise
shows.
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Shortcuts for Computing Centroids

Assume that R is the region under y = f(z) for = in [a, b]. Then the moment
about the z-axis is

M, = /y dA.
R
Thus
b f(z) b () | b
x
M, = /(/ydy)da::/ 5 dxzﬁ/(f(x))de
a 0 a a
Thus, by ((17.9.6))
1 b 2
5 d
5= V@) do (17.9.7)
Area of R
T —
EXAMPLE 3 Find the centroid of the semicircular region of radius a shown / \\
R .
in Figure [I7.9.8 / \

SOLUTION By symmetry, 7 = 0. i ] |
To find 7, use (17.9.7). The function f in this case is given by the formula ' )

f(x) = va? — 22, an even function. The moment of R about the z-axis is Figure 17.9.8:
(V2= 22)2 r o2 9 r o2 9
wdm — R N
2 2 2
“a “a 0
a 3 a
= /(a2 — %) dx = (a% — x—)
3 /1o
3
3_@a 2 3
= (a°——=)—0==a
( 3 ) 3
Thus Since 4/(37) ~ 0.42, the
o §a3 B %a?’ B 4_a cerr:t.erhof gfra\l;ity og f2is at
y_AreaofR_lsz_?ﬂr' a height or about 0.42a.
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Figure 17.9.9:

Centers of Other Masses

We developed the ideas of moments and centers of mass for masses situation
in a plane. The definition generalizes easily to masses distributed on a curve
(such as a wire) or in space (such as a potato).

In the case of a curve, the curve would have a linear density A(P). A short
piece around P of length As would have mass approximately A\(P)As. Thus,
the mass and moments of the curve would be

M = /)\(P) ds, M, = /x)\(P) ds, and M, = /y)\(P) ds.
C c c

We state the definition in the case of a solid object of density A\(P) occu-
pying the region R. We assume an xyz-coordinate system. The total mass
1s

M:/é(P) qv.

Now, there are three moments — one around each of the three coordinate
planes:

M,, = / 25(P) dV, M,, = / ys(P) dV, M,, / zp dV.

R R R

The center of mass is (T,7,z), where
5(P) dV 5(P) d 5(P) dV
overlinex:m#, y:%, 5 — Jr? ](\4) .

If 6(P) =1 for all P in R, the center of mass is called the centroid. In this
case the mass is the same as the volume.

EXAMPLE 4 Find the centroid of a hemisphere of radius a.
SOLUTION We place the origin of an zyz-coordinate system at the center
of the hemisphere, as in Figure [17.9.9]

First of all, by symmetry, the centroid must be at the z-axis. mnotelf the
centroid were not at the z-axis, you would get two centroids for the same object.
(If you spin the hemisphere about the z-axis you get the same hemisphere back,
which must have the same centroid.)

So T =y = 0. Calling the hemisphere R, we have

/ 2 dV
Volume of R’

The volume of the hemisphere is half that of a ball, (2/3)7a®. To evaluate the
moment || 2 AV, we bring in an iterated integral in spherical coordinates:

7 =

2r /2 a

/z qv = / / /(pcos(¢))p2 sin(6) dp d df.
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Straightforward computations show that

4

Ta

dV = —.
/ZV 1

Thus

The centroid is (0,0, 32). o

EXAMPLE 5 Find the centroid of a homogeneous cone of height A and
radius a.
SOLUTION As we just saw for the sphere in Example 4 symmetry tells us
the centroid lies on the axis of the cone.
Introduce a spherical coordinate system with the origin at the vertex of the
cone and with the axis of the cone lying on the ray ¢ = 0, as in Figure|17.9.10
The half-vertex angle is arctan(a/h). The plane of the base of the cone is
z = h (in rectangular coordinates), hence

pcos(¢p) = h.

In spherical coordinates, the cone’s description is

0<0<2m, 0 < ¢ < arctan(a/h), 0 <p < h/cos(p).

To find the centroid of the cone we compute |’ g 2 dV and divide the results
by the volume of the cone, which is %W&Qh.
Now

2m arctan(a/h) h/ cos(¢)

Jzav=[ [ [ peostortsin(o) o do as

0 0 0

For the first integration, ¢ and € are constant; hence

h/ cos(¢) h/ cos(¢) h4 )
peos(o)sin(o) dp = cos(@)sin(o) [ dp = 4—82;
0 0
The second integration is
arctan(a/h) arctan(a/h)
/ h*sin(¢) o = ht / sin(¢) i = a’h?
4 cos3(o) 4 cos3(¢) 8
0 0
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curve (C') solid (R)
density A(P) o(P)
M | [ MP)ds | [,6(P)dV
My, | [,zA(P)ds | [qzd(P) dV
M. | JoyAP) ds | [¢yd(P) dV
My | Jo2MP) ds | [(26(P) dV

The final integral is simply:

2w

/azh2 50— a2h227r _ 7ra2h2.

8 8

4

0
Thus,

JrzdV (ﬁ) :%.

Volume of R (%)

Z =

The centroid of a cone is three-fourths of the way from the vertex to the
base. o

Summary

We defined the moment about a line and used this concept to define the center
of mass for a plane distribution of mass. The moment of a mass about a line
L indicates the tendency of the mass to rotate about the line L. The center
of mass for a region R is the point in the region where the region balances.

o The moment about the y-axis, M,, is [, z0(P) dA.

e The moment about the z-axis, M,, is [, yd(P) dA.

Then, the center of mass is (Z,y) where

M, M,
Mass’y ~ Mass’

T =

If the density is constant, we have a purely geometric concept,

fR:C dA _ fRy dA
Area ofR’y ~ Areaof R’

T =

These definitions generalize to curves and solids.
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EXERCISES for Section 17.9 Key: R-routine, M—moderate, C—challenging

1.[R]
(a) How would you define the centroid of a curve? Call its (linear) density A\(P).

(b) Find the centroid of a semicircle of radius a.

2.[R] Carryout the integrations in Example
3.[R] Carryout the “straightforward calculations” in Example
4.[R] Provide the details needed to complete the integrals in Example

5.[R] Example 4] showed that the centroid of a hemisphere is less than halfway
from the center to its surface. Why is that to be expected?

6.[M] If R is the region below y = f(z) and above [a, b], show that

f(z
_ flaf(x) dx
v Area of R

7.]M] The corners of a triangular piece of metal of constant density 1 are (0,0),

(1,0), and (0,2).
(a) Is the line y = 112/5 a balancing line?
(b) If not, if the metal rests on this line which way would it rotate?

DEFINITION (Section of a region) Let R be a convex set in the plane.
A section of R is a part of R that is bounded by a chord and part of the

the boundary, as shown as Figure|17.9.11

Calculus December 4, 2010
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Figure 17.9.11:

8.[C] Consider a convex set R in the plane furnished with a density. Show that
different sections have different centers of gravity.

9.[C] (See Exercise[8]) Is every point in R that is not on the boundary the center
of mass of some section of R?

10.[C] Archimedes (287-212 B.C.) investigated the centroid of a section of a

parabola. Consider the parabola y = z2. The typical section is shown in Fig-

ure M is the midpoint of the chord and N is the point on the parabola di-

rectly below M.

Figure 17.9.12:
He showed, without calculus, that the centroid is on the line M N, three-fifths of the
way from N and M. Obtain his result with the aid of calculus.

11.[C] (See Exercise[10]) Is every point in the region bounded by the parabola the
centroid of some section?

12.[R] Find the centroid of a solid paraboloid of revolution. This is the region
above z = 22+ y? and below the plane z = ¢. Archimedes solved this problem with-
out calculus and used the result to analyze the equilibrium of a floating paraboloid.
(If it is slightly tilted, will it come back to the vertical or topple over?) For details as
how he did this 2200 years ago see S. Stein, Archimedes: What Did He Do Besides
Cry Eureka?, Math. Assoc. America, 1999.

13.[C] (See Exercise[12]) The plane z = c in Exercise [L2] is perpendicular to the
axis of the paraboloid. Archimedes was also interested in the case when the plane is
not perpendicular to the axis. Find the centroid of the region below the tilted plane
z = cy and above the paraboloid z = z2 + y2.

14.[R] Using cylindrical coordinates, find Z for the region below the paraboloid
z = 22 +y? and above the disk in the 70 plane bounded by the circle r = 2. (Include
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a drawing of the region.)

15.[R] Find the z coordinate, Z, of the centroid of the part of the saddle z = zy
that lies above the portion of the disk bounded by the circle 22 +y? = a? in the first
quadrant.

16.[M] A plane distribution of matter occupies the region R. It is cut into two
pieces, occupying regions R and Ra, as in Figure (a). The part in R; has
mass M; and centroid (Z1,7;). The part in Ry has mass My and centroid (T2, 7s).
Find the centroid (7,7y) of the entire mass, which occupies R. [Express (7,y) in
terms of My, My, T1, T2, J; and Ty.]

(a) (b)

Figure 17.9.13:

17.]M] Use the formula in Exercise [16| to find the center of mass of the homoge-
neous lamina shown in Figure [17.9.13(b).

In Exercises (18] to [25[ find the centroid of the given regions R. (Exercises |22 to
require integral tables or techniques of Chapter )
18.[R] R is bounded by y = 22 and y = 4.

19.[R] R is bounded by y = z* and y = 1.

20.[R] R is bounded by y = 4z — 22 and the z-axis.

21.[R] R is bounded by y =z, x + y = 1, and the z-axis.

22.[R] The region bounded by y = e® and the z-axis, between the lines x = 1 and
T =2.

23.[R] The region bounded by y = sin(2x) and the z-axis, between the lines = = 0
and x = /2.

24.[R] The region bounded by y = v/1 + x and the z-axis, between the lines x = 0
and x = 3.

25.[R] The region bounded by y = In(z) and the z-axis between the lines x = 1
and x = e.

Exercises 20 to [28| concern Pappus’s Theorem, which relates the volume of a solid of
revolution to the centroid of the planar region R that is revolved to form the solid.
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Theorem 17.9.1 (Pappus). Let R be a region in the plane and L a line in the plane
that does not cross R (though it can touch R at its border). Then the volume of the
solid formed by revolving R about L is equal to the product

(Distance the centroid of R is rotated) - (Area of R) .
26.[C]
(a) Prove Pappus’s Theorem

(b) Use Pappus’s Theorem to find the volume of the torus or “doughnut” formed
by revolving a circle of radius 3 inches about a line 5 inches from its center.

27.[C] Use Pappus’s Theorem to find the centroid of the half disk R of radius a.
28.[C] Use Pappus’s Theorem to find the centroid of the right triangle in Fig-

urel|l7.9.14

Figure 17.9.14:

29.[M] Consider a distribution of mass in a plane region R with density o(P) at
P. Use the following steps to show that any line in the plane that passes through
the center of the mass is a balancing line.

(a) For convenience, place the origin of the xy-coordinate system at the center
of mass. That is, assume (Z,7) = (0,0). Show that [pzo(P) dA = 0 and
Jpyo(P) dA =0.

(b) Let L be any line ax + by = 0 through the origin. Show that the moment of

the mass about L is
ax + by

—————=0(P) dA.
VaZ L2
R VT

HINT: What is the distance from a point (x,y) in R to the line ax + by = 07
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(¢) From (a) and (b) deduce that the moment of the mass about L is 0. Thus
all balancing lines for the mass pass through a single point. Any two of
them therefore determine that point, which is called the center of mass. It is
customary to use the two lines parallel to the x and y axes to determine that
point.

30.[M] (See Exercise29]) Show that the moment of a mass occupying a solid region
R about any plane through its center of mass is 0.

31.[C] This exercise concerns hydrostatic pressure. (See Section [7.6])

(a) Show that the pressure of water against a submerged vertical surface occupy-
ing the plane region R equals the pressure at the centroid of R times the area
of R.

(b) Is the assertion in (a) correct if R is not vertical?

In each of Exercises [32] to 39| find the center of mass of the lamina occupying the
given region and having the given density.
32.[R] The triangle with vertices (0,0), (1,
33.[R] The triangle with vertices (0,0), (2,
34.[R] The square with vertices (0,0), (1,
to yarctan(z).

35.[R] The finite region bounded by y = 1 + z and y = 27; density at (z,y) is
T +y.

36.[R] The triangle with vertices (0,0), (1,2), (1,3); density at (x,y) is zy.
37.[R] The finite region bounded by y = 22, the z-axis, and x = 2; density at (z,y)
is e*

38.[R] The finite region bounded by y = 22 and y = z + 6, situated to the right of
the y-axis; density at (z,y) is 2z.

39.[R] The trapezoid with vertices (0,0), (3,0), (2,1), (0,1); density at (z,y) is
sin(z).

), (0,1)
), (1,1)
, (1,1), (0,1); density at (x,y) equals

; density at (z,y) is = + y.

0
0 ; density at (z,y) is y.
)

40.[C] Let R be a region in a plane and P a point a distance h > 0 from the plane.
P and R determine a cone with base R and vertex P, as shown in Figure
Let the area of R be A. What can be said about the distance of the centroid of the
cone from the plane of R?

(a) What is that distance in the case of a right circular cone?

(b) Experiment with another cone with any convenient base of your choice.

Calculus December 4, 2010



1498

CHAPTER 17 PLANE AND SOLID INTEGRALS

(c) Make a conjecture.

(d) Explain why the conjecture is true.

-

Figure 17.9.15:

In Exercises 1] and 2] find z for the given surfaces.
41.[]M] The portion of the paraboloid 2z = 2% + y? below the plane z = 9.

42.[M] The portion of the plane x + 2y + 3z = 6 above the triangle in the zy plane
whose vertices are (0,0), (4,0), and (0, 1).

43.[R] In a letter of 1680 Leibniz wrote:

Huygens, as soon as he had published his book on the pendulum,
gave me a copy of it; and at that time I was quite ignorant of Cartesian
algebra and also of the method of indivisibles, indeed I did not know
the correct definition of the center of gravity. For, when by chance I
spoke of it to Huygens, I let him know that I thought that a straight line
drawn through the center of gravity always cut a figure into two equal
parts; since that clearly happened in the case of a square, or a circle,
an ellipse, and other figures that have a center of magnitude. I imagine
that it was the same for all other figures. Huygens laughed when he
heard this, and told me that nothing was further from the truth.

(Quoted in C.H. Edwards, The Historical Development of the Calculus, p. 239,
Springer-Verlag, New York, 1979.)
Give an example showing that “nothing is further from the truth.”

44.[R] Let a be a constant that is not less than 1. Let R be the region below
y = x®, above the x-axis, and between the lines x = 0 and x = 1.

(a) Sketch R for a large value of a.
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(b) Compute the centroid (Z,7) of R.
(¢) Find limg_,00 T and limg—00 3.

(d) For large a, does the centroid of R lie in R?

45.[C] (Contributed by Jeff Lichtman) Let f and g be two continuous functions
such that f(x) > g(z) > 0 for x in [0,1]. Let R be the region under y = f(z) and
above [0, 1]; let R* be the region under y = g(z) and above [0, 1].

(a) Do you think the center of mass of R is at least as high as the center of mass
of R*? (An opinion only.)

(b) Let g(z) = . Define f(z)tobe 3 for 0 <z < % and f(z)tobexif <z <1.
(Note that f is continuous.) Find 7 for R and also for R*. (Which is larger?)

(c) Let a be a constant, 0 < a < 1. Let f(z) =a for 0 <z <a and let f(z) ==
for a < x < 1. Find 3 for R.

(d) Show that the number a for which § defined in part (c) is a minimum is a
root of the equation 23 + 3z — 1 = 0.

(e) Show that the equation in (d) has only one real root q.

(f) Find ¢ to four decimal places.

46.[M] This exercise shows that the three medians of a triangle meet at the centroid
of the triangle. (A median of a triangle is a line that passes through a vertex and
the midpoint of the opposite edge.)

Let R be a triangle with vertices A, B, and C. It suffices to show that the centroid
of R lies on the median through C and the midpoint M of the edge AB. Introduce
an xy coordinate system such that the origin is at A, and B lies on the z-axis, as in

Figure
(a) Compute (7,7).
(b) Find the equation of the median through C' and M.
(c) Verify that the centroid lies on the median computed in (b).

(d) Why would you expect the centroid to lie on each median? (Just use physical
intuition.)
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Figure 17.9.16:

47.[R] Cut an irregular shape out of cardboard and find three balancing lines for
it experimentally. Are they concurrent; that is, do they pass through a common
point?

48.[R] Let f and g be continuous functions such that f(z) > g(z) > 0 for z in
[a,b]. Let R be the region above [a, b] which is bounded by the curves y = f(z) and

y=g(z).

(a) Set up a definite integral (in terms of f and g¢) for the moment of R about
the y-axis.

(b) Set up a definite integral with respect to x (in terms of f and g) for the
moment of R about the z-axis.

In Exercises [49| to [52] find (a) the moment of the given region R about the y-axis,
(b) the moment of R about the z-axis, (c) the area of R, (d) 7, (e) y. Assume the
density is 1. (See Exercise [48])

49.[R] R is bounded by the curves y = 22, y = 2.

50.[R] R is bounded by y =z, y =2z, x =1, and = = 2.
51.[
52.[R] (Use a table of integrals or techniques from Chapter [8]) R is bounded by
the curves y = z — 1 and y = In(x), between x = 1 and = = e.

R
R] R is bounded by the curves y = 3* and y = 2” between x = 1 and = = e.
R

53.[]M] Which do you think would have the highest centroid? The semicircular
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wire of radius a, shown in Figure [17.9.17(a); the top half of the surface of a ball of
radius a, shown in Figure [17.9.17(b); the top half of a ball of radius a, shown in

Figure [17.9.17|(c).

Figure 17.9.17:

54.[C] Consider the parabolic surface z = 22 + y? below the plane za?.

Set up a double integral in the xy-plane for the moment about the xy plane.

(a
(

)
b) Express this integral as an iterated integral in polar coordinates.
(c) Evaluate the integral.

)

(d) Find the centroid of the (curved) surface.

Exercises [55] to [58] concern the moment of inertia. Note that if the object is homo-
geneous, has mass M and volume V, its density 6(P) is M/V.

55.[R] A homogeneous rectangular solid box has mass M and sides of lengths a,
b, and c. Find its moment of inertia about an edge of length a.

56.[R] A rectangular homogeneous box of mass M has dimensions a, b and ¢. Show
that the moment of inertia of the box about a line through its center and parallel
to the side of length a is M (b? + ¢%)/12.

57.[R] A right solid circular cone has altitude h, radius a, constant density, and
mass M.

(a) Why is its moment of inertia about its axis less that Ma??

(b) Show that its moment of inertia about its axis is 3Ma?/10.

58.[R] Let Py be a fixed point in a solid of mass M. Show that for all choices
of three mutually perpendicular lines that meet at Py the sum of the moments of
inertia of the solid about the lines is the same.

59.[C] [An exercise showing that the center of mass does not depend on the choice
of coordinates.]
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Tq remember these
formulas, be able to draw

Figures [17.5.T],akd[F7.S.2]

inc,uding the labels.

Figure 17.8.2:

17.S Chapter Summary

This chapter generalizes the notion of a definite integral over an interval to
integrals over plane sets, surfaces, and solids. These definitions are almost
the same, the integral of f(P) over a set being the limit of sums of the form
Y F(P) AA; YD f(P) AS;, or Y f(P) AV for integrals over plane sets,
surfaces, or solids, respectively.

If f(P) denotes the density at P, then in each case, the integrals give the
total mass.

The average value concept extends easily to functions of several variables.
For instance, if f(P) is defined on some plane region R, its average value over

R is defined as )
area(R) /f(P) dA.
R

Sometimes these “multiple integrals” (also known as “double” or “triple” in-
tegrals) can be calculated by repeated integrations over intervals, that is, as
“iterated integrals.” This requires a description of the region in an appropriate
coordinate system and replaces dA or dV by an expression based on the area
or volume of a small patch swept out by small changes in the coordinates, as
recorded in Table I7.S.1]

Coordinate System  Substitution
Rectangular (2-d) dA = dx dy
Rectangular (3-3) dV =dx dy dz

Polar dA =1 dr df
Cylindrical dV =r dr df dz
Cylindrical (surface) dS =1 df dz

Spherical dV = p*sin(¢) d¢ dp db

Spherical (surface)  dS = p?sin(¢) d¢ db

Table 17.5.1:

An integral over a surface S, fs f(P) dS, can often be replaced by an
integral over the projection of S onto a plane R, replacing dS by dA cos(v),
where v is the angle between a normal to S and a normal to R.

EXERCISES for 17.S Key: R-routine, M-moderate, C—challenging

1.[R] The temperature at the point (z,y) at time ¢ is T'(z,y,t) = e~ sin(x + 3y).
Let f(t) be the average temperature in the rectangle 0 < xz < 7, 0 < y < 7/2 at
time t. Find df /dt.

2.[R] Let f be a function such that f(—z,y) = —f(z,v).
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Key Facts
Formula Significance
| 1 dA Area of R
f R 1dV Volume of R
fﬁi(fof Cg‘ \j;gli;i 0?‘; Average value of [ over R

Jro(P) dAor [,6(P)dV Total mass of R, M (o and
0 denote density)

Moments, M, and M, about
x and y axes, respectively.
(A moment can be com-

puted around any line in the

[oyo(P) dA, [,za(P) dA

plane.)

I f ) dA, [, f(P)o(P) dV Moment of inertia around L

Where f ( ) is the square of the distance for planar and solid regions,

from P to some fixed line L respectively.

Jp2*0(P) dA, [,y°c(P) dA Second moments, M,, and
M, about x and y axes, re-
spectively.

%, % Center of mass, (Z,7)

J20(P) dV Moment M,

Jryd(P) dV Moment M,

Jpzo(P) dV Moment M,,

Aﬁ}z, Aﬁ, A;{?’) Center of mass of solid,
(7,9,2)

Table 17.S.2:

Relations Between Rectangular Coordinates and Spherical or Cylindrical
Coordinates

x = psin(¢) cos(d) = = rcos(d)
y = psin(¢)sin(d) y = rsin(0)
z = pcos(o) z=1z

Table 17.S.3:
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(a) Give some examples of such functions.

(b) For what type regions R in the zy plane is [, f(z,y) dA certainly equal to 07

3.[R] Find [(22y* 4+ 7) dA where R is the square with vertices (1,1), (—1,1),
(—=1,—1), and (1,—1). Do this with as little work as possible.

4.[R] Let f(z,y) be a continuous function. Define g(z) to be [, f(P) dA, where R
is the rectangle with vertices (3,0), (3,5), (z,0), and (z,5), x > 3. Express dg/dx
as a suitable integral.

5.[R] Let R be a plane lamina in the shape of the region bounded by the graph of
the equation r = 2asin(f) (a > 0). If the variable density of the lamina is given by
o(r,8) = sin(#), find the center of mass R.

In Exercises [6] to [9] find the moment of inertia of a homogeneous lamina of mass M
of the given shape, around the given line.
6.[R] A disk of radius a, about the line perpendicular to it through its center.

7.[R] A disk of radius a, about a line perpendicular to it through a point on the
circumference.

8.[R] A disk of radius a, about a diameter.
9.[R] A disk of radius a, about a tangent.

10.[C] Let S be the sphere of radius a and center at the origin. The integral

Js(xz +y?)dS can be done with little effort.
(a) Why is [qz2dS = 07

(b) Why is [ga2dS = [sy?dS = [522dS?
(c) Why is [s42dS = [5(a?/3)dS?

(d) Show that [g(zz +y?)dS = 4ma?/3.

11.[C] Let f(P) and g(P) be continuous functions defined on the plane region R.

(a) Show that
2
/f(P)g(P) dA | < /f(P)2 dA /g(P)2 dA
R R

R

HINT: Review the proof of the Cauchy-Schwarz inequality presented in the
CIE on Average Speed and Class Size on page [682
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(b) Show that if equality occurs in the inequality in (a), then f is a constant times
g.

12.[C] (Courtesy of G. D. Chakerian.) A solid region S is bounded below by the z—
y plane, above by the surface z = f(P), and the sides by the surface of a cylinder, as

shown in Figure|17.S.3

Figure 17.5.3:
The volume of S is V. If V is fixed, show that the top surface that minimizes the
height of the centroid of S is a horizontal plane. NOTE: Water in a glass illustrates
this, for nature minimizes the height of the centroid of the water. HINT: See Exer-

cise [[11

Exercises to explore the average distance for all points on a curve or in a
region. Recall that the distance from a point to a curve is the shortest distance
from the point to the curve.

13.[M] Find the average distance from points in a disk of radius a to the center of
the disk.

(a) Set up the pertinent definite integral in rectangular coordinates.
(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

14.[M] Find the average distance from points in a square of side a to the center of
the square.

(a) Set up the pertinent definite integral in rectangular coordinates.
(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).
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15.[M] Find the average distance from points in a ball of radius a to the center of
the ball.

(a) Set up the pertinent definite integral in rectangular coordinates.
(b) Set it up in spherical coordinates.

(c) Evaluate the easier integral in (a) and (b).

16.[M] Find the average distance from points in a cube of side a to the center of
the cube.

(a) Set up the pertinent definite integral in rectangular coordinates.
(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

17.[M] Find the average distance from points in a square of side a to the border
of the square.

(a) Set up the pertinent definite integral in rectangular coordinates.
(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

18.[M] Find the average distance from the points in a disk of radius a to the
circular border.

(a) Before doing any calculations, decide whether the average distance is greater
than a/2 or less than a/2. Explain how you made this decision.

(b) Carry out the calculation using a convenient coordinate system.

19.[C] Let A and B be two points in the zy-plane. A curve (in the zy-plane)
consists of all points P such that the sum of the distances from P to A and P to B
is constant, say 2a. Consider the distance from P to A as a function of arclength
on the curve. Find the average of that distance.
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Calculus is Everywhere # 22
Solving the Wave Equation

In the The Wave in a Rope Calculus is Everywhere in the previous chapter
we encountered the partial differential equation

O’y  10%

% — 6_2%' (C.22.1)

Now we will solve this equation to find y as a function of x and t. First, we
solve some simpler equations, which will help us solve ((C.22.1)).

EXAMPLE 6 Let u(x,y) satisfy the equation du/0x = 0. Find the form
of u(x,y).
SOLUTION  Since 0u/0x is 0, u(z,y), for a fixed value of y, is constant.
Thus, u(z,y) depends only on y, and can be written in the form h(y) for some
function h of a single variable.

On the other hand, any function u(z,y) that can be written in the form
h(y) has the property that du/Jdz = 0 is any function that can be written as
a function of y alone. o

EXAMPLE 7 Let u(z,y) satisfy

Pu
oxdy

(C.22.2)

Find the form of u(z,y).
SOLUTION We know that

8(2—;) B 92w
or  Oxdy

=0.

By Example [6]

g—z = h(y) for some function h(y).

By the Fundamental Theorem of Calculus, for any number b,

b b
u(x,b) —u(x,0) = / /h
0 0

Calculus December 4, 2010
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Figure C.22.1:

Let H be an antiderivative of h. Then

u(z,b) —u(z,0) = H(b) — H(0).

Replacing b by y shows that

u(x,y) = u(z,0) + H(y) — H(0).

That tells us that u(z,y) can be expressed as the sum of a function of x and

a function of vy,
(C.22.3)

o

u(z,y) = f(z)+9g(y).

We will solve the wave equation (C.22.1)) by using a suitable change of
variables that transforms that equation into the one solved in Example [7]
The new variables are

p=x+ct and q=1x— ct.

One could solve these equations and express x and t as functions of p and gq.
We will apply the chain rule, where y is a function of p and ¢ and p and q are
functions of z and ¢, as indicated in Figure[C.22.1] Thus y(z,t) = u(p, q).

Keeping in mind that

dp dp Jq dq
PR I FEa
we have
8y ou 8p ou 8(] ou N @
dr  Opdx  9dqoxr Op g
Then
oy _ 9 (ou ou
or2 Oz \Op 8q
0 (0Ou p
-~ Op (819 i ) ( )
82 2
(029 8p8Q) (361019 >
Thus o2 o9 o2 o
Yy U u u
= 2 . 22.4
oxr?  Op? + Opdq + 0q? (© )
A similar calculation shows that
Py, [(Fu Pu 0%
— = -2 . 22.
o2 (ap2 opdq | an) (C.225)
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Substituting (C.22.4]) and (C.22.5)) in (C.22.1]) leads to

0*u Pu  Pu 1, [ Pu  Du
+2 + 7. = () —2 +
op? opdq  0¢? c? op? Opdq  0¢?
which reduces to
0%u
4 =
Opdq
By Example (7] there are function f(p) and g(q) such that

0.

y(z,t) = ulp,q) = f(p) + 9(q).

or
y(x,t) = f(z +ct) + g(x — ct). (C.22.6)
The expression ((C.22.6)) is the most general solution of the wave equation
(1C.22.1)).

What does a solution (C.22.6)) look like? What does the constant ¢ tell us?
To answer these questions, consider just

y(x,t) = gz — ct). (C.22.7)

Here t represents time. For each value of t, y(z,t) = g(x — ct) is simply a

function of x and we can graph it in the xy plane. For ¢t = 0, ((C.22.7]) becomes

y(x,0) = g(x).

That is just the graph of y = g(z), whatever g is, as shown in Figure [C.22.2(a).

(a) (b)

Figure C.22.2: (a) t =0, (b) t = 1.

Now consider y(z,t) when ¢ = 1, which we may think of as “one unit of
time later.” Then

y=ylx,1)=g(x—c-1) =gz — ).

Calculus December 4, 2010
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The value of y(z,1) is the same as the value of g at x — ¢, ¢ units to the left
of x. So the graph at ¢ = 1 is the graph of f in Figure |C.22.2(a) shifted to the

right c units, as in Figure [C.22.2(b).
As t increases, the initial “wave” shown in Figure [C.22.2(a) moves further

to the right at the constant speed, ¢. Thus c tells us the velocity of the moving
wave. That fact will play a role in Maxwell’s prediction that electro-magnetic
waves travel at the speed of light, as we will see in the Calculus is Everywhere

at the end of Chapter

EXERCISES

1.[R] Which functions u(z,y) have both du/0x and du/dy equal to 0 for all x and
y?

2.[R] Let u(z,y) satisfy the equation §%u/0x? = 0. Find the form of u(x,y).
3.[R] Show that any function of the form (C.22.3|) satisfies equation (C.22.2]).
4.[R] Verify that any function of the form (C.22.6|) satisfies the wave equation.

5.[M] We interpreted y(z,t) = g(x — ct) as the description of a wave moving with
speed c to the right. Interpret the equation y(x,t) = f(x + ct).

6.[M] Let k be a positive constant.

(a) What are the solutions to the equation

2 2
Py _ %y,
Ox? ot?

(b) What is the speed of the “waves”?

December 4, 2010 Calculus



Chapter 18

The Theorems of Green, Stokes,
and Gauss

Imagine a fluid or gas moving through space or on a plane. Its density may
vary from point to point. Also its velocity vector may vary from point to point.
Figure [18.0.1] shows four typical situations. The diagrams shows flows in the
plane because it’s easier to sketch and show the vectors there than in space.

@ () C (@)

Figure 18.0.1: Four typical vector fields in the plane.

The plots in Figure [18.0.1| resemble the slope fields of Section but now,
instead of short segments, we have vectors, which may be short or long. Two
questions that come to mind when looking at these vector fields:

e For a fixed region of the plane (or in space), is the amount of fluid in the
region increasing or decreasing or not changing?

e At a given point, does the field create a tendency for the fluid to rotate?
In other words, if we put a little propeller in the fluid would it turn? If
s0, in which direction, and how fast?

This chapter provides techniques for answering these questions which arise
in several areas, such as fluid flow, electromagnetism, thermodynamics, and

1511
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gravity. These techniques will apply more generally, to a general vector field.
Applications come from magnetics as well as fluid flow.

Throughout we assume that all partial derivatives of the first and second
orders exist and are continuous.

December 4, 2010 Calculus
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18.1 Conservative Vector Fields
In Section [15.3| we defined integrals of the form

/(P dr+Q dy+ R d2). (18.1.1)
C

where P, ), and R are scalar functions of x, y, and z and C' is a curve in
space. Similarly, in the xy-plane, for scalar functions of x and y, P and @, we
have

/(P dr +Q dy).

c

Instead of three scalar fields, P, @), and R, we could think of a single vector
function F(z,y,2) = P(z,y,2)i+ Q(z,y, 2)j + R(x,y, z)k. Such a function is
called a vector field, in contrast to a scalar field. It’s hard to draw a vector
field defined in space. However, it’s easy to sketch one defined only on a
plane. Figure [18.1.1| shows three wind maps, showing the direction and speed
of the winds for (a) the entire United States, (b) near Pierre, SD and (c) near
Tallahassee, FL on April 24, 2009.

Figure 18.1.1: Wind maps showing (a) a source and (b) a saddle. Ob-
tained from www.intellicast.com/National/Wind/Windcast.aspx on April
23, 2009. [Another idea for these sample plots is to use maps from Hurricane
Katrina.]

Introducing the formal vector dr = dxi+dyj+dzk, we may rewrite (|18.1.1]

/F- dr.

c
The vector notation is compact, is the same in the plane and in space, and
emphasizes the idea of a vector field. However, the clumsy notations

as

/(P dz+Q dy+R dz) and /(P(x, Y, z) de+Q(z,y, z) dy+R(x,y, z) dz)

c c
do have two uses: to prove theorems and to carry out calculations.

Calculus December 4, 2010
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Note the sign change.

Conservative Vector Fields

Recall the definition of a conservative vector field from Section [[5.3

DEFINITION (Conservative Field) A vector field F defined in
some planar or spatial region is called conservative if

/F-dT:/F-dT

01 CQ

whenever (] and (5 are any two simple curves in the region with
the same initial and terminal points.

An equivalent definition of a conservative vector field F is that for any
simple closed curve C' in the region 550 F . dr =0, as Theorem implies.
A closed curve is a curve that begins and ends at the same point, forming a
loop. It is simple if it passes through no point — other than its start and
finish points — more than once. A curve that starts at one point and ends
at a different point is simple if it passes through no point more than once.
Figure [18.1.2] shows some curves that are simple and some that are not.

P

f 7

_7-——""{ ™ rl_’, \j\"\ o

.(_/ o) A Q,_/ /f - AR ( /]\ ®
— - ».._¢___.---' (k o D=

A A = :
" ¢ ok simple Simple el dmed | oot
K \ asey -~ g g, T
= R - . wrk Sy phe
{ . [P S

Figure 18.1.2:

Theorem 18.1.1. A vector field F is conservative if and only if fo F-dr=0
for every simple closed curve in the region where F is defined.

Proof

Assume that F is a conservative and let C' be simple closed curve that starts
and ends at the point A. Pick a point B on the curve and break C' into two
curves: C; from A to B and Cj from B to A, as indicated in Figure[18.1.3|a).

Let C5 be the curve C5 traversed in the opposite direction, from A to B.
Then, since F' is conservative,

]{F- dr = /F dr+/Fdr—/F~ dr—/F- dr = 0.

c el Cs Cy Ca
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On the other hand, assume that F has the property that 550 F. dr =0 for
any simple closed curve C' in the region. Let C and C5 be two simple curves
in the region, starting at A and ending at B. Let —C5 be C, taken in the

reverse direction. (See Figures [18.1.3(b) and (c).) Then C; followed by —Cs
is a closed curve C' from A back to A. Thus

i N &y e

!
L .‘,r

e / I'/ Q
\ \\“\.F___,f'f _.‘-/I

!

Figure 18.1.3:

Ch —Cs C1 Ca
Consequently,
/F- dr:/F- dr.
C1 C2
This concludes both directions of the argument. °

In this proof we tacitly assumed that C} and C; overlap only at their
endpoints, A and B. Exercise treats the case when the curves intersect
elsewhere also.

Every Gradient Field is Conservative

Whether a particular vector field is conservative is important in the study of
gravity, electro-magnetism, and thermodynamics. In the rest of this section
we describe ways to determine whether a vector field F is conservative.

The first method that may come to mind is to evaluate ¢ F - dr for every
simple closed curve and see if it is always 0. If you find a case where it is
not 0, then F is not conservative. Otherwise you face the task of evaluating
a never-ending list of integrals checking to see if you always get 0. That is a
most impractical test. Later in this section partial derivatives will be used to
obtain a much simpler test. The first test involves gradients.

Calculus December 4, 2010
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Gradient Fields Are Conservative

The fundamental theorem of calculus asserts that f; f'(x) dx = f(b) — f(a).
The next theorem asserts that | o Vfdr = f(B)—f(A), where f is a function of
two or three variables and C'is a curve from A to B. Because of its resemblance
to the fundamental theorem of calculus, Theorem [18.1.2] is sometimes called
the fundamental theorem of vector fields.

Any vector field that is the gradient of a scalar field turns out to be conser-
vative. That is the substance of Theorem [18.1.2 which says, “The circulation
of a gradient field of a scalar function f along a curve is the difference in values
of f at the end points.”

Theorem 18.1.2. Let f be a scalar field defined in some region in the plane
or in space. Then the gradient field ¥ = V [ is conservative. In fact, for any
points A and B in the region,

[ Vs ar =g - sa)

Proof
For simplicity take the planar case. Let C be given by the parameterization
r = G(t) for t in [a,b]. Let G(t) = z(t)i+ y(t)j. Then,

b

B of of [ (0fdx Ofdy
c C

a

The integrand (0f/0x)(dx/dt) + (0f/0y)(dy/dt) is reminiscent of the chain
rule in Section [16.3] If we introduce the function H defined by

then the chain rule asserts that
dH  Ofdr Ofdy
dt  Oxdt Oydt

Thus
b b

of de  Of dy _ [dH .
/(%%*a_ya) dt_/%dt_H(b)—H(a)

a a

by the fundamental theorem of calculus. But
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and
H(a) = f(x(a),y(a)) = f(A)
Consequently,
/Vf -dr = f(B) — f(A), (18.1.2)
c
and the theorem is proved. °

In differential form Theorem [18.1.2 reads

If f is defined as the zy-plane, and C' starts at A and ends at B,

of of _
(5 ao+ 5 an) = s - 1) (18.1.3)
c
If f is defined in space, then,
0 0 0
[ (5 ar+ 3y i) = sy - ), (18.1.4)

Note that one vector equation ([18.1.2) covers both cases ([18.1.3) and
(18.1.4]). This illustrates an advantage of vector notation.
It is a much more pleasant task to evaluate f(B) — f(A) than to compute

a line integral.

-1 ich i -
EXAMPLE 1 Let f(x,y,2) = T which is defined everywhere ex
cept at the origin. (a) Find the gradient field F = V f, (b) Compute [, F - dr
where C' is any curve from (1,2,2) to (3,4,0).
SOLUTION (a) Straightforward computations show that
af —x af —y af —z

Do (242 + 22302 dy (P4 2202 Dz (a4 P+ 22

So . .
—zi—yj—zk

(.ZTJQ + y2 + Z2)3/2'
If we let r(z,y,2) = zi+ yj + 2k, r = ||r||, and T = r/r, then (18.1.5) can
be written more simply as

Vf= (18.1.5)

Calculus December 4, 2010
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(b) For any curve C from (1,2,2) to (3,4,0),

1 1
Vf- dr = 3’470 — 1,2,2 = -
B 1 1_ 2
5 3 15

o

For a constant k, positive or negative, any vector field, F = kr/r?, is called
an inverse square central field. They play an important role in the study
of gravity and electromagnetism.

In Example Vs = Lol = % = % and f(z,y,2) = +. In the study of
gravity, V f measures grav1tatlonal attraction, and f measures “potential.”

EXAMPLE 2 Evaluate fc(y dx + = dy) around a closed curve C' taken
counterclockwise.

SOLUTION In Section it was shown that if the area enclosed by a curve
C'is A, then ¢,z dy = A and §,y de = —A. Thus,

%(y dr+ax dy) =—A+A=0.
o

A second solution uses Theorem [I8.1.2] Note that

d(xy)., O(xy). . .
V(zy) = (axy)ﬂr gyy).lzyﬂrxj,

that is, the gradient of xy is yi + xj.
Hence, byTheorem [18.1.2] if the endpoints of C' are A and B

j{(y de +x dy):j{V(a:y)-dr:xy\f.
c c

Because C'is a closed curve, A = B and so the integral is 0. o

A differential form P(x,y, z) de+Q(z,y, 2) dy+ R(x,y, z) dz is called exact
if there is a scalar function f such that P(x,y,2) = 0f/0x, Q(z,y,z) = 0f /0y,
and R(x,y,z) = 0f/0z. In that case, the expression takes the form

of of f
a’Ed +a—d +$

That is the same thing as saying that the vector field F = P(x,y,2)i +
Q(z,y,2)j+ R(z,y, 2)k is a gradient field: F = V.
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If F is Conservative Must It Be a Gradient Field?

The proof of the next theorem is similar to the proof of the second part of
the Fundamental Theorem of Calculus. We suggest you review that proof
(page before reading the following proof.

The question may come to mind, “If F is conservative, is it necessarily the
gradient of some scalar function?” The answer is “yes.” That is the substance
of the next theorem, but first we need to introduce some terminology about
regions.

A region R in the plane is open if for each point P in R there is a disk
with center at P that lies entirely in R. For instance, a square without its
edges is open. However, a square with its edges is not open.

An open region in space is defined similarly, with “disk” replaced by “ball.”

An open region R is arcwise-connected if any two points in it can be
joined by a curve that lies completely in R. In other words, it consists of just
one piece.

Theorem 18.1.3. Let F be a conservative vector field defined in some arcwise-
connected region R in the plane (or in space). Then there is a scalar function
f defined in that region such that F =V f.

Proof

Consider the case when F is planar, F = P(z,y)i + Q(z,y)j. (The case where
F is defined in space is similar.) Define a scalar function f as follows. Let
(a,b) be a fixed point in R and (x,y) be any point in R. Select a curve C' in
R that starts at (a,b) and ends at (z,y).

Define f(z,y) to be [,F - dr. Since F is conservative, the number f(z,y)
depends only on the point (x, y) and not on the choice of C'. (See Figure )

All that remains is to show that V f = F; that is, 0f /0x = P and 0f /0y =
Q). We will go through the details for the first case, df/dx = P. The reasoning
for the other partial derivative is similar.

Let (zg,yo) be an arbitrary point in R and consider the difference quotient
whose limit is 0f /0x(z0, yo), namely,

f(@o + h,yo) — f(wo, o)
3 ;
for h small enough so that (z¢ + h, 1) is also in the region.

Let Cy be any curve from (a,b) to (xg,yo) and let Cy be the straight path
from (z,yo) to (zo + h,yo). (See Figure [I8.1.5]) Let C be the curve from
(0,0) to the point(zg + h,yo) formed by taking C; first and continuing on Cs.
Then

F (0, 30) = / F . dr,

Ch

Calculus December 4, 2010

FTC Il states that every
continuous function has an

anti

{a,4)

derivative.

|‘I (:}/ | i

‘_}-. Hl-?'ll =
l '|_"'- -L':I &
3

£

Figure 18.1.4:

—

Figure 18.1.5:

x,



1520

CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

See Section for the
MVT for Definite Integrals

and
f(q:o—i—h,yo):/F‘dr:/F«dr—i—/F-dr.
C Ch Co
Thus
f(@o + h,yo) — f(wo,90) _ Jo,F - dr _ Jo, (P(@,y) dz + Q(x,y) dy)
h - h ‘

On (s, y is constant, y = yo; hence dy = 0. Thus f02 Q(z,y) dy = 0. Also,

z+h
/P(x,y) dr = / P(z,y) du.
Co x

By the Mean-Value Theorem for definite integrals, there is a number x* be-
tween x and x + h such that

z+h
/ P(z,y) de = P(x*,y0)h.

xT

Hence
of o fl@o 4 hyyo) — f(o, y0)
%(9307340) = }lllg(l) h
1 xo+h
— tim [ Plown) do = lim (" g0) = Plav.so)
xo
Consequently,
of

%(1’073/0) = P($0,y0)7

as was to be shown.
In a similar manner, we can show that

%(%’%) = Q(z0, Yo)-

For a vector field F defined throughout some region in the plane (or space)
the following three properties are therefore equivalent: Figure tells us
that any one of the three properties, (1), (2), or (3), describes a conservative
field. We used property (3) as the definition.

December 4, 2010 Calculus



§ 18.1 CONSERVATIVE VECTOR FIELDS 1521

= [y b F.l, =0
(1) F sob v — JC_F de
G TS P
A
Ny | Fede s
L= Ja : g
;_'._q\l._._ L= 0 i

Figure 18.1.6: Double-headed arrows (<) mean “if and only if” or “is equiv-
alent to.” (Single-headed arrows (=) mean “implies.”)

Almost A Test For Being Conservative

Figure describes three ways of deciding whether a vector field F =
Pi 4+ Qj + Rk is conservative. Now we give a simple way to tell that it is
not conservative. The method is simpler than finding a particular line integral
fCF - dr that is not 0.

Remember that we have assumed that all of the functions we encounter in
this chapter have continuous first and second partial derivatives.

The test depends on the fact that the two orders in which are may compute
a second-order mixed partial derivative give the same result. (We used this
fact in Section in a thermodynamics context.)

Consider an expression of the form P dx + @ dy + R dz (or equivalently a
vector field F = Pi+ Qj + Rk). If the form is exact, then F is a gradient and
there is a scalar function f such that

of of of
9 _p 9 9] _ g
o ’ oy @ 0z k
Since
9 (9f\_ 9 (of
oy \ox) 0x\dy)’
we have
or _ 09
oy Oz’
Similarly we find
0Q_or . or _om
0z Oy 0z  Ox

To summarize,
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1522

CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

If the vector field F = Pi+ Qj + Rk is conservative, then

0Q P OR  0Q OR P
=" =" 5" (18.1.6)

If at least one of these three equations (18.1.6) doesn’t hold, then P dx +
Q dy + R dz is not exact (and F = Pi+ Qj + Rk is not conservative).

EXAMPLE 3 Show that cos(y) dx+sin(zy) dy+In(1+z) dz is not exact.
SOLUTION  Checking whether the first equation in ([18.1.6) holds we com-
pute

O(sin(zy)) _ O(cos(y))

Ox oy

which equals
y cos(zy) + sin(y),

which is not 0. There’s no need to check the remaining two equations in
(18.1.6). The expression sin(xy) dx + cos(y) dy + In(1 + ) dz is not exact.
(Equivalently, the vector field sin(zy)i+ cos(y)j + In(1 + )k is not a gradient
field, hence not conservative.) o

Notice that we completed Example [3| without doing any integration.
We can restate the three equations (|18.1.6)) as a single vector equation, by
introducing a 3 by 3 formal determinant

i j ok
> § & (18.1.7)
P Q R

Expanding this as though the nine entries were numbers, we get

_(OR 0Q\ .[OR 0P 00  OP

If the three scalar equations in ((18.1.6)) hold, then ([18.1.8) is the O-vector. In
view of the importance of the vector (|18.1.8]), it is given a name.

DEFINITION (Curl of a Vector Field) The curl of the vector
field F = Pi+ Qj + Rk is the vector field given by the formula
(18.1.7) or (18.1.8). It is denoted curl F.
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The formal determinant is like the one for the cross product of two
vectors. For this reason, it is also denoted V X F (read as “del cross F”). That’s
a lot easier to write than ([18.1.8), which refers to the components. Once again
we see the advantage of vector notation.

The definition also applies to a vector field F = P(z,y)i + Q(x,y)j in the
plane. Writing F as P(z,y)i + Q(z,y)j + Ok and observing that 0Q)/0z = 0
and 0P/0z = 0, we find that

C(0Q 0P

EXAMPLE 4 Compute the curl of F = xyzi + 2%j — 2yk.
SOLUTION The curl of F is given by

ik
9 9 9
ox oy 0z

ryz x® —ay,

which is short for

0 0 0 0 0

(50 = 5 )i = (gotoom) = g en) )i+ (56 = (o)) &

= (—o— )i~ (—y— a)j+ (20 — w2)k
= —xi+ (y+xy)j+ (22 — 22)k.

o

If any case, in view of (|18.1.6|), for vector fields in space or in the xy-plane
we have this theorem.

Theorem 18.1.4. If F is a conservative vector field, then V x F = 0.

You may wonder why the vector field curl F obtained from the vector field
F is called the “curl of F.” Here we came upon the concept purely mathe-
matically, but, as you will see in Section [18.6|it has a physical significance: If
F describes a fluid flow, the curl of F describes the tendency of the fluid to
rotate and form whirlpools — in short, to “curl.”

The Converse of Theorem [18.1.4 Isn’t True

It would be delightful if the converse of Theorem were true. Unfor-
tunately, it is not. There are vector fields F whose curls are 0 that are not
conservative. Example |5( provides one such F in the zy-plane. Its curl is 0 but

Calculus December 4, 2010

Warning: The converse of
Theorem [I8.1.4] is false.



1524

CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

Recall that, on C,
22 +y? =1

it is not conservative, that is, V x F = 0 and there is a closed curve C' with
4. F - dr not zero.

EXAMPLE 5 Let F = 75 + 5% Show that (a) V x F = 0, but (b) F
1s not conservative.

SOLUTION (a) We must compute

i ik
g g a
det O a, 9,
¥ _z _ 0
.’E2 +y2 .’E2 +y2

which equals

(o~ () )1~ (5 () )
(o (&) o () )

The i and j components are clearly 0, and a direct computation shows that
the k component is

2 2

v - y?—a®
(22 +92)2 (22 +y2)?

Thus the curl of F is 0.

(b) To show that F is not conservative, it suffices to exhibit a closed curve
C such that §,F - dr is not 0. One such choice for C' is the unit circle
parameterized counterclockwise by

x = cos(h), y = sin(6), 0<6<2m.

On this curve 22 + y? = 1. Figure [18.1.7] shows a few values of F at points on
C. Clearly fc F - dr, which measures circulation, is positive, not 0. However,
if you have any doubt, here is the computation of [ o F - dr:

—y dx x dy
F-dr =
7{ ' %(x2+y2+$2+y2)
c

C

2w
_ / (—sin@ d(cos) + cos d(sin )

0

2m 2m
= /(sin20 + cos?0) df = / df = 2.
0 0
This establishes (b), F is not conservative. o
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Figure 18.1.7:

The curl of F being 0 is not enough to assure us that a vector field F
is conservative. An extra condition must be satisfied by F. This condition
concerns the domain of F. This extra assumption will be developed for planar
fields in Section and for spatial fields F in Section [I18.6, Then we will
have a simple test for determining whether a vector field is conservative.

Summary

We showed that a vector field being conservative is equivalent to its being the
gradient of a scalar field. Then we defined the curl of a vector field. If a field
is denoted F', the curl of F is a new vector field denoted curlF or V x F. If
F' is conservative, then V x F is 0. However, if the curl of F is 0, it does not
follow that F is conservative. An extra assumption (on the domain of F) must
be added. That assumption will be described in the next section.
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EXERCISES for Section 18.1 Key: R-routine, M-moderate, C—challenging

In Exercises [1] to 4 answer “True” or “False” and explain.

1.[R] “If F is conservative, then V x F = 0.”
2.[R] “If Vx F =0, then F is conservative.”
3.[R] “If F is a gradient field, then V x F = 0.”
4.[R] “If V x F =0, then F is a gradient field.”

5.[R] Using information in this section, describe various ways of showing a vector
field F is not conservative.

6.[R] Using information in this section, describe various ways of showing a vector
field F is conservative.

7.[R] Decide if each of the following sets is open, closed, neither open nor closed,
or both open and closed.

(a) unit disk with its boundary

(b) unit disk without any of its boundary points

(¢) the x-axis

(d) the entire xy-plane

(e) the zy-plane with the z-axis removed

(f) a square with all four of its edges (and corners)

(g) a square with all four of its edges but with its corners removed

(h) a square with none of its edges (and corners)

8.[R] In Example|l|we computed a certain line integral by using the fact that the
vector field (—zi — yj — 2k)/(2® + y?> 4+ 2%)%/? is a gradient field. Compute that
integral directly, without using the information that the field is a gradient.

9.[R] Let F = ycos(z)i+ (sin(x) + 2y)j.

(a) Show that curlF is 0 and F is defined in an arcwise-connected region of the
plane.

(b) Construct a “potential function” f whose gradient is F.
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10.[R] Let f(z,y,z) = ¥ In(z+y?). Compute [,V f- dr, where C is the straight
path from (1,1,1) to (4,3,1).

11.[R] We obtained the first of the three equations in ((18.1.6)). Derive the other

two.
12.[R] Find the curl of F(z,y, z) = ¢ yzi 4+ 23 cos? 3yj + (1 + 2°)k.
13.[R] Find the curl of F(z,y) = tan?(3z)i + 3% In(1 + 22)j.

14.[R] Using theorems of this section, explain why the curl of a gradient is 0, that
is, curl(Vf) =0 (V x Vf = 0) for a scalar function f(z,y,z). HINT: No computa-
tions are needed.

15.[R] By a computation using components, show that for the scalar function
f(x,y,2), curl Vf = 0.

16.[R] Let f(x,y) = cos(z +y). Evaluate [, Vf - dr, where C is the curve that
lies on the parabola y = 22 and goes from (0,0) to (2,4).

17.[R] In Example We computed §,F - dr, where F = ;gfﬁ and C is the unit
circle with center at the origin. Compute the integral when C' is the circle of radius
5 with center at the origin.

18.[M] In Example We computed ¢, F - dr where F = ;g:;? and C is the unit
circle with center at the origin.

(a) Without doing any new computations, evaluate fC F - dr where C' is the square
path with vertices (1,0), (2,0), (2,1), (1,1), (1,0).

(b) Evaluate the integral in (a) by a direct computation, breaking the integral
into four integrals, one over each edge.

19.[M] If F and G are conservative, is F + G?
20.[M] By a direct computation, show that curl(fF) =V f x F + f curlF.

21.[M] By a direct computation, show that curl(F x G) = (G- V)F — (F-V)G +
F(V-G) — G(V - F). Each of the first two terms has a form not seen before
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now in this text. Here is how to interpret them when F = Fji + F5j + F3k and
G = Gii+ Goj + Gsk:

OF:

OF
2 1 Gy
y

1
oz TG

OF3
0z

(G-V)F =G4

22.[M] If F and G are conservative, is F x G?

23.[M] Explain why the curl of a gradient field is the zero vector, that is, Vx V f =
0.

24.[M] Assume that F(x,y) is conservative. Let C; be the straight path from
(0,0,0) to (1,0,0), Cy the straight path from (1,0,0) to (1,1,1). If fCl Fdr=3
and sz F dr = 4, what can be said about fCF dr, where C is the straight path
from (0,0,0) to (1,1,1)?

25.]M] Let F(x,y) be a field that can be written in the form

i+ yj
F(z,y) = g(v/x? + ?ﬂ)ﬁ

where g is a scalar function. If we denote zi+yj as r, then F(z,y) = ¢g(r)r, where r =
|r[| and ¥ = ||r[|/r. Show that ¢, F- dr = 0, for any path ABC'DA of the form shown

in Figure [18.1.8] (The path consists of two circular arcs and parts of two rays from

l:-l
| # "
: x
) -|'_'_, .-L 'H.\,:r-__
| A =
| A
r - N
|I f"f
P .._.-'
L~
I-— 2= -

the origin.)
Figure 18.1.8:

26.[M] In Theorem we proved that df/0x = P. Prove that 0f /0y = Q.

27.[C] In view of the previous exercise, we may expect F(z,y) = g(v/2? + y?) \;%
@24y

to be conservative. Show that it is by showing that F is the gradient of G(z,y) =
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H(\/z? + y?), where H is an antiderivative of g, that is, H' = g.

28.[C] The domain of a vector field F is all of the zy-plane. Assume that there
are two points A and B such that fC F dr is the same for all curves C from A to B.
Deduce that F is conservative.

29.[C] A gas at temperature T and pressure Py is brought to the temperature
Ty > Ty and pressure P; > Fy. The work done in this process is given by the line

integral in the T P- plane
RT dP
—RdT
[ (55 - mar),
C

where R is a constant and C' is the curve that records the various combinations of
T and P during the process. Evaluate this integral over the following paths, shown

in Figure [I81.9

Figure 18.1.9:

(a) The pressure is kept constant at Py while the temperature is raised from Tj
to T7; then the temperature is kept constant at T} while the pressure is raised
from Py to P;.

(b) The temperature is kept constant at T while the pressure is raised from Py
to Pp; then the temperature is raised from 7y to 17 while the pressure is kept
constant at P;j.

(c) Both pressure and temperature are raised simultaneously in such a way that
the path from (Py,Tp) to (P, T1) is straight.

Because the integrals are path dependent, the differential expression RT dP/P —
R dT defines a thermodynamic quantity that depends on the process, not just on
the state. Vectorially speaking, the vector field (RT/P)i — Rj is not conservative.
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30.[C] Assume that F(z,y) is defined throughout the zy-plane and that ¢, F(x,y) - dr =0
for every closed curve that can fit inside a disk of diameter 0.01. Show that F is
conservative.

31.[C] This exercise completes the proof of Theorem in the case when C}
and Cy overlap outside of their endpoints A and B. In that case; introduce a third
simple curve from A to B that overlaps C7 and C3 only at A and B. Then an
argument similar to that in the proof of Theorem can dispose of this case.

f$0+h P(z,y0) dz
32.[C] We proved that lim =0————— equals P(xo,y0), by using the Mean

Value Theorem for definite integrals. Find a different proof of this result that uses
a part of the Fundamental Theorem of Calculus.
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18.2 Green’s Theorem and Circulation

In this section we discuss a theorem that relates an integral of a vector field
over a closed curve C'in a plane to an integral of a related scalar function over
the region R whose boundary is C'. We will also see what this means in terms
of the circulation of a vector field.

Statement of Green’s Theorem

We begin by stating Green’s Theorem and explaining each term in it. Then
we will see several applications of the theorem. Its proof is at the end of the
next section.

Green’s Theorem
Let C be a simple, closed counterclockwise curve in the zy-plane, bounding
a region R. Let P and () be scalar functions defined at least on an open set
containing R. Assume P and () have continuous first partial derivatives. Then

0Q 0P
(Pde+Q dy) = (———) dA.
Z{ 7[ or Oy

Recall, from Section [18.0] that a curve is closed when it starts and ends at
the same point. It’s simple when it does not intersect itself (except at its start
and end). These restrictions on C' ensure that it is the boundary of a region
R in the zy-plane.

Since P and @ are independent of each other, Green’s Theorem really
consists of two theorems:

oP oQ
/P dx = _/8_y dA and %Q dy = B dA. (18.2.1)
R

C c R

EXAMPLE 1 In Section [I5.3lwe showed that if the counterclockwise curve
C bounds a region R, then fc y dx is the negative of the area of R. Obtain
this result with the aid of Green’s Theorem.

SOLUTION Let P(z,y) =y, and Q(z,y) = 0. Then Green’s Theorem says

that 5
Y
=— [ == dA.
]{yda: /8yd
C R

Since dy/dy = 1, it follows that §y dx is — [, 1 dA, the negative of the area
of R. o
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Green’s Theorem and Circulation

What does Green’s Theorem say about a vector field F = Pi 4+ Qj7 First of
all, §,(P dz + Q dy) now becomes simply ¢, F - dr.

The right hand side of Green’s Theorem looks a bit like the curl of a vector
field in the plane. To be specific, we compute the curl of F:

i j k p
0z Oy 0, :Oi—0j+<%—aa—>k
P(z,y) Qz,y) 0 Y
Thus the curl of F equals the vector function
oQ 0P
— — — | k. 18.2.2
( Jor Oy ) ( )

To obtain the (scalar) integrand on the right-hand side of (18.2.2)), we “dot

(18.2.2) with k,”
00 0P\ 00 _or
Jor Oy Jor Oy

Green’s Theorem Expressed in Terms of Circulation

We can now express Green’s Theorem using vectors. In particular, circulation
around a closed curve can be expressed in terms of a double integral of the
curl over a region.

If the counterclockwise closed curve C' bounds the region R, then

7{1«“- dr:/(VxF)-de.

C R

Recall that if F describes the flow of a fluid in the xy-plane, then 3% F -dr
represents its circulation, or tendency to form whirlpools. This theorem tells
us that the magnitude of the curl of F represents the tendency of the fluid to
rotate. If the curl of F is 0 everywhere, then F is called irrotational — there
is no rotational tendency.

This form of Green’s theorem provides an easy way to show that a vector
field F is conservative. It uses the idea of a simply-connected region. Informally
“a simply-connected region in the xy-plane comes in one piece and has no
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holes.” More precisely, an arcwise-connected region R in the plane or in space
is simply-connected if each closed curve in R can be shrunk gradually to a
point while remaining in R.

Figure[18.2.1|shows two regions in the plane. The one on the left is simply-
connected, while the one on the right is not simply connected. For instance, the

Figure 18.2.1: Regions in the plane that are (a) simply connected and (b)
not simply connected.

xy-plane is simply connected. So is the xy-plane without its positive x-axis.
However, the zy-plane, without the origin is not simply connected, because
a circular path around the origin cannot be shrunk to a point while staying
within the region.

If the origin is removed from xyz-space, what is left is simply connected.
However, if we remove the z-axis, what is left is not simply connected.

Figure [18.2.2(b) shows a curve that cannot be shrunk to a point while
avoiding the z-axis.

Now we can state an easy way to tell whether a vector field is conservative.

Theorem. If a vector field F is defined in a simply-connected region in the
xy-plane and V X F = 0 throughout that region, then ¥ is conservative.

Proof

Let C' be any simple closed curve in the region and R the region it bounds.
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i

G
: II-/ ‘
Space without origin. Space without 7 axis.

. - » 3 -1
Simply connected. Not simply connected.

(a) (b)

Figure 18.2.2: (a) zyz-space with the origin removed is simply connected. (b)
xyz-space with the z-axis removed is not simply connected.

We wish to prove that the circulation of F around C' is 0. We have

]{F- dr:/(curlF)-de.

c R

Since curl F is 0 throughout R, it follows that fo F. dr=0. °

In Example [5] in Section [I8.1] there is a vector field whose curl is 0 but is
not conservative. In view of the theorem just proved, its domain must not be
simply connected. Indeed, the domain of the vector field in that example is
the zy-plane with the origin deleted.

EXAMPLE 2 Let F(x,y,2) = e"yi + (e + 2y)j.
1. Show that F is conservative.

2. Exhibit a scalar function f whose gradient is F.

SOLUTION

1. A straightforward calculation shows that V x F = 0. Since F is defined
throughout the xy-plane, a simply-connected region, Theorem tells
us that F is conservative.

2. By Section [18.1] we know that there is a scalar function f such that
Vf = F. There are several ways to find f. We show one of these
methods here. Additional approaches are pursued in Exercises [7] and [§]
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The approach chosen here follows the construction in the proof of Theo-
rem . For a point (a,b), define f(a,b) to equal [, F-dr, where C is
any curve from (0,0) to (a,b). Any curve with the prescribed endpoints
will do. For simplicity, choose C' to be the curve that goes from (0, 0) to
(a,b) in a straight line. (See Figure[18.2.3]) When a is not zero, we can
use = as a parameter and write this segment as: * = ¢, y = (b/a)t for
0 <t<a. (If a=0, we would use y as a parameter.) Then

fla,b) = /(6zy dx + (e" + 2y) dy) = / (etgt dt + <et + 2275) g dt)
C 0

a

b | b b b
= —/(tet+et+2—t> dt = —((t—1)et+et+—t2>
a a a a

0
b b\ |
= —(tet+—t2)
a a

= be” + b?.
0

Since f(a,b) = be® + b%, we see that f(x,y) = ye® + y* is the desired
function. One could check this by showing that the gradient of f is indeed
e”yi+ (e” + 2y)j. Other suitable potential functions f are ey + y*k for
any constant k.

0

o

The next example uses the cancellation principle, which is based on the
fact that the sum of two line integrals in opposite direction on a curve is zero.
This idea is used here to develop the two-curve version of Green’s Theorem
and then several more times before the end of this chapter.

EXAMPLE 3 Figure [18.2.4f(a) shows two closed counterclockwise curves
(1, and C5 that enclose a ring-shaped region R in which V x F is 0. Show
that the circulation of F over ' equals the circulation of F over (.

SOLUTION Cut R into two regions, each bounded by a simple curve, to
which we can apply Theorem [I8.2] Let C3 bound one of the regions and Cy
bound the other, with the usual counterclockwise orientation. On the cuts, Cj
and C4 go in opposite directions. On the outer curve C5 and C; have the same
orientation as C';. On the inner curve they are the opposite orientation of Cs.

(See Figure [18.1.2(b).) Thus

/F-dr+/F-dr:/F-dr—/F-dr. (18.2.3)

Cs Cu ol Cs
By Theorem each integral on the left side of ((18.2.3)) is 0. Thus

/F-dr: /F-dr (18.2.4)

C1 Ca
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Figure 18.2.4:

Example |3] justifies the “two-curve” variation of Green’s Theorem:

Two-Curve Version of Green’s Theorem
Assume two nonoverlapping curves C; and Cs lie in a region where curl F
is 0 and form the border of a ring. Then, if C; and C5 both have the same

orientation,
J(I{F-dr:%ler.

C 1 C2

This theorem tells us “as you move a closed curve within a region of zero-
curl, you don’t change the circulation.” The next Example illustrates this
point.

EXAMPLE 4 Let F = %@? and C be the closed counterclockwise curve
bounding the square whose vertices are (—2,—2), (2,-2), (2,2), and (-2, 2).
Evaluate the circulation of F around C' as easily as possible.

SOLUTION This vector field appeared in Example [5] of Section Since
its curl is 0, at all points except the origin, where F is not defined, we may use
the two-curve version of Green’s Theorem. Thus fc F'-dr equals the circulation
of F over the unit circle in Example [5], hence equals 2.

This is a lot easier than integrating F directly over each of the four edges
of the square. o

How to Draw V x F

For the planar vector field F, its curl, V x F| is of the form z(z,y)k. If z(z,y)
is positive, the curl points directly up from the page. Indicate this by the
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symbol ®, which suggests the point of an arrow or the nose of a rocket. If
z(z,y) is negative, the curl points down from the page. To show this, use
the symbol @, which suggests the feathers of an arrow or the fins of a rocket.

Figure [18.2.5] illustrates their use. This is standard notation in
physics.

Figure 18.2.5:

Summary

We first expressed Green’s theorem in terms of scalar functions

0oQ OP
(Pdr+Qdy) = (———) dA.
Z{ R/ or Oy

We then translated it into a statement about the circulation of a vector field;

fF- dr:/(VxF)-de.

C R

In this theorem the closed curve C' is oriented counterclockwise.
With the aid of this theorem we were able to show the following important
result:

If the curl of F is O and if the domain of F is simply connected, then F is
conservative.

Also, in a region in which V x F = 0, the value of 550 F - dr does not change
as you gradually change C' to other curves in the region.
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EXERCISES for Section 18.2 Key: R-routine, M-moderate, C—challenging

In Exercises [1| through [ verify Green’s Theorem for the given functions P and @
and curve C.

1.[R] P =2y, Q = y? and C is the border of the square whose vertices are (0,0),
(1,0), (1,1) and (0,1).

2.[R] P =2?% Q=0 and C is the boundary of the unit circle with center (0,0).
3.[R] P =¢Y, Q =e” and C is the triangle with vertices (0,0), (1,0), and (0, 1).
4.[R] P =sin(y), @ = 0 and C is the boundary of the portion of the unit disk with
center (0,0) in the first quadrant.

5.[R] Figure shows a vector field for a fluid flow F. At the indicated points
A, B, C, and D tell when the curl of F is pointed up, down or is 0. (Use the
©® and @ notation.) HINT: When the fingers of your right hand copy the di-
rection of the flow, your thumb points in the direction of the curl, up or down.

Figure 18.2.6:

6.[R] Assume that F describes a fluid flow. Let P be a point in the domain of F
and C a small circular path around P.

(a) If the curl of F points upward, in what direction is the fluid tending to turn
near P, clockwise or counterclockwise?

(b) If C is oriented clockwise, would ¢ F - dr to be positive or negative?

7.[R] In Example 2| we constructed a function f by using a straight path from (0, 0)
to (a,b). Instead, construct f by using a path that consists of two line segments,
the first from (0,0) to (a,0), and the second, from (a,0) to (a,b).

8.[R] In Example|2|we constructed a function f by using a straight path from (0, 0)
to (a,b). Instead, construct f by using a path that consists of two line segments,
the first from (0,0) to (0, b), and the second from (0,b) to (a,b).

9.[R] Another way to construct a potential function f for a vector field F = Pi+Q)j
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is to work directly with the requirement that Vf = F. That is, with the equattions

0 0
aii = P(:U?y) and a£ = (xay)

(a) Integrate g—i = e”y with respect to x to conclude that f(z,y) = ey + C(y).
Note that the “constant of integration” can be any function of y, which we
call C(y). (Why?)

(b) Next, differentiate the result found in (a) with respect to y. This gives two
formulas for g—’yc: e” +C'(y) and e* + 2y. Use this fact to explain why C'(y) =

2y.
(c) Solve the equation for C' found in (b).

(d) Combine the results of (a) and (c¢) to obtain the general form for a potential
function for this vector field.

In Exercises [10] through

(a) check that F is conservative in the given domain, that is V x F = 0, and the
domain of F is simply connected

(b) construct f such that Vf = F, using integrals on curves

(c¢) comstruct f such that Vf = F, using antiderivatives, as in Exercise @

10.[R] F = 322y vi + 23j, domain the zy-plane

11.[R] F = ycos(zy) vi+ (zcos(xy) + 2y)j, domain the zy-plane
12.[R] F = (ye®™ + 1/x)i+ ze"¥j, domain all zy with z > 0
13.R] F = Zylaw); | (In(x))?j, domain all xy with 2 > 0

T

14.[R] Verify Green’s Theorem when F(xy) = xi+ yj and R is the disk of radius
a and center at the origin.

15.[R] In Example|l|we used Green’s Theorem to show that fC y dx is the negative
of the area that C encloses. Use Green’s Theorem to show that fc x dy equals that
area. (We obtained this result in Section without Green’s Theorem.)

16.[R] Let A be a plane region with boundary C' a simple closed curve swept out
counterclockwise. Use Green’s theorem to show that the area of A equals

1
2%(—y dx + x dy).
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17.[R] Use Exercise [16| to find the area of the region bounded by the line y = x

and the curve
{ z = o+

y o= Bt for ¢ in [0, 1].

18.[R] Assume that curlF at (0,0) is —3. Let C sweep out the boundary of a cir-
cle of radius a, center at (0,0). When a is small, estimate the circulation [, o F-dr.

19.[R] Which of these fields are conservative:

(a) zi—yj

OF="

(c) 3i+4j

(d) (6zy —y®)i+ (4y + 322 — 3zy?)j

(&) =,

(1) Hy

20.[R] Figure [18.2.7| shows a fluid flow F. All the vectors are parallel, but their
magnitudes increase from bottom to top. A small simple curve C is placed in the
flow.

Figure 18.2.7:

(a) Is the circulation around C' positive, negative, or 07 Justify your opinion.

(b) Assume that a wheel with small blades is free to rotate around its axis, which
is perpendicular to the page. When it is inserted into this flow, which way
would it turn, or would it not turn at all? (Don’t just say, It would get wet.”)
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21.[R] Let F(z,y) = y*i.

(a) Sketch the field.

(b) Without computing it, predict when (V x F) - k is positive, negative or zero.

(c) Compute (V x F) - k.

(d) What would happen if you dipped a wheel with small blades free to rotate
around its axis, which is perpendicular to the page, into this flow.

22.[R] Check that the curl of the vector field in Example [2|is 0, as asserted.

23.[R] Explain in words, without explicit calculations, why the circulation of the
field f(r)r around the curve PQRSP in Figure[18.2.8|is zero. As usual, f is a scalar

function, r = ||r||, and 7 =r/r.

Figure 18.2.8: ARTIST: Please color the four sides of the closed curve.

In Exercises 24| to [27]let F be a vector field defined everywhere in the plane except a
the point P shown in Figure|18.2.9] Assume that V xF = 0 and that fCl F. dr =5.
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Figure 18.2.9:

24.[R] What, if anything, can be said about f02 F - dr?

25.[R] What, if anything, can be said about fC‘s F - dr?

26.[R] What, if anything, can be said about [, F-dr?
[R]

27.[R] What, if anything, can be said about fC F - dr, where C' is the curve formed
by C followed by Cs?

In Exercises 28 to 31l show that the vector field is conservative and then construct
a scalar function of which it is the gradient. Use the method in Example 2]
8.[R] 2zyi+ 2?%j
9.[R] sin(y)i+ (xcos(y) + 3)j
30.R] (y+1)i+ (x+1)j
31.[R] 3ysin®(wy)cos(xy)i+ (1 + 3z sin(xy) cos(zy))j

32.][R] Show that
(a) 322y dx + 22 dy is exact.

(b) 3xy dx + 22 dy is not exact.

33.[R] Show that (z dz +y dy)/(z% + 3?) is exact and exhibit a function f such
that df equals the given expression. (That is, find f such that Vf - dr agrees with
the given differential form.)

34.[R] Let F =7/|r| in the zy plane and let C' be the circle of radius @ and center
0,0).

(a) Evaluate ¢, F -n ds without using Green’s theorem.
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(b) Let C now be the circle of radius 3 and center (4,0). Evaluate §,F -n ds,
doing as little work as possible.

35.[R] Figure|18.2.10|a) shows the direction of a vector field at three points. Draw
a vector field compatible with these values. (No zero-vectors, please.)

Figure 18.2.10:

36.[R] Consider the vector field in Figure |18.2.10(b). Will a paddle wheel turn at
A? At B? At C7 If so, in which direction?

37.[R] Use Exercise [16|to obtain the formula for area in polar coordinates:

B

1
Area = — /1"2 de.
2
HINT: Assume C is given parametrically as z = r(0) cos(f), y = r(0)sin(f), for

a<f<pg.

38.]M] A curve is given parametrically by x = t(1 — t?), y = t?(1 — t3), for t in
[0, 1].

(a) Sketch the points corresponding to ¢t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, and use
them to sketch the curve.

(b) Let R be the region enclosed by the curve. What difficulty arises when you try
to compute the area of R by a definite integral involving vertical or horizontal
cross sections?

(c) Use Exercise [16|to find the area of R.
39.]M] Repeat Exercise [38] for x = sin(nt) and y =t — ¢, for ¢ in [0, 1]. In (a), let
t=0,1/4,1/2, 3/4, and L.

40.[C] Assume that you know that Green’s Theorem is true when R is a triangle
and C its boundary.
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(a) Deduce that it therefore holds for quadrilaterals.

(b) Deduce that it holds for polygons.

41.]C] Assume that V x F = 0 in the region R bounded by an exterior curve C
and two interior curves Cy and C'3, as in Figure |[18.2.11] Show that fCl F- dr =
fC2F- dr""ngF' dr.

i

f‘ Fad

V2PN
H‘\.

Figure 18.2.11:
42.[C] We proved that [ % dA = [, Q dy in a special case. Prove it in this more
general case, in which we assume less about the region R. Assume that R has the

description a < z < b, y1(z) < y < ya(x). Figure [18.2.10|c) shows such a region,
which need not be convex. The curved path C breaks up into four paths, two of

which are straight (or may be empty), as in Figure [18.2.10|c).

43.[C] We proved the second part of (18.2.1), namely that ¢, Q dy = [, 0Q/dx dA.
Prove the first part, §, P dx = — [, Op/dy dA.
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18.3 Green’s Theorem, Flux, and Divergence

In the previous section we introduced Green’s Theorem and applied it to dis-
cover a theorem about circulation and curl. That concerned the line integral
of F - T, the tangential component of F, since F - dr is short for (F - T) ds.
Now we will translate Green’s Theorem into a theorem about the line integral
of F - n, the normal component of F, § F - n ds. Thus Green’s Theorem will
provide information about the flow of the vector field F across a closed curve

C' (see Section [15.4)).

Green’s Theorem Expressed in Terms of Flux

Let F = Mi+ Nj and C be a counterclockwise closed curve. (We use M and
N now, to avoid confusion with P and ) needed later.) At a point on a closed
curve the unit exterior normal vector (or unit outward normal vector)
n is perpendicular to the curve and points outward from the region enclosed
by the curve. To compute F - n in terms of M and N, we first express n in
terms of i and j.

The vector p J
€, Y.
T=— —
ds 1t ds‘]

is tangent to the curve, has length 1, and points in the direction in which
the curve is swept out. A typical T and n are shown in Figure As
Figure [18.3.1] shows, the exterior unit normal n has its x component equal
to the y component of T and its y component equal to the negative of the x
component of T. Thus

_ : o [y,  dz, _ dy dx
]{F-n = j{(Ml—FNJ) (dsl ds‘]> ds_f(Mds Nds) ds
C c

c

= jq{(M dy — N dzx) = 7{(—]\[ dx + M dy). (18.3.1)

In (18.3.1), —N plays the role of P and M plays the role of ) in Green’s
Theorem. Since Green’s Theorem states that

oQ 0P
(Pdz+Q dy) = (———) dA
f R/ or Oy

Zf(—Ndx+Mdy):/(%Aj—a((;yN)> dA

R

we have
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or simply, if F = Mi+ Nj, then

oM  ON
j{F.ndS_/(%+8_y) dA
C R

In our customary “P and ()" notations, we have

Green’s Theorem Expressed in Terms of Flux
If F = Pi+ Qj, then

B oP 0Q
%F-nds-/(%jLa—y) dA
C R

where C' is the boundary of R.

The expression
oP  0Q
JR— _|_ -,
Jor Oy
the sum of two partial derivatives, is call the divergence of F = Pi + Qj. It
is written divF or V - F. The latter notation is suggested by the “symbolic”
dot product
0 0 or 0Q
9099 (pi o of 0@
(5’xl+ 8y']> (Pi+Q)) Oz * Jy
It is pronounced “del dot eft”. Theorem is called “the divergence theorem
in the plane.” It can be written as

Divergence Theorem in the Plane

fF-nds:/dideA

c R
where C' is the boundary of R.

EXAMPLE 1 Compute the divergence of (a) F = e™i + arctan(3z)j and
(b) F = —2%i + 2xyj.
SOLUTION

(a) Ze™ + a% arctan(3z) = ye™ + 0 = ye™?

(b) & (=2%) + & (22y) = =22 + 22 = 0.
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o

The double integral of the divergence of F over a region describes the
amount of flow across the border of that region. It tells how rapidly the fluid
is leaving (diverging) or entering the region (converging). Hence the name
“divergence”.

In the next section we will be using the divergence of a vector field defined
in space, F = Pi+ Qj + Rk, where P, () and R are functions of z, y, and z.
It is defined as the sum of three partial derivatives

orP 0Q OR

N T
v ox 8y+8z

It will play a role in measuring flux across a surface.
EXAMPLE 2 Verify that §,F -n ds equals [,V -F dA, when F(z,y) =

xi+yj, R is the disk of radius a and center at the origin and C'is the boundary
curve of R.

SOLUTION First we compute 550 F - n ds, where C' is the circle bounding
R. (See Figure |18.3.2})

Since C'is a circle centered at (0,0), the unit exterior normal n is T
rit+yj Tty
[l + il a

n=r=

Thus, remembering that fo ds is just the arclength of C,

. . 2 2
]{F-nds = ]{(xi+yj)~(m+y‘]> ds:j{x Y g
a a
C C

C

2
= j{% ds = ajé ds = a(2ma) = 2ma®. (18.3.2)
C C

Next we compute fR <‘g—}: + %) dA. Since P =z and Q = y, OP/0x +
0Q/0y =1+1=2. Then

oP  9Q B
/(%+a_y> dA_/sz,
R R

which is twice the area of the disk R, hence 2wa®. This agrees with ([18.3.2)).
o

As the next example shows, a double integral can provide a way to compute
the flux: § F-n ds.
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Figure 18.3.3:

See Exercise .

EXAMPLE 3 Let F = 2% + zyj. Evaluate ¢ F - n ds over the curve that
bounds the quadrilateral with vertices (1, 1), (3,1), (3,4), and (1,2) shown in

Figure [18.3.3

SOLUTION The line integral could be evaluated directly, but would require
parameterizing each of the four edges of C'. With Green’s Theorem we can
instead evaluate an integral over a single plane region.

Let R be the region that C' bounds. By Green’s theorem

%F~nds - ZV~FdA_72/(aéZZ)+agzy)> dA

C = /(2x+a¢)dA:/3a7dA.

R R

Then
3 y(z)

/3di://3$dyd:v,
R 11

where y(z) is determined by the equation of the line that provides the top edge
of R. We easily find that the line through (1,2) and (3,4) has the equation
y = x + 1. Therefore,

3 z+1
/Sdi://Sxdydx.
R 11

The inner integration gives

z+1
/ 3x dy = 3xy|zjf+l = 3x(x + 1) — 32 = 322

1

The second integration gives

3
/31’2615821'3‘?:27—1:26
1
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A Local View of divF

We have presented a “global” view of divF, integrating it over a region R
to get the total divergence across the boundary of R. But there is another
way of viewing div F, “locally.” This approach makes uses an extension of the
Permanence Principle of Section to the plane and to space.

Let P = (a,b) be a point in the plane and F a vector field describing fluid
flow. Choose a very small region R around P, and let C' be its boundary. (See
Figure[18.3.4]) Then the net flow out of R is

%F-nds.

c

By Green’s theorem, the net flow is also

/ divF dA.
R

Now, since divF is continuous and R is small, divF is almost constant
throughout R, staying close to the divergence of F at (a,b). Thus

/diVF dA =~ divF(a,b) Area(R).

R

or, equivalently,
Net flow out of R

Area of R

~ div F(a, ). (18.3.3)

This means that
divF at P

is a measure of the rate at which fluid tends to leave a small region around
P. Hence another reason for the name “divergence.” If div F is positive, fluid
near P tends to get less dense (diverge). If divF is negative, fluid near P
tends to accumulate (converge).

Moreover, suggests a different definition of the divergence div F at
(a,b), namely

Local Definition of divF(a,b)

| ‘ fc F-nds
div F(aa b) - Diametle}rr%f R—0 m

where R is a region enclosing (a, b) whose boundary C'is a simple closed curve.
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This definition appeals to our physical intuition. We began by defining
div F mathematically, as OP/0x + 0Q/0y. We now see its physical meaning,
which is independent of any coordinate system. This coordinate-free definition
is the basis for Section [I8.9l

EXAMPLE 4 Estimate the flux of F across a small circle C' of radius a if
divF at the center of the circle is 3.

SOLUTION  The flux of F across C'is §, F -n ds, which equals [, divF dA,
where R is the disk that C' bounds. Since div F is continuous, it changes little
in a small enough disk, and we treat it as almost constant. Then fR divF dA
is approximately (3)(Area of R) = 3(mwa?) = 3ma®. o

Proof of Green’s Theorem

As Steve Whitaker of the chemical engineering department at the University
of California at Davis has observed, “The concepts that one must understand
to prove a theorem are frequently the concepts one must understand to apply
the theorem.” So read the proof slowly at least twice. It is not here just
to show that Green’s theorem is true. After all, it has been around for over
150 years, and no one has said it is false. Studying a proof strengthens one’s
understanding of the fundamentals.

In this proof we use the concepts of a double integral, an iterated integral,
a line integral, and the fundamental theorem of calculus. So the proof provides
a quick review of four basic ideas.

We prove that ¢, Q dy = [, % dA. The proof that ¢, P dx = — [ %—5 dA
is similar.

To avoid getting involved in distracting details we assume that R is strictly
convex: [t has no dents and its border has no straight line segments. The
basic ideas of the proof show up clearly in this special case. Thus R has the
description a < z < b, y1(x) < y < yo(x), as shown in Figure We will
express both fR % dA and |, o Q dy as definite integrals over the interval [a, b].

First, we have

aQ b yQ(I)aQ
— dA = — .
[y a=] | Gy e
R a yi(z)
By the Fundamental Theorem of Calculus,
yQ(x)(?Q
| 5 dv= Qe se(e) ~ Q@)
y1(z)
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Figure 18.3.5: ARTIST: Please change A with R.

Hence
b

[ [(@unta) - Q@) de. (834
R a
Next, to express fo —(@ dx as an integral over [a.b], break the closed path
C into two successive paths, one along the bottom part of R, described by
y = y1(x), the other along the top part of R, described by y = y»(x). Denote
the bottom path C; and the top path Cy. (See Figure ) .
Then $

j'{ (—0) du = / (—0) dz + / (—0) du. (18.3.5)
C

C 1 CQ

But

Figure 18.3.6:

and

/(—Q) da:z/(—@(a;,yg(a:))) dx:/(—Q(:c,yg(x))) dr = /Q(a:,yg(x))dx.

CQ 02

Thus by (/18.3.5)),

fe@an = [-Q@n@) do+ [ Q) dr

C a a

Calculus December 4, 2010
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This is also the right side of ((18.3.4) and concludes the proof.

Summary

We introduced the “divergence” of a vector field F = Pi + ()j, namely the
scalar field g—i + % denoted divF or V - F.

We translated Green’s Theorem into a theorem about the flux of a vector
field in the zy-plane. In symbols, the divergence theorem in the plane says

that
fF-ndSZ/dideA.

C R

“The integral of the normal component of F around a simple closed curve
equals the integral of the divergence of F over the region which the curve
bounds.”

From this it follows that

. fc F-nds _ Flux across C'
11m _— = m _
diameter of R—0 Area of R =~ diameter of R—0 Area of R

divF(P) =

where C' is the boundary of the region R, which contains P.
We concluded with a proof of Green’s theorem, that provides a review of
several basic concepts.
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EXERCISES for Section 18.3 Key: R-routine, M—moderate, C—challenging
1.[R] State the divergence form of Green’s Theorem in symbols.

2.[R] State the divergence form of Green’s Theorem in words, using no symbols to
denote the vector fields, etc.

In Exercises [3] to [6] compute the divergence of the given vector fields.
3.[R] F = 23yi + 229°j

4.[R] F = arctan(3zy)i+ (e¥/*)j

5.[R] F =In(x +y)i+ xy(arcsiny)?j

6.[R] F =yv1+22i+In((z 4 1)3(sin(y))?/2e*+Y)j

In Exercises [7|to [10| compute fR divF dA and f() F - n ds and check that they are
equal.
7.[R] F = 3zi+ 2yj, and R is the disk of radius 1 with center (0,0).

8.[R] F =5y3i — 622%j, and R is the disk of radius 2 with center (0,0).
]

9.[R] F = wzyi+ 2%yj, and R is the square with vertices (0,0), (a,0) (a,b) and
(0,b), where a, b > 0.
[

10.[R] F = cos(z+y)i+sin(z+y)j, and R is the triangle with vertices (0,0), (a,0)
and (a,b), where a, b > 0.

In Exercises [I1] to [I4] use Green’s Theorem expressed in terms of divergence to eval-
uate ¢, F - n ds for the given F, where C is the boundary of the given region R.
11.[R] F = e”sinyi+ e* cos(y)j, and R is the rectangle with vertices (0,0), (1,0),
(0,7/2), and (1,7/2).

12.[R] F = ytan(2)i+ ?j, and R is the square with vertices (0,0), (1,0), (1,1),

and (0,1).
13.[R] F = 223yi — 32%y?%j, and R is the triangle with vertices (0,1), (3,4), and
(2,7).

14.R] F = _‘2 + r2y’ and R is the triangle with vertices (1,1), (2,2), and (1,2).
HINT: Write F Wlth a common denominator.

15.[R] In Example 3| we found ¢, F-n ds by computing a double integral. Instead,
evaluate the integral §C F - n ds directly.

16.[R| Let F(z,y) =1, a constant field.

(a) Evaluate directly the flux of F around the triangular path, (0,0) to (1,0), to
(0,1) back to (0,0).

(b) Use the divergence of F to evaluate the flux in (a).
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17.[R] Let a be a “small number” and R be the square with vertices (a, a), (—a, a),
(—a,—a), and (a, —a), and C' its boundary. If the divergence of F at the origin is 3,
estimate ¢, F - n ds.

18.[R] Assume [|[F(P)|| < 4 for all points P on a curve of length L that bounds a
region R of area A. What can be said about the integral fR V-F dA?

19.[R] Verify the divergence form of Green’s Theorem for F = 3zi+4yj and C the
square whose vertices are (2,0), (5,0), (5,3), and (2, 3).

A vector field F is said to be divergence free when V -F = 0 at every point in the
field.

20.[R] Figure shows four vector fields. Two are divergence-free and two are
not. Decide which two are not, copy them onto a sheet of drawing paper, and sketch
a closed curve C' for which §, F - n ds is not 0.

[
% | )_,1
. i — — — —
' ~
.l —
S
o e — B Bl
E .
» i i R S - —
4 N
F | Y
L
SE—
P
R
f Py /v ,
’ ",
S
< )
/f ot .I
~ e | » ¥ T
> 5
P f
s — -—
% -

Figure 18.3.7:

21.[R] For a vector field F,
Is the curl of the gradient of F always 07

(a
(b

Is the divergence of the gradient of F always 07

(c) Is the divergence of the curl of F always 07

)
)
)
(d) Is the gradient of the divergence of F always 07

22.[R] Figure[18.3.8/describes the flow F of a fluid. Decide whether V-F is positive,
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negative, or zero at each of the points A, B, and C.

“ &
= ey g e — R
= — = e { o i
M o — — Y
— ey —_ 'n. I =
g
— —

Figure 18.3.8:

23.[R] If divF at (0.1,0.1) is 3 estimate §,F -n ds, where C is the curve around
the square whose vertices are (0,0), (0.2,0), (0.2,0.2), (0,0.2).

24.[M] Find the area of the region bounded by the line y = x and the curve

x = 644
y = 2+t

for ¢ in [0, 1]. HINT: Use Green’s Theorem.

25.[M] Let f be a scalar function. Let R be a convex region and C' its boundary
taken counterclockwise. Show that

02f  0%f of of
/<w+w> dA:f(@ W o "’”>
R C

26.[M] Let F be the vector field whose formula in polar coordinates is F(r, 6) = r"T,
where r = zi+yj, 7 = ||r||, and T = r/r. Show that the divergence of F is (n+1)r"~!
HINT: First express F in rectangular coordinates. NOTE: See also Exercise [40]in Sec-
tion

27.]M] A region with a hole is bounded by two oriented curves C; and Cb,
as in Figure [18.3.9] which shows typical exterior—pointing unit normal vectors.

/ / Er:
| = >/ "-..A::l d

-

k“‘x o J,'
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Figure 18.3.9:
Find an equation expressing fR V - F dA in terms of 5601 F-n ds and fcz F -n ds.
HINT: Break R into two regions that have no holes, as in Exercises [34] and

28.[M] The region R is bounded by the curves C; and Cy, as in Figure [18.3.10

Figure 18.3.10:
(a) Show that ¢, F-nds— [, F-nds= [,(V -F)dA.

(b) If V-F =0in R, show that [, F-nds= [, F-nds.

29.[M] Let F be a vector field in the xy-plane whose flux across any rectangle is
0. Show that its flux across the curves in Figure [18.3.11)(a) and (b) is also 0.

Y Jj—}
{
(a)

Figure 18.3.11:

30.[M] Assume that the circulation of F along every circle in the xy-plane is 0.
Must F be conservative?

31.[C] The field F is defined throughout the zy-plane. If the flux of F across every
circle is 0, must the flux of F' across every square be 07 Explain.

32.[C] Let F(x,y) describe a fluid flow. Assume V- F is never 0 in a certain region
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R. Show that none of the stream lines in the region closes up to form a loop within
R. HINT: At each point P on a stream line, F(P) is tangent to that streamline.

33.[C] Let R be a region in the zy-plane bounded by the closed curve C. Let
f(z,y) be defined on the plane. Show that

02 o2
/<a;;+ax]2t> dA:?{Dn(f) ds.
R C

34.[C] Assume that F is defined everywhere in the zy-plane except at the origin
and that the divergence of F is identically 0. Let C; and Cy be two counterclockwise
simple curves circling the origin. Cj lies within the region within C5. Show that

$c, F-nds= [, F-nds. (See Figure|18.3.12(a).)

i \ i O o
el — / e
e \ Ilf { et |
f = \ /f' ;," ll #(C
\ ‘ PP /,-’ ( 'k.7 -
L %

Figure 18.3.12:
HINT: Draw the dashed lines in Figure [18.3.12b) to cut the region between C; and
Cs into two regions.

35.[C] (This continues Exercise [34]) Assume that F is defined everywhere in the
xy-plane except at the origin and that the divergence of F is identically 0. Let Cy
and Cs be two counterclockwise simple curves circling the origin. They may inter-
sect. Show that fCl F-nds= fcg F-n ds. The message from this Exercise is this: if
the divergence of F' is 0, you are permitted to replace an integral over a complicated
curve by an integral over a simpler curve.

36.[C]

(a) Draw enough vectors for the field F(x,y) = (zi + vj)/(z? + y?) to show what
it looks like.

(b) Compute V - F.

(c) Does your sketch in (a) agree with what you found for V - F. in (b)? (If not,
redraw the vector field.)
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Figure 18.4.1:

Figure 18.4.2:

18.4 Central Fields and Steradians

Central fields are a special but important type of vector field that appear in
the study of gravity and the attraction or repulsion of electric charges. These
fields radiate from a point mass or point charge. Physicists invented these
fields in order to avoid the mystery of “action at a distance.” One particle
acts on another directly, through the vector field it creates. This comforts
students of gravitation and electromagnetism by glossing over the riddle of
how an object can act upon another without any intervening object such as a
rope or spring.

Central Fields

A central field is a continuous vector field defined everywhere in the plane
(or in space) except, perhaps, at a point O, with these two properties:

1. Each vector points towards (or away from) O.
2. The magnitudes of all vectors at a given distance from O are equal.

O is call the center, or pole, of the field. A central field is also called
“radially symmetric.” There are various ways to think of a central vector
field. For such a field in the plane, all the vectors at points on a circle with
center O are perpendicular to the circle and have the same length, as shown
in Figures [18.4.1| and [18.4.2]

The same holds for central vector fields in space, with “circle” replaced by
“sphere.”

The formula for a central vector field has a particularly simple form. Let
the field be F and P any point other than O. Denote the vector OP by r and
its magnitude by r and r/r by . Then there is a scalar function f, defined
for all positive numbers, such that

The magnitude of F(P) is || f(r)||. If f(r) is positive, F(P) points away
from O. If f(r) is negative, F(P) points toward O.

To conclude this introduction to central fields we point out that a central
field is a vector-valued function of more than one variable. Because the point
P with coordinates (x,y,z) is also associated with the vector r = O—I>3 =
xi+ yj + zk we may denote F(P) as F(z,y, z) or F(r).
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Central Vector Fields in the Plane

Using polar coordinates with pole placed at the point O, we may express a
central field in the form

F(r) = f(r)r,

where r = ||r|| and ¥ = r/r. The magnitude of F(r) is | f(r)|.

We already met such a field in Section [18.1] in the study of line integrals.
In that case, f(r) = 1/r; the “field varied as the inverse first power.” When,
in Section [15.4), we encountered the line integral for the normal component of
this field along a curve we found that it gives the number of radians the curve
subtends.

The vector field F(r) = (1/r)r can also be written as

F(r) = —. (18.4.1)

When glancing too quickly at , you might think its magnitude is in-
versely proportional to the square of r. However, the magnitude of the vector
r in the numerator is r; the magnitude of r/r? is r/r? = 1/r, the reciprocal of
the first power of r.

EXAMPLE 1 Evaluate the flux ¢, F - n ds for the central field F(z,y) =
f(r)F, where r = zi + yj, over the closed curve shown in Figure [18.4.3] We
have a < b and the path goes from A = (a,0) to B = (b,0) to C' = (0,b), to
D = (0,a) and ends at A = (a,0).

SOLUTION On the paths from A to B and from C' to D the exterior normal,
n, is perpendicular to F, so F-n = 0, and these integrands contribute nothing
to the integral. On BC, F equals f(b)r. There T = n, so F -n = f(b) since
r-n = 1. Note that the length of arc BC is (27b)/4 = wb/2. Thus

C C C
/F~nds:/f(b) /ds:—f b)

On the arc DC, T = —n. A similar calculation shows that

c
/F-n ds = —gaf(a).

Hence

j{F mds = 04 20f() + 0~ Saf(a) = 2(bf() ~ af(a)

Calculus December 4, 2010
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Figure 18.4.4:

O

In order for a central field f(r)r to have zero flux around all paths of the
special type shown in Figure [18.4.3] we must have

f0)b = f(a)a =0,
for all positive a and b. In particular,

fep— =0 o o) ="

Thus f(r) must be inversely proportional to r and there is a constant ¢ such
that

If f(r) is not of the form ¢/r, the vector field F(z,y) = f(r)r does not have
zero flux across these paths. In Exercise [5| you may compute the divergence of
(¢/r)r and show that it is zero.

The only central vector fields with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the distance
from the origin.

¢

We underline “in the plane,” because in space the only central fields with
zero flux across closed surfaces have a magnitude inversely proportional to the
square of the distance to the pole, as we will see in a moment.

Knowing that the central field F = T/r has zero divergence enables us to
evaluate easily line integrals of the form fc FTH ds, as the next example shows.

EXAMPLE 2 Let F(r) =T/r. Evaluate §,F -n ds where C' is the coun-
terclockwise circle of radius 1 and center (2,0), as shown in Figure [18.4.4]

SOLUTION Exercise |5 shows that the field F has 0-divergence throughout
C and the region R that C bounds. By Green’s Theorem, the integral also
equals the integral of the divergence over R:

fF-nds:/v-FdA. (18.4.2)
R

c

Since the divergence of F is 0 throughout R, the integral on the right side of
(18.4.2) is 0. Therefore ¢, F -n ds = 0. o
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The next example involves a curve that surrounds a point where the vector
field F =71/r is not defined.

EXAMPLE 3 Let C be asimple closed curve enclosing the origin. Evaluate
$,F -n ds, where F =T /r.

SOLUTION Figureshows C and a small circle D centered at the origin
and situated in the region that C' bounds. Without a formula describing C,
we could not compute fc F - n ds directly. However, since the divergence of F
is 0 throughout the region bounded by C' and D, we have, by the Two-Curve

Case of Green’s Theorem,
fF-nds:%F-nds. (18.4.3)

C D

The integral on the right-hand side of (|18.4.3) is easy to compute directly. To
do so, let the radius of D be a. Then for points P on D, F(P) =7/a. Now, T
and n are the same unit vector. So T -n = 1. Thus

%F nds—f—ds—/lds:l%ra:%r.
a a

Hence 5ch -n ds = 2m. o

Central Fields in Space

A central field in space with center at the origin has the form F(x,y,z) =
F(r) = f(r)r We show that if the flux of F over any surface bounding certain
special regions is zero then f(r) must be inversely proportional to the square
of r.

Consider the surface S shown in Figure [18.4.6] It consists of an octant of
two concentric spheres, one of radius a, the other of radius b, a < b, together
with the flat surfaces on the coordinate planes. Let R be the region bounded by
the surface S. On its three flat sides F is perpendicular to the exterior normal.
On the outer sphere F(z,y, z) -n = f(b). On the inner sphere F(z,y,2) -n =
—f(a). Thus

74 FondS = f()()(n) — f(a)(5)(4ma®) = & (fO)F ~ fla)a?).

Since this is to be 0 for all positive a and b, it follows that there is a constant

¢, such that
c

f(T)=ﬁ~

The magnitude must be proportional to the “inverse square.”
The following fact is justified in Exercise |28}

Calculus December 4, 2010
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The only central vector field with center at the origin in the plane with zero
divergence are these whose magnitude is inversely proportional to the distance
from the origin.

A Geometric Application
See Sections and . pp

As we will see later in this chapter an “inverse square” central field is at
the heart of gravitational theory and electrostatics. Now we show how it is
used in geometry, a result we will apply in both areas.

In Section [15.4] we showed how radian measure could be expressed in terms
of the line integral [,(T/r) - n ds, that is, in terms of the central field whose
magnitude is inversely proportional to the first power of the distance from
the center. That was based on circular arcs in a plane. Now we move up
one dimension and consider patches on surfaces of spheres, which will help us
measure solid angles.

Let O be a point and S a surface such that each ray from O meets S in at
most one point. Let S* be the unit sphere with center at O. The rays from O
that meet S intersect S* in a set that we call R, as shown in Figure [18.4.7](a).
Let the area of R be A. The solid angle subtended by S at O is said to have

Steradians comes from  a measure of A steradians
stereo, the Greek word for For instance, a closed surface S that encloses O subtends a solid angle of
space, and radians.  Ar steradians, because the area of the unit sphere is 4.

fiats, J ;
x ! oy =
T : Y~ Ll |
- A | L Wha angle
- A ) —————
a e i = | subtend?
<)
|l' i T
\ o e ._,l J
, ;.
o B
-, - :
s, S (LN

Figure 18.4.7:

EXAMPLE 4 Let S be part of the surface of a sphere of radius a, S,, whose
center is 0. Find the angle subtended by S at O. (See Figure [18.4.7|b).)
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SOLUTION The entire sphere S, subtends an angle of 47 steradians because
it has an area 4ma?®. We therefore have the proportion

Angle S subtends  Area of S
Angle S, subtends  Area of S,’

or
Angle S subtends  Area of S
A  4ra?
Hence
A 1)
Angle § subtends = Area ol o 20 steradians.
a

EXAMPLE 5 Let & be a surface such that each ray from the point O
meets § in at most one point. Find an integral that represents in steradians
the solid angle that S subtends at O.

SOLUTION Consider a very small patch of S. Call it dS and let its area g,
be dA. If we can estimate the angle that this patch subtends at O, then we

will have the local approximation that will tell us what integral represents the b “ h&LY
total solid angle subtended by S. " v —\‘"3‘\!;‘)"2:'\*]?5
Let n be a unit normal at a point in the patch, which we regard as es- | T
sentially flat, as in Figure [18.4.8] Let dA be the projection of the patch dS V-
on a plane perpendicular to r, as shown in Figure [I8.4.8] The area of dA is i
approximately dA, where )
Figure 18.4.8:

dA=71-ndS.

Now, dS and dA subtend approximately the same solid angle, which ac-
cording to Example 4| is about

~

ﬁ dS steradians.
r

Consequently S subtends a solid angle of

/|1|'||r; dS steradians.
r
S

The following special case will be used in Section [18.5]

Calculus December 4, 2010
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Figure 18.4.9:

Figure 18.4.10:

Recall that cos(r, n)
denotes the cosine of the
angle between r and n; see

also Section142  pecember 4, 2010

Let O be a point in the region bounded by the closed surface S. Assume each
ray from O meets § in exactly one point, and let r denote the position vector
from O to that point. Then

/2 ds = 4r. (18.4.4)

Incidentally, (18.4.4]) is easy to establish when S is a sphere of radius a
and center at the origin. In that case T =n, sor-n = 1. Also, r = a. Then
becomes [¢(1/a*) dS = (1/a*)4ma® = 4w. However, it is not obvious
that holds far more generally, for instance when § is a sphere and the
origin is not its center, or when S is not a sphere.

EXAMPLE 6 Let S be the cube of side 2 bounded by the six planes x = +1,
y = *1, z = %1, shown in Figure Find §, 2 S, where S is one of
the six faces of the cube.

SOLUTION Each of the six faces subtends the same solid angle at the origin.
Since the entire surface subtends 47 steradians, each face subtends 47 /6 =
27 /3 steradians. Then the flux over each face is

In physics books you will see the integral |, S i—;‘ dS written using other nota-
tions, including:

T-n T-dS r-dS cos(r,n)
/ s 45 / r2 / s / EE
S

S S S

The symbol dS is short for n dS, and calls to mind Figure[18.4.10, which shows
a small patch on the surface, together with an exterior normal unit vector.
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Summary

We investigated central vector fields. In the plane the only divergence-free

central fields are of the form (¢/r)r where ¢ is a constant, “an inverse first

power.” In space the only incompressible central fields are of the form (c¢/r?)r,

“an inverse second power.” The field T/r? can be used to express the size of

a solid angle of a surface S in steradians as an integral: [(T-n/r? dS. In

particular, if S encloses the center of the field, then [(T-n/r? dS = 4. Incompressible vector fields
have divergence zero, and

are discussed again in
Section [18.6

Calculus December 4, 2010
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EXERCISES for Section 18.4 Key: R-routine, M-moderate, C—challenging
1.[R] Define a central field in words, using no symbols.
2.[R] Define a central field with center at O, in symbols.

3.[R] Give an example of a central field in the plane that
(a) does not have zero divergence,

(b) that does have zero divergence.

4.[R] Give an example of a central field in space that
(a) that is not divergence-free,

(b) that is divergence-free.

5.[R] Let F(x,y) be an inverse-first-power central field in the plane F(z,y) = (c¢/r)r,

where r = zi+yj. Compute the divergence of F. HINT: First write F(x,y) as C;;iZgJ

6.[R] Show that the curl of a central vector field in the plane is 0.
7.[R] Show that the curl of a central vector field in space is 0.

8.[R] Let F(r) =7/r. Evaluate ¢, F-n ds as simply as you can for the two ellipses
in Figure |18.4.11

(a) )

Figure 18.4.11:
9.[R] Figure [18.4.12{shows a cube of side 2 with one corner at the origin.
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Figure 18.4.12:
Evaluate as easily as you can the integral of the function T - n/r? over

(a) the square EFGH,
(b) the square ABCD,

(c) the entire surface of the cube.

10.[R] Let F(r) = ¥/r%. Evaluate the flux of F over the sphere of radius 2 and
center at the origin.

11.[R] A pyramid is made of four congruent equilateral triangles. Find the stera-
dians subtended by one face at the centroid of the pyramid. (No integration is
necessary. )

12.[R] How many steradians does one face of a cube subtend at
(a) One of the four vertices not on that face?

(b) The center of the cube? NOTE: No integration is necessary.

13.[M] In Example |2|the integral §,T-n/r ds turned out to be 0. How would you
explain this in terms of subtended angles?

14.[M] Let F and G be central vector fields in the plane with different centers.
(a) Show that the vector field F 4+ G is not a central field.

(b) Show that the divergence of F + G is 0.

Calculus December 4, 2010
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15.[M] In Example |§|, we evaluated a surface integral by interpreting it in terms
of the size of a subtended solid angle. Evaluate the integral directly, without that
knowledge.

16.[M] Let S be the triangle whose vertices are (1,0,0), (0,1,0), (0,0, 1). Evaluate
J s =z dS by using steradians.

17.[M] Evaluate the integral in Exercise [16| directly.

18.[M] Let F(z,y,2) = % be a vector field in space.

What is the domain of F?

(a
(

b) Sketch F(1,1,0) and F(1,1,2) with tails at the given points.

Show F is not a central field.

(c

(d) Show its divergence is 0.

)
)
)
)
Exercises [19] to 2] are related.

19.[M] Let F be a planar central field. Show that V x F is 0. HINT: F(z,y) =

g(v/ 2% +y? (zit+y)))
\/x2+y2

20.[M] (This continues Exercise[19]) Show that F is a gradient field; to be specific,

F =Vg(\v/2? + y?).

21.[C] Carry out the computation to show that the only central fields in space that
have zero divergence have the form F(r) = ¢r/r?, if the origin of the coordinates is
at the center of the field.

for some scalar function g.

22.[C] If we worked in four-dimensional space instead of the two-dimensional plane
or three-dimensional space, which central fields do you think would have zero diver-
gence? Carry out the calculation to confirm your conjecture.

23.[C] Let F =7/r? and S be the surface of the lopsided pyramid with square
base, whose vertices are (0,0,0), (1,1,0), (0,1,0), (0,1,1), (1,1,1).

(a) Sketch the pyramid.
(b) What is the integral of F - n over the square base?

(c) What is the integral of F - n over each of the remaining four faces?
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(d) Evaluate ¢ F -n dS.

24.[C] Let C be the circle 22 + > = 4 in the xy-plane. For each point Q in the

disk bounded by C' consider the central field with center @), F(P) = P_Cj/HPQH2
Its magnitude is inversely proportional to the first power of the distance P is from
Q. For each point @ consider the flux of F across C.

(a) Evaluate directly the flux when @ is the origin (0, 0).
(b) If @ is not the origin, evaluate the flux of F.

(c) Evaluate the flux when @ lies on C.

25.[C] Let F be the central field in the plane, with center at (1,0) and with mag-

nitude inversely proportional to the first power of the distance to (1,0): F(z,y) =
m Let C be the circle of radius 2 and center at (0,0).

(a) By thinking in terms of subtended angle, evaluate the flux §C F-n ds.

(b) Evaluate the flux by carrying out the integration.

26.[C] This exercise gives a geometric way to see why a central force is conservative.
o~ . -
Let F(x,y) = f(r)r. Figure |18.4.13| shows F(z,y) and a short vector dr and two

circles.

Figure 18.4.13:

(a) Why is F(z,y) - dr approximately f(r) dr, where dr is the difference in the
radii of the two circles?
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(b) Let C be a curve from A to B, where A = (a,a) and B = (b,3) in polar
coordinates. Why is [, F - dr = fabf(r) dr?

(¢c) Why is F conservative?

SKILL DRILL

27.[R] Show that the derivative of % tan3(z) — tan(z) + = is tan?(z).

28.[R] Use integration by parts to show that

n—l(

/tan"(:c) de = tan™” (@) _ /tan"Z(:z:) dx.

n—1

29.[R] Entry|16|in the Table of Antiderivatives in the front cover of this book is:
/ _de 1hrl
z(ax+b b

(a) Use a partial fraction expansion to evaluate the antiderivative.

T
ar +b|

(b) Use differentiation to check that this formula is correct.

30.[R] Repeat Exercise [29| for entry [17/in the Table of Antiderivatives:

/dﬂlj = 1ln
z(az+b) b

x
ar+b|’

31.[R] Show that zarccos(z) — v/1 — z? is an integral of arccos(z).
32.[R] Find [arctan(z).

33.[R]
(a) Find [ ze™ du.
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(b) Use integration by parts to show that

m ,ax
x™e m _
/xme‘”” dx = — = [ 2™ dg.
a a

(c¢) Verify the equation in (b) by differentiating the right hand side.

Calculus December 4, 2010
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18.5 The Divergence Theorem in Space (Gauss’
Theorem)

In Sections and we developed Green’s theorem and applied it in two
forms for a vector field F in the plane. One form concerned the line integral
of the tangential component of F, f() F - T ds, also written as fo F - dr. The
other concerned the integral of the normal component of F, fc F-n ds. In this
section we develop the Divergence Theorem, an extension of the second
form from the plane to space. The extension of the first form to space is
the subject of Section [18.6] In Section the Divergence Theorem will be
applied to electro-magnetism.

The Divergence (or Gauss’s) Theorem

Consider a region R in space bounded by a surface S. For instance, R may be
a ball and S its surface. This is a case encountered in the elementary theory of
electro-magnetism. In another case, R is a right circular cylinder and S is its

surface, which consists of two disks and its curved side. See Figure [18.5.1|(a).

Both figures show typical unit exterior normals, perpendicular to the surface.

¥ 15 the

(a) (b)
Figure 18.5.1:

The Divergence Theorem relates an integral over the surface to an integral
over the region it bounds.

Theorem. Divergence Theorem —One-Surface Case. Let V be the region in
space bounded by the surface S. Let n denote the exterior unit normal of V
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along the boundary S. Then

/F-nds:/V-FdV

S 1%

for any vector field F defined on V.
State the Theorem aloud.

In words: “The integral of the normal component of F over a surface equals
the integral of the divergence of F over the region the surface bounds.”

The integral |, s F -1 dS is called the flux of the field F across the surface
S.

If F = Pi+Qj+ Rk and cos(«), cos(f3), and cos(y) are the direction cosines
of the exterior normal, then the Divergence Theorem reads

/(Pi+Qj+Rk)-(cos(a)i—l—cos(ﬁ)j—l—cos )dS = /(8}7 8_@ + g—f) dv.
S

Evaluating the dot product puts the Divergence Theorem in the form Direction cosines are
defined in Section [14.4

/(Pcos( )+ Qcos(B) + Rcos(y)) dS = / (8P a@j + %) av.

S

When the Divergence Theorem is expressed in this form, we see that it amounts
to three scalar theorems:
0Q R

/Pcos(a) dS = | — dV /Q cos(f3) dS = 8_ dV, and /Rcos(’y) ds = 5 dv.

S S v
(18.5.1)

As is to be expected, establishing these three equations proves the Diver-
gence Theorem. We delay the proof to the end of this section, after we have
shown how the Divergence Theorem is applied.

You could have guessed the result in this Example by thinking in terms of
the solid angle and steradians. Why?

Two-Surface Version of the Divergence Theorem

The Divergence Theorem also holds if the solid region has several holes like a

piece of Swiss cheese. In this case, the boundary consists of several separate e G
closed surfaces. The most important case is when there is just one hole and ner surface 5, . and
hence an inner surface S; and an outer surface Sy as shown in Figure [18.5.2] ANET FeriRer of
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Compare with ([18.2.4)) in
Exercise 3] in Section [18.2

Theorem (Divergence Theorem — Two-Surface Case.). Let V be a region in
space bounded by the surfaces Sy and Ss. Let n* denote the exterior normal
along the boundary. Then

/F-n* dS+/F-n* dS:/diVFdV

S1 Sa Vv
for any vector field defined on V.

The importance of this form of the Divergence Theorem is that it allows
us to conclude that the flux across each of the surfaces are the same provided
these surfaces form the boundary of a solid where divF = 0.

Let §; and S; be two closed surfaces that form the boundary of the region V.
Let F be a vector field defined on V such that the divergence of F, V- F, is 0
throughout V. Then

/F-ndS:/F-ndS (18.5.2)

51 82

The proof of this result closely parallels the derivation of in Sec-
tion [18.2

The next example is a major application of , which enables us, if
the divergence of F is 0, to replace the integral of F - n over a surface by an
integral of F - n over a more convenient surface.

EXAMPLE 1 Let F(r) =1/r?, the inverse square vector field with center
at the origin. Let S be a convex surface that encloses the origin. Find the flux
of F over the surface, fs F-ndS.

SOLUTION Select a sphere with center at the origin that does not intersect
S. This sphere should be very small in order to miss §. Call this spherical

surface §; and its radius a. Then, by ((18.5.2)),

/F-ndS:/F-ndS

S S1
rn

But [5 F-n dS is easy because the integrand (v/r?) -n equals ©2. Then, r-n
is just 1. Thus:

1 1 1
a a a
S1 S1

S1
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o

A uniform or constant vector field is a vector field where vectors at every
point are all identical. Such fields are used in the next example.

EXAMPLE 2 Verify the Divergence Theorem for the constant field F(z,y, z) =
2i+3j+4k and the surface S of a cube whose sides have length 5 and is situated

as shown in Figure [18.5.3]

O
.-“/AY / .-'..-'l
._.’

-7 I BT
L il
o L

b P_ R
E 5/ C
| ~ [
e ]
B 33
rd
X .

Figure 18.5.3:

SOLUTION To find |, s F -n dS we consider the integral of F - n over each
of the six faces.
On the bottom face, ABCD the unit exterior normal is —k. Thus

F-n=(2i+3j+4k) - (—k) = —4.

So

/F-ndS: /(—4)dS:—4/ S = (—4)(25) = —100.

ABCD ABCD ABCD

The integral over the top face involves the exterior unit normal k instead of
—k. Then fEFGH F-n dS = 100. The sum of these two integrals is 0. Similar
computations show that the flux of F over the entire surface is 0.

The Divergence Theorem says that this flux equals fR divF dV, where R
is the solid cube. Now, divF = 0(2)/0x+ 0(3)/0y +9(4)/0z =0+0+0 = 0.
So the integral of div F over R is 0, verifying the divergence theorem. o
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Why divF is Called the Divergence

Let F(x,y,z) be the vector field describing the flow for a gas. That is,
F(z,y, z) is the product of the density of the gas at (x,y, z) and the velocity
vector of the gas there.

The integral [ s F-n dS over a closed surface S represents the tendency of
the gas to leave the region R that S bounds. If that integral is positive the gas
is tending to escape or “diverge”. If negative, the net effect is for the amount
of gas in R to increase and become denser.

Let p(x,y, z,t) be the density of the gas at time ¢ at the point P, with units
mass per unit volume. Then fR p dV is the total mass of gas in R at a given
time. So the rate at which the mass in R changes is given by the derivative

v,
at | °
R

If p is sufficiently well-behaved, mathematicians assure us that we may
“differentiate past the integral sign.” Then

pdV = /—dV
/apdv /F-ndS

since both represent the rate at which gas accumulates in or escapes from R.
But, by the Divergence Theorem, [(F-n dS = [,V -F dV, and so

/v F dV = /8pdV

/(V F - %) av =0. (18.5.3)
R
From this is it possible to conclude that V - F — % =07
Recall that the Zero-Integral Principle (see Section says: If a contin-
uous function f on an interval [a, b] has the property that fcd f(z) doz =0 for

every subinterval [c,d] then f(z) = 0 on [a,b]. A natural extention of the
Zero-Integral Principle (see Exercise is:

Therefore

or,

Zero-Integral Principle in Space
Let R be a region in space, that is, a set of points in space that is bounded
by a surface, and let f be a continuous function on R. Assume that for every

region § in R, ) dS =0. Then f(P) =0 for all P in R.
s/t
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Equation [18.5.3] holds not just for the solid R but for any solid region
within R. By the Zero-Integral Principle in Space, the integrand must be zero
thoughout R, and we conclude that

_Op

F=—
v ot

This equation tells us that divF at a point P represents the rate gas is
getting denser or lighter near P. That is why div F is called the “divergence
of F”. Where div F is positive, the gas is dissipating. Where div F is negative,
the gas is collecting.

For this reason a vector field for which the divergence is 0 is called incom-
pressible. An incompressible is also called “divergence free”.

We conclude this section with a proof of the Divergence Theorem.

Proof of the Divergence Theorem

We prove the theorem only for the special case that each line parallel to an

axis meets the surface § in at most two points and V is convex. We prove the

third equation in (18.5.1)). The other two are established in the same way.
We wish to show that

/Rcos(”y) s = g—lj av. (18.5.4)
12 v
Let A be the projection of S on the zy plane. Its description is
a<z<b (@) <y<p()
The description of V is then
a<z<b  ylr)<y<m(r), vy <z<nry)
Then (see Figure
OR U or
5 av :/ / / 5 dz dy dz. (18.5.5)

V a yl(z) Z]_(ZC,y)
The first integration gives

z2 (a:,y)

g_f dz = R(xaysz) - R(x7y7zl)>

z1(z,y)

Calculus

December 4, 2010

See Exercise in

Section 183
&
Figure 18.5.4:



1578

CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

by the Fundamental Theorem of Calculus. We have, therefore,

b y2(x

)
L= [ [ Ry - Rz dy dr,
1%

a y1(v)

hence
OR

Oz dv = / (R(x,y,20) — R(x,y,21)) dA.

v A

This says that, essentially, on the “top half” of V, where 0 < v < 7/2, dA =
cos(y) dS is positive. And, on the bottom half of V, where 7/2 < v < T,
dA = —cos(y) dS. According to (17.7.1)) in Section [17.7] the last integral

equals

/R(m, y, z) cos(y) dS.

Thus OR
— dV = /RCOS’y ds,
0z

% S

and ([18.5.4)) is established.
Similar arguments establish the other two equations in (18.5.1)).

Summary

We stated the Divergence Theorem for a single surface and for two surfaces.
They enable one to calculate the flux of a vector field F in terms of an integral
of its divergence V - F over a region. This is especially useful for fields that
are incompressible (divergence free). The most famous such field in space is
the inverse-square vector field: T/r?. The flux across a surface of such a field
depends on whether its center is inside or outside the surface. Specifically, if

the center is at () and the field is of the form CH%JPF, its flux across a surface
not enclosing @ is 0. If it encloses @, its flux is 4w. This is a consequence

of the divergence theorem. It also can be explained geometrically, in terms of
solid angles.
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EXERCISES for Section 18.5 Key: R-routine, M—moderate, C—challenging
1.[R] State the Divergence Theorem in symbols.

2.[R] State the Divergence Theorem using only words, not using symbols, such as
F,V-F,n, S orV.

3.[R] Explain why V - F at a point P can be expressed as a coordinate-free limit.

4.[R] What is the two-surface version of Gauss’s theorem?

5.[R] Verify the divergence theorem for F(x,y,z) = xi + yj + Ok and the surface
22 +y? 422 =0.

6.[R] Verify the divergence theorem for the field F(x,y, z) = zi and the cube whose
vertices are (0,0,0), (2,0,0), (2,2,0), (0,2,0), (0,0,2), (2,0,2), (2,2,2), (0,2,2).

7.[R] Verify the divergence theorem for F = 2i+ 3j+ 4k and the tetrahedron whose
four vertices are (0,0,0), (1,0,0), (0,1,0) and (0,0, 1).

8.[R] Verify the two-surface version of Gauss’s theorem for F(x,y, z) = (22 + y* +
2?)(xi+ yj + zk) and the surfaces are the spheres of radii 2 and 3 centered at the
origin.

9.[R] Let F = 2zi+ 3yj+ (5z + 62)k, and let G = (22 + 422)i + (3y + 5z)j + 5zk.

Show that
/F-ndS:/G-ndS,
S

S
where § is any surface bounding a region in space.

10.[R] Show that the divergence of ¥/r? is 0. HINT: r = zi + yj + zk.

In Exercises [T1] to [TI§ use the Divergence Theorem.

11.[R] Let V be the solid region bounded by the xy plane and the paraboloid
z =9 — 22 — y?. Evaluate fSF -n dS, where F = y3i 4+ 23j + 2%k and S is the
boundary of V.

12.[R] Evaluate [, V-F dV for F = /2% 4+ y2 + 22(2i + yj + 2k) and V the ball
of radius 2 and center at (0,0,0).

In Exercises (13| and (14| find [¢F -n dS for the given F and S.
13.[R] F =2va?+ 2%+ (y+3)j —xvVa? + 2%k and S is the boundary of the solid
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region between z = x? + y? and the plane z = 4x.

14.[R] F =zi+ 3y + 2)j + (4o + 22)k and S is the surface of the cube bounded
by the planesz =1,z =3, y=2,y=4, 2z =3 and 2z = 5.

15.[R] Evaluate fS F -n dS, where F = 4zz2i — 9?j + yzk and S is the surface of
the cube bounded by the planes x = 0, x =1, y =0, 2 = 0, and z = 1, with the
face corresponding to x = 1 removed.

16.[R] Evaluate [(F-n dS, where F = zi + yj + 2rk and S is the boundary of
the tetrahedron with vertices (1,2,3), (1,0,1) (2,1,4), and (1,3,5).

17.[R] Let S be a surface of area S that bounds a region V of volume V. As-
sume that [|[F(P)|| < 5 for all points P on the surface S. What can be said about
[,V -Fav?

18.[R] Evaluate [¢F -n dS, where F = 2°i + %] + 2°k and S is the sphere of
radius a and center (0,0,0).

In Exercises to evaluate |, sF-ndSforF =71/ r? and the given surfaces, doing
as little calculation as possible.
19.[R] S is the sphere of radius 2 and center (5,3, 1).

20.[R] S is the sphere of radius 3 and center (1,0,1).

21.[R] S is the surface of the box bounded by the planes x = —1, z = 2, y = 2,
y=3,z=—-1,and z =6.

22.[R] S is the surface of the box bounded by the planes x = —1, z =2, y = —1,
y=3,z=-1,and z =4.

23.[M] Assume that the flux of F across every sphere is 0. Must the flux of F
across the surface of every cube be 0 also?

24.[R] If F is always tangent to a given surface S what can be said about the
integral of V - F over the region that & bounds?

25.]M] Let F(r) = f(r)r be a central vector field in space that has zero divergence.
Show that f(r) must have the form f(r) = a/r? for some constant a. HINT: Con-
sider the flux of F across the closed surface in Figure
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Figure 18.5.5:
26.[M] Let F be defined everywhere except at the origin and be divergence-
free. Let &1 and Sz be two closed surfaces that enclose the origin. Explain why
Js, F-ndS= [; F-ndS. (The two surfaces may intersect.)

27.[M] Provide the details for the proof of the Zero-Integral Principle in Space.
HINT: You need to consider the two cases when f > 0 and f < 0.

28.[M] Show that the flux of an inverse-square central field ¢t/r? across any closed
surface that bounds a region that does not contain the origin is zero.

29.[C]

(a) Show that the proof in the text of the Divergence Theorem applies to a tetra-
hedron. HINT: Choose your coordinate system carefully.

(b) Deduce that if the Divergence Theorem holds for a tetrahedron then it holds
for any polyhedron. HINT: Each polyhedron can be cut into tetrahedra.

30.[C] In Exercise [25[you were asked to show generally that the only central fields
with zero divergence are the inverse square fields. Show this, instead, by computing
the divergence of F(z,y,z) = f(r)7, where r = zi + yj + zk.

31.[C] Let F be defined everywhere in space except at the origin. Assume that
F(r)

1m =
Irf|—o0 x|

and that F is defined everywhere except at the origin, and is divergence free. What
can be said about |, s F -n dS, where § is the sphere of radius 2 centered at the
origin?

We proved one-third of the Divergence Theorem. Exercises [32] and [33] concern the

other two-thirds.
32.[C] Prove that

S/Qcos(ﬁ) s = ]/(?922 av.

oP
P = [ 2 av.
/ cos(a) dS /8;1: av.
S %

33.[C] Prove that
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34.[C] Let f be a scalar function F(z,y,z) = f(r)r, where r = |r} and r =
zi + yj + zk. Show that if V- F = 0, then f(r) = ¢/r? for some constant c.
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18.6 Stokes’ Theorem

In Section[18.1] we learned that Green’s theorem in the zy-plane can be written
as

jl{F- dr = /(curlF) -k dA,

c R
where C' is counterclockwise and C' bounds the region R. The general Stokes’
Theorem introduced in this section extends this result to closed curves in space.
It asserts that if the closed curve C' bounds a surface §, then

]éF- dr:/(curlF)-ndS.

c S

As usual, the vector n is a unit normal to the surface. There are two such
normals at each point on the surface. In a moment we describe how to decide
which unit normal vector to use. The choice depends on the orientation of C.

In words, Stokes’ theorem reads, “The circulation of a vector field around
a closed curve is equal to the integral of the normal component of the curl of
the field over any surface that the curve bounds.” Figure 18.6.1:

Stokes’ published his theorem in 1854 (without proof, for it appeared as a
question on a Cambridge University examination). By 1870 it was in common
use. It is the most recent of the three major theorems discussed in this chapter,
for Green published his theorem in 1828 and Gauss published the divergence
theorem in 1839.

Choosing the Normal n

In order to state Stokes’ theorem precisely, we must describe what kind of Figure 18.6.2:
surface S is permitted and which of the two possible normals n to choose.
The typical surfaces S that we consider have the property that it is possible
to assign, at each point on &, a unit normal n in a continuous manner. On
the surface shown in Figure there are two ways to do this. They are

shown in Figure [18.6.3|

T
T / g ’;' ’ , J
/ \ x f / ’(' ; A

(a) (b)
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Right-hand rule for choosing
n.

Figure 18.6.4: Follow the
choices through all nine
stages — there's trouble.

Figure 18.6.3:

But, for the surface shown in Figure (a M&bius band), it is impossible
to make such a choice. If you start with choice (1) and move the normal
continuously along the surface, by the time you return to the initial point on
the surface at stage (9), you have the opposite normal. A surface for which
a continuous choice can be made is called orientable or two-sided. Stokes’
theorem holds for orientable surfaces, which include, for instance, any part of
the surface of a convex body, such as a ball, cube or cylinder.

Consider an orientable surface &, bounded by a parameterized curve C' so
that the curve is swept out in a definite direction. If the surface is part of a
plane, we can simply use the right-hand rule to choose n: The direction of n
should match the thumb of the right hand if the fingers curl in the direction
of C' and the thumb and palm are perpendicular to the plane. If the surface
is not flat, we still use the right-hand rule to choose a normal at points near
C. The choice of one normal determines normals throughout the surface.
Figure [18.6.5] illustrates the choice of n. For instance, if C' is counterclockwise
in the zy-plane, this definition picks out the normal k, not —k.

n
n
r'l i 1 % .
_T,\v ‘ N =) 3¢ ¥

s
=

( nn 1

(a) (b)
Figure 18.6.5:

Theorem 18.6.1 (Stokes’ theorem). Let S be an orientable surface bounded
by the parameterized curve C. At each point of S let n be the unit normal
chosen by the right-hand rule. Let F be a vector field defined on some region
i space including S. Then

7{}?. dr:/(VxF)-ndS.

C S

(18.6.1)

Some Applications of Stokes’ Theorem

Stokes’ theorem enables us to replace [¢(curlF)-n dS by a similar integral
over a surface that might be simpler than §. That is the substance of the
following special case of Stokes’ theorem.
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One way to evaluate some
Let S; and Sy be two surfaces bounded by the same curve C' and oriented so| surface integrals is to
that they yield the same orientation on C. Let F be a vector field defined on| choose a simpler surface.

both &7 and S5. Then

/(curl F) - ndS= /(curl F)-ndS (18.6.2)

81 82

The two integrals in (18.6.2) are equal since both equal 390 F. dr.

EXAMPLE 1 Let F = ze*i+ (2 4+ 22)j+ 3¢’k and let S be the top half of
the sphere 2> + y* + 2°> = 1. Find [;(curlF) - n dS, where n is the outward
normal. (See Figure )

SOLUTION Let &* be the flat base of the hemisphere. By ,

/(VxF)-ndS:/(VxF)-de.

S S*

. The upper half of
/  the unit sphere

(On S* note that k, not —k, is the correct normal to use.)
A straightforward calculation shows that ' bthe wmitcie

V xXF = —zi+ze’j+ (z + 1)k,
Figure 18.6.6: ARTIST:

hence (VxF)-k=z+1. OnS* 2=0, so Add an arrow to indicate
the unit circle in the plane

/(V x F)-kdS :/ s = . is to be oriented coun-

S S terclockwise.  Also add

. . . . “counterclockwise” to the
thus the original integral over S is also 7.
text label for C.

Just as there are two-curve versions of Green’s Theorem and of the Diver-

gence Theorem, there is a two-curve version of Stokes” Theorem.

Stokes’ Theorem for a Surface Bounded by Two Closed Curves Two-curve version of
Let S be an orientable surface whose boundary consists of the two closed| Stokes's Theorem
curves C and C5. Give C; an orientation. Orient S consistent with the the
right-hand rule, as applied to C;. Give Cy the same orientation as C;. (If Cy
is moved on S to €1, the orientations will agree.) Then

}I{F-dr—j{F-dr:/(VxF)-ndS. (18.6.3)

C Co S
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Proof
Figure [18.6.7(a) shows the typical situation.

Figure 18.6.7:

The cancellation principle
was introduced in We will obtain from Stokes’s theorem with the aid of the cancella-
Section I8.2l  tion principle. Introduce lines AB and C'D on S, cutting S into two surfaces,
S* and S**. (See Figure [18.6.7(c).) Now apply Stokes’s theorem to S* and
S**. (See Figure [18.6.7(c).)
Let C* be the curve that bounds S*, oriented so that where it overlaps ('
it has the same orientation as C'j. Let C** be the curve that bounds §**, again

oriented to match Cy. (See Figure [18.6.7]c).)
By Stokes’ theorem,

fF . dr = /(curlF) ‘n dS (18.6.4)

C* S*

and

f}?- dr = /(curlF) ‘1 dS. (18.6.5)

C** S**

Adding ((18.6.4)) and (18.6.5)) and using the cancellation principle gives

%F- dr—]fF- dr:/(curlF)-ndS.

1 Cy S

Recall, from Section ,
that F is irrotational when In practice, it is most common to apply (18.6.3) when curl F = 0. This is
curlF = 0. 5o important we state it explicitly:

December 4, 2010 Calculus



§ 18.6 STOKES’ THEOREM

1587

Let F be a field such that curl F = 0. Let C; and C5 be two closed curves
that together bound an orientable surface S on which F is defined. If C'; and
Cy are similarly oriented, then

j{F. dr = ?{F dr. (18.6.6)

C 1 02

Equation (18.6.6)) follows directly from (18.6.3)) since [¢(curlF)-n dS = 0.

EXAMPLE 2 Assume that F is irrotational and defined everywhere except
on the z-axis. Given that ¢, F- dr =3, find (a) §, F- dr and (b) §, F- dr.
(See Figure [18.6.8)

SOLUTION (a) By (I8.6.), §,, F - dr = §, F - dr = 3. (b) By Stokes’

theorem, ([18.6.1)), ng F. dr=0. o

Curl and Conservative Fields

In Section we learned that if F = Pi+()j is defined on a simply connected
region in the zy-plane and if curl F = 0, then F' is conservative. Now that we
have Stokes’ theorem, this result can be extended to a field F = Pi+ Qj+ Rk
defined on a simply connected region in space.

Theorem 18.6.2. Let F be defined on a simply connected region in space. If
curlF = 0, then F is conservative.

Proof

We provide only a sketch of the proof of this result. Let C' be a simple closed
curve situated in the simply connected region. To avoid topological com-
plexities, we assume that it bounds an orientable surface S. To show that
¢ F - dr = 0, we use the same short argument as in Section [18.2f

7{]?. dr:/(VxF)~ndS:/OdS:0.

c S
[
It follows from Theorem [18.6.2] that every central field F is conservative
because a straightforward calculation shows that the curl of a central field

is 0. (See Exercises [6] and [7] in Section [18.4]) Moreover, F is defined either
throughout space or everywhere except at the center of the field.
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Figure 18.6.9:

Figure 18.6.10:

The physical interpretation
of curl

Exercise of Section presents a purely geometric argument for why
a central field is conservative.

In Sections and we will show how Stokes’s theorem is applied in
the theory of electromagnetism.

Why Curl is Called Curl

Let F be a vector field describing the flow of a fluid, as in Section Stokes’s
theorem will give a physical interpretation of curl F.

Consider a fixed point Fy in space. Imagine a small circular disk & with
center Fy. Let C' be the boundary of § oriented in such a way that C' and n

fit the right-hand rule. (See Figure |18.6.9))
Now examine the two sides of the equation

/(curlF) ‘ndS = 741? - T ds. (18.6.7)

S C

The right side of measures the tendency of the fluid to move along
C' (rather than, say, perpendicular to it.) Thus fc F - T ds might be thought
of as the “circulation” or “whirling tendency” of the fluid along C'. For each
tilt of the small disk S at Py — or, equivalently, each choice of unit normal
vector n — the line integral fc F - T ds measures a corresponding circulation.
It records the tendency of a paddle wheel at P, with axis along n to rotate.
(See Figure [18.6.10])

Consider the left side of . If § is small, the integrand is almost

constant and the integral is approximately
(curl F)p, - n - Area of S, (18.6.8)

where (curl F)p, denotes the curl of F evaluated at F.

Keeping the center of S at Fp, vary the vector n by tilting the disk S. For
which choice of n will be largest? Answer: For that n which has the
same direction as the fixed vector (curlF)p,. With that choice of n,
becomes

||(curl F)p,|| Area of S .

Thus a paddle wheel placed in the fluid at Py rotates most quickly when its
axis 1s in the direction of curlF at Py. The magnitude of curl F is a measure
of how fast the paddle wheel can rotate when placed at F,. Thus curl F
records the direction and magnitude of maximum circulation at a given point.
If curlF is 0, there is no tendency of the fluid to rotate; that is why such
vector fields are called irrotational.
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A Vector Definition of Curl

In Section curl F was defined in terms of the partial derivatives of the
components of F. By Stokes’ theorem, curlF is related to the circulation,
5ch - dr. We exploit this relation to obtain a new view of curlF, free of
coordinates.

Let Py be a point in space and let n be a unit vector. Consider a small
disk Sn(a), perpendicular to n, whose center is Fy, and which has a radius
a. Let Cyh(a) be the boundary of Sy(a), oriented to be compatible with the

right-hand rule. Then
/ (curlF) -n dS = ]{ F. dr.

Sn(a) Cn(a)

As in our discussion of the physical meaning of curl, we see that

(curlF) () - n - Area of Sy(a) ~ Jq{ F - dr,

Cn(a)
or f .
Cu(a) T~ 0T
IF)(FP) n~ ———.
(curl F)(Fy) - n Area of Sy(a)
Thus

f() ( )F- dr
1FY(P) -1 = lim 2 Ce@ ™ ™
(curlF)(F) -n 20 Area of Su(a)

Equation (18.6.9)) gives meaning to the component of (curl F)(Fp) in any
direction n. So the magnitude and direction of curl F at F, can be described
in terms of F, without looking at the components of F.

. (18.6.9)

The magnitude of (curl F)p, is the maximum value of

fo ( )F- dr
lim —% 18.6.10
ey Area of Sy(a)’ ( )

for all unit vectors n.
The direction of (curl F)p, is given by the vector n that maximizes the limit
(18.6.10).

EXAMPLE 3 Let F be a vector field such that at the origin curl F =
2i + 4j + 4k. Estimate fCF - dr if C encloses a disk of radius 0.01 in the
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Figure 18.6.11:

zy-plane with center (0,0,0). C' is swept out clockwise. (See Figure )
SOLUTION Let S be the disk whose border is C'. Choose the normal to
S that is consistent with the orientation of C' and the right-hand rule. That
choice is —k. Thus

N j;CF- dr

~ Area of S

The area of S is 7(0.01)* and curl F = 2i + 3j + 4k. Thus

(curlF) - (=k)

(2i + 3j + 4k) - (—k) ~ %

From this it follows that

fF - dr ~ —47(0.01)%.
C

In a letter to the mathematician Tait written on November 7, 1870, Maxwell
offered some names for V x F:

Here are some rough-hewn names. Will you like a good Divinity
shape their ends properly so as to make them stick? ...

The vector part V x F I would call the twist of the vector func-
tion. Here the word twist has nothing to do with a screw or helix.
The word turn ...would be better than twist, for twist suggests
a screw. Twirl is free from the screw motion and is sufficiently
racy. Perhaps it is too dynamical for pure mathematicians, so for
Cayley’s sake T might say Curl (after the fashion of Scroll.)

His last suggestion, “curl,” has stuck.

Proof of Stokes’ Theorem

We include this proof because it reviews several basic ideas. The proof uses
Green’s theorem, the normal to a surface z = f(z,y), and expressing an inte-
gral over a surface as an integral over its shadow on a plane. The approach
is straightforward. As usual, we begin by expressing the theorem in terms of
components. We will assume that the surface & meets each line parallel to an
axis in at most one point. That permits us to project S onto each coordinate
plane in an one-to-one fashion.
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To begin we write F(z,4,2) as P(¢,4, 2)i + Q(,4,2)i + R(z,, 2)k, or,
simply F = Pi+ Qj + Rk. We will project S onto the xy-plane, so write the
equation for S as z — f(x,y) = 0. A unit normal to S is

Of s of »

e () v

(Since the k component of n is positive, it is the correct normal, given by
the right-hand rule.) Let C* be the projection of C' on the zy-plane, swept
out counterclockwise.

A straightforward computation shows that Stokes’ theorem, expressed in
components, reads

n—

/P dr+ Q dy+ R dz
c
OR _ 9Q af OR _ 0P of 9Q _ opP
(% — %) (=52) — (% — %) (‘a—y> + (37 - a—y) (1) 1S
o£\2 , (or)° ‘
5 (&) + (%) +1
As expected, this equation reduces to three equations, one for P, one for @),

and one for R.
We will establish the result for P, namely

%2 (-0 - 22(1)

E<_g_]yc) By
/P dr = S/ \/(%)2 n (3_5)2 = ds. (18.6.11)

C

To change the integral over & to an integral over its projection, &*, on
the xy-plane, we replace dS by +/(0f/0x)? + (0f/0y)? + 1 dA. At the same
time we project C' onto a counterclockwise curve C*. The square roots cancel
leaving us with this equation in the zy-plane:

/P(m,y,f(x,y)) de = / (_?9_5?)_5 — 88—1;) dA. (18.6.12)
R

C'*

Finally, we apply Green’s theorem to the left side of ((18.6.12), and obtain:

/P(x,y,f(w,w) dx:/—ap<x’%;(x’y)) dA.
Cx S
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But
OP(x.y.f(a.y)) _ P, OPOf

oy Oy 0z 0y

Combining and completes the proof of .
In this proof we assumed that the surface S has a special form, meeting

lines parallel to an axis just once. However, more general surfaces, such as the

surface of a sphere or a polyhedron can be cut into pieces of the type treated

in the proof. Exercise [48|shows why this observation then implies that Stokes’

Theorem holds in these cases also.

(18.6.13)

Summary

Stokes” Theorem relates the circulation of a vector field over a closed curve C'
to the integral over a surface § that C' bounds. The integrand over the surface
is the component of the curl of the field perpendicular to the surface,

/F~ dr:/(curlF)~ndS.

C S

The normal n is the normal vector to S given by the right-hand rule.
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EXERCISES for Section 18.6 Key: R-routine, M—moderate, C—challenging

1.[C] We dealt only with the component P. What is the analog of ((18.6.11]) for
Q7 Prove it. HINT: The steps would parallel the steps used for P.

2.[R] State Stokes’ Theorem (symbols permitted).
3.[R] State Stokes’ Theorem in words (symbols not permitted).

4.[M] Explain why (18.6.5) holds if S; and S, together form the boundary surface

S of a solid region R. Use the Divergence Theorem, not Stokes’ Theorem.

5.[R] Let F(r) be an antiderivative of f(r). Show that f(r)r is the gradient of
F(r), hence is conservative. NOTE: f(r)T = f(r)r.

6.[M] Show that a central field f(r)r is conservative by showing that it is irrota-
tional and defined on a simply connected region. HINT: Express T in terms of z, y
and z. NOTE: See also Exercise

7.[R]
(a) Use the fact that a gradient, V f, is conservative, to show that its curl is 0.

(b) Compute V x Vf in terms of components to show that the curl of a gradient
is 0.

8.[C] (See also Exercises 5| and [6] )

Sam: The only conservative fields in space that I know are the “inverse square
central fields” with centers anywhere I please.

Jane: There are a lot more.
Sam: Oh?

Jane: Just start with any scalar function f(x,y, z) with continuous partial deriva-
tion of the first and second orders. Then its gradient will be a conservative
field.

Sam: O.K. But I bet there are still more.

Jane: No. I got them all.

Calculus December 4, 2010
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Question: Who is right?

Exercises [9] to [14] concern the proof of Stokes’ Theorem.
9.[C] Carry out the calculations in the proof that translated Stokes’ Theorem into
an equation involving the components P, @), and R.

10.[C] Draw a picture of S, §*, C' and C* that appear in the proof of Stokes’
Theorem.

11.[C] Write the four steps involved in the proof of Stokes’ Theorem, giving an
explanation for each step.

12.[C] In the proof of Stokes’ Theorem we used a normal n. Show that it is the
“correct” one, compatible with counterclockwise orientation of C*.

13.[C]
(a) State Stokes’ Theorem for [, Q dy.
(b) Prove Stokes’ Theorem for [, Q dy.
(c) State Stokes’ Theorem for [ R dz.

(d) Prove Stokes’ Theorem for [ R dz.

14.[C] Draw a picture of S, §*, C' and C* that appear in the proof.

Exercises [I5] to [I7] prepare you for Exercise [I8]

15.[M] Assume that G is the curl of another vector field F, G =V x F. Let S be
a surface that bounds a solid region V. Let C be a closed curve on the surface S
breaking S into two pieces S1 and Ss.

16.[M] Using the Divergence Theorem, show that [¢ G -n dS = 0.

17.]M] Using Stokes’ Theorem, show that [¢ G -n dS = 0. HINT: Break the inte-
gral into integrals over §1 and Ss.

18.[R] Let F = e™i + tan(3yz)j + 5zk and S be the tetrahedron whose vertices
are (0,0,0), (1,0,0), (0,1,0), and (0,0,1). Let S; be the base of S in the zy-plane
and Sy consist of the other three faces. Find [¢(V x F)-n dS. HINT: think about
the preceding two exercises.

19.[R] Assume that F is defined everywhere except on the z-axis and is irrotational.
The curves Cq, Cy, C3, and Cy are as shown in Figure [18.6.12 What, if anything,
can be said about

y{F-dr, j(I{F-alr7 fF-dr, and %F~dr.

C1 Co Cs Cy
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Figure 18.6.12:

In Exercises [20] to [23] verify Stokes’ Theorem for the given F and surface S.
20.[R] F = xzy?i+9°j +y?zk; S is the top half of the sphere 2% + 32 + 2% = 1.

21.[R] F = yi+ 2zj + 2%k; S is the triangle with vertices (1,0,0), (0,1,0) and

22.[R] F =i+ 23j+2%k; S is the portion of z = 22 +y? below the plane z = 1.

23.[R] F = —yi+aj+zk, S is the portion of the cylinder z = 22 inside the cylinder
2 2
x“+y* =4.

24.[R] Evaluate as simply as possible [¢F -n dS, where F(z,y,2) = zi — yj and
S is the surface of the cube bounded by the three coordinate planes and the planes
x =1,y =1, z =1, exclusive of the surface in the plane x = 1. (Let n be outward
from the cube.)

25.[R] Using Stokes’ Theorem, evaluate [((V x F)-n dS, where F = (2% +y —
4)i+ 3zyj+ (272 + 2?2k, and S is the portion of the surface z = 4 — (22 + y?) above
the xy plane. (Let n be the upward normal.)

In each of Exercises [26t0[29| use Stokes’ Theorem to evaluate fC F - dr for the given
F and C. In each case assume that C' is oriented counterclockwise when viewed
from above.

26.[R] F = sin(zy)i; C is the intersection of the plane x +y + 2z = 1 and the
cylinder 22 + 72 = 1.

27.[R] F = e”j; C is the triangle with vertices (2,0,0), (0,3,0) and (0,0,4).

Calculus December 4, 2010
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[ = cos(x + 2)j; C is the boundary of the rectangle with vertices (1,0,0),
(1,1,1), (0,1,1), and (0,0, 0).

30.[R] Let S; be the top half and Sp the bottom half of a sphere of radius a in
space. Let F be a vector field defined on the sphere and let n denote an exterior
normal to the sphere. What relation, if any, is there between |, 5 (VXxF)-ndS and
fSQ(V x F)-n dS?

31.[R] Let F be a vector field throughout space such that F(P) is perpendicular
to the curve C at each point P on C, the boundary of a surface S. What can one
conclude about

/(VxF)-ndS?
S

32.[R] Let Cy and Cy be two closed curves in the zy-plane that encircle the origin
and are similarly oriented, as in Figure [18.6.13

Figure 18.6.13:
Let F be a vector field defined throughout the plane except at the origin. Assume
that V x F = 0.

(a) Must §,F -dr =0?

(b) What, it any, relation exists between §,, F -dr and §,, F - dr?

33.[R] Let F be defined everywhere in space except on the z-axis. Assume also
that F is irrotational, fCl F.dr =3, and §C2 F-dr = 5. (See Figure [18.6.14]) What
if, anything, can be said about
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(a) 3%3 F - dr,

(b) §, F-dr?

C.)

G

.1 N

Figure 18.6.14:

34.[R] Which of the following sets are connected? simply connected?

The xy-plane from which a circle is removed
The xy-plane from which a disk is removed

The xy-plane from which one point is removed

)

)

)

)

)

) xyz-space from which one point is removed

) xyz-space from which a sphere is removed
) xyz-space from which a ball is removed

) A solid torus (doughnut)

) xyz-space from which a solid torus is removed
) A coffee cup with one handle

)

xyz-space from which a solid doughnut is removed

35.[R] Which central fields have curl 07

Calculus December 4, 2010
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36.[R] Let V be the solid bounded by z = z +2, 22+ y? = 1, and z = 0. Let S; be
the portion of the plane z = x + 2 that lies within the cylinder 22 + 4% = 1. Let C
be the boundary of &1, with a counterclockwise orientation (as viewed from above).
Let F = yi+ 2zj + (2 + 2y)k. Use Stokes’ Theorem for S; to evaluate §,F - dr.

37.[R] (See Exercise[36]) Let S» be the curved surface of V together with the base
of V. Use Stokes’ Theorem for Sy to evaluate fC F - dr.

38.[R] Verify Stokes’ theorem for the special case when F has the form V f, that
is, is a gradient field.

39.[R] Let F be a vector field defined on the surface S of a convex solid. Show
that [((V X F)-ndS =0

(a) by the Divergence Theorem,

(b) by drawing a closed curve on C' on S and using Stokes’ Theorem on the two
parts into which C divides S.

40.[R] Evaluate ¢, F - dr as simply as possible if F(z,y,z) = (—yi+zj)/(2* + y?)
and C is the intersection of the plane z = 2x + 2y and the paraboloid z = 222 4 3y?
oriented counterclockwise as viewed from above.

41.[R] Let F(z,y) be a vector field defined everywhere in the plane except at the
origin. Assume that V x F = 0. Let C; be the circle 22 + y? = 1 counterclockwise;
let Cy be the circle 22 4+ y? = 4 clockwise; let C3 be the circle (x — 2)2 +¢% = 1
counterclockwise; let Cy be the circle(z — 1)? + 42 = 9 clockwise. Assuming that
fCl F - dr is 5, evaluate

(a) ¢, F-dr
(b) fcg F . dr

(c) $o, F - dr.

42.]M] Let F(x,y,2) =r/||r||%, where r = i+ uj+ zk and a is a fixed real number.

(a) Show that V x F = 0.
(b) Show that F is conservative.

(c) Exhibit a scalar function f such that F = Vf.

December 4, 2010 Calculus



§ 18.6 STOKES’ THEOREM 1599

43.]M] Let F be defined throughout space and have continuous divergence and
curl.

(a) For which Fis [(F-n dS =0 for all spheres S?
(b) For which F is ¢, F - dr = 0 for all circles C'?

44.]M] Let C be the curve formed by the intersection of the plane z = x and the
paraboloid z = 22 + y2. Orient C to be counterclockwise when viewed from above.
Evaluate §(zyz dz + 2 dy + xz dz).

45.]M] Assume that Stokes’ Theorem is true for triangles. Deduce that it then
holds for the surface S in Figure [18.6.15(a), consisting of the three triangles DAB,
DBC, DCA, and the curve ABCA.

(b)

(a)

D

Figure 18.6.15:
46.[C] A Mobius band can be made by making a half-twist in a narrow rectangular
strip, bringing the two ends together, and fastening them with glue or tape. See

Figure [[8.6.15(b).
(a) Make a Mobius band.

(b) Letting a pencil represent a normal n to the band, check that the Mobius
band is not orientable.

(c) If you form a band by first putting in a full twist (360°), is it orientable?

(d) What happens when you cut the bands in (a) and (¢) down the middle? one
third of the way from one edge to the other?

47.[C]

(a) Explain why the line integral of a central vector field f(r)r around the path

in Figure [18.6.16(a) is 0.
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(b) Deduce from (a) and the coordinate-free view of curl that the curl of a central
field is 0.

Figure 18.6.16:
48.[C]

(a) The proof of Stokes’ Theorem we gave would not apply to surfaces that are
more complicated, such as the “top three fourths of a sphere,” as shown in
Figure [18.6.16{b). However, how could you cut & into pieces to each of which
the proof applies? (Describe them in general terms, in words.)

(b) How could you use (a) to show that Stokes’ Theorem holds for C' and S in

Figure [18.6.16|(b)

49.[M] Sam has a different way to make the choice of n.
Sam: I think the book’s way of choosing n is too complicated.
Jane: OK. How would you do it?

Sam: Glad you asked. First, I would choose a unit normal n at one point on the
orientable surface.

Jane: That’s a good start.

Sam: Then I choose unit normals in a continuous way everywhere on the surface
starting at my initial choice.

Jane: And how would you finish?

Sam: My last step is to orient the boundary curve to be compatible with the right-
hand rule.

Would this proposal work? If it does, would it agree with the approach in the text.
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18.7 Connections Between the Electric Field
and 1/ HrH2

Even if you are not an engineer or physicist, as someone living in the 21st cen-
tury you are surrounded by devices that depend on electricity. For that reason
we now introduce one of the four equations that explain all of the phenomena of
electricity and magnetism. Later in the chapter we will turn to the other three
equations, all of which are expressed in terms of vector fields. The chapter
concludes with a detailed description of how James Clerk Maxwell, using just
these four equations, predicted that light is an electromagnetic phenomenon.
Our explanation does not assume any prior knowledge of physics.

The Electric Field Due To a Single Charge

The starting point is some assumptions about the fundamental electrical charges,

electrons and protons. An electron has a negative charge and a proton has a
positive charge of equal absolute value. Two like charges exert a force of
repulsion on each other; unlike charges attract each other.

Let C and P denote the location of charges g and ¢, respectively. Let r be
the vector from C' to P, as in Figure[18.7.1] so r = ||r|| is the distance between
the two charges.

If both ¢ and ¢y are protons or both are electrons, the force pushes the
charges further apart. If one is a proton and the other is an electron, the
force draws them closer. In both cases the magnitude of the force is inversely
proportional to r2, the square of the distance between the charges.

Assume that ¢ is positive, that is, is the charge of a proton. The magnitude
of the force it exerts on charge qq is proportional to ¢ and also proportional
to qo. It is also inversely proportional to r?. So, for some constant k, the
magnitude of the force is of the form

It is directed along the vector r. If qq is also positive, it is in the same direction
as r. If gy is negative, it is in the direction of —r. We can summarize these
observations in one vector equation

q 4o~

where the constant k is positive.
For convenience in later calculations, k is replaced by 1/(4meq) The value
of €y depends on the units in which charge, distance, and force are measured.

Then (18.7.1)) is written
49 -
= —T.
4dregr?

F
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Physicists associate with a charge ¢ a vector field. This field in turn exerts
a force on other charges.

Consider a positive charge ¢ at point C'.

It “creates” a central inverse-square vector field E with center at C'. It is
defined everywhere except at C. Its value at a typical point P is

qT

E(P)

where T = C’—P>, as in Figure [18.7.2]

4rregr?

Figure 18.7.2:

The value of E depends only on ¢ and the vector from C to P.
To find the force exerted by charge ¢ on charge qo at P just multiply E by
qo, obtaining
F = ¢E (18.7.2)

The field E, which is a sheer invention, can be calculated in principle by
putting a charge gy at P, observing the force F and then dividing F by qo.
The field E enables the charge ¢ to “act at a distance” on other charges. It
plays the role of a rubber band or a spring.

The Electric Field Due to a Distribution of Charge

Electrons and protons usually do not live in isolation. Instead, charge may be
distributed on a line, a curve, a surface or in space.

Imagine a total charge ) occupying a region R in space. The density of
the charge varies from point to point. Denote the density at P by §(P). Like
the density of mass it is defined as a limit as follows. Let V(r) be a small ball
of radius r and center at P. Then we have the definition
5(P) = lim charge in V (r)

r—0+ volume of V()
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The charge in V(r) is approximately the volume of V(r) times §(P). We
will be interested only in uniform charges, where the density is constant, with
the fixed value §. Thus the charge in a region of volume V is V.

The field due to a uniform charge @) distributed in a region R is the sum
of the fields due to the individual point charges in Q.

To describe that field we need the concept of the integral of a vector field.
The definition is similar to the definition of the definite integral in Section [6.2]
Let F(P) be a continuous vector field defined on some solid region R. Break
R into regions Ry, Rs, ..., R, and choose a point P, in R;, 1 < 1 < n.
Let the volume of R; be V;. The sums Y " F(P)V; have a limit as all R;
are chosen smaller and smaller. This limit, denoted [, F(P) dV is called
the integral of F over R. Computationally, this integral can be computed
componentwise. For example, if F = Fji + Fyj + P3k then _RF(P) then
fRF dV = fR F dVi+ fR Fy dVij+ fR F, dVk. Similar definitions hold for
vector fields defined on surfaces or curves.

To estimate this field we partition R into small regions R, Rs, ... R, and
choose a point P; in R;, © = 1,2...,n. The volume of R; is V;. The charge
in R; is 0V}, where ¢§ is the density of the charge. Figure [18.7.3] shows this
contribution to the field at a point P.

Let r; be the vector from P; to P, and r; = |r;|. Then the field due to the
charge in this small patch R; is approximately

o1 V;

5
dmeg 17

As an estimate of the field due to (), we have the sum

drregr?

i=1

Taking limits as all the regions R; are chosen smaller, we have
oT

TeQT2

E(P) = Field at P = / av

R

Factoring out the constant §/4mey, we have

L

2

E(P) =
(P) dmeg ) 1
R

That is an integral over a solid region. If the charge is just on a surface S
with uniform surface density o, the field would be given by
o T
E(P) = — dS.
(P) 47eq / r2
5
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If the charge lies on a line or a curve C, with uniform density A, then

A T
E(P) = 47T€0 \/ﬁ ds.
C

To illustrate the definition we compute one such field value directly. In
Example [2| we solve the same problem much more simply.

EXAMPLE 1 A charge () is uniformly distributed on a sphere of radius a,
S. Find the electrostatic field E at a point B a distance b > a from the center
of the sphere.

SOLUTION We evaluate

g

T

— dS. 18.7.3

dmey ) 12 ( )
S

Note that o = Q/4ma?, since the charge is uniform over an area of 4wa?.

Place a rectangular coordinate system with its origin at the center of the
sphere and the z-axis on B, so that B = (0,0,b), as in Figure [18.7.4a).
Before we start to evaluate an integral, let us use the symmetry of the sphere

Ll Y ?

k =

N Y
\x___ __/
(

a (b)

Figure 18.7.4:

to predict something about the vector E(B). Could it look like the vector v,
which is not parallel to the z-axis, as in Figure [18.7.4(b)?

If you spin the sphere around the z-axis, the vector v would change. But
the sphere is unchanged and so is the charge. So E(B) must be parallel to the
z-axis. That means we know its z- and y-components are both 0. So we must
find just its z-component, which is E(B) - k.
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Let (z,y,2) be a typical point on the sphere S. Then

r=(0i+0j+0bk)— (vi+yj—2k)=—zi—yj+ (- 2)k (18.7.4)
So
T r —zi—yj+ (b—2)k _ —ri—yj+(b—2)k (18.7.5)
r2 S (R0 —2bz+ 223 (a2 02— 202)%2 o

We need only the z-component of this,

b— =z
(a? + b2 — 2bz)3/2"

The magnitude of E(B) is therefore

7 / ( b=z ds. (18.7.6)

deg ) (a? + b2 — 2b2)3/2
s

We evaluate the integral in (|18.7.6|). To do this, introduce spherical coordi-
nates in the standard position. We have dS = a?sin(¢)d¢ df and z = a cos(¢).

So (|18.7.6)) becomes

T 2w
// (a2(b — acos ¢)a’sin ¢ a0 dos
0 0

+ b2 — 2ab cos ¢)(3/2)

which reduces, after the first integration with respect to 6, to

, [ (b—acosd)sing do
2ma / (a? + b — 2abcos ¢)3/? (18.7.7)

0

Let u = cos(¢), hence du = —sin(¢) d¢. This transforms (|18.7.7)) into

9 (b —au) du
94 / T — 2] (18.7.8)

1

Then we make a second substitution, v = a? + b* — 2abu.
As you may check, this changes (|18.7.8)) into

(b+a)?
2ra’ v+ b% — a?
4ab? v3/2

dv (18.7.9)

(b=a)?
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Write the integrand as the sum of 1/y/v and (b* — a?)/v%2, and use the
Fundamental Theorem of Calculus, to show that (18.7.8)) equals 4wa?/b%.
Combining this with ((18.7.9) shows that

o 4ma? Q

E(B) = = )
(B) dmey b2 4enh?

o

The result in this example, Q/(4meob?)k is the same as if all the charge
() were at the center of the sphere. In other words, a uniform charge on a
sphere acts on external particles as though the whole charge were placed at its
center. This was discovered for the gravitational field by Newton and proved
geometrically in his Principia of 1687.

Using Flux and Symmetry to Find E

We included Example (1] for two reasons. First, it reviews some integration
techniques. Second, it will help you appreciate a much simpler way to find the
field E due to a charge distribution.

Picture a charge () distributed outside the region bound by a surface S, as
in Figure [18.7.5]

[ 7
."'f j{}l

% / (0 s -JIT it :'|

Figure 18.7.5:

The flux of E associated with a point charge ¢ over a closed surface § is

T-n 1 r-n
E(P)-ndS = dsS = — dS.
/ (P)-n /471'607“2 47T€0/ r2
S S S

As we saw in Section the integral is 47 when the charge is inside the
solid bounded by the surface and 0 if the charge is outside. (See Exercise
in that section). Thus the total flux is ¢/¢g if the charge is inside and 0 if it is
outside.
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Consider a charge () contained wholly within the region bounded by S. We
will find the flux of a total charge () distributed in a solid R inside a surface
S. (See Exercise [0 for the case when the charge is outside S.)

Chop the solid R that the charge occupies into n small regions R;, Rs,

.., R,. In region R; select a point P;. Let the density of charge at P; be
0(FP;). Thus the charge in R; produces a flux of approximately d(FP;)V;/eo.
Consequently

n

o(F)V;
3 (60)

=1

estimates the flux produced by (). Taking limits, we see that

o(P;
Flux across S produced by @) = / Q av
€o
R

But [, 0(P;) dV is the total charge Q. Thus we have

Flux = =.
€0

Thus we have one of the four fundamental equations of electrostatics:

Gauss’ Law
The flux produced by a distribution of charge across a closed surface is the
charge () in the region bounded by the surface divided by €.

The charge outside of S produces no flux across S. (More precisely, the
negative flux across S cancels the positive flux.)

Let’s illustrate the power of Gauss’ Law by applying it to the case in
Example [I]

EXAMPLE 2 A charge @ is distributed uniformly on a sphere of radius a.
Find the electrostatic field E at a point B at a distance b from the center of a
sphere of radius a, with b > a.

SOLUTION Wedon't need to introduce a coordinate system in Figure|18.7.6]
By sy_rr}metry, the field at any point P outside the sphere is parallel to the vec-

tor C'P. Moreover, the magnitude of the field is the same for all points at a
given distance from the origin C'. Call this magnitude, f(r), where r is the
distance from C'. We want to find f(b).

To do this, imagine another sphere S*, with center C' and radius b, as in

Figure [I8.7.7]
The flux of E across S* is fs* E - -n dS.
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Figure 18.7.6:

Figure 18.7.7:



1608

CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

But E - n is just f(b) since E and n are parallel and E(P) has magnitude
f(b) for all points P on S*. Thus [, E-ndS = [, f(b) dS = f(b) [. dS =
F(b)drb?.

By Gauss’ Law

© _ f(b)(amb?).
€o

That tells us that 0
f(b) = Amegh?’

This is the same result as in Example [1, but compare the work in each
case. Symmetry and Gauss’ Law provide an easy way to find the electrostatic
field due to distribution of charge. o

The same approach shows that the field E produced by the spherical charge
in Examples [I| and |2| inside the sphere is 0. Let f(r) be the magnitude of E
at a distance r from the center of the sphere. For r > a, f(r) = Q/(4mwegr?);
for 0 <r < a, f(r) = 0. The graph of f is shown in Figure

fie)
& I

. . F =
Lle £
1 gL

=
Figure 18.7.8:

If you are curious about f(a) and f(0), see Exercises [§ and [9]

Summary

The field due to a point charge ¢ at a point C' is given by the formula E(P) =
473602—5, where r = OP. This field produces a force goE(P) on a charge g
located at P.

The field due to a distribution of charge is obtained by an integration over
a surface of solid region, depending where this charge is distributed.

We showed that a charge () outside a surface produces a net flux of zero
across the surface. However the flux produced by a charge within the surface
is simply @)/€o. That is Gauss’s Law.

We used Gauss’s Law to find the field produced by a spherical distribution

of charge.
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EXERCISES for Section 18.7 Key: R-routine, M-moderate, C—challenging

1.[R] The charge ¢ is positive and produces the electrostatic field E. In what
direction does E point at a charge gp that is (a) positive and (b) negative?

2.[R] Fill in the omitted details in the calculation in Exercise

3.[R] Describe to a friend who knows no physics the field E produced by a point
charge q.

4.[R] State Gauss’s Law aloud several times.

5.[R] Why do you think that the constant k was replaced by 1/4mey. NOTE: Later
we will see why it is convenient to have ¢y in the denominator.

6.[R] Show that a charge @ distributed in a solid region R outside a closed surface
S induces zero-flux across S.

7.[R] A charge is distributed uniformly over an infinite plane. For any part of this
surface of area A the charge is kA, where k is a constant. Find the field E due to
the charge at any point P not in the plane.

(a) Use symmetry to say as much as you can about it. Be sure to discuss its
direction.

(b) Show that the magnitude is constant by applying Gauss’s Theorem to a cylin-
der whose axis is perpendicular to the plane and which does not intersect the
plane.

Figure 18.7.9:

(c) Find the magnitude of E by applying Gauss’s Theorem to the cylinder in
Figure [18.7.9(b). Let the area of the circular cross section be A and the area
of its curved side be B.
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8.[R] Find the field E of the charge in Example [I|at a point on the surface of the
sphere. Why is Gauss’s Law not applicable here? HINT: Let the point be (0,0, a).

9.[R] Find the field E of the charge in Example [1| at the center of the sphere.
HinT: Use symmetry, don’t integrate.

10.[R] Complete the graph in Figure [18.7.8] That is, fill in the function values
corresponding to r = 0 and r = a.

11.[R] A charge is distributed uniformly along an infinite straight wire. The charge
on a section of length [ is kl. Find the field E due to this charge.

(a) Use symmetry to say as much as you can about the direction and magnitude
of E.

(b) Find the magnitude by applying Gauss’s Law to the cylinder of radius r and
height h shown in Figure [18.7.10

(c) Find the force directly by an integral over the line, as in Example

Figure 18.7.10:
12.[R] Figure [18.7.11f(a) shows four surfaces. Inside S; is a total charge @1, and
inside S5 is a total charge Q2. Find the total flux across each of the four surfaces.

Figure 18.7.11:
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13.[R] Imagine that there is a uniform distribution of charge @ throughout a ball
of radius a. Use Gauss’ Law to find the electrostatic field E produced by this charge

(a) at points outside the ball,

(b) at points inside the ball.

14.[R] Let f(r) be the magnitude of the field in Exercise [L3|at a distance r from
the center of the ball. Graph f(r) for r > 0.

15.[R] A charge @ lies partly inside a closed surface S and partly outside. Let Q1
be the amount inside and ()2 the amount outside, as in Figure [18.7.11)(b). What is
the flux across S of the charge Q7

16.[R] In Exercise [11]| you found the field E due to a charge uniformly spread on
an infinite line. If the charge density is A, E at a point at a distance a from the line

is (\/(2maep)) j.
Now assume that the line occupies only the right half of the z-axis, [0, c0).

(a) Using the result in Exercise show that the j-component of E(0,a) is
(N/Amaep)j.

(b) By integrating over [0, c0), show that the i-component of E at (0, a) is A/ (4mwaep)i.

(¢) What angle does E(0, a) make with the y-axis?

(d) Why is Gauss’ Law of no use in determining the i-component of E in this
case.

47e

Find the corresponding integral for E(P) when the charge density varies.

17.]M] We showed that E(P) = LO I % dV if the charge density is constant.

18.[C] In Example [1] we used an integral to find the electrostatic field outside a
uniformly charged sphere. Carry out similar calculation to find the field inside the
sphere. HINT: Is the square root of (b — a)? still b — a?

19.[C] Use the approach in Example [2| to find the electrostatic field inside a uni-
formly charged sphere.

20.[C] Graph the magnitude of the field in Example|l|as a function of the distance
from the center of the sphere. This will need the results of Exercises [18| and
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21.[C] Find the field E in the Exercise [7| by integrating over the whole (infinite)
plane. (Do not use Gauss’s Theorem.)
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18.8 Expressing Vector Functions in Other Co-
ordinate Systems

We have expressed the gradient, divergence, and curl in terms of rectangular
coordinates. However, students who apply vector analysis in engineering and
physics courses will see functions expressed in polar, cylindrical, and spherical
coordinates. This section shows how those expressions are found.

The Gradient in Polar Coordinates

Let g(r,0) be a scalar function expressed in polar coordinates. Its gradient
has the form A(r, §)r + B(r, 0)@\, where T and 6 are the unit vectors shown in
Figure[18.8.1] The unit “radial vector” T points in the direction of increasing .
The unit “tangential vector” 6 points in the direction determined by increasing
6. Note that 6 is tangent to the circle through (r, ) with center at the pole.

Our goal is to find A(r, ) and B(r,#), which wedenote simply as A and B.

One might guess, in analogy with rectangular coordinates, that A(r,0)
would be dg/0r and B(r,0) would be dg/00. That guess is part right and
part wrong, for we will show that

grad g = a—r + =0 (18.8.1)
r

Note the appearance of 1/r in the ) component.

One way to obtain ([18.8.1]) is labor-intensive and not illuminating: express
g, T, and 0 in terms of x, y, 1, j and use the formula for gradient in terms
of rectangular coordinates, then translate back to polar coordinates. This
approach, whose only virtue is that it offers good practice applying the chain
rule for partial derivatives, is outlined in Exercises [I7] and [18]

We will use a simpler way, that easily generalizes to the cylindrical and
spherical coordinates. It exploits the connection between a gradient and direc-
tional derivative of g at a point P in the direction u. In particular, it shows
why the coefficient 1/r appears in (18.8.1]).

Recall that if u is a unit vector, the directional derivative of g in the
direction u is the dot product of grad g with u:

Dyg = gradg - u.

In particular, R
Dzg=(Ar+ Bl) -t =A

Calculus December 4, 2010
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Figure 18.8.2:

and L
Dsg = (Ar + B0) -0 = B.
So all we need to do is find Dsg and Djg.
First,
. g(T+AT7 0) —g(?“, 0) ag
Dz = 1 ==
(9) At Ar or
So A(r,0) = dg/0r(r,0). That explains the expected part of ((18.8.1]).
Now we will see why B is not simply the partial derivation of ¢ with respect
to 6.
If we want to estimate a directional derivative at P of ¢ in the direction u
we pick a nearby point @) a distance As away in the direction of u and form

the quotient
9(@) — 9(P)
As
Then we take the limit of as As — 0.
Now let u be @\, and let’s examine in the case hwere P = (r,0) and
Q = (r,0 + Af). The numerator in (18.8.2) is

g(r,0 4+ AQ) — g(r,0).

We draw a picture to find As, as in Figure [18.8.2]

The distance between P and @ is not Af. Rather it is approximately rAf
(when A is small). That tells us that As in (18.8.2) is not A but rA#.
Therefore

(18.8.2)

g0+ A0) —g(r,0) 1 .. g(r,0+A0)—g(r,0) 10g
Dog = [im, rAf =7 A Ag T ro0

Note r Af in the denominator.

That is why there is a 1/r in the formula for the gradient of g.
It occurs because a change Af in the parameter # causes a point to move
approximately the distance rA#f.

Divergence in Polar Coordinates

The divergence of F(x,y) = P(z,y)i + Q(z,y)j is simply 0P/0x + 0Q/0y.
But what is the divergence of a vector field described in polar coordinates,
G(r,0) = A(r,0)r + B(r,0)0. By now you are on guard, V - G is not the sum
of 0A/0r and 0B/00).

To find V - G, use the relation between V - G at P = (r,60) and the flux
across a small curve C' that surrounds P.

V.G 1 $-G -nds
- length1<I)Ifl c—0 Area within C

(18.8.3)
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Note that provides a coordinate-free description of divergence in the
plane.

We are free to choose the small closed curve C' to make it easy to estimate
the flux across it. A curve C that corresponds to small changes Ar and A6 is
convenient is shown in Figure We will use to find the divergence
at P = (r,0). Now, P is not inside C; rather it is on C'. However, since G is
continuous, G(P) is the limit of values of G at points inside, so we may use
([1533).

To estimate the flux across C', we estimate the flux across each of the four
parts of the curve. Because these sections are short when Ar and Af are small,
we may estimate the integral over each part by multiplying the value of the
integrand at any point of the section (even at an end point) by the length of
the section. As usual, n denotes an exterior unit vector perpendicular to C.

On QR and ST, B contributes to the flux (on RS and T'Q) it does not
since n - 0 is 0). On QR, 0 is parallel to n, as shown in Figure .

However, on ST' it points in the opposite direction, # -1 is —1. So, across
ST, the flux contributed by B6 is approximately

(B8 - n)Ar = —B(r,0)Ar.

(We would get a better estimate by using B(r + 4-,6) but B(r,6) is good
enough since B is continuous.)

On QR, f and 1 point in almost the same direction, hence 6 - 1 is close to
1 when A6 is small. So on ST, Bf contributes approximately B(r, 0 + Af)Ar
to the flux.

All told, the total contribution of Bf to the flux across C' is

B(r,0 + A0)Ar — B(r,0)Ar (18.8.4)

The contribution of AT to the flux is negligible on QR and ST because there
T and n are perpendicular. On T'Q), T and n point in almost directly opposite
directions, hence T - n is near —1. The flux of Ar there, is approximately

A(r,0)(xr-n)rAf = —A(r, 0)rAd. (18.8.5)

On RS, which has radius r + Ar, T and n are almost identical, hence T - 1 is
near 1. The contribution on RS, which has radius r + Ar is approximately

A(r + Ar,0)(r + Ar)A6. (18.8.6)

Combining (|18.8.4)), (18.8.5) and ((18.8.6)), we see that the limit in ([18.8.3))
is the sum of two limits:
. A(r + Ar, 0)(r + Ar)AO — A(r,0)rAd
lim
Ar,A0—0 rArAf

(18.8.7)
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The area within C'is
approximately, rArAf.

Note the use of div, not V-.

and
lim B(r,0 + A0)Ar — B(r,0)Ar
Ar,A0—0 rArAQ

The first limit ((18.8.7) equals
L(r+ Ar)A(r + Ar,A0) — rA(r,0)

lim -
Ar,A8—0 T Ar ’

(18.8.8)

which is

10(rA)
r or

Note that r appears in the coefficient, 1/r, and also in the function, rA,
being differentiated.

The second limit (18.8.8]) equals
1 B(r,0 + Af) — B(r,0)

lim -
Ar,A0—0 T Af ’

hence is
10B

r o
Here r appears only once, in the coefficient.
All told, we have the desired divergence formula:

div(AF + B) = %a(gf) + %%_z;

(18.8.9)

Curl in the Plane
The curl of F(x,y) = P(x,y)i + Q(z,y)j + 0k, a vector field in the plane, is

given by the formula
curl F = 8_@ — 8_P k.
or 0Oy
What is the formula for the curl when the field is described in polar coordinates:
G(r,0) = A(r,0)r + B(r,6)n? To find out we will reason as we did with
divergence. This time we use

R ' $.G -kds
1G) - = | = ’
(curl G) -1 length of C—0 Area bounded by C
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where C' is a closed curve around a fixed point in the (r,0) plane, and the See on page
limit is taken as the length of C' approaches 0. The curl is evaluated at a fixed
point, which is on or within C.
We compute the circulation of G = Ar + B around the same curve used
in the derivation of divergence in polar coordinates.
On TQ and RS, Ar, being perpendicular to the curve, contributes nothing
to the circulation of G around C'. On QR it contributes approximately

A(r,0)(r - T)Ar = A(r,0)Ar.
On ST, since there T- T = —1, it contributes approximately

A(r,8 + Af)(r - T)Ar = —A(r, 6 + AO)Ar.

A similar computation shows that B0 contributes to the total circulation
approximately

B(r 4+ Ar,0)(r + Ar)A0 — B(r,0)rA6.

Therefore (V x G-)k in the sum of two limits:

A(r,0)Ar — A(r,0 + AG)Ar 10A

i —_ -
A A0 rATAf r 00
and
lim B(r+Ar,0)(r + Ar)A — B(r,0)rA0 _ 10(rB)
Ar,A0—0 rArAf Cor Or
All told, we have Note the use of curl, not

V x.

104 la(rB)) k. (18.8.10)

curl(Ar + Bf) = (—;% + I

EXAMPLE 1 Find the divergence and curl of F = r6*r + r3 tan(6)6.
SOLUTION  The calculations are direct applications of ((18.8.9)) and ([18.8.10)).

First, the divergence:

, 10 10
divF = B (r-r6?) + Y (r° tan(6))
= % (2r6%) + % (r’sec®(6)) = 26 + r*sec?(0).
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And, the curl:

10 10
curlF = (—;% (ro?) + ~ar (r-r? tan(@))) k
= (—1(2r0) - (4r° tan(e))> k = (—26 + 4% tan(f)) k.
r r
o
Cylindrical Coordinates
In cylindrical coordinates the gradient of g(r, 0, 2) is
09 109, 0g.
grad g = e + ~2 + 2.2 (18.8.11)

Here 7 is the unit vector in the positive z direction, denoted k in Chapter [14]

Note that differs from only by the extra term (0g/0z)z. You
can obtain by computing directional derivatives of g along T, 5, and
z. The derivation is similar to the one that gave us the formula for the gradient
of g(r,0).

The divergence of G(r,0,z) = Ar + BO + C7 is given by the formula

Lo(4) 9B 9(rC) (18.8.12)

dvG="——"%3 15

Note that the partial derivatives with respect to r and z are similar in that the
factor r is present in both d(rA)/0r and 9(rC)/0r. You can obtain (|18.8.12)
by using the relation between V - G and the flux across the small surface
determined by small changes Ar, Af, and Az.

The curl of G = Ar 4+ Bf + C% is given by a formal determinant:

1| T o8k
curlG = - 2 2 2 (18.8.13)
A rB C
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To obtain this formula consider the gi\rculation around three small closed curves
lying in planes perpendicular to T, # and k.

Spherical Coordinates

In mathematics texts, spherical coordinates are denoted p, ¢, 6. In physics and
engineering a different notation is standard. There p is replaced by 7, 6 is the
angle with z-axis, and ¢ plays the role of the mathematicians’ €, switching the
roles of ¢ and #. The formulas we state are in the mathematicians’ notation.

The three basic unit vectors for spherical coordinates are denoted p, ¢, 6.
For instance, p points in the direction of increasing p. See Figure[18.8.5] Note
that, at the point P, ¢ and 6 are tangent to the sphere through P and center
at the origin, while p is perpendicular to that sphere. Also, any two of p, ¢, 6
are perpendicular.

To obtain the formulas for V - G and V x G, we would use the region
corresponding to small changes Ap, A¢, and A#f, shown in Figure [18.8.6
That computation yields the following formulas:

If g(p, ¢,0) is a scalar function,

dg 1 0g 1 0dg

If G(p,9,0) = Ap+ By + C¥
. 19(p*A) 1 O(sin(¢)B) 1 oC

and

. 1 1 d(sin(¢)C) 1 9B

curlG p(sinw) 96 pem(o) ae)”
1/ 1 94 9(p0) 1 (0(pB) A
*E(smw)%‘ ap) *5( Ip _a_¢>0

Each of these can be obtained by the method we used for polar coordinates.
In each case, keep in mind that the change in ¢ or # is not the same as the
distance the corresponding point moves. However, a change in p is the same
as the distance the corresponding point moves. For instance, the distance
between (p, ¢,0) and (p, ¢ + A¢p, A) is approximately pA¢ and the distance
between (p, ¢,0) and (p, ¢, 0 + Af) is approximately psin(¢p)Ad.
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An Application to Rotating Fluids

Consider a fluid rotating in a cylinder, for instance, in a centrifuge. If it rotates
as a rigid body, then its velocity at a distance r from the axis of rotation has
the form

G(r,0) = crb,

where ¢ is a positive constant.

Then L (er?
curlG = - (cr’)
r Or

The curl is independent of . That means that an imaginary paddle held with
its axis held in a fixed position would rotate at the same rate no matter where
it is placed.

Now consider the more general case with

k = 2¢k.

G(r,0) = cr"0,
and n is an integer. Now

n+1

R k =c(n+1)r" k.

We just considered the case n = 1. If n > 1, the curl increases as r increases.
The paddle wheel rotates faster if placed farther from the axis of rotation. The
direction of rotation is the same as that of the fluid, counterclockwise.

Next consider the case n = —2. The speed of the fluid decreases as r

increases. Now
curlG = ¢(-2+ 1)r > 'k = —er k.

The minus sign before the coefficient ¢ tells us that the paddle wheel spins
clockwise even though the fluid rotates counterclockwise. The farther the
paddle wheel is from the axis, the slower it rotates.

Summary

We expressed gradient, divergence, and curl in several coordinate systems.
Even though the basic unit vectors in each system may change direction from
point to point, they remain perpendicular to each other. That simplified the
computation of flux and circulation. The formulas are more complicated than
those in rectangular coordinates because tha amount a parameter changes is
not the same as the distance the corresponding point moves.
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EXERCISES for Section 18.8 Key: R-routine, M—moderate, C—challenging

In Exercises [1| through [4] find and draw the gradient of the given functions of (r,6)

at (2,7/4).
1.R] r
2.[R] %0
3.[R] e"0
4.[R] 362

In Exercises [5] through [§ find the divergence of the given function
5.[R] 5r+ 1200

6.[R] 307 + 3r66
7.[R] T+ 130
8.[R] rsin(6)F + r2cos(6)8

In Exercises [ through [12] compute the curl of the given function.
9.[R] r0

0.[R] r36r+c"f

11.[R] 7 cos(6)T + r6f

12.[R] 1/r30

—

13.[R] Find the directional derivative of 263 in the direction

14.[R] What property of rectangular coordinates makes the formulas for gradient,
divergence, and curl in those coordinates relatively simple?

15.[R] Estimate the flux of rfvrhat = 12638 around the circle of radius 0.01 with
center at (r,0) = (2,7/6).

16.[R] Estimate the circulation of the field in the preceding exercise around the
same circle.
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When translating between rectangular and polar coordinates, it may be necessary to
express T and 0 in terms of i and j and also i and j in terms of r and 9. Exercise
and [I8 concern this matter.

17.[R] Let (r,0) be a point that has rectangular coordinates (x,y).

(a) Show that T = cos(6)i+ sin(f)j, which equals z/+/x? + y?i + y/\/a? + y2j =
zityj
/cc2+y2

(b) Show that 6 = —sin(6)i+cos(#)j, which equals —y/+/2? + y?i+z/\/2? + y?].

(c) Draw a picture to accompany the calculations done in (a) and (b).

So we have T and 6 in terms of i and j:

F = Ti+yj
2 2
) Vi (18.8.16)

Ve

18.[R] Show that if (z,y) has polar coordinates (r,6), then

{ i = cos(f)0r — sin(6)0
j = sin(0)0r + cos(0)6

by solving the simultaneous equations ([18.8.16)) in the preceding exercise for i and
j

In exercises [19] through

I. find the gradient of the given function, using the formula for gradient in rect-
angular coordinates,

II. find it by first expressing the function in polar coordinates and again for

gradient in polar coordinates. (|18.8.1]),

show that the two results agree.

19.[R] 22+ ¢?
20.[R] /22 + 42
21.[R] 3z +2y
22.[R] z//2? +y?

In Exercises 23] through

I. find the gradient of the given function, using its formula in polar coordinates,

that is (|18.8.1)),

II. find it by first expressing the function in rectangular coordinates,
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ITI. show that the two results agree.

2

23.[R] r

24.[R] r%cos()
25.[R] rsin(0)
26.[R] e"

In Exercise 27 and 2§
I. find the divergence of the given vector field in rectangular coordinates,
II. find it by first expressing the function in polar coordinates and using ([18.8.9)),

ITI. show that the results agree.

27.[R] 2%+ 9%
28.[R] ayi

In Exercises 29 and B0
I. find the curl of the given vector field in rectangular coordinates,
II. find it by first expressing the function in polar coordinates and using ([18.8.10)),

ITI. show that the two results agree.

29.[R] i+ 2292

30.[R] (z/y/22%+y?)i

The next two exercises are useful in developing the formula for the gradient in
cylindrical and spherical coordinates.
31.[R] Approximately how far is it from the points (r, 0, z) to

(a) (r+ Ar,0,2),
(b) (r,0+ A6, z2),
(c) (r,0,z+ Az).

32.[R] Approximate the distance from the point (p, ¢, ) to
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(a) (p+Ap,9,0),
(b) (p, ¢+ Ag,0),
(c) (p, 9,0+ AB).

33.[M] Using the formulas for the gradient of g(r, ¢, ), find the directional deriva-
tive of ¢ in the direction

34.[M] Using the formulas for the gradient of g(r, 6, z), find the directional deriva-
tive of g in the direction

35.[M] Without using the formula for the gradient, do Exercise
36.[M] Without using the formula for the gradient, do Exercise

37.[M] Using as few mathematical symbols as you can, state the formula for the
divergence of a vector field given relative to T and 6.

38.[M] Using as few mathematical symbols as you can, state the formula for the
curl of a vector field given relative to T and 6.

39.[M] In the formula for the divergence of Ar-+ B, why do the terms rA and 1/r
appear in (1/r)(9(rA)/0r and rA? Explain in detail why 1/r appears.

40.[M] Obtain the formula for the gradient in cylindrical coordinates.

41.[M] Obtain the formula for curl in cylindrical coordinates.
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42.]M] Obtain the formula for divergence in cylindrical coordinates.
43.]M] Obtain the formula for the gradient in spherical coordinates.

44.[M] Where did we use the fact that 7 and 9 are perpendicular when developing
the expression for divergence in polar coordinates?

45.[M] Obtain the formula for the gradient of g(r, #) in polar coordinates by starting
with the formula for the gradient of f(z,y) in rectangular coordinates. During the
calculations you will have some happy moments as complicated expressions cancel
and the identity cos?(6) + sin?(0) = 1 simplifies expressions. (See Exercise )
Assume g(r,0) = f(z,y), where x = rcos(f) and y = rsin(f). To express Vf =
Of/0xi + 0f/0yj in terms of polar coordinates, it is necessary to express df /0,
df /0y, i, and j in terms of partial derivative of g(r, ) and r and 6.

(a) Show that 9r/0x = cos(8), Or/dy = sin(f), 00/0x = —(sin(9))/r, 00/dy =
(cos)/r.

(b) Use the chain rule to express 0f/0x and Jf/Jy in terms of partial derivatives
of g(r,0).

(c) Recalling the expression of i and j in terms of 7 and f in Exercise [18] obtain
the gradient of g(r, @) in polar coordinates.

46.]M] In Exercise [26 of Section we found the divergence of F = "1 us-
ing rectangular coordinates. Find the divergence using polar coordinates formally.
NOTE: The second way is much easier.

47.]M] In Exercise [6] of Section we used rectangular coordinates to show that
an irrotational planar central field is symmetric. Use the formula for curl in polar
coordinates to obtain the same result. NOTE: This way is much easier.

48.[M] In Exercise 21| in Section we used rectangular coordinates to show
that an incompressible symmetric central field in the plane must have the form
F(r) = (k/r)r. Obtain this result using the formula for divergence in polar coordi-
nates.
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18.9 Maxwell’s Equations

At any point in space there is an electric field E and a magnetic field B. The
electric field is due to charges (electrons and protons) whether stationary or
moving. The magnetic field is due to moving charges.

To assure yourself that the magnetic field B is everywhere, hold up a pocket
compass. The magnetic field, produced within the Earth, makes the needle
point north.

All of the electrical phenomena and their applications can be explained
by four equations, called Maxwell’s equations. These equations allow B
and E to vary in time. We state them for the simpler case when B and F
are constant: 0B/0t = 0 and OE/0t = 0. We met the first equation in the
previous section. Here is the complete list

L. f sE-ndS=Q /€0, where S is a surface bounding a spatial region and
() is the change in that region. (Gauss’s Law for Electricity)

IL. 550 E - dr = 0 for any closed curve C. (Faraday’s Law of Induction)

III. [(B-ndS =0 for any surface S that bounds a spatial region. (Gauss’s
Law for Magnetism)

IV. fo B - dr = pyg fSJ -n dS, where C bounds the surface S and J is the
electric current flowing through S. (Ampere’s Law)

The constants ¢y and po (“myoo zero”) depend on the units used. They
will be important in the CIE on Maxwell’s Equations.

Each of the four statements about integrals can be translated into infor-
mation about the behavior of E or B at each point.

In derivative or “local” form the four principles read:

I'. divE = /ey, where ¢ is the charge density (Coulomb’s Law)
IT". curlE=0

Ir. divB =0

IV'. curl B = ppJ

It turns out that ;ﬁ equals the square of the speed of light. Why that is
justified is an astonishing story told in CIE
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Going Back and Forth Between “Local” and “Global.”

Examples [1] and [2 show that Gauss’s Law is equivalent to Coulomb’s.

EXAMPLE 1 Obtain Gauss’s Law for Electricity (I) from Coulomb’s Law

().
SOLUTION Let V be the solid region whose boundary is §. Then

fs E-ndS = fv V-EdV Divergence Theorem
= fV L dv Coulomb’s Law
= fv qdV =
Recall that the total charge in Vis Q = [}, ¢ dV. o

Does Gauss’s law imply Coulomb’s law? Example [2| shows that the answer
is yes.

EXAMPLE 2 Deduce Coulomb’s law (I’) from Gauss’s law for electricity
().

SOLUTION Let V be any spatial region and let S be its surface. Let () be
the total charge in V. Then

Q = /E -n dS Gauss’s law

€0
S

= / V-EdV Divergence Theorem.

Qz/qu,

v

On the other hand,

where ¢ is the charge density. Thus

/idv /quw: or /(Q—V¢dezm
€0
%

for all spatial regions. Since the integrand is assumed to be continuous, the
“zero-integral principle” tells us that it must be identically 0. That is,

1 _v.E=o

€0

which give us Coulomb’s law. o

EXAMPLE 3 Show that II implies IT'. That is, 550 E - dr = 0 for closed
curves implies curl E = 0.
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SOLUTION By Stokes’ theorem, for any orientable surface S bounded by a
closed curve,

/(CurlE) ndS=0
S
The zero-integral principle implies that (curl E) - n = 0 at each point on the

surface. Choosing S such that n is parallel to curl E (if curlE is not 0),
implies that the magnitude of curlE is 0, hence curl E is 0. o

Maxwell, by studying the four equations, I’, II’; IIT’, IV’, deduced that
electromagnetic waves travel at the speed of light, and therefore light is an
electromagnetic phenomenon. In CIE at the end of this chapter we show
how he accomplished this, in one of the greatest creative insights in the history
of science.

The exercises present the analogy of the four equations in integral form
for the general case where B and E vary with time. It is here that B and E
became tangled with each other; both appearing in the same equation. In this
generality they are known as Maxwell’s equations, in honor of James Clerk
Maxwell (1831-1879), who put them in their final form in 1865.

Mathematics and Electricity
Benjamin Franklin, in his book Fzperiments and Observations Made in
Philadelphia, published in 1751, made electricity into a science. For his ac-
complishments, he was elected a Foreign Associate of the French Academy of
Sciences, an honor bestowed on no other American for over a century. In 1865,
Maxwell completed the theory that Franklin had begun.

At the time that Newton Published his Principia on the gravitational field
(1687), electricity and magnetism were the subjects of little scientific study.
But the experiments of Franklin, Oersted, Henry, Ampere, Faraday, and oth-
ers in the eighteenth and early nineteenth centuries gradually built up a mass
of information subject to mathematical analysis. All the phenomena could be
summarized in four equations, which in their final form appeared in Maxwell’s
Treatise on Electricity and Magnetism, published in 1873. For a fuller treat-
ment, see The Feynman Lectures on Physics, vol. 2, Addison-Wesley, Reading,
Mass., 1964.

Summary

We stated the four equations that describe electrostatic and magnetic fields
that do not vary with time. Then we showed how to use the divergence theorem
or Stokes’ theorem to translate between their global and local forms. The
exercises include the four equations in their general form, where E and B vary
with time.
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EXERCISES for Section 18.9 Key: R-routine, M-moderate, C—challenging
1.[R] Obtain II from II".

2.[R] Obtain III" from III.

3.[R] Obtain IIT from III".

4.[R] Obtain IV’ from IV.

5.[R] Obtain IV from IV’.

In Exercises [6] to [0] use terms such as “circulation,” “flux,” “current,” and “charge
density” to express the given equation in words.

6.[R] I
7.R] 1I
8.[R] 1III
9.[R] IV

10.[R] Which of the four laws tell us that an electric current produces a magnetic
field?

11.[R] Which of the four laws tells us that a magnetic field produces an electric
current?

In this section we assumed that the fields E and B do not vary in time, that is,
OE/0t = 0 and 0B/dt = 0. The general case, in empty space, where E and B
depend on time, is also described by four equations, which we call 1,2, 3,4. Numbers
1 and 3, do not involve time; they are similar to I’ and I11’.

1. V-E =¢/e

2. VXE=-90B/ot

3. V-B=0

4. V x B = poJ + poco &

(Here J is the current.)
12.[R] Which equation implies that a changing magnetic field creates an electric
field?

13.[R] Which equation implies that a changing electrostatic field creates a mag-
netic field?
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14.[R] Show that 2. is equivalent to
fE- dt:—a/B-ndS
ot
C S

Here, C' bounds S. HINT: You may assume that % JsBndS equals [((0B/0t) -n dS.

15.[R] Show that 4. is equivalent to

%B- dr—,uo/J-ndS—i—uoeoaat/E-ndS
C S S

(The circulation of B is related to the total current through the surface S that C
bounds and to the rate at which the flux of E through S changes.)
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18.S Chapter Summary

The first six sections developed three theorems: Green’s Theorem, Gauss’
Theorem (also called the Divergence Theorem), and Stokes” Theorem. The
final four sections applied them to geometry and to physics and to expressing
various functions in terms of non-rectangular coordinate systems. These four
sections offer a way to deepen your understanding of the first six.

Name Mathematical Expression Physical Description
Green’s Theorem | ¢, F-nds= [, V-F dA flux of F across C'
$o(—Qdz + Pdy) = [, (%—]: + %—3) dA differential form

$.F-Tds=¢,F-dr=[,(VxF) -kdA | circulation of F around C

$o(Pdz + Qdy) = [ (32 - 22) dA

Gauss’ Theorem fSF N dS = fRV -FdV
(Divergence The-
orem)

Stokes” Theorem | §,F-T ds= [((V xF)-ndS

(S is a surface bounded by C' with n compat-
ible by orientation of C')

Green’s Theorem can be viewed as the planar version of either the Diver-
gence Theorem or Stokes’” Theorem.

Though div F and curl F were defined in terms of rectangular coordinates,
they also have a meaning that is independent of any coordinates. For instance,
if F is a vector field in space, the divergence of F at a point multiplied by the
volume of a small region containing that point approximates the flux of F
across the surface of that small region. More precisely,

fSF~nds

divF at P Is the limit of —————
ivF at P equals the limit of Z25-——-—5

as the diameter of R approaches 0

The curl of F at P is a vector, so it’s a bit harder to describe physically.
Let n be a unit vector and C' a small curve that lies in a plane through P, is
perpendicular to n, and surrounds P. Then the scalar component of curl F at
P is the direction n multiplied by the area of the surface bounded by C' gives
the circulation of F along C'

A field whose curl is 0 is called irrotational. A field whose divergence is 0
is called incompressible (or divergence-free).

Of particular interest are conservative fields. A field F is conservative if
its circulation on a curve depends only on the endpoints of the curve. If the
domain of F is simply connected, F is conservative if and only if its curl is O.
A conservative field is expressible as the gradient of a scalar function.
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Among the conservative fields are the symmetric central fields. If, in addi-
tion, they are divergence-free, they take a very special form that depends on
the dimension of the problem.

General Form of Divergence-Free
Geometry Symmetric Central Fields Description
R? (plane) ct inverse radial
R3 (space) Cy inverse square radial
R" Ci

In the case where curl F = 0 one can replace an integral ff F - dr by an
integral over another curve joining A and B. This is most beneficial when the
new line integral is easier to evaluate than the original one. Similarly, in a
region where V - F = 0 we can replace an integral | s F -n dSover the surface
S with a more convenient integral over a different surface.

In applications in space the most important field is the inverse square
central field, F = % The flux of this field over a closed surface that does not
enclose the origin is 0, but its flux over a surface that encloses the origin is
4. If one thinks in terms of steradians, it is clear why the second integral
is 47: the flux of T/r? also measures the solid angle subtended by a surface.
Also, the first case becomes clear when one distinguishes the two parts of the
surface where n - r is positive and where it is negative.

EXERCISES for 18.S Key: R-routine, M-moderate, C—challenging

1.[R] Match the vector fields given in mathematical symbols (a.-e.) with the written
description (1.-5.)

a. F(r) 1. an inverse cube central field

b. f(r)r 2. a central field (center at origin)

c. f(r)r 3. an arbitrary vector field

d. 7/r? 4. a symmetric central field (center at origin)
e. r/r 5. an inverse square central field

NOTE: There is not a one-to-one relation between the two columns.

2.[R] Use Green’s theorem to evaluate j;c(a:y dx + e® dy), where C' is the curve
that goes from (0,0) to (2,0) on the z-axis and returns from (2,0) to (0,0) on the
parabola y = 2z — 2.
3.[R] A curve C bounds a region R of area A.

(a) If §, F - dr = —2, estimate V x F at points in R.

(b) Would you use ® or @ to indicate the curl?
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4.[R] A curve C bounds a region R of area A.
(a) If §.F-n ds = —2, estimate V - F at points in R.

(b) How did you decide whether V - F is positive or negative?

5.[R] A field F is called uniform if all its vectors are the same. Let F(x,y, z) = 3i.
(a) Find the flux of F across each of the six faces of the cube in Figure [18.S.1] of
side 3.
(b) Find the total flux of F across the surface of the box.

(c¢) Verify the divergence theorem for this F.

Figure 18.5.1:
6.[R] Let F be the uniform field F(z,y, z) = 2i+ 3j + 0k. Repeat Exercise [5| Carry
out the preceding exercise for this field.

7.[R] See Exercise Suppose you placed the point at which E is evaluated at
(a,0,0) instead of at (0,0, a).

(a) What integral in spherical coordinates arises?

(b) Would you like to evaluate it?
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In Exercises [§to[I1] F is defined on the whole plane but indicated only at points on
a curve C bounding a region R. What can be said about fR V -F dA in each case?

b -\l'll .' Y J
"‘\\j- [P "-,, _— -:_.—-x\. ; ' Jr,f i,n' € s "/".’ _\
» -;—.. - -_ﬂ-u.: p /'l |-l;|. £k :— 3 ] //v/ “:u
,/;‘,\‘_ = g : -—-..—-—-'4)’/ M": . f “ =,
\ T‘\\‘ ¥ B r < .-Jf‘ L (k_//
(a) (b) () (d)

Figure 18.5.2:

8.[R] See Figure[18.5.2(a).
9.[R] See Figure[18.5.2|b).
10.[R] See Figure m c).

[ (
11.[R] See Figure [18.5.2(d).

Exercises [T2] to F concern the same F as in Exercises [§] to What can be said
about fS V x F dA in each case?

12.[R] See Figure [18.5.2(a).
13.[R] See Figure m(b)
14.[R] See Figure [18.5.2c).
15.[R] See Figure [18.5.2(d).

16.[R] Let C be the circle of radius 1 with center (0,0).
(a) What does Green’s theorem say about the line integral

7{ ((2* = 9%) do + (y* + 2%) dy)?

C

(b) Use Green’s theorem to evaluate the integral in (a).

(c) Evaluate the integral in (a) directly.

17.[M] Let F(x,y) = (v +y)i+22j and let C be the counterclockwise path around
the triangle whose vertices are (0,0), (1,1), and (—1,1).

(a) Use the planar divergence theorem to evaluate [, F - nds, where n is the
outward unit normal.

(b) Evaluate the line integral in (a) directly.
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18.[M] Let b and ¢ be positive numbers and S the “infinite rectangle” parallel to
the xy-plane, consisting of the points (x,y, c) such that 0 <z < b and b > 0.

(a) If b were replaced by oo, what is the solid angle S subtends at the origin?
HinT: No integration is needed.

(b) Find the solid angle subtended by & when b is finite. HINT: See Exercise

(c) Is the limit of your answer in (b) as b — oo the same as your answer in (a)?
HiNT: Tt should be!

19.[M] Look back at the Fundamental Theorem of Calculus (Section , Green’s
Theorem (Section [18.2)), the Divergence Theorem (Section [18.6]), and Stokes’ Theo-
rem (Section [18.4). What single theme runs through all of them?
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Calculus is Everywhere # 23
How Maxwell Did It

In a letter to his cousin, Charles Cay, dated January 5, 1965, Maxwell wrote:

I have also a paper afloat containing an electromagnetic the-
ory of light, which, till I am convinced to the contrary, I hold to
be great guns. [Everitt, F., James Clerk Mazwell: a force for
physics, Physics World, Dec 2006, http://physicsworld.com/
cws/article/print/26527]

It indeed was “great guns,” for out of his theory has come countless in-
ventions, such as television, cell phones, and remote garage door openers. In
a dazzling feat of imagination, Maxwell predicted that electrical phenomena
create waves, that light is one such phenomenon, and that the waves travel at
the speed of light, in a vacuum.

In this section we will see how those predictions came out of the four
equations (I'), (II'), (III"), and (IV’) in Section [18.9]

First, we take a closer look at the dimensions of the constants g3 and gy

that appear in (IV’),

1
—V xB= Z
Ho€o €0

The constant €5 makes its appearance in the equation

L 4%

Force = F = )
drreg 12

(C.23.1)

Since the force F is “mass times acceleration” its dimensions are

length

time? ’

mass -

or, in symbols
L
The number 47 is a pure number, without any physical dimension.
The quantity qqo has the dimensions of “charge squared,” ¢?, and R? has
dimensions L?, where L denotes length.
Solving ((C.23.1]) for £y, we find the dimensions of gj. Since
e

g = ——
A Fr?’
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its dimensions are

T2 q2 T2 q2

() () = s
To figure out the dimensions of 1y, we will use its appearance in calculating
the force between two wires of length L each carrying a current I in the same
direction and separated by a distance R. (Each generates a magnetic field that

draws the other towards it.) The equation that describes that force is
_ 27RF

Since R has the dimensions of length L and F has dimensions mL/T?, the

numerator has dimensions mL?/T?. The current I is “charge q per second,”
so I? has dimensions ¢?/T?. The dimension of the denominator is, therefore,

¢°L
T2
Hence jiy has the dimension
mL? T? ~mL
T2  ¢2L - q? )
The dimension of the product ppeg is therefore
mL T3¢ T 2
¢ mL3 L2

The dimension of 1/uep, the same as the square of speed. In short,
1/\/ogo has the dimension of speed, “length divided by time.”

Now we are ready to do the calculations leading to the prediction of waves
traveling at the speed of light. We will use the equations (I’), (II"), (IIT),
and (IV’), as stated on page [1626] where the fields B and E vary with time.
However, we assume there is no current, so J = /. We also assume that there
is no charge gq.

Recall the equation (IV”)

OE
VxB= —.
oo It
Differentiating this equation with respect to time ¢t we obtain
0 O’E
—(VxB) = —. C.23.2
875( ) = 100 12 ( )
0

As is easy to check, the operator ¢ can be moved past the Vx to operate

directly on B. Thus ((C.23.2)) becomes

0B O’E
V x E = MO&OW. (CQ33)
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Recall the equation (II')

0B
VXE——E

Taking the curl of both sides of this equation leads to

B
V(-VxE)=V x %—t (C.23.4)
Combining ((C.23.3)) and ((C.23.4]) gives us an equation that involves E alone:
O*E
V X (—V X E) = Mo&ow. (0235)

An identity concerning “the curl of the curl,” which tells us that
Vx(VxE)=V(V-E)—(V-V)E. (C.23.6)

But V-E = 0 is one of the four assumptions, namely (I), on the electromagnetic

fields. By ((C.23.5)) and (C.23.6|), we arrive at

O’E
(V : V) E = Mo&fow
PE 1 _,

The expression V? in (C.23.7)) is short for

Vv = (it gt k) (i g )
b Y z x

oz 9y 9 or 9y 92
2 9 o

In (V- V)E we apply to each of the three components of E. Thus
V2E is a vector. So is 0*E/dt* and makes sense.

For the sake of simplicity, consider the case in which E has only an z-
component, which depends only on z and t, E(z,y, z,t) = E(x,t)i, where E
is a scalar function. Then becomes

P g (ZELPELTEN
ot? ’ togo \ 0z Oy2 022 )

from which it follows

2 2
a—E(a:,t) — L@_E

5 = 0. (C.23.9)

pogo 0>

December 4, 2010 Calculus



C.23—- How Maxwell Did It

1639

Multiply (C.23.9) by —puoeo to obtain

) 0*E
gz Mg = 0.

ot?
This looks like the wave equation (see ((16.3.11]) on page [1296]). The solutions
are waves traveling with speed 1/,/110&0.

Maxwell then compares ,/1pgg with the velocity of light:

In the following table, the principal results of direct observation
of the velocity of light, are compared with the principal results of
the comparison of electrical units (1/,/movo).

Velocity of light (meters per second) Ratio of electrical units

Fizeau 314,000,000 Weber 310,740,000

Sun’s Parallax 308,000,000 Maxwell 288,000,000

Foucault 298,360,000 Thomson 282,000,000
Table C.23.1:

It is magnificent that the velocity of light and the ratio of the
units are quantities of the same order of magnitude. Neither of
them can be said to be determined as yet with such a degree of
accuracy as to enable us to assert that the one is greater or less
than the other. It is to be hoped that, by further experiment, the
relation between the magnitude of the two quantities may be more
accurately determined.

In the meantime our theory, which asserts that these two quan-
tities are equal, and assigns a physical reason for this equality, is
certainly not contradicted by the comparison of these results such
as they are. [reference?

On this basis Maxwell concluded that light is an “electromagnetic dis-
turbance” and predicted the existence of other electromagnetic waves. In
1887, eight years after Maxwell’s death, Heinrich Hertz produced the predicted
waves, whose frequency placed them outside what the eye can see.

By 1890 experiments had confirmed Maxwell’s conjecture. First of all,
experiments gave the velocity of light as 299,766,000 meters per second and
1/ 1ogo as 299,550,000 meters per second.

Newton, in his Principia of 1687 related gravity on earth with gravity in the
heavens. Benjamin Franklin, with his kite experiments showed that lightning
was simply an electric phenomenon. From then through the early nineteenth
century, Faraday, 777, ...showed that electricity and magnetism were insepa-
rable. Then Maxwell joined them both to light. Einstein, in 1905(?), also by a
mathematical argument, hypothesized that mass and energy were related, by

his equation £ = mc?.

Calculus December 4, 2010



1640

CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

Calculus is Everywhere # 24
Heating and Cooling

Engineers who design a car radiator or a home air conditioner are interested in
the distribution of temperature of a fin attached to a tube. We present one of
the mathematical tools they use. Incidentally, the example shows how Green’s
Theorem is applied in practice.

A plane region A with boundary curve C'is occupied by a sheet of metal. By
various heating and cooling devices, the temperature along the border is held
constant, independent of time. Assume that the temperature in A eventually
stabilizes. This steady-state temperature at point P in A is denoted T'(P).
What does that imply about the function T'(x,y)?

First of all, heat tends to flow “from high to low temperatures,” that is, in
the direction of —VT. According to Fourier’s law, flow is proportional to the
conductivity of the material k (a positive constant) and the magnitude of the
gradient ||VT'||. Thus

f(—k:VT) -nds

measures the rate of heat loss across C.
Since the temperature in the metal is at a steady state, the heat in the
region bounded by C remains constant. Thus

]{(—kVT) -nds = 0.

C

Now, Green’s theorem then tells us that

/v (=kVT)dA =0
A

for any region A in the metal plate. Since V - VT is the Laplacian of T" and k
is not 0, we conclude that

T  O°T
/ (@ + a—yQ) dA = 0. (C.24.1)
A

By the “zero integrals” theorem, the integrand must be 0 throughout A,

PT 0T

W—Fa—yQ—O.

December 4, 2010 Calculus



C.24- Heating and Cooling

1641

This is an important step, since it reduces the study of the temperature dis-
tribution to solving a partial differential equation.

The expression

o*T  0*T

. + —_—,

ox?  0Oy?
which is V- VT, the divergence of the gradient of T, is called the Laplacian of
T. If T is a function of z, y, and z, then its Laplacian has one more summand,
0?T/0z. However, the vector notation remains the same, V - VI'. Even
more compactly, it is often reduced to V2T. Note that in spite of the vector
notation, the Laplacian of a scalar field is again a scalar field. A function
whose Laplacian is 0 is called “harmonic.”

EXERCISES
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Summary of Calculus III
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EXERCISES for Section A.0 Key: R-routine, M-moderate, C—challenging
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Graphs and Lines

Exercises 3| to[9] concern solving simultaneous equations. By way of illustration
we solve the equations

201 — 302 = 5
301 + 462 =

in two different ways. In one approach we solve for one of the unknowns in
terms of the other unknown (using one equation). Then we substitute the
results in the other equation. Thus ¢; = (5 + 3¢2)/s, using the first equation.
Substitution in the second equation gives 3(5 + 3¢2)/2 + 4¢y = 6, an equation
in only one unknown. Solve it for ¢ — 2, then get ¢;.

In another approach we multiply each equation by a constant so that the
coefficients of, say, ¢; become equal. Then subtract one equation from another.
Thus

3(2¢1 —3¢2) = 3-5
2(3¢y +4cp) =
or 6c; —9¢cy = 15
6c1 +8cy = 12.

Subtracting gives —17¢cy = 3, hence ¢y = % Then obtain ¢; using any of the
equations. Both approaches apply to three equations in three unknowns.

Summary
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EXERCISES for Section B.0

Key: R-routine, M—moderate, C—challenging

In Exercises [3] to [J] solve the simultaneous equations and check that your answers

satisfy the equations.

3.[R]
4.[R]
5.[R]
6.[R]
7.[R]

C1

C1

C1
8.[R]

201

361

C1
9.[R]

C1

C1

361
C1

261
361

C1

561
—301

—262
“+c2

+5C2 =
—462 =

+5CQ

*362 =

+2c
+4co

+2c2  +c3

—C

+03

—c2  +c3
—C9 —203
+cy  +c3

+c3

C2 —C3

+co  +c3

—6

Let P(z) be a polynomial with integer coefficients. If P(r) = 0, then z — r is a
factor of P(z). You may search for a root r by bisection method (Section or

December 4, 2010
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Newton’s method (Section . There is an algebraic technique for determining
any rational roots of P(x) = 0. Let r = p/q, where p and ¢ are integers with no
common divisor larger than 1. We may assume that ¢ is positive. The rational root
test asserts that if p/q is a root of a,z™ + a,_ 12"~ ! +--- + ag, then ¢ must divide
an and p must divide ag.

For instance, consider P(z) = 323 + 2% + 2 — 2. If P(p/q) = 0, then p divides —2
and ¢ divides 3. Then p must be 1, 2, or —2 and ¢ must be 1 or 3. There are 8
combinations of p and ¢ to check. For example, consider p = 1 and ¢ = 1, that is
p/q = 1. Note that P(1) = 3, so 1/1 is not a root. It turns out that the choice
p =2, g = 3 produces a root % (Check that P(2/3) = 0.) Of course, a polynomial
of degree greater than 1 need not have a rational root.

10.[R] Determine all rational roots of the following polynomials:

(a) 22 +2—12
(b) 223 — 1122 + 172 — 6
() e* +x3+ 22 +2+1

(d) 323 — 222 — 42 — 1

To factor a cubic P(z) = az®+bx?+cr+d first find or estimate a root r. Then divide
x—r into P(x), obtaining a quotient Q(x), that is, a quadratic polynomial such that
P(z) = Q(z)(z —r). If Q(z) is reducible, factoring it completes the factorization of
P(z). If an integer is a root, it must divide the constant term (Why?). If a fraction
m/n, when m and n are relatively prime integers, is a root, then m divides the
constant term and n divides the coefficient of the highest power. (Why?) 11.[R]
Illustrate this procedure for

(a) 423 + 422 — 132 — 3
(b) 223 — 22 -2 -3
(c) 2> +z+1

(d) 23 -8

12.[R] Factor each of the following expressions:
(a) 23— 222 + 2

(b) ot —222 +1

Calculus December 4, 2010



1648 CHAPTER B GRAPHS AND LINES

13.[M] This exercise outlines several ways to solve a system of simultaneous equa-
tions in several unknowns. You may recall learning a way to solve such systems
using a determinant. This exercise presents an alternative.
Solve for A, B, and C.
24 +B +3C = 13
3A +B +2C 11
A —-B +4C = 11

(a) Subtract 2 times the second equation from 3 times the first equation. This
gives an equation in just B and C. Solve for B in terms of C. Substitute this
result into the second and third equations, which now involve only A and C.
Now, solve these equations for A and C, then find B.

(b) As in (a), except solve the equation involving B and C for C in terms of B.
Substitute this result into the second and third equations and proceed as in

(a).

(¢) First, subtract the second equation from the first, obtaining an equation in A
and C. Then proceed as in (a).

(d) First, add the third equation to the second equation. Proceed as in (a).

In short, keep your eyes open for simplifications!

14.[C]
(a) In artithmetic, what is the analog of an irreducible polynomial?

(b) What is the analog of proper fractions of the partial fraction representation
of proper rational rational functions? NOTE: By the way, mathematicians
prove a single general theorem, which includes rational functions and rational
numbers as special cases.

15.[C]
(a) In artithmetic, what is the analog of the partial fraction representation?

(b) What would it be for 217

SHERMAN: Insert Factor
Theorem here. See also, 16.[C] Prove that if a is a factor of the polynomial P(z), then P(a) = 0.
Exercise [47]
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Appendix C

Topics in Algebra

Summary
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1650 CHAPTER C TOPICS IN ALGEBRA

EXERCISES for Section C.0 Key: R-routine, M—moderate, C—challenging
17.[C]

18.[C]
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Appendix D

Exponentials (and Logarithms)

This section focuses on exponentials; a general review of logarithms is pre-
sented in Section [LAl

Summary
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1652 CHAPTER D EXPONENTIALS (AND LOGARITHMS)

EXERCISES for Section D.0 Key: R-routine, M-moderate, C—challenging
19.[C]

20.[C]
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Appendix E

Trigonometry

e discuss radian measure (§1.2)

Summary
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1654 CHAPTER E TRIGONOMETRY

EXERCISES for Section E.O Key: R-routine, M—moderate, C—challenging
21.[C]

22.[C]
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Appendix F

Logarithms and Exponentials
Defined Through Calculus

Summary
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1656 CHAPTER F LOGARITHMS AND EXPONENTIALS DEFINED THROUGH CALCULUS

EXERCISES for Section F.0 Key: R-routine, M—moderate, C—challenging
23.[C]

24.[C]
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Appendix G

Determinants

Summary
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1658 CHAPTER G DETERMINANTS

EXERCISES for Section G.0 Key: R-routine, M—moderate, C—challenging
25.[C]

26.[C]
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Appendix H

Jacobian and Change of
Coordinates for Multiple
Integrals

Summary
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1660 CHAPTER H JACOBIAN AND CHANGE OF COORDINATES FOR MULTIPLE INTEGRALS

EXERCISES for Section H.0 Key: R-routine, M—moderate, C—challenging
27.[C]

28.[C]
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Appendix 1

Taylor Series for f(x,y)

Summary
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1662 CHAPTER I TAYLOR SERIES FOR F(X,Y)

EXERCISES for Section 1.0 Key: R-routine, M—moderate, C—challenging
29.[C]

30.C]
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Appendix J

Parameterized Surfaces

Summary
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1664 CHAPTER J PARAMETERIZED SURFACES

EXERCISES for Section J.0 Key: R-routine, M—moderate, C—challenging
31.[C]

32.C]
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Appendix K

The Interchange of Limits

Summary
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1666 CHAPTER K THE INTERCHANGE OF LIMITS

EXERCISES for Section K.0 Key: R-routine, M—moderate, C—challenging
33.[C]

34.[C]
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