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596 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

7.1 Computing Area by Parallel Cross-Sections

In Section 6.1 we computed the area under y = x2 and above the interval [a, b],

and later saw that it equals the definite integral
∫ b
a
x2 dx. Now we generalize

the idea behind this example.

Figure 7.1.1:

Area as a Definite Integral of Cross Sections

How can we express the area of the region R shown in Figure 7.1.1 as a definite
integral?

Figure 7.1.2:

First, we introduce an “x-axis”, as in Figure 7.1.2.
Assume that lines perpendicular to the axis for x in [a, b], intersect the

region R in an interval of length c(x). The interval is called the cross section
of R at x.

We approximate R by a collection of rectangles, just as we estimated the
area of the region under y = x2.

Figure 7.1.3:

Pick an integer n, and divide the interval [a, b] on the x-axis into n con-
gruent sections. The total length of the interval [a, b] is b− a; each section has
width ∆x = b−a

n
. Then, in the ith section, i = 1, 2, . . . , n, we pick a “samplingSince we use c for the

“cross-sectional” length, we
cannot use use ci to name

the sampling point. Instead,
xi is used to denote the

sampling point. This does
not cause any confusion

since we are not using xi to
describe the endpoints of a

partition.

number” xi. For each of the n sections we form a rectangle of width ∆x and
height c(xi). These are indicated in Figure 7.1.3.

Since the ith rectangle has area c(xi)∆x, the total area of the n rectangles
is
∑n

i=1 c(xi)∆x. As n increases, the collection of rectangles provides a better
approximation to the area of R. This suggests that:

lim
n→∞

n∑
i=1

c(xi)∆x = area of region R

But, by the definition of a definite integral,

lim
n→∞

n∑
i=1

c(xi)∆x =

b∫
a

c(x) dx.

Thus,

area of R =

b∫
a

c(x) dx.
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§ 7.1 COMPUTING AREA BY PARALLEL CROSS-SECTIONS 597

Or, informally,

Area of a region equals the integral of its cross-sectional lengths.

Note that x need not refer to the x-axis of the xy-plane; it may refer to any
conveniently chosen line in the plane. It may even refer to the y-axis; in this
case the cross-sectional length would be denoted by c(y).

To compute an area:

1. Find the endpoints a and b, and the cross-sectional length c(x).

2. Evaluate
∫ b
a
c(x) dx by the Fundamental Theorem of Calculus, if the

antiderivative of c(x) is elementary.

Chapter 6 showed how to accomplish Step 2. FTC I is used when the
antiderivative is an elementary function, and other cases can be approximated
numerically. The present section is concerned primarily with Step 1, how to
find the cross-sectional length c(x) and set up the definite integral.

If the region R happens to be the region under the graph of f(x) and
above the interval [a, b], then the cross-sectional length is simply f(x). We
have already met this special case in Sections 6.2–6.4 with f(x) = x2 and
f(x) = 2x.

EXAMPLE 1 Find the area of a disk of radius r.

Figure 7.1.4:

SOLUTION Introduce an xy-coordinate system with its origin at the center
of the disk, as in Figure 7.1.4.

Figure 7.1.5:

The typical cross-section perpendicular to the x-axis is shown in Fig-
ure 7.1.5. The length of the cross-section, AC, is twiceBC. By the Pythagorean
Theorem,

x2 +BC
2

= r2.

Then

BC
2

= r2 − x2

and, because |BC|, a length, is positive

BC =
√
r2 − x2.

Because x is in [−r, r],

area of disk of radius r =

r∫
−r

2
√
r2 − x2 dx. (7.1.1)

Calculus December 6, 2010



598 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

By symmetry, we can also say that the total area is four times the area of aEquation (7.1.2) is
preferable because it

reduces the chance of
making an error when

working with the
subtraction of negative

numbers.

quadrant:

area of disk of radius r = 4

r∫
0

√
r2 − x2 dx. (7.1.2)

This completes the set up of the integral for the area of the region.
The next chapter presents a technique for finding an antiderivative of√
r2 − x2. In the mean time, we use the table of integrals on the inside cover.

According to formula 32,∫ √
r2 − x2 dx =

r2

2

(
arcsin

(x
r

)
+
x

r2

√
r2 − x2

)
.

By FTC I,See Exercise 44

r∫
0

√
r2 − x2 dx =

r2

2

(
arcsin

(x
r

)
+
x

r2

√
r2 − x2

)∣∣∣∣r
0

=
r2

2

(
arcsin

(r
r

)
+

r

r2

√
r2 − r2

)
− r2

2

(
arcsin

(
0

r

)
+

0

r2

√
r2 − 02

)
=

r2

2

(π
2

)
=
πr2

4
.

Thus one quarter of the disk has area πr2

4
and the whole disk has area πr2. �Reference: S. Stein:

Archimedes: What did he
do besides cry Eureka?,

MAA, 1999.

Archimedes found the area in the next example, expressing it in terms of
the area of a certain triangle (see Exercise 42). He used geometric properties
of a parabola, since calculus was not invented until some 1900 years later.

Figure 7.1.6:

EXAMPLE 2 Set up a definite integral for the area of a region above
the parabola y = x2 and below the line through (2, 0) and (0, 1) shown in
Figure 7.1.6.
SOLUTION Since the x-intercept of the line is 2 and the y-intercept is 1, an
equation for the line is

x

2
+
y

1
= 1.

Hence y = 1 − x/2. The length c(x) of a cross-section of the region taken
parallel to the y-axis is, therefore

c(x) =
(

1− x

2

)
− x2 = 1− x

2
− x2.

To find the interval [a, b] of integration, we must find the x-coordinates of the
points P and Q in Figure 7.1.5 where the line meets the parabola. For these
values of x,

x2 = 1− x

2
,
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§ 7.1 COMPUTING AREA BY PARALLEL CROSS-SECTIONS 599

so

2x2 + x− 2 = 0. (7.1.3)

The solutions to (7.1.3) are

x =
−1±

√
17

4
.

Hence

area =

(−1+
√

17)/4∫
(−1−

√
17)/4

(
1− x

2
− x2

)
dx.

The value of this definite integral is found in Exercise 33. �

Figure 7.1.7:

EXAMPLE 3 Find the area of the region in Figure 7.1.7, bounded by
y = arctan(x), y = −2x, and x = 1.
SOLUTION We will find the area two ways, first (a) with cross-sections
parallel to the y-axis, then (b) with cross-sections parallel to the x-axis.

(a) The typical cross-section has length arctan(x)− (−2x) = arctan(x) + 2x.
Thus the area is

1∫
0

(arctan(x) + 2x) dx.

It’s easy to find
∫

2x dx; it’s just x2. By the FTC, Formula 71 in the cover of
this book tells us that∫

arctan(x) dx is
x arctan(x)− 1

2 ln(1 + x2).
Use differentiation to check
that this is correct.

1∫
0

(arctan(x) + 2x) dx =

(
x arctan(x)− 1

2
ln(1 + x2) + x2

)∣∣∣∣1
0

=

(
1 arctan(1)− 1

2
ln(1 + 12) + 12

)
−
(

0 arctan(0)− 1

2
ln(1 + 02) + 02

)
=

(
π

4
− 1

2
ln(2) + 1

)
− 0

=
π

4
+ 1− 1

2
ln(2). ≈ 1.4388 (7.1.4)

Figure 7.1.8:
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600 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

(b) Now we use cross-sections parallel to the x-axis, as indicated in Fig-
ure 7.1.8.

Cross-sections above the x-axis involve the curved part of the boundary,
while those below the x-axis involve the slanted line.

We must find the cross-sectional length as a function of y. That means
we should first find the x-coordinates of P and Q, the ends of the typical
cross-section above the x-axis. The x-coordinate of Q is 1. Let the
x-coordinate of P be x, then y = arctan(x), so x = tan(y). Hence
c(y) = 1 − tan(y) for y ≥ 0. The length of RS, a typical cross-section
below the x-axis, is 1 − (x-coordinate of R). Since R is on the line
y = −2x, we have x = −y/2. Thus

c(y) = 1− (−y/2) = 1 + y/2, for −2 ≤ y ≤ 0.

Note that the interval of integration is [−2, π/4]. Hence

area of R =

π/4∫
−2

c(y) dy.

We have to break this integral into two separate ones:

0∫
−2

(
1 +

y

2

)
dy and

π/4∫
0

(1− tan(y)) dy (7.1.5)

It will be shown Example 3 in Section 8.5 thatDifferentiate ln(sec(y)) to
check this antiderivative.

Because sec(y) is positive
for −π/2 < y < π/2 it is

not necessary to write the
antiderivative as ln | sec(y)|;

see Exercise 31.

∫
tan(y) dy = ln(sec(y)).

First,

0∫
−2

(
1 +

y

2

)
dy =

(
y +

y2

4

)∣∣∣∣0
−2

=

(
0 +

02

4

)
−
(

(−2) +
(−2)2

4

)
= 1 (7.1.6)
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Second,

π/4∫
0

(1− tan(y)) dy = (y − ln sec(y))|π/40

=
(π

4
− ln(sec(

π

4
))
)
− (0− ln(sec(0)))

=
π

4
− ln(

√
2) (7.1.7)

Adding (7.1.6) and (7.1.7) gives

area of R =
π

4
− ln(

√
2) + 1 (7.1.8)

See Exercise 32.

The two answers (7.1.4) and (7.1.8) may look different but they agree, as you
may show in Exercise 32. �

In this example we could have simplified the solution by observing that the
area below the x-axis is a triangle of area 1. But the purpose of Example 3 is
to illustrate a general approach.

Summary

The key idea in this section, “area of a region equals integral of cross-sectional
length,” was already anticipated in Chapter 6. There we met the special case
where the region is bounded by the graph of a function, the x-axis, and two
lines perpendicular to the axis. In this section the concept was extended to
more general regions.
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602 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

EXERCISES for Section 7.1 Key: R–routine, M–moderate, C–challenging

In each of Exercises 1 to 6 (a) draw the region, (b) compute the lengths of verti-
cal cross-sections (c(x)), and (c) compute the lengths of horizontal cross-sections
(c(y)).
1.[R] The finite region bounded by y =

√
x and y = x2.

2.[R] The finite region bounded by y = x2 and y = x3.

3.[R] The finite region bounded by y = 2x, y = 3x, and x = 1.

4.[R] The finite region bounded by y = x2, y = 2x, and x = 1.

5.[R] The triangle with vertices (0, 0), (3, 0), and (0, 4).

6.[R] The triangle with vertices (1, 0), (3, 0), and (2, 1).

In Exercises 7 to 12 find the indicated areas. Use the table of integrals provided
inside the cover of this textbook to find antiderivatives, if necessary.
7.[R] Under y =

√
x and above [1, 2]

8.[R] Under y = sin(2x) and above [π/6, π/3]

9.[R] Under y = e2x and above [0, 1]

10.[R] Under y = 1/
√

1− x2 and above [0, 1/2].

11.[R] Under y = ln(x) and above [1, e]

12.[R] Under y = cos(x) and above [−π/2, π/2]

In Exercises 13 to 20 find the indicated areas using cross-sections parallel to the
x-axis.
13.[R] Between y = x2 and y = x3.

14.[R] Between y = 2x and y = 2x.

15.[R] Between y = arcsin(x) and y = 2x/π (to the right of the y-axis).

16.[R] Between y = 2x and y = 3x (to the right of the y-axis).

17.[R] Between y = sin(x) and y = cos(x) (above 0, π/2].

18.[R] Between y = x3 and y = −x for x in [1, 2].

19.[R] Between y = x3 and y = 3
√

2x− 1 for x in [1, 2].

20.[R] Between y = 1 + x and y = ln(x) for x in [1, e].

In Exercises 21 to 27 set up a definite integral for the area of the given region. These
integrals will be evaluated in Exercises 36 to 42 in the Chapter 8 Summary.
21.[R] The region under the curve y = arctan(2x) and above the interval [1/2, 1/

√
3].

22.[R] The region in the first quadrant below y = −7x+ 29 and above the portion
of y = 8/(x2 − 8) that lies in the first quadrant.
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23.[R] The region below y = 10x and above y = log10(x) for x in [1, 10].

24.[R] The region under the curve y = x/(x2+5x+6) and above the interval [1, 2].

25.[R] The region below y = (2x+ 1)/(x2 + x) and above the interval [2, 3].

26.[R] The region bounded by y = tan(x), y = 0, x = 0, and x = π/2 by (a)
vertical cross-sections and (b) horizontal cross-sections.

27.[R] The region bounded by y = sin(x), y = 0, and x = π/4 (consider only
x ≥ 0) by (a) vertical cross-sections and (b) horizontal cross-sections.

28.[R]

(a) Draw the region inside the ellipse

x2

a2
+
y2

b2
= 1.

(b) Find a definite integral for the area of the ellipse in (a) with horizontal cross-
sections.

(c) Find a definite integral for the area of the ellipse in (a) with vertical cross-
sections.

Note: See Exercise 43 in Chapter 8 Summary.

29.[R] Cross-sections in different directions lead to different definite integrals for
the same area. While both integrals must give the same area, one of the two integrals
can be easier to evaluate.

(a) Identify and evaluate the easier definite integral found in Exercise 26.

(b) Identify and evaluate the easier definite integral found in Exercise 27.

30.[R] Set up the definite integral for the area A(b) of the region in the first quad-
rant under the curve y = e−x(cos(x))2 and above the interval [0, b].

31.[R] In Example 3 you are told that
∫

tan(y) dy = ln(sec(y)). Verify this result,
by differentiating.

32.[R] In Example 3 the area of the region bounded by y = arctan(x), y = 2x, and
x = 1 is found to be both

π

4
+ 1− 1

2
ln(2) and

π

4
− ln(

√
2) + 1.
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604 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

Explain why these two answers are equal.

33.[M] In Example 2 the area of the region above the parabola y = x2 and below
the line through (2, 0) and (0, 1) is found to be

area =

(−1+
√

17)/4∫
(−1−

√
17)/4

(
1− x

2
− x2

)
dx.

Find the value of this definite integral.

34.[M] Let R be the region bounded by y = x3, y = x+ 2, and the x-axis.

(a) Find a definite integral for the area of R. Hint: Define one or both of the
endpoints as solutions to an equation.

(b) Use a graph or other method to approximate the endpoints.

(c) Use the estimates in (b) to obtain an estimate of the area of R.

35.[M] Let R be the region between y = 3 and y = ex/x.

(a) Graph the region R.

(b) Find a definite integral for the area of R. Hint: You will encounter an equation
that cannot be solved exactly. Identify the endpoints on the graph found in
(a).

(c) Find approximate values for the endpoints of the definite integral for the area
in (b).

(d) Because the antiderivative of ex/x is not elementary, it is still not easy to
estimate the area of R. What methods do we have for estimating this definite
integral? Use one of these definite integrals to find an approximate value for
the area of R.

36.[M] What fraction of the rectangle whose vertices are (0, 0), (a, 0), (a, a4), and
(0, a4), with a positive, is occupied by the region under the curve y = x4 and above
[0, a]?

37.[C]

(a) Draw the curve y = ex/x for x > 0, showing any asymptotes or critical points.
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(b) Find the number t such that the area below y = ex/x and above the interval
[t, t+ 1] is a minimum.

Hint: Write A(t) =
∫ t+1
t f(x) dx =

∫ t+1
0 f(x) dx−

∫ t
0 f(x) dx, then use FTC II.

38.[C] Let A(t) be the area of the region in the first quadrant between y = x2 and
y = 2x2 and inside the rectangle bounded by x = t, y = t2, and the coordinate axes.
(See the shaded region in Figure 7.1.9.) If R(t) is the area of the rectangle, find

(a) lim
t→0

A(t)
R(t)

(b) lim
t→∞

A(t)
R(t)

Figure 7.1.9:

39.[C] Figure 7.1.10 shows the graph of an increasing function y = f(x) with
f(0) = 0. Assume that f ′(x) is continuous and f ′(0) > 0. Do not assume that f ′′(x)
exists. Our objective is to investigate

area of shaded region under the curve
area of triangle ABC

as t decreases toward 0. (7.1.9)

(a) Experiment with various functions, including some trigonometric functions
and polynomials. Note: Make sure that f ′(0) > 0.

(b) Make a conjecture about (7.1.9) and explain why it is true.
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606 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

Figure 7.1.10:
40.[C] Repeat Exercise 39, but now assume that f ′(0) = 0, f ′′ is continuous, and
f ′′(0) 6= 0.

41.[C] Let f be an increasing function with f(0) = 0, and assume that it has an el-
ementary antiderivative. Then f−1 is an increasing function, and f−1(0) = 0. Prove
that if f−1 is elementary, then it also has an elementary antiderivative. Hint: See
Figure 7.1.11(a).

(a) (b)

Figure 7.1.11:
42.[C] Show that the area of the shaded region in Figure 7.1.11(b) is two-thirds the
area of the parallelogram ABCD. This is an illustration of a theorem of Archimedes
concerning sectors of parabolas. He showed that the shaded area is 4/3 the area of
triangle BOC. Note: See also Example 2.

43.[C] Figure 7.1.12(a) shows a right triangle ABC.

(a) Find equations for the lines parallel to each edge, AC, BC, and AB, that cut
the triangle into two pieces of equal area.

(b) Are the three lines in (a) concurrent; that is, do they meet at a single point?
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(a) (b)

Figure 7.1.12:
44.[C] Find the area of a disk of radius r by using concentric rings as suggested in
Figure 7.1.12(b). The advantage of this approach is that it leads to an integral with
a much simpler antiderivative than in Example 1. Hint: Approximate the area of
each ring as the product of a circumference and the width of the ring.
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608 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

7.2 Some Pointers on Drawing

None of us were born knowing how to draw solids. As we grew up, we lived
in flatland: the surface of the Earth. Few high school math classes cover solid
geometry, so calculus is often the first place where you have to think and sketch
in terms of three dimensions. That is why we pause for a few words of advice
on how to draw. Too often you cannot work a problem simply because your
diagrams confuse even yourself. The following guidelines are not based on any
profound artistic principles. Instead, they derive from years attempting to
sketch diagrams that do more good than harm.

A Few Words of Advice

1. Draw large. Many students tend to draw diagrams that are so small that
there is no room to place labels or to sketch cross-sections.

2. Draw neatly. Use a straightedge to make straight lines that are actuallyA jar lid or soda can works
just fine for drawing circles

and circular arcs. Credit
cards and ID badges make

good straightedges.

straight. Use a compass to make circles that look like circles. Draw each
line or curve slowly.

3. Avoid clutter. If you end up with too many labels or the cross-section
doesn’t show up well, add separate diagrams for important parts of the
figure.

4. Practice.
This example is continued

in Example 1 in Section 7.4.
EXAMPLE 1 Draw a diagram of a ball of radius a that shows the circular
cross-section made by a plane at a distance x from the center of the ball. Use
the diagram to help find the radius of the cross-section as a function of x.

Figure 7.2.1:

TERRIBLE SOLUTION Is Figure 7.2.1 a potato or a ball? What segment
has length r? What’s x? What does the cross-section look like?

REASONABLE SOLUTION First, draw the ball carefully, as in Figure 7.2.2(a).
The equator is drawn to give it perspective. Add a little shading.

Next show a typical cross-section at a distance x from the center, as in
Figure 7.2.2(b). Shading the cross-section helps, too.

To find r, the radius of the cross-section, in terms of x, sketch a com-
panion diagram. The radius we want is part of a right triangle. In order to
avoid clutter, draw only the part of interest in a convenient side view, as in
Figure 7.2.4(c).

Inspection of the right triangle in this figure shows that

r2 + x2 = a2, hence that r =
√
a2 − x2.
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(a) (b) (c)

Figure 7.2.2: NOTE: Add shading to cross-section in (b).

�
This example is continued
in Example 2 in Section 7.4.

EXAMPLE 2 A pyramid has a square base with a side of length a. The
top of the pyramid is above the center of the base at a height h. Draw the
pyramid and its cross-sections by planes parallel to the base. Then find the
area of the cross-sections in terms of their distance x from the top.

Figure 7.2.3: Terrible
drawing

TERRIBLE SOLUTION Figure 7.2.3 is too small; there’s no room for the
symbols. While it’s pretty clear what side has length a, to what are the x and
h attached? Also, without the hidden edges of the pyramid the shape of the
base is not clear.

(a) (b) (c) (d)

Figure 7.2.4:

REASONABLE SOLUTION First draw a large pyramid with a square base,
as in Figure 7.2.4(a). Note that the opposite edges of the base are drawn as
parallel lines. While artists draw parallel lines as meeting in a point to enhance
the sense of perspective, for our purposes it is more useful to use parallel lines
to depict parallel lines. Then show a typical cross-section in perspective and
side views, as in Figures 7.2.4(b) and (c). Note the x-axis, which is drawn
separate from the pyramid. The use of s is

recommended because it
suggests its meaning - side.
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610 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

As x increases, so does s, the width of the square cross-section. Thus s
is a function of x, which we could call s(x) (or f(x), if you prefer). A glance
at Figure 7.2.4(b) shows that s(0) = 0 and s(h) = 1. To find s(x) for all x
in [0, h], use the similar triangles ABC and ADE, shown in Figure 7.2.4(c).
These triangles show that

x

s
=
h

a
; hence s =

ax

h
. (7.2.1)

Notice that s = ax
h

expresses s is a linear function of x. As a check on (7.2.1),
replace x by 0 and by h; we get 0 and a for the respective values s, as expected.
Finally, the area A of the cross-sections is given by

A = s2 =
(ax
h

)2

.

�

EXAMPLE 3 A cylindrical drinking glass of height h and radius a is fullThis example is continued
in Exercise 18 in

Section Section 7.4.
of water. It is tilted until the remaining water covers exactly half the base.

A. Draw a diagram of the glass and water.

B. Show a cross-section of the water that is a triangle.

C. Find the area of the triangle in terms of the distance x of the cross-section
from the axis of the glass.

Figure 7.2.5:

TERRIBLE SOLUTION The diagram in Figure 7.2.5 is too small. It is not
clear what has length a. The cross-section is unclear. What does x refer to?

(a) (b) (c)

Figure 7.2.6:

REASONABLE SOLUTION First, draw a neat, large diagram of a slanted
cylinder, as in Figure 7.2.6. Don’t put in too much detail at first. When
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(a) (b) (c) (d)

Figure 7.2.7:

showing the cross-section, draw only the water. Figures 7.2.6 and 7.2.7 show
various views. Let u and v be the lengths of the two legs of the cross-section,
as shown in Figure 7.2.7(d).

Comparing Figures 7.2.7(a) and (b), we have, by similar triangles, the
relation

u

a
=
v

h
hence v =

h

a
u.

Let A(x) be the area of the cross-section at a distance x from the center of
the base, as shown in Figure 7.2.6(b). If we can find u and v as functions of
x, we will be able to write a formula for A(x) = 1

2
uv in terms of x.

Figure 7.2.7(b) suggests how to find u. Copy it and draw in the necessary
radius, as in Figure 7.2.7(d). By the Pythagorean Theorem,

u =
√
a2 − x2.

All told,

A(x) =
1

2
uv =

1

2
u

(
h

a
u

)
=

h

2a
u2 =

h

2a
(a2 − x2). (7.2.2)

As a check, note that

A(a) =
h

2a
(a2 − a2) = 0,

which makes sense. Also the formula (7.2.2) gives

A(0) =
h

2a
(a2 − 02) =

1

2
ah,

again agreeing with the geometry of, say, Figure 7.2.6(b). �

Summary

When you look back at these three examples, you will see that most of the
work is spent on making clear diagrams. If you can’t draw a straight line free
hand, use a straightedge. If you can’t draw a circle, use a compass.
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EXERCISES for Section 7.2 Key: R–routine, M–moderate, C–challenging

1.[R] Cross-sections of the pyramid in Example 2 are made by using planes per-
pendicular to the base and parallel to the edge of the base. What is the area of the
cross-section made by a plane that is a distance x from the top of the pyramid?

(a) Draw a large perspective view of the pyramid.

(b) Copy the diagram in (a) and show the typical cross-section shaded.

(c) Draw a side view that shows the shape of the cross-section.

2.[R] Cross-sections of the water in Example 3 are made by using planes parallel
to the plane that passes through the horizontal diameter of the base and the axis of
the glass. What is the area of the cross-section made by a plane that is a distance
x from the center of the base?

(a) Draw a large perspective view of the water and glass.

(b) Copy the diagram in (a) and show the typical cross-section shaded.

(c) Draw a side view that clearly shows the shape of the cross-section.

(d) Draw a different side view.

(e) Put necessary labels, such as x, a, and h, on the diagrams, where appropriate.
(You will need to introduce more labels.)

(f) Find the area of the cross-section, A(x), as a function of x.

3.[R] Cross-sections of the water in Example 3 are made by using planes perpen-
dicular to the axis of the glass. Make clear diagrams, including perspective and side
views, that show the typical cross-sections. Do not find its area.

4.[R] A lumberjack saws a wedge out of a cylindrical tree of radius a. His first cut
is parallel to the ground and stops at the axis of the tree. His second cut makes an
angle θ with the first cut and meets it along a diameter.

(a) Draw a typical cross-section that is a triangle.

(b) Find the area of the triangle as a function of x, the distance of the plane from
the axis of the tree.

(c) Draw a typical cross-section that is a rectangle.
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(d) Find the area of the rectangle as a function of x, the distance of the plane
from the axis of the tree.

5.[R] A cylindrical glass is full of water. The glass is tilted until the remaining
water just covers the base of the glass. (Try it!) The radius of the glass is a and
its height is h. Consider parallel planes such that cross-sections of the water are
rectangles.

(a) Make clear diagrams that show the situation. (Include a top view to show the
cross-sections.)

(b) Obtain a formula for the area of the cross-sections. Advice: The two planes
at a distance x from the axis of the glass cut out cross-sections of different
areas. So introduce an x-axis with 0 at the center of the base and extending
from −a to a in a convenient direction.

6.[R] Repeat Exercise 5, but this time consider parallel planes such that the cross-
sections are trapezoids.

7.[R] A right circular cone has a radius a and height h as shown in Figure 7.2.8(a).
Consider cross-sections made by planes parallel to the base of the cone.

(a) Draw perspective and side views of the situation.

(b) Drawing as many diagrams as necessary, find the area of the cross-section
made by a plane at a distance x from the vertex of the cone.

(a) (b)
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Figure 7.2.8:
8.[R] Draw the typical cross-section made by a plane parallel to the axis of the
cone. Draw perspective and side views of the situation, but do not find a formula
for the area of the cross-section. Note: See Exercise 7

9.[R] Figure 7.2.8(b) indicates an unbounded, solid right circular cone. Draw a
cross-section that a bounded by (a) a circle, (b) an ellipse (but not a circle), (c) a
parabola, and (d) a hyperbola.

10.[R] Draw a cross-section of a right circular cylinder that is (a) a circle, (b) an
ellipse that is not a circle, and (c) a rectangle.

11.[R] Draw a cross-section of a solid cube that is (a) a square, (b) an equilateral
triangle, (c) a five-sided polygon, and (d) a regular hexagon.

12.[R] The plane region between the curves y = x and y = x2 is spun around the
x-axis to produce a solid resembling the bell of a trumpet.

(a) Draw the plane region.

(b) Draw the solid region produced by spinning this region around the x-axis.

(c) Draw the typical cross-section made by a plane perpendicular to the x-axis.
Show this in both perspective and side views.

(d) Find the area of the cross-section in terms of the distance x of the plane from
the origin to the x-axis.

13.[R] Obtain a circular stick such as a broom handle or a dowel. Saw off a piece,
making one cut perpendicular to the axis and the second cut at an angle to the axis.
Mark on the surface of the piece you cut out the borders of cross-sections that are
(a) rectangles and (b) trapezoids.
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7.3 Setting Up a Definite Integral

This section presents an informal shortcut for setting up a definite integral
to evaluate some quantity. First, the formal and informal approaches are
contrasted in the case of setting up the definite integral for area. Then the
informal approach will be illustrated as commonly applied in a variety of fields.

The Complete Approach

Figure 7.3.1:

Recall how the formula A =
∫ b
a
f(x) dx was obtained (in Section 7.1). The

interval [a, b] was partitioned by the numbers x0 < x1 < x2 < · · · < xn with
x0 = a and xn = b. A sampling number ci was chosen in each section [xi−1, xi].
For convenience, all the sections are of equal length, ∆x = (b − a)/n. (See
Figure 7.3.1.) We then form the sum

Figure 7.3.2: NOTE: Re-
vise figure so not left-hand
sum.

n∑
i=1

f(ci)∆x (7.3.1)

It equals the total area of the rectangular approximation in Figure 7.3.2.
As ∆x approaches 0, the sum (7.3.1) approaches the area of the region

under consideration. But, by the definition of the definite integral, the sum
(7.3.1) approaches

b∫
a

f(x) dx.

Thus

Area =

b∫
a

f(x) dx. (7.3.2)

That is the complete or “formal” approach to obtain formula (7.3.2). Now
consider the “informal” approach, which is just a shorthand for the complete
approach.

The Shorthand Approach

The heart of the complete approach is the local estimate f(ci)∆x, the area of
a rectangle of height f(ci) and width ∆x, which is shown in Figure 7.3.4.

Figure 7.3.3:

In the shorthand approach to setting up a definite integral attention is
focused on the local approximation. No mention is made of the partition or
the sampling numbers. We illustrate this shorthand approach by obtaining
formula (7.3.2) informally. This is not a new method of integration, but just
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a way to save time when setting up an integral - finding out the integrand and
the interval of integration.

For example, consider a small positive number dx. What would be a good
estimate of the area of the region corresponding to the short interval [x, x+dx]
of width dx shown in Figure 7.3.3? The area of the rectangle of width dx and
height f(x) shown in Figure 7.3.4 would seem to be a plausible estimate. The
area of this thin rectangle is

Figure 7.3.4:

f(x) dx. (7.3.3)

Without further ado, we then write

Area =

b∫
a

f(x) dx, (7.3.4)

which is formula (7.3.2). The leap from the local approximation (7.3.3) to
the definite integral (7.3.4) omits many steps of the complete approach. This
informal approach is the shorthand commonly used in applications of calculus.
It is the way engineers, physicists, biologists, economists, and mathematicians
set up integrals.

It should be emphasized that it is only an abbreviation of the formal ap-
proach, which deals with approximating sums.

The Volume of a Ball

Figure 7.3.5:

EXAMPLE 1 Find the volume of a ball of radius a. First use the complete
approach. Then use the shorthand approach.
SOLUTION Both approaches require good diagrams. In the complete ap-
proach we show an x-axis, a partition into sections of equal lengths, sampling
numbers ci, and the approximating disks. See Figures 7.3.5 and 7.3.6(a). The
thickness of disk is ∆x, as shown in the side view of Figure 7.3.6(b), while its
radius is labeled ri, as shown in the end view of Figure 7.3.6(c). The volume
of this typical disk is

πr2
i (∆x). (7.3.5)

All that remains is to determine ri. Figure 7.3.6(d) helps us do that. By
the Pythagorean Theorem,

r2
i = a2 − c2

i . (7.3.6)

Combining (7.3.1), (7.3.5), and (7.3.6) gives the typical estimate of the volume
of a sphere of radius a:

n∑
i=1

π(a2 − c2
i )∆x. (7.3.7)
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(a) (b) (c) (d)

Figure 7.3.6:

By the definition of the definite integral,

lim
∆x→0

Σn
i=1π(a2 − c2

i )∆x =

a∫
−a

π(a2 − x2) dx.

Hence

Volume of ball of radius a =

a∫
−a

π(a2 − x2) dx.

By the Fundamental Theorem of Calculus, the integral equals 4πa3/3.

(a) (b)

Figure 7.3.7:

Now for the shorthand approach. We draw only a short section of an x-
axis and label its length dx. Then we draw an approximating disk, whose
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radius we label r, as in Figure 7.3.7(a). Since the disk has a base of area πr2

and thickness dx, its volume is πr2 dx. Moreover, as Figure 7.3.7(b) shows,
r2 = a2 − x2. Hence the local approximation is

π(a2 − x2) dx. (7.3.8)

Then, without further ado, without choosing any ci or showing any approxi-
mating sum, we have

Volume of ball of radius a =

a∫
−a

π(a2 − x2) dx.

The key to this bookkeeping is the local approximation (7.3.8) in differen-
tial form, which gives the necessary integrand. The limits of integration are
determined separately. �

Volcanic Ash

EXAMPLE 2 After the explosion of a volcano, ash gradually settles from
the atmosphere and falls on the ground. The depth diminishes with distance
from the volcano. Assume that the depth of the ash at a distance x feet from
the volcano is Ae−kx feet, where A and k are positive constants. Set up a
definite integral for the total volume of ash that falls within a distance b of the
volcano.

SOLUTION First estimate the volume of ash that falls on a very narrow ring
of width dx and inner radius x centered at the volcano. (See Figure 7.3.8(a).)
This estimate can be made since the depth of the ash depends only on the
distance from the volcano. On this ring the depth is almost constant.

The area of this ring is approximately that of a rectangle of length 2πx and
width dx. (See Figure 7.3.8(b)) So the area of the ring is approximately

2πx dx.
Exercise 4 shows that its
area is 2πx dx+ π(dx)2. Although the depth of the ash on this narrow ring is not constant, it does

not vary much. A good estimate of the depth throughout the ring is Ae−kx.
Thus the volume of the ash that falls on the typical ring of inner radius x and
outer radius x+ dx is approximately

Ae−kx(2πx) dx cubic feet. (7.3.9)

Once we have the key local estimate (7.3.9), we immediately write down
the definite integral for the total volume of ash that falls within a distance b
of the volcano:
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(a) (b)

Figure 7.3.8:

Total volume =

b∫
0

Ae−kx2πx dx.

The limits of integration
must be determined just as
in the formal approach.

This completes the shorthand setting up the definite integral. (To evalu-
ate this integral, use a formula from the inside front cover of this book or a
technique in Chapter 8.) �

Kinetic Energy

The next example of the informal approach to setting up definite integrals
concerns kinetic energy. The kinetic energy associated with an object of mass
m kilograms and velocity v meters per second is defined as

Kinetic energy =
mv2

2
joules.

If the various parts of the objects are not all moving at the same speed, an
integral is needed to express the total kinetic energy. We develop this integral
in the next example.

EXAMPLE 3 A thin rectangular piece of sheet metal is spinning around

Figure 7.3.9:

one of its longer edges 3 times per second, as shown in Figure 7.3.9. The
length of its shorter edge is 6 meters and the length of its longer edge is 10
meters. The density of the sheet metal is 4 kilograms per square meter. Find
the kinetic energy of the spinning rectangle.

SOLUTION The farther a mass is from the axis, the faster it moves, and

Figure 7.3.10:
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therefore the larger its kinetic energy. To find the total kinetic energy of the
rotating piece of sheet metal, imagine it divided into narrow rectangles of
length 10 meters and width dx meters parallel to the edge AB; a typical one
is shown in Figure 7.3.10. (Introduce an x-axis parallel to edge AC with the
origin corresponding to A.) Since all points of the typical narrow rectangle
move at roughly the same speed, we will be able to estimate its kinetic energy.
That estimate will provide the key local appoximation in the informal approach
to setting up a definite integral.

First of all, the mass of the typical rectangle is

4 · 10 dx kilograms,

since its area is 10 dx square meters and the density is 4 kilograms per square
meter.

Second, we must estimate its velocity. The narrow rectangle is spun 3 times
per second around a circle of radius x. In 1 second each point in it covers a
distance of about

3 · 2πx = 6πx meters.

Consequently, the velocity of the typical rectangle is

6πx meters per second.

The local estimate of the kinetic energy associated with the typical rectangle
is therefore

1

2
40 dx︸ ︷︷ ︸

mass

(6πx)2︸ ︷︷ ︸
velocity squared

joules

or simplyThe local approximation

720π2x2 dx joules. (7.3.10)

Having obtained the local estimate (7.3.10), we jump directly to the definite
integral and conclude that

Total energy of spinning rectangle =

6∫
0

720π2x2 dx joules.

�

Summary

This section presented a shorthand approach to setting up a definite integral
for a quantity Q. In this method we estimate how much of the quantity Q
corresponds to a very short section [x, x+dx] of the x-axis, say f(x) dx. Then

Q =
∫ b
a
f(x) dx, where a and b are determined by the particular situation.
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EXERCISES for Section 7.3 Key: R–routine, M–moderate, C–challenging

1.[R] In Section 6.4 we showed that if f(t) is the velocity at time t of an object
moving along the x-axis, then

∫ b
a f(t) dt is the change in position during the time

interval [a, b]. Develop this fact in the informal style of this section. Keep in mind
that f(t) may be positive or negative.

2.[R] The depth of rain at a distance r feet from the center of a storm is g(r) feet.

(a) Estimate the total volume of rain that falls between a distance r feet and a
distance r+ dr feet from the center of the storm. (Assume that dr is a small
positive number.)

(b) Using (a), set up a definite integral for the total volume of rain that falls
between 1, 000 and 2, 000 feet from the center of the storm.

3.[R] Consider a disk of radius a with the home base of production at the center.
Let G(r) denote the density of foodstuffs (in calories per square meter) at radius
r meters from the home base. Then the total number of calories produced in the
range is given by what definite integral?
Note: This analysis of primitive agriculture is taken from Is There an Optimum
Level of Population?, edited by S. Fred Singer, McGraw-Hill, New York, 1971.

4.[R] In Example 2 the area of the ring with inner radius x and outer radius x+dx
was estimated to be about 2πx dx.

(a) Using the formula for the area of a circle, show that the area of the ring is
2πx dx+ π( dx)2.

(b) Show that the ring has the same area as a trapezoid of height dx and bases
of lengths 2πx and 2π(x+ dx).

5.[R] Think of a circular disk of radius a as being composed of concentric circular
rings, as in Figure 7.3.11(a).

(a) Using the shorthand approach, set up a definite integral for the area of the
disk. (Draw a good picture of the local approximation.)

(b) Evaluate the integral in (a).
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(a) (b)

Figure 7.3.11:
Exercises 6 to 8 concern the volumes of solids. In each case (a) draw a good picture
of the local approximation of width dx, (b) set up the appropriate definite integral,
and (c) evaluate the integral.
6.[R] A right circular cone of radius a and height h.

7.[R] A pyramid with a square base of side a and of height h. Its top vertex is
above one corner of the base. (Use square cross sections.)

8.[R] A pyramid with a triangular base of area A and of height h. (The triangle
can be any shape. See Figure 7.3.11(b).)

9.[M] At the time t hours, 0 ≤ t ≤ 24, a firm uses electricity at the rate of e(t)
joules per hour. The rate schedule indicates that the cost per joule at time t is c(t)
dollars. Assume that both e and c are continuous functions.

(a) Estimate the cost of electricity consumed between times t and t + dt, where
dt is a small positive number.

(b) Using (a), set up a definite integral for the total cost of electricity for the
24-hour period.

10.[M] The present value of a promise to pay one dollar t years from now is g(t)
dollars.

(a) What is g(0)?

(b) Why is it reasonable to assume that g(t) ≤ 1 and that g is a decreasing
function of t?

(c) What is the present value of a promise to pay q dollars t years from now?

(d) Assume that an investment made now will result in an income flow at the
rate of f(t) dollars per year t years from now. (Assume that f is a continuous
function.) Estimate informally the present value of the income to be earned
between time t and time t+ dt, where dt is a small positive number.
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(e) On the basis of the local estimate made in (d), set up a definite integral for
the present value of all the income to be earned during the next b years.

11.[M] Let the number of females in a certain population in the age range from
x years to x + dx years, where dx is a small positive number, be approximately
f(x) dx. Assume that, on average, women of age x produce m(x) offspring during
the year before they reach age x + 1. Assume that both f and m are continuous
functions.

(a) What definite integral represents the number of women between ages a and b
years?

(b) What definite integral represents the total number of offspring during the
calendar year produced by women whose ages at the beginning of the calendar
year were between a and b years?

Exercises 12 to 17 concern kinetic energy. They are all based on the concept
that a particle of mass M moving with velocity V has the kinetic energy MV 2/2.
(See Example 3.) An object whose density is the same at all its points is called
homogeneous. If the object is planar, such as a square or disk, and has mass
M kilograms and area A square meters, its density is M/A kilograms per square
meter.
12.[M] The piece of sheet metal in Example 3 is rotated around the line midway
between the edges AB and CD at the rate of 5 revolutions per second.

(a) Using the informal approach, obtain a local approximation for the kinetic
energy of a narrow strip of the metal.

(b) Using (a), set up a definite integral for the kinetic energy of the piece of sheet
metal.

(c) Evaluate the integral in (b).

13.[M] A circular piece of metal of radius 7 meters has a density of 3 kilograms
per square meter. It rotates 5 times per second around an axis perpendicular to the
circle and passing through the center of the circle.

(a) Devise a local approximation for the kinetic energy of a narrow ring in the
circle.

(b) With the aid of (a), set up a definite integral for the kinetic energy of the
rotating metal.
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(c) Evaluate the integral in (b).

14.[M] The density of a rod x centimeters from its left end is g(x) grams per
centimeter. The rod has a length of b centimeters. The rod is spun around its left
end 7 times per second.

(a) Estimate the mass of the rod in the section that is between x and x + dx
centimeters from the left end. (Assume that dx is small.)

(b) Estimate the kinetic energy of the mass in (a).

(c) Set up a definite integral for the kinetic energy of the rotating rod.

15.[M] A homogeneous square of mass M kilograms and side a meters rotates
around an edge 5 times per second.

(a) Obtain a “local estimate” of the kinetic energy. What part of the square
would you use? Why? Draw it.

(b) What is the local estimate?

(c) What definite integral represents the total kinetic energy of the square?

(d) Evaluate it.

16.[M] Repeat Exercise 15 for a square spun around a line through its center and
parallel to an edge.

17.[M] Repeat Exercise 15 for a disk of radius a and mass M spinning around a
line through its center and perpendicular to it. It is spinning at the rate of ω radians
per second. (See Figure 7.3.12.)
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Figure 7.3.12:

In Exercises 18 and 19 you will meet definite integrals that cannot be evaluated
by the Fundamental Theorem of Calculus (since the desired antiderivative is not
elementary). Use (a) the trapezoidal and (b) Simpson’s method with six sections to
estimate the definite integrals.

18.[M] A homogeneous object of mass M occupies the region under y = ex
2

and
above [0, 1]. It is spun at the rate of ω radians per second around the y-axis. Esti-
mate its kinetic energy.

19.[M] A homogeneous object of mass M occupies the region under y = sin(x)/x
and above [π/2, π]. It is spun around the line x = 1 at the rate of ω radians per
second. Estimate its kinetic energy.

In each of Exercises 20 to 23, find the kinetic energy of a planar homogeneous object
that occupies the given region, has mass M , and is spun around the y-axis ω radians
per second.

20.[M] The region under y = ex and above the interval [1, 2].

21.[M] The region under y = arctan(x) and above the interval [0, 1].

22.[M] The region under y = 1/(1 + x) and above [2, 4].

23.[M] The region under y =
√

1 + x2 and above [0, 2].

24.[M] A solid homogeneous right circular cylinder of radius a, height h, and
mass M is spun at the rate of ω radians per second around its axis. Find its ki-
netic energy. (Include a good picture on which your local approximation is based.)

25.[M] A solid homogeneous ball of radius a and mass M is spun at the rate of
ω radians per second around a diameter. Find its kinetic energy. (Include a good
picture on which your local approximation is based.)

26.[C] Find the surface area of a sphere of radius a. Hint: Begin by estimating
the area of the narrow band shown in Figure 7.3.13.
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Figure 7.3.13:
27.[C] [Actuarial tables] Let F (t) be the fraction of people born in 1900 who are
alive t years later, 0 ≤ F (t) ≤ 1.

(a) What is F (150), probably?

(b) What is F (0)?

(c) Sketch the general shape of the graph of y = F (t).

(d) Let f(t) = F ′(t). (Assume F is differentiable.) Is f(t) positive or negative?

(e) What fraction of the people born in 1900 die during the time interval [t, t+dt]?
(Express your answer in terms of F .)

(f) Answer (e), but express your answer in terms of f .

(g) Evaluate
∫ 150

0 f(t) dt.

(h) What integral would you propose to call “the average life span of the people
born in 1900”? Why?

28.[C] Let F (t) be the fraction of ball bearings that wear out during the first t
hours of use. Thus F (0) = 0 and F (t) ≤ 1.

(a) As t increases, what would you think happens to F (t)?

(b) Show that during the short interval of time [t, t + dt], the fraction of ball
bearings that wear out is approximately F ′(t) dt. (Assume F is differentiable.)

(c) Assume all wear out in at most 1, 000 hours. What is F (1, 000)?

(d) Using the assumption in (b) and (c) devise a definite integral for the average
life of the ball bearings.
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29.[C] (Poiseuille’s law of blood flow) A fluid flowing through a pipe does not all
move at the same velocity. The velocity of any part of the fluid depends on its
distance from the center of the pipe. The fluid at the center of the pipe moves
fastest, whereas the fluid near the wall of the pipe moves slowest. Assume that the
velocity of the fluid at a distance x centimeters from the axis of the pipe is g(x)
centimeters per second.

(a) Estimate the flow of fluid (in cubic centimeters per second) through a thin
ring of inner radius r and outer radius r+ dr centimeters centered at the axis
of the pipe and perpendicular to the axis.

(b) Using (a), set up a definite integral for the flow (in cubic centimeters per
second) of fluid through the pipe. (Let the radius of the pipe be b centimeters.)

(c) Poiseuille (1797-1869), studying the flow of blood through arteries, used the
function g(r) = k(b2 − r2), where k is a constant. Show that in this case the
flow of blood through an artery is proportional to the fourth power of the
radius of the artery.

30.[C] The density of the earth at a distance of r miles from its center is g(r)
pounds per cubic mile. Set up a definite integral for the total mass of the earth.
(Take the radius of the earth to be 4, 000 miles.)
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7.4 Computing Volumes by Parallel Cross-Sections

In Section 6.1 we computed areas by integrating lengths of cross-sections made
by parallel lines. In this section we will use a similar approach, finding volumes
by integrating areas of cross-sections made by parallel planes. We already sawSee Problem 3 in

Section 6.1. an example of this method when we represented the volume of a tent as a
definite integral.

Cylinders

(a) (b)

Figure 7.4.1:

Let B be a region in the plane (see Figure 7.4.1(a) and h a positive number.
The cylinder with base B and height h consists of all line segments of
length h perpendicular to B, one end of which is in B and the other end
is on a fixed side (above or below) of B. This typical cylinder is shown in
Figure 7.4.1(b). The top of the cylinder is congruent to B. If B is a disk, the

(a) (b)

Figure 7.4.2: ARTIST: Final word in each caption is “Base”

cylinder is the customary circular cylinder of daily life (see Figure 7.4.2(a)).
If B is a rectangle, the cylinder is a rectangular box (see Figure 7.4.2(b)).

We will make use of the formula for the volume of a cylinder:
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The volume of a cylinder with base B and height h is

V = Area of Base× Height = (Area of B)× h.

Volume as the Definite Integral of Cross-Sectional Area

Let’s use the informal approach for setting up a definite integral to see how to
use integration to calculate volumes of solids.

Figure 7.4.3:

Consider the solid region R shown in Figure 7.4.3, which lies between the
planes perpendicular to the x-axis at x = a and at x = b. We use a cylinder
to estimate the volume of the part of R that lies between two parallel planes a
“small distance” dx apart, shown in perspective in Figure 7.4.4. This thin slab

Figure 7.4.4:

is not usually a cylinder. However, we can approximate it by a cylinder. To
do this, let x be, say, the left endpoint of an interval of width dx. The plane
perpendicular to the x-axis at x intersects R in a plane cross-section of area
A(x). The cylinder whose base is that cross-section and whose height is dx is
a good approximation of the part of R. It is the slab shown in Figure 7.4.5.

Figure 7.4.5:

We therefore have

Local Approximation to Volume = A(x)dx.

Then

Volume of Solid =

b∫
a

A(x) dx.

In short, “volume equals the integral of cross-sectional area.” To apply this
idea, we compute A(x). That is a where good drawings come in handy.

Given a particular solid, one just has to find a, b and the cross-sectional
area A(x) in order to construct a definite integral for its volume. These are
the steps for finding the volume of a solid:

1. Choose a line to serve as an x-axis. See Figure 7.4.3.

2. For each plane perpendicular to that axis, find the area of the cross-
section of the solid made by the plane. Call this area A(x). See Figure 7.4.4.

3. Determine the limits of integration, a and b, for the region.
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4. Evaluate the definite integral
∫ b
a
A(x) dx.

Most of the effort is usually spent in finding the integrand A(x).Formulas for the area of
familiar plane regions are on

the inside back cover.
In addition to the Pythagorean Theorem and properties of similar triangles,

formulas for the areas of familiar plane figures may be needed. Also keep in
mind that if corresponding dimensions of similar figures have a ratio k, then
their areas have the ratio k2; that is, area is proportional to the square of the
ratios of the lengths of corresponding line segments.Archimedes was the first

person to find the volume of
a ball. He did not express
the volume as a number.

Rather, in the style of
mathematics of the 3rd

century BC, he expressed
the volume in terms of the
volume of a simpler object:

the volume of a ball is
two-thirds the volume of the

smallest cylinder that
contains it. That he

considered this one of his
greatest accomplishments is

evidenced by his request
that his tomb be topped

with a carving of a ball
within a cylinder.

EXAMPLE 1 Find the volume of a ball of radius a.

(a) (b)

Figure 7.4.6: Cross-section (a) viewed in perspective and (b) from the side.

SOLUTION We sketch the typical cross-section in perspective and in side
view (see Figure 7.4.6). The cross-section is a disk of radius r, which depends
on x. The area of the cross-section is πr2. To express this area in terms of
x, use the Pythagorean Theorem, which tells us that a2 = x2 + r2, hence
r2 = a2 − x2. So we have

Volume =
∫ a
−a π(a2 − x2) dx = π

(
a2x− x3

3

)∣∣∣a
−a

by FTC I

= π
((
a3 − a3

3

)
−
(

(−a)3 − (−a)3

3

))
= 4π

3
a3.

�
The next example concerns the solid region discussed in Example 3 of

Section 7.2.

EXAMPLE 2 A cylindrical glass of height h and radius a is full of water.
It is tilted until the remaining water covers exactly half the base. Find the
volume of the remaining water.
SOLUTION We use the triangular cross-section shown in Figure 7.2.7.
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Figure 7.4.7:
Figure 7.4.8:

Introduce the x-axis as in Figures 7.4.7 and 7.4.8. It was shown that the
area of the cross-section at x is 1

2
h
a
(a2 − x2). Thus,

Volume =
∫ a
−a

h
2a

(a2 − x2) dx = h
2a

(
a2x− x3

3

)∣∣∣a
−a

by FTC I

= h
2a

((
a3 − a3

3

)
−
(
−a3 + a3

3

))
= h

2a

(
4
3
a3
)

= 2
3
ha2.

That’s about 21% of the volume of the glass.
This calculation of the integral could be simplified by noting that the in-

tegrand is an even function (the volume to the right of 0 equals the volume to
the left of 0). In this method we have There is a much less chance

for arithmetical error in this
calculation.Volume = 2

∫ a
0

h
2a

(a2 − x2) dx = h
a

(
a2x− x3

3

)∣∣∣a
0

= h
a

((
a3 − a3

3

)
− (0− 0)

)
= 2

3
ha2

The two solutions yield the same result. The second way avoids a lot of arith-
metic with negative numbers, thus reducing the chance of making a mistake.
�

Solids of Revolution

The solid formed by revolving a region R in the plane about a line in that
plane that does not intersect the interior of R is called a solid of revolution.

(a) (b) (c)

Figure 7.4.9:

Figure 7.4.9 shows three examples: (a) a circular cylinder obtained by
revolving a rectangle about one of its edges, (b) a cone obtained by revolving
a right triangle about one of its two legs, and (c) a torus (“doughnut” or
“ring”) formed by revolving a disk about a line outside the disk.

The cross-sections by planes perpendicular to the line around which the
figure is revolved is either a disk or a “washer”. The latter is a disk with
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a round hole. The cross-sections in Figure 7.4.9(a) and (b) are disks. In
Figure 7.4.9(c) the cross-sections are washers. Figure 7.4.10 shows that the
typical cross-section is a washer.

(a) (b)

Figure 7.4.10: (a) perspective (b) side view

EXAMPLE 3 The region under y = e−x and above [1, 2] is revolved about
the x-axis. Find the volume of the resulting solid of revolution. (See Fig-
ure 7.4.11(a).)
SOLUTION The typical cross-section by a plane perpendicular to the x-axis

(a) (b)

Figure 7.4.11:

is a disk of radius e−x, as shown in Figure 7.4.11(b). The cross-sectional area
is

π
(
e−x
)2

= πe−2x.

The volume of the solid is therefore

2∫
1

πe−2x dx.
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Recall that d
dx

(eax) = aeax, so that an antiderivative of eax is 1
a
eax. Hence,

2∫
1

πe−2x dx =
π

−2
e−2x

∣∣∣∣2
1

=
π

−2

(
e−4 − e−2

)
=
π

2

(
e−2 − e−4

)
.

�

The final two examples illustrate two themes: draw a good picture of the
cross-section and integrate the cross-sectional area.

EXAMPLE 4 The region bounded by y = x2, the lines x = 1 and x =
√

2,
and the x-axis (y = 0). is revolved around the line y = −1. Find the volume
of the resulting region R.
SOLUTION Figure 7.4.12(a) shows the region being revolved and the line
around which it is revolved. Figure 7.4.12(b) shows a perspective view of the
typical cross-section.

(a) (b)

Figure 7.4.12:

The typical cross-section is a ring, with inner radius 1 and outer radius
1 + x2. Its area is therefore π(1 + x2)2 − π(1)2.

Consequently, since “volume equals integral of cross-sectional area,”

Volume =
∫ √2

1
(π(1 + x2)2 − π(1)2) dx

= π
∫ √2

1
(1 + 2x2 + x4)− 1 dx algebra

= π
∫ √2

1
(2x2 + x4) dx

= π
(

2x3

3
+ x5

5

)∣∣∣√2

1
FTC I

= π
(

32
√

2
15
− 13

15

)
arithmetic.
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�

EXAMPLE 5 Find the volume of the solid formed by revolving the region
in Figure 7.4.12(a) around the y-axis (x = 0).
SOLUTION The cross-sections by planes perpendicular to the y-axis are

Figure 7.4.13:

again rings (not disks). But something new enters the scene. For 0 ≤ y ≤ 1
the cross-sections are between the vertical lines x = 1 and x =

√
2. For

1 ≤ y ≤ 2 they are determined by the curve and the line x =
√

2.
The cross-sections for 0 ≤ y ≤ 1, when rotated about the y-axis, fill out a

cylinder whose height is 1 and whose base is a ring of area π(
√

2)2−π(1)2 = π.
Thus, its volume (height times area of base) is π(1) = π. We did not need an
integral for this.

Figure 7.4.14:

The cross-sections for 1 ≤ y ≤
√

2 are rings whose outer radius is
√

2 and
inner radius is determined by the curve y = x2, as shown in Figure 7.4.14.
Since y = x2, the inner radius is x =

√
y. The area of these typical cross-

sections is
π(
√

2)2 − π(
√
y)2.

Thus the typical local estimate of volume is(
π(
√

2)2 − π(
√
y)2
)
dy = (2π − πy) dy.

Therefore the volume swept out by these cross-sections is∫ √2

1
(2π − πy) dy =

(
2πy − π y2

2

)∣∣∣√2

1
FTC I

=
(
2π
√

2− π
)
−
(
2π − π

2

)
= 2π

√
2− 5

2
π.

Adding this to the volume obtained for the cylinder gives

total volume =

(
2π
√

2− 5

2
π

)
+ π

= 2π
√

2− 3

2
π ≈ 4.1734.

�

EXAMPLE 6 The region bounded by the graphs of y = x + 4 and y =
6x−x2, shown in Figure 7.4.15(a), is revolved about the x-axis to form a solid
of revolution. Express the volume as a definite integral.
SOLUTION We first draw a local approximation to a thin slice of the solid
(see Figure 7.4.15(b)). The side view in Figure 7.4.15(c) shows the area of the
typical cross-section is

π
(
6x− x2

)2 − π (x+ 4)2 .
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(a) (b) (c)

Figure 7.4.15:

This is the integrand. Next we find the interval of integration. The ends of the
interval are determined by where the curves cross: x + 4 = 6x − x2. Moving
all terms to the left-hand side yields: x2 − 5x + 4 = 0, or (x− 1)(x− 4) = 0.
So the endpoints of the interval are x = 1 and x = 4. The volume of the solid
is given by the definite integral

4∫
1

(
π
(
6x− x2

)2 − π (x+ 4)2
)
dx.

�

Summary

The key idea in this section is that “volume is the definite integral of cross-
sectional area”. To implement this idea we have to find that varying area and
also the interval of integration. A solid of revolution, where the cross-section
may be a disk or a ring, is just a special case.
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EXERCISES for Section 7.4 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 8, (a) draw the solid, (b) draw the typical cross-section in per-
spective and side view, (c) find the area of the typical cross-section, (d) set up the
definite integral for the volume, and (e) evaluate the definite integral (if possible).

1.[R] Find the volume of a cone of radius a and height h.

2.[R] The base of a solid is a disk of radius 3. Each plane perpendicular to a given
diameter meets the solid in a square, one side of which is in the base of the solid.
(See Figure 7.4.16(a).) Find its volume.

(a) (b)

Figure 7.4.16:
3.[R] The base of a solid is the region bounded by y = x2, the line x = 1, and
the x- and y-axes. Each cross-section perpendicular to the x-axis is a square. (See
Figure 7.4.16(b).) Find the volume of the solid.

4.[R] Repeat Exercise 3 except that the cross-sections perpendicular to the base
are equilateral triangles.

5.[R] Find the volume of a pyramid with a square base of side a and height h,
using square cross-sections perpendicular to the base. The top of the pyramid is
above the center of the base.

6.[R] Repeat Exercise 5, but using trapezoidal cross-sections perpendicular to the
base.

7.[R] Find the volume of the solid whose base is the disk of radius 5 and whose cross-
sections perpendicular to a diameter are equilateral triangles. (See Figure 7.4.17(a).)

(a) (b)
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Figure 7.4.17:
8.[R] Find the volume of the pyramid shown in Figure 7.4.17(b) by using cross-
sections perpendicular to the edge of length c.

In Exercises 9 to 14 set up a definite integral for the volume of the solid formed by
revolving the given region R about the given axis.

9.[R] R is bounded by y =
√
x, x = 1, x = 2, and the x-axis, about the x-axis.

10.[R] R is bounded by y = 1√
1+x2

, x = 0, x = 1, and the x-axis, about the x-axis.

11.[R] R is bounded by y = x−1/2, y = x−1, x = 1, and x = 2, about the x-axis.

12.[R] R is bounded by y = x2 and y = x3, about the y-axis.

13.[R] R is bounded by y = tan(x), y = sin(x), x = 0, and x = π/4, about the
x-axis.

14.[R] R is bounded by y = sec(x), y = cos(x), x = π/6, and x = π/3, about the
x-axis.

15.[R] A cylindrical drinking glass of height h and radius a, full of water, is tilted
until the water just covers the base. Set up a definite integral that represents
the amount of water left in the glass. Use rectangular cross-sections. Refer to
Figure 7.4.18 and follow the directions preceding Exercise 1.

Figure 7.4.18:
16.[R] Repeat Exercise 15, but use trapezoidal cross-sections.

17.[R] Repeat Exercise 15 using only common sense. Don’t use any calculus.

18.[M] A cylindrical drinking glass of height h and radius a, full of water, is tilted
until the water remaining covers half the base.

(a) Set up a definite integral for the volume of water in the glass, using cross-
sections that are parts of disks.
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(b) Compare yours answer in (a) with the definite integral found in Example 2.
Which definite integral looks easiest to evaluate?

19.[M] Repeat Exercise 18, but use rectangular cross-sections.

20.[M] A solid is formed in the following manner. A plane region R and a point
P not in the plane are given. The solid consists of all line segments joining P to
points in R. If R has area A and P is a distance h from the plane R, show that the
volume of the solid is Ah/3. (See Figure 7.4.19.)

Figure 7.4.19:
21.[M] A drill of radius 4 inches bores a hole through a wooden sphere of radius
5 inches, passing symmetrically through the center of the sphere.

(a) Draw the part of the sphere removed by the drill.

(b) Find A(x), the area of a cross-section of the region in (a) made by a plane
perpendicular to the axis of the drill and at a distance x from the center of
the sphere.

(c) Set up the definite integral for the volume of wood removed.

22.[M] What fraction of the volume of a sphere is contained between parallel planes
that trisect the diameter to which they are perpendicular? (Leave your answer in
terms of a definite integral.)

23.[M] The disk bounded by the circle (x − b)2 + y2 = a2, where 0 < a < b, is
revolved around the y-axis. Set up a definite integral for the volume of the doughnut
(torus) produced.
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In Exercises 24 to 27 set up definite integrals for (a) the area of R, (b) the volume
formed when R is revolved around the x-axis, and (c) the volume formed when R
is revolved around the y-axis.

24.[M] R is the region under y = tan(x) and above the interval [0, π/4].
25.[M] R is the region under y = ex and above the interval [−1, 1].
26.[M] R is the region under y = 1/

√
1− x2 and above the interval [0, 1/2].

27.[M] R is the region under y = sin(x) and above the interval [0, π].

28.[C] Set up a definite integral for the volume of one octant of the region common
to two right circular cylinders of radius 1 whose axes intersect at right angles, as
shown in Figure 7.4.20. Note: Contributed by Archimedes.

Figure 7.4.20:
29.[C] When a convex region R of area A situated to the right of the y-axis is
revolved around the y-axis, the resulting solid of revolution has volume V . When
R is revolved around the line x = −k, the volume of the resulting solid is V ∗. Ex-
press V ∗ in terms of k, A, and V . Note: The definition of convex can be found on
page 134 in Section 2.5.

30.[C] Archimedes viewed a ball as a cone whose height is the radius of the ball and
whose base is the surface of the ball. On that basis he computed that the volume of
the ball is one third the product of the radius and the surface area. He then gave a
rigorous proof of his conjecture.

Clever Sam, inspired by this, said “I’m going to get the volume of a circular
cylinder in a new way. Say its radius is r and height is h. Then I’ll view it as a
cylinder made up of “r by h” rectangles, all of which have the axis as an edge. Then
I pile them up to make a box whose base is an r by h rectangle and whose height is
2πr (the circumference of the cylinder’s base). So the volume would be 2πr times
rh, or 2πr2h. That’s twice the usual volume, so the standard formula is wrong.” Is
Sam right? (Explain.)
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7.5 Computing Volumes by Shells

Imagine revolving the planar region R about the line L, as in Figure 7.5.1(a).
We may think of R as being formed from narrow strips perpendicular to L,
as in Figure 7.5.1(b). Revolving such a strip around L produces a washer (or
disk). This is the approach used in the preceding section.

(a) (b) (c)

Figure 7.5.1:

Figure 7.5.2:

However, we can also think ofR as being formed from narrow strips parallel
to L, as in Figure 7.5.1(c). Revolving such a strip around L produces a solid
shaped like a bracelet or part of a drinking straw, as shown, in perspective,
in Figure 7.5.2. We will call such a solid a shell. (Perhaps “tube” or “pipe”
might be a better choice, but “shell” is standard in the world of calculus.)

This section describes how to find the volume of a solid of revolution using
shells (instead of disks). Sometimes this approach provides an easier calcula-
tion.

The Shell Technique

(a) (b) (c)

Figure 7.5.3:

To apply the shell technique we first imagine cutting the plane region R
in Figure 7.5.3(a) into a finite number of narrow strips by lines parallel to L.
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Each strip is then approximated by a rectangle as in Figure 7.5.3(b). Then we
approximate the solid of revolution by a collection of tubes (like the parts of
a collapsible telescope), as in Figure 7.5.3(c).

The key to this method is estimating the volume of each shell. Figure 7.5.4(a)

(a) (b) (c)

Figure 7.5.4:

shows the typical local approximation. Its height, c(x), is the length of the
cross-section of R corresponding to the value x on a line that we will call the
x-axis. The radius of the shell, shown in Figure 7.5.4(b), is x− k, where k is
the x-coordinate of the equation of the axis of rotation. Imagine cutting the
shell along a direction parallel to L, unrolling it, and then laying it flat like a
carpet. When laid flat, the shell resembles a thin slab of thickness dx, width
c(x), and length 2π(x − k), as shown in Figure 7.5.4(c). The volume of this The exact volume of the

shell is found in Exercise 23.shell, therefore, is about

Local Approximation to Volume of a Shell = 2π(x− k)c(x) dx (7.5.1)

With the aid of the local approximation (7.5.1), we conclude that

Volume of Solid of Revolution =

b∫
a

2π(x− k)c(x) dx. (7.5.2)

Figure 7.5.5: ARTIST:
Add k as label on x-axis
(at origin)

If x− k is denoted R(x), the “radius of the shell,” as in Figure 7.5.5, then
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Volume of Solid of Revolution =

b∫
a

2πR(x)c(x) dx.

EXAMPLE 1 The region R below the line y = e, above y = ex, and to the
right of the y-axis is revolved around the y-axis to produce a solid S. Set up
the definite integrals for the volume of S using (a) disks and (b) coaxial shells.

(a) (b) (c)

Figure 7.5.6:

SOLUTION Figure 7.5.6(a) shows the region R and Figure 7.5.6(b) shows
the solid S.

(a) If we use cross-sections perpendicular to the y-axis, as in the preceding
section, we find that

Volume =

e∫
1

π(ln(y))2 dy.

This integrand has an elementary antiderivative, and we will learn how to find
one in Chapter 8. Formula 66 (with a = 1) in the table on the inside cover of
this book has

∫
(ln(x))2 dx = x((ln(x))2 − 2 ln(x) + 2), which you may check

by differentiation. ThusSee Exercise 21

Volume = π(e− 2) ≈ 2.2565.

(b) If we use cross-sections parallel to the x-axis, we meet a much simpler
integration. The typical shell has radius x, height e− ex, and thickness dx as
shown in Figure 7.5.7(a).

The local approximation to the total volume of the shell is

2πx︸︷︷︸
circumference

(e− ex)︸ ︷︷ ︸
height

dx︸︷︷︸
thickness

,
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(a) (b)

Figure 7.5.7:

so the volume of S is
1∫

0

2πx (e− ex) dx.

Now one needs an antiderivative of 2πx (e− ex). In Chapter 8 we will learn
how to do this, and we will find it is much easier to find than

∫
(ln(x)) dx.

The first part is trivial,
∫
ex dx = e

2
x2, and then formula 59 on the inside cover

gives
∫
xex dx = xex − ex. As expected, once again the volume is π(e− 2). See Exercise 22

�
It is not unusual to find one
formulation much easier
than the other.

In Example 1 both methods were feasible. In the next, the shell technique
is clearly preferable.

EXAMPLE 2 The region R bounded by the line y = π
2
−1, the y-axis, and

the curve y = x− sin(x) is revolved around the y-axis. Try to set up definite
integrals for the volume of this solid using (a) disks and (b) coaxial shells. The equation

y = x− sin(x) is Kepler’s
equation, with e = 1. See
Exercise 23 on page 63.

(a) (b)

Figure 7.5.8:

SOLUTION The region R is displayed in Figure 7.5.8(a). For instance, when y = 0,
then x = 0. When
y = π

2 − 1, then x = π
2 .

(a) To use the method of parallel cross-sections you would have to find the
radius of the typical disk shown in Figure 7.5.8(b). The radius for each value
of y is the value of x for which x − sin(x) = y. In other words, we have to
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express x as a function of y. This inverse function is not elementary, ending
our hopes of using the FTC.

Figure 7.5.9:

(b) On the other hand, the shell technique goes through smoothly. The
typical shell, shown in Figure 7.5.9, has radius x and height π

2
−1−(x−sin(x)).

The volume of the local approximation is

2πx︸︷︷︸
circumference

(π
2
− 1− (x− sin(x))

)
︸ ︷︷ ︸

height

dx︸︷︷︸
thickness

.

The total volume of the bowl is then

π/2∫
0

2πx
(π

2
− 1− (x− sin(x))

)
dx.

The value of this definite integral is found in Exercise 50 on page 774. �

Summary

(a) (b)

Figure 7.5.10:

The volume of a solid of revolution may be found by approximating the
solid by concentric thin shells. The volume of such a shell is approximately
2πR(x) c(x) dx. (See Figure 7.5.10.) The shell technique is often useful even
when integration by cross-sections is difficult or impossible.
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EXERCISES for Section 7.5 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 4 draw a typical approximating cylindrical shell for the solid de-
scribed, and set up a definite integral for the volume of the given solid. Note: When
evaluating your definite integral, feel free to use the tables of antiderivatives in the
inside covers of the text.

1.[R] The trapezoid bounded by y = x, x = 1, x = 2, and the x-axis is revolved
around the x-axis.

2.[R] The trapezoid in Exercise 1 is revolved about the line y = −3.

(a) Repeat this problem when the trapezoid is revolved around the y-axis.

(b) Repeat this problem when the trapezoid is revolved around the x = −3.

3.[R] The triangle with vertices (0, 0), (1, 0), and (0, 2) is revolved around the y-
axis.

4.[R] The triangle in Exercise 3 is revolved about the line x-axis.

5.[R] Find a definite integral for the volume of the solid produced by revolving
about the y-axis the finite region bounded by y = x2 and y = x3.

6.[R] Repeat Exercise 5, except the region is revolved around the x-axis.

7.[R] Set up a definite integral for the volume of the solid produced by revolving
about the x-axis the finite region bounded by y =

√
x and y = 3

√
x.

8.[R] Repeat Exercise 7, except the region is revolved about the y-axis.

9.[R] Find a definite integral for the volume of the right circular cone of radius a
and height h by the shell method.

10.[R] Set up a definite integral for the volume of the doughnut (ring, torus)
produced by revolving the disk of radius a about a line L at a distance b > a from
its center. (See Figure 7.5.11.)
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Figure 7.5.11:
11.[R] Let R be the region bounded by y = x+ x3, x = 1, x = 2, and the x-axis.
Set up a definite integral for the volume of the solid produced by revolving R about
(a) the x-axis and (b) the line x = 3.

12.[R] Set up a definite integral for the volume of the solid produced by revolving
the region R in Exercise 11 about (a) the x-axis and (b) the line y = −2.

13.[R] Set up a definite integral for the volume of the solid of revolution formed
by revolving the region bounded by y = 2 + cos(x), x = π, x = 10π, and the x-axis
around (a) the y-axis and (b) the x-axis.

14.[R] The region below y = cos(x), above the x-axis, and between x = 0 and
x = π

2 is revolved around the x-axis. Find a definite integral for the volume of the
resulting solid of revolution by (a) parallel cross-sections and (b) concentric shells.

15.[R] Let R be the region below y = 1/
(
1 + x2

)2 and above [0, 1]. Set up a defi-
nite integral for the volume of the solid produced by revolving R about the y-axis.

16.[R] The region between y = ex
2
, the x-axis, x = 0, and x = 1 is revolved about

the y-axis.

(a) Set up a definite integral for the area of this region.

(b) Set up a definite integral for the volume of the solid produced.

Note: The FTC is of no use in evaluating the area of this region.

17.[R] The region R below y = ex (1 + sin(x)) /x and above [0, 10π] is revolved
about the y-axis to produce a solid of revolution. (a) Find a definite integral for the
volume of the solid by parallel cross-sections. (b) Find a definite integral for the
volume of the solid by concentric shells. (c) Which definite integral do you think is
easier to evaluate? Why?
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18.[R] Let R be the region below y = ln(x) and above [1, e]. Find a definite integral
for the volume of the solid produced by revolving R about (a) the x-axis and (b)
the y-axis.

19.[R] Let R be the region below y = 1/
(
x2 + 4x+ 1

)
and above [0, 1]. Find a

definite integral for the volume of the solid produced by revolving R about the line
x = −2.

20.[R] Let R be the region below y = 1/
√

2 + x2 and above [
√

3,
√

8]. Set up a
definite integral for the volume of the solid produced by revolving R about the (a)
the x-axis and (b) the y-axis.

Exercises 21 and 22 complete Exercise 1. In that Example the region below y = e,
above y = ex, and to the right of the y-axis is revolved around the y-axis to form a
solid S.
21.[R] The volume of S using cross-sections perpendicular to the y-axis was found
to be

∫ e
1 π (ln(y))2 dy.

(a) Verify that x
(
(ln(x))2 − 2 ln(x) + 2

)
is an antiderivative of (ln(x))2.

(b) Find the volume of S. Hint: Use FTC I.

22.[R] The volume of S using cross-sections parallel to the y-axis was found to be∫ 1
0 2πx (e− ex) dx.

(a) Verify that xex − ex is an antiderivative of xex.

(b) Find the volume of S. Hint: Use FTC I.

23.[M] When we unrolled the shell as a carpet we pictured it as a rectangular solid
whose faces meet at right angles. However, since the inner radius is x and the outer
radius is x + dx the circumference of the inside of the shell is less than the outer
circumference.

(a) By viewing the shell as the difference between two circular cylinders, compute
its exact volume.

(b) Show that this volume is 2π
(
x+ dx

2

)
c(x).

This means that if we used x+ dx
2 as our sampling number in the interval [x, x+dx]

instead of x, our local approximation to the volume of the shell would be exact.
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The kinetic energy of a particle of mass m grams moving at a velocity of v cen-
timeters per second is mv2/2 ergs. Exercises 24 and 25 ask for the kinetic energy of
rotating objects.

24.[M] A solid cylinder of radius r and height h centimeters has a uniform density
of g grams per cubic centimeter. It is rotating at the rate of two revolutions per
second around its axis.

(a) Find the speed of a particle at a distance x from the axis.

(b) Find a definite integral for the kinetic energy of the rotating cylinder.

25.[M] A solid ball of radius r centimeters has a uniform density of g grams per
cubic centimeter. It is rotating around a diameter at the rate of three revolutions
per second around its axis.

(a) Find the speed of a particle at a distance x from the diameter.

(b) Find a definite integral for the kinetic energy of the rotating ball.

26.[C] When a region R in the first quadrant is revolved around the y-axis, a solid
of volume 24 is produced. When R is revolved around the line x = −3, a solid of
volume 82 is produced. What is the area of R?

27.[C] Let R be a region in the first quadrant. When it is revolved around the
x-axis, a solid of revolution is produced. When it is revolved around the y-axis,
another solid of revolution is produced. Give an example of such a region R with
the property that the volume of the first solid cannot be evaluated by the FTC, but
the volume of the second solid can be evaluated by the FTC.
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7.6 Water Pressure Against a Flat Surface

This section shows how to use integration to compute the force of water against
a submerged flat surface.

Introduction

Imagine the portion of the Earth’s atmosphere directly above one square
inch at sea level. That air forms a column some hundred miles high which
weighs about 14.7 pounds. It exerts a pressure of 14.7 pounds per square inch
(14.7 psi).

This pressure does not crush us because the cells in our body are at the
same pressure. If we were to go into a vacuum, we would explode. This is why astronauts wear

pressurized suits.The pressure inside a flat tire is 14.7 psi. When you pump up a bicycle tire
so that the gauge reads 60 psi, the pressure is actually 60 + 14.7 = 74.7 psi.
The tire must be strong enough to avoid bursting. One cubic foot of water

weighs 62.6 pounds, so one
cubic inch weighs
62.6
1728 = 0.036227 pounds
and the density is
0.036227 pounds per cubic
inch.

Next imagine diving into a lake and descending 33 feet (10 meters). Extend-
ing that 100-mile-high column 33 feet into the water adds (33)(12)(0.036227) =
14.7 pounds of water. The pressure is now twice 14.7 psi. The pressure is now
twice 14.7, or 29.4 psi. You cannot escape that pressure by turning your body,
since at a given depth the pressure is the same in all directions.

Pressure and force are closely related. If the force is the same throughout
a region, then the pressure is simply “total force divided by area”:

pressure =
force

area
.

Equivalently,
force = pressure× area.

Thus, when the pressure is constant in a plane region it is easy to find the
total force against it: multiply the pressure and the area of the region.

If the pressure varies in the region, we must make use of integration.

Using an Integral to Find the Force of Water

We will see how to find the total force on a flat submerged object due to
the water. We will disregard the pressure due to the atmosphere. (See Fig-
ure 7.6.1(a).) We approximate the density

of water as 0.036 pounds
per cubic inch.

At a depth of h inches, water exerts a pressure of 0.036h psi. Therefore
the water exerts a force on a flat horizontal object of area A square inches, at
a depth of h inches equal to 0.036hA pounds.

To deal with, say, a vertical submerged surface takes more calculation, since
the pressure is not constant over that surface. Imagine the surface R, shown
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(a) (b) (c)

Figure 7.6.1:

in Figure 7.6.1(b). Introduce a vertical x-axis, pointed down, with its origin
O, a distance k below the water’s surface. R lies between lines corresponding
to x = a and x = b. The depth of the water corresponding to x is not x but
x+ k.If the origin is at the water’s

surface, then k = 0. As usual, we will find the local approximation of the force by considering a
narrow horizontal strip corresponding to the interval [x, x+ dx] of the x-axis,
as in Figure 7.6.1(c). Letting c(x) denote the cross-sectional length, we see
that the force of the water on this strip is approximately

(0.036)︸ ︷︷ ︸
density of H2O

(x+ k)︸ ︷︷ ︸
depth

c(x) dx︸ ︷︷ ︸
area of strip

pounds.

Therefore

Force against R is 0.036
∫ b
a
(x+ k)c(x) dx pounds.

(a) (b) (c)

Figure 7.6.2:

EXAMPLE 1 A circular tank is submerged in water. An end is a disk
10 inches in diameter. The top of the tank is 12 inches below the surface of
the water. Find the force against one end.
SOLUTION The end of the tank is shown in Figure 7.6.2(a). IntroduceThis placement of O will

make it easier to compute
the cross-section lengths.
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a vertical x-axis with its origin O level with the center of the disk. (See
Figure 7.6.2(b).) To find the cross-section c(x) we use Figure 7.6.2(c).

By the Pythagorean Theorem applied to the right triangle in Figure 7.6.2(c)
we have For any number x,

|x|2 = x2.(
c(x)

2

)2

+ |x|2 = 52.

Thus (c(x))2 + 4x2 = 100.

So c(x) =
√

100− 4x2.

Having found the cross-section as a function of x, we still must find the depth
as a function of x. To do this, inspect Figure 7.6.3. As a check, let x = 0, when

the depth is clearly 17
inches.

The depth AC equals AB +BC = 12 + (x− (−5)) = 17 + x.
We have

Local Estimate of Force = (0.036)(x+ 17)︸ ︷︷ ︸
pressure

√
100− 4x2 dx︸ ︷︷ ︸

area

.

From this we obtain

Figure 7.6.3:

Total Force =

5∫
−5

(0.036)(x+ 17)
√

100− 4x2 dx pounds

= 0.036

5∫
−5

x
√

100− 4x2 dx+ 0.036

5∫
−5

17
√

100− 4x2 dx pounds.

The first integral is 0 because the integrand, x
√

100− 4x2, is an odd function
and the interval of integration is symmetric about x = 0. The integrand in
the second integral is even, so

5∫
−5

√
100− 4x2 dx = 2

5∫
0

√
100− 4x2 dx = 4

5∫
0

√
25− x2 dx = 4 (Area of one quarter of disk of radius 5) = 4

(
1

4
π52

)
= 52π = 25π.

Thus,

Total Force = (0.036)(17)(25π) pounds ≈ 48 pounds.

�

EXAMPLE 2 Figure 7.6.4(a) shows a submerged equilaterial triangle of
side h. Find the force of water against it.
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(a) (b)

Figure 7.6.4:

SOLUTION In this case we place the origin of the vertical axis at the surface
of the water (see Figure 7.6.4(b)). To set up an integral we must compute c(x).

Note
√

3h
2

is marked on the x-axis; it is the length of an altitude in the triangle.
The similar triangles ABC and ADE give us

c(x)

h
=

√
3

2
h− x
√

3
2
h

.

Thus,Observe that c(0) = h and

c(
√

3
2 h) = 0 and c is linear,

which agree with
Figure 7.6.4(b).

c(x) = h− 2x√
3
.

The local estimate of force is therefore

0.036x︸ ︷︷ ︸
pressure

(
h− 2x√

3

)
dx︸ ︷︷ ︸

area

.

Hence

Total Force =

√
3

2
h∫

0

0.036x

(
h− 2x√

3

)
dx = 0.036

√
3

2
h∫

0

(
hx− 2x2

√
3

)
dx

= 0.036

(
h
x2

2
− 2√

3

x3

3

)∣∣∣∣
√

3
2
h

0

= 0.036
h3

8
pounds.

�

Summary

We introduced the notion of water pressure defined as “force divided by area”
or “force per unit area.” If the pressure is constant over a flat region of area
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A, the force is the product: pressure times area. When p(x) is the pressure
and c(x) is the length of the typical horizontal cross-section, then p(x)c(x) dx
is a local approximation to the force. The water pressure p(x) is 0.036 times
the depth. The dimensions are in inches and the force is in pounds.
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EXERCISES for Section 7.6 Key: R–routine, M–moderate, C–challenging

A cubic inch of water weighs 0.036 pounds. (All dimensions are in inches.)

(a) (b) (c) (d)

Figure 7.6.5:
In Exercises 1 to 4 find a definite integral for the force of water on the indicated
surface.

1.[R] The triangular surface in Figure 7.6.5(a).

2.[R] The circular surface in Figure 7.6.5(b).

3.[R] The trapezoidal surface in Figure 7.6.5(c).

4.[R] The triangular surface in Figure 7.6.5(d).

In Exercises 5 and 6 the surfaces are tilted like the bottoms of many swimming
pools. Find the force of the water against them.

5.[M] The surface is an a by b rectangle inclined at an angle of 30◦ (π/6 radians)
to the horizontal. The top of the surface is at a depth k. (See Figure 7.6.6.)

Figure 7.6.6:
6.[M] The surface is a disk of radius r tilted at an angle of 45◦ (π/4 radians) to
the horizontal. Its top is at the surface of the water.

7.[M] A vertical disk is totally submerged. Show that the force of the water against
it is the same as the product of its area and the pressure at its center.

8.[C] If the region in Exercise 7 is not vertical, is the same conclusion true?
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9.[C] Let R be a convex planar region. R is called centrally symmetric if it
contains a point P such that P is the midpoint of every chord of R that passes
through P . For instance, a parallelogram is centrally symmetric. No triangle is.
Now, assume that a centrally symmetric region is placed vertically in water and is
completely submerged. Show that the force against it equals the product of its area
and the pressure at P .

10.[C] Why is finding volume by shells essentially the same as finding the force
against a submerged object?
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7.7 Work

In this section we treat the work accomplished by a force operating along a
line, for example the work done when you stretch a spring. If the force has
the constant value F and it operates over a distance s in the direction of the
force, then the work W accomplished is simply

Work = Force ·Distance or W = F · s.

If force is measured in newtons and distance in meters, work is measured
in newton-meters or joules. For example, the force needed to lift a mass of
m kilograms at the surface of the earth is about 9.8m newtons.

Figure 7.7.1:

A weightlifter who raises 100 kilograms a distance of 0.5 meter accomplishes
9.8(100)(0.5) = 490 joules of work. On the other hand, the weightlifter who
just carries the barbell from one place to another in the weightlifting room,
without raising or lowering it, accomplishes no work because the barbell was
moved a distance zero in the direction of the force.

The Stretched Spring
Hooke’s law says a spring’s
force is proportional to the

distance it is stretched.
As you stretch a spring (or rubber band) from its rest position, the further

you stretch it the harder you have to pull. According to Hooke’s law, the force
you must exert is proportional to the distance that the spring is stretched, as
shown in Figure 7.7.1. In symbols, F = kx, where F is the force and x is the
distance from the rest position.

Because the force is not constant, we cannot compute the work accom-
plished just by multiplying force times distance. As usual, we need an integral,
as the next example illustrates.

EXAMPLE 1 A spring is stretched 0.5 meter longer than its rest length.
The force required to keep it at that length is 3 newtons. Find the total work
accomplished in stretching the spring 0.5 meter from its rest position.

Figure 7.7.2:

SOLUTION Let us estimate the work involved in stretching the spring from
x to x+ dx. (See Figure 7.7.2.)

The distance dx is small. As the end of the spring is stretched from x to
x + dx, the force is almost constant. Since the force is proportional to x, it
is of the form kx for some constant k. We know that the force, F , is 3 when
x = 0.5, so

F = kx gives 3 = k(0.5) which implies k = 6.

The work accomplished in stretching the spring from x to x + dx is then
approximately

kx︸︷︷︸
force

· dx︸︷︷︸
distance

joule.
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Hence the total work is

b∫
a

kx dx =

0.5∫
0

6x dx = 3x2
∣∣0.5
0

= 0.75 joule.

�

Work in Launching a Rocket

The force of gravity that the earth exerts on an object diminishes as the object
gets further away from the earth. The work required to lift an object 1 foot
at sea level is greater than the work required to lift the same object the same
distance at the top of Mt. Everest. However, the difference in altitudes is so
small in comparison to the radius of the earth that the difference in work is
negligible. On the other hand, when an object is rocketed into space, that The earth’s surface is about

4, 000 miles from its center.the force of gravity diminishes with distance from the center of the earth is
critical.

According to Newton, the force of gravity on a given mass is proportional
to the reciprocal of the square of the distance of that mass from the center of
the earth. That is, there is a constant k such that the gravitational force at

Figure 7.7.3:

distance r from the center of the earth, F (r), is given by

f(r) =
k

r2
.

(See Figure 7.7.3.)

WARNING It is important to remember that r is “distance to
the center of the earth,” not “distance to the surface.”

EXAMPLE 2 How much work is required to lift a 1 pound payload from
the surface of the earth to the moon, which is about 240, 000 miles away?
SOLUTION The work necessary to lift an object a distance x against a The unit for work is joule.

1 joule = 1 newton meter =
1 watt second =
0.7376 foot pound.

constant vertical force F is the product of force times distance:

Work = F · x.

Since the gravitational pull of the earth on the payload changes with distance
from the center of the earth, an integral will be needed to express the total
work.

The payload weighs 1 pound at the surface of the earth. The farther it is
from the center of the earth, the less it weighs, for the force of the earth on the
mass is inversely proportional to the square of the distance of the mass from the
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center of the earth. Thus the force on the payload is given by k/r2 pounds,
where k is a constant, which will be determined in a moment, and r is the
distance in miles form the payload to the center of the earth. When r = 4, 000
(miles), the force is 1 pound; thus

1 pound =
k

(4, 000 miles)2
.

From this it follows that k = 4, 0002, and therefore the gravitational force

Figure 7.7.4:

on a 1-pound mass is, in general, (4, 000/r)2 pounds. As the payload recedes
from the earth, it loses weight (but not mass), as recorded in Figure 7.7.4. The

Figure 7.7.5:

work done in lifting the payload from a distance r to a distance r + dr from
the center of the earth is approximately(

4, 000

r

)2

︸ ︷︷ ︸
force

( dr)︸ ︷︷ ︸
distance

miles-pounds.

(See Figure 7.7.5.)
Hence the work required to move the 1 pound mass from the surface of the

earth to the moon is given by the integral

240,000∫
4,000

(
4, 000

r

)2

dr = −4, 0002

r

∣∣∣∣240,000

4,000

= −4, 0002

(
1

240, 000
− 1

4, 000

)

= −4, 000

60
+ 4, 000 ≈ 3, 933 miles-pounds

= 2.8154× 107 joules.

The work is just a little less than if the payload were lifted 4, 000 miles against
a constant gravitational force equal to that at the surface of the earth. �

Summary

The work accomplished by a constant force F that moves an object a distance
x in the direction of the force is the product Fx, ”force times distance.” The
work by a variable force, F (x), moving an object over the interval [a, b] is

measured by an integral
∫ b
a
F (x) dx.
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EXERCISES for Section 7.7 Key: R–routine, M–moderate, C–challenging

1.[R] A spring is stretched 0.20 meters from its rest length. The force required
to keep it at that length is 5 newtons. Assuming that the force of the spring is
proportional to the distance it is stretched, find the work accomplished in stretching
the spring

(a) 0.20 meters from its rest length;

(b) 0.30 meters from its rest length.

2.[R] A spring is stretched 3 meters from its rest length. The force required to keep
it at that length is 24 newtons. Assume that the force of the spring is proportional
to the distance it is stretched. Find the work accomplished in stretching the spring

(a) 3 meters from its rest length;

(b) 4 meters from its rest length.

3.[R] Suppose a spring does not obey Hooke’s law. Instead, the force it exerts
when stretched x meters from its rest length is F (x) = 3x2 Newtons. Find the work
done in stretching the spring 0.80 meter from its rest length.

4.[R] Suppose a spring does not obey Hooke’s law. Instead, the force it exerts
when stretched x meters from its rest length is F (x) = 2

√
x Newtons. Find the

work done in stretching the spring 0.50 meter from its rest length.

5.[R] How much work is done in lifting the 1 pound payload the first 4, 000 miles
of its journey to the moon? Note: See Example 2.

6.[R] If a mass that weighs 1 pound at the surface of the earth were launched
from a position 20, 000 miles from the center of the earth, how much work would be
required to send it to the moon (240, 000 miles from the center of the earth)?

7.[R] Assume that the force of gravity obeys an inverse cube law, so that the force
on a 1 pound payload a distance r miles from the center of the earth (r ≥ 4, 000)
is (4, 000/r)3 pounds. How much work would be required to lift a 1 pound payload
from the surface of the earth to the moon?

8.[R] Geologists, when considering the origin of mountain ranges, estimate the en-
ergy required to lift a mountain up from sea level. Assume that two mountains are
composed of the same type of matter, which weighs k pounds per cubic foot. Both
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are right circular cones in which the height is equal to the radius. One mountain is
twice as high as the other. The base of each is at sea level. If the work required to lift
the matter in the smaller mountain above sea level is W , what is the corresponding
work for the larger mountain?

9.[R] Assume that Mt. Everest has a shape of a right circular cone of height
30, 000 feet and radius 150, 000 feet, with unifrom density of 200 pounds per cubic
foot.

(a) How much work was required to lift the material in Mt. Everest if it was
initially all at sea level?

(b) How does this work compare with the energy of a 1 megaton hydrogen bomb?
(One megaton is the energy in a million tons of TNT: about 3 × 1014 foot-
pounds.)

10.[R] A town in a flat valley made a conical hill out of its rubbish, as shown in
Figure 7.7.6(a). The work requireed to lift all the rubbish was W . Happy with the
result, the town decided to make another hill with twice the volume, but of the same
shape. How much work will be required to build this hill? Explain.

(a) (b) (c)

Figure 7.7.6:
11.[R] A container is full of water which weighs 64.2 pounds per cubic foot. All the
water is pumped out of an opening at the top of the container. Develop a definite
integral for the work accomplished. Hint: The integral involves only a, b, and A(x),
the cross-sectional area shown in Figure 7.7.6(b).

12.[R] A horizontal tank in the form of a cylinder with base R is full of water. The
cylinder has height h feet. (See Figure 7.7.6(c).) Develop a definite integral for the
total work accomplished when all the water is pumped out an opening at the top.
Hint: Express the integral in terms of a, b, c(x), and h.

Exercises 13 to 17 review differentiation. In each case compute the derivative of the
given function.
13.[R] ln

(
x+
√
a2 + x2

)
14.[R] 1

2ab ln
∣∣∣a+bx
a−bx

∣∣∣
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15.[R] x4

8 −
(
x3

4 −
3x
8

)
sin(2x)

16.[R] x− ln (1 + ex)
17.[R] eax

a2+1
(a sin(x)− cos(x))
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7.8 Improper Integrals

This section develops the analog of a definite integral when the interval of
integration is infinite or the integrand becomes arbitrarily large in the interval
of integration. The definition of a definite integral does not cover these cases.

Improper Integrals: Interval Unbounded

A question about areas will introduce the notion of an “improper integral.”
Figure 7.8.1 shows the region under y = 1/x and above the interval [1,∞).
Figure 7.8.2 shows the region under y = 1/x2 and above the same interval.

Figure 7.8.1:

Let us compute the areas of the two regions. We might be tempted to
say that the area in Figure 7.8.1 is

∫∞
1
f(x) dx. Unfortunately, the symbol∫∞

1
f(x) dx has not been given any meaning so far in this book. The definition

of the definite integral
∫ b
a
f(x) dx involves a limit of sums of the form

n∑
i=1

f(ci)(xi − xx−1),

where each xi−xi−1 is the length of an interval [xi−1, xi]. If you cut the interval
[1,∞) into a finite number of intervals, then at least one section has infinite
length, and such a sum is meaningless.

Figure 7.8.2:

It does make sense, however, to find the area of that part of the region in
Figure 7.8.1 from x = 1 to x = b, where b > 1, and find what happens to that
area as b→∞. To do this, first calculate

∫ b
1
(1/x) dx:

b∫
1

dx

x
= ln(x)|b1 = ln(b)− ln(1) = ln(b).

Then

lim
b→∞

b∫
1

dx

x
= lim

b→∞
ln(b) =∞.

So the area of the region in Figure 7.8.1 is infinite.
Next, examine the area of the region in Figure 7.8.2. We first find

b∫
1

dx

x2
= −1

x

∣∣∣∣b
1

= −1

b
−
(
−1

1

)
= 1− 1

b

Thus,

lim
b→∞

b∫
1

dx

x2
= lim

b→∞

(
1− 1

b

)
= 1.
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In this case the area is finite. Though the regions in Figures 7.8.1 and 7.8.2
look alike, one has an infinite area, and the other, a finite area. This contrast
suggests the following definitions.

DEFINITION (Convergent improper integral
∫∞
a
f(x) dx.) Let

f be continuous for x ≥ a. If limb→∞
∫ b
a
f(x) dx exists, the function

f is said to have a convergent improper integral from a to ∞.
The value of the limit is denoted by

∫∞
a
f(x) dx:

∞∫
a

f(x) dx = lim
b→∞

b∫
a

f(x) dx.

We saw that
∫∞

1
dx/x2 is a convergent improper integral with value 1.

DEFINITION (Divergent improper integral
∫∞
a
f(x) dx.) Let f

be a continuous function for x ≥ a. If limb→∞
∫ b
a
f(x) dx does

not exist, the function f is said to have a divergent improper
integral from a to ∞.

As we saw,
∫∞

1
dx/x is a divergent improper integral.

The improper integral
∫∞

1
dx/x is divergent because

∫ b
1
dx/x → ∞ as

b→∞. But an improper integral
∫∞
a
f(x) dx can be divergent without being

infinite. Consider, for instance,
∫∞

0
cos(x) dx. We have

b∫
0

cos(x) dx = sin(x)|b0 = sin(b).

As b→∞, sin(b) does not approach a limit, nor does it become arbitrarily
large. As b → ∞, sin(b) just keeps going up and down in the range −1 to 1
infinitely often. Thus

∫∞
0

cos(x) dx is divergent. The improper integral∫ b
−∞ f(x) dx.The improper integral

∫ b
−∞ f(x) dx is defined similarly:

b∫
−∞

f(x) dx = lim
a→−∞

b∫
a

f(x) dx.

If the limit exists,
∫ b
−∞ f(x) dx is a convergent improper integral. If the limit

does not exist, it is a divergent improper integral. The improper integral∫∞
−∞ f(x) dx
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To deal with improper integrals over the entire x-axis, define
∞∫

−∞

f(x) dx

to be the sum
0∫

−∞

f(x) dx+

∞∫
0

f(x) dx,

which will be called convergent if both

0∫
−∞

f(x) dx and

∞∫
0

f(x) dx

are convergent. If at least one of the two is divergent,
∫∞
−∞ f(x) dx will be

called divergent.

Figure 7.8.3:

EXAMPLE 1 Is the area of the region bounded by the curve y = 1/(1+x2)
and the x-axis finite or infinite (see Figure 7.8.3).
SOLUTION The area in question equals

∫∞
−∞ dx/(1 + x2). Now,

∞∫
0

dx

1 + x2
= lim

b→∞

b∫
0

dx

1 + x2
= lim

b→∞
(tan−1(b)− tan−1(0)) =

π

2
− 0 =

π

2
.

Because 1/(1 + x2) is an even function, we deduce immediately that

0∫
−∞

dx

1 + x2
=
π

2
.

Hence,
∞∫

−∞

dx

1 + x2
=
π

2
+
π

2
= π,

the integral is convergent and the area in question is π. �Shorthand Notation for∫∞
a f(x) dx

OBSERVATION (Shorthand Notation for
∫∞
a
f(x) dx) If

∫∞
a
f(x) dx

is convergent and F (x) is an antiderivative of f(x), then
∫∞
a
f(x) dx =

limb→∞ F (b)− F (a). In these situation we could write
∞∫
a

f(x) dx = F (x)|∞a

where it is understood that F (∞) is short for limb→∞ F (b).
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Comparison Test for Convergence of
∫∞
a f(x) dx, f(x) ≥ 0

The integral
∫∞

0
e−x

2
dx is important in statistics. Is it convergent or diver-

gent? We cannot evaluate
∫ b

0
e−x

2
dx by the Fundamental Theorem since e−x

2

does not have an elementary antiderivative. Even so, there is a way of showing
that

∫∞
0
e−x

2
dx is convergent without finding its exact value. The method is

described in Theorem 1.

Theorem. Comparison test for convergence of improper integrals. Let f(x)
and g(x) be continuous functions for x ≥ a. Assume that 0 ≤ f(x) ≤ g(x)
and that

∫∞
a
g(x) dx is convergent. Then

∫∞
a
f(x) dx is convergent and

∞∫
a

f(x) dx ≤
∞∫
a

g(x) dx.

Figure 7.8.4:

In geometric terms, it asserts that if the area under y = g(x) is finite, so is
the area under y = f(x). (See Figure 7.8.4.)

A similar convergence test holds for g(x) ≤ f(x) ≤ 0. If
∫∞
a
g(x) dx

converges, so does
∫∞
a
f(x) dx.

EXAMPLE 2 Show that
∫∞

0
e−x

2
dx is convergent and put a bound on its

value.
SOLUTION Since e−x

2
does not have an elementary antiderivative, we com-

pare
∫∞

0
e−x

2
dx to an improper integral that we know converges.

Figure 7.8.5:

For x ≥ 1, x2 ≥ x; hence e−x
2 ≤ e−x. (See Figure 7.8.5.) Now,

b∫
1

e−x dx = −e−x
∣∣b
1

= e−1 − e−b.

Thus

lim
b→∞

b∫
1

e−x dx =
1

e

and the improper integral
∫∞

1
e−x dx is convergent.

The comparison test for convergence tells us that
∫∞

1
e−x

2
dx is also con-

vergent. Furthermore,

∞∫
1

e−x
2

dx ≤
∞∫

1

e−x dx =
1

e
.
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ThusIn Exercise 34 of
Section 17.3 we show that∫∞

0 e−x
2
dx equals√

π/2 ≈ 1.25331.

∞∫
0

e−x
2

dx =

1∫
0

e−x
2

dx+

∞∫
1

e−x
2

dx ≤
1∫

0

e−x
2

dx+
1

e
.

Since e−x
2 ≤ 1 for 0 < x ≤ 1, we conclude that

∞∫
0

e−x
2

dx ≤ 1 +
1

e
.

�

Comparison Test for Divergence of
∫∞
a f(x) dx.

Theorem. Comparison test for divergence of improper integrals. Let f(x) and
g(x) be continuous functions for x ≥ a. Assume that 0 ≤ g(x) ≤ f(x) and
that

∫∞
a
g(x) dx is divergent. Then

∫∞
a
f(x) dx is also divergent.

Figure 7.8.6:

A glance at Figure 7.8.6 suggests why this theorem is true. The area under
f(x) is larger than the area under g(x). When the area under g(x) is infinite,
the area under f must also be infinite.

EXAMPLE 3 Show that
∫∞

1
(x2 + 1)/x3 dx is divergent.

SOLUTION For x > 0,
x2 + 1

x3
>
x2

x3
=

1

x
.

Since
∫∞

1
dx
x

=∞, it follows that
∫∞

1
(x2 + 1)/x3 dx =∞. �

Convergence of
∫∞
a f(x) dx When

∫∞
a |f(x)| dx Converges

Is
∫∞

0
e−x sin(x) dx convergent or divergent? Because sin(x) takes on both

positive and negative values, the integrand is not always positive, nor is it
always negative. So we can’t just compare it with

∫∞
0
e−x dx.

The next theorem provides a way to establish the convergence of
∫∞
a
f(x) dx

when f(x) is a function that takes on both positive and negative values. It
says that if

∫∞
a
|f(x)| dx converges, so does

∫∞
a
f(x) dx. The argument for

this depends on showing that the “negative and positive parts of the function”
both have convergent integrals.

Theorem 7.8.1. Absolute-convergence test for improper integrals. If f(x)
is continuous for x ≥ a and

∫∞
a
|f(x)| dx converges to the number L, then∫∞

a
f(x) dx is convergent and converges to a number between L and −L.
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Proof

We will break the function f(x) into two continuous functions that do not
change sign. That will enable us to use our comparison tests. Figure 7.8.7
shows the graphs of y = f(x) and four functions closely related to f(x).

g(x) =

{
f(x) if f(x) is positive

0 otherwise
and h(x) =

{
f(x) if f(x) is negative

0 otherwise

Note that f(x) = g(x) + h(x), and that each of g(x) and h(x) is continuous
for x > a. We will show that

∫∞
a
g(x) dx and

∫∞
a
h(x) dx both converge.

Figure 7.8.7:

First, since
∫∞
a
|f(x)| dx converges, has value L, and 0 ≤ g(x) ≤ |f(x)|,

we conclude that
∫∞
a
g(x) dx converges, and the value of the integral is a

nonnegative number A between 0 and L:

0 ≤ A ≤
∞∫
a

|f(x)| dx = L.

Second, since
∫∞
a
−|f(x)| dx converges, has value−L, and 0 ≥ h(x) ≥ −|f(x)|,

it follows that
∫∞
a
h(x) dx converges to a nonpositive number B between −L

and 0:

0 ≥ B ≥
∞∫
a

|f(x)| dx = −L.

Thus
∫∞
a
f(x) dx =

∫∞
a

(g(x)+h(x)) dx converges to A+B, which is a number
somewhere in the interval [−L,L]. •

EXAMPLE 4 Show that
∫∞

0
e−x sin(x) dx is convergent.

SOLUTION Since |sin(x)| ≤ 1, we have |e−x sin(x)| ≤ e−x. Now,
∫∞

0
e−x dx

is convergent, as we saw in Example 2. Thus
∫∞

0
e−x sin(x) dx is convergent. See Exercise 29.

�

Figure 7.8.8:

Improper Integrals: Integrand Unbounded

The second type of improper integral is
∫ b
a
f(x) dx in which f(x) is un-

bounded in an interval [a, b]. For any partition of [a, b], the approximating
sum

∑n
i=1 f(ci)(xi − xi−1) can be made arbitrarily large when ci is chosen

so that f(ci) is very large. The next example shows how to get around this See Exercise 38.

difficulty.

EXAMPLE 5 Determine the area of the region bounded by y = 1/
√
x,

x = 1, and the coordinate axes shown in Figure 7.8.8.

Calculus December 6, 2010



668 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

SOLUTION Resist for the moment the temptation to write “Area =
∫ 1

0
1/
√
x dx”.

The integral
∫ 1

0
1/
√
x dx is not defined since its integrand is unbounded in [0, 1].

Instead, consider the behavior of
∫ 1

t
1/
√
x dx as t approaches 0 from the right.

Since
1∫
t

1√
x
dx = 2

√
x
∣∣1
t

= 2
√

1− 2
√
t = 2(1−

√
t),

it follows that

lim
t→0+

1∫
t

dx√
x

= 2.

The area in question is 2.

In Exercise 30 the same value for the area is obtained by taking horizontal
cross-sections and evaluating an improper integral from 0 to ∞. �

The reasoning in Example 5 motivates the definition of the second type
of improper integral, in which the integrand rather than the interval is un-
bounded.Convergent and Divergent

Improper Integrals∫ b
a f(x) dx.

DEFINITION (Convergent and Divergent Improper Integrals
∫ b
a
f(x) dx.)

Let f be continuous at every number in [a, b] except at a. If

limt→a+

∫ b
t
f(x)dx exists, the function f is said to have a conver-

gent improper integral from a to b. The value of the limit is
denoted

∫ b
a
f(x) dx.

If limt→a+

∫ b
t
f(x)dx does not exist, the function f is said to have

a divergent improper integral from a to b; in brief,
∫ b
a
f(x) dx

does not exist.

In a similar manner, if f is not defined at b, define
∫ b
a
f(x) dx as

limt→b−
∫ t
a
f(x)dx, if this limit exists.

As Example 5 showed, the improper integral
∫ 1

0
1/
√
x dx is convergent and

has the value 2.A “proper” integral is a
definite integral. More generally, if a function f(x) is not defined at certain isolated numbers,

break the domain of f(x) into intervals [a, b] for which
∫ b
a
f(x) dx is either

improper or “proper”– that is, an ordinary definite integral.

For instance, the improper integral
∫∞
−∞ 1/x2 dx is troublesome for four rea-

sons: limx→0− 1/x2 = ∞, limx→0+ 1/x2 = ∞, and the range extends infinitely
to the left and also to the right. (See Figure 7.8.9.) To treat the integral, write
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it as the sum of four improper integrals of the two basic types:

Figure 7.8.9:

∞∫
−∞

1

x2
dx =

−1∫
−∞

1

x2
dx+

0∫
−1

1

x2
dx+

1∫
0

1

x2
dx+

∞∫
1

1

x2
dx.

Each of the four integrals on the right must be convergent in order for
∫∞
−∞ 1/x2 dx

to be convergent. Only the first and last are, so
∫∞
−∞ 1/x2 dx is divergent.

Summary

We introduced two types of integrals that are not definite integrals, but are
defined as limits of definite integrals. The “improper integral”

∫∞
a
f(x) dx is

defined as limb→∞
∫ b
a
f(x) dx. If f(x) is continuous in [a, b] except at a, then∫ b

a
f(x) dx is defined as limt→a+

∫ b
t
f(x) dx. The first type is far more common

in applications. We also developed two comparison tests for convergence or
divergence of

∫∞
a
f(x) dx, where the integrand keeps a constant sign. In the

case where the integrand f(x) may have both positive and negative values, we
showed that if

∫∞
a
|f(x)| dx converges, so does

∫∞
a
f(x) dx.
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EXERCISES for Section 7.8 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 9 determine whether the improper integral is convergent or diver-
gent. Evaluate the convergent ones if possible. Some exercises may require using
the integral table in the back of the book.

1.[R]
∫∞

1
dx
x3

2.[R]
∫∞

1
dx
3√x

3.[R]
∫∞

0 e−x dx

4.[R]
∫∞

0
dx

x+100

5.[R]
∫∞

0
x3 dx
x4+1

6.[R]
∫∞

1 x−1.01 dx

7.[R]
∫∞

0
dx

(x+2)3

8.[R]
∫∞

0 sin(2x) dx
9.[R]

∫∞
1 x−0.99 dx

10.[R]
∫∞

0
e−x sin(x2)

x+1 dx

11.[R]
∫∞

0
dx
x2+4

12.[R]
∫∞

0
x2 dx
2x3+5

13.[M]
∫∞

0
dx

(x+1)(x+2)(x+3)

14.[M]
∫∞

0
sin(x)
x2 dx

15.[M]
∫∞

1
lnx dx
x Note: An antiderivative of ln(x)/x is (ln(x))2 /2.

16.[M]
∫∞

0 e−2x sin(3x) dx

In Exercises 17 to 21 determine whether the improper integral is convergent or
divergent. Evaluate the convergent ones if possible. Some exercises may require
using the integral table in the back of the book.

17.[R]
∫ 1

0
dx
3√x

18.[R]
∫ 1

0
dx
3√x

19.[R]
∫ 1

0
dx

(x−1)2

20.[M]
∫∞

0
e−x√
x
dx

21.[M]
∫ 1

0
dx√

x
√

1−x Note: This integrand is undefined at both endpoints, x = 0
and x = 1.

22.[R]

(a) For which values of k is
∫ 1

0 x
k dx improper.
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(b) For which values of k is
∫ 1

0 x
k a convergent improper integral?

(c) For which values of k is
∫ 1

0 x
k a divergent improper integral?

23.[R]

(a) For which values of k is
∫∞

1 xk dx convergent?

(b) For which values of k is
∫∞

1 xk dx divergent?

24.[R]

(a) For which positive constants p is
∫ 1

0 dx/xp convergent? divergent?

(b) For which positive constants p is
∫∞

1 dx/xp convergent? divergent?

(c) For which positive constants p is
∫∞

0 dx/xp convergent? divergent?

25.[R] Let R be the region between the curves y = 1/x and y = 1/(x + 1) to the
right of the line x = 1. Is the area of R finite or infinite? If it is finite, evaluate it.

26.[R] Let R be the region between the curves y = 1/x and y = 1/x2 to the right
of x = 1. Is the area of R finite or infinite? If it is finite, evaluate it.

27.[R] Describe how you would go about estimating
∫∞

0 e−x
2
dx with an error less

than 0.02. (Do not do the arithmetic.)

28.[R] Describe how you would go about estimating
∫∞

0
dx√
1+x4

with an error less
than 0.01. (Do not do the arithmetic.)

29.[M] Example 4 showed that
∫∞

0 e−x sin(x) dx is convergent. Find its value.
Hint: First find constants A and B such that Ae−x sin(x) + Be−x cos(x) is an an-
tiderivative of e−x sin(x).

30.[M] In Example 5 the area of the region bounded by y = 1/
√
x, x = 1, and the

coordinate axes was found to have area 2. Confirm this result by using horizontal
cross sections and evaluating an improper integral from 0 to ∞.

31.[M] The function f(x) = sin(x)
x for x 6= 0 and f(0) = 1 occurs in communication

Calculus December 6, 2010



672 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

theory. Show that the energy E of the signal represented by f is finite, where

E =

∞∫
−∞

(f(x))2 dx.

32.[M] Let f(x) be a positive function and let R be the region under y = f(x) and
above [1,∞]. Assume that the area of R is infinite. Does it follow that the volume
of the solid of revolution formed by revolving R about the x-axis is infinite?

33.[M]

(a) Sketch the graph of y = 1/x, for x > 0.

(b) Is the part below the graph and above (0, 1] congruent to the part below the
graph and above [1,∞)?

(c) What does this say about the convergence or divergence of
∫ 1

0
dx
x and

∫∞
1

dx
x ?

34.[M]

(a) Sketch the graph of y = 1/x2 for x > 0.

(b) Is the part below the graph and above (0, 1] congruent to the part below the
graph and above [1,∞)?

(c) What does this say about the convergence or divergence of
∫ 1

0
dx
x2 and

∫∞
1

dx
x2 ?

(d) What does this say about the convergence or divergence of
∫ 1

0
dx√
x

and
∫∞

1
dx√
x
?

35.[M] In the study of the harmonic oscillator one meets the integral

∞∫
−∞

dx

(1 + kx2)3
,

where k is a positive constant. Show this improper integral is convergent.

36.[M] If
∫∞

0 e−x
2
dx =

√
π/2, show that

∫∞
0 2−x

2
dx =

√
π/ ln(4).

37.[M]

(a) Is the region under y = 1/x2 and above [1,∞) congruent to the region under
the same curve above (0, 1]?
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(b) Is the region under y = 1/x and above [1,∞) congruent to the region under
the same curve above (0, 1]?

38.[C] Consider the improper integral
∫ 1

0
dx
x2 . Suppose the interval [0, 1] is parti-

tioned into n equal-width pieces. That is xi = i/n for all i = 0, 1, . . . , n.

(a) Show that the approximating sum Sn =
∑n

i=1
1
c2i

∆xi =
∑n

i=1
n
i2

.

(b) Show that limn→∞ Sn does not exist. Hint: Show that Sn ≥ n for all positive
integers n.

39.[C] Plankton are small football-shaped organisms. The resistance they meet
when falling through water is proportional to the integral

∞∫
0

dx√
(a2 + x)(b2 + x)(c2 + x)

,

where a, b, and c describe the dimensions of the plankton. Is this improper integral
convergent or divergent? (Explain.)

40.[C] In R. P. Feynman, Lectures on Physics, Addison-Wesley, Reading, MA,
1963, appears this remark: “. . . the expression becomes

U

V
=

(kT )4

h̄3π2c3

∞∫
0

x3 dx

ex − 1
.

This integral is just some number that we can get, approximately, by drawing a
curve and taking the area by counting squares. It is roughly 6.5. The mathemati-
cians among us can show that the integral is exactly π4/15.” Show at least that the
integral is convergent.

41.[C]

(a) Assume that f(x) is continuous and nonnegative and that
∫∞

1 f(x) dx is con-
vergent. Show by sketching a graph that limx→∞ f(x) may not exist.

(b) Show that if we add the condition that f is a decreasing function, then
limx→∞ f(x) = 0.

42.[C] Here is the standard proof of the absolute convergence test. Assume that∫∞
0 |f(x)| dx converges. Let g(x) = f(x) + |f(x)|. Note that 0 ≤ g(x) ≤ 2|f(x)|.

Thus
∫∞

0 g(x) dx converges, that is,
∫∞

0 (f(x) + |f(x)|) dx converges. It follows,
since f(x) = (f(x) + |f(x)|)− |f(x)|, that

∫∞
0 f(x) dx converges.

Calculus December 6, 2010



674 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

(a) Study this proof.

(b) State the advantages and disadvantages of each proof, the standard one and
the proof in the text.

(c) Which proof do you prefer? Why?

43.[C] In the proof of the Absolute Convergence Test for Improper Integrals (The-
orem 7.8.1), we assumed that the functions g and h are continuous. They are, as
the following steps show:

(a) Show that |f(x)| =
√

(f(x))2).

(b) Show that if f(x) is continuous, so is |f(x)|.

(c) Show that g(x) = 1
2(f(x) + |f(x)|).

(d) Deduce that g is continuous.

(e) Deduce that h is continuous.

44.[M] If A is in [0, L] and B is in [−L, 0], why is A+B in [−L,L]?
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7.S Chapter Summary

There are two ideas in this chapter. One is “make a large, clear drawing
when setting up a definite integral.” The other is “make a local estimate of
the total quantity” — whether that quantity is area, volume, force of water,
work, or something altogether different. If the local estimate is f(x) dx, the

total quantity is represented by a definite integral
∫ b
a
f(x) dx (or an improper

integral).
The following table summarizes some of the applications of the definite

integral.

Section Concept Memory Aid

7.1 Area =
∫ b
a
c(x) dx

7.4 Volume =
∫ b
a
A(x) dx

Special Case: Solid of revolution (perpendicular
cross sections)

7.5 Volume =
∫ b
a

2πR(x)c(x) dx
Special Case: Solid of revolution (parallel cross-
sections)

7.6 Force of water

7.7 Work
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The final section, on improper integrals, shows how to deal with integrals
over infinite intervals (that are surprisingly common) and integrands that be-
come infinite (much less common).

EXERCISES for 7.S Key: R–routine, M–moderate, C–challenging

1.[M] Consider the parabola y = x2 and two points on it, P = (a, a2) and Q =
(b, b2).

(a) Show that the tangent to the parabola at the midpoint between P and Q,
R =

(
a+b

2 ,
(
a+b

2

)2)
is parallel to the chord PQ.

(b) Show that the area of the parabola below the chord is (b− a)3/6.

(c) Show that the area of triangle PQR is (b− a)3/4.

Archimedes proved that the area of the parabolic section under PQ is 4/3 the area
of triangle PQR. See S. Stein, Archimedes: What did he do besides cry Eureka?,
MAA, Washington, DC, 1999 (pp. 51–60).

2.[M]

(a) The exponential function is an increasing function for all x. Use this fact to
show that ex > 1 for all x > 0.

(b) Suppose f(t) > g(t) for all t > a. Explain why
∫ x
a f(t) dt >

∫ x
a g(t) dt for all

x > a.

(c) Use (b) to show that ex > 1 + x for all x > 0.

(d) Use (b) and (c) to show that ex > 1 + x+ x2

2 for all x > 0.

3.[M] Extend the argument in Exercise 2 to show that ex >
∑n+1

i=0
xi

i! . Use this fact
to show that limx→∞

xn

ex = 0.

4.[M] The average distance of an electron from the nucleus of a hydrogen atom
involves the integral

∞∫
0

e−xx5 dx.

Show that it is convergent. (Its value is 5! = 120).

5.[M] If
∫∞

0 f(x) dx is convergent, does it follow that

(a) limx→∞ f(x) = 0?
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(b) limx→∞
∫ x+0.1
x f(t) dt = 0?

(c) limx→∞
∫ 2x
x f(t) dt = 0?

(d) limx→∞
∫∞
x f(t) dt = 0?

Note: Compare with Exercise 18 in Chapter 11.

6.[C] Consider the following argument: “Approximate the surface area of the sphere
of radius a shown in Figure 7.S.1(a) as follows. To approximate the surface area
between x and x + dx, let us try using the area of the narrow curved part of the
cylinder used to approximate the volume between x and x+dx. (This part is shaded
in Figure 7.S.1(b).) This local approximation can be pictured (when unrolled and
laid flat) as a rectangle of width dx and length 2πr. The surface area of a sphere is∫ a
−a 2πr dx = 4π

∫ a
0

√
a2 − x2 dx. But

∫ a
0

√
a2 − x2 dx = πa2/4, since it equals the

area of a quadrant of a disk. Hence the area of the sphere is then π2a2.” This does
not agree with the correct value, 4πa2, which was discovered by Archimedes in the
third century B.C. What is wrong with this argument?

(a) (b)

Figure 7.S.1:
7.[C] Determine if the following improper integral converges or diverges:

∫∞
0

x dx√
1+x4

8.[M] The probability that ball bearing A survives at least until time t will be
denoted as F (t). For ball bearing B let G(t) be the probability that it survives at
least until time t.

(a) Show that the probability thatA lasts at least as long asB is−
∫∞

0 F (t)G′(t) dt.

(b) Similarly, the probability thatB lasts at least as long asA is−
∫∞

0 G(t)F ′(t) dt.
Assume that the probability that A and B last exactly the same time is 0.
Why should −

∫∞
0 F (t)G′(t) dt −

∫∞
0 G(t)F ′(t) dt = 1? Show that it does

equal 1.
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In Exercise 9 assume
∫∞
−∞ e

−x2
dx =

√
π, which will be established in Section 17.3

(see Exercise 34 on 1424).
Let µ and σ be constants. The normal distribution, also called the Gaussian distri-
bution and the bell curve, is given by the density function

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

9.[M]

(a) Show that the graph of f is symmetric with respect to the line x = µ.

(b) Show that
∫∞
−∞ f(x) dx = 1.

(c) Show that
∫∞
−∞ xf(x) dx = µ. Note: µ is the average value of x, and is called

the mean of the distribution.

(d) Show that
∫∞
−∞(x−µ)2f(x) dx = σ2. Note: σ2, called the variance, measures

the deviation of x from the mean. The number σ is called the standard
deviation of the distribution. Both measure the tendency of the data to
spread out away from the mean.

(e) Show that f(x) has two inflection points, which occur when x = µ + σ or
x = µ− σ.

(f) Sketch the graph of a typical f(x).

The normal distribution, first introduced in Exercises 98 to 102 in Section 5.7, is
defined for a variable that can take on both positive and negative values. However,
such variables as incomes, life spans, amounts of rainfall, scores on examinations,
and ages of first marriages, do not assume negative values. In these cases it may
be more appropriate to use a log-normal distribution, which is defined only for
(0,∞). (See, for instance, The Lognormal Distribution, by economists J. Atchison
and J. A. C. Brown, 1957.)
Let f(x) be the density in a normal distribution. The density, g(x), of the log-normal
distribution is defined, for a > 0, by the equation

a∫
0

`(x) dx =

ln(a)∫
−∞

f(x) dx.

This says, “the probability that x is at most a is the probability that ln(x) is at
most ln(a), as given by the normal distribution.”
10.[C] In this problem f(x) is the density of a normal distribution with mean µ and
variance σ2 and g(x) is the density of the corresponding log-normal distribution.

(a) Show that g(x) = 1
xf(ln(x)) for x > 0.
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(b) Show that
∫∞

0 g(x) dx = 1.

(c) Show that the mean value of the log-normal distribution,
∫∞

0 xg(x) dx, equals

eµ+σ2

2 .

(d) Show that limx→∞ g(x) = 0.

(e) Show that limx→0+ g(x) = 0.

(f) Show that the maximum of g(x) occurs when x is eµ−σ
2
.

(g) What is the maximum of g(x)?

(h) Show that
∫ eµ

0 g(x) dx =
∫∞
eµ g(x) dx. Thus, half the area under the curve

y = g(x) lies to the left of eµ.

(i) Sketch the general shape of the log-normal distribution. Remember that g(x)
is defined only for x in (0,∞).

Skill Drill: Derivatives

In Exercises 11 to 13 a, b, c, m, and p are constants. In each case verify that the
derivative of the first function is the second function.
11.[R] x

a −
1
ap ln (a+ bepx); 1

a+bepx .

12.[R] 1√
−c arcsin

(
−cx−b√
b2−4ac

)
; 1√

a+bx+cx2
, for any negative number c.

13.[R] 1
c ln

(√
z + bx+ cx2 + x

√
c+ b

2
√
c

)
; 1√

a+bx+cx2
, for any positive number c.
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Calculus is Everywhere # 9

Escape Velocity

In Example 2 in Section 7.7 we saw that the total work required to lift a 1-
pound payload from the surface of the earth to the moon is 3,933 mile-pounds.
Since the radius of the earth is about 4,000 miles, the work required to launch
a payload on an endless journey is given by the improper integral

∞∫
4,000

(
4, 000

r

)2

dr = 4, 000 mile-pounds.

Because the integral is convergent, only a finite amount of energy is needed
to send a payload on an endless journey — as the Voyager spacecraft has
demonstrated. It takes only a little more energy than is required to lift the
payload to the moon.

That the work required for the endless journey is finite raises the question
“With what initial velocity must we launch the payload so that it never falls
back, but continues to rise forever away from the earth?” If the initial velocity
is too small, the payload will rise for a while, then fall back, as anyone who
has thrown a ball straight up knows quite well.

The energy we supply the payload is kinetic energy. The force of gravity
slows the payload and reduces its kinetic energy. We do not want the kinetic
energy to shrink to zero. It it were ever zero, then the velocity of the payload
would be zero. At that point the payload would start to fall back to earth.

As we will show, the kinetic energy of the payload is reduced by exactly the
amount of work done on the payload by gravity. If vesc is the minimal velocity
needed for the payload to “escape” and not fall back, then

1

2
mv2

esc = 4, 000 mile-pounds, (C.9.1)

where m is the mass of the payload. Equation (C.9.1) can be solved for vesc,
the escape velocity.

In order to solve (C.9.1) for vesc, we must calculate the mass of a payload
that weighs 1 pound at the surface of the earth. The weight of 1 pound is the
gravitational force of the earth pulling on the payload. Newton’s equation

Force = Mass× Acceleration, (C.9.2)

known as his “second law of motion,” provides the relationship among force,
mass, and the acceleration of that mass that is needed.
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The acceleration of an object at the surface of the earth is 32 feet per
second per second, or 0.0061 miles per second per second. Then (C.9.2), for
the 1-pound payload, becomes

1 = m(0.0061). (C.9.3)

Combining (C.9.1) and (C.9.3) gives

1

2

1

0.0061
(vesc)

2 = 4, 000

or (vesc)
2 = (8, 000)(0.0061) = 48.8.

Hence vesc ≈ 7 miles per second, which is about 25,000 miles per hour, a
speed first attained by human beings when Apollo 8 traveled to the moon in
December 1968. All that remains is to justify the claim that the change in
kinetic energy equals the work done by the force.

Let v(r) be the velocity of the payload when it is r miles from the center
of the earth. Let F (r) be the force on the payload when it is r miles from
the center of the earth. Since the force is in the opposite direction from the
motion, we will define F (r) to be negative.

Figure C.9.1:

Let a and b be numbers, 4, 000 ≤ a < b. (See Figure C.9.1.) We wish to
show that

1

2
m(v(b))2 − 1

2
m(v(a))2︸ ︷︷ ︸

change in kinetic energy

=

b∫
a

F (r)dr

︸ ︷︷ ︸
work done by gravity

. (C.9.4)

In this equation m is the payload mass. Note that both sides of (C.9.4) are
negative.

Equation (C.9.4) resembles the Fundamental Theorem of Calculus. If we
could show that 1

2
m(v(r))2 is an antiderivative of F (r), then (C.9.4) would

follow immediately. Let us find the derivative of 1
2
m(v(r))2 with respect to r

and show that it equals F (r):

d
dr

(
1
2
m(v(r))2

)
= mv(r)dv

dr
= mv(r)dv/dt

dr/dt
(Chain Rule; t is time)

= mv(r)d
2r/dt2

v(r)
= md2r

dt2
(v(r) = dr

dt )
= mass× acceleration
= F (r) (Newton’s 2nd Law of Motion.

Hence (C.9.4) is valid and we have justified our calculation of escape velocity.
Incidentally, the escape velocity is

√
2 times the velocity required for a

satellite to orbit the earth (and not fall into the atmosphere and burn up).

EXERCISES 1.[R] The earth is not a perfect sphere. The“mean radius” of
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the earth is about 3,959 miles. A more accurate value for the force of gravity is
32.174 feet per second per second. Repeat the derivation of the escape velocity us-
ing these values. References: http://en.wikipedia.org/wiki/Earth_radius and
http://en.wikipedia.org/wiki/Standard_gravity.

2.[R] Repeat the derivation of the escape velocity using CGS units. That is, as-
sume the radius of the earth is 6,371 kilometers and the force of gravity is 9.80665
meters per second per second.

3.[R] Determine the escape velocity from the moon. Note: What information do
you need to complete this calculation?

4.[R] Determine the escape velocity from the sun.
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Calculus is Everywhere # 10

Average Speed and Class Size

There are two ways to define your average speed when jogging or driving a car.
You could jot down your speed at regular intervals of time, say, every second.
Then you would just average those speeds. That average is called an average
with respect to time. Or, you could jot down your velocity at regular intervals
of distance, say, every hundred feet. The average of those velocities is called
an average with respect to distance.

How do you think they would compare? If you kept a constant speed, c, the
averages would both be c. Are they always equal, even if your speed varies?
Would one of the averages always tend to be larger? Try to answer the question pronounced: ”ko-shee’

shwartz”before we analyze it mathematically, with the aid of the Cauchy-Schwartz
inequality.

There are several versions of the Cauchy-Schwartz inequality. The version
we need here concerns two continuous functions, f and g, defined on an interval
[a, b]. If

∫ b
a
f(x)2 dx and

∫ b
a
g(x)2 dx are small, then the absolute value of∫ b

a
f(x)g(x) dx ought to be small too. It is, as the following Cauchy-Schwartz

inequality implies: b∫
a

f(x)g(x) dx

2

≤
b∫

a

f(x)2 dx

b∫
a

g(x)2 dx. (C.10.1)

After showing some of its applications, we will use the quadratic formula
to show that it is true.

First we use the inequality (C.10.1) to answer the question, “Which average
of speed is larger, the one with respect to time or the one with respect to
distance?”

Let the speed at time t be v(t) and let s(t) be the distance traveled up to
time t. During the time interval from time a to time b the average of velocity
with respect to time is ∫ b

a
v(t) dt

b− a
=
s(b)− s(a)

b− a
.

On the other hand, the average of velocity with respect to distance is defined
as ∫ s(b)

s(a)
v(s) ds

s(b)− s(a)
, (C.10.2)
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where v(s) denotes the velocity when the distance covered is s. Changing the
independent variable in the numerator of (C.10.2) from s to t by the relation
ds = v(t) dt, we obtain ∫ s(b)

s(a)
v(s) ds

s(b)− s(a)
=

∫ b
a
v(t)v(t) dt

s(b)− s(a)
.

Noting that s(b)− s(a) =
∫ b
a
v(t) dt and b− a =

∫ b
a

1 dt, we will show that the
average with respect to time is less than or equal to the average with respect
to distance, that is, ∫ b

a
v(t) dt∫ b
a

1 dt
≤
∫ b
a
v(t)2 dt∫ b

a
v(t) dt

.

Or, equivalently,  b∫
a

v(t) dt

2

≤
b∫

a

1 dt

b∫
a

v(t)2 dt. (C.10.3)

But, (C.10.3) is a special case of (C.10.1), with f(t) = 1 and g(t) = v(t).
This implies that the average with respect to time is always less than or

equal to the average with respect to distance. Exercise 1 shows a bit more: if
the speed is not constant, then the average with respect to time is less than
the average with respect to distance.

The way to show that inequality (C.10.1) holds is indirect but short. In-
troduce a new function, h(t), defined by

h(t) =

b∫
a

(f(x)− tg(x))2 dx =

b∫
a

f(x)2 dx− 2t

b∫
a

f(x)g(x) dx+ t2
b∫

a

g(x)2 dx.

(C.10.4)
Because the first integrand in (C.10.4) is never negative, h(t) ≥ 0. Now,
h(t) = pt2 + qt+ r, where

p =

b∫
a

g(x)2 dx, q = −2

b∫
a

f(x)g(x) dx, and r =

b∫
a

f(x)2 dx.

The parabola y = h(t) never drops below the t-axis, and touches the t-axis at
at most one point. Otherwise, if it touches the t-axis at two points, it would
dip below that axis, forcing h(t) to take on some negative values.

Because the equation h(t) = 0 has at most one solution, the discriminant
q2 − 4pr must not be positive. Thus, q2 − 4pr ≤ 0, from which the Cauchy-
Schwartz inequality follows.
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EXERCISES

1.[M] Show that the only case when equality holds in (C.10.1) is when g(x) is a
constant times f(x).

2.[M] The “discrete” form of the Cauchy-Schwartz inequality asserts that if a1, a2,
a3, . . . , an and b1, b2, b3, . . . , bn are real numbers, then(

n∑
i=1

aibi

)2

≤
n∑
i=1

a2
i

n∑
i=1

a2
i .

(a) Prove this inequality.

(b) When does equality hold?

3.[M] Use the inequality in Exercise 2 to show that the average class size at a
university as viewed by the registrar is usually smaller than the average class size
as viewed by the students.

It is also the case that the average time between buses as viewed by the dispatcher
is usually shorter than the average time between buses as viewed by passengers
arriving randomly at a bus stop.
Reference: S. K. Stein, An Inequality Between Two Average Speeds, Transportation
Research 22B (1988), pp. 469–471.
4.[C] A region R is bounded by the x-axis, the lines x = 2 and x = 5, and the
curve y = f(x), where f is a positive function. The area of R is A. When revolved
around the x-axis it produces a solid of volume V .

(a) How large can V be?

(b) How small can V be?

Hint: In one of these two cases the Cauchy-Schwartz inequality on 683 may help.

5.[C] If the region R in the preceding exercise is revolved around the y-axis, what
can be said about the maximum and minimum values for the volume of the resulting
solid? Explain.
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Chapter 8

Computing Antiderivatives

In Chapter 7 we saw several uses for definite integrals in geometry and physics.
Similar applications of integration can be found in many other fields, including
economics, engineering, biology, and statistics. Definite integrals are usually
either evaluated using the Fundamental Theorem of Calculus or estimated
numerically, as discussed in Section 6.5.

To evaluate
∫ b
a
f(x) dx by the Fundamental Theorem of Calculus (FTC I)

we need to find an antiderivative F (x) of the integrand f(x), then
∫ b
a
f(x) dx

is simply F (b) − F (a). This chapter describes techniques for finding an an-
tiderivative.

The problem of finding an antiderivative differs from that of finding a
derivative in two important ways. First, the antiderivatives of some elementary
functions, such as ex

2
, are not elementary. On the other hand, as we saw in

Chapter 3, the derivatives of all elementary functions are elementary.
Second, a slight change in the form of a function can cause great change in

the form of its antiderivative. For instance,∫
dx

x2 + 1
= arctan(x) + C while

∫
x dx

x2 + 1
=

1

2
ln(x2 + 1) + C,

as you may check by differentiating arctan(x) and 1
2

ln(x2 + 1). On the other
hand, a slight change in the form of an elementary function produces only a
slight change in the form of its derivative.

There are three ways to find an antiderivative:

• By hand, using techniques described in this chapter

• By an integral table

• By computer, calculator, or other automated integrator.
SHERMAN: I do not like
the phrasing here,
particularly the last part.
Comments apply to
computer and calculator.
Call them automated
integrators?
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Section 8.1 illustrates a few shortcuts, describes how to use integral tables,
and discusses the strengths and weaknesses of computer-based evaluation of
integrals.

Section 8.2 presents “substitution,” the most important technique for find-
ing an antiderivative.

Section 8.3 describes“integration by parts,” a technique that has many
uses, such as in solving differential equations, besides finding antiderivatives.

Section 8.4 discusses the integration of rational functions.
Section 8.5 describes how to integrate some special integrands.
Section 8.6 offers an opportunity to practice the techniques when there is

no clue as to which is the best to use.
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8.1 Shortcuts, Tables, and Technology

In this section we list antiderivatives of some common functions and some
shortcuts. Then we describe integral tables and the computation of antideriva-
tives by computers.

Some Common Integrands

Every formula for a derivative provides a corresponding formula for an an-
tiderivative. For instance, since (x3/3)′ = x2, it follows that∫

x2 dx =
x3

3
+ C.

The following miniature integral table lists a few formulas that should be
memorized. Each can be checked by differentiating the right-hand side of the
equation.

∫
xa dx = xa+1

a+1
+ C for a 6= −1∫

1
x
dx = ln |x|+ C This is

∫
xa dx for a = −1.∫ f ′(x)

f(x)
dx = ln |f(x)|+ C if f(x) > 0, the absolute value can

be omitted.∫
(f(x))n f ′(x) dx = (f(x))n+1

n+1
+ C for n 6= −1∫

eax dx = eax

a
+ C∫

sin(ax) dx = −1
a

cos(ax) + C remember the negative sign∫
cos(ax) dx = 1

a
sin(ax) + C∫

1√
a2−x2 dx = arcsin

(
x
a

)
+ C∫

1
a2+x2 dx = 1

a
arctan

(
x
a

)
+ C∫

1
|x|
√
x2−a2 dx = 1

a
arcsec

(
x
a

)
+ C
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EXAMPLE 1 Find
∫

(2x4 − 3x+ 2) dx.Antiderivative of a
polynomial SOLUTION

One constant of integration
is enough

∫
(2x4 − 3x+ 2) dx =

∫
2x4 dx−

∫
3xdx+

∫
2 dx

= 2

∫
x4 dx− 3

∫
x dx+ 2

∫
1 dx

= 2
x5

5
− 3

x2

2
+ 2x+ C

�

EXAMPLE 2 Find
∫

4x3

x4+1
dx

SOLUTION The numerator is precisely the derivative of the denominator.
HenceAntiderivative of f ′/f ∫

4x3

x4 + 1
dx = ln |x4 + 1|+ C

Since x4 + 1 is always positive, the absolute-value sign is not needed, and∫
4x3

x4+1
dx = ln(x4 + 1) + C. �

EXAMPLE 3 Find
∫ √

x dx.Antiderivative of xa

SOLUTION ∫ √
x dx =

∫
x1/2 dx =

x1/2+1

1
2

+ 1
+ C =

2

3
x3/2 + C

�

EXAMPLE 4 Find
∫

1
x3 dx.

SOLUTION∫
1

x3
dx =

∫
x−3 dx =

x−3+1

−3 + 1
+ C = −1

2
x−2 + C = − 1

2x2
+ C.

�

EXAMPLE 5 Find
∫

(3 cos(x)− 4 sin(2x) + 1
x2 ) dx.

SOLUTION∫
(3 cos(x)− 4 sin(2x) +

1

x2
) dx = 3

∫
cos(x) dx− 4

∫
sin(2x) dx+

∫
1

x2
dx

= 3 sin(x) + 2 cos(2x)− 1

x
+ C.

�

December 6, 2010 Calculus



§ 8.1 SHORTCUTS, TABLES, AND TECHNOLOGY 691

EXAMPLE 6 Find
∫

x
1+x2 dx.

SOLUTION If the numerator was exactly 2x, it would be the derivative
of the denominator and we would have the case

∫
(f ′(x)/f(x)) dx: the an-

tiderivative would be ln(1 + x2). But the numerator can be multiplied by 2 if
we simultaneously divide by 2: Multiplying the integrand by

a constant∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx.

This step depends on the fact that a constant can be moved past the integral
sign:

1

2

∫
2x

1 + x2
dx =

1

2
· 2
∫

x

1 + x2
dx =

∫
x

1 + x2
dx.

Thus Since 1 + x2 > 0, the
absolute value is not needed
in ln(1 + x2).

∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx =

1

2
ln(1 + x2) + C.

�

Special Shortcuts

We present three shortcuts for evaluating some special but fairly common
definite integrals. When one of these shortcuts can be used it saves a lot of
work.
Shortcut 1 If f is an odd function, then

a∫
−a

f(x) dx = 0. (8.1.1)

Explanation. Recall that for an odd function f(−x) = −f(x). Figure 8.1.1
suggests why (8.1.1) holds. The shaded area to the left of the y-axis equals
the shaded area to the right. As integrals, however, these two areas represent
quantities of opposite sign:

∫ 0

−a f(x) dx = −
∫ a

0
f(x) dx.

Figure 8.1.1:

Therefore, the definite integral over the entire interval is 0.

EXAMPLE 7 Find
∫ 2

−2
x3
√

4− x2 dx.

SOLUTION The function f(x) = x3
√

4− x2 is odd. (Check it.) By the
shortcut,

2∫
−2

x3
√

4− x2 = 0.

�
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Shortcut 2
∫ a

0

√
a2 − x2 dx = 1

4
πa2.

Note that this shortcut applies to a particular function over a particular
interval.

Figure 8.1.2:

Explanation The graph of y =
√
a2 − x2 is part of a circle of radius a.

The definite integral
∫ a

0

√
a2 − x2 dx is a quarter of the area of that circle.

(See Figure 8.1.2.)

EXAMPLE 8 Find
∫ 1

0

√
1− x2 dx

SOLUTION Use Shortcut 2, with a = 1, to get

1∫
0

√
1− x2 dx =

π

4
.

�
Shortcut 3 If f is an even function,

a∫
−a

f(x) dx = 2

a∫
0

f(x) dx.

Figure 8.1.3:

Explanation A glance at Figure 8.1.3 suggests why this shortcut is valid.

EXAMPLE 9 Find
∫ 1

−1

√
1− x2 dx.

SOLUTION Since
√

1− x2 is an even function, by Shortcut 3:

1∫
−1

√
1− x2 dx = 2

1∫
0

√
1− x2 dx.

So, by Example 8, with a = 1,

1∫
−1

√
1− x2dx = 2 · π

4
=
π

2
.

�

Using an Integral Table

An integral table lists antiderivatives. You will find a short integral table on
the inside covers of this book. Burington’s Handbook of Mathematical Tables
and Formulas, 5th edition, McGraw-Hill, 1973, lists over 300 integrals in 33
pages. CRC Standard Math Tables, 30th edition, CRC Press, 1996, lists more
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than 700 integrals in almost 60 pages. Two Wikipedia topics devoted to tables
of integration are http://en.wikipedia.org/wiki/List_of_integrals and
http://en.wikipedia.org/wiki/Table_of_integrals.

Often integral tables use “log” to denote “ln”; it is understood that e is
the base. Most integral tables omit the constant of integration (+C).

The best way to use an integral table is to browse through one (buy one,
check one out from the library, or navigate to an online table). Notice how the
formulas are grouped. First might come the forms that everyone uses most
frequently. Then may come “forms containing ax+ b,” then “forms containing
a2 ± x2,” then “forms containing ax2 + bx + c,” and so on, running through
many different algebraic forms. There are separate sections with trigonometric
forms, logarithmic, and exponential functions. The integral table on the inside
front cover is similarly grouped.

EXAMPLE 10 Use the integral table to integrate∫
dx

x
√

3x+ 2
.

SOLUTION Search until you find Formula 23,∫
dx

x
√
ax+ b

=
1√
b

ln

∣∣∣∣∣
√
ax+ b−

√
b

√
ax+ b+

√
b

∣∣∣∣∣ b > 0,

and replace ax+ b by 3x+ 2 and b by 2. Thus∫
dx

x
√

3x+ 2
=

1√
2

ln

∣∣∣∣∣
√

3x+ 2−
√

2
√

3x+ 2 +
√

2

∣∣∣∣∣+ C.

�

EXAMPLE 11 Use the integral table to integrate∫
dx

x
√

3x− 2
, x > 2/3.

SOLUTION This time we need Formula 24 with b = −2,∫
dx

x
√
ax+ b

=
2√
−b

arctan

(√
ax+ b

−b

)
b < 0.

Thus, ∫
dx

x
√

3x− 2
=

2√
2

arctan

(√
3x− 2

2

)
+ C
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�

Though the integrands in Examples 10 and 11 are similar, their antideriva-
tives are not.

There is no need to make a big fuss about integral tables. Be cautious and
keep a cool head. Just match the patterns carefully, including any conditions
on the variables and their coefficients. Note that some formulas are expressed
in terms of an integral of a different integrand. In these cases you will have to
search through the table more than once. (Exercises 35 and 36 illustrate this.)

Computers, Calculators, and Other Automated Integra-
tors

Using an integral table is an exercise in “pattern matching”, where you hunt
for the formula that fits a particular integral. Computers are good at pattern
matching, so it is not surprising that for many years computers have been
used to find antiderivatives. MACSYMA is one of the earliest computer-based
programs that perform the basic operations of calculus: limits, derivatives,
integrals. Today, the most widely used computer algebra systems are Maple
and Mathematica.

This technology is slowly creeping to handheld calculators. With such
wide-ranging aids at our fingertips, calculus users do not need to rely as much
on formal integration techniques or tables of integrals. What is essential is
that they understand what an integral is, what it can represent, and how to
utilize information obtained from an integral.

In addition to matching problems with formulas from large tables of inte-
grals, these programs utilize various substitutions and computations to trans-
form integrals into forms that can be evaluated.

In spite of the availability of integral tables, and computer programs, it is
often simpler to use one of the techniques described later in this chapter.
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EXERCISES for Section 8.1 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 14 find the integrals. Use the short list at the beginning of the
section.

1.[R]
∫

5x3 dx

2.[R]
∫

(8 + 11x) dx

3.[R]
∫
x1/3 dx

4.[R]
∫

3
√
x2 dx

5.[R]
∫

6 dx
x2

6.[R]
∫
dx

x3

7.[R]
∫

5e−2x dx

8.[R]
∫

5 dx
1 + x2

9.[R]
∫

6 dx
|x|
√
x2 − 1

10.[R]
∫

5 dx√
1− x2

11.[R]
∫

4x3 dx

1 + x4

12.[R]
∫

ex dx

1 + ex

13.[R]
∫

sin(x) dx
1 + cos(x)

14.[R]
∫

dx

1 + 3x

In Exercises 15 to 20, change the integrand into an easier one by algebra and find
the antiderivative.

15.[R]
∫

1 + 2x
x2

dx Hint: a+b
c = a

c + b
c

16.[R]
∫

1 + 2x
1 + x2

dx

17.[R]
∫

(x2 + 3)2 dx Hint: First multiply out the integrand.

18.[R]
∫

(1 + ex)2 dx
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19.[R]
∫

(1 + 3x)x2 dx

20.[R]
∫

1 +
√
x

x
dx

21.[R] A shortcut for

π/2∫
0

sin2(θ) dθ.)

(a) Why would you expect

π/2∫
0

cos2(θ) dθ to equal

π/2∫
0

sin2(θ) dθ?

(b) Why is

π/2∫
0

sin2(θ) dθ +

π/2∫
0

cos2(θ) dθ = π/2.

(c) Conclude that

π/2∫
0

sin2(θ) dθ = π/4.

The integrals in Exercises 22 to 28 can be evaluated using one of the shortcuts.
Hint: Is the integrand even or odd? Can you relate the integral to a known area?

Recall the result of Exercise 21:

π/2∫
0

cos2(x) dx =
π

4
=

π/2∫
0

sin2(x) dx.

22.[R]

1∫
−1

x5
√

1 + x2 dx

23.[R]

π/2∫
−π/2

sin(3x) cos(5x) dx

24.[R]

1∫
−1

x5 4
√

1− x2 dx

25.[R]

π∫
−π

sin3(x) dx

26.[R]

5∫
0

√
25− x2 dx

27.[R]

3∫
−3

√
9− x2 dx
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28.[R]

3∫
−3

(x3
√

9− x2 + 10
√

9− x2) dx

In Exercises 29 to 34 find the antiderivative with the aid of a table of integrals, such
as the one inside the front cover.
29.[R]

(a)
∫

dx

(3x+ 2)2

(b)
∫

dx

x(3x+ 2)

30.[R]

(a)
∫

dx

x
√

3x+ 4

(b)
∫

dx

x2
√

3x+ 4

31.[R]

(a)
∫

dx

x
√

3x− 4

(b)
∫

dx

x2
√

3x− 4

32.[R]

(a)
∫

dx

4x2 + 9

(b)
∫

dx

4x2 − 9

33.[R]

(a)
∫

dx

x2 + 8x+ 7

(b)
∫

dx

x2 + 2x+ 5

34.[R]

(a)
∫

dx√
11− x2
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(b)
∫

dx√
11 + x2

35.[M] Using the integral table on the inside front cover of the book, find
∫

x dx√
2x2 + x+ 5

.

Hint: Use Formula 39 first, followed by Formula 38.

36.[M] Using the integral table in the front of the book, find

(a)
∫

dx√
3x2 + x+ 2

(b)
∫

dx√
−3x2 + x+ 2
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8.2 The Substitution Method

This section describes the substitution method, which changes an integrand,
preferably to one that we can integrate more easily. Several examples will
illustrate the technique, which is the chain rule in disguise. Sometimes we can
use a substitution to transform an integral not listed in an integral table to
one that is listed. After the examples, the basis of the substitution method is
provided.

The Substitution Method

EXAMPLE 1 Find
∫

sin(x2) 2x dx.
SOLUTION Note that 2x is the derivative of x2. Make the substitution
u = x2. The differential of u is du = d

dx
(x2) dx = 2x dx and so∫

(sin(x2))2x dx =

∫
sin(u) du.

It is easy to find
∫

sin(u) du:∫
sin(u) du = − cos(u) + C.

Replacing u by x2 in − cos(u) yields − cos(x2). Thus Check the answer using the
chain rule∫

sin(x2)2x dx = − cos(x2) + C.

�
Contrast Example 1 with

∫
sin(x2) dx, which is not elementary. The pres-

ence of 2x, the derivative of x2, made it easy to find
∫

(sin(x2))2x dx.

Description of the Substitution Method

In Example 1, the integrand f(x) could be written in the form

f(x) = g(h(x))︸ ︷︷ ︸
function of h(x)

× h′(x)︸ ︷︷ ︸
derivative of h(x),

(8.2.1)

for some function h(x). To put it another way, the expression f(x) dx could
be written as
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f(x) dx = g(h(x))︸ ︷︷ ︸
function of h(x)

× h′(x) dx︸ ︷︷ ︸
derivative of h(x),

(8.2.2)

Whenever this is the case, the substitution of u for h(x) and du for h′(x) dx
transforms

∫
f(x) dx to another integral, one involving u instead of x,

∫
g(u) du.

If you can find an antiderivative G(u) of g(u), replace u by h(x). The
resulting function, G(h(x)), is an antiderivative of f(x). (This claim will be
justified at the end of the section.)

The process of using substitution to evaluate an indefinite integral can be
summarized as follows:∫

f(x) dx =

∫
g(h(x)) h′(x) dx =

∫
g(u) du = G(u) + C = G(h(x)) + C.

EXAMPLE 2 Find
∫

(1 + x3)5 x2 dx.
SOLUTION The derivative of 1 + x3 is 3x2, which differs from the x2 in the
integrand only by the constant factor 3. So let u = 1 + x3. Hence

du = 3x2 dx and
du

3
= x2 dx. (8.2.3)

Then∫
(1 + x3)5x2 dx =

∫
u5du

3
=

1

3

∫
u5 du =

1

3

u6

6
+ C =

(1 + x3)6

18
+ C.

�
If the factor x2 were not present in the integrand in Example 2, you could

still compute
∫

(1 + x3)5 dx. In this case you would have to multiply out
(1 + x3)5, which would be a polynomial of degree 15.

As Example 2 shows, you don’t need exactly “derivative of h(x)” as a
factor. Just “a constant times the derivative of h(x)” will do.

Similarly,
∫

x2
√

1+x3 dx is easy (use u = 1+x3), but
∫

dx√
1+x3 is not elementary.

The presence of x2 makes a great difference.

Substitution in a Definite Integral

The substitution technique, or “change of variables,” extends to definite inte-
grals,

∫ b
a
f(x) dx, with one important proviso:

When making the substitution from x to u, be sure to replace the interval
[a, b] by the interval whose endpoints are u(a) and u(b).
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An example will illustrate the necessary change in the limits of integration.
The technique is justified in Theorem 8.2.

EXAMPLE 3 Evaluate
∫ 2

1
3(1 + x3)5 x2 dx.

SOLUTION Let u = 1 + x3. Then du = 3x2 dx. Furthermore, as x goes
from 1 to 2, u = 1 + x3 goes from 1 + 13 = 2 to 1 + 23 = 9. Thus This is the last you see of x.

2∫
1

3(1 + x3)5x2 dx =

9∫
2

u5 du =
u6

6

∣∣∣∣9
2

=
96 − 26

6
.

Once you make the substitution in the integrand and the limits of integration,
you work only with expressions involving u. There is no need to bring back x.
�

The remaining examples present integrals needed in Section 8.4. They also
show how some formulas in integral tables are obtained.

EXAMPLE 4 Integral tables include a formula for (a)
∫
dx/(ax + b) and

(b)
∫
dx/(ax + b)n, n 6= 1. Obtain the formulas by using the substitution

u = ax+ b.
SOLUTION (a) Let u = ax+ b. Hence du = a dx and therefore dx = du/a. This is Formula 12 from the

integral table.Thus∫
dx

ax+ b
=

∫
du/a

u
=

1

a

∫
du

u
=

1

a
ln |u|+ C =

1

a
ln |ax+ b|+ C.

(b) The same substitution u = ax+ b gives∫
dx

(ax+ b)n
=

∫
du/a

un
=

1

a

∫
u−n du =

1

a

u−n+1

(−n+ 1)
+ C

=
(ax+ b)−n+1

a(−n+ 1)
+ C =

1

a(−n+ 1)(ax+ b)n−1
+ C.

�

In the next Example we use u instead of x, to simplify Example 6.

EXAMPLE 5 Find

∫
du

4u2 + 9
.

SOLUTION

∫
du

4u2 + 9
resembles

∫
du

u2 + 1
. This suggests rewriting 4u2 as

9t2, so we could then factor the 9 out of 9t2 + 9, getting 9(t2 + 1). Here are
the details.
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Introduce t so 4u2 = 9t2. To do this let 2u = 3t, so u = (3/2) t. Then
du = (3/2) dt. Also, t = (2/3)u. With this substitution we have∫

du

4u2 + 9
=

∫
(3/2) dt

9t2 + 9
=

3

2
· 1

9

∫
dt

t2 + 1

=
1

6
arctan(t) + C =

1

6
arctan

(
2u

3

)
+ C.

�
The next example uses a substitution together with “completing the square.”

To complete the square in the quadratic expression x2 + bx+ c means adding
and subtracting (b/2)2 so that we get the simpler form “v2 + k” where k is a
constant:

x2 + bx+

(
b

2

)2

+ c−
(
b

2

)2

=

(
x+

b

2

)2

+ c− b2

4
.

One squares half the coefficient of b: (b/2)2. To complete the square in ax2 +
bx+ c, where a is not 1, factor a out first:

ax2 + bx+ c = a

(
x2 +

b

a
x+

c

a

)
.

Then complete the square in x2 + (b/a)x+ c/a.

EXAMPLE 6 Find
∫

dx
4x2+8x+13

.

SOLUTION First complete the square in the denominator:Note the subtraction of
4(12), not 12.

4x2 + 8x+ 13 = 4(x2 + 2x+ ) + 13− 4

= 4(x2 + 2x+ 12) + 13− 4(12)

= 4(x+ 1)2 + 9.

We now can rewrite the integral as∫
dx

4(x+ 1)2 + 9

Let u = x+ 1, hence du = dx and we have∫
dx

4(x+ 1)2 + 9
=

∫
du

4u2 + 9
.

By a piece of good luck, we found in Example 5 that∫
du

4u2 + 9
=

1

6
arctan

(
2u

3

)
+ C
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Putting all this together: Check this by
differentiating.∫

dx

4x2 + 8x+ 9
=

∫
dx

4(x+ 1)2 + 9
=

∫
du

4u2 + 9

=
1

6
tan−1

(
2u

3

)
+ C =

1

6
tan−1

(
2(x+ 1)

3

)
+ C.

�

The integral ∫
2ax+ b

ax2 + bx+ c
dx (8.2.4)

is easy since it has the form
∫

f ′

f
dx. The integral is ln |az2 + b+ c|+C. This

observation is the key to treating the integral in the next example.

EXAMPLE 7 Find

∫
x

4x2 + 8x+ 13
dx.

SOLUTION No substitution comes to mind. However, if 8x + 8, were in
the numerator, we would have an easy integral, for 8x+ 8 is the derivative of
the denominator. So we will do a little algebra on x to get 8x + 8 into the
numerator. We can write x = 1

8
(8x+ 8)− 8

8
= 1

8
(8x+ 8)− 1. Then we have∫

x dx

4x2 + 8x+ 13
=

∫ 1
8
(8x+ 8)− 1

4x2 + 8x+ 13
dx

=
1

8

∫
8x+ 8

4x2 + 8x+ 13
−
∫

dx

4x2 + 8x+ 13

=
1

8
ln
∣∣4x2 + 8x+ 13

∣∣− 1

6
arctan

(
2(x+ 1)

3

)
.

�

The techniques of completing the square, substitution, and rewriting x in
the numerator, illustrated in Examples 6 and 7, show how to integrate any

integrand of the form
1

ax2 + bx+ c
or

x

ax2 + b+ c
.

Why Substitution Works

Theorem 8.2.1. (Substitution in an indefinite integral) Assume that f and
g are continuous functions and u = h(x) is differentiable. Suppose that f(x)
can be written as g(u)du

dx
and that G is an antiderivative of g. Then G(u(x))

is an antiderivative of f(x).

Proof
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We differentiate G(u(x)) and check that the result is f(x):

d

dx
G(u(x)) = dG

du
du
dx

(Chain Rule)

= g(u)du
dx

(by definition of G)
= f(x). (by assumption)

•

Theorem. (Substitution in a definite integral) Under the same assumptions
as in Theorem 8.2.1

b∫
a

f(x) dx =

u(b)∫
u(a)

g(u) du. (8.2.5)

Warning: If x goes from a
to b, u(x) goes from u(a)

to u(b). Be sure to change
the limits of integration Proof

Let F (x) = G(u(x)), where G is defined in the previous proof.∫ b
a
f(x) dx = F (b)− F (a) (FTC I)

= G(u(b))−G(u(a)) (definition of F )

=
∫ u(b)

u(a)
g(u) du (FTC, again)

•

Summary

This section introduced the most commonly used integration technique, “sub-
stitution:” If f(x) dx can be written as g(u(x)) d(u(x)) for a function u(x)

then
∫
f(x)dx =

∫
g(u) du and

∫ b
a
f(x) dx =

∫ u(b)

u(a)
g(u) du.

It is to be hoped that finding
∫
g(u) du is easier than finding

∫
f(x) dx.

If it is not, try another substitution or a method presented in the rest of the
chapter. There is no simple routine method for antidifferentiation of elemen-
tary functions. Practice in integration pays off in spotting which technique is
most promising and also being able to transform an integral into one listed in
an integral table.
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EXERCISES for Section 8.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 14 use the given substitution to find the antiderivatives or definte
integrals.

1.[R]
∫

(1 + 3x)53 dx; u = 1 + 3x

2.[R]
∫
esin(θ) cos(θ) dθ; u = sin θ

3.[R]

1∫
0

x√
1 + x2

dx; u = 1 + x2

4.[R]

√
15∫

√
8

x
√

1 + x2 dx; u = 1 + x2

5.[R]
∫

sin(2x) dx; u = 2x

6.[R]
∫

e2x

(1 + e2x)2
dx; u = 1 + e2x

7.[R]

2∫
−1

e3x dx; u = 3x

8.[R]

3∫
2

e1/x

x2
dx; u = 1

x

9.[R]
∫

1√
1− 9x2

dx; u = 3x

10.[R]
∫

t dt√
2− 5t2

; u = 2− 5t2

11.[R]

π/4∫
π/6

tan(θ) sec2(θ) dθ; u = tan θ

12.[R]

π2/4∫
π2/16

sin(
√
x)√
x

dx; u =
√
x

13.[R]
∫

(lnx)4

x
dx; u = lnx

14.[R]
∫

sin(lnx)
x

dx; u = lnx

Every antiderivative can be verified by checking that its derivative is the integrand.
That is, if

∫
f(x) dx = F (x), then F ′(x) = f(x). Exercises 15 to 21 ask you to
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verify an antiderivative found in one of the examples in this section.

15.[R]
∫

(sin(x2))2x dx = − cos(x2) + C (Example 1)

16.[R]
∫

(1 + x3)5x2 dx =
(1 + x3)6

18
+ C (Example 2)

17.[R]
∫

dx

ax+ b
=

1
a

ln |ax+ b|+ C (Example 4(a))

18.[R]
∫

dx

(ax+ b)n
=

1
a(−n+ 1)(ax+ b)n−1

+ C (Example 4(b))

19.[R]
∫

dx

4x2 + 9
=

1
6

arctan
(

2x
3

)
+ C (Example 5)

20.[R]
∫

dx

4x2 + 8x+ 9
=

1
6

tan−1

(
2(x+ 1)

3

)
+ C (Example 6)

21.[R]
∫

x dx

4x2 + 8x+ 13
=

1
8

ln
∣∣4x2 + 8x+ 13

∣∣−1
6

arctan
(

2(x+ 1)
3

)
(Example 7)

In Exercises 22 to 47 use appropriate substitutions to find the antiderivatives.

22.[R]
∫

(1− x2)5x dx

23.[R]
∫

x dx

(x2 + 1)3

24.[R]
∫
x

3
√

1 + x2 dx

25.[R]
∫

sin(θ)
cos2(θ)

dθ

26.[R]
∫
e
√
t

√
t
dt

27.[R]
∫
ex sin(ex) dx

28.[R]
∫

sin(3θ) dθ

29.[R]
∫

dx√
2x+ 5

30.[R]
∫

(x− 3)5/2 dx

31.[R]
∫

dx

(4x+ 3)3

32.[R]
∫

2x+ 3
x2 + 3x+ 2

dx

33.[R]
∫

2x+ 3
(x2 + 3x+ 5)4

dx
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34.[R]
∫

x3

√
1− x8

dx

35.[R]
∫

dx√
x(1 +

√
x)3

36.[R]
∫
x4 sin(x5) dx

37.[R]
∫

cos(ln(x)) dx
x

38.[R]
∫

x

1 + x4
dx

39.[R]
∫

x3

1 + x4
dx

40.[R]
∫

x dx

(1 + x)3

41.[R]
∫

x2 dx

(1 + x)3

42.[R]
∫

ln(3x) dx
x

43.[R]
∫

ln(x2) dx
x

44.[R]
∫

(arcsin(x))2

√
1− x2

dx

45.[R]
∫

dx

arctan(2x)(1 + 4x2)

46.[R]
∫

dx

9x2 + 1

47.[R]
∫

dx

9x2 + 25

In Exercises 48 and 49 complete the square in each expression.

48.[R]

(a) x2 + 6x+ 10

(b) 4x2 + 6x+ 11

49.[R]

(a) x2 + 5
3x+ 4

(b) 3x2 + 5x+ 12
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50.[R] Evaluate
∫

dx

x2 + 2x+ 5

51.[R] Evaluate
∫

dx

2x2 + 2x+ 5

52.[R] Evaluate
∫

x

x2 + 2x+ 5
dx

53.[R] Evaluate
∫

x

2x2 + 2x+ 5
dx

In Exercises 54 to 59 find the area of the region under the graph of the given function
and above the given interval.

54.[R] f(x) = x2ex
3
; [1, 2]

55.[R] f(x) = sin3(θ) cos(θ); [0, π/2]

56.[R] f(x) = x2+3
(x+1)4

; [0, 1] Hint: Let u = x+ 1.

57.[R] f(x) = x2−x
(3x+1)2

; [1, 2]

58.[R] f(x) = (ln(x))3

x ; [1, e]

59.[R] f(x) = tan5(θ) sec2(θ); [0, π3 ]

In Exercises 60 to 63 use substitution to evaluate the integral.

60.[M]
∫

x2

ax+ b
dx; a 6= 0

61.[M]
∫

x

(ax+ b)2
dx; a 6= 0

62.[M]
∫

x2

(ax+ b)2
dx; a 6= 0

63.[M]
∫
x(ax+ b)n dx; for (a) n = −1, (b) n = −2

64.[M] Use a substitution to show that if f is an odd function then
∫ a
−a f(x) dx = 0.

Hint: First show that
∫ 0
−a f(x) dx = −

∫ a
0 f(x) dx by using the substitution u = −x.

(Do not refer to “areas”.)

65.[M] Use a substitution to show that if f is an even function, then
∫ a
−a f(x) dx =

2
∫ a

0 f(x) dx. Hint: First show that
∫ 0
−a f(x) dx =

∫ a
0 f(x) dx by using the substi-

tution u = −x. (Do not refer to “areas”.)

66.[M]
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(a) Graph y = ln(x)/x.

(b) Find the area under the curve in (a) and above the interval [e, e2]

67.[C] Sam (using the substitution u = cos(θ)) claims that
∫

2 cos(θ) sin(θ) dθ =
− cos2(θ), while Jane (using the substitution u = sin(θ)) claims that the answer is
sin2(θ). Who is right? Explain.

68.[C] Jane says, “
∫ π

0 cos2(θ) dθ is obviously positive.”
Sam claims, “No, its zero. Just make the substitution u = sin(θ); hence du =
cos(θ) dθ. Then I get

π∫
0

cos2(θ) dθ =

π∫
0

cos(θ) cos(θ) dθ =

0∫
0

√
1− u2 du = 0.

Simple.”

(a) Who is right? What is the mistake?

(b) Use the identity cos2(θ) = (1 + cos(2θ))/2 to evaluate the integral without
substitution or the shortcut in Section 8.1.

69.[C] Jane asserts that
∫ 1
−2 2x2 dx is obviously positive. “After all, the integrand

is never negative and −2 < 1. It equals the area under y = 2x2 and above [−2, 1]”.
“You’re wrong again,” Sam replies, “It’s negative. Here are my computations. Let
u = x2; hence du = 2x dx. Then

1∫
−2

2x2 dx =

1∫
−2

x · 2x dx =

1∫
4

√
u du = −

4∫
1

√
u du,

which is obviously negative.” Who is right? Explain.
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8.3 Integration by Parts

Integration by substitution, described in the previous section, is based on the
chain rule. The technique called “integration by parts,” is based on the product
rule for derivatives.

The Basis for “Integration by Parts”
It is a tradition to use u and
v instead of the expected f

and g.
If u and v are differentiable functions then

(uv)′ = u′ v + u v′.

This tells us that uv is an antiderivative of u′ v + u v′:

uv =

∫
(u′ v + u v′) dx,

Then

uv =

∫
u′ v dx+

∫
u v′ dx,

which can be rearranged as

∫
u v′ dx = u v −

∫
u′ v dx (8.3.1)

This equation tells us, “if you can integrate u′ v, then you can integrate
u v′.” Now, u′ v may look quite different from u v′. Maybe

∫
u′ v dx is easier

to find than
∫
u v′ dx. The technique based on (8.3.1) is called “Integration

by Parts”.

Using the differentials du = u′ dx and dv = v′ dx, we can replace (8.3.1)
by the shorter version

∫
u dv = uv −

∫
v du (8.3.2)
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Typical Examples

EXAMPLE 1 Find
∫
xe3x dx.

SOLUTION Let’s see what happens if we let u = x. Because u dv must equal
xe3x dx, we must choose dv = e3x dx. That is, v′ = e3x. Then, differentiating
u gives du = dx and integrating v′ gives v =

∫
e3x dx = e3x/3. The integration

by parts formula, (8.3.2), tells us that:∫
x︸︷︷︸
u

e3x dx︸ ︷︷ ︸
dv

= x︸︷︷︸
u

e3x

3︸︷︷︸
v

−
∫

e3x

3︸︷︷︸
v

dx︸︷︷︸
du

=
xe3x

3
− e3x

9
= e3x(

x

3
− 1

9
) + C

To check, differentiate e3x(x
3
− 1

9
) + C and see that it’s xe3x. �

Look closely at Example 1 to see why it worked. The key is that the
derivative of u = x is simpler than u and also we could integrate v′ = e3x to
find v.

EXAMPLE 2 Find
∫
x ln(x) dx.

SOLUTION Setting dv = ln(x) dx is not a wise move, since v =
∫

ln(x) dx
is not immediately apparent. But setting u = ln(x) is promising because
du = d(ln(x)) = 1

x
dx is much easier to handle than ln(x). This forces dv to be

x dx. This second approach goes through smoothly:

u = ln(x) dv = x dx

du = dx
x

v = x2

2
.

(Note that we needed to find v =
∫
x dx.) Thus This antiderivative can be

checked by differentiation.∫
x ln(x) dx =

∫
ln(x)︸ ︷︷ ︸
u

x dx︸︷︷︸
dv

= ln(x)︸ ︷︷ ︸
u

x2

2︸︷︷︸
v

−
∫

x2

2︸︷︷︸
v

dx

x︸︷︷︸
du

=
x2 ln(x)

2
−
∫
x dx

2
=
x2 ln(x)

2
− x2

4
+ C.

�

General Guidelines for Applying Integration by Parts General Guidelines for
Applying Integration by
Parts

The key to applying integration by parts is the selection of u and dv. The
following three conditions should be met:

1. v can be found by integrating and should not be too messy.

2. du should not be messier than u.

3.
∫
v du should be easier than the original

∫
u dv

Calculus December 6, 2010



712 CHAPTER 8 COMPUTING ANTIDERIVATIVES

The next example shows the general approach that can be used to integrate
any inverse trigonometric function.

EXAMPLE 3 Find
∫

arctan(x) dx.
SOLUTION Recall that the derivative of arctan(x) is 1/(1 + x2), a much
simpler function than arctan(x). This suggests the following integration by
parts:

u = arctan(x) dv = dx
du = dx

1+x2 v = x

Integrating an inverse
trigonometric function by

parts
∫

arctan(x)︸ ︷︷ ︸
u

dx︸︷︷︸
dv

= arctan(x)︸ ︷︷ ︸
u

x︸︷︷︸
v

−
∫

x︸︷︷︸
v

dx

1 + x2︸ ︷︷ ︸
du

= x arctan(x)−
∫

x

1 + x2
dx.

It is easy to compute
∫

x dx
1+x2 , since the numerator is a constant times the

derivative of the denominator:∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx =

1

2
ln(1 + x2).

Hence ∫
arctan(x) dx = x arctan(x)− 1

2
ln(1 + x2) + C.

You can check this by differentiation. �Compare your answer with
Formula 67 in the integral
table in the front cover of

the book.

To check that you understand the idea in Example 3, find
∫

arcsin(x) dx
by the same method.

EXAMPLE 4 Find
∫
x sin(x) dx.

SOLUTION There are two approaches. We could choose u = sin(x) and
dv = x dx or we could choose u = x and dv = sin(x) dx.

Approach 1 : u = sin(x) and dv = x dx∫
x sin(x) dx =

∫
sin(x)︸ ︷︷ ︸

u

(x dx)︸ ︷︷ ︸
dv

.

Then du = cos(x) dx, which is not any worse than u = sin(x). And, since
dv = x dx, v = x2/2. Thus,∫

sin(x)︸ ︷︷ ︸
u

(x dx)︸ ︷︷ ︸
dv

= sin(x)︸ ︷︷ ︸
u

x2

2︸︷︷︸
v

−
∫

x2

2︸︷︷︸
v

cos(x) dx︸ ︷︷ ︸
du

.
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We have replaced the problem of finding
∫
x sin(x) dx with the harder

∫
u dv is more difficult than∫
v du; Guideline 3 is not

satisfied.
problem of finding 1/2

∫
x2 cos(x) dx. That is not progress: we have raised

the exponent of x in the integrand from 1 to 2.
Approach 2 : u = x and dv = sin(x) dx

With these choices for u and dv,

u = x dv = sin(x) dx
du = dx v = − cos(x).

This time integration by parts goes through smoothly:∫
sin(x)︸ ︷︷ ︸

u

(x dx)︸ ︷︷ ︸
dv

= x︸︷︷︸
u

(− cos(x))︸ ︷︷ ︸
v

−
∫
− cos(x)︸ ︷︷ ︸

v

dx︸︷︷︸
du

= −x cos(x) +

∫
cos(x)dx = −x cos(x) + sin(x) + C.

� All 3 Guidelines are satisfied
by this choice of u and dv.

EXAMPLE 5 Find
∫
x2e3x dx.

SOLUTION If we let u = x2, then du = 2x dx. This is good, for it lowers
the exponent of x. Hence, try u = x2 and therefore dv = e3x dx:

u = x2 dv = e3x dx
du = 2x dx v = 1

3
e3x.

Thus∫
x2︸︷︷︸
u

e3x dx︸ ︷︷ ︸
dv

= x2︸︷︷︸
u

1

3
e3x︸︷︷︸
v

−
∫

1

3
e3x︸︷︷︸
v

2x dx︸ ︷︷ ︸
du

=
x2

3
e3x − 2

3

∫
xe3x dx

=
x2

3
e3x − 2

3

(
e3x

(
x

3
− 1

9

)
+ C

)
by Example 1

= e3x

(
x2

3
− 2

3

(
x

3
− 1

9

))
− 2

3
C

= e3x

(
x2

3
− 2x

9
+

2

27

)
− 2C

3
.

We may rename −2C
3

, the arbitrary constant, as K, obtaining∫
x2e3x dx = e3x

(
x2

3
− 2x

9
+

2

27

)
+K.
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�
Example 5 generalizes.

The idea behind Example 5 applies to integrals of the form
∫
P (x)g(x) dx,

where P (x) is a polynomial and g(x) is a function – such as sin(x), cos(x), or
ex – that can be repeatedly integrated. Let u = P (x) and dv = g(x) dx. Then
du = P ′(u) dx and

∫
v du =

∫
P ′(x)g(x) dx where P ′(x) has a lower degree

that P (x).

Definite Integrals and Integration by Parts

Integration by parts of a definite integral
∫ b
a
f(x) dx, where f(x) = u(x)v′(x),

takes the form

b∫
a

f(x) dx =

b∫
a

u dv = uv|ba −
b∫

a

v du

= u(v)v(b)− u(a)v(a)−
b∫

a

v(x)u′(x) dx.

Figure 8.3.1:

EXAMPLE 6 Find the area under the curve y = arctan(x) and above [0,1].
(See Figure 8.3.1.)

SOLUTION The area is
∫ 1

0
arctan(x) dx. By Example 3,∫

arctan(x) dx = x arctan(x)− 1

2
ln(1 + x2) + C.

Since only one antiderivative is needed in order to apply the Fundamental
Theorem of Calculus, we may choose C = 0. Then

1∫
0

arctanx dx = x arctan(x)|10 −
1

2
ln(1 + x2)

∣∣∣∣1
0

= 1 arctan(1)− 0 arctan(0)− 1

2
ln(1 + 12) +

1

2
ln(1 + 02)

=
π

4
− 1

2
ln(2) ≈ 0.438824.

�

Reduction Formulas

Formulas 36, 43, and 46 in the table of integrals on the inside cover of this
book express the integral of a function that involves the nth power of some
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expressions in terms of the integral of a function that involves a lower power of
the same expression. These are reduction formulas or recursion formulas.
Usually they are obtained by integration by parts. See Exercise 25 or

Formula 43 in the table of
integrals.

An example of a reduction formula is∫
sinn(x) dx = −sinn−1(x) cos(x)

n
+
n− 1

n

∫
sinn−2(x) dx for integer values of n ≥ 2

(8.3.3)

EXAMPLE 7 Use the reduction formula (8.3.3) to evaluate
∫

sin5(x) dx.
SOLUTION In this case n = 5. By (8.3.3),∫

sin5(x) dx = −sin4(x) cos(x)

5
+

4

5

∫
sin3(x) dx. (8.3.4)

Use (8.3.3) again to dispose of
∫

sin3(x) dx. In this case n = 3:∫
sin3(x) dx = −sin2(x) cos(x)

3
+

2

3

∫
sin(x) dx

= −sin2(x) cos(x)

3
− 2

3
cos(x) (8.3.5)

Combining (8.3.4) and (8.3.5) gives∫
sin5(x) dx = −sin4(x) cos(x)

5
+

4

5

(
− sin2(x) cos(x)

3
− 2

3
cos(x)

)
+ C.

Every time (8.3.3) is used, the exponent of sin(x) decreases by 2. If you keep
applying (8.3.3), you eventually run into the exponent 1 (as we did, because
n is odd) or, if n is even, into the exponent 0. �

The next example shows how (8.3.3) can be obtained by integration by
parts. See Formula 43 in the inside

cover of the text.
EXAMPLE 8 Obtain the reduction formula (8.3.3).
SOLUTION First write

∫
sinn(x) dx as

∫
sinn−1(x) sin(x) dx. Then let u =

sinn−1(x) and dv = sin(x) dx. Thus

u = sinn−1(x) dv = sin(x) dx
du = (n− 1) sinn−2(x) cos(x) dx v = − cos(x).

Integration by parts yields∫
sinn−1(x)︸ ︷︷ ︸

u

sin(x) dx︸ ︷︷ ︸
dv

= (sinn−1(x))︸ ︷︷ ︸
u

(− cos(x))︸ ︷︷ ︸
v

−
∫

(− cos(x))︸ ︷︷ ︸
v

(n− 1) sinn−2(x) cos(x) dx︸ ︷︷ ︸
du

.
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The integral on the right of this equation is

−
∫

(n− 1) cos2(x) sinn−2(x) dx

= −(n− 1)

∫
(1− sin2(x)) sinn−2(x) dx

= −(n− 1)

∫
sinn−2(x) dx+ (n− 1)

∫
sinn(x) dx.

Thus∫
sinn(x) dx

= − sinn−1(x) cos(x)−
(
−(n− 1)

∫
sinn−2(x) dx+ (n− 1)

∫
sinn(x) dx

)
= − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx− (n− 1)

∫
sinn(x) dx.

Rather than being dismayed by the reappearance of
∫

sinn(x) dx, move
that term to the left side to obtain:

n

∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx,

from which (8.3.3) follows. �See Formula 46, with a = 1,
in the table on the front

cover.
The reduction formula for

∫
cosn x dx is obtained similarly.

EXAMPLE 9 Obtain the reduction formula for
∫

dx
(x2+c)n

where n is a pos-
itive integer.

SOLUTION The only choice that comes to mind for integration by parts is

u = 1
(x2+c)n

dv = dx

du = −2nx
(x2+c)n+1 v = x.

Integration by parts gives∫
dx

(x2 + c)n
=

x

(x2 + c)n+1 + 2n

∫
x2

(x2 + c)n+1 dx.

It looks as though we have just created a more compicated integrand. However,
in the numerator of the integrand on the right-hand side, write x2 as x2 +c−c.
We then haveSee Formula 28, with a = 1,

in the table on the front
cover.

∫
dx

(x2 + c)n
=

x

(x2 + c)n+1 +2n

∫
x2 + c

(x2 + c)n+1 dx−2nc

∫
dx

(x2 + c)n+1
(8.3.6)

Canceling out x2 + c in the first integrand on the right gives us an equation
which could be rewritten to express

∫
dx

(x2+c)n+1 in terms of
∫

dx
(x2+c)n

. �See also Exercises 46 and 62
in this section.
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An Unusual Example

In the next example one integration by parts appears at first to be useless, but
two in succession lead to the successful evaluation of the integral.

EXAMPLE 10 Find
∫
ex cos(x) dx

SOLUTION There are two reasonable choices for applying integration by
parts: u = ex, dv = cos(x) dx or u = cos(x), dv = ex dx. In neither case is
du “simpler”, but watch what happens when integration by parts is applied
twice.

Following the first choice:

u = ex dv = cos(x) dx
du = ex dx v = sin(x)

Then integration by parts proceeds as follows: The second choice is
explored in Exercise 57.∫

ex︸︷︷︸
u

cos(x) dx︸ ︷︷ ︸
dv

= ex︸︷︷︸
u

sin(x)︸ ︷︷ ︸
v

−
∫

sin(x)︸ ︷︷ ︸
v

ex dx︸ ︷︷ ︸
du

. (8.3.7)

It may seem that nothing useful has been accomplished; cos(x) is replaced by Repeated integration by
partssin(x). But watch closely as the new integral is also treated by an integration

by parts. Capital letters U and V , instead of u and v, are used to distinguish
this computation from the preceeding one.

U = ex dV = sin(x) dx
dU = ex dx V = − cos(x).

So ∫
ex︸︷︷︸
U

sin(x) dx︸ ︷︷ ︸
dV

= ex︸︷︷︸
U

(− cos(x))︸ ︷︷ ︸
V

−
∫

(− cos(x))︸ ︷︷ ︸
V

ex dx︸ ︷︷ ︸
dU

= −ex cos(x) +

∫
ex cos(x) dx. (8.3.8)

Combining (8.3.7) and (8.3.8) yields∫
ex cos(x) dx = ex sin(x)−

(
−ex cos(x) +

∫
ex cos(x) dx

)
= ex(sin(x) + cos(x))−

∫
ex cos(x) dx.

Bringing −
∫
ex cosx dx to the left side of the equation gives

2

∫
ex cos(x) dx = ex(sin(x) + cos(x)),
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and we conclude thatSee Formula 63, with a = 1
and b = 1. ∫

ex cos(x) dx =
1

2
ex(sin(x) + cos(x)) + C.

�See Exercise 60.

Summary

Integration by parts is described by the formula∫
u dv = uv −

∫
v du.

When you break up the original integral into the parts u and dv, try to choose
them so that

1. You can find v and it is not too messy.

2. The derivative of u is nicer than u.

3. You can integrate
∫
v du.

Sometimes you have to apply integration by parts more than once, for
instance, in finding

∫
ex cos(x) dx.
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EXERCISES for Section 8.3 Key: R–routine, M–moderate, C–challenging

Use integration by parts to evaluate each of the integrals in Exercises 1 to 20.

1.[R]
∫
xe2x dx

2.[R]
∫

(x+ 3)e−x dx

3.[R]
∫
x sin(2x) dx

4.[R]
∫

(x+ 3) cos(2x) dx

5.[R]
∫
x ln(3x) dx

6.[R]
∫

(2x+ 1) ln(x) dx

7.[R]

2∫
1

x2e−x dx

8.[R]

1∫
0

x2e2x dx

9.[R]

1∫
0

sin−1(x) dx

10.[R]

1/2∫
0

tan−1(2x) dx

11.[R]
∫
x2 ln(x) dx

12.[R]
∫
x3 ln(x)dx

13.[R]

3∫
2

(ln(x))2 dx

14.[R]

3∫
2

(ln(x))3 dx

15.[R]

e∫
1

ln(x) dx
x2
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16.[R]

e2∫
e

ln(x) dx
x3

17.[R]
∫
e3x cos(2x) dx

18.[R]
∫
e−2x sin(3x) dx

19.[R]
∫

ln(1 + x2) dx
x2

20.[R]
∫
x ln(x2) dx

In Exercises 21 to 24 find the integrals two ways: (a) by substitution, (b) by inte-
gration by parts.

21.[R]
∫
x
√

3x+ 7 dx

22.[R]
∫

x dx√
2x+ 7

23.[R]
∫
x(ax+ b)3 dx

24.[R]
∫

x dx
3
√
ax+ b

, a 6= 0

25.[R] Use differentiation to verify (8.3.3).

26.[R] Use the recursion in Example 8 to find

(a)
∫

sin2 x dx

(b)
∫

sin4 x dx

(c)
∫

sin6 x dx

27.[R] Use the recursion in Example 8 to find

(a)
∫

sin3 x dx

(b)
∫

sin5 x dx

28.[R]
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(a) Graph y = ex sinx for x in [0, π], showing extrema and inflection points.

(b) Find the area of the region below the graph and above the interval [0, π].

29.[R]

(a) Graph y = e−x sinx for x in [0, π], showing extrema and inflection points.

(b) Find the area of the region below the graph and above the interval [0, π].

30.[R] Figure 8.3.2(a) shows a shaded region whose cross sections by planes per-
pendicular to the x-axis are squares. Find its volume.

(a) (b)

Figure 8.3.2:
31.[R] Figure 8.3.2(b) shows a solid whose cross sections by planes perpendicular
to the x-axis are disks. The solid meets the x-axis in the interval [y.e]. Find its
volume.

In Exercises 32 to 37 find the integrals. In each case a substitution is required before
integration by parts can be used. In Exercises 36 and 37 the notation exp(u) is used
for eu. This notation is often used for clarity.

32.[M]
∫

sin(
√
x) dx

33.[R] In Exercise 67 in Section 6.4 it is claimed that ex

x does not have an elementary
antiderivative. From this fact we can show other functions also lack elementary
antiderivatives.

(a) Show that
∫
ex

x dx equals ln(x)ex−
∫

ln(x)ex dx and also equals ex

x +
∫
ex

x2 dx

and
∫

du
ln(u) (where u = ex). Hint: Each expression can be obtained from the

first by an appropriate use of integration by parts or substitution.

(b) Deduce that
∫

ln(x)ex ds,
∫

(ex/x2) dx, and
∫

1/ ln(x) dx do not have ele-

mentary antiderivatives. Note: If one of these integrals has an elementary
antiderivative, then they all do.
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34.[M] Explain how you would go about finding∫
x10(lnx)18 dx

(Don’t just say, “I’d use integral tables or a computer.”) Explain why your approach
would work, but include only enough calculation to convince a reader that it would
succeed.

35.[M] Find
∫

sin( 3
√
x) dx.

36.[M] Find
∫

exp(
√
x) dx. Note: Recall that exp(x) = ex.

37.[M] Find
∫

exp( 3
√
x) dx

38.[M] Given that
∫

sin(x)
x

dx is not elementary, deduce that
∫

cos(x) ln(x) dx

is not elementary.

39.[M] Given that
∫
x tan(x) dx is not elementary, deduce that

∫
(x/ cos(x))2 dx

is not elementary.

40.[M] Let In denote

π/2∫
0

sinn(θ) dθ, where n is a nonnegative integer.

(a) Evaluate I0 and I1.

(b) Using the recursion in Example 8, show that

In =
n− 1
n

In−2, for n ≥ 2.

(c) Use (b) to evaluate I2 and I3.

(d) Use (c) to evaluate I4 and I5.

(e) Explain why In = 2·4·6···(n−1)
3·5·7···n when n is odd.

(f) Explain why In = 1·3·5···(n−1)
2·4·6···n · π2 when n is even.

(g) Explain why

π/2∫
0

sinn(θ) dθ =

π/2∫
0

cosn(θ) dθ. Hint: Use the substitution u =

π/2− θ.

December 6, 2010 Calculus



§ 8.3 INTEGRATION BY PARTS 723

41.[M] Find
∫

ln(x+ 1) dx using

(a) u = ln(x+ 1) dx, dv = dx, v = x

(b) u = ln(x+ 1) dx, dv = dx, v = x+ 1

(c) Which is easier?

42.[M] Let n be a positive integer and a is a constants. Obtain a formula that
expresses

∫
xne−ax dx in terms of

∫
xn−1e−ax.

43.[M] Find
∫
x sin(ax) dx

44.[M] Let a be a constant and n a positive integer.

(a) Express
∫
xn sin(ax) dx in terms of

∫
xn−1 cos(ax) dx.

(b) Express
∫
xn cos(ax) dx in terms of

∫
xn−1 sin(ax) dx.

(c) Why do (a) and (b) enable us to find
∫
xn sin(ax) dx?

45.[M]

(a) Express
∫

(ln(x))n dx in terms of
∫

(ln(x))n−1 dx.

(b) Use (a) to find
∫

(ln(x))3 dx

46.[M]

(a) Show how the integral
∫

dx
(ax2+bx+c)n+1 can be reduced to an integral of the

form
∫

du
(u2+p)n+1 .

(b) Use (a) and the recursion formula obtained in Exercise 62 to find a recursion
formula for

∫
dx

(x2+bx+c)n
. (How does your answer compare with Formula 35 in

the integral table on the front cover of the text?)

In Exercises 47 to 50 obtain recursion formulas for the integrals.

47.[M]
∫
xneax dx, n a positive integer, a a nonzero constant
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48.[M]
∫

(ln(x))n dx, n a positive integer
49.[M]

∫
xn sin(x) dx, n a positive integer

50.[R]
∫

cosn(ax) dx, n a positive integer.

Laplace Transform Let f(t) be a continuous function defined for t ≥ 0. As-
sume that, for certain fixed positive numbers r,

∫∞
0 e−rtf(t) dt converges and that

e−rtf(t) → 0 as t → ∞. Define P (r) to be
∫∞

0 e−rtf(t) dt. The function P is
called the Laplace transform of the function f . It is an important tool for solving
differential equations, and appears in the CIE on present value of future income (see
page 786). In Exercises 51 to 55 find the Laplace transform of the given functions.

51.[M] f(t) = t

52.[M] f(t) = t2

53.[M] f(t) = et (assume r > 1)
54.[M] f(t) = sin(t)
55.[M] f(t) = cos(t)

56.[C] Let P (x) be a polynomial.

(a) Check by differentiation that (P (x)−P ′(x)+P ′′(x)−· · · )ex is an antiderivative
of P (x)ex. (Note that the signs alternate and that the derivatives are taken
to successively higher orders until they are constant, with value 0.)

(b) Use (a) to find
∫

(3x3 − 2x− 2)ex dx.

(c) Apply integration by parts to
∫
P (x)ex dx to show how the formula in (a)

could be obtained.

57.[C] In Example 10,
∫
ex cos(x) dx was evaluated by applying integration by parts

twice, each time differentiating an exponential and antidifferentiating a trigonomet-
ric function. What happens when integration by parts is applied (twice, if necessary)
when a trigonometric function is differentiated and an exponential is antidifferen-
tiated. That is, to get started, apply integration by parts with u = cos(x) and
dv = ex dx.

58.[M] Find
∫ 1
−1 x

3
√

1 + x20 dx.

59.[M] Find
∫ π/4
−π/4 tan(x)(1 + cos(x))3/2 dx

60.[C] According to the reasoning in Example 10, it appears that
∫
ex cos(x) dx

must equal 1
2e
x(sin(x) + cos(x)). This would contradict the fact that for any con-

stant C, 1
2e
x(sin(x) + cos(x)) + C is also an antiderivative of ex sin(x). Resolve the
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paradox.

61.[C]

(a) What does the graph of y = cos(ax) look like when a = 1? when a = 2?
when a = 3? when a is a very large constant? Include graphs and a written
description in your answers.

(b) Let f(x) be a function with a continuous derivative. Assume that f(x) is
positive. What does the graph of y = f(x) cos(ax) look like when a is large?
Express your response in terms of the graph of y = f(x). Include a sketch of
y = f(x) cos(ax) to give an idea of its shape.

(c) On the basis of (b), what do you think happens to

1∫
0

f(x) cos(ax) dx

as a→∞? Give an intuitive explanation.

(d) Use integration by parts to justify your answer in (c).

62.[C] Solve (8.3.6) in Example 9 to obtain the reduction formula for
∫

dx
(ax2+c)n

.
To check your answer, compare it to Formula 28 in the integral table in the inside
cover of this book with a = 1.

63.[C] If we have a recursion for
∫

dx
(ax2+bx+c)n

why don’t we need one for
∫

x dx
(ax2+bx+c)n

?
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8.4 Integrating Rational Functions: The Al-

gebra
Recall that a rational

function is a polynomial or
the quotient of two

polynomials.

Every rational function, no matter how complicated, has an elementary
integral which is the sum of some or all of these types of functions:

• rational functions (including polynomials),

• logarithms of linear or quadratic polynomials:
ln(ax+ b) or ln(ax2 + bx+ c), and

• arctangents of linear or quadratic polynomials:
arctan(ax+ b) or arctan(ax2 + bx+ c).

The reason is mainly algebraic. In an advanced algebra course it is proved that
every rational function is the sum of much simpler rational functions, namely
those of the forms:

polynomials,
k

(ax+ b)n
,

d

(ax2 + bx+ c)n
, and

ex

(ax2 + bx+ c)n
(8.4.1)

where a, b, c, d, e, k are constants and n is a positive integer. In Sections 8.2
and 8.3 we saw how to integrate each of these integrands. (See Examples 4 to
7 in Section 8.2 and Formulas 13, 14, 15, 35, 36, and 37.)

As this section is completely algebraic, our objective is to see how to express
a rational function f(x) as a sum of the functions in (8.4.1), that is, to find
the partial fraction decomposition of f(x). For instance, we will see how
to find the decomposition

1

2x2 + 7x+ 3
=

2/5

2x+ 1
− 1/5

x+ 3
.

Reducible and Irreducible Polynomials

A polynomial anx
n+an−1x

n−1 + · · ·+a1x+a0, where an is not 0 is said to have
degree n. The polynomials of degree one are called linear; those of degree two,
quadratic. A polynomial of degree zero is a constant. If all the coefficients ai
are zero, we have the zero polynomial, which is not assigned a degree.

A polynomial of degree at least one is reducible if it is a product of
nonconstant polynomials of lower degree. Otherwise, it is irreducible.

Every polynomial of degree one, ax+b, is clearly irreducible. A polynomial
of degree two, ax2 +bx+c, is irreducible if its discriminant b2−4ac is negative.
(See Exercises 37 and 38.) However,Recall: a 6= 0.
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Fact 1: Every polynomial of degree three or higher is reducible.

This is far from obvious. For instance, x4 + 1 looks like it cannot be factored,
but you can check that

x4 + 1 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1).

On the other hand,

x4 − 1 = (x2 + 1)(x2 − 1) = (x2 + 1)(x+ 1)(x− 1).

The next non-obvious fact is that

Fact 2: Every polynomial of degree at least one is either irreducible or the
product of irreducible polynomials.

The factoring of x4 + 1 and x4− 1, given above, illustrate both Facts 1 and 2.

Proper and Improper Rational Functions
In arithmetic, the rational
number m/n is called
proper if |m| is less than |n|.

Let A(x) and B(x) be polynomials. The rational function A(x)/B(x) is
proper if the degree of A(x) is less than the degree of B(x). Otherwise, it is
improper.

Every improper rational function is the sum of a polynomial and a proper
rational function. The next example illustrates why this is true. It depends
on long division.

EXAMPLE 1 Express 2x3+1
2x2−x+1

as a polynomial plus a proper rational func-
tion.
SOLUTION We carry out long division Keep dividing until the

degree of the remainder is
less than the degree of the
divisor, or the remainder is
0.

x +1/2 ← quotient
2x2 − x+ 1

)
2x3 +0x2 +0x +1
2x3 −x2 +x

x2 −x +1
x2 −x/2 +1/2
−x/2 +1/2 ← remainder

Thus

2x3 + 1 =

(
2x2 − x+ 1)(x+

1

2

)
+

(
−x

2
+

1

2

)
.
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Division by 2x2 − x+ 1 gives us the representation

2x3 + 1

2x2 − x+ 1︸ ︷︷ ︸
improper

= x+
1

2︸ ︷︷ ︸
polynomial

+

(−x
2

+ 1
2

)
2x2 − x+ 1︸ ︷︷ ︸

proper

.

To check this equation, just rewrite the right-hand side as a single fraction. �
To integrate a rational function we first check that it is proper. If it is

improper, we carry out long division, and represent the function as the sum
of a polynomial and a proper rational function. Since we already know how
to integrate a polynomial we consider in the rest of this section only proper
rational functions.

Partial Fractions

As mentioned in the introduction, every rational function is the sum of par-
ticularly simple rational functions, ones we know how to integrate. Here is a
recipe for finding that representation for a proper rational function A(x)/B(x).

1. Write B(x) as a product of first-degree polynomials and irreducible
second-degree polynomials.

2. If px+ q appears exactly n times in the factorizaiton of B(x), formStep 2: List summands of

the form ki
(px+q)i

.
k1

px+ q
+

k2

(px+ q)2
+ · · ·+ kn

(px+ q)n
,

where the constants k1, k2, . . . , kn are to be determined later.

3. If ax2 + bx+c appears exactly m times in the factorization of B(x), then
form the sumStep2: List summands of

the form
rjx+sj

(ax2+bx+c)j
.

r1x+ s1

ax2 + bx+ c
+

r2x+ s2

(ax2 + bx+ c)2
+ · · ·+ rmx+ sm

(ax2 + bx+ c)m
,

where the constants r1, r2, . . . , rm and s1, s2, . . . , sm are to be determined
later.

4. Find all the constants (ki’s, rj’s, and sj’s) mentioned in Steps 2 and 3 so
that the sum of the rational functions in Steps 2 and 3 equals A(x)/B(x).

The rational functions in Steps 2 and 3 are called the partial fractions of
A(x)/B(x). This process deserves some comments.Regarding Step 1

In practice the denominator B(x) often already appears in factored form.
If it does not, finding the factorization can be quite a challenge. To find first-
degree factors, look for a root of B(x) = 0. If r is a root of B(x), then x−r is a
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factor. Divide x−r into B(x), getting a quotient Q(x); so B(x) = (x−r)Q(x).
Repeat the process on Q(x), continuing as long as you can find roots. Already
you can see problems. Suppose you find a root numerically to several decimal
places. Consequently your results of integration will be approximations. If you
want

∫ b
a
A(x)/B(x) dx it might be simpler just to approximate the definite

integral.
After finding all the linear factors “what’s left” has to be the product of

second-degree polynomials. If the degree of “what’s left” is just two, then you
are happy: you have found the complete factorization. But, if that degree is
4 or 6 or higher, you face a task best to be avoided — or attacked with the
assistance of a computer. Regarding Steps 2 and 3

These steps refer to the number of times a factor occurs in the denominator.
If you factor 2x2 + 4x+ 2, you may obtain (x+ 1)(2x+ 2). Note that 2x+ 2 is
a constant times x+ 1. The factorization may be written as 2(x+ 1)2, where
x+1 is a repeated factor. We say that “x+1 appears exactly two times in the
factorization of 2x2 + 4x + 2. Always collect factors that are constants times
each other. Regarding Step 4

Finding the unknown constants may take a lot of work. If there are only lin-
ear factors without repetition, the method illustrated in Example 3 is quick.
Clearing denominators and comparing the corresponding coefficients of the
polynomials on both sides of the resulting equation always works. The num-
ber of unknown constants always equals the degree of the denominator B(x).
If B(x) has repeated linear or second-degree factors and the degree of B(x) is
“large,” consider using a computing tool to find approximations to the coeffi-
cients.

EXAMPLE 2 What is the form of the partial fraction representation of

x10 + x+ 3

(x+ 1)2(2x+ 2)3(x− 1)2(x2 + x+ 3)2
? (8.4.2)

SOLUTION The degree of the denominator is 11 and the degree of the nu-
merator is 10. Thus (8.4.2) is proper. There is no need to divide the numerator
by the denominator.

The factor 2x + 2 is 2(x + 1). So (x + 1)2(2x + 2)3 should be written as
8(x + 1)5. The discriminant of x2 + x + 3 is (1)2 − 4(1)(3) = −11 < 0; thus
x2 +x+3 is irreducible. Therefore the partial fraction representation of (8.4.2)
has the form

k1

x+ 1
+

k2

(x+ 1)2
+

k3

(x+ 1)3
+

k4

(x+ 1)4
+

k5

(x+ 1)5

+
k6

x− 1
+

k7

(x− 1)2
+

r1x+ s1

x2 + x+ 3
+

r2x+ s2

(x2 + x+ 3)2
.
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Note that the number of unknown constants equals the degree of the denomi-
nator in (8.4.2). �

Finding the constants in Example 2 would be a major task if done by
hand. It would involve solving a system of 11 equations for the 11 unknown
constants. Fortunately, this is an ideal problem for a computer to solve.

Denominator Has Only Linear Factors, Each Appearing
Only Once

We illustrate this case, which can be done without a computer, by an example.

EXAMPLE 3 Express 1
(2x+1)(x+3)

in the form k1
2x+1

+ k2
x+3

and then find∫
dx

(2x+1)(x+3)
.

SOLUTION
1

(2x+ 1)(x+ 3)
=

k1

2x+ 1
+

k2

x+ 3
. (8.4.3)

To find k1, multiply both sides of (8.4.3) by the denominator of the term that
contains k1, 2x+ 1, getting

1

x+ 3
= k1 +

k2(2x+ 1)

x+ 3
. (8.4.4)

Equation (8.4.4) is valid for all values of x except x = −3, in particular for
the value of x that makes 2x + 1 = 0, namely x = −1/2. Evaluating (8.4.3)
when x = −1/2 we get

1(−1
2

)
+ 3

= k1 + 0.

We have found that k1 is 2
5
.

The same idea can be used to solve for k2: multiply both sides of (8.4.3)
by (x+ 3), obtaining

1

2x+ 1
=
k1(x+ 3)

2x+ 1
+ k2.

Replace x by −3, the solution to x+ 3 = 0, to obtain

1

2(−3) + 1
= 0 + k2.

Thus k2 = −1
5

.
Since k1 = 2

5
and k2 = −1

5
, (8.4.3) takes the form

1

(2x+ 1)(x+ 3)
=

2/5

2x+ 1
− 1/5

x+ 3
.
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To verify this identity, check it by multiplying both sides by (2x+ 1)(x+ 3), For a quicker, but not
complete, check replace x in
(8.4.3) by a convenient
number and see if the
resulting equation is correct.
Try it, with, say, x = 0.

getting

1 =
2

5
(x+ 3)− 1

5
(2x+ 1) =

2

5
x+

6

5
− 2

5
x− 1

5
=

5

5
. (8.4.5)

It checks.
Another way to solve for the unknown constants is to clear the denominator

and equate coefficients of like powers of x. For instance, let us find k1 and k2

in (8.4.3). We obtain
1 = k1(x+ 3) + k2(x+ 3).

Collecting coefficients, we have

1 = (k1 + 2k2)x+ (3k1 + k2). (8.4.6)

Comparing coefficients on both sides of (8.4.6) we have

0 = k1 + 2k2 [equating coefficients of x]
1 = 3k1 + k2 [equating constant terms]

There are many ways to solve these simultaneous equations. One way is to
use the first equation to express k1 in terms of k2: k1 = −2k2. Then replace
k1 by −2k2 in the second, getting

1 = 3(−2k2) + k2 = −5k2

from which it is seen that k2 = −1
5

. Then k1 = 2
5
.

In general, in this method the number of equations always equals the num-
ber of unknowns, which is also equal to the degree of the denominator. If that
degree is large, it is not realistic to do the calculations by hand. �

If the denominator is just a repeated linear factor, there are two options:
“clearing the denominator and equate coefficients” or “substitution”. For in-
stance, the partial fraction representation of

7x+ 6

(x+ 2)2

you could let u = x+ 2, hence x = u− 2. Then

7x+ 6

(x+ 2)2
=

7(u− 2) + 6

u2
=

7u

u2
− 8

u2

=
7u

u2
− 8

u2
=

7

u
− 8

u2
=

7

x+ 2
− 8

(x+ 2)2
.

This method for representing
A(x)

(ax+ b)n
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is practical if the degree of A(x) is small. Here u = ax+ b, hence x = 1
a
(u− b).Binomial Theorem:

(u+ v)n =
n∑
k=0

n!
k!(n− k)!

un−kvk

If the degree of A(x) is not small, expressing a power of x, xm, in terms of u
would best be done by the Binomial Theorem, which is proved in Exercise 32
in Section 5.4.

The next example illustrates one way of dealing with a denominator that
has both first and second degree factors.

EXAMPLE 4 Obtain the partial-fraction representation of x2

x4−1
.

SOLUTION First factor the denominator: x4 − 1 = (x2 + 1)(x + 1)(x− 1).
There are constants c1, c2, c3, and c4 such thatAs a check, note that there

are 4 constraints to find and
x4 − 1 has degree 4. x2

x4 − 1
=

c1

x+ 1
+

c2

x− 1
+
c3x+ c4

x2 + 1
.

Clear the denominator, but do not expand the right-hand side:

x2 = c1(x− 1)(x2 + 1) + c2(x+ 1)(x2 + 1) + (c3x+ c4)(x− 1)(x+ 1). (8.4.7)

Instead, substitute x = 1 and x = −1 into (8.4.7) to obtain, respectively:

1 = 0 + 4c2 + 0 [substitute x = 1 in (8.4.7)]
1 = −4c1 + 0 + 0 [substitute x = −1 in (8.4.7)].

Already we see that c1 = −1
4

and c2 = 1
4
.Setting x = 0 compares the

constant terms on both
sides of (8.4.7).

Next, substitute 0 for x in (8.4.7), obtaining

0 = −c1 + c2 − c4 [substituting x = 0 in (8.4.7)].

Hence c4 = 1
2
.

We still have to find c3. We could substitute another number, say x = 2, or
compare coefficients in (8.4.7). Let us compare coefficients of just the highest
degree, x3. Without going to the bother of multiplying (8.4.7) out in full, we
can read off the coefficient of x3 on both sides by sight, getting

0 = c1 + c2 + c3.

Since c1 = −1
4

, c2 = 1
4
, if follows that c3 = 0. Hence

x2

x4 − 1
=

−1
4

x+ 1
+

1
4

x− 1
+

1
2

x2 + 1
.

�
Example 4 used a combination of two methods: substituting convenient

values of x and equating coefficients. We could have just compared coefficients.
There would be an equation corresponding to each power of x up to x3. ThatThe constant term

corresponds to the power
x0.

would give 4 equations in 4 unknowns. The Exercises suggest how to solve
such equations, if you must solve them by hand.
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Summary

We described ways to integrate rational functions. The key idea is algebraic:
express the function as the sum of functions that are easier to integrate.

The first step is to check that the integrand is a proper rational function,
that is, the degree of the numerator is less than the degree of the denominator.
If it isn’t, use long division to express the function as the sum of a polynomial
and a proper rational function. A flowchart for this process is presented in
Figure 8.4.1.

Figure 8.4.1:
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THE REAL WORLD
Say that you wanted to compute the definite integral

2∫
1

x+ 3

x3 + x2 + x+ 2
dx.

One way is by partial fractions, but this can be tedious. You would probably
prefer to estimate the definite integral by one of the approximation techniques
in Section 6.5. Alternatively, computers and many scientific calculators, can
be programmed to estimate a definite integral. On many graphing calculators
you would enter the integrand, the variable of integration, and the limits of
integration. In a matter of seconds the TI-89 provides 0.49353 as an approxi-
mation with an error less than 0.00001.

As noted in Chapter 6, in some cases computers and calculators can even give
the exact (symbolic) value of a definite integral by first finding an antideriva-
tive. In practical applications, however, formal antidifferentiation is not that
important. The present example could theoretically be computed by partial
fractions, but modern computational tools can evaluate it accurately to as
many decimal places as we may want. For example, Simpson’s rule with only
8 sections gives 0.514393 as an approximate value for this definite integral.

In other situations some of the coefficients in either the numerator or denomi-
nator of the integrand may be given only as decimal approximations. In these
situations, too, it often is easier and more appropriate to use a computational
method to obtain a numerical answer.
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EXERCISES for Section 8.4 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 10 give the form of the partial fraction representation, but do not
find the unknowns. Note: Each expression is already proper.

1.[R]
3x3 + 5x+ 2

(x− 1)(x− 2)(x− 3)(x− 4)

2.[R]
x2 − 5x+ 3

(x+ 1)2(2x+ 3)

3.[R]
2x2 + x+ 1

(x+ 1)3

4.[R]
3x

(x+ 1)(2x+ 2)

5.[R]
x2 − x+ 3

(x+ 1)(x2 + 1)

6.[R]
2x2 + 3x+ 5

(x− 1)(x2 + x+ 1)

7.[R]
5x3 + x2 + 1
(x2 + x+ 1)2

8.[R]
x3 + x+ 1

(x2 + x+ 1)3

9.[R]
x2 + x+ 2
x3 − x

10.[R]
x2 + x+ 2
x4 − 1

11.[R] The rational function 1/(a2 − x2), where a is constant, commonly appears
in applications. Represent this function in partial fractions.

Exercises 12 to 15 concern improper rational functions. In each case express the
given function as the sum of a polynomial and a proper rational function.

12.[R]
x2

x2 + x+ 1

13.[R]
x3

(x+ 1)(x+ 2)

14.[R]
x5 − 2x+ 1

(x+ 1)(x2 + 1)

15.[R]
x5 + x

(x+ 1)2(x− 2)

In Exercises 16 to 19 find the partial fraction representation.
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16.[R]
5

x2 − 1

17.[R]
x+ 3

(x+ 1)(x+ 2)

18.[R]
1

(x− 1)2(x+ 2)

19.[R]
6x2 − 2

(x− 1)(x− 2)(2x− 3)

20.[M] Show that
6 + 5e3x + 2e2x + ex

5 + e2x + ex
has an elementary antiderivative, but do

not find it.

21.[M] Solve Example 3 by clearing the denominator in (8.4.3) to get

1 = k1(x+ 3) + k2(2x+ 1).

Replace x by any number you please. That gives an equation in k1 and k2. Then
replace x by another number of your choice, to obtain a second equation in k1 and
k2. Solve the equations. Note: Why are x = −3 and x = −1/2 the nicest choices?

22.[R] Express each of these polynomials as the product of first degree polynomials.

(a) x2 + 2x+ 1

(b) x2 + 5x− 3

(c) x2 − 4x− 6

(d) 2x2 + 3x− 4

23.[R] Which of these polynomials is irreducible:

(a) 3x2 + 2x+ 1

(b) 2x2 + 4x+ 1

In Exercises 24 to 33 express the rational function in terms of partial fractions.

24.[R]
5x2 − x− 1
x2(x− 1)

25.[R]
2x2 + 3

x(x+ 1)(x+ 2)
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26.[R]
5x2 − 2x− 2
x(x2 − 1)

27.[R]
5x2 + 9x+ 6

(x+ 1)(x2 + 2x+ 2)

28.[R]
5x2 + 2x+ 3
x(x2 + x+ 1)

29.[R]
x3 − 3x2 + 3x− 3

x2 − 3x+ 2

30.[R]
3x3 + 2x2 + 3x+ 1

x(x2 + 1)

31.[R]
x5 + 2x4 + 4x3 + 2x2 + x− 2

x4 − 1

32.[R]
5x2 + 6x+ 10

(x− 2)(x2 + 3x+ 4)

33.[R]
3x2 − x− 2

(x+ 1)(2x2 + x+ 1)

34.[M]

(a) For which value of b is 3x2 + bx+ 2 reducible? irreducible?

(b) For which value of b is 3x2 + bx− 2 reducible? irreducible?

35.[M]

(a) For which value of c is 3x2 + 5x+ c reducible? irreducible?

(b) For which value of c is 3x2 − 5x+ c reducible? irreducible?

36.[M] Sam was complaining to Jane, “I found this formula in my integral tables:∫
dx

a2 − b2x2
=

1
2ab

ln
∣∣∣∣a+ bx

a− bx

∣∣∣∣ (a, b constants)

But my instructor said you won’t get any logs other than logs of linear and quadratic
polynomials.”

Jane: “Maybe the table is wrong.”

Sam: “I took the derivative. It’s correct. Can I sue my instructor for misleading
the young?”
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Does Sam has a foundation for a case against his instructor? Explain.

We did not discuss the problem of factoring a polynomial B(x) into linear and
irreducible quadratic polynomials. Exercises 37 to 41 concern this problem when
the degree of B(x) is 2, 3, or 4.
37.[M]

(a) Show that if b2− 4ac > 0, then ax2 + bx+ c = a(x− r1)(x− r2), where r1 and
r2 are the distinct roots of ax2 + bx+ c.

(b) Show that if b2− 4ac = 0, then ax2 + bx+ c = a(x− r)(x− r), with r the only
root of ax2 + bx+ c− 0.

Note: The two parts show that if b2 − 4ac ≥ 0, then ax2 + bx + c is reducible.
Compare with Exercise 38.

38.[M]

(a) Show that if ax2 + bx + c is reducible, then it can be written in the form
a(x− s1)(x− s2) for some real numbers s1 and s2.

(b) Deduce that s1 and s2 are the roots of ax2 + bx+ c = 0.

(c) Deduce that b2 − 4ac ≥ 0.

Note: From these three parts it follows that if ax2 + bx + c is reducible, then
b2 − 4ac ≥ 0. Compare with Exercise 37.
39.[R] Factor each of these polynomials:

(a) x2 + 6x+ 5,

(b) x2 − 5,

(c) 2x2 + 6x+ 3.

40.[R]

(a) Show that x2 + 3x− 5 is reducible.

(b) Using (a), find
∫
dx/(x2 + 3x− 5) by partial fractions.

(c) Find
∫
dx/(x2 + 3x− 5) by using an integral table.

41.[M] Compute as easily as possible.

(a)
∫

x3 dx

x4 + 1
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(b)
∫

x dx

x4 + 1

(c)
∫

dx

x4 + 1

42.[C] Show that any rational function of ex has an elementary antiderivative.
Note: That is, any function of the form P (ex)

Q(ex) where P and Q are polynomials.

43.[C] If ax2 + bx + c is irreducible must ax2 − bx + c also be irreducible? Must
ax2 + bx− c?

44.[C] Explain why every polynomial of odd degree has at least one linear factor.
(Therefore, every polynomial of odd degree greater than one is reducible.)

45.[C] In arithmetic every fraction can be written as an integer plus a proper frac-
tion. For instance, 25

3 = 8 + 1
3 . Why?

46.[C] In arithmetic, the analog of the partial fraction representation is this: Ev-
ery fraction can be written as the sum of an integer and fractions of the form c/pn,
where p is a prime and |c| is less than p. Check that this is true for 53/18.

47.[C] Let a be a solution of the equation P (x) = 0, where P (x) is a polynomial.
Prove that x − a must be a factor of P (x). Hint: When you use long division to
divide P (x) by x− a, show why the remainder is 0. Note: This is the basis for the
Factor Theorem (see Appendix B).

48.[C]

(a) Use the quadratic formula to find the roots of x2 + 7x+ 9 = 0.

(b) With the aid of the Factor Theorem (Exercise 47), write x2 + 7x + 9 as the
product of two linear polynomials.

(c) Check the factorization by multiplying it out.
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8.5 Special Techniques

So far in this chapter you have met three techniques for computing integrals.
The first, substitution, and the second, integration by parts, are used most
often. Partial fractions applies to special rational functions and is used in
solving some differential equations. In this section we compute some special
integrals such as

∫
sin(mx) cos(nx) dx,

∫
sin2(θ) dθ, and

∫
sec(θ) dθ, which

you may meet in applications. Then we describe substitutions that deal with
special classes of integrands.

Computing
∫

sin(mx) sin(nx) dx
m and n are integers

The integrals
∫

sin(mx) sin(nx) dx,
∫

cos(mx) sin(nx) dx, and
∫

cos(mx) cos(nx) dx
are needed in the study of Fourier series, an important tool in the study ofFourier series are discussed

in Section 12.7 heat, sound, and signal processing. They can be computed with the aid of the
identities:

sin(A) sin(B) =
1

2
cos(A−B)− 1

2
cos(A+B);

sin(A) cos(B) =
1

2
sin(A+B) +

1

2
sin(A−B);

cos(A) cos(B) =
1

2
cos(A−B) +

1

2
cos(A+B).

These identities can be checked using the well-known identities for sin(A±B)
and cos(A±B).

EXAMPLE 1 Find

π/4∫
0

sin(3x) sin(2x) dx.

SOLUTION

π/4∫
0

sin(3x) sin(2x) dx =

π/4∫
0

(
1

2
cos(x)− 1

2
cos(5x)

)
dx =

(
1

2
sin(x)− 1

10
sin(5x)

)∣∣∣∣π/4
0

=

(√
2

4
+

√
2

20

)
−
(

0

2
− 0

10

)
=

3
√

2

10
≈ 0.42426.

�

Computing
∫

sin2(x) dx and
∫

cos2(x) dx

These integrals can be computed with the aid of the identities

sin2(x) =
1− cos(2x)

2
and cos2(x) =

1 + cos(2x)

2
. (8.5.1)
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EXAMPLE 2 Find an antiderivative of sin2(x):
SOLUTION∫

sin2(x) dx =

∫
1− cos(2x)

2
dx =

∫
dx

2
−
∫

cos(2x)

2
dx =

x

2
− sin(2x)

4
+C.

�

Computing
∫

tan(θ) dθ and
∫

tan2(θ) dθ

Antiderivatives of tan(θ) and sec(θ) are found using similar methods.

EXAMPLE 3 Find

∫
tan(θ) dθ.

SOLUTION The approach is to rewrite the integrand in a form where the
trigonometric functions can be eliminated with a substitution. Here, this is
accomplished by writing tan(θ) = sin(θ)

cos(θ)
and using the substitution with u =

cos(θ) and du = − sin(θ) as follows:∫
tan(θ) dθ =

∫
sin(θ)

cos(θ)
dθ =

∫
−du
u

= − ln(u) + C = − ln | cos(θ)|+ C.

(8.5.2)
�

Most integral tables have the formula∫
tan(θ) dθ = ln |sec(θ)|+ C. (8.5.3)

Exercise 49 shows that this formula agrees with (8.5.2).
Finding

∫
tan2(θ) dθ is easier. Using the trigonometric identity tan2(θ) =

sec2(θ)− 1, we obtain∫
tan2(θ) dθ =

∫
(sec2(θ)− 1) dθ = tan(θ)− θ + C.

Computing
∫

sec(θ) dθ

EXAMPLE 4 Find

∫
sec(θ) dθ, assuming 0 ≤ θ ≤ π/2.

This integral is the key to
Mercator maps, discussed in
the CIE on page 861.

SOLUTION We begin by, once again, rewriting the integrand in a form
where substitution can be used:∫

sec(θ) dθ =

∫
1

cos(θ)
dθ =

∫
cos(θ)

cos2(θ)
dθ =

∫
cos(θ)

1− sin2(θ)
dθ.
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The substitution u = sin(θ) and du = cos(θ) dθ transforms this last integral
into the integral of a rational function:∫

du

1− u2
=

1

2

∫ (
1

1 + u
+

1

1− u

)
du

=
1

2
(ln(1 + u)− ln(1− u)) + C

=
1

2
ln

(
1 + u

1− u

)
+ C.

Since u = sin(θ),Because 1+u
1−u is positive for

−1 < u < 1, absolute
values are not needed.

1

2
ln

(
1 + u

1− u

)
=

1

2
ln

(
1 + sin(θ)

1− sin(θ)

)
.

Thus, ∫
sec(θ) dθ =

1

2
ln

(
1 + sin(θ)

1− sin(θ)

)
+ C. (8.5.4)

�
Most integral tables have the formulaAnother formula for∫

sec(θ)dθ. ∫
sec(θ) dθ = ln |sec(θ) + tan(θ)|+ C. (8.5.5)

Exercise 48 shows that this formula agrees with (8.5.4).
In contrast to Example 4,

∫
sec2(θ) dθ is easy, since it is simply tan(θ)+C.

The Substitution u = n
√
ax+ b

The next example illustrates the use of the substitution u = n
√
ax+ b. After

the example we describe the integrands for which the substitution is appropri-
ate.

EXAMPLE 5 Find

7∫
4

x2
√

3x+ 4 dx.

SOLUTION Let u =
√

3x+ 4, hence u2 = 3x+ 4. Then x = (u2 − 4)/3 and
dx = (2u/3) du. Moreover, as x goes from 4 to 7, u goes from

√
16 = 4 to√

25 = 5. Thus

7∫
4

x2
√

3x+ 4 dx =

5∫
4

(
u2 − 4

3

)2

︸ ︷︷ ︸
x2

u︸ ︷︷ ︸
√

3x+4

2u

3
du︸ ︷︷ ︸

dx

=
2

27

5∫
4

(u2 − 4)2u2 du

=
2

27

5∫
4

(u6 − 8u4 + 16u2) du =
1214614

2835
≈ 428.43527.
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�

Exercise 54 uses the substitution u = n
√
ax+ b to integrate any rational

function of x and u = n
√
ax+ b.

Three Trigonometric Substitutions

For the following substitutions we need the notion of a rational function in
two variables, u and v. First, a polynomial in u and v is a sum of terms of
the form cumvn, where c is a number and m and n are nonnegative integers.
The quotient of two such polynomials is called a rational function in two
variables, and labeled R(u, v). If one replaces u by x and v by

√
a2 − x2 we

obtain a rational function of x and
√
a2 − x2, R(x,

√
a2 − x2).

Any rational function of x and
√
a2 − x2, where a is a constant, is trans-

formed into a rational function of cos(θ) and sin(θ) by the substitution x =
a sin(θ). Similar substitutions are possible for integrands involving

√
a2 + x2 or√

x2 − a2. In each case, one of the trigonometric identities 1−sin2(θ) = cos2(θ),
tan2(θ) + 1, or sec2(θ) − 1 = tan2(θ) converts a sum or difference of squares
into a perfect square. How to integrate

If the integrand is a rational function of x and

Case 1
√
a2 − x2; let x = a sin(θ) ( a > 0, −π

2
≤ θ ≤ π

2
). R(x,

√
a2 − x2)

Case 2
√
a2 + x2; let x = a tan(θ) ( a > 0, −π

2
< θ < π

2
). R(x,

√
a2 + x2)

Case 3
√
x2 − a2; let x = a sec(θ) ( a > 0, 0 ≤ θ ≤ π, θ 6= π

2
). R(x,

√
x2 − a2)

The motivation is simple. Consider Case 1, for instance. If you replace x in√
a2 − x2 by a sin(θ), you obtain How to make the square

root sign in
√
a2 − x2

disappear√
a2 − x2 =

√
a2 − (a sin(θ))2 =

√
a2(1− sin2(θ)) =

√
a2 cos2(θ) = a cos(θ).

(Keep in mind that a and cos(θ) are positive.) The important thing is that
the square root sign disappears.

Case 3 raises a fine point. We have a > 0. However, whenever x is negative,
θ is an angle in the second-quadrant, so tan(θ) is negative. In that case, If c < 0,

√
c2 = −c.

√
x2 − a2 =

√
(a sec(θ))2 − a2 = a

√
sec2(θ)− 1 = a

√
tan2(θ) = a(− tan(θ))

In the Examples and Exercises involving Case 3 it will be assumed that x
varies through nonnegative values, so that θ remains in the first quadrant and√

sec2(θ)− 1 = tan(θ).
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Note that for
√
a2 − x2 to be meaningful, |x| must be no larger than a. On

the other hand, for
√
x2 − a2 to be meaningful, |x| must be at least as large

as a. The quantity
√
a2 + x2 is meaningful for all values of x.

EXAMPLE 6 Compute

∫ √
1 + x2 dx

SOLUTION The identity
√

1 + tan2(θ) = sec(θ) suggests the substitution

x = tan(θ)

so that dx = sec2(θ) dθ.

(Figure 8.5.1 shows the geometry of this substitution.) Thus

Figure 8.5.1:

∫ √
1 + x2 dx =

∫
sec(θ) sec2(θ) dθ =

∫
sec3(θ) dθ.

By Formula 51 from the integral table on the front cover,∫
sec3(θ) dθ =

sec(θ) tan(θ)

2
+

1

2
ln |sec(θ) + tan(θ)|+ C. (8.5.6)

To express the antiderivative just obtained in terms of x rather than θ, it is
necessary to express tan θ and sec θ in terms of x. Starting with the definition
x = tan(θ), find sec(θ) by means of the relation sec(θ) =

√
1 + tan2(θ) =√

1 + x2, as in Figure 8.5.1. Thus∫ √
1 + x2 dx =

x
√

1 + x2

2
+

1

2
ln
(√

1 + x2 + x
)

+ C. (8.5.7)

�

Figure 8.5.2:

EXAMPLE 7 Compute

5∫
4

dx√
x2 − 9

.

SOLUTION Let x = 3 sec(θ); hence dx = 3 sec(θ) tan(θ) dθ. (See Fig-
ure 8.5.2.) Thus, letting α = arcsec(4/3) and β = arcsec(5/3), we obtain

5∫
4

dx√
x2 − 9

=

β∫
α

2 sec(θ) tan(θ) dθ√
9 sec2(θ)− 9

=

β∫
α

sec(θ) tan(θ) dθ

tan(θ)

=

β∫
α

sec(θ) dθ = ln |sec(θ) + tan(θ)||βα

= ln
(

5
3

+ 4
3

)
− ln

(
4
3

+
√

7
3

)
= ln(3)− ln

(
4+
√

7
3

)
= 2 ln(3)− ln(4 +

√
7) = ln

(
9

4+
√

7

)
≈ 0.30325.

Figures 8.5.3 and 8.5.4 were used to find tan(α) =
√

7
3

and tan(β) = 4
3
. �

Figure 8.5.3:Figure 8.5.4:
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A Half-Angle Substitution for R(cos θ, sin θ)

Any rational function of cos(θ) and sin(θ) is transformed into a rational func-
tion of u by the substitution u = tan(θ/2). This is sometimes useful after
one of the three basic trigonometric substitutions has been used, leaving the
integrand in terms of cos(θ) and sin(θ). The substitution u = tan(θ/2) then
yields an integral that can be treated by partial fractions. (See Exercises 56
and 57.)

Summary

We discussed some special integrals and integration techniques. First we saw
how to evaluate the following common integrals:∫

sin(mx) sin(nx) dx,

∫
sin(mx) cos(nx) dx,

∫
cos(mx) cos(nx) dx,

∫
sin2(x) dx,

∫
cos2(x) dx,∫

sec(θ) dθ,

∫
tan(θ) dθ, and

∫
tan2(θ) dθ.

The integration of higher powers of the trigonometric functions is discussed in
the exercises.

We also pointed out that the substitution u = n
√
ax+ b transforms a ra-

tional function in x and n
√
ax+ b, R(x, n

√
ax+ b) into a rational function of u.

Similarly, R(x, n
√
a2 − x2), R(x, n

√
x2 − a2) and R(x, n

√
a2 + x2) can be trans-

formed into rational functions of cos(θ) and sin(θ) by trigonometric substitu-
tions. R(cos(θ), sin(θ)) can be transformed into a rational function of u by the
substitution u = tan(θ/2), which can then be integrated by partial fractions.
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EXERCISES for Section 8.5 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 16 are related to Examples 1 to 3. In Exercises 1 to 14 find the
integrals.

1.[R]
∫

sin(5x) sin(3x) dx

2.[R]
∫

sin(5x) cos(2x) dx

3.[R]
∫

cos(3x) sin(2x) dx

4.[R]
∫

cos(2πx) sin(5πx) dx

5.[R]
∫

sin2(3x) dx

6.[R]
∫

cos2(5x) dx

7.[R]
∫

(3 sin(2x) + 4 sin2(5x)) dx

8.[R]
∫

(5 cos(2x) + cos2(7x)) dx

9.[R]
∫

(3 sin2(πx) + 4 cos2(πx)) dx

10.[R]
∫

sec(3θ) dθ

11.[R]
∫

tan(2θ) dθ

12.[R]
∫

sec2(4x) dx

13.[R]
∫

tan2(5x) dx

14.[R]
∫

dx

cos2(3x)

15.[R] Show that sin(A) sin(B) = 1
2 cos(A−B)− 1

2 cos(A+B).

16.[R] Show that sin(A) cos(B) = 1
2 sin(A+B) + 1

2 sin(A−B).

Exercises 17 to 19 develop the formulas that are the foundation for Fourier series,
discussed in more detail in Section 12.7.
17.[M] Let m and k be positive integers. Show that

(a)

L∫
−L

sin
(
kπx

L

)
sin
(
kπx

L

)
dx = L.
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(b)

L∫
−L

sin
(
kπx

L

)
sin
(mπx

L

)
dx = 0.

18.[M] Let m and k be positive integers. Show that

(a)

L∫
−L

cos
(
kπx

L

)
cos
(
kπx

L

)
dx = L.

(b)

L∫
−L

cos
(
kπx

L

)
cos
(mπx

L

)
dx = 0.

19.[M] Letm and k be positive integers. Show that

L∫
−L

sin
(
kπx

L

)
cos
(mπx

L

)
dx =

0.

Exercises 20 to 29 concern the substitution u = n
√
ax+ b. In each case evaluate the

integral.

20.[R]
∫
x2
√

2x+ 1 dx

21.[R]
∫

x2 dx
3
√
x+ 1

22.[R]
∫

dx√
x+ 3

23.[R]
∫ √

2x+ 1
x

dx

24.[R]
∫
x 3
√

3x+ 2 dx

25.[R]
∫ √

x+ 3√
x− 2

dx

26.[R]
∫

x dx√
x+ 3

27.[R]
∫
x(3x+ 2)5/3 dx

28.[R]
∫

dx
3
√
x+
√
x

Hint: Let u = 6
√
x.

29.[R]
∫

(x+ 2) 5
√
x− 3 dx

In Exercises 30 to 40 find the integrals using trigonometric substitution. (a is a
positive constant.)
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30.[R]
∫ √

4− x2 dx

31.[R]
∫

dx√
9+x2

32.[R]
∫

x2 dx√
x2−9

33.[R]
∫
x3
√

1− x2 dx

34.[R]
∫ √

4+x2

x dx

35.[R]
∫ √

a2 − x2 dx

36.[R]
∫

dx√
a2−x2

37.[R]
∫ √

a2 + x2 dx

38.[R]
∫ √

a2 − x2 dx

39.[R]
∫

dx√
25x2−16

40.[R]
∫ 2√

2

√
x2 − 1 dx

Exercises 41 and 42 concern the recursion formulas for
∫

tann(θ) dθ and
∫

secn(θ) dθ.
41.[M] In Example 3 we found

∫
tan(θ) dθ and

∫
tan2(θ) dθ.

(a) Obtain the recursion∫
tann(θ) dθ =

tann−1(θ)
n− 1

−
∫

tann−2(θ) dθ.

Begin by writing

tann(θ) = tann−2(θ) tan2(θ) = tann−2(θ)(sec2(θ)− 1).

(b) Use the recursion formula to find
∫

tan3(θ) dθ.

(c) Find
∫

tan4(θ) dθ.

Note: See Example 3.

42.[R] In Example 4 we found
∫

sec(θ) dθ and
∫

sec2(θ) dθ.

(a) Obtain the recursion∫
secn(θ) dθ =

secn−2(θ) tan(θ)
n− 1

+
n− 2
n− 1

∫
secn−2(θ) dθ.

Begin by writing secn(θ) = secn−2(θ) sec2(θ), and integrating by parts. After
the integration, tan2(θ) will appear in the integrand. Write it as sec2(θ)− 1.

(b) Evaluate
∫

sec3(θ) dθ.
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(c) Evaluate
∫

dθ

cos4(θ)
.

(d) Evaluate
∫

sec2(2x) dx.

Note: See Example 4.

43.[R] Find

(a)
∫

csc(θ) dθ

(b)
∫

csc2(θ) dθ

44.[R] Find

(a)
∫

cot(θ) dθ

(b)
∫

cot2(θ) dθ

45.[M] Consider
∫

sinn(θ) cosm(θ) dθ, where m and n are nonnegative integers, and

m is odd. To evaluate
∫

sinn(θ) cosm(θ) dθ, write it as
∫

sinn(θ) cosm−1(θ) cos(θ) dθ.
Then, because m− 1 is even, rewrite cosm−1(θ) as (1− sin2(θ))(m−1)/2 and use the
substitution u = sin(θ). Using this technique, find

(a)
∫

sin3(θ) cos3(θ) dθ

(b)
∫

sin4(θ) cos(θ) dθ

(c)

π/2∫
0

sin4(θ) cos3(θ) dθ

(d)
∫

cos5(θ) dθ.

46.[M] How would you integrate
∫

sinn(θ) cosm(θ) dθ, where m and n are nonnega-
tive integers and n is odd? Illustrate your techniques by three examples. Note: See
Exercise 45.
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47.[M] The techniques in Exercises 45 and 46 apply to
∫

sinn(θ) cosm(θ) dθ only
when at least one of m and n is odd. If both are even, first use the identities

sin2(θ) =
1− cos(2θ)

2
and cos2(θ) =

1 + cos(2θ)
2

.

You will get a polynomial in cos(2θ). If cos(2θ) appears only to odd powers, the
technique of Exercise 45 suffices. To treat an even power of cos(2θ), use the identity
cos2(2θ) = (1 + cos(4θ))/2 and continue. Using this method find

(a)
∫

cos2(θ) sin4(θ) dθ

(b)
∫ π/4

0 cos2(θ) sin2(θ) dθ

Antiderivatives of sec(θ) and tan(θ) were found in Examples 4 and 3. Exercises 48
to 50 explore some other antiderivatives of these functions.
48.[R] Let 0 ≤ θ < π/2.

(a) Show that
∫

sec(θ) dθ = ln |sec(θ) + tan(θ)|+C, by differentiating ln |sec(θ) + tan(θ)|.

(b) Does (a) contradict the formula given in Example 4?

49.[R] Show that − ln(cos(θ)) and ln(sec(θ)) are both antiderivatives for tan(θ).

50.[M] In 1645, Henry Bond conjectured from experimental data that
∫ θ

0 sec(t) dt =
ln
(
tan

(
θ
2 + π

4

))
While Bond’s conjecture was originally verified well before the ad-

vent of calculus, today we can verify Bond’s conjecture by (i) checking that this for-
mula holds for θ = 0 and (ii) checking that the right-hand side is an antiderivative of
sec(θ). Note: Bond’s conjecture is related to Mercator’s projection (discussed in the
CIE on page 861. Reference: http://www.math.ubc.ca/~israel/m103/mercator/
mercator.html [permission needs to be requested from Robert Israel].

51.[R] The region R under y = sin(x) and above [0, π] is revolved about the x-axis
to produce a solid S.

(a) Draw R.

(b) Draw S.

(c) Set up a definite integral for the area of R.

(d) Set up a definite integral for the volume of S.

(e) Evaluate the integrals in (c) and (d).
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52.[M] Transform the following integrals into integrals of rational functions of
cos(θ) and sin(θ). Do not evaluate the integrals.

(a)
∫
x+
√

9−x2

x3 dx

(b)
∫
x3
√

5−x2

1+
√

5x2
dx

53.[M] Transform the following integrals into integrals of rational functions of
cos(θ) and sin(θ). Do not evaluate the integrals.

(a)
∫
x2+
√
x2−9
x dx

(b)
∫
x3
√

5+x2

x+2 ]dx

54.[M] Let R(x, y) be a rational function of x and y. Let n be an integer greater
than or equal to 2. Then R(x, n

√
ax+ b) is a “rational function of x and n

√
ax+ b.”

Let R(x, y) = x+y2

2x−y .

(a) Evaluate R(x, 3
√

4x+ 5).

(b) Use the substitution u = 3
√

4x+ 5 to show that∫
x+ (4x+ 5)2/3

2x− (4x+ 5)1/3
dx =

3
8

∫
(u3 + 4u2 − 5)u2

u3 − 2u− 5
du

Note: Do not attempt to evaluate this integral. The partial fraction decomposition
of this integrand is very messy!

55.[M] Transform the following integrals into integrals of rational functions of u.
Do not evaluate the integrals.

(a)
∫ 3

√
x+ 2

x2 + (x+ 2)2/3
dx

(b)
∫ √

x+ x+ x3/2

√
x+ 2

dx

Exercises 56 to 58 concern
∫
R(cos(θ), sin(θ)) dθ.

56.[M] Let −π < θ < π and u = tan(θ/2). (See Figure 8.5.5(a).) The following
steps show that this substitution transforms

∫
R(cos θ, sin θ)dθ into the integral of

a rational function of u (which can be integrated by partial fractions).
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(a) Show that cos
(
θ
2

)
= 1√

1+u2
and sin

(
θ
2

)
= u√

1+u2
.

(b) Using (a), show that cos(θ) = 1−u2

1+u2 .

(c) Show that sin(θ) = 2u
1+u2 .

(d) Show that dθ = 2 du
1+u2 . Hint: Note that θ = 2 arctan(u).

Combining (b), (c), and (d) shows that the substitution u = tan(θ/2) transforms∫
R(cos(θ), sin(θ)) dθ into

∫
R
(

1−u2

1+u2 ,
2u

1+u2

)
2

1+u2 du, an integral of a rational func-
tion of u.

(a) (b)

Figure 8.5.5:
57.[M] Using the substitution u = tan(θ/2), transform the following integrals into
integrals of rational functions. Hint: Refer to Figure 8.5.5(b). (Do not evaluate
them.)

(a)
∫

1 + sin(θ)
1 + cos2(θ)

dθ

(b)
∫

5 + cos(θ)
(sin(θ))2 + cos(θ)

dθ

(c)

π/2∫
0

5 dθ
2 cos(θ) + 3 sin(θ)

(Be sure to transform the limits of integraton also.)

58.[M] Compute

π/2∫
0

dθ

4 sin(θ) + 3 cos(θ)
.

59.[C] Explain why any rational function of tan(θ) and sec(θ) has an elementary
antiderivative.

60.[C] Show that any rational function of x,
√
x+ a, and

√
x+ b has an elementary

antiderivative. Hint: Use the substitution u =
√
x+ a.
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However, it is not the case that every rational function of
√
x+ a,

√
x+ b, and√

x+ c has an elementary antiderivative. For instance,∫
dx

√
x
√
x+ 1

√
x− 1

=
∫

dx√
x3 − x

is not an elementary function.

61.[C] Every rational function of x and n
√

(ax+ b)/(cx+ d) has an elementary
antiderivative. Explain why.

62.[C] Assume x− c is a factor of Q(x) and not of P (x). Also assume (x− c)2 is
not a factor of Q(x). The term A/(x − c) therefore appears in the partial fraction
representation of P (x)/Q(x). Show that A = P (c)/Q′(c). Hint: First, multiply
both sides of the partial fraction representation by x− c.
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8.6 What to do When Confronted with an In-

tegral

Since the exercises in each section of this chapter focus on the techniques of
that section, it is usually clear what technique to use on a given integral. But
what if an integral is met “in the wild,” where there is no clue how to evaluate
it? This section suggests what to do in this typical situation.

The more integrals you compute, the more quickly you will be able to
choose an appropriate technique. Moreover, such practice will put you at ease
in using integral tables or computer software. Besides, it may be quicker to
find an integral by hand.

This table summarizes the techniques and shortcuts emphasized in this
chapter.

Substitution Section 8.2
General Integration by Parts Section 8.3

Partial Fractions Sections 8.4 and 8.2
if f is odd, then

∫ a
−a f(x) dx = 0 Section 8.1

if f is even, then
∫ a
−a f(x) dx = 2

∫ a
0
f(x) dx Section 8.1∫ a

0

√
a2 − x2 dx = πa2

4
Section 8.1

Special
∫

sin(mx) sin(nx) dx, etc. Section 8.5∫
sin2(θ) dθ, etc. Section 8.5∫
tan(θ) dθ,

∫
sec(θ) dθ, etc. Section 8.5∫

R(x, n
√
ax+ b) dx Section 8.5∫

R(x,
√
a2 − x2) dx, etc. Section 8.5∫

R(cos(θ), sin(θ)) dx, etc. Section 8.5

Table 8.6.1:

Exercises in Section 8.5 develop other specialized techniques, but they will
not be required in this section.

A few examples will illustrate how to choose a method for computing an
antiderivative.

EXAMPLE 1 ∫
x dx

1 + x4

See Exercise 57 in Section
7.5 SOLUTION DISCUSSION: Since the integrand is a rational function of x,

partial fractions would work. This requires factoring x4 + 1 and then repre-
senting x/(1 + x4) as a sum of partial fractions. With some struggle it can be
found that

x4 + 1 = (x2 +
√

2x+ 1)(x2 −
√

2x+ 1)
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The constants A, B, C, and D will have to be found such that

x

1 + x4
=

Ax+B

x2 +
√

2x+ 1
+

Cx+D

x2 −
√

2x+ 1

The method would work but would certainly be tedious.
Try another attack. The numerator x is almost the derivative of x2. The

substitution u = x2 is at least worth testing. With u = x2 we find du = 2x dx
and so ∫

x dx

1 + x4
=

∫
du/2

1 + u2
,

which is easy: Check by differentiating.∫
x dx

1 + x4
=

1

2
arctan(u) + C =

1

2
arctan(x2) + C.

�

EXAMPLE 2 ∫
1 + x

1 + x2
dx.

SOLUTION DISCUSSION: This is a rational function of x, but partial frac-
tions will not help, since the integrand is already in its partial-fraction form.

The numerator is not the derivative of the denominator, but it comes close
enough to persuade us to break the integrand into two summands:∫

1 + x

1 + x2
dx =

∫
dx

1 + x2
+

∫
x dx

1 + x2
.

Both the latter integrals can be done in your head. The first is arctan(x), and
the second is (1/2) ln(1 + x2). So∫

1 + x

1 + x2
dx = arctan(x) +

1

2
ln(1 + x2) + C.

�

EXAMPLE 3 ∫
e2x

1 + ex
dx.

SOLUTION DISCUSSION: At first glance, this integral looks so peculiar
that it may not even be elementary. However, ex is a fairly simple function,

Calculus December 6, 2010



756 CHAPTER 8 COMPUTING ANTIDERIVATIVES

with d(ex) = ex dx. This suggests trying the substitution u = ex and seeing
what happens:

u = ex du = ex dx

ThusIt is essential to express dx
completely in terms of u

and du. dx =
du

ex
=
du

u
.

But what will be done to e2x? Recalling that e2x = (ex)2 = u2, we anticipate
there will be no difficulty:∫

e2x

1 + ex
dx =

∫
u2

1 + u

du

u
=

∫
u du

1 + u
.

which can be integrated quickly:Long division of u/(u+ 1)
also works. ∫

u du

1 + u
=

∫
u+ 1− 1

1 + u
du =

∫ (
1− 1

1 + u

)
du

= u− ln(|1 + u|) + C = ex − ln(1 + ex) + C.

The same substitution could have been done more elegantly:∫
e2x

1 + ex
dx =

∫
ex(ex dx)

1 + ex
=

∫
u du

1 + u
.

�

EXAMPLE 4 ∫
x3 dx

(1− x2)5
.

SOLUTION DISCUSSION: Partial fractions would work, but the denomi-
nator, when factored, would be (1 + x)5(1− x)5. There would be 10 unknown
constants to find. Look for an easier approach.

Since the denominator is the obstacle, try u = x2 or u = 1 − x2 to see if
the integrand gets simpler. Let us examine what happens in each case. Try
u = x2 first. Assume that we are interested only in getting an antiderivative
for positive x, x =

√
u:

u = x2 du = 2x dx dx =
du

2x
=

du

2
√
u
.

Then ∫
x3 dx

(1− x2)5
=

∫
u3/2

(1− u)5

du

2
√
u

=
1

2

∫
u du

(1− u)5
.
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The same substitution could be carried out as follows:∫
x3 dx

(1− x2)5
=

∫
x2x dx

(1− x2)5
=

∫
u(du/2)

(1− u)5
=

1

2

∫
u du

(1− u)5
.

The substitution v = 1− u then results in an easy integral. Verify this claim for yourself.

Observe that the two substitutions u = x2 and v = 1− u are equivalent to
the single substitution v = 1−x2. So, let us apply the substitution u = 1−x2

to the original integral. Then du = −2x dx; thus∫
x3 dx

(1− x2)5
=

∫
x2(x dx)

(1− x2)5
=

∫
(1− u)(−du/2)

u5
=

∫
1

2
(u−4 − u−5) du,

an integral that can be computed without further substitution. So u = 1− x2

is quicker than u = x2. �

EXAMPLE 5 ∫
x3ex

2

dx.

SOLUTION DISCUSSION: Integration by parts may come to mind, since if
u = x3, then du = 3x2 dx is simpler. However, dv must then be ex

2
dx and

force v to be non-elementary. This is a dead end. If we can raise an exponent,
we should be able to lower
it.

So try integration by parts with u = ex
2

and dv = x3 dx. What will v du
be? We have v = x4/4 and du = 2xex

2
dx, which is worse than the original

u dv. The exponent of x has been raised by 2, from 3 to 5.

This time try u = x2 and dv = xex
2
dx; thus du = 2x dx and v = ex

2
/2.

Integration by parts yields∫
x3ex

2

dx =

∫
x2︸︷︷︸
u

xex
2

dx︸ ︷︷ ︸
dv

= x2︸︷︷︸
u

ex
2

2︸︷︷︸
v

−
∫

ex
2

2︸︷︷︸
v

2x dx︸ ︷︷ ︸
du

=
x2ex

2

2
− ex

2

2
+ C.

See Exercise 71.

Another approach is to use the substitution u = x2 followed by an integra-
tion by parts. �

EXAMPLE 6 ∫
1− sin(θ)

θ + cos(θ)
dθ.
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See Exercise 72.

SOLUTION DISCUSSION: The numerator is the derivative of the denomi-
nator, so the integral is simply ln |θ + cos θ|+ C. �

EXAMPLE 7 ∫
1− sin(θ)

cos(θ)
dθ.

SOLUTION DISCUSSION: Break the integrand into two summands:∫
1− sin(θ)

cos(θ)
dθ =

∫ (
1

cos(θ)
− sin(θ)

cos(θ)

)
dθ

=

∫
(sec(θ)− tan(θ)) dθ

=

∫
sec θ dθ −

∫
tan(θ) dθ

= ln |sec(θ) + tan(θ)|+ ln |cos(θ)|+ C.

Since ln(A) + ln(B) = ln(AB), the answer can be simplified to

ln (|sec(θ) + tan(θ)| |cos(θ)|) + C.

But sec(θ) cos(θ) = 1 and tan(θ) cos(θ) = sin(θ). The result becomes even
simpler:The absolute values are not

needed because
1 + sin(θ) ≥ 0

∫
1− sin(θ)

cos(θ)
dθ = ln (1 + sin(θ)) + C.

�

EXAMPLE 8 ∫
lnx dx

x
.

SOLUTION DISCUSSION: Integration by parts, with u = ln(x) and dv =
dx/x, may come to mind. In that case, du = dx/x and v = ln(x); thus∫

ln(x)︸ ︷︷ ︸
u

dx

x︸︷︷︸
dv

= (ln(x))︸ ︷︷ ︸
u

(ln(x))︸ ︷︷ ︸
v

−
∫

ln(x)︸ ︷︷ ︸
v

dx

x︸︷︷︸
du

.

Bringing
∫

ln(x) dx/x all to one side produces the equation

2

∫
ln(x)

dx

x
= (lnx)2,
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from which it follows that∫
ln(x)

dx

x
=

(ln(x))2

2
+ C.

The integration by parts approach worked, but is not the easiest one to
use. Since 1/x is the derivative of ln(x), we could have used the substitution
u = ln(x), which means du = dx/x. Thus∫

ln(x) dx

x
=

∫
u du =

u2

2
+ C =

(ln(x))2

2
+ C.

�

EXAMPLE 9
3/5∫
0

√
9− 25x2 dx.

SOLUTION DISCUSSION: This integral reminds us of
∫ a

0

√
a2 − x2 dx =

πa2/4, the area of a quadrant of a circle of radius a. This resemblance suggests
a substitution u such that 25x2 = 9u2 or u = 5

3
x, hence dx = 3

5
du. Then

substitution gives

3/5∫
0

√
9− 25x2 dx =

1∫
0

√
9− 9u2

3

5
du =

9

5

1∫
0

√
1− u2 du

=
9

5
· π

4
=

9π

20
≈ 1.41372.

�

EXAMPLE 10 ∫
sin5(2x) cos(2x) dx.

SOLUTION DISCUSSION: We could try integration by parts with u =
sin5(2x) and dv = cos(2x) dx. (See Exercise 73.)

However, cos(2x) is almost the derivative of sin(2x). For this reason make
the substitution

u = sin(2x) du = 2 cos(2x) dx;

This means that

cos(2x) dx =
du

2
.
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and so ∫
sin5(2x) cos(2x) dx =

∫
u5 du

2
=

1

2

u6

6
+ C =

sin6(2x)

12
+ C.

�

EXAMPLE 11
3∫

−3

x3 cos(x) dx.

SOLUTION DISCUSSION: Since the integrand is of the form P (x) cos(x),
where P is a polynomial, repeated integration by parts would work. On the
other hand, x3 is an odd function and cos(x) is an even function. The integrand
is therefore an odd function and the integral over [−3, 3] is 0. �

EXAMPLE 12 ∫
sin2(3x) dx.

SOLUTION DISCUSSION: You could rewrite this integral as
∫

sin(3x) sin(3x) dx
and use integration by parts. However, it is easier to use the trigonometric
identity sin2(θ) = (1− cos 2(θ))/2:∫

sin2(3x) dx =

∫
1− cos(6x)

2
dx =

∫
dx

2
−
∫

cos(6x)

2
dx =

x

2
− sin(6x)

12
+C.

�

EXAMPLE 13
2∫

1

x3 − 1

(x+ 2)2
dx.

SOLUTION DISCUSSION: Partial fractions would certainly work. (The
first step would be division of x3−1 by x2 +4x+4.) However, the substitution
u = x+ 2 is easier because it makes the denominator simply u2. We have

u = x+ 2 du = dx and x = u− 2.
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Thus Note the new limits for u.

2∫
1

x3 − 1

(x+ 2)2
dx =

4∫
3

(u− 2)3 − 1

u2
du =

4∫
3

u3 − 6u2 + 12u− 8− 1

u2
du

=

4∫
3

(
u− 6 +

12

u
− 9

u2

)
du =

(
u2

2
− 6u+ 12 ln |u|+ 9

u

)∣∣∣∣4
3

=

(
8− 24 + 12 ln(4) +

9

4

)
−
(

9

2
− 18 + 12 ln(3) + 3

)
= −(

13

4
) + 12 ln(4)− 12 ln(3) = 12 ln

(
4

3

)
− 13

4
≈ 0.20218.

�

Summary

One word: PRACTICE.
Practice is the best way to improve your integration skills. Reading worked

examples in a book is good, but doesn’t provide practice making the necessary
decisions and does not help you recognize when a particular approach will not
be successful, or an error has been made.

Many integrals can be evaluated in several different ways, but one method
is usually the easiest.

It is also important to learn to recognize integrals that can be evaluated
without finding an antiderivative or are known to not have an elementary
antiderivative.
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EXERCISES for Section 8.6 Key: R–routine, M–moderate, C–challenging

All the integrals in Exercises 1 to 59 are elementary. In each case, list the technique
or techniques that could be used to evaluate the integral. If there is a preferred
technique, state what it is (and why). Do not evaluate the integrals.

1.[R]
∫

1 + x

x2
dx

2.[R]
∫

x2

1 + x
dx

3.[R]
∫

dx

x2 + x3

4.[R]
∫

x+ 1
x2 + x3

dx

5.[R]
∫

arctan(2x) dx

6.[R]
∫

arcsin(2x) dx

7.[R]
∫
x10ex dx

8.[R]
∫

ln(x)
x2

dx

9.[R]
∫

sec2(θ) dθ
tan(θ)

10.[R]
∫

tan(θ) dθ
sin2(θ)

11.[R]
∫

x3

3
√
x+ 2

dx

12.[R]
∫

x2

3
√
x3 + 2

dx

13.[R]
∫

2x+ 1
(x2 + x+ 1)5

dx

14.[R]
∫ √

cos(θ) sin(θ) dθ

15.[R]
∫

tan2(θ) dθ

16.[R]
∫

dθ

sec2(θ)

17.[R]
∫
e
√
x dx

18.[R]
∫

sin
√
x dx

19.[R]
∫

dx

(x2 − 4x+ 3)2
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20.[R]
∫
x+ 1
x5

dx

21.[R]
∫

x5

x+ 1
dx

22.[R]
∫

ln(x)
x(1 + ln(x))

dx

23.[R]
∫

e3x dx

1 + ex + e2x

24.[R]
∫

cos(x) dx
(3 + sin(x))2

25.[R]
∫

ln(ex) dx

26.[R]
∫

ln( 3
√
x) dx

27.[R]
∫
x4 − 1
x+ 2

dx

28.[R]
∫

x+ 2
x4 − 1

dx

29.[R]
∫

dx√
x(3 +

√
x)2

30.[R]
∫

dx

(3 +
√
x)3

31.[R]
∫

(1 + tan(θ))3 sec2(θ) dθ

32.[R]
∫

e2x + 1
ex − e−x

dx

33.[R]
∫
ex + e−x

ex − e−x
dx

34.[R]
∫

(x+ 3)(
√
x+ 2 + 1)√

x+ 2− 1
dx

35.[R]
∫

( 3
√
x+ 2− 1 dx√
x+ 2 + 1

36.[R]
∫

dx

x2 − 9

37.[R]
∫

x+ 7
(3x+ 2)10

dx

38.[R]
∫

x3 dx

(3x+ 2)7

39.[R]
∫

2x + 3x

4x
dx

40.[R]
∫

2x

1 + 2x
dx
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41.[R]
∫

(x+ arcsin(x)) dx√
1− x2

42.[R]
∫
x+ arctan(x)

1 + x2
dx

43.[R]
∫
x3
√

1 + x2 dx

44.[R]
∫
x(1 + x2)3/2 dx

45.[R]
∫

x dx√
x2 − 1

46.[R]
∫

x3

√
x2 − 1

dx

47.[R]
∫

x dx

(x2 − 9)3/2

48.[R]
∫

arctan(x)
1 + x2

dx

49.[R]
∫

arctan(x)
x2

dx

50.[R]
∫

sin(ln(x))
x

dx

51.[R]
∫

cos(x) ln(sin(x)) dx

52.[R]
∫

x dx√
x2 + 4

53.[R]
∫

dx

x2 + x+ 5

54.[R]
∫

x dx

x2 + x+ 5

55.[R]
∫

x+ 3
(x+ 1)5

dx

56.[R]
∫
x5 + x+

√
x

x3
dx

57.[R]
∫

(x2 + 9)10x dx

58.[R]
∫

(x2 + 9)10x3 dx

59.[R]
∫

x4 dx

(x+ 1)2(x− 2)3

In Exercises 60 to 62, (a) decide which positive integers n yield integrals you can
evaluate and (b) evaluate them.

60.[M]
∫ √

1 + xn dx
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61.[M]
∫

(1 + x2)1/n dx

62.[M]
∫

(1 + x)1/n
√

1− x dx

63.[M] Find
∫

dx√
x+ 2−

√
x− 2

.

64.[M] Find
∫ √

1− cos(x) dx.

In Exercises 65 to 70, evaluate the integrals.

65.[M]
∫

x dx

(
√

9− x25

66.[M]
∫

dx√
9− x2

67.[R]
∫

dx

x
√
x2 + 9

68.[M]
∫

x dx√
x2 + 9

69.[M]
∫

dx

x+
√
x2 + 25

70.[M]
∫

(x3 + x2)
√
x2 − 5 dx

71.[M]

(a) Evaluate
∫
x3ex

2
using the substitution u = x2 followed by an application of

integration by parts.

(b) How does this approach compare with the one used in Example 5?

72.[M] In Example 6 it is found that∫
1− sin(θ)
θ + cos(θ)

dθ = ln |θ + cos θ|+ C.

Check this result by differentiation.

73.[M]

(a) Use integration parts to evaluate
∫

sin5(2x) cos(2x) dx.

(b) How does this approach compare with the one used in Example 10?
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8.S Chapter Summary

The previous section reviewed the techniques discussed in the chapter. Here
we will offer some general comments on finding antiderivatives.

First of all, while the derivative of an elementary function is again el-
ementary, that is not necessarily the case with antiderivatives. Moreover, it
isn’t easy to predict whether an antiderivative will be elementary. For instance
ln(x) and ln(x)

x
have elementary antiderivatives but x

ln(x)
does not. Also, x sin(x)

does, but sin(x)
x

does not. Remembering that some elementary functions lack
elementary antiderivatives can save you lots of time and frustration.

The substitution technique is the one that will come in handy most often,
to reduce an integral to an easier one or to something listed in an integral
table.

When an integrand involves a product or quotient, integration by parts
may be of use.

The integrals of sin(mx) sin(nx), sin(mx) cos(nx), and cos(mx) cos(nx) will
be needed for the discussion of Fourier Series in Section 12.7.

A common partial fraction decomposition is

1

a2 − x2
=

1

2a

(
1

a− x
+

1

a+ x

)
.

While it is comforting to know that every rational function has an elemen-
tary antiderivative, finding it can be a daunting task except for the simplest
denominators. First, factoring the denominator into first and second degree
polynomials may be a major hurdle. Second, finding the unknown coefficients
in the representation could require lots of computation. In such cases, it may
be simpler just to use Simpson’s approximation (Section 6.5) — unless one
absolutely needs to know the antiderivative. In such cases it might be best to
take advantage of an automated integrators available through your calculator
or computer.

As we will see in Chapter 12, approximating an integrand by a polynomial
offers another way to estimate a definite or indefinite integral.

Some definite integrals over intervals of the form [−a, a] can be simplified
before evaluation. Other definite integrals can be evaluated using properties
of even and odd functions. If f(x) is an even function, then

∫ a
−a f(x) dx =

2
∫ a

0
f(x) dx; if f is an odd function, then

∫ a
−a f(x) dx = 0. (For instance,
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∫ 1

−1
xex

2
dx = 0.)

Method Description
Substitution (Section 8.2) Introduce u = h(x). If f(x) dx = g(u) du, then∫

f(x) dx =
∫
g(u) du.

Substitution in a definite integral
(Section 8.2)

If u = h(x) with f(x) dx = g(u) du, then∫ b
a
f(x) dx =

∫ h(b)

h(a)
g(u) du.

Table of Integrals (Section 8.1) Obtain and become familiar with a good table of
integrals. Remember to use substitution to put
integrands into the proper form.

Integration by Parts (Section 8.3)
∫
u dv = uv −

∫
v du. Choose u and dv so

u dv = f(x) dx and
∫
v du is easier to integrate

than
∫
u dv.

Partial Fractions (applies to any ra-
tional function of x) (Section 8.4
(and Section 8.2))

This is an algebraic method in which the in-
tegrand is written as a sum of a polynomial
(which can be zero)) plus terms of the type

ki
(ax+b)i

and
rjx+sj

(ax2+bx+c)j
.

Certain Trigonometric Products
(Section 8.5)

∫
sin(mx) cos(nx) dx,

∫
sin(mx) sin(nx) dx,∫

cos(mx) cos(nx) dx
∫

sin2(x) dx,
∫

cos2(x) dx∫
tan(x) dx,

∫
tan2(x) dx

∫
sec(x) dx,

Rational Functions of x and one
of
√
a2 − x2,

√
a2 + x2,

√
x2 − a2

(Section 8.5)

For
√
a2 − x2, let x = a sin(θ).

For
√
a2 + x2, let x = a tan(θ).

For
√
x2 − a2, let x = a sec(θ).

Rational Functions of x and
n
√
ax+ b (Section 8.5)

Let u = n
√
ax+ b.

Rational Functions of cos(θ) and
sin(θ) (Section 8.5)

Let u = tan θ/2.

Integrand Method of Integration
1

(ax+b)n
substitute u = ax+ b

1
ax2+c

, a, c > 0 substitute cu2 = ax2: u =
√

a
c
x

1
ax2+bx+c

, b2 − 4ac < 0 factor out a, complete the square,
then substitute

x
ax2+bx+c

, b2 − 4ac < 0 first, write x in numerator as
1
2a

(2ax+b)− b
2a

, then break into two
parts. (That is, get 2ax+ b into the
numerator.)

1
(ax2+bx+c)n

b2 − 4ac < 0, n ≥ 2 use a recursive formula from the in-
tegral tables

x
(ax2+bx+c)n

b2 − 4ac < 0, n ≥ 2 express in terms of the previous
type by the method in Example 7.Calculus December 6, 2010
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Table 8.S.1: Antiderivatives of common forms that appear in partial fraction
representations.

f(t) F (s) = L[f ](s) Comments
1 1

s
s > 0

t 1
s2

s > 0
tn n!

sn+1 s > 0
eat 1

s−a s > a

cos(at) s
a2+s2

s > 0

sin(at) a
a2+s2

s > 0

teat 1
(s−a)2

s > a

Table 8.S.2: Brief table of Laplace Transforms

EXERCISES for 8.S Key: R–routine, M–moderate, C–challenging

1.[R]

(a) By an appropriate substitution, transform this definite integral into a simpler
definite integral:

π/2∫
0

√
(1 + cos(θ))3 sin(θ) dθ.

(b) Evaluate the new integral found in (a).

2.[R] Two of these antiderivatives are elementary functions; evaluate them.

(a)
∫

ln(x) dx

(b)
∫

ln(x)
x

dx

(c)
∫

dx

ln(x)

3.[R] Evaluate

(a)
∫ 2

1 (1 + x3)2 dx

(b)
∫ 2

1 (1 + x3)2x2 dx
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4.[R] Use a table of integrals to compute

(a)
∫

ex dx

5e2x − 3

(b)
∫

dx√
x2 − 3

5.[R] Compute

(a)
∫
dx

x3

(b)
∫

dx√
x+ 1

(c)
∫

ex

1 + 5ex
dx

6.[R] Compute
∫

5x4 − 5x3 + 10x2 − 8x+ 4
(x2 − 1)(x− 1)

dx.

7.[R] Transform the definite integral

3∫
0

x3

√
x+ 1

dx

into another definite integral in the following ways (and evaluate each transformed
integral).

(a) by the substitution u = x+ 1

(b) by the substitution u =
√
x+ 1.

(c) Which method was easier to apply?

8.[R]

(a) Transform the definite integral

4∫
−1

x+ 2√
x+ 3

dx

into an easier definite integral by a substitution.
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(b) Evaluate the integral obtained in (a).

9.[R] Compute
∫
x2 ln(1 +x) dx (a) without an integral table, (b) with an integral

table.

10.[R] Verify that the following factorizations into irreducible polynomials are
correct.

(a) x3 − 1 = (x− 1)(x2 + x+ 1)

(b) x4 − 1 = (x− 1)(x+ 1)(x2 + 1)

(c) x3 + 1 = (x+ 1)(x2 − x+ 1)

Express each expression in Exercises 11 to 17 as a sum of partial fractions. (Do not
integrate.) Exercise 10 may be helpful.

11.[R]
2x2 + 3x+ 1

x3 − 1

12.[R]
x4 + 2x2 − 2x+ 2

x3 − 1

13.[R]
2x− 1
x3 + 1

14.[R]
x4 + 3x3 − 2x62 + 3x− 1

x4 − 1

15.[R]
2x+ 5

x2 + 3x+ 2

16.[R]
5x3 + 11x2 + 6x+ 1

x2 + x

17.[R]
5x3 + 6x2 + 8x+ 5

(x2 + 1)(x+ 1)

18.[R] The Fundamental Theorem of Calculus can be used to evaluate one of these
definite integrals, but not the other. Evaluate that integral using the FTC.

(a)

1∫
0

3
√
x
√
x dx

(b)

1∫
0

3
√

1− x
√
x dx
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19.[R] Compute
∫

x3

(x− 1)2
dx

(a) using partial fractions

(b) using the substitution u = x− 1

(c) which method, (a) or (b), is easier in this case?

20.[R]

(a) Compute
∫

x2/3

x+ 1
dx.

(b) What does a table of integrals say about the indefinite integral in (a)?

21.[R] Compute
∫
x 3
√
x+ 1 dx using

(a) the substitution u = 3
√
x+ 1

(b) the substitution u = x+ 1

In Exercises 22 to 25 evaluate the integrals.

22.[R]

1∫
0

(ex + 1)3ex dx

23.[R]

1∫
0

(x4 + 1)5x3 dx

24.[R]

e∫
1

√
ln(x)
x

dx

25.[R]

π/2∫
9

cos(θ)√
1 + sin(θ)

dx

26.[R]
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(a) Without an integral table, evaluate∫
sin5(θ) dθ and

∫
tan6(θ) dθ.

(b) Evaluate each integral with an integral table.

(c) Resolve any differences in the appearance of the antiderivatives found in (a)
and (b).

27.[R] Two of these three antiderivatives are elementary. Find them, and explain
why you know they are elementary (without necessarily evaluating the integral).

(a)
∫ √

1− 4 sin2(θ) dθ

(b)
∫ √

4− 4 sin2(θ) dθ

(c)
∫ √

1 + cos(θ) dθ

28.[R] Find
∫

cot(3θ) dθ.

29.[R] Find
∫

csc(5θ) dθ.

30.[R] Compute

(a)
∫

sec5(x) tan(x) dx

(b)
∫

sin(x)
cos3(x)

dx

31.[R] Compute
∫

x3 dx

(1 + x2)4
in two different ways:

(a) by the substitution u = 1 + x2,

(b) by the substitution x = tan(θ).

32.[R] Find
∫

x dx√
9x4 + 16
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(a) without an integral table,

(b) with an integral table.

33.[R] Transform
∫

x2 dx√
1 + x

by each of the substitutions

(a) u =
√

1 + x

(b) y = 1 + x

(c) x = tan2(θ)

(d) Evaluate the easiest of the above three reformulations.

34.[R] Compute
∫
x
√

1 + x dx in three ways:

(a) u =
√

1 + x,

(b) u = 1− tan2(θ),

(c) by parts, with u = x and dv =
√

1 + x dx.

35.[R] Find
∫
x
√

(1− x2)5 dx using the substitutions

(a) u = x2,

(b) u = 1− x2,

(c) x = sin(θ).

In Exercises 36 to 48, evaluate the definite integral appearing in the given exercise.

36.[R] Exercise 21 in Section 7.1.
37.[R] Exercise 22 in Section 7.1.
38.[R] Exercise 23 in Section 7.1.
39.[R] Exercise 24 in Section 7.1.
40.[R] Exercise 25 in Section 7.1.
41.[R] Exercise 26 in Section 7.1.
42.[R] Exercise 27 in Section 7.1.
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43.[R] Exercise 28 in Section 7.1.
44.[R] Exercise 30 in Section 7.1.
45.[M] Exercise 1 in Section 7.5.
46.[M] Exercise 2 in Section 7.5.
47.[M] Exercise 3 in Section 7.5.
48.[M] Exercise 4 in Section 7.5.

49.[M] The region R below the line y = e, above y = ex, and to the right of the
y-axis is revolved around the y-axis to form a solid S. In Example 1 in Section 7.5
it is shown that the definite integral for the volume of S using disks is

e∫
1

π (ln(y))2 dy

and the volume of S using shells is

1∫
0

2πx (e− ex) dx.

Evaluate each integral. Which integral is easier to evaluate?

50.[M] The region R below the line y = π
2 − 1, to the right of the y-axis, and

above the curve y = x − sin(x) is revolved around the y-axis to form a solid S. In
Example 2 in Section 7.5 it is shown that the definite integral for the volume of
S using disks cannot be evaluated in terms of elementary functions, and that the
volume of S using shells is

π/2∫
0

2πx
(π

2
− 1− (x− sin(x))

)
dx.

Evaluate the value of this integral.

51.[M]

(a) Evaluate
∫
x+1
x2 e

−x dx.

(b) Evaluate
∫
ax−1
ax2 e

ax dx, a 6= 0

52.[M] In Example 1 in Section 7.6 the total force on a submerged circular tank is
found to be

5∫
−5

(0.036)(x+17)
√

100− 4x2 dx = 0.036

5∫
−5

x
√

100− 4x2 dx+0.036

5∫
−5

17
√

100− 4x2 dx pounds.
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At that time, the value of this integral was found using the fact that the first integral
has an odd integrand over an interval symmetric about the origin and by relating
the second integral to the area of a quarter circle.

(a) Evaluate the first integral using the substitution u = 100− 4x2.

(b) Evaluate the second integral using the substitution x2 = 25 sin2(θ).

(c) Which approach is easier?

53.[M] Find
∫

dx
sin(2x) by first writing sin(2x) as 2 sin(x) cos(x).

54.[M]

(a) Show that
∫∞

0
sin(kx)
x dx =

∫∞
0

sin(x)
x dx, where k is a positive constant.

(b) Show that
∫∞

0
sin(x) cos(x)

x dx =
∫∞

0
sin(x)
x dx.

(c) If k is negative, what is the relation between
∫∞

0
sin kx
x dx and

∫∞
0

sinx
x dx?

55.[M] Evaluate
∫∞

0 e−x sin2(x) dx.

56.[M] Evaluate
∫∞

0 e−x sin(x) dx. Note: This integral was first encountered in
Example 4 on page 667.

In statistics a function F (x) defined on [0,∞) is called a probability distribution
if F (0) = 0, limx→∞ F (x) = 1, and F has a nonnegative derivative f . The function f
is called a probability density. The integral

∫∞
0 xf(x) dx is called the expected

value or average value of x. Exercises 57 and 58 show that if one of the integrals∫∞
0 xf(x) dx and

∫∞
0 (1− F (x)) dx is convergent, so is the other one and these two

integrals are equal.
57.[M] Assume

∫∞
0 xf(x) dx is finite.

(a) Show that
∫∞
k xf(x) dx approach zero as k approaches ∞.

(b) Using the fact that
∫∞
k xf(x) dx ≥

∫∞
k kf(x) dx, show that limk→∞ k(1 −

F (k)) = 0.

(c) Show that
k∫

0

xf(x) dx = k(F (k)− 1) +

k∫
0

(1− F (x)) dx.

Hint: Use integration by parts and d(F (x)− 1) = f(x) dx.
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(d) From (c) show that

∞∫
0

xf(x) dx =

∞∫
0

(1− F (x)) dx.

58.[M] Assume that
∫∞

0 (1− F (x)) dx is finite.

(a) Show that
∫ k

0 f(x) dx = kF (k)−
∫ k

0 F (x) dx. Hint: Use integration by parts
with dF (x) = f(x) dx.

(b) Show kF (k)−
∫ k

0 F (x) dx ≤
∫ k

0 (1− F (x)) dx.

(c) Show that
∫∞

0 xf(x) dx is finite.

(d) Show that
∫∞

0 xf(x) dx =
∫∞

0 (1− F (x)) dx. Hint: Review Exercise 57.

Exercises 59 to 62 are related.
59.[M] Show that

∫∞
1 (cos(x))/x2 dx is convergent.

60.[M] Show that
∫∞

1 (sin(x))/x dx is convergent. Hint: Start with integration by
parts.

61.[M] Show that
∫∞

0 (sin(x))/x dx is convergent.

62.[M] Show that
∫∞

0 sin(ex) dx is convergent.

63.[M] In a statistics text it is asserted that for λ > 0 and n a positive integer

∞∫
0

1−
(

1− e−λt
)n

dt =
1
λ

n∑
k=1

1
k
.

(a) Check this assertion for n = 1.

(b) Check this assertion for n = 2.

(c) Show that for all n the integral is convergent.

Hint: For (c), use the Binomial Theorem (see Exercise 32 in Section 5.4).

64.[M] Let
∫∞
−∞ f(x) dx be a convergent integral with value A.

(a) Express
∫∞
−∞ f(x+ 2) dx in terms of A.

(b) Express
∫∞
−∞ f(2x) dx in terms of A.
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65.[M] Find the error in the following computations: The substitution x = y2,
dx = 2y dy, yields

1∫
0

1
x
dx =

1∫
0

2y
y2

dy =

1∫
0

2
y
dy

= 2

1∫
0

1
y
dy = 2

1∫
0

1
x
dx.

Hence
1∫

0

1
x
dx = 2

1∫
0

1
x
dx;

from which it follows that
∫ 1

0 (1/x) dx = 0.

Laplace Transforms were introduced in Exercises 51 to 55 in Section 8.3. Exercises 66
to 68 develop properties of Laplace Transforms.
66.[M] Let f and its derivative f ′ both have Laplace transforms. Let P be the
Laplace transform of f , and let Q be the Laplace transform of f ′. Show that

Q(r) = −f(0) + rP (r).

67.[M] Assume that f(t) = 0 for t < 0 and that f has a Laplace transform. Let a
be a positive constant. Define g(t) to be f(t− a). Show that the Laplace transform
of g is e−ar times the Laplace transform of f . Note: The graph of g is the graph of
f shifted to the right by a.

68.[C] Let P be the Laplace transform of f . Let a be a positive constant, and
let g(t) = f(at). Let P be the Laplace transform of f , and let Q be the Laplace
transform of g. Show that Q(r) = (1/a)P (r/a).

69.[M]

(a) Estimate
∫ 1

0
sin(x)
x dx by using the Maclaurin polynomial P6(x; 0) associated

with sin(x) to approximate sin(x).

(b) Use the Lagrange form of the error to put an upper bound on the error in (a).

70.[M]
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(a) Estimate
∫ 1
−1

ex

x+2dx by using the Maclaurin polynomial P3(x;−2) associated
with ex to approximate ex.

(b) Use the Lagrange form of the error to put an upper bound on the error in (a).

71.[M]

(a) Estimate
∫ 1
−1

ex

x−2dx by using the Taylor polynomial P3(x; 2) associated with
ex to approximate ex.

(b) Use the Lagrange form of the error to put an upper bound on the error in (a).

72.[M] Find
∫

ln(x2)
x2

dx.

73.[M] If a is a constant, show that
∫∞
−∞ e

−(x−a)2 dx =
∫∞
−∞ e

−x2
dx = 2

∫∞
0 e−x

2
dx.

74.[M] When studying the normal distribution in statistics one will meet an equa-
tion that amounts to ∫∞

−∞ x exp(−(x− µ)2) dx∫∞
−∞ exp(−(x− µ)2) dx

= µ,

where µ is a constant. Show that the equation is correct. Hint: Make the substitu-
tion t = x− µ.

75.[M] Show that
∫∞

1 x exp(−x2) dx is less than
∫ 1

0 x exp(−x2) dx. This implies
that the probability of a large disaster, compared to the long tail of the bell curve, is
smaller than what must be planned for in spite of the growth of the coefficient x. As
a result, economic predictions based on the bell curve may downplay the likelihood
of rare events. This bias may have been one of the several factors that combined to
produce the credit crisis and recession that began in 2007.

76.[C] For which values of the positive constant k is

∞∫
e

dx

x(ln(x))k
convergent? di-

vergent?
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Figure 8.S.1:
77.[M] The formula for the area of region OAP in Figure 8.S.1 was found, in
Exercise 64 in Section 6.5, to be

1
2

cosh(t) sinh(t)−
cosh(t)∫

1

√
x2 − 1dx

Use the substitution x = cosh(u) to evaluate the definite integral. Note: See also
Exercises 64 in Section 6.5 and 8 in Section 15.4.

The molecules in a gas move at various speeds. In 1859 James Maxwell developed
a formula for the distribution of the speeds of a gas consisting of N molecules. The
formula is

f(v) = 4πN
( m

2πkT

)3/2
v2e

−1
2
mv2

kT

This means that for small values, dv, the number of molecules with speed between
v and v+ dv is approximately f(v) dv. In the formula k is a physical constant, T is
the absolute temperature, and m is the mass of a molecule. The only variable is v.
Exercises 78 to 80 investigate Maxwell’s model.
78.[C] Show that

∫∞
0 f(v) dv = N .

79.[C] (continuation of Exercise 78) The average speed of the molecules is∫∞
0 vf(v) dv

N
.

Show that this equals
√

8kT/πm ≈ 1.5958
√
kT/m.

80.[C] (continuation of Exercise 79) The “most probable speed” occurs where f(v)
has a maximum. Show that this speed is

√
2kT/m ≈ 1.4142

√
kT/m. So the most

likely speed is a bit less than the average speed.

81.[M] In the study of heat capacity of a crystal one meets
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b∫
0

x4ex

(ex − 1)2
dx.

(a) Show that the integral is convergent.

(b) Is
∫ b

0
xex

(ex−1)2
dx convergent?

82.[M] Show that
∫∞
−∞

dt
(1+t2)3/2

= 2.

83.[M]

(a) Show that
∫∞

0
x2

(x2+1)5/2
is convergent.

(b) Show that the value of this improper integral is 1/3.

84.[M] In the theory of probability one meets the equation

∞∫
0

e−λxR(x) dx =
1
λ

∞∫
0

e−λxR′(x) dx+
1
λ
R(0)

Assuming the integrals are convergent, explain how the equation is obtained.

85.[M] The velocity of a particle at time t seconds is e−t sin(πt) meters per second.
Find how far it travels in the first second, from time t = 0 to t = 1,

(a) using the integral table in the front of the book,

(b) using Simpson’s method with n = 4, expressing your answer to four decimal
places.

Hint: Notice that the particle changes direction at t = 1/2 second.

86.[C] Assume that f is continuous on [0,∞) and has period one, that is, f(x) =
f(x + 1) for all x in [0,∞]. Assume also that

∫∞
0 e−xf(x) dx is convergent. Show

that
∞∫

0

e−xf(x) dx =
e

e− 1

1∫
0

e−xf(x) dx.

87.[C] Assume that f is continuous on [0,∞) and has period p > 0. Let s be
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a positive number and assume
∫∞

0 e−stf(t) dt converges. Show that this improper
integral equals

1
1− e−sp

p∫
0

e−stf(t) dt.

88.[C] The integral
∫∞

0 x2ne−kx
2
dx appears in the kinetic theory of gases. In

Chapter 16, we will show that
∫∞

0 e−x
2
dx =

√
π/2. With the aid of this information,

evaluate

(a)
∫∞

0 e−kx
2
dx,

(b)
∫∞

0 x2e−kx
2
dx.

89.[C] (continuation of Exercise 4) This exercise presents an alternate approach to
evaluating the integral in Exercise 4. Express the integral as the Laplace transform
of an appropriate function. Then, use a table of Laplace transforms to find the value
of the integral.

90.[C] James Maxwell’s “On the Geometric Mean Distance of Two Figures in
a Plane,” written in 1872, begins “There are several problems of great practical
importance in electro-magnetic measurements, in which the value of the quantity
has to be calculated by taking the sum of the logarithms of the distances of a system
of parallel wires from a given point.”
This leads him to several problems, of which this is the first.

Figure 8.S.2:
A point O is a distance c from the line that contains the line segment AB. Let P be
the point on that line nearest O, as in Figure 8.S.2. Introduce a coordinate system
in which P is the origin, AB lies on the x-axis, and OP lies on the y-axis.
Let f(x) be the distance from O to (x, 0).
Show that the average value of ln(f(x)) for x in [a, b] is

b ln(b)− a ln(a)− (b− a) + cθ

b− a
,
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where θ is the angle AOB in radians.

Exercises 91 to 92 are related to the CIE on Mercator maps (861).
91.[R] If the distance on a Mercator map is 3 inches from latitude 0◦ to latitude
20◦ how far is it on the map from (a) 60◦ to 80◦, (b) 75◦ to 85◦.
92.[M] Show that Bond’s conjecture is correct. That is, that

∫ α
0 sec(θ) dθ =

ln(tan(α/2 + π/4))

93.[M] Evaluate
∫

cos(θ)
(b2 + c2 cos2(θ))1/2

dθ. Note: This integral appears in Exer-

cise 18. Hint: Let u = c cos(θ).

94.[M] Show that
∫ √

xex dx is not elementary. Hint: Use the fact that
∫
ex

2
dx

is not elementary.

95.[C] We have seen that
∫
ex

2
dx is not elementary.

(a) Show that for positive odd integers n,
∫
xnex

2
dx is elementary.

(b) Show that for positive even integers n,
∫
xnex

2
dx is not elementary.

96.[C] We have seen that
∫
ex

2
dx and

∫
ex

x dx are not elementary.

(a) Show that
∫
ex

2

x dx is not elementary.

(b) Show that
∫
ex

2

x2 dx is not elementary.

(c) Show that for any positive integer n,
∫
ex

2

xn dx is not elementary.

97.[C] We have seen that
∫
ex

x dx is not elementary.

(a) Show that for positive integers n,
∫
xnex dx is elementary.

(b) Show that for positive integers n,
∫
ex

xn dx is not elementary

98.[C]

(a) Show that
∫
x2ex

2
dx is not elementary.

(b) Show that
∫
x4ex

2
dx is not elementary.
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(c) Find non-zero values for a and b such that
∫

(ax4+bx2)ex
2
dx is an elementary

function.

99.[C] Show that
∫
xnex

2
is elementary only when n is an odd positive integer.

100.[C] Let n be an integer. Show that
∫
xnex is elementary only when n is not

negative.

101.[M]

Sam: I understand what a definite integral is — the limit of certain sums. I accept
on faith that for a continuous function the limit exists. I agree that it is
a handy idea, with many uses, but I don’t see why I have to learn all those
ways to compute it: antiderivatives, trapezoids, Simpson’s method. My trusty
calculator evaluates integrals to eight decimal places and a computer algebra
system can often give me the exact expression.

Jane: What’s your point?

Sam: I would make this text much shorter by omitting this chapter. This would
allow us more time to spend on the stuff at the end.

Does Sam have a valid argument, for a change?

Exercises 102 to 107 all relate to the famous bell curve that arises in statistics.
102.[M] Use the fact that

∫∞
−∞ e

−x2
dx =

√
π (see Exercise 34 in Section 17.3) to

show that
∞∫
−∞

x2e−x
2
dx =

1
2
√
π.

103.[M] Let σ (lower case Greek sigma corresponds to our letter s) be a positive
constant. The famous bell curve is the graph of the function

f(x) =
exp

(
−x2

2σ2

)
σ
√

2π
.

Show that
∫∞
−∞ f(x) dx = 1.

104.[M] Show that f has inflection points at points where x = σ and at x = −σ.

105.[M] Show that
∫∞
−∞ x

2f(x) dx = σ2. Thus σ2 measures the discrepancy from
0. It is called the variance.
106.[M] The mean value of x is defined as

∫∞
−∞ xf(x) dx. Show that it is 0.
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Hint: Avoid labor.
107.[M] Assume that

∫∞
−∞ g(x) = 1 and

∫∞
−∞ xg(x) dx = k. Let h(x) = g(x− k).

Show that
∫∞
−∞ h(x) dx = 1,

∫∞
−∞ xh(x) dx = k, and

∫∞
−∞(x − k)2h(x) dx =∫∞

−∞ x
2g(x) dx.

108.[C] If f(x) and g(x) have elementary antiderivatives, which of the following
necessarily do also? (a) f(x)g(x), (b) f(g(x)), and (c) f(x) + g(x). Justify each
answer.

109.[C]

(a) Show that ex
1/2

has an elementary antiderivative.

(b) Show that ex
1/3

has an elementary antiderivative.

(c) Show that for every positive integer n, ex
1/n

has an elementary antiderivative.

110.[C] When a curve situated above the x-axis is revolved around the x-axis, the
area of the resulting surface of revolution is 31. When the curve is revolved around
the line y = −2, the surface area of this solid is 75. How long is the curve?

111.[C] In a letter dated May 24, 1872 Maxwell wrote: “It is strange . . . that W.
Weber could not correctly integrate

π∫
0

cos(θ) sin(φ) dφ where tan(θ) =
A sin(φ)

B +A cos(φ)
,

but that everyone should have copied such a wild result as

B√
A2 +B2

·
B4 + 7

6A
2B2 + 2

3A
2

B4 +A2B2 +A4
.

Of course there are two forms of the result according as A or B is greater.”
Assuming that A and B are positive, find the correct value of the integral. Hint: Be-
gin by expressing cos(θ) in terms of the constants φ, A, and B.

SHERMAN: Need specific
reference to result in A&S. 112.[C] The following calculation appears in Electromagnetic Fields, 2nd ed., Roald

K. Wangsness, Wiley, 1986. (See also Exercise 3 in the Chapter 12 Summary.)

(a) The substitution π
2 cos(θ) = 1

2(π − v), turns
∫ π

0

cos2(π2 cos(θ))
sin(θ) dθ into

1
4

 2π∫
0

1− cos(v)
v

dv +

2π∫
0

1− cos(v)
2π − v

dv

 .
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(b) Introducing w = 2π − v shows that the two integrals with respect to v are
equal.

(c) So we must find 1
2

∫ 2π
0

1−cos(v)
v dv. The integrand does not have an ele-

mentary antiderivative. However, its value (2.438) is listed in integral ta-
bles. Reference: Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, 9th ed., Dover, 1964 (online version available at
http://www.math.sfu.ca/~cbm/aands/.)

Skill Drill: Derivatives

In Exercises 113 and 114 a, b, c, m, and p are constants. In each case verify that
the derivative of the first function is the second function.
113.[R] eax(a sin(px)−p cos(px))

a2+p2
; eax sin(px).

114.[R] sec(x) + ln
(
tan

(
x
2

))
; 1

sin(x) cos2(x)
.
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Calculus is Everywhere # 11

An Improper Integral in Economics

Both business and government frequently face the question, “How much money
do I need today to have one dollar t years in the future?”

Implicit in this question are such considerations as the present value of
a business being dependent on its future profit and the cost of a toll road
being weighed against its future revenue. We determine the present value of a
business which depends on the future rate of profit.

To begin the analysis, assume that the annual interest rate r remains con-
stant and that 1 dollar deposited today is worth ert dollars t years from now.
This assumption corresponds to continuously compounded interest or to nat-
ural growth. Thus A dollars today will be worth Aert dollars t years fromt need not be an integer

now. What is the present value of the promise of 1 dollar t years from now?
In other words, what amount A invested today will be worth 1 dollar t years
from now? To find out, solve the equation Aert = 1 for A. The solution isThe present value of $1

t years from now is $ e−rt

A = e−rt. (C.11.1)

Now consider the present value of the future profit of a business (or future
revenue of a toll road). Assume that the profit flow t years from now is at the
rate f(t). This rate may vary within the year; consider f to be a continuous
function of time. The profit in the small interval of time dt, from time t to
time t + dt, would be approximately f(t)dt. The total future profit, F (T ),
from now, when t = 0, to some time T in the future is therefore

F (T ) =

T∫
0

f(t)dt. (C.11.2)

But the present value of the future profit is not given by (C.11.2). It is
necessary to consider the present value of the profit earned in a typical short
interval of time from t to t + dt. According to (C.11.1), its present value is
approximately

e−rtf(t)dt.

Hence the present value of future profit from t = 0 to t = T is given by

T∫
0

e−rtf(t)dt. (C.11.3)
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The present value of all future profit is, therefore, the improper integral∫∞
0
e−rtf(t)dt.
To see what influence the interest rate r has, denote by P (r) the present

value of all future revenue when the interest rate is r; that is,

P (r) =

∞∫
0

e−rtf(t)dt. (C.11.4)

If the interest rate r is raised, then according to (C.11.4) the present value
of a business declines. An investor choosing between investing in a business
or placing the money in a bank account may find the bank account more
attractive when r is raised.

A proponent of a project, such as a toll road, will argue that the interest
rate r will be low in the future. An opponent will predict that it will be high.
Of course, neither knows what the inscrutable future will do to the interest
rate. Even so, the prediction is important in a cost-benefit analysis.

Equation (C.11.4) assigns to a profit function f (which is a function of time
t) a present-value function P , which is a function of r, the interest rate. In
the theory of differential equations, P is called the Laplace transform of f . The Laplace transform was

first encountered in
Exercises 51 to 55 in
Section 8.3 and reappeared
in Exercises 66 to 68 in
Section 8.6.

This transform can replace a differential equation by a simpler equation that
looks quite different.

EXERCISES

In Exercises 1 to 8 f(t) is defined on [0,∞) and is continuous. Assume that for
r > 0,

∫∞
0 e−rtf(t)dt converges and that e−rtf(t) → 0 as t → ∞. Let P (r) =∫∞

0 e−rtf(t)dt. Find P (r), the Laplace transform of f(t), in Exercises 1 to 5.
1.[R] f(t) = t

2.[R] f(t) = et, assume r > 1
3.[R] f(t) = t2

4.[R] f(t) = sin(t)
5.[R] f(t) = cos(t)

6.[M] Let P be the Laplace transform of f , and let Q be the Laplace transform of
f ′. Show that Q(r) = −f(0) + rP (r).
7.[M] Let P be the Laplace transform of f , a a positive constant, and g(t) = f(at).
Let Q be the Laplace transform of g. Show that Q(t) = 1

aP
(
r
a

)
.

8.[R] Which is worth more today, $100, 8 years from now or $80, five years from
now?

(a) Assume r = 4%.

(b) Assume r = 8%.
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(c) For which interest rate are the two equal?

December 6, 2010 Calculus



Chapter 9

Polar Coordinates and Plane
Curves

This chapter presents further applications of the derivative and integral. Sec-
tion 9.1 describes polar coordinates. Section 9.2 shows how to compute the
area of a flat region that has a convenient description in polar coordinates.
Section 9.3 introduces a method of describing a curve that is especially useful
in the study of motion.

The speed of an object moving along a curved path is developed in Sec-
tion 9.4. It also shows how to express the length of a curve as a definite
integral. The area of a surface of revolution as a definite integral is introduced
in Section 9.5. The sphere is an instance of such a surface.

Section 9.6 shows how the derivative and second derivative provide tools
for measuring how curvy a curve is at each of its points. This measure, called
“curvature,” will be needed in Chapter 15 in the study of motion along a curve.
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9.1 Polar Coordinates

Rectangular coordinates provide only one of the ways to describe points in the
plane by pairs of numbers. This section describes another coordinate system
called “polar coordinates.”

Polar Coordinates

The rectangular coordinates x and y describe a point P in the plane as the
intersection of two perpendicular lines. Polar coordinates describe a point P
as the intersection of a circle and a ray from the center of that circle. They
are defined as follows.

(a) (b)

Figure 9.1.1:

When we say “The storm is
10 miles northeast,” we are

using polar coordinates:
r = 10 and θ = π/4.

Select a point in the plane and a ray emanating from this point. The
point is called the pole, and the ray the polar axis. (See Figure 9.1.1(a).)
Measure positive angles θ counterclockwise from the polar axis and negative
angles clockwise. Now let r be a number. To plot the point P that corresponds
to the pair of numbers r and θ, proceed as follows:

• If r is positive, P is the intersection of the circle of radius r whose center
is at the pole and the ray of angle θ from the pole. (See Figure 9.1.1(b).)

• If r is 0, P is the pole, no matter what θ is.

• If r is negative, P is at a distance |r| from the pole on the ray directly
opposite the ray of angle θ, that is, on the ray of angle θ + π.

In each case P is denoted (r, θ), and the pair r and θ are called the polar
coordinates of P . The point (r, θ) is on the circle of radius |r| whose center
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is the pole. The pole is the midpoint of the points (r, θ) and (−r, θ). Notice
that the point (−r, θ + π) is the same as the point (r, θ). Moreover, changing
the angle by 2π does not change the point; that is, (r, θ) = (r, θ + 2π) =
(r, θ + 4π) = · · · = (r, θ + 2kπ) for any integer k (positive or negative).

EXAMPLE 1 Plot the points (3, π/4), (2,−π/6), (−3, π/3) in polar coor-
dinates. See Figure 9.1.2.

Figure 9.1.2:

SOLUTION

• To plot (3, π/4), go out a distance 3 on the ray of angle π/4 (shown in
Figure 9.1.2).

• To plot (2,−π/6), go out a distance 2 on the ray of angle −π/6.

• To plot (−3, π/3), draw the ray of angle π/3, and then go a distance 3
in the opposite direction from the pole.

�

Figure 9.1.3:

It is customary to have the polar axis coincide with the positive x-axis as
in Figure 9.1.3. In that case, inspection of the diagram shows the relation
between the rectangular coordinates (x, y) and the polar coordinates of the
point P :

The relation between polar
and rectangular coordinates.

x = r cos(θ) y = r sin(θ)

r2 = x2 + y2 tan(θ) =
y

x

These equations hold even if r is negative. If r is positive, then r =√
x2 + y2. Furthermore, if −π/2 < θ < π/2, then θ = arctan(y/x).

Graphing r = f(θ)

Just as we may graph the set of points (x, y), where x and y satisfy a certain
equation, we may graph the set of points (r, θ), where r and θ satisfy a certain
equation. Keep in mind that although each point in the plane is specified by a
unique ordered pair (x, y) in rectangular coordinates, there are many ordered
pairs (r, θ) in polar coordinates that specify each point. For instance, the point
whose rectangular coordinates are (1, 1) has polar coordinates (

√
2, π/4) or

(
√

2, π/4 + 2π) or (
√

2, π/4 + 4π) or (−
√

2, π/4 + π) and so on.
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The simplest equation in polar coordinates has the form r = k, where k is
a positive constant. Its graph is the circle of radius k, centered at the pole.
(See Figure 9.1.4(a).) The graph of θ = α, where α is a constant, is the line
of inclination α. If we restrict r to be nonnegative, then θ = α describes the
ray (“half-line”) of angle α. (See Figure 9.1.4(b).)

(a) (b)

Figure 9.1.4:

EXAMPLE 2 Graph r = 1 + cos θ.

Figure 9.1.5: A cardioid
is not shaped like a real
heart, only like the conven-
tional image of a heart.

SOLUTION Begin by making a table: Since cos(θ) has period 2π, we con-

θ 0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

r 2 1 +
√

2
2

1 1−
√

2
2

0 1−
√

2
2

1 1 +
√

2
2

2
≈ 1.7 ≈ 0.3 ≈ 0.3 ≈ 1.7

Table 9.1.1:

sider only θ in [0, 2π].
As θ goes from 0 to π, r decreases; as θ goes from π to 2π, r increases.

The last point is the same as the first. The graph begins to repeat itself. This
heart-shaped curve, shown in Figure 9.1.5, is called a cardioid. �

Spirals turn out to be quite easy to describe in polar coordinates. This is
illustrated by the graph of r = 2θ in the next example.

EXAMPLE 3 Graph r = 2θ for θ ≥ 0.

Figure 9.1.6:

SOLUTION First make a table:

θ 0 π
2

π 3π
2

2π 5π
2
· · ·

r 0 π 2π 3π 4π 5π · · ·

Increasing θ by 2π does not produce the same value of r. As θ increaes, r
increases. The graph for θ ≥ 0 is an endless sprial, going infinitely often
around the pole. It is indicated in Figure 9.1.6. �
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If a is a nonzero constant, the graph of r = aθ is called an Archimedean
spiral for a good reason: Archimedes was the first person to study the curve,
finding the area within it up to any angle and also its tangent lines. The spiral
with a = 2 is sketched in Example 3.

Polar coordinates are also convenient for describing loops arranged like the
petals of a flower, as Example 4 shows.

EXAMPLE 4 Graph r = sin(3θ).
SOLUTION Note that sin(3θ) stays in the range −1 to 1. For instance,
when 3θ = π/2, sin(3θ) = sin(π/2) = 1. That tells us that when θ = π/6,
r = sin(3θ) = sin(3(π/6)) = sin(π/2) = 1. This case suggest that we calculate
r at integer multiples of π/6, as in Table 9.1.2: The variation of r as a function

θ 0 π
6

π
3

π
2

2π
3

5π
6

π 3π
2

2π
3θ 0 π

2
π 3π

2
2π 5π

2
3π 9π

2
6π

r = sin(3θ) 0 1 0 −1 0 1 0 1 0

Table 9.1.2:

of θ is shown in Figure 9.1.7(a). Because sin(θ) has period 2π, sin(3θ) has
period 2π/3.

(a) (b)

Figure 9.1.7:

As θ increases from 0 up to π/3, 3θ increases from 0 up to π. Thus r,
which is sin(3θ), starts at 0 (for θ = 0) up to 1 (for θ = π/6) and then back
to 0 (for θ = π/3). This gives one of the three loops that make up the graph
of r = sin(3θ). For θ in [π/3, 2π/3], r = sin(3θ) is negative (or 0). This yields
the lower loop in Figure 9.1.7(b). For θ in [2π/3, π], r is again positive, and
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we obtain the upper left loop. Further choices of θ lead only to repetition of
the loops already shown. �

The graph of r = sin(nθ) or r = cos(nθ) has n loops when n is an odd
integer and 2n loops when n is an even integer. The next example illustrates
the case when n is even.

EXAMPLE 5 Graph the four-leaved rose, r = cos(2θ).

Figure 9.1.8:

SOLUTION To isolate one loop, find the two smallest nonnegative values of
θ for which cos(2θ) = 0. These values are the θ that satisfy 2θ = π/2 and
2θ = 3π/2; thus θ = π/4 and θ = 3π/4. One leaf is described by letting θ go
from π/4 to 3π/4. For θ in [π/4, 3π/4], 2θ is in [π/2, 3π/2]. Since 2θ is then
a second- or third-quadrant angle, r = cos(2θ) is negative or 0. In particular,
when θ = π/2, cos(2θ) reaches its smallest value, −1. This loop is the bottom
one in Figure 9.1.8. The other loops are obtained similarly. Of course, we
could also sketch the graph by making a table of values. �

EXAMPLE 6 Transform the equation y = 2, which describes a horizontal
straight line, into polar coordinates.
SOLUTION Since y = r sin θ, r sin θ = 2, or

r =
2

sin(θ)
= 2 csc(θ).

This is more complicated than the Cartesian version of this equation, but is
still sometimes useful. �

EXAMPLE 7 Transform the equation r = 2 cos(θ) into rectangular coor-
dinates and graph it.
SOLUTION Since r2 = x2 + y2 and r cos θ = x, first multiply the equation
r = 2 cos θ by r, obtaining

r2 = 2r cos(θ)

Hence

x2 + y2 = 2x.

To graph this curve, rewrite the equation as

Figure 9.1.9:

x2 − 2x+ y2 = 0

and complete the square, obtaining

(x− 1)2 + y2 = 1.

The graph is a circle of radius 1 and center at (1, 0) in rectangular coordinates.
It is graphed in Figure 9.1.9. �
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Caution: The step in Example 7 where we multiply by r deserves
some attention. If r = 2 cos(θ), then certainly r2 = 2r cos(θ).
However, if r2 = 2r cos(θ), it does not follow that r = 2 cos(θ). We
can “cancel the r” only when r is not 0. If r = 0, it is true that
r2 = 2r cos(θ), but it not necessarily true that r = 2 cos(θ). Since
r = 0 satisfies the equation r2 = 2r cos θ, the pole is on the curve
r2 = 2r cos θ. Luckily, it is also on the original curve r = 2 cos(θ),
since θ = π/2 makes r = 0. Hence the graphs of r2 = 2r cos(θ) and
r = 2 cos(θ) are the same.

However, as you may check, the graphs of r = 2 + cos(θ) and
r2 = r(2 + cos(θ)) are not the same. The origin lies on the second
curve, but not on the first.

The Intersection of Two Curves

Finding the intersection of two curves in polar coordinates is complicated by
the fact that a given point has many descriptions in polar coordinates. Exam-
ple 8 illustrates how to find the intersection.

Figure 9.1.10:

EXAMPLE 8 Find the intersection of the curve r = 1 − cos(θ) and the
circle r = cos(θ).
SOLUTION First graph the curves. The curve r = cos(θ) is a circle half the
size of the one in Example 7. Both curves are shown in Figure 9.1.10. (The
curve r = 1 − cos(θ) is a cardioid, being congruent to r = 1 + cos(θ).) It
appears that there are three points of intersection.

A point of intersection is produced when one value of θ yields the same
value of r in both equations, we would have

1− cos(θ) = cos(θ).

Hence cos(θ) = 1
2
. Thus θ = π/3 or θ = −π/3 (or any angle differing from

these by 2nπ, n an integer). This gives two of the three points, but it fails to
give the origin. Why?

How does the origin get to be on the circle r = cos(θ)? Because, when
θ = π/2, r = 0. How does it get to be on the cardioid r = 1 − cos(θ)?
Because, when θ = 0, r = 0. The origin lies on both curves, but we would not
learn this by simply equating 1− cos(θ) and cos(θ). �

When checking for the intersection of two curves, r = f(θ) and r = g(θ) in
polar coordinates, examine the origin separately. The curves may also interect
at other points not obtainable by setting f(θ) = g(θ). This possibility is
due to the fact the point (r, θ) is the same as the points (r, θ + 2nπ) and
(−r, θ + (2n + 1)π) for any integer n. The safest procedure is to graph the
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two curves first, identify the intersections in the graph, and then see why the
curves intersect there.

Summary

We introduced polar coordinates and showed how to graph curves given in the
form r = f(θ). Some of the more common polar curves are listed below.

Equation Curve
r = a, a > 0 circle of radius a, center at pole
r = 1 + cos(θ) cardioid
r = aθ, a > 0 Archimedean spiral (traced clockwise)
r = sin(nθ), n odd n-leafed rose (one loop symmetric about θ = π/n)
r = sin(nθ), n even 2n-leafed rose
r = cos(nθ), n odd n-leafed rose (one loop symmetric about θ = 0)
r = cos(nθ), n even 2n-leafed rose
r = a csc(θ) the line y = a
r = a sec(θ) the line x = a
r = a cos(θ), a > 0 circle of radius a/2 through pole and (a/2, 0)
r = a sin(θ), a > 0 circle of radius a/2 through pole and (0, a/2)

Table 9.1.3:

To find the intersection of two curves in polar coordinates, first graph them.
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EXERCISES for Section 9.1 Key: R–routine, M–moderate, C–challenging

1.[R] Plot the points whose polar coordinates are

(a) (1, π/6)

(b) (2, π/3)

(c) (2,−π/3)

(d) (−2, π/3)

(e) (2, 7π/3)

(f) (0, π/4)

2.[R] Find the rectangular coordinates of the points in Exercise 1.

3.[R] Give at least three pairs of polar coordinates (r, θ) for the point (3, π/4),

(a) with r > 0,

(b) with r < 0.

4.[R] Find polar coordinates (r, θ) with 0 ≤ θ < 2π and r positive, for the points
whose rectangular coordinates are

(a) (
√

2,
√

2)

(b) (−1,
√

3)

(c) (−5, 0)

(d) (−
√

2,−
√

2)

(e) (0,−3)

(f) (1, 1)

In Exercises 5 to 8 transform the equation into one in rectangular coordinates.

5.[R] r = sin(θ)
6.[R] r = csc(θ)
7.[R] r = 4 cos(θ) + 5 sin(θ)
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8.[R] r = 3/(4 cos(θ) + 5 sin(θ))

In Exercises 9 to 12 transform the equation into one in polar coordinates.
9.[R] x = −2
10.[R] y = x2

11.[R] xy = 1
12.[R] x2 + y2 = 4x

In Exercises 13 to 22 graph the given equations.
13.[R] r = 1 + sin θ
14.[R] r = 3 + 2 cos(θ)
15.[R] r = e−θ/π

16.[R] r = 4θ/π, θ > 0
17.[R] r = cos(3θ)
18.[R] r = sin(2θ)
19.[R] r = 2
20.[R] r = 3
21.[R] r = 3 sin(θ)
22.[R] r = −2 cos(θ)

23.[M] Suppose r = 1/θ for θ > 0.

(a) What happens to the y coordinate of (r, θ) as θ →∞?

(b) What happens to the x coordinate of (r, θ) as θ →∞?

(c) Sketch the curve.

24.[R] Suppose r = 1/
√
θ for θ > 0.

(a) What happens to the y coordinate of (r, θ) as θ →∞?

(b) What happens to the x coordinate of (r, θ) as θ →∞?

(c) Sketch the curve.

In Exercises 25 to 30, find the intersections of the curves after drawing them.

25.[R] r = 1 + cos(θ) and r = cos(θ)− 1
26.[R] r = sin(2θ) and r = 1
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27.[R] r = sin(3θ) and r = cos(3θ)
28.[R] r = 2 sin(2θ) and r = 1
29.[R] r = sin(θ) and r = cos(2θ)
30.[R] r = cos(θ) and r = cos(2θ)

A curve r = 1 + a cos(θ) (or r = 1 + a sin(θ)) is called a limaçon (pronounced lee’
· ma · son). Its shape depends on the choice of the constant a. For a = 1 we have
the cardioid of Example 2. Exercises 31 to 33 concern other choices of a.

31.[R] Graph r = 1 + 2 cos(θ). (If |a| > 1, then the graph of r = 1 + a cos θ crosses
itself and forms two loops.)
32.[R] Graph r = 1 + 1

2 cos(θ).
33.[C] Consider the curve r = 1 + a cos(θ), where 0 ≤ a ≤ 1.

(a) Relative to the same polar axis, graph the curves corresponding to a = 0, 1/4,
1/2, 3/4, 1

(b) For a = 1/4 the graph in (a) is convex, but not for a = 1. Show that
for 1/2 < a ≤ 1 the curve is not convex. Note: “Convex” is defined in
Section 2.5 on page 134. Hint: Find the points on the curve farthest to the
left and compare them to the point on the curve corresponding to θ = π.

34.[M]

(a) Graph r = 3 + cos(θ)

(b) Find the point on the graph in (a) that has the maximum y coordinate.

35.[M] Find the y coordinate of the highest point on the right-hand leaf of the
four-leaved rose r = cos(2θ).

36.[M] Graph r2 = cos(2θ). Note that, if cos(2θ) is negative, r is not defined and
that, if cos(2θ) is positive, there are two values of r,

√
cos(2θ) and −

√
cos(2θ). This

curve is called a lemniscate.

In Appendix E it is shown that the graph of r = 1/(1+e cos(θ)) is a parabola if e = 1,
an ellipse if 0 ≤ e < 1, and a hyperbola if e > 1. (e here denotes “eccentricity,” not
Euler’s number.) Exercises 37 to 38 concern such graphs.

37.[M]

(a) Graph r = 1
1+cos(θ) .
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(b) Find an equation in rectangular coordinates for the curve in (a).

38.[M]

(a) Graph r = 1
1−(1/2) cos(θ) .

(b) Find an equation in rectangular coordinates for the curve in (a).

39.[C] Where do the spirals r = θ and r = 2θ, for θ ≥ 0, intersect?
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9.2 Computing Area in Polar Coordinates

Figure 9.2.1:

In Section 6.1 we saw how to compute the area of a region if the lengths of
parallel cross sections are known. Sums based on rectangles led to the formula

Area =

b∫
a

c(x) dx

where c(x) denotes the cross-sectional length. Now we consider quite a different
situation, in which sectors of circles, not rectangles, provide an estimate of the
area.

Let R be a region in the plane and P a point inside it, that we take as the
pole of a polar coordinate system. Assume that the distance r from P to any
point on the boundary of R is known as a function r = f(θ). Also, assume
that any ray from P meets the boundary of R just once, as in Figure 9.2.1.

Figure 9.2.2:

The cross sections made by the rays from P are not parallel. Instead, like
the spokes in a wheel, they all meet at the point P . It would be unnatural to
use rectangles to estimate the area, but it is reasonable to use sectors of circles
that have P as a common vertex.

Begin by recalling that in a circle of radius r a sector of central angle θ has
area (θ/2)r2. (See Figure 9.2.2.) This formula plays the same role now as the
formula for the area of a rectangle did in Section 6.1.

Area in Polar Coordinates
Assume f(θ) ≥ 0.

Figure 9.2.3:

Let R be the region bounded by the rays θ = α and θ = β and by the curve
r = f(θ), as shown in Figure 9.2.3. To obtain a local estimate for the area
of R, consider the portion of R between the rays corresponding to the angles
θ and θ + dθ, where dθ is a small positive number. (See Figure 9.2.4(a).) The
area of the narrow wedge is shaded in Figure 9.2.4(a) is approximately that of
a sector of a circle of radius r = f(θ) and angle dθ, shown in Figure 9.2.4(b).
The area of the sector in Figure 9.2.4(b) is

f(θ)2

2
dθ. (9.2.1)

Having found the local estimate of area (9.2.1), we conclude that the area of
R is The area of the region bounded by the rays θ = α and θ = β and by the How to find area in polar

coordinates.curve r = f(θ) is

β∫
α

f(θ)2

2
dθ or simply

β∫
α

r2

2
dθ. (9.2.2)
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(a) (b) (c)

Figure 9.2.4:

Formula 9.2.2 is applied in Section 15.1 (and a CIE) to the motion of satellites
and planets.

Remark: It may seem surprising to find (f(θ))2, not just f(θ), inArea has dimensions of
length squared. the integrand. But remember that area has the dimension “length

times length.” Since θ, given in radians, is dimensionless, being
defined as “length of circular arc divided by length of radius”,
dθ is also dimensionless. Hence f(θ) dθ, having the dimension
of length, not of area, could not be correct. But 1

2
(f(θ))2 dθ,

having the dimension of area (length times length), is plausible.
For rectangular coordinates, in the expressions f(x) dx, both f(x)
and dx have the dimension of length, one along the y-axis, the other
along the x-axis; thus f(x) dx has the dimension of area. As an aidMemory device

in remembering the area of the narrow sector in Figure 9.2.4(b),
note that it resembles a triangle of height r and base r dθ, as shown
in Figure 9.2.4(c). Its area is

Figure 9.2.5:

1

2
· r︸︷︷︸

height

· rdθ︸︷︷︸
base

=
r2dθ

2
.

EXAMPLE 1 Find the area of the region bounded by the polar curve
r = 3 + 2 cos(θ), shown in Figure 9.2.5.
SOLUTION This cardiod is traced once for 0 ≤ θ ≤ 2π. By the formula just

December 6, 2010 Calculus



§ 9.2 COMPUTING AREA IN POLAR COORDINATES 803

obtained, this area is

2π∫
0

1

2
(3 + 2 cos(θ))2dθ =

1

2

2π∫
0

(9 + 12 cos(θ) + 4 cos2(θ))dθ

=
1

2

2π∫
0

(9 + 12 cos(θ) + 2(1 + cos(2θ)) dθ

=
1

2
(9θ + 12 sin(θ) + 2θ + sin(2θ))

∣∣∣∣2π
0

= 11π.

�

EXAMPLE 2 Find the area of the region inside one of the eight loops of
the eight-leaved rose r = cos(4θ).

Figure 9.2.6:

SOLUTION To graph one of the loops, start with θ = 0. For that angle,
r = cos(4·0) = cos 0 = 1. The point (r, θ) = (1, 0) is the outer tip of a loop. As
θ increases from 0 to π/8, cos(4θ) decreases from cos(0) = 1 to cos(π/2) = 0.
One of the eight loops is therefore bounded by the rays θ = π/8 and θ = −π/8.
It is shown in Figure 9.2.6.

The area of this loop, which is bisected by the polar axis, is

π/8∫
−π/8

r2

2
dθ =

π/8∫
−π/8

cos2(4θ)

2
dθ = 2 · 1

4

π/8∫
0

(1 + cos(8θ)) dθ

=
1

2

(
θ +

sin(8θ)

4

)∣∣∣∣π/8
0

=
1

2

(
π

8
+

sin(π)

8

)
− 0 =

π

16
≈ 0.19635.

Notice how the fact that the integrand is an even function simplifies this cal-
culation. �

The Area between Two Curves

Figure 9.2.7:

Assume that r = f(θ) and r = g(θ) describe two curves in polar coordinates
and that f(θ) ≥ g(θ) ≥ 0 for θ in [α, β]. Let R be the region between these
two curves and the rays θ = α and θ = β, as shown in Figure 9.2.7.

The area of R is obtained by subtracting the area within the inner curve,
r = g(θ), from the area within the outer curve, r = f(θ).

EXAMPLE 3 Find the area of the top half of the region inside the cardioid
r = 1 + cos(θ) and outside the circle r = cos(θ).
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SOLUTION The region is shown in Figure 9.2.8. The top half of the circleWe must integrate over two
different intervals to find

the two areas.
r = cos(θ) is swept out as θ goes from 0 to π/2. The area of this region is

1

2

π/2∫
0

cos2(θ) dθ =
π

8
.

Figure 9.2.8: It’s even eas-
ier to see this area as half
the area of a circle of ra-
dius 1/2: 1

2
π
(

1
2

)2
= π

8
.

The top half of the cardioid is swept out by r = 1 + cos(θ) as θ goes from
0 to π; so its area is

1

2

π∫
0

(1 + cos(θ))2dθ =
1

2

π∫
0

(
1 + 2 cos(θ) + cos2(θ)

)
dθ

=
1

2

π∫
0

(
1 + 2 cos(θ) +

1 + cos(2θ)

2

)
dθ

=
1

2

π∫
0

(
3

2
+ 2 cos(θ) +

cos(2θ)

2

)
dθ

=
1

2

(
3θ

2
+ 2 sin(θ) +

sin(2θ)

4

)∣∣∣∣π
0

=
3π

4
.

Thus the area in question is

3π

4
− π

8
=

5π

8
≈ 1.96349.

�

Summary

In this section we saw how to find the area within a curve r = f(θ) and the
rays θ = α and θ = β. The heart of the method is the local approximation by
a narrow sector of radius r and angle dθ, which has area r2dθ/2. (It resembles
a triangle of height r and base rdθ.) This approximation leads to the formula,

Area =

β∫
α

r2

2
dθ.

It is more prudent to remember the triangle than the area formula because
you may otherwise forget the 2 in the denominator.
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EXERCISES for Section 9.2 Key: R–routine, M–moderate, C–challenging

In each of Exercises 1 to 6, draw the bounded region enclosed by the indicated curve
and rays and then find its area.

1.[R] r = 2θ, α = 0, β = π
2

2.[R] r =
√
θ, α = 0, β = π

3.[R] r = 1
1+θ , α = π

4 , β = π
2

4.[R] r =
√

sin(θ), α = 0, β = π
2

5.[R] r = tan(θ), α = 0, β = π
4

6.[R] r = sec(θ), α = π
6 , β = π

4

In each of Exercises 7 to 16 draw the region bounded by the indicated curve and
then find its area.

7.[R] r = 2 cos(θ)

8.[R] r = eθ, 0 ≤ θ ≤ 2π

9.[R] Inside the cardioid r = 3 + 3 sin(θ) and outside the circle r = 3.

10.[R] r =
√

cos(2θ)

11.[R] One loop of r = sin(3θ)

12.[R] One loop of r = cos(2θ)

13.[R] Inside one loop of r = 2 cos(2θ) and outside r = 1

14.[R] Inside r = 1 + cos(θ) and outside r = sin(θ)

15.[R] Inside r = sin(θ) and outside r = cos(θ)

16.[R] Inside r = 4 + sin(θ) and outside r = 3 + sin(θ)

17.[M] Sketch the graph of r = 4 + cos(θ). Is it a circle?

18.[M]

(a) Show that the area of the triangle in Figure 9.2.9(a) is
∫ β

0
1
2 sec2(θ)dθ.

(b) From (a) and the fact that the area of a triangle is 1
2(base)(height), show that

tan(β) =
∫ β

0 sec2(θ)dθ.

(c) With the aid of the equation in (b), obtain another proof that (tan(x))′ =
sec2(x).
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(a) (b)

Figure 9.2.9:
19.[M] Show that the area of the shaded crescent between the two circular arcs
is equal to the area of square ABCD. (See Figure 9.2.9(b).) This type of result
encouraged mathematicians from the time of the Greeks to try to find a method us-
ing only straightedge and compass for constructing a square whose area equals that
of a given circle. This was proved impossible at the end of the nineteenth century
by showing that π is not the root of a non-zero polynomial with integer coefficients.

20.[M]

(a) Graph r = 1/θ for 0 < θ ≤ π/2.

(b) Is the area of the region bounded by the curve drawn in (a) and the rays θ = 0
and θ = π/2 finite or infinite?

21.[M]

(a) Sketch the curve r = 1/(1 + cos(θ)).

(b) What is the equation of the curve in (a) in rectangular coordinates?

(c) Find the area of the region bounded by the curve in (a) and the rays θ = 0
and θ = 3π/4, using polar coordinates.

(d) Solve (c) using retangular coordinates and the equation in (b).

22.[M] Use Simpson’s method to estimate the area of the bounded region between
r = 3
√

1 + θ2, θ = 0, and θ = π/2 that is correct to three decimal places.

23.[C] Estimate the area of the region bounded by r = eθ, r = 2 cos(θ) and θ = 0.
Hint: You may need to approximate a limit of integration.

24.[C] Figure 9.2.10 shows a point P inside a convex region R.
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(a) Assume that P cuts each chord through P into two intervals of equal length.
Must each chord through P cut R into two regions of equal areas?

(b) Assume that each chord through P cuts R into two regions of equal areas.
Must P cut each chord through P into two intervals of equal lengths?

Figure 9.2.10:
25.[C] Let R be a convex region in the plane and P be a point on the boundary
of R. Assume that every chord of R that has an end at P has length at least 1.

(a) Draw several examples of such an R.

(b) Make a general conjecture about the area R.

(c) Prove it.

26.[C] Repeat Exercise 25, except that each chord through P has length not more
than 1.

27.[C]

(a) Show that each line through the origin intersects the region bounded by the
curve in Example 1 in a segment of length 6.

(b) Each line through the center of a disk of radius 3 also intersects the disk in a
segment of length 6. Does it follow that the disk and the region in Example 1
have the same areas?

28.[C] Consider a convex region R in the plane and a point P inside it. If you
know the length of each chord that passes through P . Can you then determine the
area of R
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(a) if P is on the border of R?

(b) if P is in the interior of R?

Exercises 29 to 31, contributed by Rick West, are related.
29.[C] The graph of r = cos(nθ) has 2n loops when n is even. Find the total area
within those loops.

30.[C] The graph of r = cos(nθ) has n loops when n is odd. Find the total area
within those loops.

31.[C] Find the total area of all the petals within the curve r = sin(nθ), where n
is a positive integer. Hint: Take the cases n even or odd separately.
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9.3 Parametric Equations

Figure 9.3.1:

Up to this point we have considered curves described in three forms: “y is
a function of x”, “x and y are related implicitly”, and “r is a function of θ”.
But a curve is often described by giving both x and y as functions of a third
variable. We introduce this situation as it arises in the study of motion. It
was the basis for the CIE on the Uniform Sprinkler in Chapter 5.

Two Examples

EXAMPLE 1 If a ball is thrown horizontally out of a window with a speed
of 32 feet per second, it falls in a curved path. Air resistance disregarded,
its position t seconds later is given by x = 32t, y = −16t2 relative to the
coordinate system in Figure 9.3.1. Here the curve is completely described, para meaning “together,”

meter meaning “measure”.not by expressing y as a function of x, but by expressing each of x and y as
functions of a third variable t. The third variable is called a parameter. The
equations x = 32t, y = −16t2 are called parametric equations for the curve.

In this example it is easy to eliminate t and so find a direct relation between
x and y:

t =
x

32
.

Hence

y = −16
( x

32

)2

= − 16

(32)2
x2 = − 1

64
x2.

The path is part of the parabola y = − 1
64
x2. �

In Example 2 elimination of the parameter would lead to a complicated
equation involving x and y. One advantage of parametric equations is that
they can provide a simple description of a curve, although it may be impossible
to find an equation in x and y that describes the curve.

Figure 9.3.2:
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EXAMPLE 2 As a bicycle wheel of radius a rolls along, a tack stuck in its
circumference traces out a curve called a cycloid, which consists of a sequence
of arches, one arch for each revolution of the wheel. (See Figure 9.3.2.) Find
the position of the tack as a function of the angle θ through which the wheel
turns.
SOLUTION Assume that the tack is initially at the bottom of the wheel.
The x coordinate of the tack, corresponding to θ, is

|AF | = |AB| − |ED| = aθ − a sin(θ),

and the y coordinate is

|EF | = |BC| − |CD| = a− a cos(θ).

Then the position of the tack, as a function of the parameter θ, is

x = aθ − a sin(θ), y = a− a cos(θ).

In this case, eliminating θ leads to a complicated relation between x and y. �See Exercise 36.

Any curve can be described parametrically. For instance, consider the curve
y = ex+x. It is perfectly legal to introduce a parameter t equal to x and write

x = t, y = et + t.

This device may seem a bit artificial, but it will be useful in the next section in
order to apply results for curves expressed by means of parametric equations
to curves given in the form y = f(x).

How to Find dy
dx and d2y

dx2

How can we find the slope of a curve that is described parametrically by the
equations

x = g(t), y = h(t)?

An often difficult, perhaps impossible, approach is to solve the equation x =
g(t) for t as a function of x and substitute the result into the equation y = h(t),
thus expressing y explicitly in terms of x; then differentiate the result to find
dy/dx. Fortunately, there is a very easy way, which we will now describe.
Assume that y is a differentiable function of x. Then, by the Chain Rule,

dy

dt
=
dy

dx

dx

dt
,

from which it follows that
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Slope of a parameterized curve

dy

dx
=

dy
dt
dx
dt

. (9.3.1)

It is assumed that in formula (9.3.1) dx/dt is not 0. To obtain d2y/dx2 just
replace y in (9.3.1) by dy/dx, obtaining

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)
dx
dt

.

EXAMPLE 3 At what angle does the arch of the cycloid shown in Exam-
ple 2 meet the x-axis at the origin?
SOLUTION The parametric equations of the cycloid are

x = aθ − a sin(θ) and y = a− a cos(θ).

Here θ is the parameter. Then

dx

dθ
= a− a cos(θ) and

dy

dθ
= a sin(θ).

Consequently,

dy

dx
=

dy/dθ

dx/dθ
=

a sin(θ)

a− a cos(θ)
=

sin(θ)

1− cos(θ)
.

When θ = 0, (x, y) = (0, 0) and dy
dx

is not defined because dx
dθ

= 0. But, when
θ is near 0, (x, y) is near the origin and the slope of the cycloid at (0, 0) can
be found by looking at the limit of the slope, which is sin θ/(1 − cos(θ)), as
θ → 0+. L’Hôpital’s Rule applies, and we have

lim
θ→0+

sin(θ)

1− cos(θ)
= lim

θ→0+

cos(θ)

sin(θ)
=∞.

Thus the cycloid comes in vertically at the origin, as shown in Figure 9.3.2. �

EXAMPLE 4 Find d2y/dx2 for the cycloid of Example 2.
SOLUTION In Example 3 we found

dy

dx
=

sin(θ)

1− cos(θ)
.
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As shown in Example 3, dx/dθ = a− a cos(θ). To find d2y
dx2 we first compute

d

dθ

(
dy

dx

)
=

(1− cos(θ)) cos(θ)− sin(θ)(sin(θ))

(1− cos(θ))2
=

cos(θ)− 1

(1− cos(θ))2
=

−1

1− cos(θ)
.

Thus
d2y

dx2
=

d
dθ

(
dy
dx

)
dx
dθ

=

−1
1−cos(θ)

a− a cos(θ)
=

−1

a(1− cos(θ))2
.

Since the denominator is positive (or 0), the quotient, when defined, is nega-
tive. This agrees with Figure 9.3.2, which shows each arch of the cycloid as
concave down. �

Summary

This section described parametric equations, where x and y are given as func-
tions of a third variable, often time (t) or angle (θ). We also showed how to
compute dy/dx and d2y/dx2:

dy

dx
=
dy/dt

dx/dt

and replacing y by dy
dx

,

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

.
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EXERCISES for Section 9.3 Key: R–routine, M–moderate, C–challenging

1.[R] Consider the parametric equations x = 2t+ 1, y = t− 1.

(a) Fill in this table:
t −2 −1 0 1 2
x

y

(b) Plot the five points (x, y) obtained in (a).

(c) Graph the curve given by the parametric equations x = 2t+ 1, y = t− 1.

(d) Eliminate t to find an equation for the curve involving only x and y.

2.[R] Consider the parametric equations x = t+ 1, y = t2.

(a) Fill in this table:
t −2 −1 0 1 2
x

y

(b) Plot the five points (x, y) obtained in (a).

(c) Graph the curve.

(d) Find an equation in x and y that describes the curve.

3.[R] Consider the parametric equations x = t2, y = t2 + t.

(a) Fill in this table:
t −3 −2 −1 0 1 2 3
x

y

(b) Plot the seven points (x, y) obtained in (a).

(c) Graph the curve given by x = t2, y = t2 + t.

(d) Eliminate t and find an equation for the graph in terms of x and y.

4.[R] Consider the parametric equations x = 2 cos(t), y = 3 sin(t).
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(a) Fill in this table, expressing the entries decimally:

t 0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4 2π

x

y

(b) Plot the eight distinct points in (a).

(c) Graph the curve given by x = 2 cos(t), y = 3 sin(t).

(d) Using the identity cos2(t) + sin2(t) = 1, eliminate t.

In Exercises 5 to 8 express the curves parametrically with parameter t.

5.[R] y =
√

1 + x3

6.[R] y = tan−1(3x)
7.[R] r = cos2(θ)
8.[R] r = 3 + cos(θ)

In Exercises 9 to 14 find dy/dx and d2y/dx2 for the given curves.

9.[R] x = t3 + t, y = t7 + t+ 1
10.[R] x = sin(3t), y = cos(4t)
11.[R] x = 1 + ln(t), y = t ln(t)
12.[R] x = et

2
, y = tan(t)

13.[R] r = cos(3θ)
14.[R] r = 2 + 3 sin(θ)

In Exercises 15 to 16 find the equation of the tangent line to the given curve at the
given point.

15.[R] x = t3 + t2, y = t5 + t; (2, 2)

16.[R] x = t2+1
t3+t2+1

, y = sec 3t; (1, 1)

In Exercises 17 and 18 find d2y/dx2.

17.[R] x = t3 + t+ 1, y = t2 + t+ 2
18.[R] x = e3t + sin(2t), y = e3t + cos(t2)

19.[R] For which values of t is the curve in Exercise 17 concave up? concave down?
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20.[R] Let x = t3 + 1 and y = t2 + t+ 1. For which values of t is the curve concave
up? concave down?

21.[R] Find the slope of the three-leaved rose, r = sin(3θ), at the point (r, θ) =
(
√

2/2, π/12).

22.[R]

(a) Find the slope of the cardioid r = 1 + cos(θ) at the point (r, θ).

(b) What happens to the slope in (a) as θ approaches π from the left?

(c) What does (b) tell us about the graph of the cardioid? (Show it on the graph.)

23.[R] Obtain parametric equations for the circle of radius a and center (h, k),
using as parameter the angle θ shown in Figure 9.3.3(a).

24.[R] At time t ≥ 0 a ball is at the point (24t,−16t2 + 5t+ 3).

(a) Where is it at time t = 0?

(b) What is its horizontal speed at that time?

(c) What is its vertical speed at that time?

(a) (b)

Figure 9.3.3:
Exercises 25 to 27 analyze the trajectory of a ball thrown from the origin at an angle
α and initial velocity v0, as sketched in Figure 9.3.3(b). These results are used in
the CIE on the Uniform Sprinkler in Chapter 5 (see page 472).
25.[R] It can be shown that if time is in seconds and distance in feet, then t seconds
later the ball is at the point

x = (v0 cos(α))t, y = (v0 sin(α))t− 16t2.
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(a) Express y as a function of x. Hint: Eliminate t.

(b) In view of (a), what type of curve does the ball follow?

(c) Find the coordinates of its highest point.

26.[R] Eventually the ball in Exercise 25 falls back to the ground.

(a) Show that, for a given v0, the horizontal distance it travels is proportional to
sin(2θ).

(b) Use (a) to determine the angle that maximizes the horizontal distance traveled.

(c) Show that the horizontal distance traveled in (a) is the same when the ball is
thrown at an angle of θ or at an angle of π/2− θ.

27.[R] Is it possible to extend the horizontal distance traveled by throwing the ball
in Exercise 25 from the top of a hill? (Assume the hill has height d.) Hint: Work
with the horizontal distance traveled, x, not the distance along the sloped ground.

28.[R] The spiral r = e2θ meets the ray θ = α at an infinite number of points.

(a) Graph the spiral.

(b) Find the slope of the spiral at each intersection with the ray.

(c) Show that at all of these points this spiral has the same slope.

(d) Show that the analog of (c) is not true for the spiral r = θ.

29.[M] The spiral r = θ, θ > 0 meets the ray θ = α at an infinite number of points
(α, α), (α+ 2π, α), (α+ 4π, α), . . . . What happens to the angle between the spiral
and the ray at the point (α+ 2πn, α) as n→∞?

30.[M] Let a and b be positive numbers. Consider the curve given parametrically
by the equations

x = a cos(t) y = b sin(t).

(a) Show that the curve is the ellipse x2

a2 + y2

b2
= 1.

(b) Find the area of the region bounded by the ellipse in (a) by making a substi-
tution that expresses 4

∫ a
0 y dx in terms of an integral in which the variable is

t and the range of integration is [0, π/2].
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31.[M] Consider the curve given parametrically by

x = t2 + et y = t+ et

for t in [0, 1].

(a) Plot the points corresponding to t = 0, 1/2, and 1.

(b) Find the slope of the curve at the point (1, 1).

(c) Find the area of the region under the curve and above the interval [1, e + 1].
[See Exercise 30(b).]

32.[M] What is the slope of the cycloid in Figure 9.3.2 at the first point on it to
the right of the y-axis at the height a?

33.[M] The region under the arch of the cycloid

x = aθ − a sin(θ), y = a− a cos(θ) (0 ≤ θ ≤ 2π)

and above the x-axis is revolved around the x-axis. Find the volume of the solid of
revolution produced.

34.[M] Find the volume of the solid of revolution obtained by revolving the region
in Exercise 33 about the y-axis.

35.[M] Let a be a positive constant. Consider the curve given parametrically by
the equations x = a cos3(t), y = a sin3(t).

(a) Sketch the curve.

(b) Express the slope of the curve in terms of the parameter t.

36.[M] Solve the parametric equations for the cycloid, x = aθ − a sin(θ), y =
a− a cos(θ), for y as a function of x. Note: See Example 1.

37.[C] Consider a tangent line to the curve in Exercise 35 at a point P in the
first quadrant. Show that the length of the segment of that line intercepted by the
coordinate axes is a.

38.[C] L’Hôpital’s rule in Section 5.5 asserts that if limt→0 f(t) = 0, limt→0 g(t) = 0,
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and limt→0(f ′(t)/g′(t)) exists, then limt→0(f(t)/g(t)) = limt→0(f ′(t)/g′(t)). Inter-
pret that rule in terms of the parameterized curve x = g(t), y = f(t). Hint: Make a
sketch of the curve near (0, 0) and show on it the geometric meaning of the quotients
f(t)/g(t) and f ′(t)/g′(t).

Figure 9.3.4:
39.[C] The Folium of Descartes is the graph of

x3 + y3 = 3xy.

The graph is shown in Figure 9.3.4. It consists of a loop and two infinite pieces both
asymptotic to the line x + y + 1 = 0. Parameterize the curve by the slope t of the
line joining the origin with (x, y). Thus for the point (x, y) on the curve, y = xt.

(a) Show that

x =
3t

1 + t3
and y =

3t2

1 + t3
.

(b) Find the highest point on the loop.

(c) Find the point on the loop furthest to the right.

(d) The loop is parameterized by t in [0,∞). Which values of t parameterize the
part in the fourth quadrant?

(e) Which values of t parameterize the part in the second quadrant?

(f) Show that the Folium of Descartes is symmetric with respect to the line y = x.

Note: Visit http://en.wikipedia.org/wiki/Folium_of_Descartes or do a Google
search of “Folium Descartes” to see its long history that goes back to 1638.
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9.4 Arc Length and Speed on a Curve

In Section 4.2 we studied the motion of an object moving on a line. If at
time t its position is x(t), then its velocity is the derivative dx

dt
and its speed is∣∣dx

dt

∣∣. Now we will examine the velocity and speed of an object moving along
a curved path.

Arc Length and Speed in Rectangular Coordinates

Consider an object moving on a path given parametrically by{
x = g(t)
y = h(t)

,

where g and h have continuous derivatives. Think of t as time, though the
parameter could be anything, such as angle or even x itself.

First, let us find a formula for its speed.
Let s(t) be the arc length covered from the initial time to an arbitrary time

t. In a short interval of time, ∆t, it travels a distance ∆s along the path. We
want to find

lim
∆t→0

∆s

∆t
.

We take an intuitive approach, and leave a more formal argument for Exer-
cise 30.

Figure 9.4.1:

During the time interval [t, t + ∆t] the object goes from P to Q on the
path, covering a distance ∆s, as shown in Figure 9.4.1. During this time its
x-coordinate changes by ∆x and its y-coordinate by ∆y. The chord PQ has
length

√
(∆x)2 + (∆y)2.

We assume now that the curve is well behaved in the sense that lim∆t→0
∆s
|PQ| =

1. In this case,

lim
∆t→0

∆s

∆t
= lim

∆t→0

|PQ|
∆t

= lim
∆t→0

√
(∆x)2 + (∆y)2

∆t

= lim
∆t→0

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

=

√(
dx

dt

)2

+

(
dy

dt

)2

.

We have just obtained the key result in this section:

ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2
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or, stated in terms of differentials,

ds =
√

(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Figure 9.4.2:

The rates at which x and y change determine how fast the arc length s changes,
as recorded in Figure 9.4.2.

Now that we have a formula for ds/dt, we simply integrate it to get the
distance along the path covered during a time interval [a, b]:

arc length =

b∫
a

ds =

b∫
a

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (9.4.1)

If the curve is given in the form y = f(x), one is free to use x as the parameter.
Thus, a parametric representation of the curve is

x = x, y = f(x).

Then (9.4.1) becomes

arc length =

b∫
a

√
1 + (f ′(x))2 dx.

WARNING (Sign of ds
dt

) The arclength function is, by definition,
an non-decreasing function. This means ds/dt is never negative.
In fact, in most applications ds/dt will be strictly positive.

Three examples will show how these formulas are applied. The first goes
back to the year 1657, when the 20-year old Englishman, William Neil, found
the length of an arc on the graph of y = x3/2. His method was much more
complicated. Earlier in that century, Thomas Harriot had found the length of
an arc of the spiral r = eθ, but his work was not widely published.

EXAMPLE 1 Find the arc length of the curve y = x3/2 for x in [0, 1]. (See
Figure 9.4.3.)

December 6, 2010 Calculus



§ 9.4 ARC LENGTH AND SPEED ON A CURVE 821

SOLUTION By formula (9.4.1),

Figure 9.4.3:

arc length =

1∫
0

√
1 +

(
dy

dx

)2

dx.

Since y = x3/2, we differentiate to find dy/dx = 3
2
x1/2. Thus

arc length =
∫ 1

0

√
1 +

(
3
2
x1/2

)2
dx =

∫ 1

0

√
1 + 9

4
x dx

=
∫ 13/4

1

√
u · 4

9
du (u = 1 + 9

4
x, du = 9

4
dx)

= 4
9
· 2

3
u3/2

∣∣13/4

1
= 8

27

((
13
4

)3/2 − 13/2
)

= 8
27

(
133/2

8
− 1
)

= 133/2−8
27

≈ 1.43971.

�

Incidentally, the arc length of the curve y = xa where a is a non-zero
rational number, usually cannot be computed with the aid of the Fundamental
Theorem of Calculus. The only cases in which it can be computed by the FTC
are a=1 (the graph of y = x) and a = 1 + 1

n
where n is an integer. Exercise 32

treats this question.

Figure 9.4.4:

EXAMPLE 2 In Section 9.3 the parametric equations for the motion of a
ball thrown horizontally with a speed of 32 feet per second (≈ 21.8 mph) were
found to be x = 32t, y = −16t2. (See Example 1 and Figure 9.3.1.) How fast
is the ball moving at time t? Find the distance s which the ball travels during
the first b seconds.
SOLUTION From x = 32t and y = −16t2 we compute dx

dt
= 32 and dy

dt
=

−32t. Its speed at time t is

Speed =

√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(32)2 + (−32t)2 = 32
√

1 + t2 feet per second.

The distance traveled is the arc length from t = 0 to t = b. By formula (9.4.1),

arc length =

b∫
0

√
(32)2 + (−32t)2 dt = 32

b∫
0

√
1 + t2 dt.

This integral can be evaluated with an integration table or with the trigono- See Formula 31 in the
integral table.metric substitution x = tan(θ). An antiderivative is

1

2

(
t
√

1 + t2 + ln
∣∣∣t+
√

1 + t2
∣∣∣)
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and the distance traveled is

16b
√

1 + b2 + 16 ln
(
b+
√

1 + b2
)
.

�

EXAMPLE 3 Find the length of one arch of the cycloid found in Example 2
of Section 9.3.
SOLUTION Here the parameter is θ, x = aθ−a sin(θ), and y = a−a cos(θ).
To complete one arch of the cycloid, θ varies from 0 to 2π.

We compute

dx

dθ
= a− a cos(θ) and

dy

dθ
= a sin(θ).

The square of the speed is

(a− a cos(θ))2 + (a sin(θ))2 = a2
(
(1− cos(θ))2 + (sin(θ))2

)
= a2

(
1− 2 cos(θ) + (cos(θ))2 + (sin(θ))2

)
= a2 (2− 2 cos(θ))

= 2a2(1− cos(θ)).

Using boxed formula (9.4.1) and the trigonometric identity 1 − cos(θ) =
2 sin2(θ/2), we have

the length of one arch =

2π∫
0

√
2a2(1− cos(θ)) dθ = a

√
2

2π∫
0

√
1− cos(θ) dθ

= a
√

2

2π∫
0

√
2 sin

(
θ

2

)
dθ = 2a

2π∫
0

sin

(
θ

2

)
dθ

= 2a

(
−2 cos

(
θ

2

)∣∣∣∣2π
0

)
= 2a (−2(−1)− (−2)(1)) = 8a.

This means that while θ varies from 0 to 2π, a bicycle travels a distance of

Figure 9.4.5:

2πa ≈ 6.28318a and a tack in the tread of the tire travels a distance 8a. �

Arc Length and Speed in Polar Coordinates

So far in this section curves have been described in rectangular coordinates.
Next consider a curve given in polar coordinates by the equation r = f(θ).

We will estimate the length of arc ∆s corresponding to small changes ∆θ
and ∆r in polar coordinates, as shown in Figure 9.4.5. The region bounded
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by the circular arc AB, the straight segment BC, and AC, the part of the
curve, resembles a right triangle whose two legs have lengths r∆θ and ∆r. We
assume ∆s is well approximated by its hypotenuse,

√
(r∆θ)2 + (∆r)2. Thus

we expect

ds

dθ
= lim

∆θ→0

∆s

∆θ
= lim

∆θ→0

√
(r∆θ)2 + (∆r)2

(∆θ)

= lim
∆θ→0

√
r2 +

(
∆r

∆θ

)2

=

√
r2 +

(
dr

dθ

)2

In short, arc length for r = f(θ).

For a curve given in polar coordinates:

ds

dθ
=

√
r2 +

(
dr

dθ

)2

. or ds =
√

(r dθ)2 + (dr)2 =

√
r2 + (r′)2 dθ.

This formula can also be obtained from the formula for the case of rectangular
coordinates by using x = r cos(θ) and y = r sin(θ). (See Exercise 19.) How-
ever, we prefer the geometric approach because it is (i) more direct, (ii) more
intuitive, and (iii) easier to remember. See Exercise 19.

Arc Length of a Polar Curve r = f(θ)

The length of the curve r = f(θ) for θ in [α, β] is s =
∫ β
α
ds where

ds =

√
r2 + (r′))2 dθ =

√
(f(θ))2 + (f ′(θ))2 dθ.

EXAMPLE 4 Find the length of the spiral r = e−3θ for θ in [0, 2π].
SOLUTION First compute

r′ =
dr

dθ
= −3e−3θ,
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and then use the formula

Arc Length =

β∫
α

√
r2 + (r′)2 dθ =

2π∫
0

√
(e−3θ)2 + (−3e−3θ)2 dθ

=

2π∫
0

√
e−6θ + 9e−6θ dθ =

√
10

2π∫
0

√
e−6θ dθ

=
√

10

2π∫
0

e−3θ dθ =
√

10
e−3θ

−3

∣∣∣∣2π
0

=
√

10

(
e−3·2π

−3
− e−3·0

−3

)
=
√

10

(
e−6π

−3
+

1

3

)
=

√
10

3

(
1− e−6π

)
≈ 1.054093.

�

Summary

This section concerns speed along a parametric path and the length of the
path. If the path is described in rectangular coordinates, then Figure 9.4.6(a)
conveys the key ideas. If in polar coordinates, Figure 9.4.6(b) is the key. It is
much easier to recall these diagrams than the various formulas for speed and
arc length. Everything depends on our old friend: the Pythagorean Theorem.

(a) (b)

Figure 9.4.6: (a) ds =
√

(dx)2 + (dy)2 (b) ds =
√

(rdθ)2 + (dr)2
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EXERCISES for Section 9.4 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 8 find the arc lengths of the given curves over the given intervals.

1.[R] y = x3/2, x in [1, 2]
2.[R] y = x2/3, x in [0, 1]
3.[R] y = (ex + e−x)/2, x in [0, b]
4.[R] y = x2/2− (ln(x))/4, x in [2, 3]
5.[R] x = cos3(t), y = sin3(t), t in [0, π/2]
6.[R] r = eθ, θ in [0, 2π]
7.[R] r = 1 + cos(θ), θ in [0, π]
8.[R] r = cos2(θ/2), θ in [0, π]

In each of Exercises 9 to 12 find the speed of the particle at time t, given the
parametric description of its path.

9.[R] x = 50t, y = −16t2

10.[R] x = sec(3t), y = sin−1(4t)
11.[R] x = t+ cos(t), y = 2t− sin(t)
12.[R] csc(θ/2), y = tan−1(

√
t)

13.[R]

(a) Graph x = t2, y = t for 0 ≤ t ≤ 3.

(b) Estimate its arc length from (0, 0) to (9, 3) by an inscribed polygon whose
vertices have x-coordinates 0, 1, 4, and 9.

(c) Set up a definite integral for the arc length of the curve in question.

(d) Estimate the definite integral in (c) by using a partition of [0, 3]] into 3 sections,
each of length 1, and the trapezoid method.

(e) Estimate the definite integral in (c) by Simpson’s method with six sections.

(f) If your calculator has a program to evaluate definite integrals, use it to evaluate
the definite integral in (c) to four decimal places.

14.[R]

(a) Graph y = 1/x2 for x in [1, 2].

(b) Estimate the length of the arc in (a) by using an inscribed polygon whose
vertices at (1, 1), (5

4 ,
(

4
5

)2), (3
2 ,
(

2
3

)2), and (2, 1
4).
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826 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(c) Set up a definite integral for the arc length of the curve in question.

(d) Estimate the definite integral in (c) by the trapezoid method, using four equal
length sections.

(e) Estimate the definite integral in (c) by Simpson’s method with four sections.

(f) If your calculator has a program to evaluate definite integrals, use it to evaluate
the definite integral in (c) to four decimal places.

15.[R] How long is the spiral r = e−3θ, θ ≥ 0?

16.[R] How long is the spiral r = 1/θ, θ ≥ 2π?

17.[R] Assume that a curve is described in rectangular coordinates in the form
x = f(y). Show that

Arc Length =

d∫
c

√
1 +

(
dx

dy

)2

dy

where y ranges in the interval [c, d], using a little triangle whose sides have length
dx, dy, and ds.

18.[R] Consider the arc length of the curve y = x2/3 for x in the interval [1, 8].

(a) Set up a definite integral for this arc length using x as the parameter.

(b) Set up a definite integral for this arc length using y as the parameter.

(c) Evaluate the easier of the two integrals found in parts (a) and (b).

Note: See Exercise 17.

19.[M] We obtained the formula ds
dθ =

√
r2 +

(
dr
dθ

)2
geometrically.

(a) Obtain the same result by calculus, starting with
(
ds
dt

)2
=
(
dx
dt

)2
+
(
dy
dt

)2
, and

using the relations x = r cos(θ) and y = r sin(θ).

(b) Which derivation do you prefer? Why?

20.[M] Let P = (x, y) depend on θ as shown in Figure 9.4.7.

(a) Sketch the curve that P sweeps out.
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(b) Show that P = (2 cos(θ), sin(θ)).

(c) Set up a definite integral for the length of the curve described in P . (Do not
evaluate it.)

(d) Eliminate θ and show that P is on the ellipse

x2

4
+
y2

1
= 1.

Figure 9.4.7:
21.[M]

(a) At time t a particle has polar coordinates r = g(t), θ = h(t). How fast is it
moving?

(b) Use the formula in (a) to find the speed of a particle which at time t is at the
point (r, θ) = (et, 5t).

22.[M]

(a) How far does a bug travel from time t = 1 to time t = 2 if at time t it is at
the point (x, y) = (cosπt, sinπt)?

(b) How fast is it moving at time t?

(c) Graph its path relative to an xy coordinate system. Where is it at time t = 1?
At t = 2?

(d) Eliminate t to find a relation between x and y.

23.[M] Find the arc length of the Archimedean spiral r = aθ for θ in [0, 2π] if a is
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a positive constant.

24.[M] Consider the cardioid r = 1 + cos θ for θ in [0, π]. We may consider r as a
function of θ or as a function of s, arc length along the curve, measured, say, from
(2, 0).

(a) Find the average of r with respect to θ in [0, π].

(b) Find the average of r with respect to s. Hint: Express all quantities appearing
in this average in terms of θ.

(See also Exercises 13 and 14 in the Chapter 9 Summary.)

25.[M] Let r = f(θ) describe a curve in polar coordinates. Assume that df/dθ
is continuous. Let θ be a function of time t. Let s(t) be the length of the curve
corresponding to the time interval [a, t].

(a) What definite integral is equal to s(t)?

(b) What is the speed ds/dt?

26.[M] The function r = f(θ) describes, for θ in [0, 2π], a curve in polar coor-
dinates. Assume r′ is continuous and f(θ) > 0. Prove that the average of r as a
function of arc length is at least as large as the quotient 2A/s, where A is the area
swept out by the radius and s is the arc length of the curve. For which curve is the
average equal to 2A/s?

27.[M] The equations x = cos t, y = 2 sin t, t in [0, π/2] describe a quarter of an
ellipse. Draw this arc. Describe at least two different ways of estimating the length
of this arc. Compare the advantages and challenges each method presents. Use the
method of your choice to estimate the length of this arc.

28.[M] When a curve is given in rectangular coordinates, its slope is dy
dx . To find

the slope of the tangent line to the curve given in polar coordinates involves a bit
more work.
Assume that r = f(θ). To begin use the relation

dy

dx
=
dy/dθ

dx/dθ
,

which is the Chain Rule in disguise (dydθ = dy
dx

dx
dθ ).

(a) Using the equations y = r sin(θ) and x = r cos(θ), find dy
dθ and dx

dθ .
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(b) Show that the slope is

r cos(θ) + dr
dθ sin(θ)

−r sin(θ) + dr
dθ cos(θ)

. (9.4.2)

29.[M] Use (9.4.2) to find the slope of the cardioid r = 1 + sin(θ) at θ = π
3 .

30.[M] Show that if lim∆t→0
∆s
|PQ| = 1, then lim∆t→0

∆s
∆t = lim∆t→0

|PQ|
∆t .

31.[C] Let y = f(x) for x in [0, 1] describe a curve that starts at (0, 0), ends at
(1, 1), and lies in the square with vertices (0, 0),(1, 0),(1, 1), and (0, 1). Assume f
has a continuous derivative.

(a) What can be said about the arc length of the curve? How small and how large
can it be?

(b) Answer (a) if it is assumed also that f ′(x) ≥ 0 for x in [0, 1].

32.[C] Consider the length of the curve y = xm, where m is a rational number.
Show that the Fundamental Theorem of Calculus is of aid in computing this length
only if m = 1 or if m is of the form 1 + 1/n for some integer n. Hint: Chebyshev
proved that

∫
xp(1 + x)q dx is elementary for rational numbers p and q only when

at least one of p, q and p+ q is an integer.

33.[C] If one convex polygon P1 lies inside another poligon P2 is the perimeter of
P1 necessarily less than the perimeter of P2? What if P1 is not convex?

34.[C] One leaf of the cardioid r = 1 + sin(θ) is traced as θ increases from −π
2 to

π
2 . Find the highest point on that leaf in polar coordinates.

Exercises 35 and 36 form a unit. 35.[C] Figure 9.4.8(a) shows the angle between
the radius and tangent line to the curve r = f(θ). Using the fact that γ = α−θ and
that tan(A − B) = tan(A)−tan(B)

1+tan(A) tan(B) , show that tan(γ) =
r

r′
. Note: See Exercise 36

for the derivation of tan(γ).

36.[C] The formula tan(γ) = r/r′ in Exercise 35 is so simple one would expect a
simple geometric explanation. Use the “triangle” in Figure 9.4.5 that we used to ob-
tain the formula for ds

dθ to show that tan(γ) should be r/r′. Note: See Exercise 35.
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(a) (b)

Figure 9.4.8: (a) ARTIST: (a) extend the (red) tangent line to the curve so it
intersects the polar axis and label the angle made by the tangent to the curve
with the polar axis as α
37.[C] Four dogs are chasing each other counterclockwise at the same speed. Ini-
tially they are at the four vertices of a square of side a. As they chase each other,
each running directly toward the dog in front, they approach the center of the square
in spiral paths. How far does each dog travel?

(a) Find the equation of the spiral path each dog follows and use calculus to
answer this question.

(b) Answer the question without using calculus.

38.[C] We assumed that a chord AB of a smooth curve is a good approximation of

the arc
_
AB when B is near to A. Show that the formula we obtained for arc length is

consistent with this assumption. That is, if y = f(x), A = (a, f(a)), B = (x, f(x)),
then ∫ x

a

√
1 + f ′(t)2 dt√

(x− a)2 + (f(x)− f(a))2

approaches 1 as x approaches a. Assume that f ′(x) is continuous. Hint: L’Hôpital’s
Rule is tempting but does not help. For simplicity, assume a = 0 = f(0).

39.[C] In some approaches to arc length and speed on a curve the arc length is
found first, then the speed. We outline this method in this Exercise.
Let x = g(t), y = h(t) where g and h have continuous derivatives. Let a = t0 < t1 <
t2 < · · · < tn = b be a partition of [a, b] into n equal sections of length ∆t = (b−a)/n.
Let Pi = (g(ti), h(ti)), which we write as (xi, yi). Then the polygon P0P1P2 · · ·Pn
is inscribed in the curve. We assume that as n → ∞, the length of this polygon,∑n

i=1 |Pi−1Pi| approaches the length of the curve from (g(a), h(a)) to (g(b), h(b)).

(a) Show that the length of the polygon is
∑n

i=1

√
(xi − xi−1)2 + (yi − yi−1)2.

(b) Show that the sum can be written as
n∑
i=1

√
(g′(t∗i ))2 + (h′(t∗∗i ))2 ·∆t (9.4.3)

for some t∗i and t∗∗i in [ti−1, ti].
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(c) Why would you expect the limit of (9.4.3) as n→∞ to be
∫ b
a

√
(g′(t))2 + h′(t))2 dt?

Note: This result is typically proved in Advanced Calculus, even though t∗i
and t∗∗i may be different.

(d) From (c) deduce that the speed is
√

(g′(t))2 + h′(t))2.
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9.5 The Area of a Surface of Revolution

Figure 9.5.1:

In this section we develop a formula for expressing the surface area of a
solid of revolution as a definite integral. In particular, we will show that the
surface area of a sphere is four times the area of a cross section through its
center. (See Figure 9.5.1.) This was one of the great discoveries of Archimedes
in the third century B.C.

Let y = f(x) have a continuous derivative for x in some interval. Assume
that f(x) ≥ 0 on this interval. When its graph is revolved about the x-axis it
sweeps out a surface, as shown in Figures 9.5.2. To develop a definite integral

(a) (b)

Figure 9.5.2:

for this surface area, we use an informal approach.

(a) (b) (c) (d) (e)

Figure 9.5.3:

Consider a very short section of the graph y = f(x). It is almost straight.
Let us approximate it by a short line segment of length ds, a very small
number. When this small line segment is revolved about the x-axis it sweeps
out a narrow band. (See Figures 9.5.3(a) and (b).)

December 6, 2010 Calculus



§ 9.5 THE AREA OF A SURFACE OF REVOLUTION 833

If we can estimate the area of this band, then we will have a local approx-
imation of the surface area. From the local approximation we can set up a
definite integral for the entire surface area.

Imagine cutting the band with scissors and laying it flat, as in Figures 9.5.3(c)
and (d). It seems reasonable that the area of the flat band in Figure 9.5.3(d)
is close to the area of a flat rectangle of length 2πy and width ds, as in Fig-
ure 9.5.3(e). (See Exercises 28 and 29.)

The gives us

local approximation of the surface area of one slice = 2πy ds.

which, in the usual way, leads to the formula

Surface area =

s1∫
s0

2πy ds. (9.5.1)

where [s0, s1] describes the appropriate interval on the “s-axis”. Since s is a
clumsy parameter, for computations we will use one of the forms for ds to
change (9.5.1) into more convenient integrals. Assume that y ≥ 0 and that

dy/dx is continuous.Say that the section of the graph y = f(x) that was revolved corresponds
to the interval [a, b] on the x-axis, as in Figure 9.5.4. Then

ds =

√
1 +

(
dy

dx

)2

dx

and the surface area integral
∫ s1
s0

2πy ds becomes

Figure 9.5.4:

Surface area =

b∫
a

2πy

√
1 +

(
dy

dx

)2

dx. (9.5.2)

EXAMPLE 1 Find the surface area of a sphere of radius a.
SOLUTION The circle of radius a has the equation x2 + y2 = a2. The top
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half has the equation y =
√
a2 − x2. The sphere of radius a is formed by

revolving this semi-circle about the x-axis. (See Figure 9.5.5.) We have

Figure 9.5.5:

surface area of sphere =

a∫
−a

2πy ds.

Because dy/dx = −x/
√
a2 − x2 we find that

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(
−x√
a2 − x2

)2

dx

=

√
1 +

x2

a2 − x2
dx =

√
a2

a2 − x2
dx =

a√
a2 − x2

dx.

Thus,

surface area of sphere =

a∫
−a

2πy ds =

a∫
−a

2π
√
a2 − x2

a√
a2 − x2

dx

=

a∫
−a

2πa dx = 2πax|a−a = 4πa2.

The surface area of a sphere is 4 times the area of its equatorial cross section.
�

If the graph is given parametrically, x = g(t), y = h(t), where g and h
have continuous derivatives and h(t) ≥ 0, then it is natural to express the
integral

∫ s1
s0

2πy ds as an integral over an interval on the t-axis. If t varies in
the interval [a, b], then

ds =
√

(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

which leads to

Surface area for
a parametric curve

=

b∫
a

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (9.5.3)
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Formula 9.5.2 is just the special case of Formula 9.5.3 when the parameter is
x.

As the formulas are stated, they seem to refer only to surfaces obtained by
revolving a curve about the x-axis. In fact, they refer to revolution about any
line. The factor y in the integrand, 2πy ds, is the distance from the typical
point on the curve to the axis of revolution. Replace y by R (for radius) to
free ourselves from coordinate systems. (Use capital R to avoid confusion with
polar coordinates.) The simplest way to write the formula for surface area of
revolution is then

Surface area =

d∫
c

2πR ds,

Figure 9.5.6: The key to
this section.

where the interval [c, d] refers to the parameter s. However, in practice arc
length, s, is seldom a convenient parameter. Instead, x, y, t or θ is used and
the interval of integration describes the interval through which the parameter
varies.

To remember this formula, think of a narrow circular band of width ds
and radius R as having an area close to the area of the rectangle shown in
Figure 9.5.6.

EXAMPLE 2 Find the area of the surface obtained by revolving around
the y-axis the part of the parabola y = x2 that lies between x = 1 and x = 2.
(See Figure 9.5.7.) R is found by inspection of

a diagram.

SOLUTION The surface area is
∫ b
a

2πR ds. Since the curve is described as a
function of x, choose x as the parameter. By inspection of Figure 9.5.7, R = x.
Next, note that

Figure 9.5.7:

ds =

√
1 +

(
dy

dx

)2

dx =
√

1 + 4x2 dx.

The surface area is therefore

2∫
1

2πx
√

1 + 4x2 dx.

To evaluate the integral, use the substitution

u = 1 + 4x2 du = 8x dx.
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Hence x dx = du/8. The new limits of integration are u = 5 and u = 17. Thus

surface area =

17∫
5

2π
√
u
du

8
=
π

4

17∫
5

√
u du

=
π

4
· 2

3
u3/2

∣∣∣∣17

5

=
π

6
(173/2 − 53/2) ≈ 30.84649.

�

Figure 9.5.8:

EXAMPLE 3 Find the surface area when the curve r = cos(θ), θ in [0, π/2]
is revolved around (a) the x-axis and (b) the y-axis.
SOLUTION The curve is shown in Figure 9.5.8. Note that it is the semicircle
with radius 1/2 and center (1/2, 0). (a) We need to find both R and ds/dθ.
First, R = r sin(θ) = cos(θ) sin(θ). And, using the formula for ds

dθ
for a polar

curve from Section 9.4 we have

ds

dθ
=

√
r(θ)2 + r′(θ)2 =

√
(cos(θ))2 + (− sin(θ))2 = 1.

Then

Figure 9.5.9:

surface area =

π/2∫
0

2πR
ds

dθ
dθ =

π/2∫
0

2π cos(θ) sin(θ)(1) dθ

=

π/2∫
0

2π sin(θ) cos(θ) dθ = 2π
sin2(θ)

2

∣∣∣∣π/2
0

= π.

This is expected since this surface of revolution is a sphere of radius 1/2. See
Figure 9.5.9.Recall the easy way to find∫ π/2

0 cos2(θ) dθ (b) In this
case

R = r cos(θ) = cos2(θ).
Thus in Section 8.5.

Figure 9.5.10:

surface area =

π/2∫
0

2πR
ds

dθ
dθ =

π/2∫
0

2π cos2(θ)(1) dθ

= 2π

π/2∫
0

cos2(θ) dθ = 2π(
π

4
) =

π2

2
.

This surface is the top half of a doughnut whose hole has just vanished. See
Figure 9.5.10. �
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Summary

This section developed a definite integral for the area of a surface of revolution.
It rests on the local estimate of the area swept out by a short segment of length

Figure 9.5.11:

ds revolved around a line L at a distance R from the segment: 2πR ds. (See
Figure 9.5.11.) We gave an informal argument for this estimate; Exercises 28
and 29 develop it more formally.
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EXERCISES for Section 9.5 Key: R–routine, M–moderate, C–challenging

In each of Exercises 1 to 4 set up a definite integral for the area of the indicated
surface using the suggested parameter. Show the radius R on a diagram. Do not
evaluate the definite integrals.

1.[R] The graph of y = x3, x on the interval [1, 2] revolved about the x-axis with
parameter x.

2.[R] The graph of y = x3, x on the interval [1, 2] revolved about the line y = −1
with parameter x.

3.[R] The graph of y = x3, x on the interval [1, 2] revolved about the y-axis with
parameter y.

4.[R] The graph of y = x3, x on the interval [1, 2] revolved about the y-axis with
parameter x.

5.[R] Find the area of the surface obtained by rotating about the x-axis that part
of the curve y = ex that lies above [0, 1].

6.[R] Find the area of the surface formed by rotating one arch of the curve
y = sin(x) about the x-axis.

7.[R] One arch of the cycloid given parametrically by the formula x = θ − sin(θ),
y = 1−cos(θ) is revolved around the x-axis. Find the area of the surface produced.

8.[R] The curve given parametrically by x = et cos(t), y = et sin(t) (0 ≤ t ≤ π/2)
is revolved around the x-axis. Find the area of the surface produced.

In each of Exercises 9 to 16 find the area of the surface formed by revolving the
indicated curve about the indicated axis. Leave the answer as a definite integral,
but indicate how it could be evaluated by the Fundamental Theorem of Calculus.

9.[R] y = 2x3 for x in [0, 1]; about the x-axis.

10.[R] y = 1/x for x in [1, 2]; about the x-axis.

11.[R] y = x2 for x in [1, 2]; about the x-axis.

12.[R] y = x4/3 for x in [1, 8]; about the y-axis.

13.[R] y = x2/3 for x in [1, 8]; about the line y = 1.

14.[R] y = x3/6 + 1/(2x) for x in [1, 3]; about the y-axis.

15.[R] y = x3/3 + 1/(4x) for x in [1, 2]; about the line y = −1.

16.[R] y =
√

1− x2 for x in [−1, 1]; about the line y = −1.

17.[M] Consider the smallest tin can that contains a given sphere.1 (The height

December 6, 2010 Calculus



§ 9.5 THE AREA OF A SURFACE OF REVOLUTION 839

and diameter of the tin can equal the diameter of the sphere.)

(a) Compare the volume of the sphere with the volume of the tin can.

(b) Compare the surface area of the sphere with the total surface area of the can.

Note: See also Exercise 37.

Figure 9.5.12:
18.[M]

(a) Compute the area of the portion of a sphere of radius a that lies between
two parallel planes at distances c and c + h from the center of the sphere
(0 ≤ c ≤ c+ h ≤ a).

1 Archimedes, who obtained the solution about 2200 years ago, considered it his greatest
accomplishment. Cicero wrote, about two centuries after Archimedes’ death:

I shall call up from the dust [the ancient equivalent of a blackboard] and
his measuring-rod an obscure, insignificant person belonging to the same city
[Syracuse], who lived many years after, Archimedes. When I was quaestor I
tracked out his grave, which was unknown to the Syracusans (as they totally
denied its existence), and found it enclosed all round and covered with brambles
and thickets; for I remembered certain doggerel lines inscribed, as I had heard,
upon his tomb, which stated that a sphere along with a cylinder had been
set up on the top of his grave. Accordingly, after taking a good look around
(for there are a great quantity of graves at the Agrigentine Gate), I noticed a
small column rising a little above the bushes, on which there was the figure of
a sphere and a cylinder. And so I at once said to the Syracusans (I had their
leading men with me) that I believed it was the very thing of which I was in
search. Slaves were sent in with sickles who cleared the ground of obstacles, and
when a passage to the place was opened we approached the pedestal fronting
us; the epigram was traceable with about half the lines legible, as the latter
portion was worn away. [Cicero, Tusculan Disputations, vol. 23, translated by
J. E. King, Loef Classical Library, Harvard Univeristy, Cambridge, 1950.]

Archimedes was killed by a Roman soldier in 212 B.C. Cicero was quaestor in 75 B.C.
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(b) The result in (a) depends only on h, not on c. What does this mean geomet-
rically? (See Figure 9.5.12.)

In Exercises 19 and 20 estimate the surface area obtained by revolving the specified
arc about the given line. First, find a definite integral for the surface area. Then, use
either Simpson’s method with six sections or a programmable calculator or computer
to approximate the value of the integral.

19.[M] y = x1/4, x in [1, 3], about the x-axis.

20.[M] y = x1/5, x in [1, 3], about the line y = −1.

Exercises 21 to 24 are concerned with the area of a surface obtained by revolving a
curve given in polar coordinates.
21.[M] Show that the area of the surface obtained by revolving the curve r = f(θ),
α ≤ θ ≤ β, around the polar axis is

β∫
α

2πr sin θ
√
r2 + (r′)2 dθ.

Hint: Use a local approximation informally.

22.[M] Use Exercise 21 to find the surface area of a sphere of radius a.

23.[M] Find the area of the surface formed by revolving the portion of the curve
r = 1 + cos(θ) in the first quadrant about (a) the x-axis, (b) the y-axis. Hint: The
identity 1 + cos(θ) = 2 cos2(θ/2) may help in (b).

24.[M] The curve r = sin(2θ), θ in [0, π/2], is revolved around the polar axis. Set
up an integral for the surface area.

25.[M] The portion of the curve x2/3 + y2/3 = 1 situated in the first quadrant is
revolved around the x-axis. Find the area of the surface produced.

26.[M] Although the Fundamental Theorem of Calculus is of no use in computing
the perimeter of the ellipse x2/a2 + y2/b2 = 1, it is useful in computing the surface
area of the “football” formed when the ellipse is rotated about one of its axes.

(a) Assuming that a > b and that the ellipse is revolved around the x-axis, find
that area.

(b) Does your answer give the correct formula for the surface area of a sphere of
radius a, 4πa2? Hint: Let b approach a from the left.
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27.[M] The (unbounded) region bounded by y = 1/x and the x-axis and situated
to the right of x = 1 is revolved around the x-axis.

(a) Show that its volume is finite but its surface area is infinite.

(b) Does this mean that an infinite area can be painted by pouring a finite amount
of paint into this solid?

Exercises 28 and 29 obtain the formula for the area of the surface obtained by
revolving a line segment about a line that does not meet it. (This area was only
estimated in the text.)

(a) (b) (c) (d)

Figure 9.5.13:

28.[M] A right circular cone has slant height L and radius r, as shown in Fig-
ure 9.5.13(a). If this cone is cut along a line through its vertex and laid flat, it
becomes a sector of a circle of radius L, as shown in Figure 9.5.13(b). By comparing
Figure 9.5.13(b) to a complete disk of radius L find the area of the sector and thus
the area of the cone in Figure 9.5.13(a).
29.[M] Consider a line segment of length L in the plane which does not meet a
certain line in the plane, called the axis. (See Figure 9.5.13(c).) When the line
segment is revolved around the axis, it sweeps out a curved surface. Show that the
area of this surface equals 2πrL where r is the distance from the midpoint of the
line segment to the axis. The surface in Figure 9.5.3 is called a frustum of a cone.
Follow these steps:

(a) Complete the cone by extending the frustum as shown in Figure 9.5.13(d).
Label the radii and lengths as in that figure. Show that r1

r2
= L1

L2
, hence

r1L2 = r2L1.

(b) Show that the surface area of the frustum is πr1L1 − πr2L2.

(c) Express L1 as L2 + L and, using the result of (a), show that

πr1L1 − πr2L2 = πr2(L1 − L2) + πr1L = πr2L+ πr1L.

(d) Show that the surface area of the frustum is 2πrL, where r = (r1 + r2)/2.
Note: This justifies our approximation 2πR ds.
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30.[C] The derivative (with respect to r) of the volume of a sphere is its surface
area: d

dr

(
4πr3/3

)
= 4πr2. Is this simply a coincidence?

31.[C] Define the moment of a curve around the x-axis to be
∫ s2
s1
y ds, where

s1 and s2 refer to the range of the arc length s. The moment of the curve around
the y-axis is defined as

∫ s2
s1
x ds. The centroid of the curve, (x, y), is defined by

setting

x =

∫ s2
s1
x ds

length of curve
y =

∫ s2
s1
y ds

length of curve

Find the centroid of the top half of the circle x2 + y2 = a2.

32.[C] Show that the area of the surface obtained by revolving about the x-axis a
curve that lies above it is equal to the length of the curve times the distance that
the centroid of the curve moves. Note: See Exercise 31.

33.[C] Let a be a positive number and R the region bounded by y = xa, the x-axis,
and the line x = 1.

(a) Show that the centroid of R is
(
a+1
4a+2 ,

(
a+1
a+2

)a)
.

(b) Show that the centroid of R lies in R for all large values of a.

Note: It is true that the centroid lies in R for all positive values of a, but this
proof is more difficult.

34.[C] Use Exercise 32 to find the surface area of the doughnut formed by revolving
a circle of radius a around a line a distance b from its center, b ≥ a.

35.[C] Use Exercise 32 to find the area of the curved part of a cone of radius a and
height h.

36.[C] For some continuous functions f(x) the definite integral
∫ b
a f(x) dx depends

only on the width of the interval [a, b]; namely, there is a function g(x) such that

b∫
a

f(x) dx = g(b− a). (9.5.4)

(a) Show that every constant function f(x) satisfies (9.5.4).

(b) Prove that if f(x) satisfies (9.5.4), then it must be constant.
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Figure 9.5.14: Source: http://www.progonos.com/furuti/MapProj/

Dither/ProjCyl/ProjCEA/projCEA.html

Note: See Exercise 18.

37.[C] The Mercator map discussed in the CIE of this chapter preserves angles. A
Lambert azimuthal equal-area projection preserves areas, but not angles. It
is made by projecting a sphere on a cylinder tangent at the equator by rays parallel
to the equatorial plane and having one end on the diameter that joins the north and
south poles, as shown in Figure 9.5.14.
Explain why a Lambert map preserves areas. Hint: See Exercise 17.
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9.6 Curvature

In this section we use calculus to obtain a measure of the “curviness” or “cur-
vature” at points on a curve. This concept will be generalized in Section 15.2
in the study of motion along a curved path in space.

Introduction

Imagine a bug crawling around a circle of radius one centimeter, as in Fig-
ure 9.6.1(a). As it walks a small distance, say 0.1 cm, it notices that its
direction, measured by angle θ, changes. Another bug, walks around a larger
circle, as in Figure 9.6.1(b). Whenever it goes 0.1 cm, its direction, measured
by angle φ, changes by much less. The first bug feels that his circle is curvier
than the circle of the second bug. We will provide a measure of “curviness”
or curvature. A straight line will have “zero curvature” everywhere. A circle
of radius a will turn out to have curvature 1/a everywhere. For other curves,
the curvature varies from point to point.

(a) (b)

Figure 9.6.1: The circle in (b) has twice the radius as the circle in (a). But,
the change in ∆φ in (b) is half that in (a).

Definition of Curvature

“Curvature” measures how rapidly the direction changes as we move a small
distance along a curve. We have a way of assigning a numerical value to
direction, namely, the angle of the tangent line. The rate of change of this
angle with respect to arc length will be our measure of curvature.
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DEFINITION (Curvature) Assume that a curve is given para-
metrically, with the parameter of the typical point P being s, the
distance along the curve from a fixed P0 to P . Let φ be the angle
between the tangent line at P and the positive part of the x-axis.
The curvature κ at P is the absolute value of the derivative, dφ

ds
:

Figure 9.6.2:curvature = κ =

∣∣∣∣dφds
∣∣∣∣

κ is the Greek letter
“kappa”.whenever the derivative exists. (See Figure 9.6.2.)

Observe that a straight line has zero curvature everywhere, since φ is con-
stant.

The next theorem shows that curvature of a small circle is large and the
curvature of a large circle is small, in agreement with the bugs’ experience.

Theorem. (Curvature of Circles) For a circle of radius a, the curvature
∣∣dφ
ds

∣∣
is constant and equals 1/a, the reciprocal of the radius.

Proof

It is necessary to express φ as a function of arc length s on a circle of radius

Figure 9.6.3:

a. Refer to Figure 9.6.3. Arc length s is measured counterclockwise from the
point P0 on the x-axis. Then φ = π

2
+ θ, as Figure 9.6.3 shows. By definition

of radian measure, s = aθ, so that θ = s/a. We can solve for φ, φ = π
2

+ s
a
.

Differentiating with respect to arc length yields:

dφ

ds
=

1

a
,

as claimed. •

Computing Curvature

When a curve is given in the form y = f(x), the curvature can be expressed

in terms of the first and second derivatives, dy
dx

and d2y
dx2 .

Theorem. (Curvature of y = f(x)) Let arc length s be measured along the
curve y = f(x) from a fixed point P0. Assume that x increases as s increases
and that y′ and y′′ are continuous. Then The curvature of y = f(x).
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curvature = κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

.

Proof

The Chain Rule, dφ
dx

= dφ
ds

ds
dx

, implies

dφ

ds
=

dφ
dx
ds
dx

.

As was shown in Section 9.3,

ds

dx
=

(
1 +

(
dy

dx

)2
)1/2

.

All that remains is to express dφ
dx

in terms of dy
dx

and d2y
dx2 . Note that in Fig-

Figure 9.6.4:

ure 9.6.4,

dy

dx
= slope of tangent line to the curve = tan(φ). (9.6.1)

We find dφ
dx

by differentiating both sides of (9.6.1) with respect to x, that is,

both sides of the equation dy
dx

= tan(φ). Thus

d2y

dx2
=

d

dx
(tan(φ)) = sec2(φ) · dφ

dx
=
(
1 + tan2(φ)

) dφ
dx

=

(
1 +

(
dy

dx

)2
)
dφ

dx
.

Solving for dφ/dx, we get

dφ

dx
=

d2y
dx2

1 +
(
dy
dx

)2 .

Consequently,

dφ

ds
=

dφ
dx
ds
dx

=
d2y
dx2(

1 +
(
dy
dx

)2
)√

1 +
(
dy
dx

)2
=

d2y
dx2(

1 +
(
dy
dx

)2
)3/2

,

and the theorem is proved. •

December 6, 2010 Calculus



§ 9.6 CURVATURE 847

WARNING (Geometry of the Curvature) One might have ex-

pected the curvature to depend only on the second derivative, d2y
dx2 ,

since it records the rate at which the slope changes. This expecta-
tion is correct only when dy

dx
= 0, that is, at critical points in the

graph of y = f(x). (See also Exercise 28.)

EXAMPLE 1 Find the curvature at a point (x, y) on the curve y = x2.

SOLUTION In this case dy
dx

= 2x and d2y
dx2 = 2. The curvature at (x, y) is

Figure 9.6.5:

κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

=
2

(1 + (2x)2)3/2
.

The maximum curvature occurs when x = 0. The curvatures at (x, x2) and
at (−x, x2) are equal. As |x| increases, the curve becomes straighter and the
curvature approaches 0. (See Figure 9.6.5.) �

Curvature of a Parameterized Curve
Theorem 9.6 applies also to
curves given parametrically.Theorem 9.6 tells how to find the curvature if y is given as a function of x.

But it holds as well when the curve is described parametrically, where x and
y are functions of some parameter such as t or θ. Just use the fact that

dy

dx
=

dy
dt
dx
dt

and
d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

. (9.6.2)

Both equations in (9.6.2) are special cases of

df

dx
=

df
dt
dx
dt

.

And this equation is just the Chain Rule in disguise,

df

dt
=
df

dx

dx

dt
.

In the first equation in (9.6.2), the function f is y; in the second equation, f
is dy

dx
. Example 2 illustrates the procedure.

EXAMPLE 2 The cycloid determined by a wheel of radius 1 has the para-
metric equations

x = θ − sin(θ) and y = 1− cos(θ),
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Figure 9.6.6:

as shown in Figure 9.6.6. Find the curvature at a typical point on this curve.
SOLUTION First find dy

dx
in terms of θ. We have

dx

dθ
= 1− cos(θ) and

dy

dθ
= sin(θ).

Thus
dy

dx
=

sin(θ)

1− cos(θ)
.

Similar direct calculations show thatThe parts of the cycloid
near the x-axis are nearly
vertical. See Exercise 29.

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dθ

(
dy
dx

)
dx
dθ

=

d
dθ

(
sin(θ)

1−cos(θ)

)
1− cos(θ)

=
−1

(1− cos(θ))2
.

Thus the curvature is

κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

=

∣∣∣ −1
(1−cos(θ))2

∣∣∣(
2

1−cos(θ)

)3/2
=

1

23/2
√

1− cos(θ)
.

Since y = 1− cos(θ) and 23/2 =
√

8, the curvature equals 1/
√

8y. �

Radius of Curvature

As Theorem 9.6 shows, a circle with curvature κ has radius 1/κ. This suggests
the following definition.A large radius of curvature

implies a small curvature.

DEFINITION (Radius of Curvature) The radius of curvature
of a curve at a point is the reciprocal of the curvature:

radius of curvature =
1

curvature
=

1

κ
.
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As can be easily checked, the radius of curvature of a circle of radius a is,
fortunately, a.

The cycloid in Example 2 has radius of curvature at the point (x, y) equal
to
√

8y. The higher the point on the curve, the straighter the curve. The line through a point P
as a curve that looks most
like the curve near P is the
tangent line. The circle
through P that looks most
like the curve near P has
the same slope at P as the
curve and a radius equal to
the radius of curvature at
P . It is called the
osculating circle, from the
Latin “osculum = kiss.”
The tangent line is never
called the “osculating line”.

The Osculating Circle

At a given point P on a curve, the osculating circle at P is defined to be
that circle which (a) passes through P , (b) has the same slope at P as the
curve does, and (c) has the same curvature there.

For instance, consider the parabola y = x2 of Example 1. When x = 1,
the curvature is 2/53/2 and the radius of curvature is 53/2/2 ≈ 5.59017. The
osculating circle at (1, 1) is shown in Figure 9.6.7.

Observe that the osculating circle in Figure 9.6.7 crosses the parabola as
it passes through the point (1, 1). Although this may be surprising, a little
reflection will show why it is to be expected.

Think of driving along the parabola y = x2. If you start at (1, 1) and drive
up along the parabola, the curvature diminishes. It is smaller than that of
the circle of curvature at (1, 1). Hence you would be turning your steering
wheel to the left and would be traveling outside the osculating circle at (1, 1).

Figure 9.6.7:

On the other hand, if you start at (1, 1) and move toward the origin (to the
left) on the parabola, the curvature increases and is greater than that of the
osculating circle at (1, 1), so you would be driving inside the osculating circle
at (1, 1). This informal argument shows why the osculating circle crosses the
curve in general. In the case of y = x2, the only osculating circle that does
not cross the curve at its point of tangency is the one that is tangent at (0, 0),
where the curvature is a maximum.

Summary

We defined the curvature κ of a curve as the absolute value of the rate at which
the angle between the tangent line and the x-axis changes as a function of arc
length; curvature equals

∣∣dφ
ds

∣∣. If the curve is the graph of y = f(x), then

κ =

∣∣∣ d2ydx2

∣∣∣(
1 +

(
dy
dx

)2
)3/2

.

If the curve is given in terms of a parameter t then compute dy
dx

and d2y
dx2 with

the aid of the relation Equation (9.6.3) is our old
friend, the Chain Rule; just
clear the denominator.

d( )

dx
=

d( )
dt
dx
dt

, (9.6.3)
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the empty parentheses enclosing first y, then dy
dx

.
Radius of curvature is the reciprocal of curvature.
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EXERCISES for Section 9.6 Key: R–routine, M–moderate, C–challenging

In each of Exercises 1 to 6 find the curvature and radius of curvature of the specified
curve at the given point.

1.[R] y = x2 at (1, 1)
2.[R] y = cos(x) at (0, 1)
3.[R] y = e−x at (1, 1/e)
4.[R] y = ln(x) at (e, 1)
5.[R] y = tan(x) at (π4 , 1)
6.[R] y = sec(2x) at (π6 , 2)

In Exercises 7 to 10 find the curvature of the given curves for the given value of the
parameter.

7.[R]
{
x = 2 cos(3t)
y = 2 sin(3t)

at t = 0

8.[R]
{
x = 1 + t2

y = t3 + t4
at t = 2

9.[R]
{
x = e−t cos(t)
y = e−t sin(t)

at t = π
6

10.[R]
{
x = cos3(θ)
y = sin3(θ)

at θ = π
3

11.[R]

(a) Compute the curvature and radius of curvature for the curve y = (ex+e−x)/2.

(b) Show that the radius of curvature at (x, y) is y2.

12.[R] Find the radius of curvature along the curve y =
√
a2 − x2, where a is a

constant. (Since the curve is part of a circle of radius a, the answer should be a.)

13.[R] For what value of x is the radius of curvature of y = ex smallest?
Hint: How does one find the minimum of a function?

14.[R] For what value of x is the radius of curvature of y = x2 smallest?

15.[M]

(a) Show that at a point where a curve has its tangent parallel to the x-axis its
curvature is simply the absolute value of the second derivative d2y/dx2.
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(b) Show that the curvature is never larger than the absolute value of d2y/dx2.

16.[M] An engineer lays out a railroad track as indicated in Figure 9.6.8(a). BC
is part of a circle; AB and CD are straight and tangent to the circle. After the
first train runs over the track, the engineer is fired because the curvature is not a
continuous function. Why should the curvature be continuous?

(a) (b)

Figure 9.6.8:
17.[M] Railroad curves are banked to reduce wear on the rails and flanges. The
greater the radius of curvature, the less the curve must be banked. The best bank
angle A satisfies the equation tan(A) = v2/(32R), where v is speed in feet per second
and R is radius of curvature in feet. A train travels in the elliptical track

x2

10002
+

y2

5002
= 1

at 60 miles per hour. Find the best angle A at the points (1000, 0) and (0, 500).
Note: x and y are measured in feet; 60 mph=88 fps.

18.[M] The flexure formula in the theory of beams asserts that the bending mo-
ment M required to bend a beam is proportional to the desired curvature, M = c/R,
where c is a constant depending on the beam and R is the radius of curvature. A
beam is bent to form the parabola y = x2. What is the ratio between the moments
required at (a) at (0, 0) and (b) at (2, 4)? (See Figure 9.6.8(b).)

Exercises 19 to 21 are related.

19.[M] Find the radius of curvature at a typical point on the curve whose parametric
equations are

x = a cos θ, y = b sin θ.

20.[M]

(a) Show, by eliminating θ, that the curve in Exercise 19 is the ellipse

x2

a2
+
y2

b2
= 1.
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(b) What is the radius of curvature of this ellipse at (a, 0)? at (0, b)?

21.[M] An ellipse has a major diameter of length 6 and a minor diameter of length
4. Draw the circles that most closely approximate this ellipse at the four points that
lie at the extremities of its diameters. (See Exercises 19 and 20.)

In each of Exercises 22 to 24 a curve is given in polar coordinates. To find its
curvature write it in rectangular coordinates with parameter θ, using the equations
x = r cos(θ) and y = r sin(θ).

22.[M] Find the curvature of r = a cos(θ).
23.[M] Show that at the point (r, θ) the cardioid r = 1 + cos(θ) has curvature
3
√

2/(4
√
r).

24.[M] Find the curvature of r = cos(2θ).

25.[M] If, on a curve, dy/dx = y3, express the curvature in terms of y.

26.[M] As is shown in physics, the larger the radius of curvature of a turn, the
faster a given car can travel around that turn. The required radius of curvature is
proportional to the square of the maximum speed. Or, conversely, the maximum
speed around a turn is proportional to the square root of the radius of curvature. If
a car moving on the path y = x3 (x and y measured in miles) can go 30 miles per
hour at (1, 1) without sliding off, how fast can it go at (2, 8)?

27.[M] Find the local extrema of the curvature of

(a) y = x+ ex

(b) y = ex

(c) y = sin(x)

(d) y = x3

28.[M] Sam says, “I don’t like the definition of curvature. It should be the rate
at which the slope changes as a function of x. That is d

dx

(
dy
dx

)
, which is the second

derivative, d2y
dx2 .” Give an example of a curve which would have constant curvature

according to Sam’s definition, but whose changing curvature is obvious to the naked
eye.

29.[M] In Example 2 some of the steps were omitted in finding that the cycloid given
by x = θ − sin(θ), y = 1− cos(θ) has curvature κ = 1/(23/2

√
1− cos(θ)) = 1/

√
8y.

In this exercise you are asked to show all steps in this calculation.
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(a) Verify that
dy

dx
=

sin(θ)
1− cos(θ)

.

(b) Show that
d

dθ

(
dy

dx

)
=

−1
1− cos(θ)

(c) Verify that
d2y

dx2
=

−1
(1− cos(θ))2

.

(d) Show that 1 +
(
dy

dx

)2

=
2

1− cos(θ)
.

(e) Compute the curvature, κ, in terms of θ.

(f) Express the curvature found in (e) in terms of x and y.

(g) At which points on the cycloid is the curvature largest?

(h) At which points on the cycloid is the curvature smallest?

30.[M] Assume that g and h are functions with continuous second derivatives. In
addition, assume as we move along the parameterized curve x = g(t), y = h(t), the
arc length s from a point P0 increases as t increases. Show that

κ =
|ẋÿ − ẏẍ|

(ẋ2 + ẏ2)3/2
.

Note: Newton’s dot notation for derivatives shortens the formula: ẋ = dx
dt , ẍ = d2x

dt2
,

ẏ = dy
dt , and ÿ = d2y

dt2
.

31.[M] Use the result of Exercise 30 to find the curvature of the cycloid of Exam-
ple 2. Note: x = θ − sin(θ), y = 1− cos(θ)

32.[C] (Contributed by G.D. Chakerian) If a planar curve has a constant radius
of curvature must it be part of a circle? That the answer is “yes” is important
in experiments conducted with a cyclotron: Physical assumptions imply that the
path of an electron entering a uniform magnetic field at right angles to the field has
constant curvature. Show that it follows that the path is part of a circle.

(a) Show that ds
dφ = R, the radius of curvature.

(b) Show that dx
dφ = R cos(φ).

(c) Show that dy
dφ = R sin(φ).

(d) With the aid of (b) and (c), find an equation for the curvature involving x
and y.
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Hint: For (b) and (c) draw the little triangle whose hypotenuse is like a short piece
of arc length ds on the curve and whose legs are parallel to the axes. For (d), think
about antiderivatives. Note: Physicists show why the radius of curvature is con-
stant, leaving it to the mathematicians to show that therefore the path is a circle.

33.[C] At the top of the cycloid in Example 2 the radius of curvature is twice the
diameter of the rolling circle. What would you have guessed the radius of curvature
to be at this point? Why is it not simply the diameter of the wheel, since the wheel
at each moment is rotating about its point of contact with the ground?

34.[C] A smooth convex curve has length L.

(a) Show that the average of its curvature, as a function of arc length, is 2π/L.

(b) Check that the formula in (a) is correct for a circle of radius a.
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9.S Chapter Summary

This chapter deals mostly with curves described in polar coordinates and
curves given parametrically. The following table is a list of reminders for
most of the ideas in the chapter.

Concept Memory Aid Comment

Area =
∫ β
α

r2

2
dθ The narrow sector resembles a trian-

gle of base r dθ and height r, so dA =
1
2
(r dθ)(r) = 1

2
r2 dθ.

Arc length =∫ b
a

√(
dx
dt

)2
+
(
dy
dt

)2
dt

Arc length =∫ b
a

√
1 +

(
dy
dx

)2
dx

A short part of the curve is almost
straight, suggesting (ds)2 = (dx)2 +
(dy)2.

Arc length =
∫ β
α

√
r2 + (r′)2 dθ

=
∫ β
α

√
r2 +

(
dr
dθ

)2
dθ

Speed =

√(
dx
dt

)2
+
(
dy
dt

)2

=
√(

r dθ
dt

)2
+
(
dr
dt

)2

The shaded area with two curved sides
looks like a right triangle, suggesting
(ds)2 = (rdθ)2 + (dr)2.

Area of surface of revolution

=
∫ b
a

2πR ds

Curvature = κ =
∣∣dφ
ds

∣∣ Using the chain rule to write
∣∣dφ
ds

∣∣ as∣∣∣ (dφ/dx
(ds/dx)

∣∣∣ one gets the formula κ =
|y′′|

(1+(y′)2)3/2

If a curve is given parametrically, its curvature can be found by replacing
dy
dx

by dy/dt
dx/dt

, and, similarly, d2y
dx2 =

d
dx

( dydx)
by

d
dy (

dy
dx)

dx/dt
.

Section 15.2 defines curvature of a curve in space, using vectors. It is
consistent with the definition given here for curves that happen to lie in a
plane.
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EXERCISES for 9.S Key: R–routine, M–moderate, C–challenging

1.[R] When driving along a curvy road, which is more important in avoiding car
sickness, dφ/ds or dφ/dt, where t is time.

2.[R] Some definite integrals can be evaluated by interpretting them as the area of
an appropriate region. Consider

∫ π/2
0 cos2(θ) dθ.

(a) Evaluate
∫ π/2

0 cos2(θ) dθ by identifying it as the area of an appropriate region.

(b) Evaluate
∫ π/2

0 cos2(θ) dθ with the use of a double angle formula.

(c) Repeat (a) and (b) for
∫ π

0 sin2(θ) dθ.

(d) Repeat (a) and (b) for
∫ 2π
π sin2(θ) dθ.

3.[R] The solution to Example 3 (Section 9.2) requires the evaluation of the definite
integrals

∫ π/2
0 cos2(θ) dθ and

∫ π
0 (1 + cos(θ))2 dθ. Evaluate these definite integrals

making use of the ideas in Exercise 2 as much as possible.

4.[M] A physics midterm includes the following information: For r =
√
x2 + y2

and y constant,

(a)
∫
dx

r
= ln(x+ r), (b)

∫
x dx

r
= r, (c)

∫
dx

r3
=

x

y2r
.

Show by differentiating that these equations are correct.

5.[M] (Contributed by Jeff Lichtman.) Let f and g be two continuous functions
such that f(x) ≥ g(x) ≥ 0 for x in [0, 1]. Let R be the region under y = f(x) and
above [0, 1]; let R∗ be the region under y = g(x) and above [0, 1].

(a) Do you think the center of mass of R is at least as high as the center of mass
of R∗? (Give your opinion, without any supporting calculations.)

(b) Let g(x) = x. Define f(x) to be 1
3 for 0 ≤ x ≤ 1

3 and let f(x) be x if 1
3 ≤ x ≤ 1.

(Note that f is continuous.) Find ȳ for R and also for R∗. (Which is larger?)

(c) Let a be a constant, 0 ≤ a ≤ 1. Let f(x) = a for 0 ≤ x ≤ a, and let f(x) = x
for a ≤ x ≤ 1. Find ȳ for R.

(d) Show that the number a for which ȳ defined in (c) is a minimum is a root of
the equation x3 + 3x− 1 = 0.

(e) Show that the equation in (d) has only one real root q.
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(f) Find q to four decimal places.

(g) Show that ȳ = q

Exercises 6 and 7 require an integral version of the Cauchy-Schwarz inequality (see
Exercise 29):

2π∫
0

f(θ)g(θ) dθ ≤

 2π∫
0

f(θ)2 dθ

1/2 2π∫
0

g(θ)2 dθ

1/2

.

6.[C] Let P be a point inside a region in the plane bounded by a smooth convex
curve. (“Smooth” means it has a continuously defined tangent line.) Place the pole
of a polar coordinate system at P . Let d(θ) be the length of the chord of angle θ
through P . Show that

∫ 2π
0 d(θ)2 dθ ≤ 8A, where A is the area of the region.

7.[C] Show that if
∫ 2π

0 d(θ)2 dθ = 8A then P is the midpoint of each chord through
P .

8.[C] Let r = f(θ) describe a convex curve surrounding the origin.

(a) Show that
∫ 2π

0 r dθ ≤ arc length of the boundary.

(b) Show that if equality holds in (a), the curve is a circle.

9.[C] Let r(θ), 0 ≤ θ ≤ 2π, describe a closed convex curve of length L.

(a) Show that the average value of r(θ), as a function of θ, is at most L/(2π).

(b) Show that the if average is L/(2π), then the curve is a circle.

10.[C]

Sam: I’ve discovered an easy formula for the length of a closed curve that encloses
the origin.

Jane: Well?

Sam: First of all,
∫ 2π

0

√
r2 + (r′)2 dθ is obviously greater than or equal to

∫ 2π
0 r dθ.

Jane: I’ll give you this much, because (r′)2 is never negative.

Sam: Now, if a and b are not negative,
√
a+ b ≤

√
a+
√
b.
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Jane: Why?

Sam: Just square both sides. So
√
r2 + (r′)2 ≤

√
r2 +

√
(r′)2 = r + r′.

Jane: Looks all right.

Sam: Thus
2π∫
0

√
r2 + (r′)2 dθ ≤

2π∫
0

(r + r′) dθ =

2π∫
0

r dθ +

2π∫
0

r′ dθ.

But
∫ 2π

0 r′ dθ equals r(2π) − r(0), which is 0. So, putting all this together, I
get

2π∫
0

r dθ ≤
2π∫
0

√
r2 + (r′)2 dθ ≤

2π∫
0

r dθ.

So the arc length is simply
∫ 2π

0 r dθ.

Jane: That couldn’t be right. If it were, it would be an Exercise.

Sam: They like to keep a few things secret to surprise us on a mid-term.

Who is right, Sam or Jane? Explain.

Skill Drill: Derivatives

In Exercises 11 and 12 a, b, c, m, and p are constants. In each case verify that the
derivative of the first function is the second function.
11.[R] 1√

c
arcsin

(
cx−b√
b2+ac

)
;
√

c
a+2bx−cx2 .

12.[R] 1
c

√
a+ 2bx+ cx2− b√

c
ln
(
b+ cx+

√
c
√
a+ 2bx+ cx2

)
; x
a+bx+cx2 (assume c

is positive).

In Exercises 13 and 14, L is the length of a smooth curve C and P is a point within
the region A bounded by C.
13.[M]

(a) Show that the average distance from P to points on the curve, averaged with
respect to arc length is greater than or equal to 2A/L.

(b) Give an example when equalify holds.
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14.[M]

(a) Show that the average distance from P to points on the curve, averaged with
respect to the polar angle is greater than or equal to L/(2π).

(b) Give an example when equalify holds.

(See also Exercise 24 in Section 9.4.)
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Calculus is Everywhere # 12

The Mercator Map
A web search for “map
projection” leads to detailed
information about this and
other projections. The US
Geological Society has some
particularly good resources.

One way to make a map of a sphere is to wrap a paper cylinder around
the sphere and project points on the sphere onto the cylinder by rays from the
center of the sphere. This central cylindrical projection is illustrated in
Figure C.12.1(a).

(a) (b)

Figure C.12.1:

Points at latitude L project onto points at height tan(L) from the equatorial
plane.

A meridean is a great circle passing through the north and south poles.
It corresponds to a fixed longitude. A short segment on a meridian at latitude
L of length dL projects onto the cylinder in a segment of length approximately
d(tan(L)) = sec(L)2 dL. This tells us that the map magnifies short vertical
segments at latitude L by the factor sec2(L).

Points on the sphere at latitude L form a circle of radius cos(L). The image
of this circle on the cylinder is a circle of radius 1. That means the projection
magnifies horizontal distances at latitude L by the factor sec(L).

Consider the effect on a small “almost rectangular” patch bordered by two
meridians and two latitude lines. The patch is shaded in Figure C.12.1(b). The
vertical edges are magnified by sec2(L), but the horizontal edges by only sec(L).
The image on the cylinder will not resemble the patch, for it is stretched more
vertically than horizontally.

The path a ship sailing from P to Q makes a certain angle with the latitude
line through P . The map just described distorts that angle.

The ship’s caption would prefer a map without such a distortion, one that
preserves direction. That way, to chart a voyage from point A to point B on
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the sphere of the Earth at a fixed compass heading, he would simply draw a
straight line from A to B on the map to determine the compass setting.

Gerhardus Mercator, in 1569, designed a map that does not distort small
patches hence preserves direction. He figured that since the horizontal magni-
fication factor is sec(L), the vertical magnification should also be sec(L), not
sec2(L).

This condition can be stated in the language of calculus. Let y be the height
on the map that represents latitude L0. Then ∆y should be approximately
sec(L)∆L. Taking the limit of ∆y/∆L and ∆L approaches 0, we see that
dy/dL = sec(L). Thus

y =

L0∫
0

sec(L) dL. (C.12.1)

Mercator, working a century before the invention of calculus, did not have
the concept of the integral or the Fundamental Theorem of Calculus. Instead,
he had to break the interval [0, L0] into several short sections of length ∆L,
compute (sec(L))∆L for each one, and sum these numbers to estimate y in
(C.12.1).

We, coming after Newton and Leibniz, can write

y =

L0∫
0

sec(L) dL = ln |sec(L) + tan(L)| |L0

0 = ln(sec(L0)+tan(L0)) for 0 ≤ L0 ≤ π/2.

In 1645, Henry Bond conjectured that, on the basis of numerical evidence,∫ α
0

sec(θ) dθ = ln(tan(α/2+π/4)) but offered no proof. In 1666, Nicolaus Mer-
cator (no relation to Gerhardus) offered the royalties on one of his inventions
to the mathematician who could prove Bond’s conjecture was right. Within
two years James Gregory provided the missing proof.

Figure 12 shows a Mercator map. Such a map, though it preserves angles,
greatly distorts areas: Greenland looks bigger than South America even though
it is only one eighth its size. The first map we described distorts areas even
more than does a Mercator map.

EXERCISES

1.[R] Draw a clear diagram showing why segments at latitude L are magnified
vertically by the factor sec(L).

2.[R] Explain why a short arc of length dL in Figure C.12.1(a) projects onto a
short interval of length approximately sec2(L) dL.

3.[R] On a Mercator map, what is the ratio between the distance between the lines
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representing latitudes 60◦ and 50◦ to the distance between the lines representing
latitudes 40◦ amd 30◦?

4.[M] What magnifying effect does a Mercator map have on areas?
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Chapter 10

Sequences and Their
Applications

When trying to write 1/3 as a decimal, we meet the following sequence of
numbers:

0.3, 0.33, 0.333, 0.3333, . . .

The more 3s we write, the closer the numbers are to 1/3.

When estimating a definite integral
∫ b
a
f(x) dx, we pick a positive integer

n, divide the interval [a, b] into n equal pieces of length ∆x = (b− a)/n, pick
a number ci in the ith interval and form the sum En =

∑n
i=1 f(ci)∆x. In this

way we obtain a sequence of estimates,

E1, E2, E3, . . . , En, . . . .

As n increases the estimates approach
∫ b
a
f(x) dx, if f(x) is continuous.

In the analysis of APY (annual percentage yield on an account at a bank),
in CIE #3 in Chapter 2 (page 161) we encounter the sequence

(1 + 1/1)1, (1 + 1/2)2, (1 + 1/3)3, . . . , (1 + 1/n)n, . . . .

As n increases, these numbers approach e.
What happens to the numbers

S1 = 1, S2 = 1 +
1

2
, S3 = 1 +

1

2
+

1

3
, S4 = 1 +

1

2
+

1

3
+

1

4
, . . . , Sn =

n∑
k=1

1

k
, . . .

as we add more and more reciprocals of integers? Do the Sn get arbitrarily
large or do they approach some finite number? When students, neither author
guessed right.

Chapters 10, 11, and 12 concern the behavior of endless sequences of num-
bers. Such sequences arise in estimating a solution of an equation. They also
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provide a way to estimate such important functions as ex, sin(x), and ln(x),

and therefore a way to estimate such integrals as
∫ 1

0
ex

2
dx, for which the fun-

damental theorem of calculus is of no help. They also offer another way to
evaluate indeterminate limits.
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10.1 Introduction to Sequences

A sequence of numbers,

a1, a2, a3, . . . , an, . . .

is a function that assigns to each positive integer n a number an. The number

n an
1 2.0000
2 2.2500
3 2.3704
4 2.4414
5 2.4883

10 2.5937
100 2.7048

1000 2.7169
10000 2.7181

an is called the nth term of the sequence. For example, the sequence(
1 +

1

1

)1

,

(
1 +

1

2

)2

,

(
1 +

1

3

)3

, . . . ,

(
1 +

1

n

)n
, . . .

was first seen in Section 2.2 and was later shown to be related to the number
e. In this case, the nth term of the sequence is

an =

(
1 +

1

n

)n
.

For example, a1 = (1 + 1)1 = 2, a2 =
(
1 + 1

2

)2
= 9

4
= 2.25, a10 =

(
1 + 1

10

)10 ≈
2.5937, and a100 =

(
1 + 1

100

)10 ≈ 2.7048.
The notation {an} is an abbreviation for the sequence a1, a2, . . . , an, . . . . The “sub” stands for

“subscript.”Read a1 as “a sub 1” and an as “a sub n.”
If, as n gets larger, an approaches a number L, then L is called the limit

of the sequence {an}. When the sequence a1, a2, . . . , an, . . . has a limit L we
say it is convergent and write

lim
n→∞

an = L.

For instance, we write

lim
n→∞

(
1 +

1

n

)n
= e.

A sequence need not begin with the term a1. Later, sequences of the form
a0, a1, a2, . . . will be considered. In such a case, a0 is called the zeroth term.
In other instances we consider sequences ak, ak+1, ak+2, . . . that begin with
ak for k > 1. These sequences are called a “tail” of the sequence a1, a2, a3,
. . . . Two important features of any sequence are i) the terms of a sequence
are defined only for integers and ii) the sequence never ends.

The Sequence {rn}
The next example introduces a simple but important type of sequence called
a geometric sequence.

EXAMPLE 1 A certain (small) piece of equipment depreciates in value
over the years. In fact, at the end of any year it has only 80% of the value it
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had at the beginning of the year. What happens to its value in the long run if
its value when new is $1?
SOLUTION Let an be the value of the equipment at the end of the nth year.
Call the initial value a0 = 1. At the end of year 1 the value is a1 = 0.8(1).
Similarly, a2 = 0.8(0.8) = 0.82 = 0.64 and a3 = 0.8(0.82) = 0.83. After n years
the value is an = 0.8n. This question is asking about the limit of the sequence
{0.8n}. After 5 years, the value is just under $0.33. In another five years the

n 0.8n

0 0.80 = 1
1 0.81 = 0.8
2 0.82 = 0.64
3 0.83 = 0.512
4 0.84 = 0.4096
5 0.85 = 0.3277

10 0.810 = 0.1074
20 0.820 = 0.0115

value is reduced to about $0.11, and at the end of year 20, the value is roughly
$0.01. This is strong evidence that

lim
n→∞

0.8n = 0.

�
Even if the piece of equipment in Example 1 retained 99% of its value each

year, in the long run it would still be worth less than a dime, then less than
a penny, etc. The data in Table 10.1.1 indicates that 0.99n approaches 0 as
n→∞, but much more slowly than 0.8n does.

n 0 1 2 3 4 5 10 20 100 200
0.99n 1 0.99 0.9801 0.9703 0.9606 0.9510 0.9044 0.8179 0.3660 0.1340

Table 10.1.1:

On the basis of Example 1, it is plausible that if 0 ≤ r < 1, then limn→∞ r
n =

0. Moreover, the closer r is to 1, the slower rn approaches 0. To show that
this is the case, we introduce a property of the real numbers which we will
use often. It concerns monotone sequences. A sequence is monotone ei-
ther if it is nondecreasing (a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ . . . ) or nonincreasing
(a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ . . . ).

Theorem 10.1.1. Let {an} be a nondecreasing sequence with the property that
there is a number B such that an ≤ B for all n. That is, a1 ≤ a2 ≤ a3 ≤Every bounded and

monotone sequence
converges.

a4 ≤ · · · ≤ an ≤ an+1 ≤ . . . and an ≤ B for all n. Then the sequence {an} is
convergent and an approaches a number L less than or equal to B.

Similarly, if {an} is a nonincreasing sequence and there is a number B such
that an ≥ B for all n, then the sequence {an} is convergent and its limit is
greater than or equal to B.

Figure 10.1.1 suggests the first part of Theorem 10.1.1 is plausible. The
monotonicity prevents the terms from backtracking or entering a cycle. With-
out the bound on the terms, the sequence could continue to approach∞. Any
sequence that is both bounded and monotone has to converge to a limit.

Theorem 10.1.1 is proved in advanced calculus.
The next theorem shows the power of Theorem 10.1.1.
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Figure 10.1.1:

Theorem 10.1.2. If 0 < r < 1 then {rn} converges to 0.

Proof

Let r be a number between 0 and 1. The sequence r1, r2, r3, . . . rn, . . . is
decreasing and each term is greater than 0. By Theorem 10.1.1, the sequence
has a limit, L, and L ≥ 0.

The sequence r2, r3, . . . , rn+1, . . . also approaches L. We then have

L = lim
n→∞

rn+1 = lim
n→∞

rrn = r lim
n→∞

rn = rL.

In short,

L = rL.

Thus (1− r)L = 0. So either 1− r = 0 or L = 0. Because 0 < r < 1, 1− r is
not zero, L has to be 0, which shows that limn→∞ r

n = 0. •

The behavior of {rn} for other values of r is much more easily obtained:

1. If r = 1, then rn = 1 for all n. So limn→∞ r
n = 1.

2. If r > 1, then rn gets arbitrarily large as n→∞. Hence is divergent.

3. If r < −1, then |r|n gets arbitrarily large. Thus limn→∞ r
n does not

converge.

4. If r = −1, then the sequence is −1, 1, −1, 1, . . . . which is divergent.

5. If −1 < r < 0, then limn→∞ r
n = 0.

6. If r = 0, then rn = 0 for all n. So limn→∞ r
n = 0.
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Figure 10.1.2:

Figure 10.1.2 records this information.

We prove (2) and (5). First, (2). If r > 1, the sequence r, r2, r3, r4, . . . ,
rn, . . . is monotone increasing. The terms either approach a limit, L, or they
get arbitrarily large. In the first case we would have, as before, (1− r)L = 0,
which implies L = 0 (because 1−r0 is not zero). That’s impossible since every
term is greater than or equal to r.

To prove (5), let −1 < r < 0 and note that |rn| = |r|n approaches zero as
n→∞ (by Theorem 10.1.2). Since the absolute value of rn approaches 0, so
must rn.

The terms of a convergent sequence usually never equal their limit, L, but
merely get closer to it as the index, n, increases.Informal definition of

limn→∞ an =∞. If an becomes and remains arbitrarily large and positive as n gets larger, the
sequence diverges and we write limn→∞ an = ∞. For instance, limn→∞ 2n =
∞. Similarly, limn→∞(−2n) = −∞. But, for limn→∞(−2)n all we can say is
that the sequence diverges because the values alternate between positive and
negative values and limn→∞ |2n| = limn→∞ 2n =∞.

The Sequence {kn/n!}

Example 2 introduces a type of sequence that occurs in the study of sin(x),
cos(x), and ex.

EXAMPLE 2 Does the sequence defined by an = 3n/n! converge or di-
verge?
SOLUTION The first terms of this sequence are recorded (to four decimal
places) in Table 10.1.2. Although a2 is larger than a1 and a3 is equal to a2,
from a4 through a8, as Table 10.1.2 shows, the terms decrease.

The numerator 3n becomes large as n → ∞, influencing an to grow large.
But the denominator n! also becomes large as n→∞, influencing the quotient
an to shrink toward 0. For n = 1 and n = 2 the first influence dominates, but
then, as the table shows, the denominator n! grows faster than the numerator
3n, forcing an toward 0.
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n 1 2 3 4 5 6 7 8
3n 3 9 27 81 243 729 2, 187 6, 561
n! 1 2 6 24 120 720 5, 040 40, 320

an = 3n/n! 3.0000 4.5000 4.500 3.3750 2.0250 1.0125 0.4339 0.1627

Table 10.1.2:

To see why the denominator grows so fast that the quotient 3n/n! ap-
proaches 0, consider a10. This term can be expressed as the product of 10
fractions:

a10 =
310

10!
=

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

3

10
.

The first three fractions are greater than or equal to 1, but the seven remaining
fractions are all less than or equal to 3

4
. Thus

a10 <
3

1

3

2

3

3

(
3

4

)7

.

Similarly,

a100 <
3

1

3

2

3

3

(
3

4

)97

.

More generally, for n > 4,

an <
3

1

3

2

3

3

(
3

4

)n−3

.

By Theorem 10.1.2,

lim
n→∞

(
3

4

)n
= 0,

from which it follows that limn→∞ an = 0. �

Reasoning like that in Example 2 shows that for any fixed number k,

This limit will be used often.

lim
n→∞

kn

n!
= 0.

This means that the factorial grows faster than any exponential kn.
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Properties of Limits of Sequences

The limits of sequences {an} behave like the limits of functions f(x), as dis-
cussed in Section 2.4. The most important properties are summarized in The-
orem 10.1.3 without proof.Remember that A and B

are numbers (not ±∞).

Theorem 10.1.3. If limn→∞ an = A and limn→∞ bn = B, then

• limn→∞(an + bn) = A+B.

• limn→∞(an − bn) = A−B.

• limn→∞(anbn) = AB.

• limn→∞(an
bn

) = A
B

(B 6= 0).

• If k is a constant, limn→∞ kan = kA. In particular, limn→∞(−an) =
− limn→∞ an.

• If f is continuous on an open interval that contains A, then limn→∞ f(an) =
f(A).

For instance,

lim
n→∞

(
3

n
+

(
1

2

)n)
= 3 lim

n→∞

1

n
+ lim

n→∞

(
1

2

)2

= 3 · 0 + 0

= 0.

Techniques for dealing with limx→∞ f(x) can often help to determine the
limit of a sequence. The essential point is

if lim
x→∞

f(x) = L then lim
n→∞

f(n) = L.

EXAMPLE 3 Find limn→∞
n
2n

.
SOLUTION Consider the function f(x) = x

2x
. By l’Hôpital’s Rule (∞-over-

∞ case),

lim
x→∞

x

2x
= lim

x→∞

1

2x ln(2)
= 0.

Thus lim
n→∞

n

2n
= 0.

�

WARNING (On Limits of Sequences and Limits of Functions)
The converse of the statement “if limx→∞ f(x) = L, then limn→∞ f(n) =
L” is not true. For example, take f(x) = sin(πx). Then limn→∞ f(n) =
0, but limx→∞ f(x) does not exist.
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The Precise Definition of limn→∞ an = L

In Sections 3.8 and 3.9 limit concepts were given precise (as opposed to infor-
mal) definitions. The following definition is in the same spirit. Precise definition of limit of

a sequence.

DEFINITION (Limit of a sequence.) The number L is the limit
of the sequence {an} if for each ε > 0 there is an integer N such
that

|an − L| < ε for all integers n > N .

EXAMPLE 4 Use the precise definition of the limit of a sequence to show
that limn→∞

1
n

= 0.
SOLUTION Given ε > 0 we want to show that there is an integer N such
that ∣∣∣∣ 1n − 0

∣∣∣∣ < ε for all integers n > N .

For instance, if ε = 0.01, we want∣∣∣∣ 1n − 0

∣∣∣∣ < 0.01

or simply
1

n
< 0.01 =

1

100
.

This inequality holds for n > 100. Hence N = 100 suffices. (So does any
integer greater than 100.)

The general case is similar. We wish to have∣∣∣∣ 1n − 0

∣∣∣∣ < ε

or
1

n
< ε

Hence, 1 < nε

and finally n >
1

ε
.

Any integer N > 1/ε suffices. �
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kn and Energy from the Atom
In a particular nuclear chain reaction, when a neutron strikes the nucleus of an
atom of uranium or plutonium, on the average a certain number of neutrons
split off. Call this number k. These k neutrons then strike further atoms. Since
each splits off k neutrons, in this second generation there are k2 neutrons. In
the third generation there are k3 neutrons, and so on. Each generation is born
in a fraction of a second and produces energy.
If k is less than 1, then the chain reaction dies out, since kn → 0 as n→∞. A
successful chain reaction — whether in a nuclear reactor or an atomic bomb
— requires that k be greater than 1, since kn →∞ as n→∞.
In September 1941, Enrico Fermi and Leo Szilard achieved k = 0.87 with a
uranium pile at Columbia University. In 1942, they obtained an encouraging
k = 0.918. Iin the meantime, Samuel Allison at the Univeristy of Chicago,
Fermi and Szilard attained k = 1.0006. With this k the neutron intensity
doubled every 2 minutes. They had achieved the first controlled, sustained,
chain reaction, producing energy from the atom. Fermi let the pile run for
4.5 minutes. Had he let it go on much longer, the atomic pile, the squash
court, the university, and part of Chicago might have disappeared.
Eugene Wigner, one of the scientists present, wrote, “We felt as, I presume, ev-
eryone feels who has done something that he knows will have very far-reaching
consequences which he cannot foresee.”
Szilard had a different reaction: “There was a crowd there and then Fermi and
I stayed there alone. I shook hands with Fermi and I said I thought this day
would go down as a black day in the history of mankind.”
However it may be regarded, December 2, 1942, is a historic date. Before that
date k was less than 1, and limn→∞ k

n = 0. After that date, k was larger than
1 and limn→∞ k

n = 0.
Based on Richard Rhodes, The Making of the Atomic Bomb, Simon and Schus-
ter, New York, 1986.

Summary

We defined convergent sequences and their limits and divergent sequences,
which have no limit. The sequences {rn} and {kn/n!} will be used often in
Chapters 10, 11, and 12. We have

lim
n→∞

rn = 0 (|r| < 1) lim
n→∞

kn

n!
= 0 (k any constant).

Also, a bounded monotone sequence converges, even though we may not be
able to find its limit exactly.
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EXERCISES for Section 10.1 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 18 write out the first three terms of the given sequence and state
whether it converges or diverges. If it converges, give its limit.
1.[R] {0.999n}
2.[R] {1.001n}
3.[R] {1n}
4.[R] {(−0.8)n}
5.[R] {(−1)n}
6.[R] {(−1.1)n}
7.[R] {n!}
8.[R]

{
10n

n!

}
9.[R]

{
3n+5
5n−3

}
10.[R]

{
(−1)n

n

}
11.[R]

{
cos(n)
n

}
12.[R] {n sin(1/n)} Hint: A limit in Section 2.2 will help.
13.[R]

{
n(a1/n − 1)

}
Hint: A limit in Section 2.2 will help.

14.[R]
{
n
2n + 3n+1

4n+2

}
15.[M]

{(
1 + 2

n

)n}
16.[M]

{(
n−1
n

)n}
17.[M]

{(
1 + 1

n2

)n}
Hint: Write f(n)g(n) as eg(n) ln(f(n)).

18.[M]
{(

1 + 1
n

)n2
}

19.[R] Assume that each year inflation eats away 2 percent of the value of a dollar.
Let an be the value of one dollar after n years.

(a) Find a4.

(b) Find limn→∞ an.

20.[R] Let an = 6n/n!.

(a) Fill in this table:
n 1 2 3 4 5 6 7 8
an

(b) Plot the points (n, an) corresponding to each column in the table above.
Note: Let the n-axis be the horizontal axis.
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(c) What is the largest value of an? What is the corresponding n?

(d) What is limn→∞ an?

21.[R] What is the largest value of (11.8)n/n!? Explain.

22.[M] Find an index n such that 0.999n is less than 0.0001

(a) by experimenting with the aid of your calculator

(b) by solving the equation 0.999x = 0.0001

23.[M] Find the first index n such that 1.0006n is larger than 2

(a) by experimenting with the aid of your calculator

(b) by solving the equation 1.0006x = 2.

In Exercises 24 and 25 determine the limits of the given sequences by first identifying
each limit as a definite integral,

∫ b
a f(x) dx, for a suitable interval [a, b] and function

f(x). Hint: Review Section 6.2
24.[M]

an =
n∑
k=1

(
1
n

)2 1
n

25.[M]

an =
n∑
k=1

n

n2 + i2

26.[M] For each integer n ≥ 1, let

an =
1
n

+
1

n+ 1
+ · · ·+ 1

2n
=

2n∑
k=n

1
k
.

For example, a3 = 1/3 + 1/4 + 1/5 + 1/6 = 0.95.

(a) Compute decimal approximations to an for n = 1, 2, 3, 4, and 5.

(b) Show that {an} is a monotone and bounded sequence.
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(c) Show that it has a limit and that the limit is at least 1/2.

27.[C] We showed that for −1 < r < 0, limn→∞ r
n = 0 by considering |rn|. Here

is a more direct argument.

(a) Let r = −s, 0 < s < 1. Show that for even n, rn = sn and for odd n,
rn = −(sn).

(b) Show that the sequence {r2n} converges to 0.

(c) Show that the sequence {r2n−1} converges to 0.

(d) Conclude that limn→∞ f
n = 0.

28.[C] The binomial theorem asserts that if n is a positive integer, then (1 + x)n

is equal to 1 + nx plus other terms that are positive if x > 0. Use this to show that
if r > 1, then limn→∞ r

n =∞.

29.[C] Exercise 28 makes use of the binomial theorem. It was not necessary to use
the binomial theorem, as this exercise shows. Assume that x > 0.

(a) Show that (1 + x)n ≥ 1 + nx for n = 1.

(b) Assume that you know that (1 + x)n ≥ 1 + nx when n is 100. Show that it
follows that (1 + x)n ≥ 1 + nx when n is 101.

(c) Explain why (1 + x)n ≥ 1 + nx for all positive integers n.

30.[C] The sequence {an} with an =
∑2n

k=n
1
k was shown to be convergent in Ex-

ercise 26. Show that the limit of this sequences is ln(2) by expressing it as a certain
definite integral and evaluating that integral.

31.[C] Let an =
∑3n

k=2n
1
k . Does {an} converge or diverge? If it converges, find its

limit.

32.[C] Using the precise definition of liman = L, prove that if limn→∞ |an| = 0,
then limn→∞ an = 0.

33.[C] Use the precise definition of limn→∞ an = L to prove limn→∞
sin(n)
n = 0.

34.[C] Use the precise definition of limn→∞ an = L to prove limn→∞
3
n2 = 0.
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35.[C] Use the precise definition of limn→∞ an = L to prove that the statement
limn→∞(−1)n = 0 is false.

36.[C]

(a) What would be the precise definition of limn→∞ an =∞?

(b) Use the precise definition in (a) and the precise definition of limn→∞ an = L
to show that:

if lim
n→∞

an =∞, then lim
n→∞

1/an = 0.

SHERMAN: Move this, and
others?, to Chapter

Summary?
37.[C]

Sam: I’m going to prove, using the precise definition, that if 0 < r < 1, then
limn→∞ r

n = 0.

Jane: I’ll listen.

Sam: I want to show that there is an integer N such that |rn − 0| < ε if n > N , in
other words, rn < ε, if n is big enough. To get hold of n, I take logarithms,
obtaining n ln(r) < ln(ε). Then I’ll divide by ln(r).

Jane: How do you know r has a log?

Sam: Well, r = eln(r).

Jane: You mean the equation r = ex has a solution?

Sam: Sure, that’s what a log is all about.

Jane: Since r is less than 1, x would be negative. May I write it as −p where p is
positive?

Sam: If you want to, why not?

Jane: So you’re saying that r can be written as (1/e)p for some positive number p.
You’re assuming that no matter how small r is, there is a positive number p
so that (1/e)p will equal it. Right?

Sam: Right. But why all this fuss?

Jane: To say that (1/e)p gets as small as you please is just a special case of what
you’re trying to prove. You’re wandering in circles.

Who’s right, Jane or Sam? If Sam is right, finish his proof.
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10.2 Recursively-Defined Sequences and Fixed

Points

The terms in each sequence considered in Section 10.1 were given by an explicit
formulaan = f(n). Often a sequence is not given explicitly. Instead, each term
(after the first) may be expressed in terms of earlier terms. For instance, the
sequence of powers a0 = r0 = 1, a1 = r1 = r, a2 = r2, . . . , an = rn, . . . can be
described this way:

The first term, a0, is 1.
For n ≥ 1, an = ran−1.

That is, each term after a0 is r times the preceding term. We will describe a
technique for finding the limit of such sequences, defined indirectly, if they are
convergent.

Sequences Defined Recursively

A sequence given by a formula that describes the nth term in terms of previous
terms is said to be given recursively. If an depends only on its immediate
predessor, we would have an = f(an−1), for some function f . If an depends
on both an−1 and an−2, then there would be a function f such that an =
f(an−1, an−2).

EXAMPLE 1 Let a0 = 1 and an = nan−1 for n ≥ 1. Give an explicit
definition of {an}.
SOLUTION a1 = 1a0 = 1; a2 = 2a1 = 2 · 1; a3 = 3a2 = 3 · 2 · 1; a4 = 4a3 =
4 · 3 · 2 · 1. Evidently, an is n!, “n factorial,” the product of all integers from 1
to n. �

EXAMPLE 2 Let b0 = 1 and b1 = 1 and bn = bn−1 + bn−2 for n ≥ 2.
Compute b2, b3, b4, and b5.
SOLUTION b2 = b1 + b0 = 1 + 1 = 2; b3 = b2 + b1 = 2 + 1 = 3; b4 = b3 + b2 =
3 + 2 = 5; b5 = b4 + b3 = 5 + 3 = 8. This sequence, which appears often in
both pure and applied mathematics, is called the Fibonacci sequence.

The terms in the Fibonacci sequence are positive and become arbitrarily
large as n gets larger. The Fibonacci sequence diverges (to ∞). �
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The Fibonacci sequence appears in the following problem from Chapter XII
of the Liber abaci of Leonard Fibonacci. This book appeared in 1202 (hand
copied) and was revised in 1228.

A man put a pair of rabbits in a place surrounded by a wall. How
many pairs of rabbits can be produced from that pair in a year if
every month each pair produces a new pair which from the second
month on can produce another pair?

For a discussion of the Fibonacci sequence and the Golden Ratio and the myths
that surround it, see S. Stein, “Strength in Numbers,” John Wiley and Sons,
New York, 1996 (p. 39).

Finding the Limit of a Recursive Sequence

Assume that a sequence satisfies the relation an = f(an−1) and has a limit L.
Since an → L as n → ∞, we also have an−1 → L and n → ∞. Now assume
also that f is continuous. Then we have, because f is continuous,

lim
n→∞

an = lim
n→∞

f(an−1) = f
(

lim
n→∞

an−1

)
.

Hence,

L = f(L) (10.2.1)

There could be other
solutions. According to (10.2.1), L is a solution to the equation x = f(x). A number

L such that f(L) = L is called a fixed point of f .

EXAMPLE 3 Let f(n) = rf(n − 1) where 0 < r < 1. Let a1 = 1. Use
(10.2.1) to find limn→∞ an.
SOLUTION We recognize this recursion as giving the sequence 1, r, r2, . . . .This is the same argument

as in Section 10.1, but
obtained now directly from

(10.2.1).

Since this is a monotonic sequence bounded below by 0, it has a limit L. Thus

L = f(L) = rL.

Since r is not 1, L = 0. �
Exercises 42 to 45 provide a

proof that the sequence of
ratios of the Fibonacci

sequence converges.

EXAMPLE 4 Define cn to be the ratio of successive terms in the Fibonacci
sequence {bn}: cn = bn

bn−1
for all n ≥ 2. Assuming this sequence converges,
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find its limit.
SOLUTION c2 = b2

b1
= 1

1
= 1. For n ≥ 3 the definition of the Fibonacci

n cn
2 1.000000
3 2.000000
4 1.500000
5 1.666667
6 1.600000
7 1.625000
8 1.615385
9 1.619048

10 1.617647
15 1.618037
25 1.618034

sequence can be used to obtain a formula relating cn to cn−1:

cn =
bn
bn−1

=
bn−1 + bn−2

bn−1

= 1 +
bn−2

bn−1

= 1 +
1

cn−1

.

So

cn = 1 +
1

cn−1

for all n ≥ 3. (10.2.2)

Thus, cn = f(cn−1) where f(x) = 1 + 1
x
.

The table showing the first few terms of this sequence suggests that this se-
quence converges. Note that the sequence is neither increasing nor decreasing,
so Theorem 10.1.1 does not apply.

Assume that limn→∞ cn exists and call that limit L. Then, by (10.2.2),

lim
n→∞

cn = lim
n→∞

(
1 +

1

cn−1

)
= 1 +

1

limn→∞ cn−1

So, L = 1 +
1

L
.

Therefore, L2 − L− 1 = 0.

The two solutions to L2 − L− 1 = 0 are

L =
1

2

(
1 +
√

5
)

L =
1

2

(
1−
√

5
)
.

Since every term in this sequence is positive, the limit cannot be negative. 1
2

(
1 +
√

5
)
≈ 1.618034 is

known as the Golden
Ratio.

The only possible limit is

L =
1

2

(
1 +
√

5
)
≈ 1.61803.

�

A Famous Recursion

The recursion pn+1 = kpn describes a population growing at a rate proportional
to the amount present. If the initial population is p1, then p2 = kp1, p3 = k2p1,
p4 = k3p1, . . . . For k > 1, the population would increase without bound. But
a population cannot do that. Instead, let us assume it approaches a limiting
population, which we will say is 1. As it approaches this size, the struggle
to find food slows its growth. Taking this into consideration, we assume that
{pn} satisfies the logistic equation:

pn+1 = kpn(1− pn).
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The behavior of this equation, consideredon its own is surprising. For
instance, if k is near 3.5699456 the behavior of the sequence changes a great
deal even when k is changed only a little.

EXAMPLE 5 Examine the sequence given by pn+1 = kpn(1− pn) for 0 ≤
k ≤ 1.
SOLUTION For p0 = 0 or 1, pn = 0 for all n ≥ 1. For 0 < p0 < 1,
p1 = kp0(1 − p0) is at most p0(1 − p0), which is less than p0. Similarly,
p2 is less than p1, and, in general we have pn+1 < pn. The sequence {pn}
decreases but stays above 0. Therefore it has a limit L, and L ≥ 0. Taking
limits on both sides of (10.2) shows that L = kL(1− L).EitherL=0or1=k(1-
L), henceL=0orL=1-1/k.But1-1/kiseithernegative(if0¡k¡1)or0(if k = 1). So
L = 0. �

Summary

A recursive sequence is one whose nth term is given in terms of previous terms.
If an depends only on its immediate predecessor, then an = f(an−1). If a1,
a2, . . . , an−1, an, . . . converges to L, then f(L) = L. Thus L is a root of the
equation f(x) = x. It is called a fixed point of F .
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EXERCISES for Section 10.2 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 6 give an explicit formula for an as a function of n.
1.[R] a0 = 1, an = −an−1 for n ≥ 1
2.[R] a0 = 3, an = an−1/n for n ≥ 1
3.[R] a0 = 2, an = 3 + an−1 for n ≥ 1
4.[R] a0 = 5, an = −an−1/2 for n ≥ 1
5.[R] a1 = 1, an = an−1 + 1/n for n ≥ 2
6.[R] a1 = 1, an = −an−1 + (−1)n/n for n ≥ 2

In Exercises 7 to 12 describe an in terms of an−1 and an initial term a0.
7.[R] an = 3n, n = 0, 1, 2, . . .
8.[R] an = 5/n!, n = 0, 1, 2, . . .
9.[R] an = 3n!, n = 0, 1, 2, . . .
10.[R] an = 2n+ 5, n = 0, 1, 2, . . .
11.[R] an = 1 + 1/22 + 1/32 + · · ·+ 1/n2, n = 1, 2, 3, . . .
12.[R] an = 1/2 + 1/4 + 1/8 + · · ·+ 1/2n−1, n = 0, 1, 2, . . .

13.[R] Define {bn} by b0 = 2 and b1 = 1/bn−1 for n ≥ 1.

(a) Find b1, b2, . . . , b5.

(b) Show that if {bn} converges, its limit is 1 or −1.

(c) Does {bn} converge?

(d) For which choices of b0 does {bn} converge to 1?

(e) For which choices of b0 does {bn} converge to −1?

(f) For which choices of b0 does {bn} diverge?

14.[R] Consider the logistic recursion (10.2) with k = 2, that is pn+1 = 2pn(1−pn).

(a) Choose p0 between 0 and 1/2. Find enough pn to be able to conjecture if the
sequences converge.

(b) Repeat (a) for another value of p0 between 0 and 1/2.

(c) Repeat (a) with p0 between 1/2 and 1.

(d) Repeat (a) for another value of p0 between 1/2 and 1.

(e) What happens to the sequence {pn} if p0 is 0 or 1?

Calculus December 6, 2010



884 CHAPTER 10 SEQUENCES AND THEIR APPLICATIONS

(f) What happens to the sequence {pn} if p0 is 1/2?

(g) For which values of p0 does {pn} converge? And, in those cases, to what limit?

15.[R] For which values of x does
{
xn

n!

}
converge?

16.[R] For which values of x does
{
xn

2n

}
converge?

17.[R] For which values of x does
{
xn

n2

}
converge?

18.[R] For which values of x does
{
xn√
n

}
converge?

19.[R] Let an+2 = an + 2an+1 with a0 = 1 = a1 and cn = an/an−1. Examine {cn}
numerically, deciding whether it converges and, if so, what it’s limit might be.

20.[R] Explore the sequence {an} where an+1 = an − an−1 for n ≥ 2 if

(a) a0 = 3 and a1 = 4,

(b) a0 = 1 and a1 = 0,

(c) the general case, a0 = a, a1 = b.

21.[R] Consider the logistic recursion (10.2) with 0 < k ≤ 4. Show that if p0 is in
the interval [0, 1], then pn is also in [0, 1] for all n ≥ 0.

22.[R] Let an+2 = (an + 3an+1)/4, with a0 = 0 and a1 = 1.

(a) Compute enough terms of {an} to guess the limit, L.

(b) When you take limits of both sides of the recursion equation, what equation
do you get for L?

23.[M] Consider the recursion an+2 = (1 + an+1)/an.

(a) Starting with a1 = 1 and a2 = 2, compute a3, a4, a5, a6, a7, and a8.

(b) Repeat (a) with a1 = 3 and a2 = 3.

(c) Repeat (a) with a1 and a2 of your choice.

(d) Explain what is going on.
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24.[M] Let k and p be positive numbers and define the sequence {fn} as follows:
given f1, define fn+1 = k(fn)p for n ≥ 1.

(a) Assuming this sequence converges, find its limit.

(b) Explain how to choose k so that the sequence converges to 2.

25.[M] Show that if 0 ≤ k ≤ 4, 0 ≤ p0 ≤ 1, and pn+1 = kpn(1 − pn), then
0 ≤ pn ≤ 1.

26.[M]

(a) Investigate the logistic sequence {pn} for k = 2.

(b) Make a conjecture based on (a).

(c) Let pn = 1
2 + qn. Show that qn+1 = −2q2

n.

(d) Use (c) to discuss your conjecture in (b).

27.[M] A path that is 1′ by n′ is to be tiled with 1′ × 1′ tiles and 1′ × 2′ tiles. Let
an be the number of ways this can be done.

(a) Obtain a recursive formula for an.

(b) Use your formula found in (a) to find a10.

28.[M] Repeat Exercise 27 with 1′ × 1′ and 1′ × 3′ tiles.

29.[M] Repeat Exercise 27 with 1′ × 2′ and 1′ × 3′ tiles.

30.[M] Let u(n) be the number of ways of tiling a 2 by n rectangle with 1 by 2
dominoes.

(a) Find u(1), u(2), and u(3).

(b) Find a recursive definition of the function u.
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Exercises 31 to 34 illustrate some of the characteristics that make the logistic re-
cursion pn+1 = kpn(1 − pn) so interesting. In each case, create two sequences
corresponding to two values of k in the indicated range and with different values for
the initial value, p0.
31.[M] 1 < k < 3
32.[M] 3 < k < 3.4
33.[M] 3.4 < k < 3.5
34.[M] 3.6 < k < 4

35.[M] Figure 10.2.1(a) shows the graph of a decreasing continuous function f such
that f(0) = 1 and f(1) = 0.

(a) (b)

Figure 10.2.1:

(a) Show that f has exactly one fixed point in the interval [0, 1]. That is, show
that there is one number a with 0 ≤ a ≤ 1 that satisfies f(a) = a. Hint: Draw
the line y = x on the graph of y = f(x).

(b) If 0 < x < a, in what interval does f(x) lie?

(c) If a < x < 1, in what interval does f(x) lie?

(d) Use the graphs of y = f(x) and y = x to find all values of x for which
f(f(x)) > x and all values of x for which f(f(x)) < x.

36.[M] Let f be a decreasing function such that f(0) = 1 and f(1) = 0 and the
graph of f is symmetric with respect to the line y = x. Examine the sequence x,
f(x), f(f(x)), . . . for x in [0, 1]. What can you say about the convergence of this
sequence?

37.[M] Let k, c1, and c2 be positive numbers. Define the sequence {cn} as follows:
given c1, c2, define cn = (1 + kcn−1)/cn−2 for n ≥ 3. Assuming this sequence con-
verges, find the possible limits.

December 6, 2010 Calculus



§ 10.2 RECURSIVELY-DEFINED SEQUENCES AND FIXED POINTS 887

38.[C] Examine the sequence {xn} determined by xn+1 = f(xn) with f(x) = 1−x2

for various inputs in [0, 1]. Does f have a fixed point?

39.[C] Let f(x) = 1 − x, g(x) = 1 − 1.1x, and h(x) = 1 − 0.9x. Let x0 = 0.4.
Examine what happens to the sequences determined by each function.

40.[C] Assume that f is a decreasing function for x in [0, 1], f(1) = 0, and −1 <
f ′(x) < 0.

(a) What can be said about f(0)?

(b) Show that f has a unique fixed point.

(c) Assume f(a) = a. Show that if 1 ≥ x > a, then f(x) < a and if 0 ≤ x < a,
then f(x) > a.

(d) Let g(x) = f(f(x)). Examine the sequence x, g(x), g(g(x)), . . . for x in [0, 1].

(e) Show that for all x in [0, 1] the sequence x, f(x), f(f(x)), . . . , approaches a.

41.[C] Figure 10.2.1(b) is the graph of a function for which f(0) = 0, f(1) = 0,
f ′′(x) ≤ 0, and 0 ≤ f(x) ≤ 1.

(a) Show that f has at least one fixed point.

(b) Show that if f ′(0) ≥ 1, then f has only one fixed point.

(c) Show that if f ′(0) < 1, it has exactly two fixed points.

Exercises 42 to 45 show all of the steps in the proof that the sequence introduced in
Example 4 converges. Recall that c2 = 1 and cn = 1 + 1

cn−1
for all n ≥ 3.

42.[C] Let {dn} be the sequence formed from the terms of {cn} with an odd index.
That is, dn = c2n−1 for all n ≥ 2.

(a) Show that dn ≤ 2 for all n ≥ 2.

(b) Show that {dn} is a decreasing sequence.

(c) Explain why you know {dn} converges.

(d) What is limn→∞ dn?

43.[C] Let {en} be the sequence formed from the terms of {cn} with an even index.
That is, en = c2n for all n ≥ 1.
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(a) Show that en ≥ 1 for all n ≥ 1.

(b) Show that {en} is a increasing sequence.

(c) Explain why you know {en} converges.

(d) What is limn→∞ en?

44.[C] Let {xn} be a sequence with the property that the (sub)sequence of odd
terms converges to L, limn→∞ x2n−1 = L, and the (sub)sequence of even terms
converges to M , limx→∞ x2n = M . Show:

(a) if L 6= M then {xn} diverges

(b) if L = M then {xn} converges and limn→∞ xn = L.

45.[C] Use Exercises 42 to 44 to prove that {cn} converges. Hence its limit is the
Golden Ratio.

46.[C] Let k be a number and define the sequence {dn} as follows: given d0, define
dn = kd2

n−1 for n ≥ 1.

(a) Assuming the sequence converges, find its limit.

(b) Explain how to choose k so that this sequence converges to 3/2.
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10.3 Bisection Method for Solving f (x) = 0

One way to estimate the solution of an equation f(x) = 0, called a root, is
to zoom in on it with a graphing calculator. However, precision is limited by
the resolution of the display. This section and the next describe techniques for
estimating a root to as many decimal places as you may need. The technique
in this section is based on the fact that a continuous function that is positive
at one input and negative at another input has a root between the two inputs.

Bisection Method for Solving f(x) = 0
A root of f is a solution to
f(x) = 0.Let f(x) be a function. A solution or root of the equation f(x) = 0 is a

number r such that f(r) = 0. The graph of y = f(x) passes through the point
(r, 0), as shown in Figure 10.3.1.

r

y=f(x)

x

y

Figure 10.3.1:

Let f(x) be a continuous function defined at least on an interval [a0, b0],
with a0 < b0. Assume that f(a0) and f(b0) have opposite signs, one negative,
the other positive. By the Intermediate Value Theorem, f(x) has at least one
root in [a0, b0].

Not knowing where in [a0, b0] a root lies, evaluate f at the midpoint, m0 =
(a0 + b0)/2. If, by chance, f(m0) = 0, one has found a root and the search is
over. Otherwise, the sign of f(m0) is opposite the sign of one (and only one)
of f(a0) and f(b0).

If f(a0) and f(m0) have opposite signs, then a root must be in the interval
[a0,m0], which is half the width of [a0, b0]. On the other hand, if f(m0) and
f(b0) have opposite signs, a root lies in [m0, b0], again half the width of [a0, b0].

In either case we have trapped a root in an interval half the width of [a0, b0].
Call this shorter interval [a1, b1]. Figure 10.3.2 shows the two possibilities for
[a1, b1] in the case when f(a0) > 0 and f(b0) < 0.

Figure 10.3.2:

The Bisection Method is a
recursive algorithm.
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Then repeat the process, starting at [a1, b1]. In this way you obtain a
sequence of shorter and shorter intervals [a0, b0], [a1, b1], [a2, b2], . . . , each half
as long as its predecessor. Thus, the length of [an, bn] is (b0 − a0)/2n.

An Illustration of the Bisection Method

When x is large and positive f(x) = x+ sin(x)−2 is positive. When x is largeThe bisection method is so
named because at each step

an interval is bisected.
and negative, f(x) is negative. Therefore f(x) = 0 has at least one solution.
The derivative of f(x) is 1+cos(x), which is positive except at odd multiples of
π, when it is zero. Thus, f(x) is an increasing function, which implies that it
cannot have more than one root. Let r be the unique root of x+sin(x)−2 = 0.

Begin the search for the root by finding an interval on which we can be
certain the root will lie.The larger [ao, b0] is the

longer this process will take. Since f(0) = −2, the root must be positive. Using sin(x) ≥ −1 we know
f(x) = x + sin(x)− 2 ≥ x− 1− 2 = x− 3 and so f(4) must be positive. Let
a0 = 0 and b0 = 4. The root will be found in the interval [a, b] = [0, 4].

The middle of this interval is m0 = (a0 + b0)/2 = 2. Evaluate y0 =
f(m0) = f(2) ≈ 0.909297. Because y0 > 0 we now know the root is in the
interval [a1, b1] = [0, 2].

The middle of the new interval is m1 = (a1 + b1)/2 = 1. Then y1 =
f(m1) = f(1) ≈ −0.15829. Now y1 < 0 so the root is trapped in the interval
[a2, b2] = [1, 2].

The third iteration of this process yields m2 = 1.5 and y2 = f(1.5) ≈
0.497495. Then, [a3, b3] = [1, 1.5].

An additional ten iterations for the above problem are shown in Table 10.3.1.
After 13 iterations the root is known to exist on the interval [a13, b13] =Rounding to three decimal

digits, every number in
[1.105957, 1.106445] rounds

to 1.106.

[1.105957, 1.106445]. The midpoint of this interval, m13 = 1.106201, differs
from r by at most half the width of [a13, b13], that is, by at most 0.000244.

If the iterations were continued without end, this process defines sequences
{an} and {bn}. Of course, one stops when the length of the interval containing
r is short enough.

EXAMPLE 1 Use the bisection method to estimate the square root of 3
to three decimal places.
SOLUTION The square root of 3 is the positive number whose square is 3:
x2 = 3 or x2 − 3 = 0. We are looking for the positive root of f(x) = x2 − 3.

The function f is continuous. We know
√

3 is between 1 and 2. This
suggests using bisection method with initial interval [1, 2].

The first 11 iterations of the bisection method are displayed in Table 10.3.2.
After 7 iterations the approximation

√
3 ≈ m7 = 1.730469 is accurate to two

decimal places:
√

3 ≈ 1.73. After another 4 iterations the approximation is
accurate to three decimal places:

√
3 ≈ 1.732. �
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n an bn mn yn bn − an
0 0.000000 4.000000 2.000000 0.909297 4.000000
1 0.000000 2.000000 1.000000 −0.158529 2.000000
2 1.000000 2.000000 1.500000 0.497495 1.000000
3 1.000000 1.500000 1.250000 0.198985 0.500000
4 1.000000 1.250000 1.125000 0.027268 0.250000
5 1.000000 1.125000 1.062500 −0.063925 0.125000
6 1.062500 1.125000 1.093750 −0.017895 0.062500
7 1.093750 1.125000 1.109375 0.004796 0.031250
8 1.093750 1.109375 1.101562 −0.006522 0.015625
9 1.101562 1.109375 1.105469 −0.000857 0.007812

10 1.105469 1.109375 1.107422 0.001971 0.003906
11 1.105469 1.107422 1.106445 0.000558 0.001953
12 1.105469 1.106445 1.105957 −0.000149 0.000977
13 1.105957 1.106445 1.106201 0.000204 0.000488

Table 10.3.1:

n an bn mn yn bn − an
0 1.000000 2.000000 1.500000 −0.750000 1.000000
1 1.500000 2.000000 1.750000 0.062500 0.500000
2 1.500000 1.750000 1.625000 −0.359375 0.250000
3 1.625000 1.750000 1.687500 −0.152344 0.125000
4 1.687500 1.750000 1.718750 −0.045898 0.062500
5 1.718750 1.750000 1.734375 0.008057 0.031250
6 1.718750 1.734375 1.726562 −0.018982 0.015625
7 1.726562 1.734375 1.730469 −0.005478 0.007812
8 1.730469 1.734375 1.732422 0.001286 0.003906
9 1.730469 1.732422 1.731445 −0.002097 0.001953

10 1.731445 1.732422 1.731934 −0.000406 0.000977
11 1.731934 1.732422 1.732178 0.000440 0.000488

Table 10.3.2:
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The bisection method is known as a “bracketing method” because the two
sequences bracket the solution.

Why the Bisection Method Works

The bisection method applied to f(x) produces two sequences, a0 ≤ a1 ≤ a2 ≤
· · · and b0 ≥ b1 ≥ b2 ≥ · · · . If no an or bn is a root of f , the sequences do
not end. The sequence of left endpoints, {an}, is monotone increasing and the
sequence of right endpoints is monotone decreasing. Moreover, since every an
is less than or equal to b0, {an} is bounded. Thus {an}, being bounded and
monotone, has a limit, A ≤ b0. Similarly, {bn} also has a limit, B ≥ a0.

Recall that the length of the interval [an, bn] is bn−an = (b0−a))/2
n. This

means that {bn−an} is a geometric sequence with ratio 1/2, which is less than
1. Thus, limn→∞(bn − an) = 0, and we have

0 = lim
n→∞

(bn − an) = lim
n→∞

bn − lim
n→∞

an = B − A.

Consequently, A = B.
But, why is A a root of f?
Consider the sequence

f(a0), f(b0), f(a1), f(b1), f(a2), f(b2), · · · f(an), f(bn), · · · . (10.3.1)

Since f is continuous, (10.3.1) has a limit, f(A). Moreover, the fact that
one of f(an) and f(bn) is positive means the limit, f(A), cannot be negative.
Similarly, because one of each pair of entries in (10.3.1) is negative, f(A)
cannot be positive. Thus, f(A) = 0 and A is a root of f .

Summary

In the bisection method for finding a root of a function f , one first finds two
inputs a0 and b0 for which f(a0) and f(b0) have opposite signs. Then one
evaluates f at the midpoint m0. The function f will have opposite signs at
the endpoints of exactly one of the intervals: [a0,m0] or [m0, b0]. Call this
new interval [a1, b1], then repeat the process on this new interval. Continue to
repeat the process until the interval is short enough to assure an estimate of
the root that meets the desired accuracy.
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EXERCISES for Section 10.3 Key: R–routine, M–moderate, C–challenging

In Exercises 1 and 2, use the bisection method to find a1 and b1.
1.[R] a0 = 2, b0 = 6, f(2) = 0.3, f(4) = 1.5, f(6) = −1.2
2.[R] a0 = 1, b0 = 3, f(1) = −4, f(2) = −1.5, f(3) = 1

3.[R] In this exercise use the bisection method to approximate
√

2. Let a0 = 1,
b0 = 2, and f(x) = x2 − 2. Fill in the following table as you carry out the first five
steps of the bisection method.

n an bn
0 0 2
1
2
3
4
5

4.[R] In this exercise the ideas in Exercise 3 are used to estimate
√

5 with the
bisection method.

(a) Use f(x) = x2 − 5 and start with a0 = 2, and b0 = 3. Continue until the
interval [an, bn] is shorter than 0.01, that is, bn − an < 0.01.

(b) How many more steps of the bisection method are needed to reduce the interval
by another factor of 10, that is, bn−an < 0.001? Hint: This can be answered
without computing every an and bn.

5.[R] In this exercise the ideas in Exercise 3 are used to estimate 3
√

2 with the
bisection method.

(a) Use f(x) = x3 − 2 and start with a0 = 1, and b0 = 2. Continue until the
interval [an, bn] is shorter than 0.01, that is, bn − an < 0.01.

(b) How many more steps of the bisection method are needed to reduce the interval
by another factor of 10, that is, bn − an < 0.001?

In Exercises 6 to 9 use the ideas in Exercise 3 to estimate the given numbers to the
indicated number of decimal places.
6.[R]

√
15 to 3 decimal places Hint: Use f(x) = x2 − 15 with a0 = 3 and b0 = 4.

7.[R]
√

19 to 2 decimal places

Calculus December 6, 2010



894 CHAPTER 10 SEQUENCES AND THEIR APPLICATIONS

8.[R] 3
√

7 to 4 decimal places
9.[R] 3

√
25 to 3 decimal places

10.[R] Let f(x) = x5 + x− 1.

(a) Show that there is a root of the function f(x) in the interval [0, 1].

(b) Apply five steps of the bisection method with a0 = 0 and b0 = 1.

(c) Why is the root unique?

11.[R] Let f(x) = x4 + x− 19.

(a) Show that f(2) < 0 < f(3). What additional property of f assures that there
is exactly one root r between 2 and 3?

(b) Using the bisection method with [a0, b0] = [2, 3], find an interval of length no
more than 0.01 where this root must be found.

(c) The second real root of f(x) is negative. Find an interval of length one in
which this root must exist.

(d) Repeat (b) using the interval found in (c) as the initial interval.

12.[R] In estimating
√

3 with the bisection method, Sam imprudently chooses the
initial interval to be [0, 10].

(a) How many steps of the bisection method will Sam have to execute before he
has an interval shorter than 0.005?

(b) Jane started with [1, 2]. How many steps of the bisection method will she
need to execute before she has an interval shorter than 0.0005?

13.[R] Let f(x) = 2x3 − x2 − 2.

(a) Show that there is exactly one root of the equation f(x) = 0 in the interval
[1, 2].

(b) Using [a0, b0] = [1, 2] as a first interval, apply two steps of the bisection
method..

14.[R]
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(a) Graph y = x and y = cos(x) relative to the same axes.

(b) Using the graph in (a), find an interval of length no more than 0.25 that
contains the positive solution of the equation x = cos(x). Is there a negative
solution?

(c) Using your estimate in (b) as [a0, b0], apply the bisection method until the
interval is shorter than 0.001.

15.[R]

(a) Graph y = cos(x) and y = 2 sin(x) relative to the same axes.

(b) Without using the graph in (a), explain how you know there is exactly one
solution in [0, π/2].

(c) Using [a0, b0] = [0, π/2], apply the bisection method until the length of the
interval is no more than 0.001.

In Exercises 16 to 18 (Figure 10.3.3) use the bisection method to estimate θ (to two
decimal places). Angles are in radians. Also show that there is only one answer if
0 < θ < π/2.

(a) (b) (c)

Figure 10.3.3:

16.[R] Figure 10.3.3(a)
17.[R] Figure 10.3.3(b)
18.[R] Figure 10.3.3(c)

19.[R]

(a) Graph y = x sin(x) for x in [0, π].

(b) Using the first and second derivatives, show that the fuction has a unique
relative maximum in the interval [0, π].

(c) Show that the maximum value of x sin(x) occurs when x cos(x) + sin(x) = 0.

(d) Use bisection method, with [a0, b0] = [0, π/2], to find an estimate for a root
of x cos(x) + sin(x) = 0 that is accurate to at least two decimal digits.
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20.[R]

(a) Graph y = x cosx for x in [0, π].

(b) Using the first and second derivatives, show that there is a unique relative
maximum in the interval [0, π/2].

(c) Show that the maximum value of x cosx occurs when cosx− x sinx = 0.

(d) Use the bisection method, with [0, π/2], to find an interval [an, bn] with length
no more than 0.01 that contains a solution of cosx− x sinx = 0.

21.[R] Use the bisection method to estimate the maximum value of y = 2 sin(x)−x2

over the interval [0, π/2].

22.[R] Use the bisection method to estimate the maximum value of y = x3 +cos(x)
over the interval [0, π/2].

23.[R] We can show that the error in the bisection method diminishes rather slowly.
Let [a0, b0] be the initial interval containing the root r and let [a1, b1] be the next
estimate, obtained by the bisection method.

(a) Show that b1 − a1 = 1
2(b0 − a0).

(b) Let [a2, b2] be the next interval obtained by the bisection method. Show that
b2 − a2 = 1

2(b1 − a1) = 1
4(b0 − a0).

(c) Explain why, in general, bn − an = 1
2(bn−1 − an−1) = 1

2n (b0 − a0).

(d) How many steps of the bisection method are needed to obtain an interval no
longer than L (L > 0) containing the given root.

24.[M] The equation x tan(x) = 1 occurs in the theory of vibrations.

(a) How many roots does it have in [0, π/2]?

(b) Use the bisection method to estimate each root to two decimal places.

25.[M] Use the bisection method to approximate all local extrema of g(x) =
2x − (x + 1)e−x to three decimal places. How do you know you have found all
extrema? Note: See also Example 3 in Section 10.4.

26.[M]
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(a) Show that a critical number of the function f(x) = (sinx)/x for x 6= 0 and
f(0) = 1 satisfies the equation tanx = x.

(b) Show that (sin(x))/x is an even function. Thus we will consider only positive
x.

(c) Graph the function tan(x) and x relative to the same axes. How often do they
cross for x in [π/2, 3π/2]? for x in [3π/2, 5π/2]? Base your answer on your
graphs.

(d) Show that tan(x)−x is an increasing function for x in [π/2, 3π/2]. What does
that tell us about the number of solutions of the equation tan(x) = x for x in
[π/2, 3π/2]?

(e) How many critical numbers does the function f(x) have?

(f) Use the bisection method with [a0, b0] = [π/2, 3π/2] to estimate the critical
number in [π/2, 3π/2] to at least two decimal places.

27.[M] Examine the solutions of the equation 2x+sin(x) = 2. How many are there?
Use the bisection method with appropriate initial intervals to evaluate each solution
to two decimal places. Explain the steps in your solution in complete sentences.

28.[M] How many solutions does the equation sin(x) = x have? Explain how you
could use the bisection method to estimate each solution.

29.[M] Explain how you could use the bisection method to estimate 5
√
a.

30.[M]

Sam: I have a better way than the bisection method.

Jane: What do you propose?

Sam: I trisect the interval into three equal intervals using two points.

Jane: What’s so good about that?

Sam: I cut the error by a factor of 3 each step.

Jane: But you have to compute two points and evaluate the function there. That’s
four calculations instead of two.

Sam: But my method cuts the error so fast, it’s still better, so the gain outweighs
the cost.
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Is Sam right?
Assume the initial interval is [0, 1] and estimate the “cost” to reduce the length of
the interval containing the root go the small number E.

31.[M]

Sam: I have a better way than the bisection method.

Jane: What is it?

Sam: I break the interval into four equal intervals by three points.

Jane: Then?

Sam: I find on which of the four intervals the root must lie. I do two of the bisection
steps in one step. So it must be more efficient.

Jane: That all depends. I’ll think about it.

Think about it.
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10.4 Newton’s Method for Solving f (x) = 0

This section presents another way to find a sequence of approximations to a
solution of f(x) = 0. Newton’s Method uses information about f and its
derivative to produce estimates that usually converge much faster than the
sequences obtained by the bisection method.

The Idea Behind Newton’s Method

Figure 10.4.1: ARTIST:
Please add labels for x0

and f(x0).

Figure 10.4.1 shows the graph of a function f which has a root r and
initial estimate x0. (You may make the initial estimate by looking at a graph,
or doing some calculations on your calculator.)

To get a (hopefully) better estimate of r, find where the tangent at P =
(x0, f(x0)) crosses the x-axis. Call the new estimate x1, as shown in Fig-
ure 10.4.1.

Then repeat the process using x1, instead of x0, as the estimate of the root
r. This produces an estimate x2. Repeating the process produces a sequence
x0, x1, x2, . . . , xn, . . . . However, in practice, you stop Newton’s Method when
two successive estimates are sufficiently close together.

The Key Formula
What difficulties arise if
f ′(x0) = 0?To obtain a formula for x1 in terms of x0, observe that the slope of the

tangent at P in Figure 10.4.1 is f ′(x0) and also (f(x0) − 0)/(x0 − x1). We
assume f ′(x0) is not zero, that is, the tangent at P is not parallel to the
x-axis. Thus

f ′(x0) =
f(x0)− 0

x0 − x1
or

x0 − x1 =
f(x0)

f ′(x0)
.

Consequently, we have the key formula for applying Newton’s Method:

Newton’s Recursion

x1 = x0 −
f(x0)

f ′(x0)
(10.4.1)

The same idea gives x2 = x1 − f(x1)
f ′(x1)

and so on for x3, x4, . . . . In general, we
have the recursive definition,

xn+1 = xn −
f(xn)

f ′(xn)
. (10.4.2)

Calculus December 6, 2010



900 CHAPTER 10 SEQUENCES AND THEIR APPLICATIONS

Before we examine whether the sequence converges, we illustrate the technique
with some examples.

EXAMPLE 1 In the previous section, 13 iterations of the bisection method
were needed to estimate the unique solution to f(x) = x+ sin(x)− 2 = 0 to 3
decimal places. Let’s see how Newton’s Method deals with the same problem.
SOLUTION A reasonable initial estimate is x0 = 2, because it cancels the
−2 in x+sin(x)−2. The derivative of x+sin(x)−2 is 1+cos(x). The Newton
recursion formula, (10.4.1), reads

xn+1 = xn −
xn + sin(xn)− 2

1 + cos(xn)
.

The first six iterations of Newton’s Method are shown in Table 10.4.1.

Note that f(x5) = 0. As a result, all subsequent estimates will be identical
to x5. We conclude that r ≈ x5 = 1.106060 and that this estimate is accurate
to six decimal places.

n xn f(xn) f ′(xn)
0 2.000000 0.909297 0.583853
1 0.442592 −1.129124 1.903644
2 1.035731 −0.104034 1.509898
3 1.104632 −0.002069 1.449463
4 1.106060 −0.000001 1.448188
5 1.106060 0.000000 1.448187
6 1.106060 0.000000 1.448187

Table 10.4.1:

Each iteration of the bisection method is much easier to implement than
Newton’s method. However, Newton’s Method needs only 5 steps to obtain
an approximation of the root to f accurate to (at least) six decimal places
while after 13 iterations the bisection method yields an approximation, p13 ≈
1.106201, accurate to only three decimal places. �

EXAMPLE 2 Use Newton’s method to estimate the square root of 3, that
is, the positive root of the equation x2 − 3 = 0.
SOLUTION Here f(x) = x2 − 3 and f ′(x) = 2x. According to (10.4.1), if
the initial estimate is x0, then the next estimate x1 is

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

x2
0 − 3

2x0

=
1

2

(
x0 +

3

x0

)
.
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For our initial estimate, let us use x0 = 2. Its square is 4, which isn’t far from
3. Then

x1 =
1

2

(
x0 +

3

x0

)
=

1

2

(
2 +

3

2

)
= 1.75.

Repeat, using x1 = 1.75 to obtain the next estimate:

x2 =
1

2

(
x1 +

3

x1

)
=

1

2

(
1.75 +

3

1.75

)
≈ 1.73214.

One more step of the process yields (to five decimals) x3 ≈ 1.73205, which is
close to

√
3. The decimal expansion of

√
3 begins 1.7320508. See Figure 10.4.2, In fact, x3 agrees with

√
3

to seven decimals.which shows x0, x1 and the graph of f(x) = x2 − 3, and Table 10.4.2 the
numerical values used in these computations.

Figure 10.4.2: NOTE:
Renumber indices.

n xn f(xn) f ′(xn)
0 2.000000 1.000000 4.000000
1 1.750000 0.062500 3.500000
2 1.732143 0.000319 3.464286
3 1.732051 0.000000 3.464102
4 1.732051 0.000000 3.464102

Table 10.4.2:

When the same problem was solved using the bisection method in Exam-
ple 1, after 11 iterations the best approximation to r is p11 = 1.732178. This Compare with Table 10.3.2.

approximation to
√

3 is accurate to only three decimal places. �
In practice, stop the process when either |f(xn)| or the difference between

successive estimates, |xn − xn−1|, become sufficiently small. Compare with Exercise 25.

EXAMPLE 3 Use Newton’s method to approximate the location of the
local extrema of g(x) = 2x− (x+ 1)e−x.
SOLUTION This problem, which was first solved in Exercise 25 in Sec-
tion 10.3 is equivalent to asking for all roots of f(x) = g′(x) = 2 + xe−x.

To find an initial guess to start Newton’s method, notice that f(0) = 2 and
f(x) > 0 for all positive numbers x. Looking for a negative value of x that
makes f(x) negative, we see that f(−2) = 2 + (−2)e2 = 2 − 2e2 < 0 because
e > 1.

The first few iterations of Newton’s method with x0 = −1 are shown in
Table 10.4.3. After four steps the process is stopped because f(x3) = 0. The

x
K2 K1 0 1 2 3 4 5 6

y

K20

K10

10

Figure 10.4.3: ARTIST:
Label functions in graph.

critical number of g is approximately x∗ ≈ x3 = −0.852606. This is correct to
all six decimal places shown.

Because g′(x) is negative to the immediate left of x∗ and is positive to
the immediate right of x∗ we conclude that x∗ is a local minimum of g(x) =
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n xn f(xn) f ′(xn) |xn − xn−1|
0 −1.000000 −0.718282 5.436564
1 −0.867879 −0.067163 4.449017 0.132121
2 −0.852783 −0.000773 4.346941 0.015096
3 −0.852606 0.000000 4.345751 0.000177
4 −0.852606 0.000000 4.345751 0.000000

Table 10.4.3:

2x − (x + 1)e−x. The graphs of g and g′ = f are shown in Figure 10.4.3.
Observe the only local extremum is the local minimum near x = −0.85. �

Remarks on Newton’s Method
The assumption that f ′′

exists implies f ′ (and f) are
continuous.

In an interval where f ′′(x) is positive, the graph of y = f(x) is concave up,
and lies above its tangents, as shown in Figure 10.4.4. If x1 is to the right of
r, the sequence x1, x2, x3, . . . is monotone and is bounded below by r. Thus,
the sequence converges to a limit L ≥ r. To show that L is r, take limits of
both sides of the Newton recursion formula, (10.4.2):

Figure 10.4.4:

lim
n→∞

xn+1 = lim
n→∞

(
xn −

f(xn)

f ′(xn)

)
(10.4.3)

obtaining (10.4.4)

L = L− f(L)

f ′(L)
(10.4.5)

Thus, 0 = −f(L)/f ′(L), so f(L) = 0, and L is a root of f .

The reasoning that obtained (10.4.5) from (10.4.3) shows, more generally,
if the sequence produced by Newton’s Method converges, its limit is a root.

The equation f(x) = 0 may not have a solution. In that case the sequence of
estimates produced by Newton’s method does not approach a specific number
but may wander all over the place, as in Figure 10.4.5(a).

It is also possible that there is a root r, but your initial guess x0 is so
far from r that the sequence of estimates does not approach r. See Fig-
ure 10.4.5(b).The tangent at (xn, f(xn))

is horizontal and does not
intersect the x-axis.

Of course, if xn is a number where f ′(xn) = 0, then the Newton recursion,
which has f ′(xn) in the denominator, makes no sense.
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(a) (b)

Figure 10.4.5:

How Good is Newton’s Method Newton’s method for
solving x2 − 3 = 0 revisited
from a different point of
view.

When you use Newton’s method, you produce a sequence of estimates x0, x1,
x2, . . . of a root r. How quickly does the sequence approach r? In other words,
how rapidly does the difference between the estimate xn and the root r, |xn−r|,
approach 0?
To get a feel for the rate at which |xn − r| shrinks as we keep using Newton’s
method, take the case in Example 2, where we were estimating

√
3 using the

recursion

xn+1 =
1

2

(
x1 +

3

xn

)
.

In the following table, we list, x1, x2, x3, x4 to seven decimal places and
compare to

√
3 ≈ 1.7320508:

Estimate Value Agreement with
√

3
x1 2.000000000 Initial guess
x2 1.750000000 First two digits
x3 1.732142857 First four digits
x4 1.732050810 First eight digits

At each stage the number of correct digits tends to double. This means the
error at one step is roughly the square of the error of the previous guess,

|xn − r| ≤M |xn−1 − r|2

for an appropriate constant M . This constant depends on the maximum of the
absolute values of the first and second derivatives. By contrast, the iterates
for the bisection method tend to cut the error |xn − r| in half at each step.
Because 23 < 10 < 24, it generally takes 3 or 4 steps to gain one more decimal
place accuracy.
This difference is evident in the number of iterations needed in each algorithm
to achieve the same accuracy.
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Summary

This section developed Newton’s method for estimating a root of an equation,
f(x) = 0. You start with an estimate x0 of the root, then compute

x1 = x0 −
f(x0)

f ′(x0)
.

Then repeat the process, obtaining the sequence

xn+1 = xn −
f(xn)

f ′(xn)
for all n = 1, 2, 3, . . . .

When f ′(r) 6= 0 and f ′ is continuous, the iterates in Newton’s Method
converge to r provided the initial guess is sufficiently close to r.

The Newton iterates converge quickly to the root: there is a constant M
such that

|xn − r| ≤M |xn−1 − r|2

while the iterates computed by the bisection method converge slowly:

|xn − r| ≤
1

2
|xn−1 − r| .

While, in general, Newton’s method converges faster than the bisection method
the actual performance depends on f and the initial estimates.

Iterative methods for finding a root generally stop when either |f(xn)| or
|xn+1 − xn| become small enough.
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EXERCISES for Section 10.4 Key: R–routine, M–moderate, C–challenging

In Exercises1 and 2, use Newton’s method to find x1.
1.[R] x0 = 2, f(2) = 0.3, f ′(2) = 1.5

2.[R] x0 = 3, f(3) = 0.06, f ′(3) = 0.3

3.[R] Let a be a positive number. Show that the Newton recursion formula for
estimating

√
a is given by

xi+1 =
1
2

(
xi +

a

xi

)
.

Note: The sequence defined in Exercise 3 was the Babylonian method for estimat-
ing
√
a. If the guess x0 is smaller than

√
a, then a/x0 is larger than

√
a. So x1 is

the average of two numbers between which
√
a lies.

4.[R] Use the formula of Exercise 3 to estimate
√

15. Choose x0 = 4 and compute
x1 and x2 to three decimals.

5.[R] Use the formula of Exercise 3 to estimate
√

19. Choose x0 = 4 and compute
x1 and x2 to three decimals.

6.[R] Use Newton’s Method to estimate 3
√

7. Choose x0 = 2 and compute x1 and
x2 to three decimals.

7.[R] Use Newton’s Method to estimate 3
√

25. Choose x0 = 3 and compute x1 and
x2 to three decimals.

8.[R] In this exercise the ideas in Exercise 3 are used to estimate
√

5 with Newton’s
method.

(a) Use f(x) = x2 − 5 and start with x0 = 2. Continue until the consecutive
estimates differ by at most 0.01, that is, xn+1 − xn < 0.01.

(b) How many more steps of Newton’s method are needed to reduce the interval
by another factor of 10, that is, xn+1 − xn < 0.001?

9.[R] Estimate 3
√

2 with Newton’s method.

(a) Use f(x) = x3 − 2 and start with x0 = 1. Continue until the consecutive
estimates differ by at most 0.01, that is, xn+1 − xn < 0.01.

(b) How many more steps of Newton’s method are needed to reduce the interval
by another factor of 10, that is, xn+1 − xn < 0.001?
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10.[R] Let f(x) = x5 + x− 1.

(a) Using x0 = 1
2 as a first estimate, apply Newton’s method to find a second

estimate x1.

(b) Show that there is a root of the function f(x) in the interval [0, 1].

(c) Why is the root unique?

11.[R] Let f(x) = x4 + x− 19.

(a) Apply Newton’s method, starting with x0 = 2. Compute x1 and x2.

(b) Show that f(2) < 0 < f(3). What additional property of f assures that there
is exactly one root r between 2 and 3?

(c) The second real root of f(x) is negative. Find an interval of length one on
which this root must exist.

(d) Use the left endpoint of the interval in (c) as the initial guess for Newton’s
method. Compute x1 and x2.

12.[R] In estimating
√

3 with Newton’s method, Sam imprudently chooses x0 = 10.
What does Newton’s method give for x1, x2, and x3?

13.[R] Let f(x) = 2x3 − x2 − 2.

(a) Show that there is exactly one root of the equation f(x) = 0 in the interval
[1, 2].

(b) Using x0 = 3
2 as a first estimate, apply Newton’s method to find x2 and x3.

14.[R]

(a) Graph y = x and y = cos(x) relative to the same axes.

(b) Using the graph in (a), estimate the positive solution of the equation x =
cos(x). Is there a negative solution?

(c) Using your estimate in (b) as x0, apply Newton’s method until consecutive
estimates agree to four decimal places.
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15.[R]

(a) Graph y = cos(x) and y = 2 sin(x) relative to the same axes.

(b) Using the graph in (a), estimate the solution that lies in [0, π/2].

(c) Using your estimate in (b) as x0, apply Newton’s method until consecutive
estimates agree to four decimal places.

In Exercises 16 to 18 (Figure 10.4.6) use Newton’s method to estimate θ (to two
decimal places). Angles are in radians. Also show that there is only one answer if
0 < θ < π/2.

(a) (b) (c)

Figure 10.4.6:

16.[R] Figure 10.4.6(a)

17.[R] Figure 10.4.6(b)

18.[R] Figure 10.4.6(c)

19.[R] The equation x tan(x) = 1 occurs in the theory of vibrations.

(a) How many roots does it have in [0, π/2]?

(b) Use Newton’s method to estimate each root to two decimal places.

20.[R]

(a) Show that a critical number of the function f(x) = (sinx)/x for x 6= 0 and
f(0) = 1 satisfies the equation tanx = x.

(b) Show that (sin(x))/x is an even function. Thus we will consider only positive
x.

(c) Graph the function tan(x) and x relative to the same axes. How often do they
cross for x in [π/2, 3π/2]? for x in [3π/2, 5π/2]? Base your answer on your
graphs.
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(d) Show that tan(x)−x is an increasing function for x in [π/2, 3π/2]. What does
that tell us about the number of solutions of the equation tan(x) = x for x in
[π/2, 3π/2]?

(e) How many critical numbers does the function f(x) have?

(f) Use Newton’s method to estimate the critical number in [π/2, 3π/2] to at least
two decimal places.

21.[R] Examine the solutions of the equation 2x+sin(x) = 2. How many are there?
Use Newton’s method to evaluate each solution to two decimal places. Explain the
steps in your solution in complete sentences.

22.[R] How many solutions does the equation sin(x) = x have? Explain how you
could use Newton’s method to estimate each solution.

23.[R] Explain how you could use Newton’s method to obtain a formula for esti-
mating 5

√
a.

Exercises 24 and 25 show that care should be taken in applying Newton’s method.
24.[R] Let f(x) = 2x3 − 4x+ 1.

(a) Show that there must be a root r of f(x) = 0 in [0, 1].

(b) Take x0 = 1, and apply Newton’s method to obtain x1 and x2.

(c) Graph f , and show what is happening in the sequence of estimates.

25.[R] Apply Newton’s method to the function f(x) = x3 − x, starting with x0 =
1/
√

5.

(a) Compute x1 and x2 exactly (not as decimal approximations).

(b) Graph x3 − x and explain why Newton’s method fails in this case.

26.[R] Let f(x) = x2 + 1

(a) Using Newton’s method with x0 = 2, compute x1, x2, x3, and x4 to two
decimal places.

(b) Using the graph of f , show geometrically what is happening in (a).

(c) Using Newton’s method with x1 =
√

3/3, compute x2 and x3. What happens
to xn as n→∞?

December 6, 2010 Calculus



§ 10.4 NEWTON’S METHOD FOR SOLVING f(x) = 0 909

(d) What happens when you use Newton’s method, startng with x1 = 1?

27.[R] Assume that f ′(x) > 0, f”(x) < 0 for all x, and f(r) = 0.

(a) Sketch a possible graph of y = f(x).

(b) Describe the behavior of the sequence of Newton’s estimates x0, x1,. . . , xn,
. . . when you choose x0 > r. Include a sketch.

(c) Describe the behavior of the sequence if you choose x0 < r. Include a sketch.

28.[M] Let f(x) = 1/x+ 5

(a) Graph f(x) showing its x-intercepts.

(b) For which x0 does Newton’s Method sequence converge to a solution to f(x) =
0?

(c) For which x does Newton Method sequence not converge?

29.[M] Let f(x) = 1
x2 − 5 and assume the same questions as in the preceding

exercise.

30.[M]

(a) Graph y = x sin(x) for x in [0, π].

(b) Using the first and second derivatives, show that it has a unique relative
maximum in the interval [0, π].

(c) Show that the maximum value of x sin(x) occurs when x cos(x) + sin(x) = 0.

(d) Use Newton’s method, with x0 = π/2, to find an estimate x1 for a root of
x cos(x) + sin(x) = 0.

(e) Use Newton’s method again to find x2.

31.[M]

(a) Graph y = x cosx for x in [0, π].

(b) Using the first and second derivatives, show that it has a unique relative
maximum in the interval [0, π/2].
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(c) Show that the maximum value of x cosx occurs when cosx− x sinx = 0.

(d) Use Newton’s method, with x0 = π/4, to find an estimate x1 for a root of
cosx− x sinx = 0.

(e) Use Newton’s method again to find x2.

32.[M] Use Newton’s method to estimate the maximum value of y = 2 sin(x)− x2

over the interval [0, π/2].

33.[M] Use Newton’s method to estimate the maximum value of y = x3 + cos(x)
over the interval [0, π/2].

34.[M] We can show that the error in Newton’s method diminishes rapidly (com-
pared to the bisection method). Let x0 be an estimate of the root r and let x1 be
the second estimate, obtained by Newton’s method. Assume f ′(x0) 6= 0.
Using the first-order Taylor polynomial with remainder, centered at a = x0, we may
write

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(c)

2
(x− x1)2 (10.4.6)

where c is a number between x and x1. (See Section 5.4 on page 398.)

(a) In (10.4.6), replace x by r and use the definition of x1 to show that

x1 − r =
f (2)(c)
2f ′(x0)

(r − x0)2,

where c is between x1 and r.

(b) Assume that x0 > r and that f ′(x) and f ′′(x) are positive for x in [r, x0].
Indicate on a diagram where the numbers x1, x2 . . . are situated. Then use
(a) to discuss how the error, r − xn, behaves as n increases.

35.[C] Let p be a positive number.

(a) Graph f(x) = 1/x− p.

(b) For which choices of the initial estimate of a root of f will Newton’s Method
converge to r?

36.[C] Throughout this section we have assumed we knew the derivative f ′(x).
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However, the derivative may be too complicated, or perhaps you just know the val-
ues of f(x) at certain points. When you make an initial guess of a root of f , how
would you calculate a plausible “better approximation”? Hint: What could you use
instead of the tangent line?
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10.S Chapter Summary

Infinite sequences of numbers ak, ak+1, . . . arise in many contexts. (The initial
index, k, can be any non-negative integer.) For instance, they arise when
estimating a root of an equation of the form f(x) = 0. Any equation, g(x) =
h(x) can be transformed to that form, for it is equivalent to g(x)− h(x) = 0.

One way to estimate a root of f(x) = x is to pick an estimate, a, of a root
and compute f(a), f(f(a)), f(f(f(a))), . . . . If this sequence has a limit, r,
then f(r) = r.

The bisection method provides estimates of the roots of f(x) = 0. One
looks for numbers a and b at which f(x) has opposite signs. If f is continuous,
it has a root in the interval (a, b). Let m be the midpoint of that interval.
Then either m is a root or its sign is opposite the sign of one of f(a) and
f(b). Repeat, using either (a,m) or (m, b) depending on which interval has
ends of opposite signs (when plugged into f). This process continues until the
intervals are short enough. Usually, the midpoint of the final interval is the
final approximation to the root and the error estimate is half the length of the
interval.

Newton’s method for solving f(x) = 0 depends on using a tangent to
approximate the graph of f(x). It yields the recursion x2 = x1− f(x1)/f ′(x1).
Repeat the process until one has the desired accuracy.

EXERCISES for 10.S Key: R–routine, M–moderate, C–challenging

1.[R] Let a0 = 0 and an = an−1 + 2n− 1 for n ≥ 1.

(a) Compute a few values of an (at least through a5) and conjecture an explicit
formula for an.

(b) Show that if your formula is correct for n = k, then it is correct for n = k+ 1.

2.[C]

(a) Graph f(x) = cos(π/2 x) for x in [0, 1].

(b) Let a be the unique fixed point of f on [0, 1]. Estimate a by looking at your
graph in (a).

(c) Use Newton’s Method to estimate a to 2 decimal places.

(d) Use the bisection method to estimate a to 2 decimal places.

(e) Does the sequence cos(π/2 x), cos(π/2 cos(π/2 x)), . . . converge for every x
in [0, 1].
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3.[R] Sketch the graph of a concave-down function f with the properties that
f(1/2) = 1/2, f(0) = 0, f(1) = 0, and f ′(0) > 1.

4.[R] Like Exercise 3 but with 0 < f(0) < 1.

5.[R] In Example 1 in Section 4.1 it was shown that f(t) = (t2 − 1) ln
(
t
π

)
has one

critical number on [1, π]. Use Newton’s Method to estimate this critical number to
three decimal digits.

6.[R] In Example 2 in Section 4.1 it was shown that f(x) = x3 − 6x2 + 15x + 3
has exactly one real root. Use Newton’s method to approximate this root to three
decimal places.

7.[M]

(a) Graph y = xe−x
2
.

(b) Estimate the area of the region bounded by y = xe−x
2
, the line x + y = 1,

and the x-axis.

Note: You will need Newton’s method of estimating a solution of an equation.

8.[M] The spiral r = θ meets the circle r = 2 sin(θ) at a point other than the
origin. Use Newton’s method to estimate the coordinates of that point. (Give both
the polar and rectangular coordinates of the point of intersection.)

9.[M] The equation M = E − e sin(E), known as Kepler’s equation, occurs in
the study of planetary motion. (M involves E, position, and e, the eccentricity of
the orbit, a number between 0 and 1.)

(a) Sketch what the graph of M as a function of E looks like.

(b) Show that E − sin(E) is an increasing function of E.

(c) In view of (b), E is a function of M , E = g(M). Use Newton’s method to
find g(E) if e = 0.2.

(d) Which x0 lead to convergent sequences? Hint: A graphing calculator or com-
puter can be used to simplify the calculations.

Consider the problem of finding a solution to g(x) = 0. There are usually several
ways to rewrite this equation as f(x) = x. The challenge is to choose the function
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f so that the sequence with an = f(an−1) converges. Then L = limn→∞ an is a
solution to g(x) = 0. In Exercises 10 to 13 we develop and apply a general result
known as the Fixed Point Theorem.
10.[M] In this exercise we develop a version of the Fixed Point Theorem that will
explain what is happening in Exercises 11 and 13. Basically, if r is a fixed point
of f , that is, a number such that f(r) = r, then the errors en = r − an satisfy
r − en = f(r − en−1).

(a) Fill in the details to show why r − en = f(r − en−1).

(b) Replace f(r − en−1) with the linear approximation to f at r and derive the
(approximate) result: en ≈ f ′(r)en−1 for all n ≥ 0.

(c) Show that if en ≈ f ′(r)en−1 for all n ≥ 0, then en ≈ (f ′(r))n+1e0.

(d) Explain why en → 0 if |f ′(r)| < 1 and {en} diverges if |f ′(r)| > 1. That is, an
converges to r if |f ′(r)| < 1, and {an} does not converge to r if |f ′(r)| > 1.

Consider the question of finding a solution to g(x) = x + ln(x) = 0. There are
several ways to reformulate this problem as a fixed point problem, that is to solve
an equation of the form f(x) = x. Exercises 11 and 12 show that the Fixed Point
Theorem can be used to explain why some reformulations are more useful than
others for finding a root of g(x) = 0.
11.[M]

(a) Let f1(x) = − ln(x). Verify that g(x) = 0 and f1(x) = x have the same
solution.

(b) Compute |f ′1(r)| where r is close to the solution to g(x) = 0. What does this
tell you about the sequence with an = f1(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f1(xn−1). Why can’t
you compute x5?

12.[M]

(a) Let f2(x) = e−x. Verify that g(x) = 0 and f2(x) = x have the same solution.

(b) Compute |f ′2(r)| where r is close to the solution to g(x) = 0. What does this
tell you about the sequence with an = f2(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f2(xn−1). What
happens as n→∞?
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The function g(x) = x2 − 2x− 3 has two roots: x = 3 and x = −1. In Exercises 13
to 15 we will explore three different ways to use fixed-point iterations to find these
roots.
13.[M]

(a) Show that solving g(x) = 0 is equivalent to finding a fixed point of f1(x) =√
2x+ 3.

(b) Compute |f ′1(r)|, where r is close to either root of g(x) = 0. What does this
tell you about the sequence an = f1(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f1(xn−1). What
happens limn→∞ xn?

14.[M]

(a) Show that solving g(x) = 0 is equivalent to finding a fixed point of f2(x) =
3/(x− 2).

(b) Compute |f ′2(r)|, where r is close to either root of g(x). What does this tell
you about the sequence an = f2(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f2(xn−1). What
happens limn→∞ xn?

15.[M]

(a) Show that solving g(x) = 0 is equivalent to finding a fixed point of f3(x) =
1
2(x2 − 3).

(b) Compute |f ′3(r)|, where r is close to the solutions to g(x) = 0. What does this
tell you about the sequence an = f3(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f3(xn−1). What
happens limn→∞ xn?

(d) Which of these three methods is the best way to find the solutions to g(x) = 0?

Exercises 16 and 17 will be used in Exercises 18 and 19.
16.[M] Find limx→0

tan(x)−x
2x−sin(2x) .

17.[M] Find limx→0
tan(x)−x
x−sin(x) .
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18.[M] Let Pn be the perimeter of a regular polygon with n sides that circum-
scribes a circle of radius 1. Similarly, let pn be the perimeter of an inscribed regular
polygon of n sides. When n is large, which is the better estimate of the perimeter
of the circle? To decide, examine the limit of Pn−2π

2π−pn . (Form an opinion before you
calculate.) Hint: See Exercise 16.

19.[M] Let An be the perimeter of a regular polygon with n sides that circum-
scribes a circle of radius 1. Similarly, let an be the perimeter of an inscribed regular
polygon of n sides. When n is large, which is the better estimate of the perimeter
of the circle? To decide, examine the limit of An−π

π−an . (Form an opinion before you
calculate.) Hint: See Exercise 17.

20.[M] (Contributed by Frank Saminiego.) Assume that ai and bi, 0 ≤ i ≤ n,
are positive and the ratios ai/bi increase as a function of the index i. (That is,
a0/b0 < a1/b1 < · · · < an/bn.) Then it is known that

f(x) =
∑n

i=0 aix
i∑n

i=0 bix
i

is an increasing function for x > 0. This fact is used in the statistical theory of
reliability.
Verify the assertion for (a) n = 1 and (b) n = 2. Hint: Show that f ′(x) > 0.

21.[C] Let u(n) be the number of ways of tiling a 3 by n rectangle with 1 by 3
dominoes.

(a) Find u(1), u(2), and u(3).

(b) Find a recursive definition of the function u.

(c) Use (b) to find u(10).

22.[C] In the study of the hydrogen atom, one meets the integral

∞∫
0

rne−kr dr

Here n is a non-negative integer and k a positive constant. Show that it equals
n!/kn+1. Hint: First find the value for n = 0. Then use integration by parts.
Note: n! is the factorial of n, n! = 1 · 2 · · · · · (n− 1) · n

In Exercise 23 the binomial distribution for the case when the number of successes is
small leads to the Poisson distribution in CIE 15 in Chapter 12. Exercise 24 shows

December 6, 2010 Calculus



§ 10.S CHAPTER SUMMARY 917

how the bell curve arises from the situation when the number of successes is large,
near the most likely outcome. In both cases, one determines certain limits.
23.[C] The following limit occurs in the elementary theory of probability:

lim
N→∞

N !
n!(N − n)!

(
k

N

)n(
1− k

N

)N−n
,

where n is a fixed positive integer and k is a positive constant. Show that the limit
is

kne−k

n!
.

24.[C] DOUG/SHERMAN: Need
to be sure to find (or
re-write) this exercise.25.[C] Let the mass of a bacteria culture at the end of n intervals of time be Cn.

If there is adequate nutrients, it doubles each interval, that is, Cn+1 = 2Cn. When
the population is large it does not reproduce as quickly. In that case, according to
the Verhulst model (1848) there is a constant K such that

Cn+1 =
2

1 + Cn
K

Cn.

Show that limn→∞Cn = K. Hint: Set Rn = 1/Cn.

26.[C] The recursion Pn+1 = re
−Pn
K Pn was introduced by W. E. Ricker in 1954

in the study of fish populations. Pn denotes the fish population at the nth time
interval, while r and K are constants, with r being the maximum reproduction rate.
Examine the recursion when K = 10, 000, P0 = 5, 000 and (a) r = 20 and (b0 r = 10.
As you will see, the highly unpredictable sequence {Pn} depends dramatically on r.
Such sensitivity to r is an early example of “chaos.”
References: F. C. Hoppensteadt and C. S. Peskin, Mathematics in Medicine and the
Life Sciences, Springer, NY 1991 (p. 21)
W. E. Ricker, Stock and Prerecruitment, J. Fish Res. Bd., Canada, 11 (1954), pp.
559–623.
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Calculus is Everywhere # 13

Hubbert’s Peak
SHERMAN: This CIE needs

an ending. Did you have
something in mind?

In the CIE for Chapter 6, Hubbert combined calculus concepts with count-
ing squares. Later he developed specific functions and used more techniques of
calculus in “Oil and Gas Supply Modeling”, NBS Special Publication 631, U.S.
Department of Commerce, National Bureau of Standards, May, 1982. (NOTE:
NBS is now the National Institute of Standards and Technology (NIST).)

In his approach, Q∞ denotes the total amount of oil reserves a the time oil
is first extracted and t, time. The derivative dQ/dt is the rate at which oil is
extracted. Q(t) denotes the amount extracted up to time t. Hubbert assumes
Q(0) = 0 and (dQ/dt)(0) = 0. He wants to obtain a formula for Q(t).

“The curve of dQ/dt versus Q between 0 and Q∞ can be represented by
the Maclaurin series

dQ

dt
= c0 + c1Q+ c2Q

2 + c3Q
3 + · · · .

Since, when Q = 0, dQ/dt = 0, it follows that c0 = 0.
“Since the curve must return to 0 when Q = Q∞, the minimum number

of terms that permit this, and the simplest form of the equation, becomes the
second degree equation

dQ

dt
= c1Q+ c2Q

2.

By letting a = c1 and b = −c2, this can be rewritten as

dQ

dt
= aQ− bQ2.

“Since when Q = Q∞, dQ/dt = 0,

aQ∞ − bQ2
∞ = 0

or
b =

a

Q∞

and
dQ

dt
= a

(
Q− Q2

Q∞

)
. (C.13.1)

“This is the equation of a parabola . . . . The maximum value occurs when
the slope is 0, or when

a− 2a

Q∞
Q = 0,
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or

Q =
Q∞
2
.

“It is to be emphasized that the curve of dQ/dt versus Q does not have to
be a parabola, but that a parabola is the simplest mathematical form that this
curve can assume. We may regard the parabolic form as a sort of idealization
for all such actual data curves.”

He then points out that

dQ/dt

Q
= a− a

Q∞
.

“This is the equation of a straight line. The plotting of this straight line gives
the values for its constraints Q∞ and a.”

Because the rate of production, dQ/dt, and the total amount produced up
to time t, namely, Q(t) and observable, the line can be drawn and its intercepts
read off the graph. (The two intercepts are (0, a) and (Q∞, 0).)

Hubbert then compares this with actual data, which it approximates fairly
well.

Equation (C.13.1) can be written as

dQ

dt
=

a

Q∞
Q (Q∞ −Q) ,

which says, “The rate of production is proportional both to the amount already
produced and to the reserves Q∞−Q.” This is related to the logistic equation
describing bounded growth. (See Exercises 35 to 37 in Section 5.6.)

This approach, which is more formal than the one in CIE 8 at the end of
Chapter 6, concludes that as Q approaches Q∞, the rate of production will
decline, approaching 0. This means the Age of Oil will end.
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Chapter 11

Series

Figure 11.0.1:

How is sin(θ) computed? One approach might be to draw a right triangle
with one angle θ, as in Figure 11.0.1. Then measure the lengths of the opposite
side b and the length of the hypotenuse c and calculate b/c (“opposite over
hypotenuse”). (Try it!) You are lucky if you get even two decimal places
correct. Clearly this method cannot give the many decimal places a calculator
displays for sin(θ), even if you draw a gigantic triangle.

One way to obtain this accuracy will be described in Chapter 12. The idea
is to use polynomials to evaluate important functions like sin(x), arctan(x),
ex, and ln(x) to as many decimal places as we please. For instance, when
|x| ≤ 1, the polynomial

x− x3

6
+

x5

120

approximates sin(x) with an error less than 0.0002 (provided angle x is given 1 radian = 180◦

π ≈
57.29578◦in radians). This means the estimate will be correct to at least three decimal

places for angles less than about 57◦.

Such an estimate has other uses than simply evaluating a function. Con-
sider the definite integral

1∫
0

sin(x)

x
dx.

The Fundamental Theorem of Calculus is useless here since sin(x)/x does not
have an elementary antiderivative. But, we can evaluate

1∫
0

x− x3

6
+ x5

120

x
dx =

1∫
0

(
1− x2

6
+

x4

120

)
dx.

Since the integrand is now a polynomial, the Fundamental Theorem of Calculus
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922 CHAPTER 11 SERIES

can be used to obtain the estimate(
x− x3

18
+

x5

600

)∣∣∣∣1
0

= 1− 1

18
+

1

600
≈ 0.94611

which gives
∫ 1

0
sin(x)/x dx to three decimal places.

An overview of this chapter, and Chapter 12, is given at the end of Sec-
tion 11.1.
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11.1 Informal Introduction to Series

The main goal of this chapter and the next is to show how polynomials can be
used to approximate functions that are not polynomials. Table 11.1.1 shows
some of the formulas we will obtain. The larger n is, the better

the approximation, as long
as we keep x in the
appropriate interval.

Function Approximating Polynomial Interval
1

1−x 1 + x+ x2 + x3 + · · · |xn |x| < 1∗

ex 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
all x

ln(1 + x) x− x2

2
+
x3

3
− · · ·+ (−1)n−1x

n

n
|x| ≤ 1

sin(x) x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!
all x

Table 11.1.1:

Example 1 illustrates the use of such polynomials.

EXAMPLE 1 Use the approximations in Table 11.1.1 to estimate
√
e =

e1/2.
SOLUTION By the first row of the table, for each positive integer n,

1 +
1

2
+

(
1
2

)2

2!
+

(
1
2

)3

3!
+ · · ·+

(
1
2

)n
n!

is an estimate of e1/2. Let us compare some of these estimates, keeping in
mind that as n increases we expect the estimates to improve. The sums in the

n 1 + 1
2

+
( 1

2)
2

2!
+

( 1
2)

3

3!
+ · · ·+ ( 1

2)
n

n!
Decimal Form Sum

1 1 + 1
2

1 + 0.5 1.5

1 1 + 1
2

+
( 1

2)
2

2!
1 + 0.5 + 0.125 1.625

1 1 + 1
2

+
( 1

2)
2

2!
+

( 1
2)

3

3!
1 + 0.5 + 0.125 + 0.02083 . . . 1.64583 . . .

4 1 + 1
2

+
( 1

2)
2

2!
+

( 1
2)

3

3!
+

( 1
2)

4

4!
1 + 0.5 + 0.125 + 0.02083 + 0.00260 . . . 1.6484375 . . .

Table 11.1.2:

rightmost column form a sequence that converges to e1/2 ≈ 1.64872, to five
decimal places. The estimate with n = 4 is correct to three decimal places. �
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There is little point in making an estimate if we have no idea about the
size of its “error” — the difference between an estimate and the number we
are estimating. We will focus on two closely related questions.

1. How can we estimate the “error”?

2. How can we choose n to achieve a prescribed accuracy, say, to 10 decimal
places?

Calculus delights in
resolving such battles. Example 1 depicts a battle between two forces. On the one hand, the

individual summands are getting very small — shrinking toward 0; so their
sums may not get very large. On the other hand, there are more and more of
summands in each estimate; so their sums might become arbitrarily large.

In Example 1 the first force is stronger, and the sums — no matter how
many summands we take — stay less than

√
e ≈ 1.64872. But, in Example 2

the sums behave quite differently.

EXAMPLE 2 What happens to sums of the form

1√
1

+
1√
2

+ · · ·+ 1√
n

(11.1.1)

as the integer n gets larger and larger? Will they stay less than some fixed
number or will they get arbitrarily large, eventually passing 100, then 1,000,
and so on?
SOLUTION Table 11.1.3 lists values of (11.1.1) for n up through 5.

n 1√
1

+ 1√
2

+ · · ·+ 1√
n

Decimal Form (7 places)

1 1√
1

1.0000000

2 1√
1

+ 1√
2

1.7071068

3 1√
1

+ 1√
2

+ 1√
3

2.2844571

4 1√
1

+ 1√
2

+ 1√
3

+ 1√
4

2.7844571

5 1√
1

+ 1√
2

+ 1√
3

+ 1√
4

+ 1√
5

3.2316706

Table 11.1.3:

These computations do not answer the question: What will happen to the
sums as n becomes arbitrarily large? In fact, even if we calculated the valuesAs of November 2010, the

fastest computer could
perform 2.57× 1015

floating-point computations
per second. Source:

http://Top500.org/.

of 1/
√

1 + 1/
√

2 + · · ·+ 1/
√
n all the way to n = 1, 000, 000, we still would not

know the answer. Why? Because we can’t be sure what happens to the sums
when n is a billion or a quadrillion or larger. Do the sums get arbitrarily large
or do they stay below some fixed number? No computer, even the world’s
fastest supercomputer, can answer that question.
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However, an algebraic insight helps us answer the question. Observe that

1√
1

+
1√
2

+ · · ·+ 1√
n

has n summands and that the smallest of them is 1/
√
n. Therefore (11.1.1) is

at least as large as

1√
n

+
1√
n

+ · · ·+ 1√
n︸ ︷︷ ︸

n summands

= n

(
1√
n

)
=
√
n.

Thus 1/
√

1 + 1/
√

2 + · · · + 1/
√
n is at least as large as

√
n. (In fact, when

n ≥ 2, the sum is larger than
√
n.)

As n gets larger and larger,
√
n grows arbitrarily large. For n = 1, 000, 000,

for instance, we have

1√
1

+
1√
2

+ · · ·+ 1√
1, 000, 000

≥
√

1, 000, 000 = 1, 000.

So the sums of the form 1√
1

+ 1√
2

+ · · ·+ 1√
n

also become arbitrarily large. They
do not stay less than some fixed number. �

WARNING (Traveler’s Advisory) In both Examples 1 and 2, the
individual summands form sequences that converge to 0:

lim
n→∞

(
1
2

)n
n!

= 0 and lim
n→∞

1√
n

= 0.

Yet in the first case, the sums stay less than
√
e, while in the second

the sums grow arbitrarily large. This contrast shows that we must
be careful when dealing with such sums, especially since they may
play a role in approximating important functions.
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Summary

THINGS TO COME
In most of this chapter the summands are constants. In Chapter 12 the sum-
mands involve a variable.

§11.2 introduces the notion of a “series” as a sequence formed by adding up
more and more terms from a sequence of numbers.

§§11.3–11.6 develop methods for determining when these sums converge to
a number and, if they do, how big the error is when you use a particular
finite sum to estimate that number.

§§12.1 and 12.2 build on Section 5.4 and apply series in various ways. Re-
view Taylor polynomials (5.4) before reading this section.

§§12.3–12.4 shows how a series approximating one function can be used to
find a series approximating a related function

§§12.5-12.6 develops complex numbers and uses thems to show that the func-
tions sin(x) and cos(x) are intimately related to the exponential function
ex. This relation is used in physics, engineering, and mathematics.

§12.7 introduces series that are the sum of terms of the form an sin(nx) and
bn cos(nx) for n = 1, 2, 3, . . . .

As you work through Chapters 11 and 12, check back to this outline from
time to time. It will help you keep track of what you are doing, and why.
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EXERCISES for Section 11.1 Key: R–routine, M–moderate, C–challenging

1.[R] Estimate 3
√
e = e1/3 by using the following approximations with x = 1

3 .

(a) 1 + x+
x2

2!
+
x3

3!

(b) 1 + x+
x2

2!
+
x3

3!
+
x4

4!

2.[R] Estimate 1/e = e−1 using the following approximations with x = −1.

(a) 1 + x+
x2

2!
+
x3

3!
+
x4

4!

(b) 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!

3.[R] As shown in Section 5.4 the polynomial x−x3/6 is an excellent approximation
to sin(x) (angle measured in radians) for |x| ≤ 1

2 . Using a calculator or computer,
fill in Table 11.1.4 to seven decimal places.

x sin(x) x− x3

6 sin(x)−
(
x− x3

6

)
0.1
0.2
0.3
0.4
0.5

Table 11.1.4:
Note: The results should illustrate that this estimate is accurate to at least three
decimal places, for these values of x.

4.[R] The polynomial x−x3/3!+x5/5! is an excellent approximation to sin(x) (angle
in radians) for |x| ≤ 1. Using a calculator or computer, compute the approximation
to at least seven decimal places:

(a) sin(1),

(b) x− x3/3! + x5/5! when x = 1.

(c) To how many decimal places do these results agree?
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5.[R] Estimate
∫ 1

1/2(ex − 1)/x dx by approximating ex by the polynomial

(a) 1 + x+ x2

2! ,

(b) 1 + x+ x2

2! + x3

3! .

(c) The exact value of this definite integral, to seven decimal places, is 0.7477507.
To how many decimal places do each of these results agree with the exact
value?

6.[R] Estimate
∫ 1/2

1/4 sin(x)/x dx by approximating sin(x) by the polynomial

(a) x.

(b) x− x3

3! .

(c) x− x3

3! + x5

5! .

(d) The exact value of this definite integral, to seven decimal places, is 0.2439738.
To how many decimal places do each of these results agree with the exact
value?

7.[R]

(a) The polynomial x−x2/2+x3/3−· · ·+(−1)n−1xn/n, |x| ≤ 1, is a good estimate
of ln(1 + x) when n is large. So, to estimate ln(1.5), which is ln(1 + 0.5), we
use the polynomial with x replaced by 1

2 . Use a calculator or computer to fill
in Table 11.1.5.

n 1
2 −

(
1
2

)2
/2 +

(
1
2

)3
/3− · · ·+ (−1)n−1

(
1
2

)n
/n Decimal Form

1
2
3
4
5

Table 11.1.5:

(b) Use your calculator or a computer to compute ln(1.5).

(c) What is the error between this approximation and the result for n = 5 in
Table 11.1.5?
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8.[R] (See Exercise 7.)

(a) To estimate ln(0.5), write it as ln(1 + (−1
2 )). Fill in Table 11.1.6.

n −
(−1

2

)
−
(−1

2

)2
/2−

(−1
2

)3
/3− · · · −

(−1
2

)n
/n Decimal Form

1
2
3
4
5

Table 11.1.6:

(b) Use your calculator or a computer to compute ln(1.5).

(c) What is the error between this approximation and the result for n = 5 in
Table 11.1.5?

9.[M] One way to approximate ln(2) is to write it as ln(1+1) and use a polynomial
in Exercise 7 that approximates ln(1 + x) with x = 1. Another way is to note that
ln(2) = − ln(0.5) and use the approach of Exercise 8. Using the polynomial approx-
imation of degree 5 (n = 5) in both cases, decide which gives the better estimate.

10.[C] What happens to sums of the form

1
3
√

1
+

1
3
√

2
+

1
3
√

3
+ · · ·+ 1

3
√
n

as n gets larger? Explore and explain.

11.[M]

(a) Using results from Section 1.4, show that, for x 6= 1,

1 + x+ x2 + · · ·+ xn−1 =
1

1− x
− xn

1− x
. (11.1.2)

(b) Now assume that |x| < 1. Then xn approaches 0 as n increases (as was shown
in Section 10.1). Thus, for |x| < 1 and large n, 1 + x + x2 + · · · + xn−1 is a
polynomial approximation for the function 1/(1− x).

(c) Compute 1 + x+ x2 + · · ·+ xn−1 for n = 6 and x = 0.3. How much does this
differ from 1/(1− x) for x = 0.3?
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(d) The same as (c), with x = −0.9.

Exercises 12 and 13 use (11.1.2) to derive polynomial approximations to ln(1 + x)
and arctan(x). These two problems both start from the same idea. We begin by
expressing (11.1.2) in the form

1
1− t

= 1 + t+ t2 + t3 + · · ·+ tn−1 +
tn

1− t
(t 6= 1).

Replace t with −t, getting

1
1 + t

= 1− t+ t2 − t3 + · · ·+ (−1)n−1tn−1 +
(−1)ntn

1 + t
(t 6= −1). (11.1.3)

12.[C] This exercise derives the sequence of polynomial approximations to ln(1+x)
listed in Table 11.1.1 on page 923.

(a) Integrate both sides of (11.1.3) over the interval from 0 to x, x > 0, to show
that

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · ·+ (−1)n−1xn

n
+ (−1)n

x∫
0

tn

1 + t
dt.

(b) Show that for 0 ≤ x ≤ 1,
∫ x

0 (tn/(1 + t)) dt approaches 0 as n increases.
Hint: 1/(1 + t) ≤ 1 for t ≥ 0.

13.[C] This exercise obtains a sequence of polynomials that approximate arctan(x)
for |x| ≤ 1 and shows one way of computing π. The key is that d

dx arctan(x) = 1
1+x2 .

To begin, replace t by −t2 in (11.1.2) to obtain

1
1 + t2

= 1− t2 + t4 − t6 + · · ·+ (−1)n−1t2n−2 +
(−1)nt2n

1 + t2
(for all t). (11.1.4)

(a) Consider only 0 ≤ x ≤ 1. Integrate both sides of (11.1.4) over [0, x] to show
that

arctan(x) = x− x3

3
+
x5

5
− x7

7
+ · · ·+ (−1)n−1 x

2n−1

2n− 1
+ (−1)n

x∫
0

t2n

1 + t2
dt.

(11.1.5)

(b) Show that for fixed x, 0 < x < 1, the integral in (11.1.3) approaches 0 as
n→∞.
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(c) Use the polynomial in (a), with n = 5 (so its degree is 9) to estimate arctan(1).

(d) Use the result in (c) to estimate π. Hint: arctan(1) = π
4

14.[C] In this exercise we will see what happens to sums of the form

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+ · · ·+ 1
n(n+ 1)

as n increases. Do these sums get arbitrarily large or do they approach some number?

n 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

n(n+1) Sum, as
fraction

Sum, as
decimal

1
2
3
4
5

Table 11.1.7:

(a) Fill in at least 5 rows of Table 11.1.7. Add more rows if you wish.

(b) On the basis of your computations, what do you think happens to the sums
as n increases. Hint: If you don’t see a pattern, go up to n = 10.

(c) Justify your opinion in (b).

15.[C]

(a) Use the polynomial in (11.1.5), with n = 5, to estimate arctan
(

1
2

)
in radians.

Then, translate the answer into degrees.

(b) Use the result in (a) to estimate arctan(2) in radians. Hint: For positive x,
what is the relation between arctan(1/x) and arctan(x)?

(c) Draw a right triangle with one leg 20 cm long and the other 10 cm; use it and
a protractor to estimate arctan(2).

(d) What does your calculator or computer give as an estimate of arctan(2)?

(e) To how many decimal places does the estimate in (b) agree with the value
found in (d)? To how many decimal places does the measurement in (c) agree
with the value found in (d)?
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11.2 Series

The goal of this section is to introduce sequences formed by adding up more
and more terms of a given sequence.

Series

Figure 11.2.1:

Consider a tennis ball that is dropped from a height of 1 meter. It rebounds
0.6 meter. It continues to bounce, and each fall is 60% as high as the previous
fall. (See Figure 11.2.1.) What is the total distance the ball falls?

The third fall is (0.6)2 meter, the next is (0.6)3 meter, and so on. In
general, the nth time the ball falls, it falls a distance (0.6)n−1 meter. While it
is clear this geometric sequence converges to zero, we are more interested in
the question:

“What happens to the sum 1+0.6+(0.6)2 + · · ·+(0.6)n as n→∞?”

Example 1 explores this question.Similar sums arise in many
applications. Exercise 30 is
an application to medicine

and Exercise 31 presents an
example from economics.

EXAMPLE 1 Given the geometric progression 1, 0.6, (0.6)2, (0.6)3, . . . ,
form a new sequence {Sn} as follows:

S1 = 1,

S2 = 1 + 0.6,

S3 = 1 + 0.6 + (0.6)2,

and, in general,

Sn = 1 + 0.6 + (0.6)2 + · · ·+ (0.6)n−1.

Each Sn is the sum of n terms of the sequence {an} with an = 0.6n for n = 0,
1, 2, . . . . Does the sequence {Sn} converge or diverge? If it converges, what
is the limit?
SOLUTION To examine the behavior of Sn as n→∞, note that each Sn is
the sum of the first n terms in a geometric sequence. So

Sn =
1− (0.6)n

1− 0.6

and so

lim
n→∞

Sn = lim
n→∞

1− (0.6)n

1− 0.6
=

1

1− 0.6
= 2.5.

�

The rest of this section expands upon the ideas introduced in Example 1.
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Let a1, a2, a3, . . . , an, . . . be a sequence. From this sequence a new sequence
S1, S2, S3, . . . , Sn, . . . can be formed:

S1 = a1 =
1∑

k=1

ak,

S2 = a1 + a2 =
2∑

k=1

ak,

S3 = a1 + a2 + a3 =
3∑

k=1

ak,

...

Sn = a1 + a2 + a3 + · · ·+ an =
∞∑
k=1

ak.

The sequence of sums, S1, S2, S3, . . . , Sn, . . . , is called the series obtained
from the sequence a1, a2, a3, . . . , an, . . . . It can also be defined by the
recursion, Sn+1 = Sn + an+1.

Traditionally, {Sn} is referred to as “the series whose nth term is an.”
Common notations for the sequence {Sn} are

∑∞
k=1 ak and a1 +a2 +a3 + · · ·+

ak · · · . The sum

Sn = a1 + a2 + a3 + · · ·+ an =
n∑
k=1

ak

is called a partial sum or the nth partial sum. If the sequence of partial
sums of a series converges to L, then L is called the sum of the series and the
series is said to be convergent. We write

lim
n→∞

Sn = L.

Frequently one writes L = a1 + a2 + · · ·+ an + · · · . Remember, however, that Only finitely many
summands are ever added
up.

we do not add an infinite number of terms; we take the limit of finite sums. A
series that is not convergent is called divergent.

A Note on Notation Starting with the sequence a1, a2, . . . , an, . . . , we
form a new sequence, S1, S2, . . . , Sn, . . . , whose terms are the partial sums
S1 = a1, S2 = a1 + a2, . . . , Sn = a1 + a2 + · · ·+ an. The symbol

∞∑
k=1

ak

is short for this sequence S1, S2, . . . , Sn, . . . . If the sequence of partial sums
converges to a number L, we also write

∞∑
k=1

ak = L.
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So the symbol
∑∞

k=1 ak stands for two different concepts: a sequence of partialThe symbol
∑∞

k=1 ak has
two meanings. sums and also, if that sequence converges, for its limit. This limit is called the

“sum” of the series.
So, in Example 1, we investigated the series

∞∑
k=1

0.6k−1,

namely, the sequence of partial sums 1, 1 + 0.6, 1 + 0.6 + 0.62, . . . , 1 + 0.6 +
0.62 + · · ·+(0.6)n−1. This sequences converges to 2.5. That permits us to write

∞∑
k=1

(0.6)k−1 = 2.5,

which says, “The series
∑∞

k=1(0.6)k−1 = 2.5 converges to the number 2.5.” We
also say, for the sake of brevity, “Its sum is 2.5.”

Just as a sequence need not start with a1, a series can start with any term,
such as a0 or ak, and we would write

∑∞
k=0 ak or

∑∞
i=1 ai or

∑∞
j=k aj. Notice

that there is nothing special about the index for a series. The most common
indices are n, k, j, and i.

Geometric Series

Example 1 concerns the series whose nth term is (0.6)n−1:

Sn = 1 + 0.6 + 0.62 + · · ·+ 0.6n−1.

It is a special case of a geometric series, which will now be defined.Geometric sums with a
finite number of terms are

discussed in Section 5.4. DEFINITION (Geometric Series) Let a and r be real numbers.
The series

a+ ar + ar2 + · · ·+ arn−1 + · · ·

is called the ‘geometric series with initial term a and ratio r.

The series in Example 1 is a geometric series with initial term 1 and ratio 0.6.

Theorem 11.2.1. If −1 < r < 1, the geometric series

a+ ar + ar2 + · · ·+ arn−1 + · · · converges to
a

(1− r
.

Proof

Let Sn be the sum of the first n terms: Sn = a+ar+ · · ·+arn−1. The formulaSee Exercise 11 in
Section 11.1.
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for the finite geometric sum is Sn = a(1−rn)
1−r . Since −1 < r < 1, the individual See also Exercise 28.

terms converge to zero: limn→∞ ar
n = 0. Thus

lim
n→∞

Sn =
a

1− r
,

proving the theorem. •

The series in Example 1 is a geometric series with first term a and ratio
r = 0.6. It converges and has the sum

1

1− 0.6
=

1

0.4
= 2.5.

The nth Term Test for Divergence

Theorem 11.2.1 says nothing about geometric series in which r ≥ 1 or r ≤ −1.
The next theorem, which concerns series in general, not just geometric series,
will be useful in settling this case.

Theorem (nth-Term Test for Divergence.). If limn→∞ an 6= 0, then the series
a1 + a2 + · · · + an + · · · diverges. (The same conclusion holds if {an} has no
limit.)

We take an indirect
approach.

Proof

Assume that the series a1 + a2 + · · ·+ an + · · · converges. Since Sn is the sum
of a1 + a2 + · · ·+ an, while Sn−1 is the sum of the first n− 1 terms, it follows
that Sn = Sn−1 + an, or

an = Sn − Sn−1.

Because we have assumed the series converges, let S = limn→∞ Sn. Then we
also have S = limn→∞ Sn−1, since Sn−1 runs through the same numbers as Sn.
Thus

lim
n→∞

an = lim
n→∞

(Sn − Sn−1)

= lim
n→∞

Sn − lim
n→∞

Sn−1

= S − S
= 0.

This proves the theorem. • If a series converges, its

nth-term must approach 0.
The nth-Term Test for Divergence implies that if a 6= 0 and r ≥ 1, the

geometric series
a+ ar + · · ·+ arn−1 + · · ·
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diverges. For instance, if r = 1,

lim
n→∞

arn = lim
n→∞

a1n = a,

which is not 0. If r > 1, then rn gets arbitrarily large as n increases; hence
limn→∞ ar

n does not exist. Similarly, if r ≤ −1, limn→∞ ar
n does not exist.

The above results and Theorem 11.2.1 can be summarized by this statement:
The geometric series

∞∑
i=1

ari−1 = a+ ar + ar2 + · · ·+ arn−1 + · · · .

for a 6= 0, converges if and only if |r| < 1.Warning: Even if the nth

term approaches 0, the
series still can diverge.

The nth-Term Test for Divergence tells us that if the series a1+a2+a3+· · ·
converges, then an approaches 0 as n → ∞. The converse of this statement
is not true. If an approaches 0 as n → ∞, it does not follow that the series
a1 + a2 + a3 + · · · converges. Be careful to make this distinction.

Recall the series
1√
1

+
1√
1

+ · · ·+ 1√
n

+ · · ·

discussed in Example 2 in Section 11.1. Even though its nth term approaches
0 as n → ∞, the sums get arbitrarily large. The nth term approaches 0 so
“slowly” that the sums Sn get arbitrarily large.The harmonic series was so

named by the Greeks
because of the role of 1/n

in musical harmony.

In the next example, the nth term approaches 0 much faster than 1/
√
n

does. Still, the series diverges. The series in this example is called the har-
monic series. The argument that it diverges is due to the French mathemati-
cian Nicolas of Oresme, who presented it about the year 1360.Nicole Oresme, 1323–1382,

one of the most influential
philosophers of the Middle

Ages,
http://en.wikipedia.

org/wiki/Nicole_Oresme

EXAMPLE 2 Show that the harmonic series 1/1 + 1/2 + · · · + 1/n + · · ·
diverges.
SOLUTION Collect the summands in longer and longer groups. Except for
the first two terms, each group contains twice the number of summands as it
predecessor:

1 +
1

2︸︷︷︸
1 term

+
1

3
+

1

4︸ ︷︷ ︸
2 terms

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
4 terms

+
1

9
+

1

10
+ · · ·+ 1

16︸ ︷︷ ︸
8 terms

+ · · · .

The sum of the terms in each group is at least 1
2
. For instance,

1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

4

8
=

1

2

and
1

9
+

1

10
+ · · ·+ 1

16
>

1

16
+

1

16
+ · · ·+ 1

16
=

8

16
=

1

2

December 6, 2010 Calculus

http://en.wikipedia.org/wiki/Nicole_Oresme
http://en.wikipedia.org/wiki/Nicole_Oresme


§ 11.2 SERIES 937

Since the repeated addition of 1
2
’s produces sums as large as we please, the

series diverges. �
An important moral: The

nth-term test is only a test
for divergence.

If the series a1 + a2 + · · · + an + · · · converges, it follows that an →
0. However, if an → 0, it does not follow that a1 + a2 + · · · + an + · · ·
converges. Indeed, there is no general, practical rule for determining whether
a series converges or diverges. Fortunately, a few rules suffice to decide on the
convergence or divergence of the most common series. They will be presented
in this chapter.

Because convergence or divergence of a series is decided by looking at the
convergence or divergence of the sequence of partial sums, the basic properties
for sequences are also true for series. Exercise 36 asks for the

proof.

Theorem 11.2.2. A. If
∑∞

i=1 ai is a convergent series with sum L and if c
is a number, then

∑∞
i=1 cai is convergent and has the sum cL.

B. If
∑∞

k=1 bi is a convergent series with sum M , then
∑∞

k=1(an + bn) is a
convergent series with sum L+M .

Front ends do not affect
convergence.Keep in mind that you can disregard any finite number of terms when

deciding whether a series is convergent or divergent. If you delete a finite
number of terms from a series and what is left converges, then the series you
started with converges. Another way to look at this is to note that a “front
end,” a1 + a2 + · · · + an. does not influence convergence or divergence. It is
rather a “tail end,” an+1 + an+2 + · · · that matters. The sum of the series is
the sum of any tail end plus the sum of the corresponding front end; that is,
for any positive integer m,

∞∑
k=1

ak =
m∑
k=1

ak︸ ︷︷ ︸
front end

+
∞∑

k=m+1

ak︸ ︷︷ ︸
tail end

.

Figure 11.2.2:

Suppose that
∑∞

i=1 pi is a series with positive terms and you can show
that there is a number B such that every partial sum S1 = p1, S2 = p1 + p2,
. . . , Sn = p1 + p2 + · · · + pn, is less than or equal to B. By Theorem 10.1.1
of Section 10.1, they have a limit L, which is less than or equal to B. (See
Figure 11.2.2.) This means that

∑∞
k=1 pi is convergent (and its sum is less than

or equal to B). This observation will be useful in establishing the convergence
of a series of non-negative terms, even though it does not tell us the exact sum
of the series.

A similar statement holds for the series
∑∞

k=1 ai in which ai ≤ 0 for all n.
If there is a number A such that each partial sum is greater than or equal to
A, then the series converges and its sum is greater than or equal to A.
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Example 3 introduces a series that is representative of many series that
arise in the study of sin(x), cos(x), and ex.

EXAMPLE 3 Does the series defined by
∑∞

k=0
2k

k!
converge or diverge?

SOLUTION First, note that the first index is k = 0, not k = 1. This has no
bearing on the convergence or divergence of this series (it’s part of the front
end), but it does affect the value of the series (assuming it converges).

Define ak = 2k/k! for k = 0, 1, 2, . . . . The partial sums of the series are
Sn =

∑n
k=0 ak for n = 0, 1, 2, . . . . From the relation Sn+1 = Sn + an+1 and

the fact that an+1 is positive, we see that Sn+1 − Sn = an+1 > 0 and so {Sn}
is an increasing sequence.

By the same reasoning used in Section 5.4, we can conclude that for k > 3,

ak =
2

1

2

2

(
2

3

)k−2

This observation that the terms of the series are bounded by the terms of
a convergent geometric series is the key to concluding that the partial sums of
this series are bounded. For n ≥ 2:

Sn =
n∑
k=0

ak = a0 + a1 +
n∑
k=2

ak < 1 + 2 +
n∑
k=2

2

(
2

3

)k−2

.

Add the rest of the terms of the geometric series with first term 2 and ratio
2/3 are added into the above bound, we conclude that

Sn < 1 + 2 +
∞∑
k=2

2

(
2

3

)k−2

= 1 + 2 +
2

1− 2
3

= 1 + 2 + 6 = 9.

Thus, the series
∑
k = 0∞ 2k

k!
converges because the sequence of partial sums

for the series is monotone and bounded above (by 9). The actual value of this
limit will be found later. �

The same ideas can be used to prove that
∑∞

K+!
kn

k!
, for any positive number

k, converges.

Summary

Given any sequence {ak} we can form a new sequence {Sn},where Sn is the sum
of the first n terms of {ak}, Sn = a1 +a2 + · · ·+an. The new sequence is called
the “series” derived from the original sequence {ak}. If the series converges,
then ak must approach 0 as k →∞. (The converse is not true.) It follows that
if ak does not approach 0 as k → ∞, then the series a1 + a2 + · · · + an + · · ·
diverges.
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If ak = ark−1, where |r| < 1, we obtain the geometric series or simply as∑∞
k=0 ar

k, which converges to a/(1− r).
If, for each index, ak is non-negative and a1 + a2 + · · · + ak ≤ B for some

fixed number B for all k, then
∑∞

k=1 ak is convergent and approaches a number

no larger than B. This principle was used in this section to show that
∑∞

k=0
2k

k!

converges.
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EXERCISES for Section 11.2 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 4 each concern a series
∞∑
k=1

ak and the sequence of its partial sums

{Sn}. (Based on suggestions by James T. Vance Jr.)
1.[R] Suppose you know that an → 0 as n→∞. Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The series definitely diverges.

(c) There is not enough information to decide whether the series diverges or con-
verges.

(d) More information is needed to determine the sum of the series.

(e) Sn → 0 as n→∞.

(f)
∑∞

k=1 ak = 0.

2.[R] Suppose you know that an → 6 as n→∞. Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The series definitely diverges.

(c) There is not enough information to decide whether the series diverges or con-
verges.

(d) More information is needed to determine the sum of the series.

(e) Sn → 0 as n→∞.

(f)
∞∑
k=1

ak = 6.

3.[R] Suppose you know that Sn → 3 as n→∞. Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The series definitely diverges.

(c) There is not enough information to decide whether the series diverges or con-
verges.

(d) More information is needed to determine the sum of the series.
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(e) The sum of the series is 3.

(f)
∞∑
k=1

ak = 3.

4.[R] Suppose you know that Sn = n/(n + 1). Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The kth term of the series diverges.

(c) The kth term of the series converges.

(d) The kth term of the series is 1/(k(k + 1)).

(e) The series is a geometric series.

5.[R] This exercise concerns the series
∞∑
k=1

5(−1/2)k.

(a) Express the fourth term of this series as a decimal.

(b) Express the fourth partial sum of this series as a decimal.

(c) Find the limit as k →∞ of the kth term of the series.

(d) Find the limit as n→∞ of the nth partial sum of the series.

(e) Does the series converge? If so, what is its sum?

6.[R] This exercise concerns the series
∞∑
k=1

3(1/10)k.

(a) Express the third term of this series as a decimal.

(b) Express the third partial sum of this series as a decimal.

(c) Find the limit as k →∞ of the kth term of the series.

(d) Find the limit as n→∞ of the nth partial sum of the series.

(e) Does the series converge? If so, what is its sum?
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In Exercises 7 to 14 determine whether the given geometric series converges. If it
does, find its sum.
7.[R] 1 + 1

2 + 1
4 + 1

8 + · · ·+
(

1
2

)k−1 + · · ·

8.[R] 1− 1
3 + 1

9 −
1
27 + · · ·+

(−1
3

)k−1 + · · ·

9.[R]
∞∑
k=1

10−k

10.[R]
∞∑
k=1

10k

11.[R]
∞∑
k=1

5(0.99)k

12.[R]
∞∑
k=1

7(−1.01)k

13.[R]
∞∑
k=1

4
(

2
3

)k
14.[R] −3

2 + 3
4 −

3
8 + · · ·+ 3

(−2)k
+ · · ·

In Exercises 15 to 22 determine whether the given series converge or diverge. Find
the sums of the convergent series.
15.[R] −5 + 5− 5 + 5− · · ·+ (−1)k5 + · · ·
16.[R]

∑∞
k=1

1
(1+(1/k))k

17.[R]
∞∑
k=1

2
k

18.[R]
∞∑
k=1

k

2k + 1

19.[R]
∞∑
k=1

6
(

4
5

)k
20.[R]

∞∑
k=1

100
(
−8
9

)

21.[R]
∞∑
k=1

(
2−k + 3−k

)
22.[R]

∞∑
k=1

(
4−k + k−1

)
23.[R] What is the total distance traveled — both up and down — by the ball
described in the opening paragraph of this section?
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24.[R] A rubber ball, when dropped on concrete, rebounds 90 percent of the dis-
tance it falls. If it is dropped from a height of 6 feet, how far does it travel — both
up and down — before coming to rest?

25.[M] The repeating decimal

3.171717 . . . ,

where the 17’s continue forever, can be viewed as 3 plus a geometric series:

3 +
17
100

+
17

1002
+

17
1003

+ · · · .

Using the formula for the sum of a geometric series, write the decimal as a fraction.

26.[M] (See Exercise 25.) Evaluate the repeating decimal 0.3333 · · · .

27.[M] (See Exercise 25.) Evaluate the repeating decimal 4.1256256256 . . . (with
256 repeating).

28.[M] Show that if |r| < 1, the sum of the geometric series a + ar + ar2 + · · ·
differs from Sn by arn/(1− r).

29.[M] This is a quote from an economics text: “The present value of the land, if
a new crop is planted at time t, 2t, 3t, etc., is

P = g(t)e−rt + g(t)e−2rt + g(t)e−3rt + · · · .

By the formula for the sum of a geometric series,

P =
g(t)e−rt

1− e−rt
.′′

Check that the missing step, which simplified the formula for P , was correct.

30.[M] A patient takes A grams of a certain medicine every 6 hours. The amount
of each dose active in the body t hours later is Ae−kt grams, where k is a positive
constant and time is measured in hours.

(a) Show how immediately after taking the medicine for the nth time, the amount
active in the body is

Sn = A+Ae−6k +Ae−12k + · · ·+Ae−6(n−1)k.

(b) If, as n → ∞, Sn → ∞, the patient would be in danger. Does Sn → ∞? If
not, what is limn→∞ Sn?
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(See also Exercise 115 in the Chapter 5 Summary.)

31.[M] Deficit spending by the federal government inflates the nation’s money
supply. However, much of the money paid out by the government is spent in turn
by those who receive it, thereby producing additional spending. This produces a
chain reaction, called by economists the multiplier effect. It results in much greater
total spending than the government’s original expenditure. To be specific, suppose
the government spends 1 billion dollars and that the recipients of that expenditure
in turn spend 80 percent while retaining 20 percent. Let Sn be the total spending
generated after n transactions in the chain, 80 percent of receipts being expended
at each step.

(a) Show that Sn = 1 + 0.8 + 0.82 + · · ·+ 0.8n−1 billion dollars.

(b) Show that as n increases, the total spending approaches 5 billion dollars. (In
this case the multiplier is 5.)

(c) What would the total spending be if 90 percent of receipts is spent at each
step instead of 80 percent?

Note: The subprime mortgage foreclosures in 2008 caused a similar ripple effect,
threatening a recession.

32.[M] Assume a man falls 16t2 feet in t seconds and twice as long to bounce as it
took to fall a given distance. How long does the ball in Exercise 24 bounce?

Exercises 33 to 35 are related to the following question: A gambler tosses a coin
until a head appears. On the average, how many times does she toss it to get a
head?
33.[M]

(a) Repeat this experiment 10 times. Each run consists of tossing a coin until a
head appears. Average the lengths of the 10 trials.

(b) The probability of a run of length one is 1
2 , since a head must appear on the

first toss. The probability of a run of length two is
(

1
2

)2. The probability

of having a head appear for the first time on toss k is
(

1
2

)k. It is shown in

probability theory that the average number of tosses to get a head is
∞∑
k=1

k

2k
.

Note: This is a theoretical average approached as the experiment is repeated

many times. Compute
8∑

k=1

k

2k
.

34.[C] Oresme, around the year 1360, summed the series
∑∞

k=1
k
2k

by drawing the
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endless staircase shown in Figure 11.2.3, in which each stair after the first has width
1 and is half as high as the stair immediately to its left.

(a) By looking at the staircase in two ways, show that

1 +
1
2

+
1
4

+
1
8

+ · · · = 1
2

+
2
4

+
3
8

+ · · · .

(b) Use (a) to sum
∞∑
k=1

k

2k
.

(c) Use the same idea to find
∞∑
k=1

kpk, when 0 < p < 1.

Figure 11.2.3:
35.[C]

(a) Using your calculator compute enough partial sums of the series
∞∑
k=1

k3−k to

offer an opinion as to whether it converges or diverges.

(b) Show that it converges. Hint: The coefficient k is less than 2k.

(c) On the basis of (a), what do you think its sum is?

36.[C] Use the precise definition of convergence from Section 10.2 to prove each of
the following statements:

(a) If c is a number and
∑∞

k=1 ak is a convergent series with sum L, then
∑∞

k=1 cak
is a convergent series with sum cL.

(b) If
∑∞

k=1 ak and
∑∞

k=1 bk are convergent series with sums L and M , respec-
tively, then

∑∞
k=1(ak + bk) is a convergent series with sum L+M .
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11.3 The Integral Test

In this section we use integrals of the form
∫∞
a
f(x) dx to establish convergence

or divergence of series whose terms are positive and decreasing. Furthermore,
we obtain a way of analyzing the error when we use a partial sum to estimate
the sum of the series.

The Integral Test

Let f(x) be a decreasing positive function. We obtain a sequence from f(x) by
defining an to be f(n). For instance, the sequence 1/1, 1/2, 1/3, . . . , 1/n, . . . is
obtained from the function f(x) = 1/x. It turns out that the convergence (or
divergence) of the series

∑∞
i=1 ai is closely connected with the convergence (or

divergence) of the improper integral
∫∞

1
f(x) dx. This connection is expressed

in the following theorem:

Theorem (Integral Test). Let f(x) be a continuous decreasing function such
that f(x) > 0 for x ≥ 1. Let an = f(n) for each positive integer n. Then

A. If
∫∞

1
f(x) dx is convergent, then so is the series

∑∞
k=1 ak.

B. If
∫∞

1
f(x) dx is divergent, then so is the series

∑∞
k=1 ak.

Figure 11.3.1:

Proof

Figures 11.3.1 and 11.3.2 are the key to the proof. Note how the rectangles
are constructed in each case.

In Figure 11.3.1 the rectangles lie below the curve y = f(x). Each rectangle
has width 1. Comparing the staircase area with the area under the curve gives
the inequality

a2 + a3 + · · ·+ an <

n∫
1

f(x) dx,

and therefore

a1 + a2 + a3 + · · ·+ an < a1 +

n∫
1

f(x) dx. (11.3.1)

Figure 11.3.2:

If
∫∞

1
f(x) dx is convergent, with value I, then

a1 + a2 + · · ·+ an < a1 + I.

Since the partial sums of the series
∑∞

k=1 ak are all bounded by the number
a1 + I, the series

∑∞
k=1 ak converges and its sum is less than or equal to a1 + I.
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Now, Figure 11.3.2 shows that

a1 + a2 + · · ·+ an >

n+1∫
1

f(x) dx. (11.3.2)

If follows that if
∫∞

1
f(x) dx diverges, then so must the series

∑∞
k=1 ak. •

EXAMPLE 1 Use the integral test to determine the convergence or diver-
gence of

(a) 1
1

+ 1
2

+ · · ·+ 1
n

+ · · · =
∑∞

k=1
1
k

(b) 1
11.01 + 1

21.01 + · · ·+ 1
n1.01 + · · · =

∑∞
k=1

1
k1.01

SOLUTION

(a) Observe that this is the harmonic series, which was shown in Example 2
in Section 11.2 to diverge. To apply the Integral Test to this series, let
f(x) = 1/x. This is a decreasing positive function for x > 0. Then
ak = f(k) = 1/k. We have

∞∫
1

dx

x
= lim

b→∞

b∫
1

dx

x
= lim

b→∞
(ln(b)− ln(1)) =∞

Since
∫∞

1
dx
x

is divergent, so is the series
∑∞

i=1
1
n
.Even though the graphs of

y = 1
x and y = 1

x1.01 are
near each other, the

integrals

∫
dx

x
and

∫
dx

x1.01

behave very differently.

(b) Let f(x) = 1/x1.01, which is a decreasing positive function. Then ak =
f(k) = 1/k1.01. We have

∞∫
1

dx

x1.01
= lim

b→∞

b∫
1

dx

x1.01
= lim

b→∞

x−1.01+1

−1.01 + 1

∣∣∣∣b
1

= lim
b→∞

x−0.01

−0.01

∣∣∣∣b
1

= lim
b→∞

(
b−0.01

−0.01
− 1−0.01

−0.01

)
= 0− (−100) = 100.

Since
∫∞

1
dx/x1.01 is convergent, so is

∑∞
k=1 1/k0.01. By (11.3.1), its sum

is less than a1 + 100 = 101.

�

The argument in Example 1 extends to a family of series known as p-series.
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DEFINITION ([)p-series] For a positive number p, the series

∞∑
k=1

1

kp

is called a p-series.

For example, when p = 1 we obtain the harmonic series
∑∞

k=1 1/k and for
p = 1.01, the series

∑∞
k=1 1/k1.01.

An argument similar to those in Example 1 establishes the following theo-
rem.

Theorem 11.3.1. If 0 < p ≤ 1, the p-series
∑∞

i=1 1/ip diverges. If p > 1, the
p-series

∑∞
i=1 1/ip converges.

Note that there is a p-series for each positive number p. A negative ex-
ponent p would not give a series of interest. For instance, when p = −1, we
obtain

∑∞
k=1 1/k−1 =

∑∞
k=1 k, which is clearly divergent since its nth term does

not approach 0 as n→∞. (For any negative p, limi→∞ 1/np =∞.)

Controlling the Error

When we use a front end of a series (a partial sum) to estimate the sum of the
whole series, there will be an error, namely, the sum of the corresponding tail Partial sum = front end;

Error = tail end.end. For the sum of a front end to be a good estimate of the sum of the whole
series, we must be sure that the sum of the corresponding tail end is small.
Otherwise, we would be like the carpenter who measures a board as “5 feet
long with an error of perhaps as much as 5 feet.” That is why we wish to be
sure that the sum of the tail end is small.

Let Sn be the sum of the first n terms of a convergent series
∑∞

k=1 ak whose
sum is S. The difference

Rn =
∑∞

k=n+1 ak
Rn = S − Sn = an+1 + an+2 + an+3 + · · ·

is called the remainder or error in using the sum of the first n terms to
approximate the sum of the series. That is,

a1 + a2 + · · ·+ an︸ ︷︷ ︸
partial sum Sn

+ an+1 + an+2 + · · ·︸ ︷︷ ︸
tail end Rn

= a1 + a2 + · · ·+ an + an+1 + an+2 + · · ·︸ ︷︷ ︸
sum of series S

so
Sn +Rn = S.

For a series whose terms are positive and decreasing, use an improper
integral to estimate the error. The reasoning depends again on comparing a
staircase of rectangles with the area under a curve.
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Figure 11.3.3:

Recall that f(x) is a continuous decreasing positive function. The error in
using Sn = f(1) + f(2) + · · ·+ f(n) =

∑n
i=1 f(i) to approximate

∑∞
i=1 f(i) is

the sum
∑∞

i=n+1 f(i). This sum is the area of the endless staircase of rectangles
shown in Figure 11.3.3. Comparing the rectangles with the region under the
curve y = f(x), we conclude that

Rn = an+1 + an+2 + · · · = f(n+ 1) + f(n+ 2) + · · · >
∞∫

n+1

f(x) dx. (11.3.3)

Inequality (11.3.3) gives a lower estimate of the error.

Figure 11.3.4:

The staircase in Figure 11.3.4, which lies below the curve, gives an upper
estimate of the error. Inspection of Figure 11.3.4 shows that

Rn = an+1 + a)n+ 2 + · · · = f(n+ 1) + f(n+ 2) + · · · <
∞∫
n

f(x) dx.

Putting these observations together yields the following estimate of the
error.Estimating the error

Theorem 11.3.2 (A bound on the error). Let f(x) be a continuous decreasing
positive function such that

∫∞
1
f(x) dx is convergent. Then the error Rn in

using f(1) + f(2) + · · ·+ f(n) to estimate
∑∞

i=1 f(i) satisfies the inequality

∞∫
n+1

f(x) dx ≤ Rn ≤
∞∫
n

f(x) dx. (11.3.4)

EXAMPLE 2 The first five terms of the series 1/12 +1/22 + · · ·+1/n2 + · · ·
are used to estimate the sum of the series.

(a) Put upper and lower bounds on the error in using just those terms.

(b) Use the bounds in (a) to estimate
∑∞

k=1 1/k2.

SOLUTION First, observe that the series with terms ak = 1/k2 is the p-series
with p = 2. Since p > 1, this series converges. Also, the function f(x) = 1/x2

is continuous, decreasing, and positive for x ≥ 1.

(a) By inequality (11.3.4) of Theorem 11.3.2, the error R5 satisfies the in-
equality

∞∫
6

dx

x2
< R5 <

∞∫
5

dx

x2
.
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Now,

∞∫
5

dx

x2
=
−1

x

∣∣∣∣∞
5

= 0−
(
−1

5

)
=

1

5
.

Similarly,

∞∫
6

dx

x2
=

1

6
.

Thus
1

6
< R5 <

1

6
.

(b) The sum of the first five terms of the series is

S5 =
1

12
+

1

22
+

1

32
+

1

42
+

1

52
≈ 1.463611.

Since the sum of the remaining terms (the “tail end”) is between 1
6

and Keep more digits than you
need until all calculations
have been done. Then,
“round down“ lower bounds
and “round up” upper
bounds.

1
5
, the sum of the series is between 1.463611+0.166666 and 1.463611+0.2,

hence between 1.6302 and 1.6636. (In the 17th century Euler proved that
this sum is π2/6 ≈ 1.644934068.

�

Estimating a Partial Sum Sn

We still restrict our attention to series that satisfy the hypotheses of the in-
tegral test in Theorem 11.3. That is, there is a continuous, positive, and
decreasing function f(x) such that f(n) = an.

Just as we can use an (improper) integral to estimate the sum of a tail end
of such a series, we can also use a (definite) integral to estimate a partial sum
Sn = a1 + a2 + · · ·+ an.

In the course of proving Theorem 11.3, we obtained equations (11.3.1) and
(11.3.2). Taken together, they give us the inequalities

n+1∫
1

f(x) dx < a1 + a2 + · · ·+ an < a1 +

n∫
1

f(x) dx. (11.3.5)

If we can evaluate
∫ n+1

1
f(x) dx and

∫ n
1
f(x) dx by the Fundamental Theorem

of Calculus, we may use (11.3.5) to put upper and lower bounds on Sn =
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∑n
k=1 ak. These estimates are valid whether the series

∑∞
k=1 ak converges or

diverges.

EXAMPLE 3 Use (11.3.5) to estimate the sum of the first million terms
of the harmonic series.
SOLUTION By (11.3.5)

1,000,001∫
1

dx

x
<

1,000,000∑
k=1

1

k
< 1 +

1,000,000∫
1

dx

x
.

hence ln(1, 000, 001) <

1,000,000∑
k=1

1

k
< 1 + ln(1, 000, 000).

Evaluating the logarithm with a calculator, we conclude that

13.8155 <

1,000,000∑
i=1

1

i
< 14.8156.

�

Summary

We developed a test for convergence or divergence for series whose terms ak
are of the form f(k) for a continuous, positive, decreasing function f(x). The
series converges if

∫∞
1
f(x) dx converges, and diverges if

∫∞
1
f(x) dx diverges.

We also used integrals to analyze the error in using a partial sum Sn of
such a series as an estimate of the sum of the series. (Rather than memorizing
the formulas, just draw the appropriate staircase diagrams.)

We assumed f(x) is decreasing for x ≥ 1. Actually, Theorem 11.3 holds if
we assume that f(x) is decreasing from some point on, that is, there is some
number a such that f(x) is decreasing for x ≥ a. (The argument for this type
of integral involves similar staircase diagrams.)
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EXERCISES for Section 11.3 Key: R–routine, M–moderate, C–challenging

Use the integral test in Exercises 1 to 8 to determine whether each series diverges
or converges.

1.[R]
∞∑
k=1

1
k1.1

2.[R]
∞∑
k=1

1
k0.9

3.[R]
∞∑
k=1

k

k2 + 1

4.[R]
∞∑
k=1

1
k2 + 1

5.[R]
∞∑
k=1

1
k ln(k)

6.[R]
∞∑
k=1

1
k + 1, 000

7.[R]
∞∑
k=1

ln(k)
k

8.[R]
∞∑
k=1

k3

ek

Use Theorem 11.3.1 in Exercises 9 to 12 to determine whether each series diverges
or converges.

9.[R]
∞∑
k=1

1
3
√
k

10.[R]
∞∑
k=1

1
k3

11.[R]
∞∑
k=1

1√
k

12.[R]
∞∑
k=1

1
k0.999

13.[R]

(a) Prove that if p > 1, the p-series converges.

(b) Give two numbers between which its sum lies.
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14.[R]

(a) If you used S100 to estimate
∑∞

k=1 1/k2, what could you say about the error
R100?

(b) How large should you choose k to be sure that the error Rk is less than 0.0001?

15.[R]

(a) If you used S1000 to estimate
∑∞

k=1 1/k3, what could you say about the error
R1000?

(b) How large should you choose k to be sure that the error Rk is less than 0.0001?

16.[R]

(a) How many terms of the series
∑∞

k=1 1/k4 should you use to be sure that the
remainder is less than 0.0001?

(b) Estimate
∑∞

k=1 1/k4 to three decimal places.

17.[R] Repeat Exercise 16 for the series
∑∞

k=1 1/k5.

In each of Exercises 18 to 21 (a) compute the sum of the first four terms of the series
to four decimal places, (b) give upper and lower bound on the error R4, (c) combine
(a) and (b) to estimate the sum of the series.

18.[M]
∞∑
k=1

1
k3

19.[M]
∞∑
k=1

1
k4

20.[M]
∞∑
k=1

1
k2 + 1

21.[M]
∞∑
k=1

1
k2 + k

22.[M] Prove that if p ≤ 1, the p-series diverges.

23.[M] What does the integral test say about the geometric series
∑∞

k=1 p
k, when
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0 < p < 1?

24.[M] Let f(x) be a positive continuous function that is decreasing for x ≥ a.
Let ak = f(k). Show in detail (with appropriate diagrams and exposition) why∫∞
a f(x) dx and

∑∞
k=1 ak both converge or both diverge. Use your own words.

Don’t just mimic the book’s treatment of the case a = 1.

25.[M] (See Exercise 24.) Show that
∑∞

k=1 k
3e−k converges.

26.[M] Show that for n ≥ 2,

2
√
n+ 1− 2 <

n∑
k=1

1√
k
< 2
√
n− 1.

27.[M]

(a) By comparing the sum with integrals, show that

ln
(

201
100

)
<

1
100

+
1

101
+

1
102

+ · · ·+ 1
200

< ln
(

200
99

)
.

(b) Find limn→∞

(
1
n + 1

n+1 + · · ·+ 1
2n

)
.

28.[M]

(a) Let f(x) be a decreasing continuous positive function for x ≥ 1 such that∫∞
1 f(x) dx is convergent. Show that

∞∫
1

f(x) dx <
∞∑
k=1

f(k) < f(1) +

∞∫
1

f(x) dx.

(b) Use (a) to estimate
∑∞

k=1 1/k2.

29.[M] In Example 1 we showed that the p-series for p = 1 diverges but the
p-series for p = 1.01 converges. This contrast occurs even though the correspond-
ing terms of the two series seem to resembe each other so closely. (For instance,
1/71.01 ≈ 0.140104, 1/71 ≈ 0.142857.) What happens to the ratio (1/k1.01)/(1/k)
as k →∞.

In Exercises 30 and 31 concern products, rather than sums, of numbers.
30.[C] Let {an} be a sequence of positive numbers. Denote the product (1+a1)(1+
a2) · · · (1 + an) by

∏n
k=1(1 + ak).
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(a) Show that
∑∞

k=1 ak ≤
∏n
k=1(1 + ak).

(b) Show that if limk→∞
∏n
k=1(1 + ak) exists, then

∑∞
k=1 ak is convergent.

31.[C] (This continues Exercise 30.)

(a) Show that 1 + ak ≤ eak . Hint: Show that 1 + x ≤ ex for x > 0.

(b) Show that if the series
∑∞

k=1 ak is convergent, then limn→∞
∏n
k=1(1 + ak)

exists.

32.[C] Here is an argument that there is an infinite number of primes. Assume
that there is only a finite number of primes, p1, p2, . . . , pm.

(a) Show that
1

1− 1/pk
= 1 +

1
pk

+
1
p2
k

+
1
p3
k

+ · · · .

(b) Show then that

1
1− 1/p1

1
1− 1/p2

· · · 1
1− 1/pm

=
∞∑
k=1

1
k
.

Note: Assume the series can be multiplied term-by-term.

(c) From (b) obtain a contradiction.
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11.4 The Comparison Tests

So far in this chapter three tests for the convergence (or divergence) of a series
have been presented. The first concerned a special type of series, a geometric
series. The second, the nth-term test for divergence, asserts that if the nth term
of a series does not approach 0, the series diverges. The third, the integral
test, applies to certain series of positive terms. In this section two further tests
are developed; the comparison and limit-comparison tests. We still consider
only tests for series with positive terms.

Comparison Tests

The first test is similar to the comparison test for improper integrals in Sec-
tion 7.8. Comparison Tests

Theorem (Comparison Tests for Convergence and Divergence).

(a) If 0 ≤ pk ≤ ck for each k and
∑∞

k=1 ck converges, so does
∑∞

k=1 pk.

(b) If 0 ≤ dk ≤ pk for each k and
∑∞

k=1 dk diverges, so does
∑∞

k=1 pk.

Proof

(a) Let the sum of the series c1 + c2 + · · · be C. Let Sn denote the partial
sum p1 + p2 + · · ·+ pn. Then, for each n,

Sn = p1 + p2 + · · ·+ pn ≤ c1 + c2 + · · ·+ cn ≤ C.

Since the pn’s are non-negative,

S1 ≤ S2 ≤ · · · ≤ Sn ≤ · · · .

Since each Sn is less than or equal to C, Theorem 10.1.1 of Section 10.1 S1 ≤ S2 ≤ · · · ≤ Sn ≤
· · · ≤ Cassures us that the sequence {Sn} converges to a number L (less than or

equal to C). In other words, the series p1 + p2 + · · · converges (and its
sum is less than or equal to the sum c1 + c2 + · · · ). Logically, (b) is the

contrapositive of (a).
(b) The divergence test follows immediately from the convergence test. If

the series p1 +p2 + · · · converged, so would the series d1 +d2 + · · · , which
is assumed to diverge.
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•

Figure 11.4.1:

Figure 11.4.1 present the two comparison tests in Theorem 11.4 in terms
of endless staircases.

In order to apply the comparison test to a series of positive terms you have
to compare it to a series whose convergence or divergence you already know.
What series can you use for comparison? You know the p-series converges for
p > 1 and diverges for p ≤ 1. Also a geometric series

∑∞
k=1 r

k with positive
terms converges for 0 ≤ r < 1 but diverges for r ≥ 1. Moreover, when
we multiply one of theses series by a non-zero constant, we don’t affect its
convergence or divergence.

EXAMPLE 1 Does the series

∞∑
k=1

k + 1

k + 2

1

k2
=

2

3
· 1

12
+

3

4
· 1

22
+

4

5
· 1

32
+ · · ·

converge or diverge?
SOLUTION The coefficients 2

3
, 3

4
, and 4

5
, . . . approach 1 as k →∞, so they

are a minor influence. The series resembles the series

1

12
+

1

22
+ · · ·+ 1

k2
+ · · · ,

which was shown by the integral test to be convergent. Since the fraction
(k + 1)/(k + 2) is less than 1,

k + 1

k + 2

1

k2
<

1

k2
.

Thus, by the comparison test for convergence, the series

2

3
· 1

12
+

3

4
· 1

22
+

4

5
· 1

32
+ · · ·

also converges. However, the test does not tell us the sum of the series. �

EXAMPLE 2 Does the series

∞∑
k=1

k + 1

k + 2
· 1

k
=

2

3
· 1

1
+

3

4
· 1

2
+ · · ·+ k + 1

k + 2
· 1

k
+ · · ·

converge or diverge?
SOLUTION Again the coefficient (k + 1)/(k + 2) is a minor influence. We
suspect that 1/k is the main influence and that the series diverges.
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Unfortunately, the terms in this series are less than the terms of the har-
monic series

∑∞
k=1

1
k
. So the divergence test does not directly apply. However,

(k + 1)/(k + 2) is greater than 1/2. Now, the series

1

2
· 1

1
+

1

2
· 1

2
+ · · ·+ 1

2
· 1

k
+ · · ·

is also divergent, since it’s just a multiple of a divergent series. The divergence
part of the comparison test applies: the series

∞∑
k=1

k + 1

k + 2

1

k

is, term by term, larger than the terms of the divergent series

∞∑
k=1

1

2

1

k
.

Hence,
∑∞

k=1
k+1
k+2

1
k

is divergent. �

Limit-Comparison Tests

There is a variation of the comparison test that produces a much quicker
solution of Example 2. It is the limit-comparison test.

Theorem (Limit-Comparison Tests for Convergence and Divergence). Let Limit-Comparison Tests∑∞
k=1 pk be a series of positive terms to be tested for convergence or diver-

gence.

A. Let
∑∞

k=1 ck be a convergent series of positive terms. If limk→∞
pk
ck

exists,

then
∑∞

k=1 ck also converges.

B. Let
∑∞

k=1 dk be a divergent series of positive terms. If limk→∞
pk
dk

exists

and is not 0 or if the limit is infinite, then
∑∞

k=1 pk also diverges.

Proof

We shall prove part (a). Let a = limk→∞
pk
ck

. Since as k → ∞, pk/ck → a,

there must be an integer N such that, for all n ≥ N , pk/ck remains less than,
say, a+ 1. Thus

pk < (a+ 1)ck for all n ≥ N .

Now the series

(a+ 1)cN + (a+ 1)cN+1 + · · ·+ (a+ 1)ck + · · · ,
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being a + 1 times the tail end of a convergent series, is itself convergent. By
the comparison test,

pN + pN+1 + · · ·+ pk + · · ·
is convergent. Hence p1 + p2 + · · ·+ pk + · · · is convergent.

Part (B) can be proved in a similar manner. •
Note that in part B of the Limit-Comparison Test nothing is said about

the case limk→∞ pk/dk = 0. In this circumstance the series
∑∞

k=1 pk can either
converge or diverge. For instance, take

∑∞
k=1 dk to be the divergent series∑∞

k=1
1√
n
. The series

∑∞
k=1

1
k2 is convergent and limk→∞

1/k2

1/
√
k

= 0. Contrarily,

the harmonic series
∑∞

k=1
1
k

is divergent and again limk→∞
1/k

1/
√
k

= 0.

The next example shows how convenient the limit-comparison test is. Con-
trast the solution in Example 3 with that in Example 2.

EXAMPLE 3 Does the series

∞∑
k=1

k + 1

k + 2
· 1

k
=

2

3
· 1

1
+

3

4
· 1

2
+ · · ·+ k + 1

k + 2
· 1

k
+ · · ·

converge or diverge?
SOLUTION As with Example 2, we expect this series to behave like the
harmonic series. For this reason we examine the ratio between corresponding
terms:

lim
k→∞

k+1
k+2
· 1
k

1
k

= lim
k→∞

k + 1

k + 2
= 1.

Since the limit is not 0, and the harmonic series diverges, the Limit-Comparison

Test tells us that
∞∑
k=1

k + 1

k + 2
· 1

k
diverges. �

EXAMPLE 4 Does

∞∑
k=1

(1 + 1/k)k
(
1 + (−1/2)k

)
2k

converge or diverge?
SOLUTION Note that as k →∞, (1+1/k)k → e and 1+(−1/2)k → 1. TheSee Section 2.2.

major influence is the 2k in the denominator. So use the Limit-Comparison
Test. The given series resembles the convergent geometric series with first
term 1

2
and ratio also 1

2
: 1

2
+ 1

4
+ · · ·+ 1

2k
+ · · · . Then

lim
k→∞

(1+ 1
k)

k
“

1+( 1

2k
)
k
”

2k

1
2k

= lim
k→∞

(
1 +

1

k

)k(
1 +

(
−1

2k

)k)
= e · 1 = e.
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Since
∑

k→∞ 2−k is convergent, so is the given series. �

EXAMPLE 5 Does
∑∞

k=1 k
33−k converge or diverge?

SOLUTION The typical term k33−k is dominated by the exponential fac-
tor, 1/3k. For this reason we suspect that the series

∑∞
k=1 k

33−k might also
converge. We try the Limit-Comparison Test, obtaining

lim
k→∞

k3

3k

1
3k

= lim
k→∞

k3 =∞.

Since the limit is not finite, the test gives no information. So we start over
and look at k3/3k a little closer. See also Section 5.5.

The numerator k3 approaches ∞ much more slowly than 3k, so we still
suspect that

∑∞
k=1 k

3/3k converges. Now, k3 approaches ∞ more slowly than
any exponential bk with b > 1. For example, for large k, k3 is less than (1.5)k.
This means that for large k

k3

3k
<

(1.5)k

3k
= (0.5)k.

The geometric series
∑∞

k=1(0.5)k converges. Since k3/3k < (0.5)k for all but
a finite number of values of k, the Comparison Test tells us that

∑∞
k=1 k

3/3k

converges. �

Summary

We developed two tests for convergence or divergence of a series with positive
terms,

∑∞
k=1 pk. If, for each k, pk is less than the corresponding term of a

convergent series, then
∑∞

k=1 pk converges. If pk is larger than the correspond-
ing term of a divergent series of positive terms, then

∑∞
k=1 pk diverges. This

Comparison Test is the basis for the Limit-Comparison Test, which is often
easier to apply. This test depends only on the limit of the ratio of pk to the
corresponding term of a series of positive terms known to converge or diverge.
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EXERCISES for Section 11.4 Key: R–routine, M–moderate, C–challenging

Use the comparison test in Exercises 1 to 4 to determine whether each series con-
verges or diverges.

1.[R]
∞∑
k=1

1
k2 + 3

2.[R]
∞∑
k=1

k + 2
(k + 1)

√
k

3.[R]
∞∑
k=1

sin2(k)
k2

4.[R]
∞∑
k=1

1
k2k

Use the limit-comparison test in Exercises 5 to 8 to determine whether each series
converges or diverges.

5.[R]
∞∑
k=1

5k + 1
(k + 2)k2

6.[R]
∞∑
k=1

2k + k

3k

7.[R]
∞∑
k=1

k + 1
(5k + 2)

√
k

8.[R]
∞∑
k=1

(1 + 1/k)k

k2

In Exercises 9 to 28 use any test discussed so far in this chapter to determine whether
each series converges or diverges.

9.[R]
∞∑
k=1

k2k

3k

10.[R]
∞∑
k=1

2k

k2

11.[R]
∞∑
k=1

1
kk

12.[R]
∞∑
k=1

1
k!

13.[R]
∞∑
k=1

4k + 1
(2k + 3)k2

14.[R]
∞∑
k=1

k2(2k + 1)
3k + 1
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15.[R]
∞∑
k=1

1 + cos(k)
k2

16.[R]
∞∑
k=1

ln(k)
k

17.[R]
∞∑
k=1

ln(k)
k2

18.[R]
∞∑
k=1

5k

kk

19.[R]
∞∑
k=1

2k

k!

20.[R]
∞∑
k=1

1√
k ln(k)

21.[R]
∞∑
k=1

e2k

πk

22.[R]
∞∑
k=1

k2ek

πk

23.[R]
∞∑
k=1

3k + 1
2k + 10

24.[R]
∞∑
k=1

4
2k2 − k

25.[R]
∞∑
k=1

1
ln(k)

26.[R]
∞∑
k=1

1
sin(1/k)

27.[R]
∞∑
k=1

(
k + 1
k + 3

)k
28.[R]

∞∑
k=1

(
k

2k − 1

)k
In Exercises 29 to 34, assume that

∑∞
k=1 ak and

∑∞
k=1 bk are series with positive

terms. What, if anything, can we conclude about the convergence or divergence of∑∞
k=1 ak if:

29.[M] If
∑∞

k=1 bk is divergent and limk→∞
ak
bk

= 0?

30.[M] If
∑∞

k=1 bk is convergent and limk→∞
ak
bk

=∞?

31.[M] If
∑∞

k=1 bk is convergent and 3bk ≤ ak ≤ 5bk?
32.[M] If

∑∞
k=1 bk is divergent and 3bk ≤ ak ≤ 5bk?

Calculus December 6, 2010



964 CHAPTER 11 SERIES

33.[M] If
∑∞

k=1 bk is convergent and ak < b2k?
34.[M] If

∑∞
k=1 bk is divergent and bk → 0 as k →∞, and ak < b2k?

35.[M] For which values of the positive number x does the series
∞∑
k=1

xk

k2k
converge?

diverge?

36.[M] For which values of the positive exponent m does the series
∑∞

k=1
1

km ln(k)
converge? diverge?

37.[C] Prove part B of the Limit-Comparison Test for Convergence and Divergence.

38.[C] For which constants p does
∑∞

k=1 k
pe−k converge?

39.[C]

(a) Show that
∑∞

k=1 1/(1 + 2k) converges.

(b) Show that the sum of the series in (a) is between 0.64 and 0.77. Hint: Use
the first three terms and control the sum of the rest of the series by comparing
it to the sum of a geometric series.

40.[C]

(a) Show that
∑∞

k=n+1 1/k! is less than the sum of the geometric series whose first
term is 1/(n+ 1)! and whose ratio is 1/(n+ 2).

(b) Use (a) with n = 4 to show that

1 + 1 +
1
2!

+
1
3!

+
1
4!
<

∞∑
k=0

1
k!
< 1 + 1 +

1
2!

+
1
3!

+
1
4!

+
1
5!
· 1

1− 1
6

.

(c) From (b) deduce that

2.71 <
∞∑
k=0

1
k!
< 2.72.

(d) Find a value of n such that
∑∞

k=n+1 1/k! < 0.0005.

(e) Use (d) to estimate
∑∞

k=0 1/k! to three decimal places.
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41.[C] Prove the following result, which is used in the statistical theory of stochas-
tic processes: Let {an} and {cn} be two sequences of non-negative numbers such
that

∑∞
k=1 akck converges and limn→∞ cn = 0. Then

∑∞
k=1 akc

2
k converges.

42.[C] Find a specific number B, expressed as a decimal, such that

∞∑
k=1

ln(k)
k2

< B.

43.[C] Find a specific number B, expressed as a decimal, such that

∞∑
k=1

k + 2
k + 1

· 1
n3

< B.

44.[C] Estimate
∑∞

k=1
1
k2k

to three decimal places.

45.[C] Let
∑∞

k=1 ak be a convergent series with only positive terms. Must
∑∞

k=1(ak)2

also converge?

46.[C] Let
∑∞

k=1 ak and
∑∞

k=1 bk be convergent series with only positive terms.
Must

∑∞
k=1 akbk converge? Hint: Review the Cauchy-Schwarz inequality in CIE 10

in Chapter 7.
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11.5 Ratio Tests

The next test is suggested by the test for the convergence of a geometric
series. In a geometric series the ratio between consecutive terms is constant.
The “Ratio Test” concerns series where this ratio is “almost constant”.

The Ratio Test

Theorem 11.5.1 (Ratio Test). Let p1 + p2 + · · · + pn + · · · be a series ofRatio Test

positive terms. Assume limk→∞ pk+1/pk exists and call it r.

(a) If r is less than 1, the series converges.

(b) If r is greater than 1 or r is infinite, the series diverges.

(c) If r is equal to 1 or r does not exist, no conclusion can be drawn (the
series may converge or may diverge).

Proof

The idea behind the Ratio Test is to compare the original series to a geometric
series. Here is how that works.

(a) Assume r = limk→∞
pk+1

pk
< 1. Select a number s such that r < s < 1.

Then there is an integer N such that for all k ≥ N ,

pk+1

pk
< s

and, therefore, pk+1 < spk.

Using this inequality, we deduce that

pN+1 < pN

pN+2 < spN+1 < s(spN) < s2pN

pN+3 < spN+2 < s(s2pN) < s3pN ,

and so on.

Thus the terms of the series

pN + pN+1 + pN+2 + · · ·

are less than the corresponding terms of the geometric series

pN + spN + s2pN + · · ·
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(except for the first term, pN , which equals the first term of the geometric
series). Since s < 1, the latter series converges. By the comparison test,
pN + pN+1 + pN+2 + · · · converges. Adding in the front end,

p1 + p2 + · · ·+ pN−1,

still results in a convergent series.

(b) If r > 1 or is infinite, then for all k from some point on pk+1 is larger
than pk. Thus the nth term of the series p1 + p2 + · · · cannot approach
0. By the nth-term test for divergence the series diverges.

•
No information if r is 1 or
does not exist.When r = 1 or r does not exist, anything can happen; the series may

diverge or it may converge. (Exercise 21 illustrates these possibilities.) In these
cases, one must look to other tests to determine whether the series diverges or
converges.

The Ratio Test is a natural test to try if the kth term of a series involves
powers of a fixed number, or factorials, as the next two examples show.

EXAMPLE 1 Show that the series p+2p2 +3p3 + · · ·+kpk + · · · converges
for any fixed number p for which 0 < p < 1.
SOLUTION Let ak denote the kth term of the series. Then

ak = kpk and ak+1 = (k + 1)pk+1.

The ratio between consecutive terms is

ak+1

ak
=

(k + 1)pk+1

kpk
=
k + 1

k
p.

Thus The value of this series is
found in Exercise 34.

r = lim
k→∞

ak+1

ak
= p < 1,

and the series converges. �

EXAMPLE 2 Determine the positive values of x for which the series

1

0!
+
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xk

k!
· · ·

converges and for which values of x it diverges. (Each choice of x determines
a specific series with constant terms.)
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SOLUTION If we start the series with k = 0, then the nth term, ak is xk/k!.
Thus

ak+1 =
xk+1

(k + 1)!
,

and therefore

ak+1

ak
=

xk+1

(k+1)!

xk

k!

= x
k!

(k + 1)!
=

x

k + 1
.

Since x is fixed,In the next section, it will
be shown that this series
converges for all negative

values of x, too.

r = lim
k→∞

ak+1

ak
= lim

k→∞

x

k + 1
= 0.

By the Ratio Test, the series converges for all positive x. �

The next example uses the Ratio Test to establish divergence.

EXAMPLE 3 Show that the series 2/1 + 22/2 + · · ·+ 2k/k+ · · · diverges.
SOLUTION In this case, ak = 2k/k and

ak+1

ak
=

2k+1

k+1

2k

k

=
2k+1

k + 1

k

2k
= 2

k

k + 1
.

ThusThe series is like a
geometric series with ratio

2.
r = lim

k→∞

ak+1

ak
= 2,

which is larger than 1. By the Ratio Test, this series diverges. �

It is not really necessary to call on the powerful Ratio Test to establish the
divergence of the series in Example 3. Since limk→∞ 2k/k = ∞, its kth term
gets arbitrarily large; by the kth-term test, the series diverges. (Comparison
with the harmonic series also demonstrates divergence.)

The Root Test

The next test, closely related to the Ratio Test, is of use when the kth term
contains only kth powers, such as kk or 3k. It is not useful if factorials such as
k! are present.Root Test

Theorem 11.5.2 (Root Test). Let
∑∞

k=1 pk be a series of positive terms. As-
sume limk→∞ k

√
pk exists and call it r. Then

A. If r is less than 1, the series converges.

B. If r is greater than 1 or r is infinite, the series diverges.
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C. If r is equal to 1 or r does not exist, no conclusion can be drawn (the
series may converge or may diverge).

The proof of the Root Test is outlined in Exercises 22 and 23.

EXAMPLE 4 Use the Root Test to determine whether
∑∞

k=1 3k/kk/2 con-
verges or diverges.
SOLUTION We have

r = lim
k→∞

k

√
3k

kk/2
= lim

k→∞

3√
k

= 0.

By the Root Test, the series converges. �

Summary

We developed two tests for convergence or divergence of a series
∑∞

k=1 pk with
positive terms, both motivated by geometric series. In the Ratio Test, we
examine limk→∞ pk+1/pk and in the Root Test, limk→∞ k

√
pk. The Root Test

is convenient when only powers appear. The Ratio Test is convenient to use
when the terms involve powers and factorials.
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EXERCISES for Section 11.5 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 6 apply the Ratio Test to decide whether the series converges or
diverges. If that test gives no information, use another test to decide.

1.[R]
∞∑
k=1

k2

3k

2.[R]
∞∑
k=1

(k + 1)2

k2k

3.[R]
∞∑
k=1

k ln(k)
3k

4.[R]
∞∑
k=1

k!
3k

5.[R]
∞∑
k=1

(2k + 1)(2k + 1)
3k + 1

6.[R]
∞∑
k=1

k!
kk

In Exercises 7 and 8 use the Root Test to determine whether the series converge or
diverge.

7.[R]
∞∑
k=1

kk

3k2

8.[R]
∞∑
k=1

(1 + 1/k)k(2k + 1)k

(3k + 1)k

Each series found in Exercises 9 to 14 converges. Use any legal means to find a
number B in decimal form that is larger than the sum of the series.

9.[R]
∞∑
k=1

k2

2k

10.[R]
∞∑
k=1

k

3k

11.[R]
∞∑
k=1

1
k3

12.[R]
∞∑
k=1

sin2(k)
k2

13.[R]
∞∑
k=1

ln(k)
k2

14.[R]
∞∑
k=1

(
1 + 2

k

)k
1.1k
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Each series in Exercises 15 to 18 diverges. Use any legal means to find a number m
such that the mth partial sum of the series exceeds 1,000.

15.[R]
∞∑
k=1

ln(k)
k

16.[R]
∞∑
k=1

k

k2 + 1

17.[R]
∞∑
k=1

(1.01)k

18.[R]
∞∑
k=1

(k + 2)2

k + 1
· 1√

k

19.[M] Use the result of Example 2 to show that, for x > 0, limk→∞ x
k/k! = 0.

Note: This was established directly in Section 11.2.

20.[M] Solve Example 3 using the Root Test.

21.[M] This exercise shows that the Ratio Test gives no information if lim
k→∞

pk+1

pk
=

1.

(a) Show that for pk = 1/k,
∑∞

k=1 pk diverges and limk→∞
pk+1

pk
= 1.

(b) Show that for pk = 1/k2,
∑∞

k=1 pk converges and limk→∞
pk+1

pk
= 1.

22.[M] This exercise shows that the Root Test gives no information if lim
k→∞

k
√
pk = 1.

(a) Show that for pk = 1/k,
∑∞

k=1 pk diverges and limk→∞ k
√
pk = 1.

(b) Show that for pk = 1/k2,
∑∞

k=1 pk converges and limk→∞ k
√
pk = 1.

23.[C] (Proof of the Root Test, Theorem 11.5.2.)

(a) Assume that r = limk→∞ k
√
pk < 1. Pick any s with r < s < 1, and then pick

N such that k
√
pk < s for all k > N . Show that pk < sk for all k > N and

compare a tail end of
∑∞

k=1 pk to a geometric series.

(b) Assume that r = limk→∞ k
√
pk > 1. Pick any s with 1 < s < r, and then pick

N such that k
√
pk > s for all k > N . Show that pk > sk for all k > N . From

this conclude that
∑∞

k=1 pk diverges.
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Skill Drill

In Exercises 24 to 26 a, b, c, m, and p are constants. In each case verify that the
derivative of the first function is the second function.
24.[R] a2x sin(ax); sin(ax)− ax cos(ax)

25.[R] ln
∣∣ax2 + bx+ c

∣∣; 2ax+ b

ax2 + bx+ c

26.[R] x arctan(ax)− 1
2a

ln
(
1 + a2x2

)
; arctan(ax)

In Exercises 27 to 32 a, b, c, and n are constants and n is positive. Use integration
techniques to obtain each of the following reduction formulas.

27.[R]
∫
xn sin(ax) dx = −1

a
cos(ax) +

n

a

∫
xn−1 cos(ax) dx

28.[R]
∫
xn cos(ax) dx =

1
a

cos(ax)− n

a

∫
xn−1 sin(ax) dx

29.[R]
∫

dx

x2
√
ax+ b

=
−
√
ax+ b

bx
− a

2b

∫
dx

x
√
ax+ b

30.[R]
∫

dx

(ax2 + c)(n+ 1)
=

1
2nc

x

(ax2 + c)n
+

2n− 3
2nc

∫
dx

(ax2 + c)n

31.[R]
∫

dx

(ax2 + bx+ c)n+1
=

2ax+ b

n(4ac− b2)(ax2 + bx+ c)n
+

2(2n− 1)a
n(4ac− b2)

∫
dx

(ax2 + bx+ c)n

32.[R]
∫

(ln(ax))2 dx = x2
(
(ln(ax))2 − 2 ln(ax) + 2

)
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11.6 Tests for Series with Both Positive and

Negative Terms

The tests for convergence or divergence in Sections 11.3 to 11.5 concern series
whose terms are positive. This section examines series that have both posi-
tive and negative terms. Two tests for the convergence of such a series are
presented. The alternating-series test applies to series whose terms alternate
in sign (+, -, +, -, . . . ) and decrease in absolute value. In the absolute-
convergence test, the signs may vary in any way.

Alternating Series

DEFINITION (Alternating Series) If p1, p2, . . . , pn, . . . is a se-
quence of positive numbers, then the series

∞∑
k=1

(−1)k+1pk = p1 − p2 + p3 − p4 + · · ·+ (−1)k+1pk + · · ·

and the series

∞∑
k=1

(−1)kpk = −p1 + p2 − p3 + p4 − · · ·+ (−1)kpk + · · ·

are called alternating series.

For instance,

1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)k+1 1

2k − 1
+ · · ·

and
1− 1 + 1− 1 + · · ·+ (−1)k + · · ·

are alternating series.
By the nth-term test, the second series diverges. The following theorem

implies that the first series converges. Alternating-Series Test

Theorem. (Alternating-Series Test) If p1, p2, . . . , pk, . . . is a decreasing se-
quence of positive numbers such that limk→∞ pk = 0, then the series whose kth

term is (−1)k+1pk,

∞∑
k=1

(−1)k+1pk = p1 − p2 + p3 − · · ·+ (−1)k+1pk + · · · ,

converges.
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Proof

We will prove the theorem in the special case when pk = 1/k, that is, the
alternating harmonic series

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)k+1 1

k
+ · · · .

The argument easily generalizes to prove the general theorem. (See Exer-
cise 33.)

Consider first the partial sums of an even number of terms, S2, S4, S6, . . . .
For clarity, group the summands in pairs:

S2 = (1− 1
2
)

S4 = (1− 1
2
) + (1

3
− 1

4
) = S2 + (1

3
− 1

4
)

S6 = (1− 1
2
) + (1

3
− 1

4
) + (1

5
− 1

6
) = S4 + (1

5
− 1

6
)

...

Since 1
3

is larger than 1
4
, the difference 1

3
− 1

4
is positive. Therefore, S4, which

equals S2 + (1
3
− 1

4
), is larger than S2. Similarly, S6 > S4. More generally:

S2 < S4 < S6 < S8 < · · · .

Figure 11.6.1:

The sequence of even partial sums, {S2n} is increasing. (See Figure 11.6.1.)
Next, it will be shown that S2n is less than 1, the first term of the sequence.

First of all,

S2 = 1− 1

2
< 1.

Next, consider S4:

S4 = 1− 1
2

+ 1
3
− 1

4

= 1− (1
2
− 1

3
)− 1

4

< 1− (1
2
− 1

3
) because 1

4 is positive
< 1 because 1

2 −
1
3 is positive.

Similarly,

S6 = 1− (1
2
− 1

3
)− (1

4
− 1

5
)− 1

6

< 1− (1
2
− 1

3
)− (1

4
− 1

5
) because 1

6 is positive
< 1− (1

2
− 1

3
) because 1

4 −
1
5 is positive

< 1 because 1
2 −

1
3 is positive.

In general then,
S2n < 1 for all n.
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The sequence

S2, S4, S6, . . .

is therefore increasing and yet bounded by the number 1, as indicated in Fig-
ure 11.6.2. By Theorem 10.1.1 of Section 10.1, limn→∞ S2n exists. Call this
limit S, which is less than or equal to 1. (See Figure 11.6.2.)

Figure 11.6.2:

All that remains is to show that the odd partial sums

S1, S3, S5, . . .

also converge to S.

Note that
S3 = 1− 1

2
+ 1

3
= S2 + 1

3

S5 = 1− 1
3

+ 1
3
− 1

4
+ 1

5
= S4 + 1

5
.

In general, In the general case, the
term 1/(2k + 1) will be
replaced by p2k+1.S2k+1 = S2k +

1

2k + 1
.

Thus

lim
k→∞

S2k+1 = lim
k→∞

(
S2k +

1

2k + 1

)
= lim

k→∞
S2k + lim

k→∞

1

2k + 1
= S + 0 = S.

Since the sequence of even partial sums, S2, S4, S6, . . . , S2k, . . . , and the
sequence of odd partial sums, S1, S3, S5, . . . , S2k+1, . . . , both have the same
limit, S, it follows that

lim
k→∞

Sk = S.

Thus the alternating harmonic series

∞∑
k=1

(−1)k
1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

converges. In Chapter 12 it will be shown that this sum is ln(2). See Exercise 28.

A similar argument applies to any alternating series whose kth term ap-
proaches 0 and whose terms decrease in absolute value. •

Decreasing alternating series

An alternating series, such as the alternating harmonic series, whose terms
decrease in absolute value as k increases will be called a decreasing alter-
nating series. Theorem 11.6 shows that a decreasing alternating series whose
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kth term approaches zero as k →∞ converges.

EXAMPLE 1 Estimate the sum S of the alternating harmonic series.
SOLUTION These are the first five partial sums:

Figure 11.6.3:

S1 = 1 = 1.00000
S2 = 1− 1

2
= 0.50000

S3 = 1− 1
2

+ 1
3
≈ 0.5 + 0.33333 = 0.83333

S4 = S3 − 1
4
≈ 0.83333− 0.25 = 0.58333

S5 = S4 + 1
5
≈ 0.58333 + 0.2 = 0.78333

Figure 11.6.3 is a graph of Sn as a function of n. The odd partial sums S1,
S3, . . . approach S from above. The even partial sums S2, S4, . . . approach S
from below. For instance,

Figure 11.6.4:

S4 < S < S5

gives the information that 0.58333 < S < 0.8334. (See Figure 11.6.4.) �

As Figure 11.6.3 suggests, any partial sum of a series satisfying the hy-
pothesis of the alternating-series test differs from the sum of the series by less
than the absolute value of the first omitted term. That is, if Sn is the sum of
the first n terms of the series and S is the sum of the series, then the error

Rn = S − Sn

has absolute value at most pn+1, which is the absolute value of the first omittedThe error in estimating the
sum of a decreasing

alternating series.
term. Moreoveer, S is between Sn and Sn+1 for every n.

EXAMPLE 2 Does the series

3

1!
− 32

2!
+

33

3!
− 34

4!
+

35

5!
− · · ·+ (−1)k+1 3k

k!
+ · · ·

converge or diverge?
SOLUTION This is an alternating series. By Example 2 of Section 11.2, its
kth term approaches 0. Let us see whether the absolute values of the terms
decrease in size, term-by-term. The first few absolute values are

3

1!
= 3

32

2!
=

9

2
= 4.5

33

3!
=

27

6
= 4.5

34

4!
=

81

24
= 3.375.
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At first, they increase. However, the fourth term is less than the third. Let us
show that the rest of the terms decrease in size. For instance, At first the terms increase,

but then they decrease.

35

5!
=

3

4

34

4!
<

34

4!
,

and, for n ≥ 3,
3k+1

(k + 1)!
=

3

n+ 1

3k

k!
<

3k

k!
.

By the alternating-series test, the tail end that begins

33

3!
− 34

4!
+

35

5!
− 36

6!
− · · ·

converges. Call its sum S. If the front end

3

1!
− 32

2!

is added on, we obtain the original series, which therefore converges and has
the sum

3

1!
− 32

2!
+ S.

�

As Example 2 illustrates, the alternating-series test works as long as the
kth term approaches 0 and the terms decrease in size from some point on.

It may seem that any alternating series whose kth term approaches 0 con-
verges. This is not the case, as shown by this series:

2

1
− 1

1
+

2

2
− 1

2
+

2

3
− 1

4
+ · · · , (11.6.1)

whose terms alternate 2/k and −1/k.

Let Sn be the sum of the first n terms of (11.6.1). Then

S2 = 2
1
− 1

1
= 1

1
,

S4 =
(

2
1
− 1

1

)
+
(

2
2
− 1

2

)
= 1

1
+ 1

2
,

S6 =
(

2
1
− 1

1

)
+
(

2
2
− 1

2

)
+
(

2
3
− 1

3

)
= 1

1
+ 1

2
+ 1

3
,

and, more generally,

S2n =
1

1
+

1

2
+

1

3
+ · · ·+ 1

n
.

Since S2n gets arbitrarily large as n→∞, the series (11.6.1) diverges. Recall that the harmonic
series diverges.
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Absolute Convergence

Consider the series
a1 + a2 + · · ·+ an · · · ,

whose terms may be positive, negative, or zero. It is reasonable to expect it
to behave at least as “nicely” as the corresponding series with non-negative
terms

|a1|+ |a2|+ · · ·+ |an|+ · · · ,

since by making all the terms positive we give the series more chance to diverge.
This is similar to the case with improper integrals in Section 7.8, where it
was shown that if

∫∞
a
|f(x)| dx converges, then so does

∫∞
a
f(x) dx. The

next theorem (and its proof) is similar to the Absolute-Convergence Test for
Improper Integrals in Section 7.8. (Re-read it. It’s on page 666.)Absolute-Convergence Test

Theorem 11.6.1. (Absolute-Convergence Test) If the series
∑∞

k=1 |ak| con-
verges, then so does the series

∑∞
k=1 ak. Furthermore, if

∑∞
k=1 |ak| = S, then∑∞

k=1 ak is between −S and S.

Proof

We introduce two series in order to record the behavior of the positive and
negative terms in

∑∞
k=1 ak separately. Let

bk =

{
ak if ak is positive
0 otherwise

and ck =

{
ak if ak is negative
0 otherwise

.

Note that ak = bk + ck. To establish the convergence of
∑∞

k=1 ak we show
that both

∑∞
k=1 bk and

∑∞
k=1 ck converge. First of all, since bk is non-negative

and bk ≤ |ak|, the series of positive terms,
∑∞

k=1 bk, converges by the compar-
ison test. In fact, it converges to a number P ≤ S.

Since ck is non-positive, and ck ≥ −|ak|, the series of negative terms,∑∞
k=1 ck, converges to a number N ≥ −S. Thus

∑∞
k=1 ak =

∑∞
k=1(bk + ck)

converges to P +N , which is between −S and S. •

EXAMPLE 3 Examine the series

cos(x)

12
+

cos(2x)

22
+

cos(3x)

32
+ · · ·+ cos(kx)

k2
+ · · · (11.6.2)

for convergence or divergence.
SOLUTION The number x is fixed. The numbers cos(kx) may be positive,
negative, or zero, in an irregular manner. However, for all k, | cos(kx)| ≤ 1.
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The series
1

12
+

1

22
+

1

32
+ · · ·+ 1

k2

is the p-series with p = 2, which converges (by the integral test). Since When you study Fourier
series, in Section 12.7, you
will learn that for
0 ≤ x ≤ 2π, series (11.6.2)
sums to
1
12(3x2 − 6πx+ 2π2).

∣∣∣ cos(kx)
k2

∣∣∣ ≤ 1
k2 , the series

| cos(x)|
12

+
| cos(2x)|

22
+
| cos(3x)|

32
+ · · ·+ | cos(kx)|

k2
+ · · · (11.6.3)

converges by the comparison test. Theorem 11.6.1 then tells us that (11.6.2)
converges. �

WARNING (Converse of Theorem 11.6.1 is false) If
∑

k→∞ ak
converges, then

∑
k→∞ |ak| may converge or diverge. The standard

counterexample to the converse of Theorem 11.6.1 is the alternating
harmonic series, 1

1
− 1

2
+ 1

3
−· · · . This series converges, as was shown

by the alternating-series test (Theorem 11.6). But, when all of the
terms are replaced by their absolute values, the resulting serise is
the harmonic series, 1

1
+ 1

2
+ 1

3
+ · · · , which diverges (it is a p-series

with p = 1).

The following definitions are frequently used in describing these various
cases of convergence or divergence.

DEFINITION (Absolute Convergence) A series a1 + a2 + · · · is
said to converge absolutely if the series |a1|+|a2|+· · · converges.

Theorem 11.6.1 can then be stated simply: “If a series converges absolutely,
then it converges.”

DEFINITION (Conditional Convergence) A series a1 + a2 + · · ·
is said to converge conditionally if it converges but does not
converge absolutely.

1− 1
2 + 1

3 −
1
4 + · · ·

converges conditionally.For instance, the alternating harmonic series 1− 1
2

+ 1
3
− 1

4
+ · · · is condi-

tionally convergent.

Absolute-Limit-Comparison Test

When you combine the limit-comparison test for positive series with the absolute-
convergence test, you obtain a single test, described in Theorem 11.6.2. Absolute-Limit-Comparison

Test
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Theorem 11.6.2. (Absolute-Limit-Comparison Test) Let
∑∞

k=1 ak be a series
whose terms may be negative or positive. Let

∑∞
k=1 ck be a convergent series

of positive terms. If

lim
k→∞

∣∣∣∣akck
∣∣∣∣

exists, then
∑∞

k=1 ak is absolutely convergent, hence convergent.

Proof

Note that |ak/ck| = |ak|/ck, since ck is positive. The limit-comparison test
tells us that

∑∞
k=1 |ak| converges. Then the absolute-convergence test assures

us that
∑∞

k=1 ak converges. •

One advantage of the absolute-convergence test over the limit-comparison
test is that we don’t have to follow it by the absolute-convergence test. Another
is that we don’t have to worry about the arithmetic of negative numbers.

EXAMPLE 4 Show that

3

2

(
1

2

)
− 5

2

(
1

2

)2

+
7

3

(
1

2

)3

− · · ·+ (−1)k+1 2k + 1

k

(
1

2

)k
+ · · · (11.6.4)

converges.
SOLUTION Consider the series with positive terms

3

2

(
1

2

)
+

5

2

(
1

2

)2

+
7

3

(
1

2

)3

+ · · ·+ 2k + 1

k

(
1

2

)k
+ · · · .

The fact that (2k + 1)/k → 2 as k →∞ suggests use of the limit-comparison
test, comparing the second series to the convergent geometric series

∑∞
k=1(1/2)k.

We have

lim
k→∞

2k+1
k

(
1
2

)k(
1
2

)k = 2.

Thus
∑∞

k=1((2k+1)/k)(1/2)k converges. Consequently, the first series (11.6.4),
with both positive and negative terms, converges absolutely. Thus it converges.
�

Absolute-Ratio Test

The ratio test of Section 11.5 also has an analog that applies to series with
both negative and positive terms.Absolute-Ratio Test
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Theorem 11.6.3 (Absolute-Ratio Test). Let
∑∞

k=1 ak be a series such that

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r < 1.

Then
∑∞

k=1 ak converges. If r > 1 or if limk→∞ |ak+1/ak| = ∞, then
∑∞

k=1 ak
diverges. If r = 1, then the Absolute-Ratio Test gives no information.

Proof

Take the case r < 1. By the Ratio Test,
∑∞

k=1 |ak| converges. Since
∑∞

k=1 |ak|
converges, it follows that

∑∞
k=1 ak converges also.

The case r > 1 is treated in Exercise 34.
The case r = ∞ can be treated as follows. If limk→∞ |ak=1/ak| = ∞, the

ratio |ak+1|/|ak| gets arbitrarily large as k → ∞. So from some point on the
positive numbers |ak| increase. By the kth-Term Test for Divergence,

∑∞
k=1 ak

is divergent. •
The Absolute-Ratio Test
avoids work with minus
signs.

Theorem 11.6.3 establishes the convergence of the series in Example 4 as
follows. Let ak = (−1)k+1 (2k+1)

k2k
. Then

∣∣∣∣ak+1

ak

∣∣∣∣ =

∣∣∣∣∣(−1)k+2 (2k+3)
(k+1)2k+1

(−1)k+1 (2k+1)
k2k

∣∣∣∣∣ =
2k + 3

2k + 1
· k

k + 1
· 1

2
,

which approaches r = 1
2

as k → ∞. Thus
∑∞

k=1 ak converges (in fact, abso-
lutely).

Rearrangements
1 + 13 + 15 + 27 =
13 + 27 + 15 + 1The sum of a finite collection of numbers does not depend on the order

in which they are added. A series that converges absolutely is similar: no
matter how the terms of an absolutely convergent series are rearranged, the
new series converges and has the same sum as the original series. It might be
expected that any convergent series has this property, but this is not the case.
For instance, the alternating harmonic series

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · · (11.6.5)

does not. To show this, rearrange the terms so that two positive terms alternate
with one negative term, as follows:

1

1
+

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · . (11.6.6)
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The positive summands in (11.6.6) have much more influence than the negativeRearranging the terms in a
conditionally convergent

series is dangerous.
summands. In the battle between the positives and the negatives, the positives
will win by a bigger margin in (11.6.6) than in (11.6.5). In fact, the sum of
(11.6.6) is 3

2
ln(2), while Exercise 27 shows that the sum of (11.6.5) is ln(2).

Conditionally convergent series are so sensitive that they can be made
to sum to any number that you choose. To be precise, Riemann proved: if∑∞

k=1 ak is a conditionally convergent series and s is any real number, then
there is a rearrangement of

∑∞
k=1 ak whose sum is s. This is proved in Exer-

cise 40.

Summary

Earlier in this chapter we described ways to test for the convergence or di-
vergence of series whose terms are all positive. This section describes several
tests for series that may be a mix of positive and negative terms.

• If the signs alternate and the absolute value of the terms decreases and
approach 0, the series converges. [Alternating-Series Test]

• If the series converges when “all the terms are made positive,” then it
converges. [Absolute-Convergence Test]

• This Absolute-Convergence Test in combination with the Limit-Comparison
Test gives us a single test, called the Absolute-Limit-Comparison Test.

• The Absolute-Convergence Test in combination with the Ratio Test gives
us the Absolute-Ratio Test. (This will be the most important test in
Chapter 12.)
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EXERCISES for Section 11.6 Key: R–routine, M–moderate, C–challenging

Exercises 1 to 8 concern alternating series. Determine which series converge and
which diverge. Explain your reasoning.

1.[R]
1
2
− 2

3
+

3
4
− 4

5
+ · · ·+ (−1)k+1 k

k + 1
+ · · ·

2.[R] − 1
1 + 1

2

+
1

1 + 1
4

− 1
1 + 1

8

+ · · ·+ (−1)k
1

1 + 2−k
+ · · ·

3.[R]
1√
1
− 1√

2
+

1√
3
− 1√

4
+ · · ·+ (−1)k+1 1√

k
+ · · ·

4.[R]
5
1!
− 52

2!
+

53

3!
− 54

4!
+ · · ·+ (−1)k+1 5k

k!
+ · · ·

5.[R]
3√
1
− 2√

1
+

3√
2
− 2√

2
+

3√
3
− 2√

3
+ · · ·

6.[R]
√

1−
√

2 +
√

3−
√

4 + · · ·+ (−1)k+1
√
k + · · ·

7.[R]
1
3
− 2

5
+

3
7
− 4

9
+

5
11
− · · ·+ (−1)k+1 k

2k + 1
+ · · ·

8.[R]
1
12
− 1

22
+

1
32
− 1

42
+ · · ·+ (−1)k+1 1

k2
+ · · ·

9.[R] Consider the alternating harmonic series

∞∑
k=1

(−1)k+1

k
.

(a) Compute S5 and S6 to five decimal places.

(b) Is the estimate S5 smaller or larger than the sum of the series?

(c) Use (a) and (b) to find two numbers between which the sum of the series must
lie.

10.[R] Consider the series
∞∑
k=1

(−1)k+1 2−k

k
.

(a) Estimate the sum of the series using S6.

(b) Estimate the error R6.

11.[R] Does the series
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2
1
− 3

2
+

4
3
− 5

4
+ · · ·+ (−1)k+1

(
n+ 1
n

)
+ · · · .

converge or diverge?

In Exercises 12 to 26 determine which series diverge, converge absolutely, or con-
verge conditionally. Explain your answers.

12.[R]
∞∑
k=1

(−1)k
3
√
k2

13.[R]
∞∑
k=1

ln
(

1
k

)

14.[R]
∞∑
k=1

(−1)k

k ln(k)

15.[R]
∞∑
k=1

sin(k)
k1.01

16.[R]
∞∑
k=1

(
1− cos

(π
k

))
17.[R]

∞∑
k=1

(−1)k cos
( π
k2

)
18.[R]

∞∑
k=1

(−2)k

k!

19.[R]
1
12

+
1
22
− 1

32
− 1

42
+

1
52

+
1
62
− · · · Note: There are two +’s alternating

with two −’s.

20.[R]
∞∑
k=1

(−3)k(1 + k2)
k!

21.[R]
∞∑
k=1

cos(kπ)
2k + 1

22.[R]
∞∑
k=1

(−1)k(k + 5)
k2

23.[R]
∞∑
k=1

(−9)k

10k + k

24.[R]
∞∑
k=1

(−1)k
3
√
k

25.[R]
∞∑
k=1

(−1.01)k

k!

26.[R]
∞∑
k=1

(−π)2k+1

(2k + 1)!
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27.[R] For which values of x does
∞∑
k=1

xk

k!
converge?

28.[R] The series
∞∑
k=1

(−1)k+12−k is both a geometric series and a decreasing alter-

nating series whose kth term approaches 0.

(a) Compute S6 to three decimal places.

(b) Using the fact that the series is a decreasing alternating series, put a bound
on R6.

(c) Using the fact that the series is a geometric series, compute R6 exactly.

29.[M]

(a) How many terms of the series
∞∑
k=1

sin(k)
k2

must you take to be sure the error

is less than 0.005? Explain.

(b) Estimate
∞∑
k=1

sin(k)
k2

to two decimal places.

30.[M] Estimate
∞∑
k=0

(−1)k

k!
= 1− 1 +

1
2!
− 1

3!
+ · · · to two decimal places. Explain

your reasoning.

31.[M]

(a) Show
∞∑
k=1

2k

k!
converges.

(b) Estimate the sum of the series in (a) to two decimal places.

32.[C] Let P (x) and Q(x) be two polynomials of degree at least one. Assume that
for n ≥ 1, Q(n) 6= 0. What relation must there be between the degrees of P (x) and
Q(x) if

(a) P (k)
Q(k) → 0 as k →∞?
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(b)
∞∑
k=1

P (k)
Q(k)

converges absolutely?

(c)
∞∑
k=1

(−1)k
P (k)
Q(k)

converges absolutely?

33.[C] The Alternating-Series Test was proved only for the alternating harmonic se-
ries. Prove it in general. Hint: The only difference is that the kth term is (−1)k+1pk
instead of (−1)k+1/k.

34.[C] This exercise treats the second half of the absolute-ratio test.

(a) Show that if

ρ = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ > 1,

then |ak| → ∞ as k →∞. Hint: First show that there is a number r, r > 1,
such that for some integer N , |ak+1| > r|ak| for all k ≥ N .

(b) From (a) deduce that ak does not approach 0 as k →∞.

35.[M] Consider . For which values of x does the series
∞∑
k=1

kxk

2k + 1
diverge? con-

verge conditionally? converge absolutely? Record your conclusions in a diagram on
the x-axis.

36.[M] Repeat Exercise 35 for the series (a)
∞∑
k=1

xk

k!
and (b)

∞∑
k=1

xk

k2
.

37.[C] Is this argument okay? Add the alternating harmonic series to half of itself:

1 −1
2 +1

3 −1
4 +1

5 −1
6 +1

7 −1
8 +1

9 − 1
10 − 1

11 + 1
12 + · · · = S

1
2 −1

4 +1
6 −1

8 + 1
10 − 1

12 + · · · = 1
2S

1 +1
3 −1

2 +1
5 +1

7 −1
4 +1

9 − 1
11 + · · · = 3

2S

Rearranging the last line produces the alternating harmonic series, whose sum is S.
Thus S = 3

2S, from which it follows that S = 0.

38.[C]

Sam: I have a neat proof that absolute convergence implies convergence. First of
all,

an = an + |an| − |an|.
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Jane: True, but why do that?

Sam: Don’t interrupt me. Just wait. Now an + |an| is 0 if an is negative and it’s
2|an| if an is positive. Right?

Jane: If you say so.

Sam: Just think.

Jane: Yes, I agree.

Sam: So 0 ≤ an + |an| ≤ 2|an|. Right? So
∑

(an + |an|) converges.

Jane: Yes.

Sam: You can fill in the rest, yes?

Jane: Oh, neat.

Sam: Yeh, mathematicians really like this proof.

Is the proof correct? (Explain your answer.) Which proof do you prefer, this one or
the one on page 978?

39.[C] If
∞∑
k=1

ak converges and ak > 0 for all k, what, if anything, can we say about

the convergence or divergence of (a)
∞∑
k=1

sin(ak) and (b)
∞∑
k=1

cos(ak)?

40.[C] Prove that if
∑∞

k=1 ak is a conditionally convergent series and s is any real
number, then there is a rearrangement of

∑∞
k=1 ak whose sum is s. Hint: A condi-

tionally convergent series must have an endless supply of both positive and negative
numbers. And, the series of positive terms and the series of negative terms, sepa-
rately, diverge. Use these facts to explain how to construct a rearrangement that
converges to s.

41.[C] In the proof of the Absolute-Convergence Theorem, why does
∑∞

k=1 ck con-
verge and have a sum greater than or equal to −S?

42.[C] The Absolute-Convergence Test asserts that
∑∞

k=1 ak is between −S and
S. Why is that?
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11.S Chapter Summary

This chapter concerns sequences formed by adding a finite number of terms
from another sequence: Sn = a1 + a + 2 + · · · + an. Two questions motivate
the sections:

• Does limn→∞ Sn exist?

• If the limit exists, how do we estimate it?

If the limit exists, it is denoded
∞∑
k=1

ak, though we never add an infinite

number of summands.
Some of the tests for convergene of divergence apply only to series whose

terms are positive (or all are negative): the Integral Test, the Comparison
Tests, and the Ratio Tests.

For series whose terms an may be both positive and negative, the key is
that if

∑∞
k=1 |ak| converges so must

∑∞
k=1 an. Moreover, if

∑∞
k=1 |ak| = L, then

−L ≤ ak ≤ L.
If the series alternates, a1 − a2 + a3 − a4 + · · · and ak → 0 monotonically,

then
∑∞

k=1 ak converges.
The Integral Test, the Comparison Tests, and the formula for the sum of a

geometric series also provide ways to estimate the error in using a particular
Sn to approximate the sum of the series.

EXERCISES for 11.S Key: R–routine, M–moderate, C–challenging

1.[R] Explain in your own words.

(a) Why the Comparison Test for convergence works.

(b) Why the Ratio Test for convergence works.

(c) Why the Alternating-Series Test works.

(d) Why the Absolute-Convergence Test works.

2.[R] How many terms of the series
∑∞

k=1(−1)n+1(1/n2) should be used to estimate
its sum to three-decimal place accuracy?

3.[R] For which type of series does each of these tests imply convergence:

(a) Alternating-Series Test

(b) Integral Test
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(c) Comparison Test

(d) Absolute-Convergence Test

(e) Absolute-Ratio Test.

4.[R] Assume that |ak| ≤ 1/2n for n ≥ 1.

(a) Must
∑∞

k=1 |ak| converge? If so, what can you say about its sum?

(b) Must
∑∞

k=1 ak converge? If so, what can you say about its sum?

Sometimes convergence or divergence of a series can be established by more than
one of the tests developed in this chapter. In Exercises 5 to 10 determine the con-
vergence or divergence of the given series by as many tests can be applied in each
case.

5.[R]
∞∑
n=1

(−1)n

n2

6.[R]
∞∑
i=1

(−1)i

3i

7.[R]
∞∑
k=1

√
k

k2 + 1

8.[R]
∞∑
k=1

√
k

k2 − 2

9.[R]
∞∑
i=1

3 + 1/n
2 + 1/n

)n
10.[R]

∞∑
n=1

2
3 + 1/n

)n

11.[R] What is the Comparison Test and how can it be used to estimate the error
when using part of a series to approximate the sum of the series.
12.[R] What do the three expressions “convergent,” “conditionally convergent,”
and “absolutely convergent” mean.
13.[R] What tests could be used to to test a series for convergence if you know
that limk→∞ ak+1/ak = −1/3? Explain.

14.[R] For what values of s does
∑∞

k=1 ans
n converge?
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15.[R] Fpr what values of q does
∑∞

k=1 1/np converge?

16.[R] if limk→∞ ak+1/ak = 1, what can we conclude about the series
∑

k→∞ ak?

17.[R] For what values of q does
∑∞

k=1(−1)nnq (a) converge? (b) converge abso-
lutely?

18.[M] If
∑∞

k=0 ak is convergent, does it follow that

(a) limn→∞ an = 0?

(b) limn→∞(an + an+1) = 0?

(c) limn→∞
∑2n

k=n ak = 0?

(d) limn→∞
∑∞

k=n ak = 0?

Note: Compare with Exercise 5 in Chapter 7.

19.[M] In an energy problem one meets the integral

π/2∫
0

sinx
ex − 1

dx.

Note that the integrand is not defined at x = 0. Is that a big obstacle? Is this
integral convergent or divergent? Note: Do not try to evaluate the integral.

20.[M] Give an example of a convergent series of positive terms {ak} such that
limn→∞

an+1

an
does not exist but limn→∞

an+1

an
is not ∞.

21.[C] Assume that f is continuous on [0,∞) and has period one, that is, f(x) =
f(x + 1) for all x in [0,∞). Assume also that

∫∞
0 e−xf(x) dx is convergent. Show

that
∞∫

0

e−xf(x) dx =
e

e− 1

1∫
0

e−xf(x) dx.

In Exercises 22 to 27 a short formula for estimating n! is obtained. 22.[C] Let f
have the properties that for x ≥ 1, f(x) ≥ 0, f ′(x) > 0, and f ′′(x) > 0. Let an be
the area of the region below the graph of y = f(x) and above the line segment that
joins (n, f(n)) with (n+ 1, f(n+ 1)).

(a) Draw a large-scale version of Figure 11.S.1. The individual regions of area a1,
a2, a3, and a4 should be clear and not too narrow.
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(b) Using geometry, show that the series a1 + a2 + a3 + · · · converges and has a
sum no larger than the area of the triangle with vertices (1, f(1)), (2, f(2)),
(1, f(2)).

Figure 11.S.1:
23.[C] Let y = ln(x).

(a) Using Exercise 22, show that as n→∞,

n∫
1

ln(x) dx−
(

ln(1) + ln(2)
2

+
ln(2) + ln(3)

2
+ · · ·+ ln(n− 1) + ln(n)

2

)
has a limit; denote this limit by C.

(b) Show that (a) is equivalent to the assertion

lim
n→∞

(
n ln(n)− n+ 1− ln(n!) + ln(

√
n)
)

= C.

24.[C] From Exercise 23(b), deduce that there is a constant k such that

lim
n→∞

n!
k(n/e)n

√
(n)

= 1.

Exercises 25 and 26 are related. Review Example 8 of Section 8.3 first.
25.[C] Let In =

∫ π/2
0 sinn(θ) dθ, where n is is a nonnegative integer.

(a) Evaluate I0 and Ip.

(b) Show that

I2n =
2n− 1

2n
2n− 3
2n− 2

· · · 3
4

1
2
π

2
and I2n+1 =

2n
2n+ 1

2n− 2
2n− 1

· · · 4
5

2
3
.
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(c) Show that
I7

I6
=

6
7

6
5

4
5

4
3

2
3

2
1

2
π
.

(d) Show that
I2n+1

I2n
=

2n
2n+ 1

2n
2n− 1

2n− 2
2n− 1

· · · 2
3

2
1

2
π
.

(e) Show that
2n

2n+ 1
I2n <

2n
2n+ 1

I2n−1 = I2n+1 < I2n,

and thus limn→∞
I2n+1

I2n
= 1.

(f) From (d) and (e), deduce that

lim
n→∞

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7
· · · (2n)(2n)

(2n− 1)(2n+ 1)
=
π

2
.

This is Wallis’s formula, usually written in shorthand as

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7
· · · = π

2

26.[C]

(a) Show that 2 · 4 · 6 · 8 · · · 2n = 2nn!.

(b) Show that 1 · 3 · 5 · 7 · · · (2n− 1) = (2n)!
2nn! ¿

(c) From Exercise 25 deduce that

lim
n→∞

(n!)24n

(2n)!
√

2n+ 1
=
√
π

2
.

27.[C]

(a) Using Exercise 26(c), show that k in Exercise 24 equals
√

2π. Thus a good
estimate of n! is provided by the formula

n! ≈
√

2πn
(n
e

)n
.

This is known as Stirling’s formula.

(b) Using the factorial key on a calculator, compute (20)!. Then compute the
ratio

√
2πn(n/e)n/n! for n = 20.
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28.[C] Let {ak} and {bk} be sequences of positive terms. Assume that for all k

ak+1

ak
≤ bk+1

bk
.

(a) Prove that if
∑∞

k=1 bk converges, so does
∑∞

k=1 ak. Hint: Rewrite the inequal-
ity as ak+1/bk+1 ≤ ak/bk,

(b) Use the result in (a) to prove that if limk→infty ak+1ak = r < 1, then
∑∞

k=1 ak
converges.
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Calculus is Everywhere # 14

E = mc2

This could also appear as a
boxed item in Chapter 12. The equation E = mc2 relates the energy associated with an object to its

mass and the speed of light. Where does it come from?
Newton’s second law of motion reads: “Force is the rate at which the

momentum of an object changes.” The momentum of an object of mass m
and velocity v is the product mv. Denoting the force by F , we have

F =
d

dt
(mv).

If the mass is constant, this reduces to the familiar “force equals mass times
acceleration.” But what if the mass m is not constant? What if the mass of
an object changes as its velocity changes?

According to Einstein’s Special Theory of Relativity, announced in 1905,
the mass does change, in a manner described by the equation:

m =
m0√
1− v2

c2

. (C.14.1)

Here m0 is the mass at rest, v is the velocity, and c is the velocity of light. IfFor a satellite circling the
Earth at 17,000 miles per

hour, v/c is less than
1/2500.

v is not zero, m is larger than m0. When v is small (compared to the velocity
of light) then m is only slightly larger than m0. However, as v approaches the
velocity of light, the mass becomes arbitrarily large.

Consider moving an object, initially at rest, in a straight line. If the velocity
at time t is v(t), then the displacement is x(t) =

∫ t
0
v(s) ds. Assuming the

object is initially at rest v(0) = 0, the work done by a varying force F in
moving the object during the time interval [0, T ] is

W =
∫ T

0
F (t)v(t) dt =

∫ T
0

(mv)′v dt

= (mv)v|T0 −
∫ T

0
mv(v′) dt integration by parts

= m(v(T ))2 −
∫ T

0
m0vv′q

1− v2
c2

dt

= m(v(T ))2 −
(
−c2m0

√
1− v2

c2

)∣∣∣∣T
0

FTC

= m(v(T ))2 −
(
−c2m0

√
1− (v(T ))2

c2
+ c2m0

√
1− 02

c2

)
since v(0) = 0

= m(v(T ))2 + c2m0

√
1− (v(T ))2

c2
−m0c

2

= m(v(T ))2 +mc2
(

1− (v(T ))2

c2

)
−m0c

2 using (C.14.1)

= m(v(T ))2 +mc2 −m(v(T ))2 −m0c
2

= mc2 −m0c
2.
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We can interpret this as saying that the “total energy associated with the
object” increases from m0c

2 to mc2. The energy of the object at rest is then
m0c

2, called its rest energy.
That is the mathematics behind the equation E = mc2. It suggests that

mass may be turned into energy, as Einstein predicted. For instance, in a
nuclear reactor some of the mass of the uranium is indeed turned into energy
in the fission process. Also, the mass of the sun decreases as it emits radiant
energy.

What about the equation that states kinetic energy is half the product of
the mass and the square of the velocity? That is what (C.14.2) resembles when
v is small (compared to c). In this case the first two terms of the binomial

series for (1− x2)
−1/2

, with x = v2/c2, give

mc2 −m0c
2 = m0

(
1− v2

c2

)−1/2

c2 −mc2 ≈ m0c
2

(
1 +

1

2

v2

c2

)
−m0c

2

= m0c
2 +

1

2

m0c
2v2

c2
−m0c

2

=
m0v

2

2
.

So the increase in energy is well approximated by the familiar kinetic energy,
1
2
m0v

2.
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Chapter 12

Applications of Series

The preceding chapter developed several tests for determining the convergence
or divergence of infinite series. This chapter applies infinite series to approxi-
mate functions such as ex and sin(

√
x), evaluate integrals, and calculate limits

of the indeterminate form “zero-over-zero”. After asection devoted to com-
plex numbers, we will use them to show that there is a close link between
trigonometric and exponential functions.

997
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12.1 Taylor Series

Section 5.4 introduced the nth-order Taylor polynomial of a function f centered
at a as the polynomial Pn that agrees with f and its first n derivatives at x = a:

Pn(x; a) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 · · ·+ f (n)(a)

n!
(x− a)n

=
n∑
k=0

f (k)(a)

k!
(x− a)k

The sequence of Taylor polynomials P0(x; a), P1(x; a), . . . , Pn(x; a), . . . can
now be viewed as the sequence of partial sums of the infinite series

∞∑
k=0

f (k)(a)

k!
(x− a)k.

This series is called the Taylor series at a associated with the function f .
When a = 0, the series is also called the Maclaurin series associated with
f .

EXAMPLE 1 Find the Maclaurin series associated with f(x) = ex.
SOLUTION In Example 1 of Section 5.4 the third-order Maclaurin polyno-
mial of f(x) = ex was found to be P3(x; 0) = 1 + x + x2/2! + x3/3!. This is
the front end of the Maclaurin series associated with the exponential function.
The calculation of the coefficient for the general term in the Maclaurin series
is summarized in Table 12.1.1.

k fk)(x) f (k)(0) f (k)/k!
0 ex e0 = 1 1/0! = 1
1 ex 1 1/1! = 1
2 ex 1 1/2! = 1/2
3 ex 1 1/3! = 1/6
...

...
...

...
k ex 1 1/k!

Table 12.1.1:

The Maclaurin series associated with the exponential function is

∞∑
k=0

1

k!
xk = 1 + x+

x2

2
+ · · ·+ xk

k!
+ · · · .

�
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EXAMPLE 2 Find the Taylor series at x = 1 associated with f(x) = 1/x.
SOLUTION The calculation of the coefficient for the general term in the Tay-
lor series at x = 1 associated with f(x) = 1/x is summarized in Table 12.1.2.
Notice that the terms alternate in sign, with the terms for even values of k

k fk)(x) f (k)(0) f (k)/k!
0 1/x = x−1 1 1/0! = 1
1 −x−2 −1 −1/1! = −1
2 2x−3 2 2/2! = 1
3 −6x−4 −6 −6/3! = −1
...

...
...

...
k (−1)kk!x−(k+1) (−1)kk! (−1)k

Table 12.1.2:

being positive. The Taylor series at x = 1 associated with f(x) = 1/x is

∞∑
k=0

(−1)k(x−1)k = 1− (x−1)+(x−1)2− (x−1)3 + · · ·+(−1)k(x−1)k + · · · .

�

We have been careful to say the Taylor series is associated with the original
function f(x). We did not say that it converges, nor did we say, if it converges,
that it converges to f(x). To understand the relation between a function (−1)n(x− 1)n = (1− x)n

and its Taylor series, observe that the Taylor series found in Example 2 is
a geometric series with first term 1 and ratio (1 − x). We know this series See Theorem 11.2.1 in

Section 11.2 on page 934.converges whenever |(1− x)| < 1, and, for any x in (0, 2), its limit is the given
function 1/x:

∞∑
k=0

(1− x)k =
1

1− (1− x)
=

1

x
.

For all other values of x, this geometric series diverges.

In this case the Taylor series represents the original function in the sense
that the Taylor polynomials converge to the function on (0, 2) as n → ∞.
However, we did not use the Lagrange formula for the error to establish this
fact. To see why not, go to Exercises 27 and 29. See Exercise 31 for a

function whose Maclaurin
series does not represent the
function.

To determine when the Taylor series converges to the function from which
it was obtained, recall that the remainder of the nth-order Taylor polynomial
is the difference between the function and the nth-order Taylor polynomial:

Rn(x; a) = f(x)− Pn(x; a).
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If limn→∞Rn(x, a) = 0, the Taylor series represents the original function and
we will write

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

see Theorem 5.4.1

The Lagrange Form of the Remainder, described in Section 5.4, tells us
that the remainder can be written in the form

Rn(x, a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1 for some number cn between x and a.

EXAMPLE 3 Show that the Maclaurin series for the exponential function,
ex, represents ex for all x.
SOLUTION In Example 1 the Maclaurin series associated with the expo-
nential function was found to be

∞∑
k=0

xk

k!
.

To determine if this series represents ex for all x we must show that theRecall that all derivatives of
ex are ex. remainder Rn(x, 0) → 0 as n → ∞ for all numbers x. According to the

Lagrange form of the remainder (see Theorem 5.4.1),

Rn(x, 0) =
f (n+1)(cn)

(n+ 1)!
(x− 0)n+1 =

ecn

(n+ 1)!
xn+1

where cn is a number between 0 and x and depends on n.
First, consider the case where x is positive. Since 0 ≤ cn ≤ x and the

exponential function is increasing, we have 1 ≤ ecn ≤ ex, hence

1

(n+ 1)!
xn+1 ≤ Rn(x, 0) ≤ ex

(n+ 1)!
xn+1.

Since x is a fixed positive number, we know that both limn→∞
1

(n+1)!
xn+1 = 0See Section 11.2,

Example 3. and limn→∞
ex

(n+1)!
xn+1 = 0. Thus, limn→∞Rn(x, 0) = 0.

When x is negative the analysis is similar, except that x ≤ cn ≤ 0.
The reader may carry out the details leading again to the conclusion that
limn→∞Rn(x, 0) = 0.See Exercise 10

The final case is x = 0. Notice that, for each n ≥ 0, Pn(0; 0) = 1 and so
Rn(0; 0) = 0.

Because we have shown that limn→∞Rn(x, 0) = 0 for all numbers x, we
can write

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+ · · · =

∞∑
k=0

xk

k!
.
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This provides a way to estimate ex using only addition, multiplication, and
division. In particular, when x = 1, it gives a series representation of e:

e = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · · .

Euler used this formula to evaluate e to 23 decimal places (without the aid of
a calculator). �

EXAMPLE 4 Find the Maclaurin series for f(x) = cos(x) and show that
it represents f(x) for all x.
SOLUTION We must show that Rn(x, 0)→ 0 as n→∞. By the Lagrange
form of the remainder,

Rn(x, 0) =
f (n+1)(cn)

(n+ 1)!
(x− 0)n+1,

where cn is between 0 and x.

Since f(x) = cos(x), we have f (1)(x) = − sin(x), f (2)(x) = − cos(x),
f (3)(x) = sin(x), f (4)(x) = cos(x), and so on. All derivatives are either± cos(x)
or ± sin(x). Thus, for any nonnegative integer n and any real number c,∣∣f (n+1)(c)

∣∣ ≤ 1.

Consequently,

|Rn(x, 0)| =
∣∣∣∣f (n+1)(cn)

(n+ 1)!
xn+1

∣∣∣∣ ≤ |x|n+1

(n+ 1)!
,

which approaches 0 as n→∞.

Hence the Maclaurin series associated with f(x) = cos(x) represents cos(x)
for all numbers x.

The information in Table 12.1.3 helps to determine the Maclaurin series
for cos(x). Notice that every odd-power term is zero and the signs alternate
between successive even-power terms. Thus, for any number x,

cos(x) = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)k

x2k

(2k)!
+ · · · =

∞∑
k=0

(−1)kx2k

(2k)!
.

�
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k fk)(x) f (k)(0) f (k)/k!
0 cos(x) 1 1/0! = 1
1 − sin(x) 0 0/1! = 0
2 − cos(x) −1 −1/2! = −1/2
3 sin(x) 0 0/3! = 0
4 cos(x) 1 1/4! = 1/24
...

...
...

...

Table 12.1.3:

Summary

The Taylor series at a associated with a function is the series whose partial
sums are the nth-order Taylor polynomials of the function. This series rep-
resents the original function only for inputs such that the remainder of the
nth-order Taylor polynomial approaches zero as n→∞: limn→∞Rn(x, a) = 0.
The Lagrange form of the remainder, Theorem 5.4.1 from Section 5.4, helps to
show that the remainder converges to zero, though, as Exercise 27 illustrates,
in some cases it may not be strong enough to do that.

Function Series Interval of Convergence

ex
∑∞

k=0
xk

k!
all x: (−∞,∞)

cos(x)
∑∞

k=0
(−1)kx2k

(2k)!
all x: (−∞,∞)

1
x

∑∞
k=0(−1)k(x− 1)k =

∑∞
k=0(1− x)k 0 < x < 2 : (0, 2)

Table 12.1.4:
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EXERCISES for Section 12.1 Key: R–routine, M–moderate, C–challenging

1.[R] State without using any mathematical symbols the formula for the terms of
a Taylor series of a function around a number that may not be zero.

2.[R] State without using any mathematical symbols the formula for the terms of
a Maclaurin series of a function.

In Exercises 3 to 8 compute the Maclaurin series associated with the given function
3.[R] 1/(1 + x)
4.[R] 1/(1− x)
5.[R] ln(1 + x)
6.[R] ln(1− x)
7.[R] sin(x)
8.[R] e−x

9.[R] Let f(x) = 2 + 3x− 4x2.

(a) Find P1(x; 0), P2(x; 0), and P3(x; 0).

(b) What is the Maclaurin series associated with f(x)?

(c) Find P1(x; 1), P2(x; 1), and P3(x; 1).

(d) What is the Taylor series at x = 1 associated with f(x)?

10.[R] Let f(x) = ex. Show that limn→∞Rn(x; 0) = 0 for any negative number x.
This completes the proof that the exponential function is represented by its Maclau-
rin series for all numbers x (see Example 3).

11.[R] Show that the Maclaurin series associated with sin(x) represents sin(x) for
all x.

12.[R] Show that the Maclaurin series associated with e−x represents e−x for all
x.

13.[R] Show that the Maclaurin series associated with any polynomial f(x) repre-
sents the polynomial for all x. Hint: Examine Rn(x; 0).

14.[R] Show that the Maclaurin series associated with 1/(1+x) represents 1/(1+x)
for all −1/2 < x < 1. Hint: Examine Rn(x; 0). Note: Actually, the representation
holds for −1 < x < 1. See also Exercise 28.

Calculus December 6, 2010



1004 CHAPTER 12 APPLICATIONS OF SERIES

15.[R] Show that the Taylor series in powers of x−a for ex represents ex for all x.

16.[R] Show that the Taylor series in powers of x− a for cos(x) represents cos(x)
for all x.

17.[M]

(a) Which polynomials are even functions?

(b) If f is an even function, is Pn(x; 0) necessarily an even function? Explain.

18.[M]

(a) Which polynomials are odd functions?

(b) If f is an odd function, is Pn(x; 0) necessarily an odd function? Explain.

19.[M]

(a) Is f(x) = arctan(x) an odd function? an even function? neither?

(b) Find P3(x; 0).

(c) What powers of x in the Maclaurin series associated with arctan(x) will have
coefficients of 0?

20.[M] Obtain the first two non-zero terms of the Maclaurin series associated with
arctan(x). Note: In Section 12.4 we describe a shortcut for finding all the terms of
the series for arctan(x).

21.[M]

(a) Find the Maclaurin series associated with (1 + x)4.

(b) Find the Maclaurin series associated with (1 + x)n, where n is a positive
integer.

22.[C] Do there exist any polynomials p(x) such that sin(x) = p(x) for all x in the
interval [1, 1.0001]? Explain.
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23.[C] Do there exist any polynomials p(x) such that ln(x) = p(x) for all x in the
interval [1, 1.0001]? Explain.

24.[M] Let f be a function that has derivatives of all orders for all x. Assume that∣∣f (n)(x)
∣∣ ≤ n for all n. Show why f(x) is represented by its Maclaurin series for all

x.

25.[M] Let f be a function that has derivatives of all orders for all x. Assume that∣∣f (n)(x)
∣∣ ≤ 2n for all n. Does Rn(x; 0) necessarily approach 0 for all x as n → ∞?

If not, for which x does it necessarily approach 0?

26.[M] Since exey = ex+y, the product of the Maclaurin series for ex and ey should
be the Maclaurin series for ex+y. Check that for terms up to degree 3 in the series
for ex+y, this is the case.

27.[C] We know that for |x| < 1 the geometric series
∑∞

k=0 x
k converges to 1/(1−x),

because we had a formula for the error, namely,
∣∣xn+1/(1− x)

∣∣. This exercise shows
that the Lagrange form for the error is not strong enough to show that the series
converges to 1/(1− x) in (−1, 1).

(a) Show that the Maclaurin series for 1/(1− x) is
∑∞

k=0 x
k.

(b) Show that the Lagrange form of the error gives Rn(x; 0) = 1
1−cn

(
x

1−cn

)n+1

for some cn between 0 and x.

(c) Show that for x = 1/3, the formula for Rn(x; 0) implies that it approaches 0
as n→∞.

(d) Show that for x = 2/3, the formula for Rn(x; 0) does not imply that it ap-
proaches 0 as n→∞.

(e) Show that for x = −2/3, the formula for Rn(x; 0) implies that it approaches
0 as n→∞.

(f) For which x in (−1, 1) is the formula for Rn(x; 0) useful in showing that
Rn(x; 0) approaches 0 as n→∞?

28.[C] In Example 3(b) the Taylor series at x = 1 for 1/x is found to be

1− (x− 1) + (x− 1)2 − (x− 1)3 + · · ·+ (−1)k(x− 1)k + · · · .

(a) This is a geometric series. What is the first term? What is the ratio?
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(b) Show that this geometric series converges to 1/x for all 0 < x < 2, and diverges
for all other values of x.

(c) The Lagrange form for the remainder is

Rn(x; 1) =
f (n+1)(cn)
(n+ 1)!

(x− 1)n+1.

Show that

f (n+1)(cn) =
(−1)n+1(n+ 1)!

cn+2
n

and

|Rn(x; 1)| = 1
cn

(
|x− 1|
cn

)n+1

.

(Assume 0 < x < 2 and cn is between x and 1.)

(d) Show that if 1/2 < x < 2 then |x− 1|/cn < 1 and so Rn(x; 1)→ 0 as n→∞
for these values of x.

(e) Show that if x = 1/2 then 1/2 ≤ |x− 1|/cn ≤ 1 and so the Lagrange formula
fails to show that Rn(1/2; 1)→ 0 as n→∞.

(f) Show that if 0 < x < 1/2 then the Lagrange formula fails to show that
Rn(1/2; 1)→ 0 as n→∞.

Hint: First, complete Exercise 27. Note: Another form of the remainder ex-
presses Rn(x; a) as an integral instead of a derivative. That form, which shows that
Rn(x; 1)→ 0 as n→∞ for all x with |x− 1| < 1, is found in any advanced calculus
text. See also Exercise 14.

29.[C] This problem examines three ways to estimate the error in using a front-end
of
∑∞

k=0
(−1)k

k! to estimate e−1.

(a) Use the Lagrange formula to obtain an estimate of the error in using the
front-end up through (−1)m/m! to estimate e−1

(b) Estimate the error by noticing the series is alternating and the terms decrease
in absolute value

(c) Estimate the error by comparing
∑∞

k=m+1

∣∣∣ (−1)k

k!

∣∣∣ to a geometric series, which
is easy to sum.

(d) Which of the three methods provides the smallest (best) estimate of the error?

Exercises 30 and 31 present a non-zero function whose Maclaurin series has the value
0 for all x, and therefore does not represent the function. This function is so “flat”
at the origin that all its derivatives are zero there.

30.[C] The following steps show that lim
x→0

e1/x2

xn
= 0 for all positive numbers n:
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(a) Why does it suffice to consider only x > 0?

(b) Let v = 1/x2 and translate the limit to

lim
v→∞

vn/2e−v.

(c) This limit is similar to a limit treated in Section 5.5. Show that it equals 0.

(d) Show that lim
n→∞

p(x)e−1/x2

xn
= 0 for any polynomial p(x).

31.[C] Let f(x) = e−1/x2
if x 6= 0 and f(0) = 0.

(a) Show f is continuous at 0.

(b) Show f is differentiable at 0.

(c) Show that f ′(0) = 0.

(d) Show that f ′′(0) = 0.

(e) Explain why f (n)(0) = 0 for all integers n ≥ 0.

(f) What is the Maclaurin series associated with f?

(g) Why does the example use e−1/x2
instead of the simpler e−1/x.
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12.2 Two Applications of Taylor Series
Q: Why bother with Tayor
series when my calculator
can give these answers to

more decimal places faster?
A: Read the section.

The front-end of the Taylor series representation of a function f(x) approx-
imates the function. After an example to remind us how to estimate a value
of a function, the remaining examples in this section illustrate how to evaluate
certain limits and to approximate the value of definite integrals.

Using a Front-End to Estimate f(x)

EXAMPLE 1 Estimate
√√

e+ 3 using the first four terms of the Maclau-
rin series for

√
ex + 3. Discuss the error.

SOLUTION To find the third-degree Maclaurin polynomial we need the first
three derivatives of f(x):

f ′(x) =
ex

2
√
ex + 3

, f ′′(x) =
ex(ex + 6)

4(ex + 3)3/2
, f ′′′(x) =

ex(e2x + 6ex + 36)

8(ex + 3)5/2

From these, and the observation that e0 = 1 and
√
e0 + 3 = 2, give us the

desired approximating Maclaurin polynomial:

f(x) ≈ P3(x; 0) = 2 +
1

4
x+

7

64
x2 +

43

1536
x3.

Then

√√
e+ 3 = f

(
1

2

)
≈ P3(

1

2
; 0) =

26491

12288
≈ 2.1558431.

By Lagrange’s form of the remainder, the error can be written as

f (4)(c)
(

1
2

)4

4!
for some number c in [0, 1/2].

To obtain an upper bound on
∣∣f (4)(x)

∣∣ =

∣∣∣∣ex(e3x + 12e2x − 36ex + 216)

16(ex + 3)7/2

∣∣∣∣ for x

in [0, 1/2], notice that 1 = e0 < ex < 41/2 = 2 for all x in [0, 1/2]. An upper
bound on the numerator is found by using ex < 2:∣∣ex (e3x + 12e2x − 36ex + 216

)∣∣ ≤ 2(23 + 12(2)3 + 36(2) + 216) = 648.

Likewise, using ex > e0 = 1 provides a lower bound on the denominator:

16(ex + 3)7/2 ≥ 16(1 + 3)7/2 = 16(128).

Combined, the error is bounded above by∣∣f (4)(c)
∣∣ (1

2

)4

4!
≤ 648

16(128)

1

16

1

24
=

27

32768
≈ 0.000823 for all c in [0, 1/2].

Thus, to three decimal places,
√√

e+ 3 ≈ 2.156. �
To obtain more accurate estimates use more terms in the Maclaurin series

for f(x) =
√
ex + 3.
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Using a Taylor Series to Find a Limit

The next example shows how series can be used to evaluate the limit of an
indeterminate form.

EXAMPLE 2 Use the Maclaurin series for sin(x) and ex to evaluate

lim
x→0

(e2x − 1)
4

sin (x3)
.

SOLUTION We know the Maclaurin series for ex represents the exponential
function for all numbers x. This allows us to write the numerator of the limit
as

(
e2x − 1

)4
=

((
1 + (2x) +

(2x)2

2
+ · · ·

)
− 1

)4

=

(
(2x) +

(2x)2

2
+ · · ·

)4

= 16x4 + 64x5 +
416

3
x6 + · · · .

Likewise, because the Maclaurin series for sin(x) represents the sine function
for all numbers x, the denominator of the limit can be written as

sin
(
x3
)

= (x4)− (x4)3

6
+ · · · = x4 − 1

6
x12 + · · · .

These two results can be combined to find the limit:

lim
x→0

(e2x − 1)
4

sin (x3)
= lim

x→0

16x4 + 64x5 + 416
3
x6 + · · ·

x4 − 1
6
x12 + · · ·

= lim
x→0

x4 (16 + 64x+ · · · )
x4
(
1 + 1

6
x8 + · · ·

) = lim
x→0

16 + 64x+ · · ·
1 + 1

6
x8 + · · ·

=
16

1
= 16.

�

The limit in Example 2 has the indeterminate form 0
0
. It could also have

been obtained using l’Hôpital’s rule — applied four times.

Using a Taylor Series to Estimate an Integral
The integral describes the
“bell curve.”In statistics, the integral

∫ b
−∞(1/

√
2π)e−x

2/2 dx is of major importance.

Since e−x
2/2 does not have an elementary antiderivative, the integral must be

estimated by other means. Tables of values of this function can be found
in almost any mathematical handbook. For example, Abramowitz, M. and
Stegun, I. A. (Eds.). Handbook of Mathematical Functions with Formulas,
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Graphs, and Mathematical Tables, (9th printing, New York: Dover, pp. 931-
933, 1972). lists values of this function for b in the interval [0, 4] at intervals
of 0.01.

The next example shows how to estimate
∫ b
a
f(x) dx when f(x) is repre-

sented by a Taylor series.

EXAMPLE 3 Use the Maclaurin series for ex to estimate
∫ 1

0
e−x

2
dx.

SOLUTION The first step is to obtain the Maclaurin series for the integrand:
e−x

2
. Because

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

we can replace x with −x2 to obtain

e−x
2

= 1− x2 +
x4

2!
− x6

3!
+ · · · . (12.2.1)

For 0 ≤ |x| ≤ 1, (12.2.1) is a convergent alternating series. Every partial sum
that ends with a negative term is smaller than e−x

2
; every partial sum that

ends with a positive term is larger than e−x
2
. For example,

1− x2 +
x4

2!
− x6

3!
< e−x

2

< 1− x2 +
x4

2!
− x6

3!
+
x8

4!
.

Hence∫ 1

0

(
1− x2 + x4

2!
− x6

3!

)
dx <

∫ 1

0
e−x

2
dx <

∫ 1

0

(
1− x2 + x4

2!
− x6

3!
+ x8

4!

)
dx,

or 1− 1
3

+ 1
5·2!
− 1

7·3!
<

∫ 1

0
e−x

2
dx < 1− 1

3
+ 1

5·2!
− 1

7·3!
+ 1

9·4!
.

From this it follows that

0.742 <

1∫
0

e−x
2

dx < 0.748.

�

The approach used in Example 3 is best for small values of b.
The final example shows how a Maclaurin series can be used to estimate a

number to a prescribed number of decimal places.

EXAMPLE 4 Use the Taylor series at x = 1 for 1/x to estimate ln(3/2)
to four decimal places.
SOLUTION The starting point is the definition of the equation ln(t) =

∫ t
1
dx
x

.

In particular, we are looking at ln(3/2) =
∫ 3/2

1
dx
x

.
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The integrand can be replaced by a series representation provided the series
represents the function throughout the interval. By Example 2, the Taylor
series at 1 represents 1/x for 0 < x < 2:

1/x = 1 + (1− x) + (1− x)2 + · · · =
∞∑
k=0

(1− x)k.

Since we are integrating over the interval [1, 3/2], we obtain a series represen-
tation for ln(3/2) in the following manner:

ln(3/2) =

3/2∫
1

dx

x
=

3/2∫
1

∞∑
k=0

(1− x)k dx =
∞∑
k=0

3/2∫
1

(1− x)k dx

=
∞∑
k=0

−1

k + 1
(1− x)k+1

∣∣∣∣3/2
1

=
∞∑
k=0

−1

k + 1

(
−1

2

)k+1

=
∞∑
k=0

(−1)k

(k + 1)2k+1
.

So

ln(3/2) =
1

1 · 21
− 1

2 · 22
+

1

3 · 23
− 1

4 · 24
+ · · · =

∞∑
k=1

(−1)k−1

k · 2k
.

This is a convergent series. Why is it convergent?

Approximations of ln(3/2) can be found by truncating this series after any
finite number of terms, such as this three-term sum:

1

1 · 2
− 1

2 · 4
+

1

3 · 8
.

N
∑N

k=0
(−1)k

(k+1)2k+1
(−1)N+1

(N+2)2N+2

0 0.5 −0.125000
1 0.375 0.041666
2 0.416666 −0.015625
3 0.401042 0.006250
4 0.407292 −0.002604
5 0.404687 0.001116
6 0.405804 −0.000488
7 0.405315 0.000217
8 0.405532 −0.000097
9 0.405434 0.000044

Table 12.2.1:

We learned in Section 11.6 that the error in truncating a convergent alter-
nating series is bounded by the absolute value of the first omitted term, the
“next term.” Table 12.2.1 shows the first 10 partial sums and the next term.
The next term (in absolute value) drops below 0.00005 when N = 9. This
means t0.4054 is an estimate of ln(3/2) that is accurate to four decimal places.
of ln(3/2) is 0.4054. �

The critical step was the switching of the sum and the integral:

3/2∫
1

∞∑
k=0

(1− x)k dx =
∞∑
k=0

3/2∫
1

(1− x)k dx

This will be discussed in Section 12.4.

Summary

The Taylor series associated with a function can be used to evaluate limits
and to approximate function values and definite integrals. These ideas will be
studied in greater detail in Sections 12.5 and 12.6.
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EXERCISES for Section 12.2 Key: R–routine, M–moderate, C–challenging

1.[R] Use the Maclaurin series for ex to estimate 1/e = e−1 to three decimal places.

2.[R] Use the Maclaurin series for ex to estimate e2 to three decimal places.

3.[R] Use the Maclaurin series for cos(x) to estimate cos(20◦) to three decimal
places. Hint: First, convert 20◦ to radians. Use π ≈ 3.14159 to keep round-off
errors under control.

4.[R]

(a) Estimate cos(40◦) to three decimal places using the Maclaurin series for cos(x).

(b) Estimate cos(40◦) to three decimal places using the Taylor series for cos(x) in
powers of x− π/4.

(c) Which estimate requires fewer terms to obtain the desired accuracy? Why?

Hint: Use π ≈ 3.14159 to keep round-off errors under control.

5.[R] Evaluate lim
x→0

cos(x)− (1− x2/2 + x4/24− · · ·
ex

.

6.[M]

(a) Show

1∫
0

(ex − 1)/x dx is finite, even though the integrand is not defined 0.

(b) Show that 1 +
1

2 · 2!
+

1
3 · 3!

+
1

4 · 4!
+

1
5 · 5!

is an estimate of the integral in

(a).

(c) The error in using the sum in (b) is 1
6·6! + 1

7·7! + 1
8·8! + 1

9·9! + · · · . Show that

this is less than 1
6·6!

(
1 + 1

7

(
1
7

)
+ 1

7

(
1
7

)2 + 1
7

(
1
7

)3 + · · ·
)

.

(d) From (c) deduce that the error is less than 0.000237.

7.[M] Find lim
x→0

cos(x)(ex)2 − 1
sin2(x)

using (a) Maclaurin series and (b) l’Hôpital’s rule.

8.[M]
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(a) Show that for x in [0, 2]

x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
≤ ex − 1 ≤ x+

x2

2!
+
x3

3!
+ · · ·+ xn

n!
+

e2xn+1

(n+ 1)!
.

(b) Use (a) to find
∫ 2

0
ex−1
x dx to three decimal places.

9.[M] Find
∫ 1

0
1−cos(x)

x dx to three decimal places, using an approach like that in
Exercise 8.

10.[M] Estimate
∫∞

0 e−5x2
dx following these steps:

(a) Find a number b such that

∞∫
b

e−5x2
dx < 0.0005.

(Use the fact that e−5x2
< e−5x for x > 1.)

(b) Let b be the number you found in (a). Estimate
∫ b

0 e
−5x2

dx with an error of
less than 0.0005. (Use the Maclaurin series for e−5x2

.)

(c) Combine (a) and (b) to get a two decimal place estimate of
∫∞

0 e−5x2
dx.

11.[M] Estimate
∫∞

0
cos(x6/100)−1

x6 dx, following these steps:

(a) Find a number b such that∣∣∣∣∣∣
∞∫
b

cos(x6/100)− 1
x6

dx

∣∣∣∣∣∣ < 0.001.

(Use the fact that | cos(x)| ≤ 1.)

(b) Let b be the number you found in (a). Estimate

b∫
0

cos(x6/100)− 1
x6

dx,

with an error less that 0.001. (Use the Maclaurin series for cos(x).)

Calculus December 6, 2010



1014 CHAPTER 12 APPLICATIONS OF SERIES

(c) Combine (a) and (b) to get a two decimal place estimate for

∞∫
0

cos(x6/100)− 1
x6

dx.

12.[C] Evaluate
∫ 1

0
dx

1+x2 by

(a) the Fundamental Theorem of Calculus (approximate π to 3 decimal places),

(b) Simpson’s method (six sections),

(c) trapezoid method (six sections),

(d) using the first six non-zero terms of the series 1−x2 +x4− · · · for 1/(1 +x2).

13.[C] Repeat Exercise 12 for
∫ 1

0
dx

1+x3 .

14.[C] Assume that f(x) has a continuous fourth derivative. Let M4 be the maxi-
mum of

∣∣f (4)(x)
∣∣ for x in [−1, 1]. Show that∣∣∣∣∣∣

1∫
−1

f(x) dx− f
(

1√
3

)
− f

(
−1√

3

)∣∣∣∣∣∣ ≤ 7M4

270
.

Hint: Use the representation f(x) = f(0) + f ′(0)x + f ′′(0)x2/2 + f (3)(0)x3/6 +
f (4)(c)x4/24, where c depends on x.
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12.3 Power Series and Their Interval of Con-

vergence

Our use of Taylor polynomials to approximate a function led us to consider
series of the form

∞∑
k=0

bk(x− a)k = b0 + b1(x− a) + b2(x− a)2 + · · ·+ bk(x− a)k + · · · .

Such a series is called a power series in x− a. If a = 0, we obtain a series in
powers of x:

∞∑
k=0

bkx
k = b0 + b1x+ b2x

2 + · · ·+ bkx
k + · · · .

We will now look at some properties of power series and see that they behave
very much like polynomials.

The Radius of Convergence of a Power Series
For each fixed choice of x, a
power series becomes a
series with constant terms.

The power series b0 + b1x + b2x
2 + · · · certainly converges when x = 0. It

may or may not converge for other choices of x. However, as Theorem 12.3.1
will show, if the series converges at a certain value c, it converges at any
number x whose absolute value is less than |c|, that is, throughout the interval
(−|c|, |c|). Since the proof of Theorem 12.3.1 uses the comparison test and the
absolute-convergence test, it offers a nice review of important concepts from
Chapter 11.

Theorem 12.3.1. Let c be a nonzero number such that Assume that
∑∞

k=0 bkc
k

converges. Then, if |x| < |c|,
∑∞

k=0 bkx
k converges. In fact, it converges

absolutely.

The proof is at the end of this section. The x’s for which the series
converges form an interval
with 0 at its midpoint.

By Theorem 12.3.1, the set of numbers x such that
∑∞

k=0 bkx
k converges

has no holes. In other words, it is one unbroken piece, which includes the
number 0. Moreover, if r is in the set, so is the entire open interval (−|r|, |r|).

There are two possibilities. In the first case, there are arbitrarily large
r’s such that the series converges for x in (−r, r). This means that the series
converges for all x. In the second case, there is an upper bound on the numbers
r such that the series converges for x in (−r, r). It is shown in advanced calculus
that there is then a smallest upper bound on the r’s; call it R. Consequently, See Figure 12.3.1.

either Note that convergence or
divergence at R and −R is
not mentioned.1. b0 + b1x+ b2x

2 + · · · converges for all x
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or

2. there is a number R such that b0 + b1x + b2x
2 + · · · converges for all x

such that |x| < R but diverges for |x| > R.

Figure 12.3.1:

In the second case, R is called the radius of convergence of the series. In
the first case, the radius of convergence is said to be infinite, R =∞. For the
geometric series 1+x+x2+· · ·+xk+· · · , R = 1, since the series converges when
|x| < 1 and diverges when |x| > 1. (It also diverges when x = 1 and x = −1.)
A power series with radius of convergence R may or may not converge at x = R
and at x = −R. These observations are summarized as Theorem 12.3.2.

Theorem 12.3.2. Let R be the radius of convergence for the power series∑∞
k=0 bkx

k. If R = 0, the series converges only for x = 0. If R is a positive
real number, the series converges for |x| < R and diverges for |x| > R. If R is
∞, the series converges for all x.

EXAMPLE 1 Find all value of x for which x− x2

2
+ x3

3
− x4

4
+· · ·+ (−1)k+1xk

k
+

· · · converges.
SOLUTION Because of the presence of xk and the fact that x may be nega-
tive, use the absolute-ratio test. The absolute value of the ratio of successive
terms is ∣∣∣∣∣

(−1)k+2xk+1

k+1

(−1)k+1xk

k

∣∣∣∣∣ =
k

k + 1
|x|.

As k →∞, k/(k + 1)→ 1. Thus,

if |x| < 1, lim
k→∞

k

k + 1
|x| = |x| < 1;

if |x| > 1, lim
k→∞

k

k + 1
|x| = |x| > 1.
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The absolute-ratio test
takes care of |x| < 1 and
|x| > 1.

By the absolute-ratio test, the series converges for |x| < 1 and diverges for
|x| > 1. The radius of convergence is R = 1. It remains to see what happens
at the endpoints, 1 and −1.

For x = 1, we obtain the alternating harmonic series: Checking convergence at
x = 1

1− 1

2
+

1

3
− 1

4
+ · · · .

This series converges, by the alternating-series test. Thus, x− x2

2
+ x3

3
− x4

4
+

· · ·+ (−1)k+1xk

k
+ · · · converges for x = 1.

What about x = −1? The series becomes Checking convergence at
x = −1

(−1)− (−1)2

2
+

(−1)3

3
− (−1)4

4
+ · · ·+ (−1)k+1(−1)k

k
+ · · ·

or

−1− 1

2
− 1

3
− 1

4
− · · · − 1

k
+ · · · ,

which, being the negative of the harmonic series, diverges.

The series x−x2

2
+x3

3
−x4

4
+· · ·+ (−1)k+1xk

k
+· · · converges only for−1 < x ≤ 1.

Figure 12.3.2 records what we found about this series.

Figure 12.3.2:

�

EXAMPLE 2 Find the radius of convergence of

∞∑
k=0

xn

n!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·+ xk

k!
+ · · · ,

the Maclaurin series for ex.
SOLUTION Because of the presence of the powers xk, the factorial k!, and
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that x may be positive or negative, the Absolute-Ratio Test is the logical test
to use to determine the radius of convergence. The absolute value of the ratio
between successive terms is∣∣∣∣∣

xk+1

(k+1)!

xk

k!

∣∣∣∣∣ =
k!

(k + 1)!
|x| = |x|

k + 1
.

Since

lim
k→∞

|x|
k + 1

= 0,

the limit of the ratio between successive terms is 0. Since 0 is less than 1,
the series converges for all x. The series converges for all x. The radius ofA case where R =∞
convergence R is infinite. �

The next example represents the opposite extreme, R = 0.

EXAMPLE 3 Find the radius of convergence of the series

∞∑
k=1

kkxk = 1x+ 22x2 + 33x3 + · · ·+ kkxk + · · · .

Every power series
converges for at least one

value of x.
SOLUTION The series converges for x = 0.

If x 6= 0, consider the kth term kkxk, which can be written as (kx)k. As
k → ∞, |kx| → ∞. By the nth term test, this series diverges. In short, the
series converges only when x = 0. The radius of convergence in this case is
R = 0. �A case where R = 0

The Radius of Convergence of
∑∞

k=0 bk(x− a)k

Just as a power series in x has an associated radius of convergence, so does a
power series in x− a. To see this, consider any such power series,

∞∑
k=0

bk(x− a)k = b0 + b1(x− a) + b2(x− a)2 + · · · . (12.3.1)

Let u = x− a. Then series (12.3.1) becomes

∞∑
k=0

bku
k = b0 + b1u+ b2u

2 + · · · . (12.3.2)

Series (12.3.2) has a certain radius of convergence R. That is, (12.3.2) con-
verges for |u| < R and diverges for |u| > R. Consequently (12.3.1) converges
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Figure 12.3.3:

for |x−a| < R and diverges for |x−a| > R. The number R is called the radius R may be zero, positive, or
infinite.of convergence of the series (12.3.1).

As Figure 12.3.3 suggests, the series
∑∞

k=0 bk(x−a)k converges in an interval
(a − R, a + R), whose midpoint is a. The question marks in Figure 12.3.3
indicate that the series may converge or may diverge at the ends of teh interval,
a−R and a+R. These cases must be decided separately.

These observations are summarized in the following theorem.

Theorem 12.3.3. Let R be the radius of convergence for the power series∑∞
k=0 bk(x − a)k. If R = 0, the series converges only for x = a. If R is a

positive real number, the series converges for |x − a| < R and diverges for
|x− a| > R. If R =∞, the series converges for all numbers x.

EXAMPLE 4 Find all values of x for which

∞∑
k=1

(−1)k−1 (x− 1)k

k
= (x−1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · (12.3.3)

converges.
SOLUTION Note that this is Example 1 with x replaced by x − 1. Thus
x− 1 plays the role that x played in Example 1. Consequently, series (12.3.3)
converges for −1 < x− 1 ≤ 1, that is, for 0L [x] ≤ 2, and diverges for all other
values of x. Its radius of convergence is R = 1. The set of values where the
series converges is an interval whose midpoint is 1.

The convergence of (12.3.3) is recorded in Figure 12.3.4. �

The General Binomial Theorem
Appendix C reviews the
binomial theorem.
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Figure 12.3.4:

If r is 0 or a positive integer, (1+x)r, when multiplied out, is a polynomial
of degree r. Its Maclaurin series has only a finite number of nonzero terms,
the one of highest degree being xr. The formula

(
r
k

)
= r!

k!(r−k)!

(1 + x)r =
r∑

k=0

r!

k!(r − k)!
xk

is known as the binomial theorem. It can also be written asTo remember it, recall taht

the coefficient of xk has k
factors in both the

numerator and
denominator. The factors in

the numerator start from r
and decrease by one. The

factors in the denominator
start from 1 and increase by

1.

(1 + x)r =
r∑

k=0

r(r − 1) · · · (r − (k − 1))

1 · 2 · · · k
xk.

Newton generalized the binomial theorem to all exponents, as illustrated in
Example 5.

EXAMPLE 5 Find the Maclaurin series associated with f(x) = (1 + x)r,
where r is not 0 or a positive integer and determine its radius of convergence.

SOLUTION The Maclaurin series for f(x) is
∑∞

k=0 bkx
k where bk = f (k)(0)

k!
.

The following table will help in computing f (k)(0):

k f (k)(x) f (k)(0)
0 (1 + x)r 1
1 r(1 + x)r−1 r
2 r(r − 1)(1 + x)r−2 r(r − 1)
3 r(r − 1)(r − 2)(1 + x)r−2 r(r − 1)(r − 2)
...

...
...

k r(r − 1) · · · (r − k + 1)(1 + x)r−k r(r − 1)(r − 2) · · · (r − k + 1)
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Table 12.3.1:
Consequently, the Maclaurin series associated with (1 + x)r is

1 + rx+
r(r − 1)

1 · 2
x2 +

r(r − 1)(r − 2)

1 · 2 · 3
x3 + · · · . (12.3.4)

Note that the series has an infinite number of terms (it does not stop) because
r is not a positive integer or 0.

For x = 0, the series clearly converges. So consider x 6= 0. The presence
of xk, which could be positive or negative, and of k! in the denominator of the
general term in the series suggests using the absolute-ratio test to determine
the radius of convergence. Let ak be the term in the Maclaurin series for
(1 + x)r that contains the power xk. Then

ak =
r(r − 1)(r − 2) · · · (r − k + 1)

1 · 2 · 3 · · · k
xk,

and ak+1 =
r(r − 1)(r − 2) · · · (r − k + 1)(r − k)

1 · 2 · 3 · · · k(k + 1)
xk.

Thus

∣∣∣∣ak+1

ak

∣∣∣∣ =

∣∣∣∣∣
r(r−1)(r−2)···(r−k+1)(r−k)

1·2·3···k(k+1)
xk

r(r−1)(r−2)···(r−k+1)
1·2·3···k xk

∣∣∣∣∣
=

∣∣∣∣r − kk + 1
x

∣∣∣∣ .
Since r is fixed,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = |x|.

By the absolute-ratio test, series (12.3.4) converges when |x| < 1 and diverges
when |x| > 1. �

In Example 5 it was shown that for |x| < 1 the Maclaurin series associated
with (1 + x)r converges to something, but does it converge to (1 + x)r?

Let us check the case r = −1. When r = −1, series (12.3.4) becomes

1 + (−1)x+
(−1)(−2)

1 · 2
x2 +

(−1)(−2)(−3)

1 · 2 · 3
x3 + · · · ,

or
1− x+ x2 − x3 + · · · .

This series is a geometric series with first term 1 and ratio −x. It, therefore,
converges for |x| < 1. Moreover, it does represent the function (1 + x)r =
(1 + x)−1.

But, as was pointed out at the end of Section 12.2, Lagrange’s formula for
the remainder Rk(x, 0) does not show that Rk(x, 0)→ 0 as k →∞. It is true

Calculus December 6, 2010



1022 CHAPTER 12 APPLICATIONS OF SERIES

that for |x| < 1 series (12.3.4) does converge to (1+x)r. The fact that (1+x)r

is equal to the series (12.3.4) is known as the general binomial theorem
or, simply, the binomial theorem. Series (12.3.4) is called the binomial
expansion of (1 + x)r.

See Exercises 34 to 37 in the next section for a proof that (12.3.4) represents
(1 + x)r for |x| < 1.

Proofs of Theorem 12.3.1

Proof (of Theorem 12.3.1)

Since
∑∞

k=0 bkc
k converges, the kth term akc

k approaches 0 as k → ∞. Thus
there is an integer N such that for k ≥ N , |bkck| ≤ 1, say. From here on in
the proof, consider only k ≥ N . Now,

bkx
k = bkc

k
(x
c

)k
.

Since
∣∣bkxk∣∣ =

∣∣bkck∣∣ ∣∣∣x
c

∣∣∣k ,
it follows that for k ≥ N ,∣∣bkxk∣∣ ≤ ∣∣∣x

c

∣∣∣k (since |bkck| ≤ 1 for k ≥ N).

The series
∑∞

k=0

∣∣x
c

∣∣k is a geometric series with the ratio |x/c| < 1. Hence it
converges.

Since |bkxk| ≤
∣∣x
c

∣∣k for k ≥ N , the series
∑∞

k=0

∣∣bkxk∣∣ converges (by the
comparison test). Thus

∑∞
k=N bkx

k converges (in fact, absolutely). Putting

in the front end
∑N−1

k=0 bkx
k, we conclude that the series

∑∞
k=0 bkx

k converges
absolutely if |x| < |c|. •

Summary

Motivated by Taylor series, we investigated series of the form
∑∞

k=0 bkx
k and,

more generally,
∑∞

k=0 bk(x− a)k. Associated with each such series is a radius
of convergence R. (If the series converges for all x, we take R to be infinite.) If∑∞

k=0 bkx
k has radius of convergence R, then it converges (absolutely) for all x

in (−R,R), but diverges for all x such that |x| > R. Similarly, if
∑∞

k=0 bk(x−
a)k has radius of convergence R, it converges for all x such that x is in (a −
R, a + R) but diverges for |x − a| > R. Convergence or divergence at the
endpoints of the interval of convergence must be checked separately.
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EXERCISES for Section 12.3 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 12 draw the appropriate diagrams (like Figure 12.3.4) showing
where the series converge or diverge. Explain your work.
1.[R]

∑∞
k=1

xk

k2

2.[R]
∑∞

k=1
xk√
k

3.[R]
∑∞

k=0
xk

3k

4.[R]
∑∞

k=1 k
2e−kxk

5.[R]
∑∞

k=0
2k2+1
k2−5

xk

6.[R]
∑∞

k=1
xk

k

7.[R]
∑∞

k=0
xk

(2k)!

8.[R]
∑∞

k=0
2kxk

k!

9.[R]
∑∞

k=0
xk

(2k+1)!

10.[R]
∑∞

k=0 k!xk

11.[R]
∑∞

k=1
(−1)k+1xk

k

12.[R]
∑∞

k=1
2kxk

n

13.[R] Assume that
∑∞

k=0 bkx
k converges for x = 9 and diverges when x = −12.

What, if anything, can be said about

(a) convergence when x = 7?

(b) absolute convergence when x = −7?

(c) absolute convergence when x = 9?

(d) convergence when x = −9?

(e) divergence when x = 10?

(f) divergence when x = −15?

(g) divergence when x = 15?

14.[R] Assume that
∑∞

k=0 bkx
k converges for x = −5 and diverges when x = 8.

What, if anything, can be said about

(a) convergence when x = 4?

(b) absolute convergence when x = 4?

(c) convergence when x = 7?
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(d) absolute convergence when x = −5?

(e) convergence when x = −9?

(f) convergence when x = −9?

15.[R] If
∑∞

k=0 bkx
k converges whenever x is positive, must it converge whenever

x is negative?

16.[R] If
∑∞

k=0 bk6
k converges, what can be said abou the convergence of

(a)
∑∞

k=0 bk(−6)k?

(b)
∑∞

k=0 bk5
k?

(c)
∑∞

k=0 bk(−5)k?

In Exercises 17 to 28 draw the appropriate diagrams showing where the series con-
verge and diverge.
17.[R]

∑∞
k=0

(x−2)k

k!

18.[R]
∑∞

k=0
(x−1)k

k3k

19.[R]
∑∞

k=0
(x−1)k

k+3

20.[R]
∑∞

k=0
(x−4)k

2k+1

21.[R]
∑∞

k=0
k(x−2)k

2k+3

22.[R]
∑∞

k=0
(x−5)k

k ln(k)

23.[R]
∑∞

k=0
(x+3)k

5k

24.[R]
∑∞

k=0 k(x+ 1)k

25.[R]
∑∞

k=0
(x−5)k

k2

26.[R]
∑∞

k=0(−1)kfrac(x+ 4)kk + 2

27.[R]
∑∞

k=0 k!(x− 1)k

28.[R]
∑∞

k=0
k2+1
k3+1

(x+ 2)k

In Exercises 29 to 34 write out the first five (non-zero) terms of the binomial expan-
sion of the given functions.
29.[R] (1 + x)1/2

30.[R] (1 + x)1/3

31.[R] (1 + x)3/2
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32.[R] (1 + x)−2

33.[R] (1 + x)−3

34.[R] (1 + x)−4

35.[R]

(a) If a power series
∑∞

k=0 bkx
k diverges when x = 3, at which x must it diverge?

(b) If a power series
∑∞

k=0 bk(x + 5)k diverges when x = −3, at which x must it
diverge?

36.[R] If
∑∞

k=0 bk(x− 3)k converges for x = 7, at what other values of x must the
series necessarily converge?

37.[M] Find the radius of convergence of
∑∞

k=0
x2k+1

(2k+1)! .

38.[M] If
∑∞

k=0 bkx
k has a radius of convergence 3 and

∑∞
k=0 ckx

k has a radius of
convergence 5, what can be said about the radius of convergence of

∑∞
k=0(bk+ck)xk?

39.[M]

(a) Using the first four nonzero terms of the Maclaurin series for
√

1 + x3, estimate∫ 1
0

√
1 + x3 dx. Note: This integral cannot be evaluated by the Fundamental

Theorem of Calculus.

(b) Evaluate the integral in (a) to three decimal places by Simpson’s method.

40.[M]

(a) Write the first four terms of the Maclaurin series associated with f(x) =
(1 + x)−2.

(b) Find a formula for the general term in the Maclaurin series associated with
f(x).

(c) Replace x by −x to obtain the Maclaurin series for (1 − x)−2. Note: Give
the first four nonzero terms.

41.[M] What is the radius of convergence for the Maclaurin series associated with
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(a) ex

(b) sin(x)

(c) cos(x)

(d) ln(1 + x)

(e) arctan(x)?

SHERMAN/DOUG: Revise,
or remove! 42.[C] Show that the general binomial expansion of (1 +x)r represents (1 +x)r.

43.[C] In R. P. Feynman, Lectures on Physics, Addison-Wesley, Reading, MA 1963,
this statement appears in Section 15.8 of Volume 1:

An approximate formula to express the increase of mas, for the case
when the velocity is small, can be found by expandingm0/

√
1− v2/c2 =

m0(1 − v2/c2)−1/2 in a power series, using the binomial theorem. We
get

m0

(
1− v2

c2

)−1/2

= m0

(
1 +

1
2
v2

c2
+

3
8
v4

c4
+ · · ·

)
.

We see clearly from the formula that the series converges rapidly when
v is small and the terms after the first two or three are neglible.

Check the expansion and justify the equation.

44.[C] In Introduction to Fluid Mechanics, by Stephan Whitaker, Krieger, New
York, 1981, the following argument appears in the discussion of flow through a
nozzle:

The pressure p equals(
1 +

γ − 1
2

M2

)γ/(1−γ)

.

By the binomial theorem and the fact that v2 = M2γRT :

p = 1− 1
2
v2

RT
+
γ(2γ − 1)

8
M4 + · · · .

Fill in the steps. Note: γ is the specific heat, which is about 1.4, and M is a Mach
number, which is in the range 1 to 2.

45.[C]
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(a) The ellipse x2/a2 + y2/b2 = 1 for a ≤ b has the parameterization

x = a cos(t), y = b sin(t).

Show that the arc length of one quadrant of an ellipse is

π/2∫
0

b

√
1−

(
1−

(a
b

)2
)

sin(t)2 dt.

Note: The integrand does not have an elementary antiderivative.

(b) Assume that in (a), a < b. Then the arc length integral has the form∫ π/2
0 b

√
1− k2 sin(t)2 dt, where 0 < k < 1.

The “elliptic integral”

E =

π/2∫
0

b
√

1− k2 sin(t)2 dt

is tabulated in mathematical handbooks for many values of k in [0, 1]. Using the
binomial theorem and the formula for

∫ π/2
0 sin2(θ) dθ (Formula 73 in the table of

integrals), obtain the first four non-zero terms of E as a series of powers of k2.
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12.4 Manipulating Power Series

Where they converge, power series behave like polynomials. You can differen-
tiate or integrate them term-by-term. You can add, subtract, multiply, and
divide them. We will state these properties precisely, and apply them. While
most of the discussion will be spent on power series in x, the same ideas apply
to power series in (x− a). Proofs can be found in any advanced calculus text.

Differentiating a Power Series
See the Sum and Difference

Rules in Section 3.3 In Section 3.3 we showed that you can differentiate the sum of a finite
number of functions by adding their derivatives. Theorem 12.4.1 generalizes
this to power series in x.

Theorem 12.4.1 (Differentiating a power series). Assume R > 0 and that∑∞
k=0 bkx

k converges to f(x) for |x| < R. Then for |x| < R, f is differentiable,∑∞
k=1 kbkx

k−1 converges, and

f ′(x) = a1 + 2a2x
2 + 3a3x

3 + · · · .

This theorem is not covered by the fact that the derivative of the sum of a
finite number of functions is the sum of their derivatives.

EXAMPLE 1 Obtain a power series for the function 1/(1 − x)2 from the
power series for 1/(1− x).
SOLUTION From the formula for the sum of a geometric series, we know
that

1

1− x
= 1 + x+ x2 + x3 + · · · for |x| < 1.

According to Theorem 12.4.1, if we differentiate both sides of this equation,

x
K2 K1 0 1 2

K5

5

10

Figure 12.4.1:

we obtain a true equation, namely,

1

(1− x)2
= 0 + 1 + 2x+ 3x2 + · · · for |x| < 1.

This can be expressed in summation notation. The geometric series is
1

1−x =
∑∞

k=0 x
k. When we differentiate both sides of this equation, we obtainNote that the series can

also be written as∑∞
k=1(k + 1)xk or∑∞

k=1 kx
k−1 or∑∞

k=0(k + 1)xk.

1
(1−x)2

=
∑∞

k=0 kx
k−1. (See Figure 12.4.1.)

Theorem 12.4.1 does not say anything about convergence at the endpoints
of the interval of convergence. When x = 1 the series is

∑∞
k=1 k which diverges

(because the terms of this series do not approach 0). This is not surprising,
because the derivative (and, in fact, the original function) are not defined
when x = 1. When x = −1, 1

(1−x)2
= 1

4
, so the derivative of the function is

well-defined. But, when the series for the derivative is evaluated at x = −1
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we get the series
∑∞

k=0(−1)k−1k. As when x = 1, the terms of this series do
not converge to zero and the series diverges. �

Suppose that f(x) has a power-series representation b0 + b1x+ b2x
2 + · · · ;

Theorem 12.4.1 enables us to find the coefficients b0, b1, b2, . . . .

Theorem 12.4.2. (Formula for bk) Let R be a positive number and suppose
that f(x) is represented by the power series

∑∞
k=0 bkx

k for |x| < R; that is,

f(x) = b0 + b1x+ b2x
2 + · · ·+ bkx

k + · · · for |x| < R.

Then

bk =
f (k)(0)

k!
. (12.4.1)

The proof is practically the same as the derivation of the formulas for
the coefficients of Taylor polynomials in Section 5.4. It consists of repeated
differentiation and evaluation of the higher derivatives at 0.

Theorem 12.4.2 also tells us that there can be at most one series of the
form

∑∞
k=0 bkx

k that represents f(x), for the coefficients bk are completely
determined by f(x) and its derivatives. That series must be the Maclaurin
series we obtained in Section 12.1. For instance, the series 1+x+x2 +x3 + · · · ,
which sums to 1/(1−x) for |x| < 1 must be the Maclaurin series for 1/(1−x)2.

Integrating a Power Series

Just as we may differentiate a power series term by term, we can integrate it
term by term.

Theorem 12.4.3. (Integrating a power series) Assume that R > 0 and

f(x) = b0 + b1x+ b2x
2 + · · ·+ bkx

k + · · · for |x| < R.

Then

b0x+ b1
x2

2
+ b2

x3

3
+ · · ·+ bk

xk+1

k + 1
+ · · ·

converges for |x| < R, and

x∫
0

f(t) dt = b0x+ b1
x2

2
+ b2

x3

3
+ · · ·+ bk

xk+1

k + 1
+ · · · .

WARNING (Choosing Variables of Integration) Note that t is
used as the variable of integration. This is done to avoid writing∫ x

0
f(x) dx, an expression in which x describes both the interval

[0, x] and the independent variable of the integrand.

Calculus December 6, 2010



1030 CHAPTER 12 APPLICATIONS OF SERIES

The next example shows the power of Theorem 12.4.3.

EXAMPLE 2 Integrate the power series for 1/(1 + x) to obtain the power
series in x for ln(1 + x).
SOLUTION Start with the geometric series 1/(1− x) = 1 + x+ x2 + · · · for
|x| < 1. Replace x by −x and obtain

1

1 + x
= 1− x+ x2 − x3 + x4 − · · · for |x| < 1.

By Theorem 12.4.3,
∫ x

0
dt

1+t
= x− x2

2
+ x3

3
− x4

4
+ x5

5
− · · · for |x| < 1.

x
K2 K1 0 1 2

K10

K8

K6

K4

K2

2

Figure 12.4.2:

Now,

x∫
0

dt

1 + t
= ln(1 + t)|x0

= ln(1 + x)− ln(1 + 0)

= ln(1 + x).

ThusPower series for ln(1 + x)

ln(1 + x) = x− x2

2
+
x3

3
− x4

4
+
x5

5
− · · · for |x| < 1.

�
The power series for ln(1 + x) could also have been obtained using The-

orem 12.4.2. But this would have required finding a general form for the
derivatives of ln(1 + x), and their values at x = 0.

The derivation in Example 2 is more straightforward, and it gives the radius
of convergence without additional work.

The Algebra of Power Series

In addition to differentiating and integrating power series, we may also add,
subtract, multiply, and divide them just like polynomials. Theorem 12.4.4
states the rules for these operations.

Theorem 12.4.4. The algebra of power series. Assume that

f(x) =
∞∑
k=0

bkx
k = b0 + b1x+ b2x

2 + · · · for |x| < R1

and g(x) =
∞∑
k=0

ckx
k = c0 + c1x+ c2x

2 + · · · for |x| < R2.

Let R be the smaller of R1 and R2. Then, for |x| < R,
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A. f(x) + g(x) =
∑∞

k=0(bk + ck)x
k = (b0 + c0) + (b1 + c1)x+ (b2 + c2)x2 + · · ·

B. f(x)− g(x) =
∑∞

k=0(bk− ck)xk = (b0− c0) + (b1− c1)x+ (b2− c2)x2 + · · ·

C. f(x)g(x) = (b0c0) + (b0c1 + b1c0)x+ (b0c2 + b1c1 + b2c0)x2 + · · · This says “multiply two
power series the way you
multiply polynomials —
term by term: start with the
constant terms and work
up.”

D. f(x)/g(x) is obtainable by long division, provided g(x) 6= 0 for all |x| <
R.

EXAMPLE 3 Find the first four terms of the Maclaurin series for ex/(1−
x).
SOLUTION There are at least three ways to approach this problem. The
direct approach is to use Theorem 12.4.2; this requires finding the first three
derivatives of ex/(1 − x) evaluated at x = 0. A second idea is to divide the
power series for ex by 1− x. The third idea is to multiply the power series for
ex and the power series for 1/(1− x). See Exercise 6

As multiplication is generally easier to carry out than division, that is the
option we choose. The power series for ex is 1+x+ x2

2!
+ x3

3!
+· · · for all x (radius

of convergence is∞) and the power series for 1/(1−x) is 1 +x+x2 +x3 + · · ·
for |x| < 1 (radius of convergence is 1):

ex
1

1− x
=

(
1 + x+

x2

2!
+
x3

3
+ · · ·

)(
1 + x+ x2 + x3 + · · ·

)
= (1 · 1) + (1 · 1 + 1 · 1)x+

(
1 · 1 + 1 · 1 +

1

2!
· · ·
)
x2

+

(
1 · 1 + 1 · 1 +

1

2!
· · ·+ 1

3!
· 1
)
x3 + · · ·

= 1 + 2x+
5

2
x2 +

8

3
x3 + · · · .

The power series for ex converges for all x, R1 = ∞ and the power series for
1/(1−x) converges for |x| < 1. According to Theorem 12.4.2, the power series
for ex/(1− x), whose first four terms we just found, has radius of convergence
R = 1. The power series for ex/(1− x) is valid for |x| < 1. �

EXAMPLE 4 Find the first four terms of the Maclaurin series for ex/ cos(x).

SOLUTION Write the Maclaurin series for ex and cos(x) up through the

x
K3 K2 K1 0 1 2 3

K4

K2

2

4

Figure 12.4.3:

Note that it is helpful to
keep the coefficients that
are 0.

Calculus December 6, 2010



1032 CHAPTER 12 APPLICATIONS OF SERIES

terms of degree 3 and arrange the long division as follows:

1 + x + x2 + 2
3
x3 + · · ·

1 + 0x− x2

2
+ 0x3 + · · · 1 + x + x2

2
+ x3

6
+ · · ·

1 + 0x + −x2

2
+ 0x3 + · · ·

x + x2 + x3

6
+ · · ·

x + 0x2 − x3

2
+ · · ·

x2 + 2x3

3
+ · · ·

x2 + 0x3 − · · ·
2x3

3
+ · · ·

2x3

3
+ · · ·
· · ·

Thus, the Maclaurin series for ex/ cos(x) begins

ex

cos(x)
= 1 + x+ x2 +

2x3

3
+ · · ·

Even though the power series for ex and cos(x) both have infinite radius ofWhat happens when
|x| = π/2? convergence, the power series for ex/ cos(x) converges only for |x| < π/2. Why

would you expect “trouble” at π/2?
We could have found the front-end of this Maclaurin series using Theo-

rem 12.4.2. Of course, the results would be the same. But, this approach does
not give any information about the radius of convergence of this power series.
�

Power Series Around a
Power series in x− a

The various theorems and methods of this section were stated for power
series in x. Analogous theorems hold for power series in x−a. Such series may
be differentiated and integrated term by term inside the interval in which they
converge. For instance, Theorem 12.4.2 generalizes to the following result.

Theorem 12.4.5. (Formula for bk) Let R be a positive number and suppose
that f(x) is represented by the power series

∑∞
k=0 bk(x − a)k for |x − a| < R;

that is,

f(x) = b0 + b1(x− a) + b2(x− a)2 + · · ·+ bk(x− a)k + · · · for |x− a| < R.

Then

bk =
f (k)(a)

k!
.

The proof of Theorem 12.4.5 is similar to that of Theorem 12.4.2. To
determine bk: differentiate k times, evaluate the result when x = a, and divide
by k!.
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Endpoints

Each theorem in this section includes information on the radius of convergence
of a power series obtained from another power series. Convergence at the
endpoints is never guaranteed; it must be checked separately in every case.

In Example 1 we found the power series in x for 1/(1− x)2 is

1 + 2x+ 3x2 + · · · =
∞∑
k=1

kxk−1 (12.4.2)

for |x| < 1. When x = 1 this series becomes
∑∞

k=1 k, and, when x = −1
it is

∑∞
k=1 k(−1)k−1. Each of these series diverges because its terms do not

approach 0 as k → ∞. Thus, (12.4.2) converges only on the open interval
(−1, 1).

In Example 2 the power series for ln(1 + x) was found to be

x− x2

2
+
x3

3
− x4

4
+ · · · =

∞∑
k=1

(−1)k+1xk

k
(12.4.3)

again for |x| < 1. We still do not know this
series, with x = 1,
converges to ln(2). This is
shown in Exercise 28.

When x = 1 the series becomes
∑∞

k=1
(−1)k+1

k
. This is the alternating

harmonic series, which converges. When x = −1 the series becomes
∑∞

k=1
−1
k

which diverges because it is the negative of the harmonic series. This means
the interval of convergence for (12.4.3) is (−1, 1].

Some series converge at both endpoints. You can never tell what will
happen until you check each endpoint.
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How Some Calculators Find ex

The power series in x for ex is

1 + x+
x2

2!
+
x3

3!
+ · · ·+ xk

k!
+ · · · .

For x = 10, this would give

e10 = 1 + 10 +
102

2!
+

103

3!
+ · · ·+ 10k

k!
+ · · · .

Although the terms eventually become very small, the first few terms are quite
large. (For instance, the fifth term, 104/4!, is about 417.) So when x is large,
the series for ex provides a time-consuming procedure for calculating ex.
Some calculators use the following method instead.
The values of ex at certain inputs are built into the memory:

e1 ≈ 2.718281828459

e10 ≈ 22, 026.46579

e100 ≈ 2.6881171× 1043

e0.1 ≈ 1.1051709181

e0.01 ≈ 1.0100501671

e0.001 ≈ 1.0010005002.

To find e315.425, say, the calculator makes use of the identities ex+y = exey and
(ex)y = exy and computes(

e100
)3 (

e10
)1 (

e1
)5 (

e0.1
)4 (

e0.01
)2 (

e0.001
)5 ≈ 9.71263198× 10136.

This result is accurate to six decimal places.

Summary

We showed how to operate with power series to obtain new power series — by
differentiation, integration, or an algebraic operation, such as multiplying or
dividing two series. For instance, from the geometric series for 1/(1 + x), you
can obtain the series for ln(1 + x) by integration, or the series for −1/(1 + x)2

by differentiation.
The radius of convergence for a derived power series is determined directly

from the radius of convergence of the original series and the operation per-
formed. However, convergence at the endpoints must be checked for each
series.
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EXERCISES for Section 12.4 Key: R–routine, M–moderate, C–challenging

1.[R] Differentiate the Maclaurin series for sin(x) to obtain the Maclaurin series
for cos(x).

2.[R] Differentiate the Maclaurin series for ex to show that D(ex) = ex.

3.[R] Prove Theorem 12.4.2 by carrying out the necessary differentiations.

4.[R]

(a) Show that, for |t| < 1, 1/(1 + t2) = 1− t2 + t4 − t6 + · · · .

(b) Use Theorem 12.4.3 to show that, for |x| < 1, arctan(x) = x−x3

3 +x5

5 −
x7

7 +· · · .

(c) Give the formula for the kth term of the series in (b).

(d) How many terms of the series in (b) are needed to approximate arctan(1/2)
to three decimal places?

(e) Use the formula in (b) to estimate arctan(1/2) to three decimal places.

Note: Exercise 21 shows that the series in (b) converges to arctan(x) also when
x = −1 and x = 1.

5.[R]

(a) Using Theorem 12.4.3, show that for |x| < 1,

x∫
0

dt

1 + t3
= x− x4

4
+
x7

7
− x10

10
+ · · · .

(b) Use (a) to express
∫ 0.7

0 dt/(1 + t3) as a series of numbers.

(c) How many terms of the series in (a) are needed to estimate
∫ 0.7

0 dt/(1 + t3) to
three decimal places?

(d) Use (b) to evaluate
∫ 0.7

0 dt/(1 + t3) to three decimal places.

(e) Describe how you would evaluate
∫ 0.7

0 dt/(1 + t3) using the fundamental the-
orem of calculus. (Do not carry out the details.)

(f) Use a computer algebra system to find the exact value of
∫ 0.7

0 dt/(1 + t3).

6.[R]
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(a) Find the first four terms of the Maclaurin series for ex/(1− x) by division of
series. Hint: Keep the first five terms of ex.

(b) Find the first four terms of the Maclaurin series for ex/(1 − x) by using the
formula in terms of derivatives.

7.[R]

(a) Find the first three nonzero terms of the Maclaurin series for tan(x) by dividing
the series for sin(x) by the series for cos(x).

(b) Find the first two nonzero terms of the Maclaurin series for tan(x) by using
the formula for the kth term, bk = f (k)(0)/k!.

8.[R]

(a) Find the first four terms of the Maclaurin series for (1− cos(x))/(1− x2) by
division of series.

(b) Find the first four terms of the Maclaurin series for (1− cos(x))/(1− x2) by
multiplication of series.

In Exercises 9 and 10, obtain the first three nonzero terms in the power series in x
for the indicated functions by algebraic operations with known series. Also, identify
the radius of convergence.
9.[R] ex sin(x)
10.[R] x

cos(x)

In Exercises 11 to 16 use power series to determine the limits.
11.[R] limx→0

1−cos(x)
x2

12.[R] limx→0
sin(3x)
sin(2x)

13.[R] limx→0
sin2(x3)

(1−cos(x2))3

14.[R] limx→0

(
1

sin(x) −
1

ln(1+x)

)
15.[R] limx→0

(ex−1)2

sin(x2)

16.[R] limx→0
sin(x)(1−cos(x))

ex3−1

17.[R] Estimate
∫ 1/2

0

√
xe−x dx to four decimal places.

18.[R] Let f(x) =
∑∞

k=0 k
2xk.
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(a) What is the domain of f?

(b) Find f (100)(0).

19.[R] Let f(x) = arctan(x). Making use of the Maclaurin series for arctan(x),
find

(a) f (100)(0)

(b) f (101)(0).

20.[M]

(a) Give a numerical series equal to
∫ 1

0

√
x sin(x) dx.

(b) How many terms of the series in (a) are needed to approximate this integral
to four decimal places?

(c) Use (a) to evaluate the integral to four decimal places.

21.[M] The Taylor series for arctan(x) is
∞∑
0

(−1)k

2k + 1
x2k+1. While the interval of

convergence of this power series is easily found to be [−1, 1], Theorem 12.4.3 tells
us only that this series converges to arctan(x) on the open interval (−1, 1).

(a) Show that, when x = 1, the given series is the Maclaurin series for arctan(1).
Hint: Look at the Lagrange Form for the Remainder.

(b) Repeat (a), using x = −1.

(c) Because arctan(1) = π/4, the Maclaurin series for arctan(1) provides one way
to obtain approximations to π. Approximate π using the first 5 non-zero terms
in the Maclaurin series for arctan(1).

(d) Estimate the error in the approximation to π found in (c).

(e) How many terms in the Maclaurin series are needed to obtain an approximate
value of π accurate to 2 decimal places? 4 decimal places? 12 decimal places?

22.[M]

(a) From the Maclaurin series for cos(x), obtain the Maclaurin series for cos(2x).
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(b) Exploiting the identity sin2(x) = 1
2(1− cos(2x)), obtain the Maclaurin series

for sin2(x)/x2.

(c) Estimate
∫ 1

0 (sin(x)/x)2 dx using the first three nonzero terms of the series in
(b).

(d) Find a bound on the error in the estimate in (c).

23.[M] Let
∑∞

k=0 bkx
k and

∑∞
k=0 ckx

k converge for |x| < 1. If, for all k, they
converge to the same limit, must bk = ck?

24.[M] This exercise outlines a way to compute logarithms of numbers larger than
1.

(a) Show that every number y > 1 can be written in the form (1 + x)/(1− x) for
some x in (0, 1).

(b) When y = 3, find x.

(c) Show that if y = (1 +x)/(1− x), then ln(y) = 2(x+ x3/3 + · · ·+ x2n+1/(2n+
1) + . . . ).

(d) Use (b) and (c) to estimate ln(3) to two decimal places. Hint: To control the
error, compare a tail end of the series to an appropriate geometric series.

(e) Is the error in (d) less than the first omitted term?

25.[M] Sam has an idea: “I have a more direct way of estimating ln(y) for y > 1. I
just use the identity ln(y) = − ln(1/y). Because 1/y is in (0, 1) I can write it as 1−x,
and x is still in (0,1). In short, ln(y) = − ln(1/y) = − ln(1−x) = x+x2/2+x3/3+. . . .
It’s even an easier formula. And it’s better because it doesn’t have that coefficient
2 in front.”

(a) Is Sam’s formula correct?

(b) Use his method to estimate ln(3) to two decimal places.

(c) Which is better, Sam’s method or the one in Exercise 24?

26.[M] Use the method of Exercise 24 to estimate ln(5) to two decimal places.
Include a description of your procedure.

27.[C] Here are five ways to compute ln(2). Which seems to be the most efficient?
least efficient? Explain.
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(a) The series for ln(1 + x) when x = 1.

(b) The series for ln(1 + x) when x = −1
2 . Note: This gives ln

(
1
2

)
= − ln(2).

(c) The series for ln((1 + x)/(1− x)) when x = 1
3 .

(d) Simpson’s method applied to the integral
∫ 2

1 dx/x.

(e) The root of ex = 2. Hint: Use Newton’s method.

28.[C] In the discussion of endpoints for the Maclaurin series for ln(1 + x), we
showed that the series converges for x = 1, but we did not show that its sum
is ln(2). To show that it does equal ln(2), integrate both sides of the following
equation over [0, 1]:

1 + (−x)n+1

1 + x
= 1− x+ x2 − x3 + · · ·+ (−1)nxn.

Hint: Separate the left-hand side into two separate integrals. Then, take the limit
as n→∞.

29.[C] What theorem justifies the assertion that if the series has a nonzero radius
of convergence then

lim
x→0

(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= a0?

30.[C]

(a) For which x does
∑∞

k=0 k
2xk converge?

(b) Starting with the Maclaurin series for x2/(1− x), sum the series in (a).

(c) Does your formula seem to give the correct answer when x = 1
3?

31.[C] This exercise uses power series to give a new perspective on l’Hôpital’s
rule. Assume that f and g can be represented by power series in some open interval
containing 0:

f(x) =
∞∑
k=0

bkx
k and g(x) =

∞∑
k=0

ckx
k.

Assume that f(0) = 0, g(0) = 0, and g′(0) 6= 0. Under these assumptions explain
why

lim
x→0

f(x)
g(x)

= lim
x→0

f ′(x)
g′(x)

.
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32.[C] If R. P. Feynman, Lectures on Physics, Addison-Wesley, Reading, MA, 1963,
appears this remark:

Thus the average velocity is

〈E〉 =
h̄ω(0 + x+ 2x2 + 3x3 + · · · )

1 + x+ x2 + · · ·
.

Now the two sums which appear here we shall leave for the reader to
play with and have some fun with. When we are all finished summing
and substituting for x in the sum, we should get — if we make no
mistakes in the sum —

〈E〉 =
h̄ω

eh̄ω/kT − 1
.

This, then, was the first quantum-mechanical formula ever known, or
ever discussed, and it was the beautiful culmination of decades of puz-
zlement.

Have the aforementioned fun, given that x = e−h̄ω/kT .

33.[C] Justify this statement, found in a biological monograph:

Expanding the equation

a · ln(x+ p) + b · ln(y + q) = M,

we obtain

a

(
ln(p) +

x

p
− x2

2p2
+

x3

3p3
− · · ·

)
+b
(

ln(q) +
y

q
− y2

2q2
+

y3

3q3
− · · ·

)
= M.

Exercises 34 to 37 outline a proof that the Maclaurin series associated with (1 +x)r

converges to (1 + x)r for |x| < 1. This justifies the assertion that (1 + x)r =
∞∑
k=0

(
n
k

)
xk for |x| < 1. The notation

(
n
k

)
stands for

n!
k!(n− k)!

.

34.[C] Show that

k

(
r
k

)
+ (k + 1)

(
r

k + 1

)
=
(
r
k

)
.

(This is needed in Exercise 35.) Hint: First, rewrite the equation as (k+1)
(

r
k + 1

)
=

(r − k)
(
r
k

)
.

35.[C] Let f(x) =
∑∞

k=0

(
r
k

)
xk.
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(a) Find the interval of convergence for f(x).

(b) Show that (1 +x)f ′(x) = rf(x). Hint: First, write out the first four terms to
see the pattern.

36.[C] Using the result from Exercise 35, show that the derivative of f(x)/(1 +x)r

is 0.

37.[C] Show that f(x)/(1 + x)r = 1, which implies that
∞∑
k=0

(
n
k

)
xk = (1 + x)r.

What is the interval of convergence
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12.5 Complex Numbers

Let us think of the number line of real numbers as coinciding with the x-axis
of the xy coordinate system. This number line, with its addition, subtraction,
multiplication, and division, is a small part of a number system that occupies
the plane, and which obeys the usual rules of arithmetic. This section de-
scribes that system, known as the complex numbers. One of the important
properties of the complex numbers is that any nonconstant polynomial has a
root; in particular, the equation x2 = −1 has two solutions.

Figure 12.5.1:

The Complex Numbers

By a complex number z we mean an expression of the form x + iy or x + yi,
where x and y are real numbers and i is a symbol with the property that
i2 = −1. This expression will be identified with the point (x, y) in the xy
plane, as in Figure 12.5.1. Every point in the xy plane may therefore be
thought of as a complex number.

To add or multiply two complex numbers, follow the usual rules of arith-
metic of real numbers, with one new proviso:

Whenever you see i2, replace it by −1.

For instance, to add the complex numbers 3 + 2i and −4 + 5i, just collect
like terms:

(3 + 2i) + (−4 + 5i) = (3− 4) + (2i+ 5i) = −1 + 7i.

(See Figure 12.5.2(a).) Addition does not make use of the fact that i2 = −1.
However, multiplication does, as Example 1 shows.

EXAMPLE 1 Compute the product (2 + i)(3 + 2i).
SOLUTION We can multiply the complex numbers just as we would multiply
binomials. (Recall the mnemonic FOIL for “first, outer, inner, last.”) We have

(2+i)(3+2i) = 2·3+2·2i+i·3+i·2i = 6+4i+3i+2i2 = 6+4i+3i−2 = 4+7i.

Figure 12.5.2(b) shows the complex numbers 2 + i, 3 + 2i, and their product
4 + 7i. �

Note that (−i)(−i) = i2 = −1. Both i and −i are square roots of −1. The
symbol

√
−1 traditionally denotes i rather than −i.Real numbers are on the

x-axis, imaginary on the
y-axis.
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(a) (b)

Figure 12.5.2:

A complex number that lies on the y-axis is called imaginary. Every
complex number z is the sum of a real number and an imaginary number,
z = x + iy. The number x is called the real part of z, and y is called the
imaginary part. One often writes “Re z = x” and “Im z = y.”

We have seen how to add and multiply complex numbers. Subtraction is
straightforward. For instance,

(3 + 2i)− (4− i) = (3− 4) + (2i− (−i)) = −1 + 3i.

Division of complex numbers requires rationalizing the denominator. This conjugate of z

involves the conjugate of a complex number. The conjugate of the complex
number z = x + yi is the complex number x − yi, which is denoted z̄. Note
that

zz̄ = (x+ yi)(x− yi) = x2 + y2

z + z̄ = (x+ yi) + (x− yi) = 2x

and z − z̄ = (x+ yi)− (x− yi) = 2yi.

Thus, zz̄ and z + z̄ are real, and z − z̄ is imaginary. Figure 12.5.3 shows the

Figure 12.5.3:

relation between z and z̄, which is that z̄ is the mirror image of z reflected
across the x-axis. To “rationalize the denominator” means to find an equivalent
fraction with a real-valued denominator. If the fraction is w

z
, the denominator

can be rationalized by multiplying by z̄
z̄
. rationalizing the

denominator
EXAMPLE 2 Compute the quotient 1+5i

3+2i
.

SOLUTION To rationalize the denominator, we multiply by 3−2i
3−2i

:

1 + 5i

3 + 2i
=

1 + 5i

3 + 2i
· 3− 2i

3− 2i
=

3− 2i+ 15i+ 10

9− 6i+ 6i+ 4i2
=

13 + 13i

13
= 1 + i.

�
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Now All Polynomials Have Roots
Every polynomial has a root

in the complex numbers. The complex numbers provide the equation x2 + 1 = 0 with two solutions,
i and −i. This illustrates an important property of complex numbers: If
f(x) = anx

n +an−1x
n−1 + · · ·+a0 is any polynomial of degree n ≥ 1, with real

or complex coefficients, then there is a complex number z such that f(z) = 0.
This fact, known as the Fundamental Theorem of Algebra, is illustrated
in Example 3. Its proof requires advanced mathematics.

EXAMPLE 3 Solve the quadratic equation z2 − 4z + 5 = 0.
SOLUTION By the quadratic formula, the solutions are

z =
−(−4)±

√
(−4)2 − 4 · 1 · 5
2 · 1

=
4±
√
−4

2
=

4± 2i

2
= 2± i.

The two solutions are 2 + i and 2− i.
These solutions can be checked by substitution in the original equation.

For instance,

(2 + i)2 − 4(2 + i) + 5 = (4 + 4i+ i2)− 8− 4i+ 5

= 4 + 4i− 1− 8− 4i+ 5 = 0 + 0i = 0.

Yes, it checks. The solution 2− i can be checked similarly. �

Figure 12.5.4:

The sum of the complex numbers z1 and z2 is the fourth vertex (opposite
O) in parallelogram determined by the origin O and the points z1 and z2, as
shown in Figure 12.5.4. The geometry of the product of z1 and z2 is more
involved.

The Geometry of the Product

The geometric relation between z1, z2 and their product z1z2 is easily described
in terms of the magnitude and argument of a complex number. Each complex
number z other than the origin is at a (positive) distance r from the origin
and has a polar angle θ relative to the positive x-axis. The distance r is called
the magnitude of z, and θ is called the argument of z. A complex number
has an infinity of arguments differing from each other by an integer multiple of
2π. The complex number 0, which lies at the origin, has magnitude 0 and any
polar angle as argument. In short, we may think of magnitude and argument
as polar coordinates r and θ of z, with the restriction that r is nonnegative.
The magnitude of z is denoted |z|. The symbol arg(z) denotes any of theThe symbols |z| and arg(z)
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arguments of z, it being understood that if θ is an argument of z, then so is
θ + 2π for any integer n.

EXAMPLE 4

(a) Draw all complex numbers with magnitude 3.

(b) Draw the complex number z of magnitude 3 and argument π/6.
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SOLUTION

Figure 12.5.5: NOTE:
Draw the for (b) in red.

(a) The complex numbers of magnitude 3 form a circle of radius 3 with
center at 0. (See Figure 12.5.5.)

(b) The complex number of magnitude 3 and argument π/6 is shown (in red)
in Figure 12.5.5.

�
Note that |x+iy| =

√
x2 + y2, by the Pythagorean theorem. Each complex

number z = x+ iy other than 0 can be written as the product of a positive real
number and a complex number of magnitude 1. To show this, let z = x + iy
have magnitude r and argument θ. Recalling the relation between polar and
rectangular coordinates, we conclude that

Figure 12.5.6: ARTIST:
Draw the point for (b) in
red.

z = r cos(θ) + r sin(θ)

= r(cos(θ) + sin(θ)).

The number r is a positive real number. The magnitude of the number cos(θ)+
i sin(θ) is

√
cos(θ)2 + sin(θ)2 = 1. Figure 12.5.6 shows the number r and

cos(θ) + i sin(θ), whose product is z. (The expression cos(θ) + i sin(θ) appears
so frequently when working with complex numbers that the shorthand notation
cis(θ) is used, that is, cis(θ) = cos(θ) + i sin(θ). While this is convenient, you
have to be careful not to confuse “cis” with “cos.”)

The next theorem describes how to multiply two complex numbers if they
are given in polar form, that is, in terms of their magnitudes and arguments.

Theorem. Assume that z1 has magnitude r1 and argument θ1 and that z2 has
magnitude r2 and argument θ2. Then the product z1z2 has magnitude r1r2 and
argument θ1 + θ2.

Proof

The last step uses the
identities for cos(u+ v) and

sin(u+ v). z1z2 = r1(cos(θ1) + i sin(θ1))r2(cos(θ2) + i sin(θ2))

= r1r2(cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))

= r1r2(cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i(sin(θ1) cos(θ2) + cos(θ1) sin(θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))

Thus, the magnitude of z1z2 is r1r2 and the argument of z1z2 is θ1 + θ2. This
proves the theorem. •

In practical terms, this theorem says:
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“To multiply two complex numbers, add their arguments and multiply their
magnitudes.”

EXAMPLE 5 Find z1z2 for z1 and z2 in Figure 12.5.7.
SOLUTION z1 has magnitude 2 and argument π/6; z2 has magnitude 3 and

Figure 12.5.7:

argument π/4. Thus, z1z2 has magnitude 2 · 3 = 6 and argument π/6 + π/4 =
5π/12. (See Figure 12.5.7 �

EXAMPLE 6 Using the geometric description of multiplication, find the
product of the real numbers −2 and −3.
SOLUTION The number −2 has magnitude 2 and argument π. The number

Figure 12.5.8:

−3 has magnitude 3 and argument π. Therefore (−2) · (−3) has magnitude
2·3 = 6 and argument π+π = 2π. The complex number with magnitude 6 and
argument 2π is just our old friend, the real number 6. Thus (−2) · (−3) = 6,
in agreement with the statement “the product of two negative numbers is
positive.” (See Figure 12.5.8.) �

Division of Complex Numbers
See Exercise 29.

Division of complex numbers given in polar form is similar, except that the
magnitudes are divided and the arguments are subtracted:

r1(cos(θ1) + i sin(θ1))

r2(cos(θ2) + i sin(θ2))
=
r1

r2

(cos(θ1 − θ2) + i sin(θ1 − θ2)) .

EXAMPLE 7 Let z1 = 6(cos(π/2) + i sin(π/2) and z2 = 3(cos(π/6) +
i sin(π/6). Find (a) z1z2 and (b) z1/z2.
SOLUTION See Figure 12.5.9

Figure 12.5.9:

(a)

z1z2 = 6 · 3
(

cos
(π

2
− π

6

)
+ i sin

(π
2

+
π

6

))
= 18

(
cos

(
2π

3

)
+ i sin

(
2π

3

))
= 18

(
−1

2
+

√
3

2
i

)
= −9 + 9

√
3i.

(b)

z1

z2

=
6

3

(
cos
(π

2
+
π

6

)
+ i sin

(π
2
− π

6

))
= 2

(
cos
(π

3

)
+ i sin

(π
3

))
= 2

(
1

2
+

√
3

2
i

)
= 1 +

√
3i
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�

EXAMPLE 8 Compute the product (2 + i)(3 + 2i) and check the answer
in terms of magnitudes and arguments.
SOLUTION

Figure 12.5.10:

(1 + i)(3 + 2i) = 3 + 2i+ 3i+ 2i2 = 3 + 2i+ 3i− 2 = 1 + 5i.

To check this calculation, first verify that |1 + 5i| = |1 + i||3 + 2i|. We have

|1 + 5i| =
√

12 + 52 =
√

26,

|1 + i| =
√

12 + 12 =
√

2,

|3 + 2i| =
√

32 + 22 =
√

13.

Since
√

26 =
√

2
√

13, the magnitude of 1+5i is the product of the magnitudes
of 1 + i and 3 + 2i.arg(x+ iy) = arctan(y/x)

for x+ iy in the first or
fourth quadrants.

Next, consider the arguments. First, arg(1 + 5i) = arctan(5) ≈ 1.3734.
Similarly, arg(1 + i) = arctan(1) ≈ 0.7854 and arg(3 + 2i) = arctan(2/3) ≈
0.5880. Since 0.7854 + 0.5880 = 1.3734, the argument of 1 + 5i is the sum of
the arguments of 1 + i and 3 + 2i. (See also Figure 12.5.10.) �

Powers of z

When the polar coordinates of z are known, it is easy to compute the powers
z2, z3, z4, . . . . Let z have magnitude r and argument θ. Then z2 = z · z
has magnitude r · r = r2 and argument θ + θ = 2θ. So, to square a complex
number, just square it magnitude and double its argument (angle).How to compute zn

More generally, to compute zn for any positive integer n, find |z|n and
multiply the argument of z by n. In short, we have DeMoivre’s Law:

(r(cos(θ) + i sin(θ)))n . = rn (cos(nθ) + i sin(nθ))

Example 9 illustrates the geometric view of computing powers.

EXAMPLE 9 Let z have magnitude 1 and argument 2π/5. Compute and
sketch z, z2, z3, z4, z5, and z6.
SOLUTION Since |z| = 1, it follows that |z2| = |z|2 = 12 = 1. Similarly, for
all positive integers n, |zn| = 1; that is, zn is a point on the unit circle with
center O. All that remains is to examine the arguments of z2, z3, etc..
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The argument of z2 is twice the argument of z: 2(2π/5) = 4π/5. Similarly,
arg(z3) = 6π/5, arg(z4) = 8π/5, arg(z5) = 10π/5 = 2π, and arg(z6) = 12π/5.
Observe that z5 = 1, since it has magnitude 1 and argument 2π. Similarly,

Figure 12.5.11:

z6 = z, since both z and z6 have magnitude 1 and their arguments differ by
an integer multiple of 2π. (Or, algebraically, z6 = z5+1 = z5 · z = 1 · z =
z.) Figure 12.5.11 shows that the powers of z form the vertices of a regular
pentagon. �

The equation x5 = 1 has only one real root, namely, x = 1. However, it
has five complex roots. For instance, the number z shown in Figure 12.5.11
is a solution of x5 = 1 since z5 = 1. Another root is z2, since (z2)

5
= z10 =

(z5)
2

= 12 = 1. Similarly, z3 and z4 are roots of x5 = 1. There are five roots:
1, z, z2, z3, and z4. The powers of i.

The powers of i will be needed in the next section. They are i2 = −1,
i3 = i2 · i = (−1)i = −i, i4 = i3 · i = (−i)i = −i2 = 1, i5 = i4 · i = i, and so
on. They repeat in blocks of four: for any integer n, in+4 = in.

Figure 12.5.12:

It is often useful to express a complex number z = x + iy in polar form.
Recall that |z| =

√
x2 + y2. To find θ, it is best to sketch z in order to see in

which quadrant it lies.
For instance, to put z = −2 − 2i in polar form, first sketch z, as in Fig-

ure 12.5.12. We have |z| =
√

(−2)2 + (−2)2 =
√

8 and arg(z) = 5π/4. Thus

z =
√

8

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
.

Roots of z

Each complex number z, other than 0, has exactly n nth roots for each positive
integer n. These can be found by expressing z in polar coordinates. If z =
r (cos(θ) + i sin(θ)), that is, has magnitude r and argument θ, then one nth

root of z is

r1/n

(
cos

(
θ

n

)
+ i sin

(
θ

n

))
.

To check that this is an nth root of z, just raise it to the nth power.

Figure 12.5.13:

To find the other nth roots of z, change the argument z from θ to θ+ 2kπ,
where k = 1, 2, . . . , n− 1. Then

r1/n

(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
is also an nth root of z. (Why?) The n roots of the equation

zn = a are the vertices of a
regular polygon with n
sides.

For instance, let z = 8 (cos(π/4) + i sin(π/4)). Then the three cube roots
of z all have magnitude 81/3 = 2. Their arguments are

π/4

3
=

π

12
,

π/4 + 2π

3
=

π

12
+

2π

3
,

π/4 + 4π

3
=

π

12
+

4π

3
.
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These three roots are shown in Figure 12.5.13, along with z.

Summary

The real numbers, with which we all grew up, are just a small part of the
complex numbers, which fill up the xy plane. We add complex numbers by
a “parallelogram law.” To multiply them “we multiply their magnitudes and
add their angles.” Using the complex numbers we can see that “negative real
time negative real is positive,” since 180◦ + 180◦ = 360◦, which describes the
positive x-axis. We also saw how to raise a complex number to a power and
how to take its roots. We can now view points in the xy plane as “numbers.”
However, mathematicians have shown that we cannot treat points in space as
“numbers” that satisfy the usual rules of addition and multiplication.
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EXERCISES for Section 12.5 Key: R–routine, M–moderate, C–challenging

In Execises 1 to 4 compute the given quantities:
1.[R]

(a) (2 + 3i) + (5− 2i)

(b) (2 + 3i)(2− 3i)

(c) 1
2−i

(d) 3+2i
4−i

2.[R]

(a) (2 + 3i)2

(b) 4
3−i

(c) (1 + i)(3− i)

(d) 1+5i
2−3i

3.[R]

(a) (1 + 3i)2

(b) (1 + i)(1− i)

(c) i−3

(d) 4+
√

2i
2+i

4.[R]

(a) (1 + i)3

(b) i
1−i

(c) (3 + i)−1

(d) (5 + 2i)(5− 2i)
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In Exercises 5 to 8 express the number in polar form r(cos(θ) + i sin(θ)) with θ is
[0, 2π].
5.[R]

√
3 + i

6.[R]
√

3− i
7.[R]

√
2 +
√

2i
8.[R] −4 + 4i

In Exercises 9 to 12 express the number in polar and rectangular form.
9.[R] (−1 + i)10

10.[R] (
√

3 + i)4

11.[R] (2 + 2i)8

12.[R] 1−
√

3i)7

13.[R] Rationalize the denominator in each fraction. That is, express the fraction
as an equivalent fraction whose denominator is an integer.

(a) 1
1+
√

2

(b) 1
2−i

(c) 2−
√

3√
3+2

(d) 3+2i
i−3

14.[R] For each equation, (i) find all solutions to the equation, (ii) plot all solutions
in the complex plane, and (iii) check that the solution satisfies the equation.

(a) x2 + x+ 1 = 0

(b) x2 − 3x+ 5 = 0

(c) 2x2 + x+ 1 = 0

(d) 3x2 + 4x+ 5 = 0

15.[R] Let z1 have magnitude 2 and argument π/6, and let z2 have magnitude 3
and argument π/3.

(a) Plot z1 and z2.

(b) Find z1z2 using the polar form.
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(c) Write z1 and z2 in the rectangular form x+ yi.

(d) With the aid of (c) compute z1z2.

16.[R] Let z1 have magnitude 2 and argument π/4, and let z2 have magnitude 3
and argument 3π/4.

(a) Plot z1 and z2.

(b) Find z1z2 using the polar form.

(c) Write z1 and z2 in the form x+ yi.

(d) With the aid of (c) compute z1z2.

17.[R] The complex number z has argument π/3 and magnitude 1. Find and plot
(a) z2, (b) z3, and (c) z4.

18.[R] Find (a) i3, (b) i4, (c) i5, and (d) i73.

19.[R] If z has magnitude 2 and argument π/6, what are the magnitude and ar-
gument of (a) z2, z3, z4, and zn. (b) Sketch z, z2, z3, and z4.

20.[R] Let z have magnitude 0.9 and argument π/4.

(a) Find and plot z2, z3, z4, z5, and z6.

(b) What happens to zn as n→∞?

21.[R] Find and plot all solutions of the equation z5 = 32 (cos(π/4) + i sin(π/4)).

22.[R] Find and plot all solutions of the equation z4 = 8 + 8
√

3i. Hint: First draw
8 + 8

√
3i.

23.[R] Let z have magnitude r and argument θ. Let w have magnitude 1/r and
argument −θ. Show that zw = 1. Note: w is called the reciprocal of z, and
denoted z−1 or 1/z.

24.[R] Find z−1 if z = 4 + 4i. Note: See Exercise 23.

25.[R]
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(a) By substitution, verify that 2+3i is a solution of the equation x2−4x+13 = 0.

(b) Use the quadratic formula to find all solutions of the equation x2−4x+13 = 0.

26.[R]

(a) Use the quadratic formula to find all solutions of the equation x2 +x+ 1 = 0.

(b) Plot the solutions in (a).

(c) Check that the solutions in (a) satisfy x2 + x+ 1 = 0.

27.[R] Write in polar form

(a) 5 + 5i,

(b) −1
2 −

√
3

2 i,

(c) −
√

2
2 +

√
2

2 i,

(d) 3 + 4i.

28.[R] Write in rectangular form as simply as possible:

(a) 3
(
cos
(

3π
4

)
+ i sin

(
3π
4

))
,

(b) 2
(
cos
(
π
6

)
+ i sin

(
π
6

))
,

(c) 10 (cos (π) + i sin (π)),

(d) 1
5 (cos (22◦) + i sin (22◦)) Hint: Express the answer to at least three decimal
places.

29.[R] Let z1 have magnitude r1 and argument θ1, and let z2 have magnitude r2

and argument θ2.

(a) Explain why the magnitude of z1/z2 is r1/r2.

(b) Explain why the argument of z1/z2 is θ1 − θ2.
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30.[R] Compute
cos
(

5π
4

)
+ i sin

(
5π
4

)
cos
(

3π
4

)
+ i sin

(
3π
4

)
by two ways: (a) by the result of Exercise 29, (b) by rationalizing the denominator.

31.[R] Compute

(a) (2 + 3i)(1 + i)

(b) 2+3i
1+i

(c) (7− 3i)(7− 3i)

(d) 3(cos(42◦) + i sin(42◦)) · 5(cos(168◦) + i sin(168◦))

(e)
√

8(cos(147◦)+i sin(147◦)√
2(cos(57◦)+i sin(57◦))

(f) 1/(3− i)

(g) ((cos(52◦) + i sin(52◦))−1

(h)
(
cos
(
π
6

)
+ i sin

(
π
6

))12

32.[R] Compute

(a) (4 + 3i)(4− 3i)

(b) 3+5i
−2+i

(c) 1
2+i

(d)
(
cos(

(
π
12

)
+ i sin(

(
π
12

))20

(e) (r(cos(θ) + i sin(θ))−1

(f) Re
(

(r(cos(θ) + i sin(θ)))10
)

(g)
3(cos(π6 )+i sin(π6 ))

5−12i

33.[R] Find and plot all solutions of z3 = i.

34.[R] Sketch all complex numbers z such that (a) z6 = 1, (b) z6 = 64, (c) z6 = −1.
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35.[R]

(a) Why is the symbol
√
−4 ambiguous?

(b) Draw all solutions of z2 = −4.

36.[R] If zk has argument θk and magnitude rk, k = 1, 2, write each of the following
in the form r(cos(θ) + i sin(θ)).

(a) z2
1

(b) 1/z1

(c) (z1)

(d) z1z2

(e) z1/z2

(f) 1/z1

37.[R] Draw the six sixth roots of

(a) 1

(b) 64

(c) i

(d) −1

(e) −1
2 +

√
3

2 i

38.[M] Using the fact that

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

find formulas for cos(3θ) and sin(3θ) in terms of cos(θ) and sin(θ).

39.[M]

(a) If |z1| = 1 and |z2| = 1, how large can |z1 +z2| be? Hint: Draw some pictures.
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(b) If |z1| = 1 and |z2| = 1, what can be said about |z1z2|?

40.[M] Show that (a) z1z2 = z1z2, (b) z1 + z2 = z1 + z2.

41.[M] If arg(z) is θ, what is an argument of (a) z, (b) 1/z.

42.[M] Let z = 1√
2

+ i√
2
.

(a) Compute z2 algebraically.

(b) Compute z2 by putting z into polar form.

(c) Sketch the numbers z, z2, z3, z4, and z5.

43.[M] Let a, b, and c be complex numbers such that a 6= 0 and b2 − 4ac 6= 0.
Show that ax2 + bx+ c = 0 has two distinct roots.

44.[M] Find and plot the roots of x2 + ix+ 3− i = 0.

45.[M] Compute the roots of the following equation and plot them relative to the
same axes:

(a) x2 − 3x+ 2 = 0

(b) x2 − 3x+ 2.25 = 0

(c) x2 − 3x+ 2.5 = 0

(d) x2 − 3x+ 1.5 = 0

46.[M] The complex number z = t+ i (t a real number) lies on the line y = 1.

(a) Plot z2 for, at least, t = 0, 1, and −1.

(b) Find the equation of the curve on which z2 lies.

47.[M] For x > 0 the complex number z = x+ i/x lies on the curve y = 1/x. On
what curve does z2 lie?

(a) Plot z2 for, at least, x = 1, 2, and 3.
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(b) Determine the curve on which z2 lies.

48.[M] The complex number z = t+ i (t a real number) lies on the line y = 1.

(a) Plot z2 for, at least, x = 0, 1, and −1.

(b) Determine the curve on which z2 lies.

49.[M] The complex number z = 1 + ti (t a real number) lies on the line x = 1.

(a) Plot the points 1/z for t = 0, 1, −1, and 2.

(b) Determine the curve on which 1/z lies.

50.[M]

(a) Draw the curve on which z = t+ 2ti lies.

(b) Draw the curve on which z2 lies.

51.[M] If z lies on the line x + y = 1, where does 1/z lie? Hint: Plot 1/z for a
sample of points z on the original line.

52.[C] For which complex numbers z is z = 1/z?

53.[C] Let z = 1
2 + i

2 .

(a) Sketch the numbers zn for n = 1, 2, 3, 4, and 5.

(b) What happens to zn as n→∞?

54.[C] Let z = 1 + i.

(a) Sketch the numbers zn/n! for n = 1, 2, 3, 4, and 5.

(b) What happens to zn/n! as n→∞?

55.[C]
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(a) Graph r = cos(θ) in polar coordinates.

(b) Pick five points on the curve in (a). Viewing each as a complex number z,
plot z2.

(c) As z runs through the curve in (a), what curve does z2 sweep out? Hint: Give
its polar equation.

56.[C] The partial-fraction representation of a rational function is much simpler
when we have complex numbers. No second-degree polynomial ax2+bx+c is needed.
This exercise indicates why this is the case.
Let z1 and z2 be the roots of ax2 + bx+ c = 0, a 6= 0.

(a) Using the quadratic formula (or by other means), show that z1 + z2 = −b/a
and z1z2 = c/a.

(b) From (a) deduce that

ax2 + bx+ c = a(x− z1)(x− z2).

(c) With the aid of (b) show that

1
ax2 + bx+ c

=
1

a(z1 − z2)

(
1

x− z1
− 1
x− z2

)
.

Part (c) shows that the theory of partial fractions, described in Section 8.4, be-
comes much simpler when complex numbers are allowed as the coefficients of the
polynomials. Only partial fractions of the form k/(ax+ b)n are needed.

57.[C] Let f(x) = a0 + a1x+ qa2x
2 + a3x

3 + a4x
4, where each coefficient is real.

(a) Show that if c is a root of f(x) = 0, then so is c.

(b) Show that if c is a root of f and is not real, then (x− c)(x− c) divides f(x).

(c) Using the fundamental theorem of algebra, show that any fourth-degree poly-
nomial with real coefficients can be expressed as the product of polynomials
of degree at most 2 with real coefficients.

Exercise 58 is related to Exercise 90 on page 781. (See also Exercises 5 and 6 at the
end of this chapter.)
58.[C] Let a point 0 be a distance a 6= 1 from the center of a unit circle.
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(a) Show that the average value of the (natural) logarithm of the distance from
0 to points on the circumference is

1
2π

2π∫
0

1
2

ln(1 + a2 − 2a cos(θ)) dθ.

(b) Spend at least three minutes, but at most 5 minutes, trying to evaluate the
integral in (a).
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12.6 The Relation Between the Exponential

and the Trigonometric Functions

With the aid of complex numbers, in 1743, Leonard Euler discovered that the
trigonometric functions can be expressed in terms of the exponential function
ez, where z is complex. This section retraces his discovery. In particular, it
will be shown that Finding sin(x) and cos(x)

in ex.

eiθ = cos(θ) + i sin(θ), cos(θ) =
eiθ + e−iθ

2
, and sin(θ) =

eiθ − e−iθ

2i
.

Complex Series

In order to relate the exponential function to the trigonometric functions, we
will use infinite series such as

∑∞
k=0 zk, where the zk’s are complex numbers.

Such a series is said to converge to S if its kth partial sum Sk approaches S Here, | · | refers to the
magnitude.in the sense that |S − Sk| → 0 as k → ∞. It is shown in Exercise 35 that if∑∞

k=0 |zk| (a series with real-valued terms) converges, so does
∑∞

k=0 zk, and the
series

∑∞
k=0 zk is said to converge absolutely. If a series converges absolutely,

we may rearrange the terms in any order without changing the sum.
Let zk = xk + iyk, where xk and yk are real. If

∑∞
k=0 zk converges, so

do
∑∞

k=0 xk and
∑∞

k=0 yk. If
∑∞

k=0 zk = S = a + bi, then
∑∞

k=0 xk = a and∑∞
k=0 yk = b.

∑∞
k=0 xk is called the real part of

∑∞
k=0 zk and

∑∞
k=0 yk is the Re (

∑∞
k=0 zk) =

∑∞
k=0 xk

imaginary part of
∑∞

k=0 zk. Im (
∑∞

k=0 zk) =
∑∞

k=0 yk

EXAMPLE 1 Determine for which complex numbers z,
∑∞

k=0 z
k/k! con-

verges.
SOLUTION We will examine absolute convergence, that is, the convergence
of
∑∞

k=0 |zk|/k!. This series has real terms. In fact, it is the Maclaurin series |z| is a real number

for e|z|, which converges for all real numbers. Since
∑∞

k=0 z
n/n! converges ab-

solutely for all z, it converges for all z. �

Defining ez
In some treatments of
exponentials ez is defined as
a power series and e is
defined as the value of the
power series when z = 1.

The Maclaurin series for ex when x is real suggests the following definition:

DEFINITION (ez for complex z.) Let z be a complex number.
Define ez to be the sum of the convergent series

∑∞
k=0 z

k/k!.

It can be shown by multiplying the series for ez1 and ez2 that ez1+z2 = ez1ez2

in accordance with the basic law of exponents. When the expression for z is
complicated, we sometimes write ez as exp(z). For example, in exp notation
the law of exponents becomes exp(z1 + z2) = (exp(z1))(exp(z2)).

Calculus December 6, 2010



1062 CHAPTER 12 APPLICATIONS OF SERIES

Euler’s Formula: The Link between eiθ, cos(θ), and sin(θ)

The following theorem of Euler provides the key link between the exponential
function ez and the trigonometric functions cos(θ) and sin(θ).

Figure 12.6.1: This is the
license plate of the math-
ematician Martin Davis,
whose e-mail signature is
“eipye, add one, get zero.”

Theorem 12.6.1. Euler’s Formula Let θ be a real number. ThenEuler’s Formula

eiθ = cos(θ) + i sin(θ).

Proof

By definition of ez for any complex number,Recall that i2 = −1,
i3 = −i, i4 = 1, i5 = i, . . . .

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · · .

= 1 + iθ +
i2θ2

2!
+
i3θ3

3!
+
i4θ4

4!
+ · · · .

= 1 + iθ − θ2

2!
− iθ3

3!
+
θ4

4!
+ · · · .

=

(
1− θ2

2!
+
θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+ · · ·

)
(rearranging)

= cos(θ) + i sin(θ).

Figure 12.6.2 shows eiθ, which lies on the standard unit circle. •

Figure 12.6.2:

Theorem 12.6.1 asserts, for instance, thateiπ = −1

eiπ = cos(π) + i sin(π) = −1 + i · 0 = −1.

The equation eiπ = −1 is remarkable in that it links e (the fundamental number
in calculus), π (the fundamental number in trigonometry), i (the fundamental
complex number), and the negative number −1. The history of that short
equation would recall the struggles of hundreds of mathematicians to create the
number system that we now take for granted. It is as important in mathematics
as F = ma or E = mc2 in physics.There is an old saying:

“God created the complex
numbers; anything less is

the work of man.”

With the aid of Theorem 12.6.1, both cos(θ) and sin(θ) may be expressed
in terms of the exponential function.

Theorem 12.6.2. Let θ be a real number. Then
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cos(θ) =
eiθ + e−iθ

2
and sin(θ) =

eiθ − e−iθ

2i

Proof

We begin with Euler’s formula (Theorem 12.6.1),

eiθ = cos(θ) + i sin(θ). (12.6.1)

Replacing θ by −θ in (12.6.1), we obtain

e−iθ = cos(θ)− i sin(θ). (12.6.2)

The sum of (12.6.1) and (12.6.2) yields

eiθ + e−iθ = 2 cos(θ),

hence

cos(θ) =
eiθ + e−iθ

2
.

Subtraction of (12.6.2) from (12.6.1) yields

eiθ − e−iθ = 2i sin(θ),

hence

sin(θ) =
eiθ − e−iθ

2i
.

This establishes the two results in this theorem. • sinh and cosh were defined
in Section 4.1, see
Exercises 49 to 52 on
page 301.

The hyperbolic functions cosh(x) and sinh(x) were defined in terms of the
exponential function by

cosh(x) =
ex + e−x

2
and sinh(x) =

ex − e−x

2
.

Theorem 12.6.2 shows the trigonometric functions could be similarly defined Just as Maxwell discovered
the connection between
light and electricity, Euler
discovered the connection
between the exponential
and trigonometric functions.

in terms of the exponential function — if complex numbers were available.
Indeed, from the complex numbers and ez we could even obtain the deriva-

tive formulas for sin(θ) and cos(θ). For instance,

d

dθ
sin(θ) =

(
eiθ − e−iθ

2i

)′
=
ieiθ + ie−iθ

2i
=
eiθ + e−iθ

2
= cos(θ).

(That the familiar rules for differentiation extend to complex-valued functions
is justified in a course in complex variables.)
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Sketching ez
Magnitude and argument of

ex+iy If z = x+ iy, the evaluation of ez can be carried out as follows:

ez = ex+iy = exeiy = ex(cos(y) + i sin(y)).

The magnitude of ex+iy is ex and the argument of ex+iy is y.

EXAMPLE 2 Compute and sketch (a) e2+(π/6)i, (b) e2+πi, and (c) e2+3πi.

Figure 12.6.3:

SOLUTION (a) e2+(π/6)i has magnitude e2 and argument π/6. (b) e2+πi has
magnitude e2 and argument π; it equals −e2. (c) e2+3πi has magnitude e2 and
argument 3π, so is the same number as the number in (b). The results are
sketched in Figure 12.6.3. �

The next example illustrates a typical computation in alternating currents.
Electrical engineers frequently use j as the symbol for i (so they can use i to
represent current).

EXAMPLE 3 Find the real part of 100ej(π/6)ejωt. Here t refers to time, ω
is a real constant related to frequency, and j is the mathematician’s i.
SOLUTION

100ej(π/6)ejωt = 100ej(π/6)+jωt

= 100ej(π/6+ωt)

= 100
(

cos
(π

6
+ ωt

)
+ i sin

(π
6

+ ωt
))

.

Thus

Re
(
100ej(π/6)ejωt

)
= 100 cos

(π
6

+ ωt
)
.

�

It is often convenient to think of cos(θ) as Re
(
eiθ
)
. The next example

exploits this point of view.

EXAMPLE 4 Evaluate
∑∞

k=0
cos(kθ)
k!

.
SOLUTION Recall that eikθ = cos(kθ)+i sin(kθ). Hence cos(kθ) = Re

(
eikθ
)
,
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and we have Recall the definition of ez.

∞∑
k=0

cos(kθ)

k!
=

∞∑
k=0

Re
(
eikθ
)

k!
= Re

(
∞∑
k=0

eikθ

k!

)

= Re

(
∞∑
k=0

(
eiθ
)k

k!

)
= Re

(
∞∑
k=0

(exp(iθ))k

k!

)
= Re

(
eexp(iθ)

)
= Re

(
ecos(θ)+i sin(θ)

)
= Re

(
ecos(θ)ei sin(θ)

)
= ecos(θ) Re

(
ei sin(θ)

)
= ecos(θ) Re (cos(sin(θ)) + i sin(sin(θ))) = ecos(θ) cos(sin(θ)).

Hence
∞∑
k=0

cos(kθ)

k!
= ecos(θ) cos(sin(θ)).

�

Summary

Using power series, we obtained the fundamental relation eiθ = cos(θ)+i sin(θ)
and showed that cos(θ) and sin(θ) can be expressed in terms of the exponential
function. Since ln(x) is the inverse of ex, it too is obtained from the exponential
function. We may define even xn, x > 0, in terms of the exponential function
as en ln(x). Similarly, ax, a > 0, can be defined as ex ln(a). These observations
suggest that the most fundamental function in calculus is ex.
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EXERCISES for Section 12.6 Key: R–routine, M–moderate, C–challenging

In Exercises 1 to 6 sketch the numbers given and state their real and imaginary
parts.
1.[R] e5πi/4

2.[R] 5eπi/4

3.[R] 2eπi/4 + 3eπi/6

4.[R] e2+3i

5.[R] eπi/6e3πi/4

6.[R] 2eπi · 3e−πi/3

In Exercises 7 to 10 express the given numbers in the form reiθ for a positive real
number r and argument θ, where −π < θ ≤ π.
7.[R] e2√

2
− e2√

2
i

8.[R] 3
(
cos
(
π
4

)
+ i sin

(
π
4

))
9.[R] 5

(
cos
(
π
6

)
+ i sin

(
π
6

))
· 3
(
cos
(
π
2

)
+ i sin

(
π
2

))
10.[R] 7

(
cos
(

7π
3

)
+ i sin

(
7π
3

))
In Exercises 11 to 14 plot exp(z) for the given values of z:
11.[R] z = 2
12.[R] πi/2
13.[R] 2− πi/3
14.[R] −1 + 17πi/6

In Exercises 15 to 18 plot the given complex numbers:
15.[R] exp(πi/4 + 3πi)
16.[R] exp(1 + 9πi/4
17.[R] exp(2− πi/3)
18.[R] exp(−1 + 17πi/6)

19.[R] Let z = ea+bi. Find (a) |z|, (b) z̄, (c) z−1, (d) Re(z), (e) Im(z), and (f)
arg(z). Note: In (f), assume a and b are positive.

20.[R] How far is exp(x+ iy) from the origin?

21.[R] How far is exp(x+ iy) from the x-axis? From the y-axis?

22.[R] For which values of a and b is limn→∞
(
ea+ib

)n = 0?

23.[R] Find all complex numbers z such that ez = 1.
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24.[R] Find all complex numbers z such that ez = −1.

25.[R]

(a) Find
∣∣e3+4i

∣∣.
(b) Plot the complex number e3+4i.

26.[R]

(a) Plot all complex numbers of the form ex+4i, x real.

(b) Plot all complex numbers of the form e3+yi, y real.

27.[M] If z lies on the line y = 1, where does exp(z) lie?

28.[M] If z lies on the line x = 1, where does exp(z) lie?

29.[M] In Claude Garrod’s Twentieth Century Physics, Faculty Publishing, Davis,
Calif., p. 107, there is the remark: “Using the fact that(

e−iω0t
)∗ (

e−iω0t
)

= 1,

we can easily evaluate the probability density for these standard waves.” Justify
this equation. Note: In this text, z∗ denotes the conjugate of z and ω0 is real.

30.[M] Use the fact that 1 + cos(θ) + cos(2θ) + · · ·+ cos((n− 1)θ) is the real part
of 1 + eθi + e2θi + · · ·+ e(n−1)θi to find a short formula for that trigonometric sum.

31.[M] Find all z such that ez = 3 + 4i.

32.[M] Assuming that ez1+z2 = ez1ez2 for complex numbers z1 and z2, obtain the
trigonometric identities for cos(A+B) and sin(A+B).

33.[M] Evaluate
∞∑
k=0

cos(nθ)
2n

.

Note: First, show that the series converges (absolutely).
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34.[M] Evaluate
∞∑
k=0

sin(nθ)
n!

.

Note: First, show that the series converges (absolutely).

35.[M] This Exercise shows that if
∑∞

k=0 |zk| converges, so does
∑∞

k=0 zk.

(a) Let zk = xk + iyk. Show that
∑∞

k=0 |xk| and
∑∞

k=0 |xk| both converge.
Hint: |a| ≤

√
a2 + b2

(b) Show that
∑∞

k=0 xk and
∑∞

k=0 yk both converge.

(c) Show that
∑∞

k=0(xk + iyk) converges.

36.[C] For which z is

(a) ez = e−z,

(b) eiz = e−ix¡

(c) sin(z) = 0.

Exercises 37 and 38 treat the complex logarithms of a complex number. They show
that z = ln(w) is not single-valued.
37.[C] Let w be a nonzero complex number. Show that there are an infinite num-
ber of complex numbers z such that ez = w. Hint: Use Euler’s formula.

38.[C] (See Exercise 37.) When ez = w, we write z = ln(w) although ln(w) is not
a uniquely defined number. If b is a nonzero complex number and q is a complex
number, define bq to be eq ln(b). Since ln(b) is not unique, bq is usually not unique.
List all possible values of (a) (−1)i, (b) 101/2, (c) 103,

39.[M] Let f(z) be a polynomial with real coefficients.

(a) Show that if f(a) = 0, then f(a) = 0. (This shows that roots of f occur in
conjugate pairs.)

(b) Show that ez = ez.

(c) Show that sin(z) = sin(z).

December 6, 2010 Calculus



§ 12.6 THE RELATION BETWEEN THE EXPONENTIAL AND THE TRIGONOMETRIC FUNCTIONS1069

40.[M] When z is real, | sin(z)| ≤ 1 and | cos(z)| ≤ 1. Do these inequalities hold
for all complex z?

41.[M] Does the equation cos2(z) + sin2(z) = 1 hold for complex z?

42.[M] Let

z =
1 + i√

2
.

(a) Plot z, z2/2!, z3/3!, and z4/4!.

(b) Plot 1 + z + z2/2! + z3/3! + z4/4!, which is an estimate for exp
(
(1 + i)/

√
2
)
.

(c) Plot exp
(
(1 + i)/

√
2
)

on the xy plane.

43.[M] An integral table lists
∫
xeax dx = eax (ax− 1) /a2. At first glance, finding

the integral of xeax cos(bx) may appear to be a much harder problem. However, by
noticing that cos(bx) = Re

(
eibx
)
, we can reduce it to a simpler problem. Following

this approach, find
∫
xeax cos(bx) dx. Hint: The formula for

∫
xeax dx holds when

a is complex.

44.[M] In Section 4.1 we define cosh(x) = (ex + e−x) /2 and sinh(x) = (ex − e−x) /2.
We can use the same definitions when x is complex. In view of Theorem 12.6.2,
let us define sine and cosine for complex z by sin(z) =

(
eiz − e−iz

)
/(2i) and

cos(z) =
(
eiz + e−iz

)
/2. Establish the following links between the hyperbolic and

trigonometric functions:

(a) cosh(z) = cos(iz)

(b) sinh(z) = −i sin(iz)

45.[M] Show that

(a) sin(z) = i sinh(iz).

(b) cos(z) = cosh(iz).

(c) cosh(z)2 − sinh(z)2 = 1
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46.[C] Let z be a complex number and θ a real number. What is the relationship
between z and eiθz? Experiment, conjecture, and explain.

47.[C]

48.[C]

49.[M] Sam is at it again: “I don’t need power series to define ez. I just write z as
x+ iy and define ex+iy to be ex(cos(y) + i sin(y)). That’s all there is to it. If I call
this function E(z), then it’s easy to check that E(z1 + z2) = E(z1)E(z2). Moreover,
if z is real, then y = 0 and E(z) = ex, agreeing with our familiar exp(x).”

(a) Is Sam right?

(b) Does his E(z) obey the basic law of exponents, as he claims?

(c) Jane asks him, “But where did you get the idea for that definition? It seems
to float in out of thin air.” What is Sam’s answer?
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12.7 Fourier Series

In Section 5.4 we used sums of terms of the form axn, where n is a non-negative
integer and a is a number, to represent a function. This required a function
to have derivatives of all orders. Now, instead, we will use sums of terms of
the form a cos(kx) and b sin(kx), where a, b, and k are numbers. This method
applies to a much broader class of functions, even, for instance, the absolute
value function, f(x) = |x|, which is not differentiable at 0, and some functions
that are not even continuous. The technique, called Fourier Series, is used
in such varied fields as heat conduction, electric circuits, the theory of sound
and mechanical vibrations. To listen to several tuning

forks, go to http://www.
onlinetuningfork.com/.

At first glance, the use of sine and cosine, which are periodic functions, may
seem a surprising choice. However, if you think in terms of sound, it is quite
plausible. Every tuning fork produces a pure pitch at a specific frequency.
With a collection of such devices, each at a different pitch, struck simultane-
ously, you can approximate the sound made by a band or an orchestra. Each
tuning fork corresponds to sin(kt) or cos(kt), where t is time. The one set
at concert A vibrates at the rate of 440 cycles per second, that is, 440 Hertz
(440 Hz). In this case the acoustic wave is expressed as sin (400 (2πt)), for, as
t increases by 1/400 second, the argument 400 (2πt) increases by 2π, enabling
the function to complete one cycle.

Periodic Functions

The function cos(x) (and sin(x)) has period 2π, that is, cos(x+ 2π) = cos(x).
Changing the input by 2π does not change the output. It follows that cos(x−
2π) = cos(x), cos(x + 4π) = cos(x), and, more generally, for any integer n,
cos(x) has n(2π) as a period. When we say “cos(x) has period 2π” we are
emphasizing the smallest period. Its other periods are all integer multiples of
that period.

EXAMPLE 1 Find the period of (a) cos(3πx), (b) cos(kπx/L), where k is
a positive integer and L is a positive number.
SOLUTION In each case we ask, “How much must x change in order for the
argument (the input) to change by 2π?”

(a) For 3πx to change by 2π, we solve the equation 3πx = 2π, obtaining
x = 2/3. Thus cos(3πx) has period 2/3.

(b) For cos(kπx/L) the reasoning used in (a) leads us to conclude the period
is 2L/k.

Note that in (b) the larger L is, the longer the period, but the larger k is, the
shorter the period. For each k, 2L is among its periods. �
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Fourier Series for Functions with Period 2π

We first treat the familiar case of functions that have period 2π. Then we
consider the general case, where the period is 2L, for any positive number L.

Let f(x) have period 2π. Its values are determined by its values on the
interval [−π, π). We choose this interval rather than [0, 2π) to simplify some
computations that we will encounter momentarily.

Let f(x) be a function of period 2π. The Fourier Series associated with
this function is

a0

2
+
∞∑
k=1

(ak cos (kx) + bk sin (kx)) (12.7.1)

whereThe formulas for ak and bk
are known as “Euler’s

formulas.” Euler published
them in 1777, but Fourier

was unaware of them. ak =
1

π

π∫
−π

f(x) cos (kx) dx k = 0, 1, 2, . . . (12.7.2)

bk =
1

π

π∫
−π

f(x) sin (kx) dx k = 1, 2, . . . . (12.7.3)

(This assumes the integrals in (12.7.2) and (12.7.3) exist.)

After we compute two Fourier series, we will show why the coefficients are
given by the integrals in (12.7.2) and (12.7.3).

The numbers ak and bk are called the Fourier coefficients for f(x). TheConstant term is a0/2
formula for a0 reduces to a0 = 1

π

∫ π
−π f(x) dx. This means that the constant

term a0/2 is the average value of the function f(x) over one period. Note that
the formula for ak in (12.7.2) also holds for k = 0 because the constant term
in (12.7.1) is a0/2. (The 2 was included so (12.7.2) would hold when k = 0.)

EXAMPLE 2 Find the Fourier series associated with the function defined
by

f(x) =

{
−1 −π < x ≤ 0

1 0 < x ≤ π.

To make f(x) have period 2π, just repeat the graph on every interval of theBecause f(x) is (almost) an
odd function, we expect

only sines to appear in its
Fourier series.

form (−π+ 2nπ, π+ 2nπ]. The graph of f(x) is shown in Figure 12.7.1(a) and
the extension of f(x) is shown in Figure 12.7.1(b).

December 6, 2010 Calculus



§ 12.7 FOURIER SERIES 1073

x
K5 p K4 p K3 p K2 p Kp p 2 p 3 p 4 p 5 p

K1

1

(a)

x
K5 p K4 p K3 p K2 p Kp p 2 p 3 p 4 p 5 p

K1

1

(b)

Figure 12.7.1:

SOLUTION

a0 = 1
π

∫ π
−π f(x) dx

= 1
π

∫ 0

−π f(x) dx+ 1
π

∫ π
0
f(x) dx

= 1
π

∫ 0

−π−1 dx+ 1
π

∫ π
0

1 dx

= 1
π
(−π) + 1

π
(π) = 0.

Similarly, for k ≥ 1,
ak = 1

π

∫ π
−π f(x) cos(kx) dx

= 1
π

∫ 0

−π f(x) cos(kx) dx+ 1
π

∫ π
0
f(x) cos(kx) dx

= 1
π

∫ 0

−π− cos(kx) dx+ 1
π

∫ π
0

cos(kx) dx

= 1
π
− sin(kx)

k

∣∣∣0
−π

+ 1
π

sin(kx)
k

∣∣∣π
0

= 0 + 0 = 0

and
bk = 1

π

∫ π
−π f(x) sin(kx) dx

= 1
π

∫ 0

−π f(x) sin(kx) dx+ 1
π

∫ π
0
f(x) sin(kx) dx

= 1
π

∫ 0

−π− sin(kx) dx+ 1
π

∫ π
0

sin(kx) dx

= 1
π

cos(kx)
k

∣∣∣0
−π

+ 1
π
− cos(kx)

k

∣∣∣π
0

= 1
π

(
1−cos(−kπ)

k

)
+ 1

π

(
− cos(kπ)+1

k

)
Because cos(−kπ) = cos(kπ), we have

bk = 1
kπ

((1− cos(kπ)) + (1− cos(kπ))) = 2(1−cos(kπ))
kπ

.

When k is even, 1− cos(kπ) = 1− 1 = 0. And, when k is odd, 1− cos(kπ) =
1− (−1) = 2. Thus

bk =

{
0 when k is even
4
kπ

when k is odd.

The Fourier Series (12.7.1) in this case has only terms involving sin(kx)
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with k odd. It is

4

π
sin(x) +

4

3π
sin(3x) +

4

5π
sin(5x) + . . . .

In particular, when x = π/2, f(x) = 1 and we have

1 = 4
π

sin
(

(π
2

)
+ 4

3π
sin
(

3π
2

)
+ 4

5π
sin
(

5π
2

)
+ . . .

1 = 4
π
− 4

3π
+ 4

5π
− . . .

Thus π
4

= 1− 1
3

+ 1
5
− . . . .

This result was obtained previously in Exercise 21 in Section 12.4 with the aid
of the Maclaurin series for arctan(x). �

Fourier Series for Functions with Period 2L

Sometimes we will want to develop the Fourier series for a function over an
interval not of length 2π. For instance, we may want to obtain the Fourier
series for f(x) = x on the interval [0, 10). Because the function is not periodic,
the first step is to replace f(x) with a function g(x) that is periodic and
coincides with f(x) on [0, 10). The graph of y = f(x) on [0, 10) is shown in
Figure 12.7.2(a); two possible extensions of f(x) are shown in Figure 12.7.2(b)
and (c).

x
K20 K10 0 10 20

K20

K10

10

20

(a)

x
K30 K20 K10 0 10 20 30

K10

K5

5

10

(b)

x
K30 K20 K10 0 10 20 30

5

10

(c)

Figure 12.7.2:

The Fourier series for a function of period 2L has the form

a0

2
+
∞∑
k=1

(
ak cos

(
kπx

L

)
+ bk sin

(
kπx

L

))
(12.7.4)
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with coefficients given by Note that the formula for
ak includes the case for a0.

ak =
1

L

L∫
−L

f(x) cos

(
kπx

L

)
dx k = 0, 1, 2, . . . (12.7.5)

bk =
1

L

L∫
−L

f(x) sin

(
kπx

L

)
dx k = 1, 2, . . . . (12.7.6)

EXAMPLE 3 Find the Fourier series of the triangular wave with period
20 shown in Figure 12.7.2(c).
SOLUTION Let T (x) denote the triangular wave. In this case, 2L = 20, so
L = 10. To compute the Fourier series of T (x) we need to know the definition
of T (x) on [−L,L). T (x) = |x| for x in

[−10, 10)

T (x) =

{
x for 0 ≤ x ≤ 10
−x for −10 ≤ x < 0

.

Because T (x) is an even function, bk = 0 for k = 1, 2, . . . . Then If T (x) = T (−x), then∫ 1
−1 T (x) dx =

2
∫ 1

0 T (x) dx.a0 = 1
10

∫ 10

−10
T (x) dx = 2

10

∫ 10

0
x dx = 1

10
x2|10

0 = 10.

The coefficients of the cosine terms are

ak = 1
10

∫ 10

−10
T (x) cos(kπx/10) dx = 2

10

∫ 10

0
x cos(kπx/10) dx because x cos(kπx/10) is even

= 2
10

( x
kπ

sin(kπx/10)
∣∣∣10
0 − 1

kπ

∫ 10

0
sin(kπx/10) dx

)
int by parts: u = x, dv =
cos(kπx/10) dx

= 2

(
0 + 1

(kπ)2
cos(kπx/10)

∣∣∣1
0

)
sin(kπ/10) = 0 for all integers k

= 2(cos(kπ/10)−1)
(kπ/10)2

= 2((−1)k−1)
(kπ/10)2

When k is an even integer, ak = 20((−1)k − 1)/(kπ)2 = 0. And, when k is an
odd integer, ak = 20((−1)k − 1)/(kπ)2 = −40/(kπ)2.

The Fourier series for the triangular wave is

T (x) = 5− 40

π2

(
cos(πx/10) +

1

9
cos(3πx/10) +

1

25
cos(5πx/10) + . . .

)
.

�

Figure 12.7.3 shows the partial Fourier sums for the triangular wave with
1, 2, and 5 terms. In an advanced calculus course it is proved that the partial
sums converge to the wave for every real number.
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x
K3 K2 K1 0 1 2 3

0.5

1.0

(a)

x
K3 K2 K1 0 1 2 3

0.5

1.0

(b)

x
K3 K2 K1 0 1 2 3

0.5

1.0

(c)

Figure 12.7.3:

The Origins of the Formulas for ak and bk

We will derive the formulas for the Fourier coefficients in the special case
when the period is 2π. Exercises 42 and 43 outline the similar argument for
the general case when the period is 2L.

The keys are the following three integrals:These integrals were
evaluated in Exercises 17 to

19.

L∫
−L

sin

(
kπx

L

)
sin
(mπx

L

)
dx =

{
L if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

L∫
−L

cos

(
kπx

L

)
cos
(mπx

L

)
dx =

{
L if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

L∫
−L

sin

(
kπx

L

)
cos
(mπx

L

)
dx = 0 for any m = 1, 2, . . . and any k = 1, 2, . . . .

The third one is immediate, for the integrand, being the product of an odd
function and an even function, is an odd function. The other two depend on
trigonometric identities, and were developed in Exercises 17 to 19 inSection 8.5.

The formula for am, m = 1, 2, . . . , is found by multiplying f(x) by
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cos(mπx) and integrating term-by-term over one period of length 2π: We are assuming it’s legal
to switch the order,
integrate term-by-term,
then sum:
“
∫ π
−π
∑∞

k=1 =
∑∞

k=1

∫ π
−π”.

π∫
−π

f(x) cos(mx) dx

=

π∫
−π

(
a0

2
+
∞∑
k=1

(ak cos(kx) + bk sin(kx)) cos(mx)

)
dx

=
a0

2

π∫
−π

cos(mx) dx

+
∞∑
k=1

ak π∫
−π

cos(kx) cos(mx) dx+ bk

π∫
−π

sin(kx) cos(mx) dx

 .

Each integral in this last expression is zero — except the coefficient of am.
This gives the equation

π∫
−π

f(x) cos(mx) = am

π∫
−π

(cos(kx))2 dx

= amπ.

Solving for am, we find that

am =
1

π

π∫
−π

f(x) cos(mx) dx.

The derivations of the formulas for a0 and for bk, k = 1, 2, . . . are similar. (See
Exercises 42 and 43.)

Remarks on the Underlying Theory

Just as a Taylor series associated with a function may not represent the func-
tion, the Fourier series associated with a function may not represent it, even
if the function is continuous. However, there are several theorems that assure
us that for many functions met in applications the series does converge to the
function. First, a couple of definitions.

Recall that the right-hand limit of f(x) at a is defined as the limit of f(x)
as x approaches a through values larger than a, and is denoted limx→a+ f(x).
Similarly, the left-hand limit, denoted limx→a− f(x), is defined as the limit of
f(x) as x approaches a through values smaller than a. If both these limits
exist at a and are different, we say that the function has a “jump discontinuity
at a.”
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Theorem. Let f(x) have period 2L. Assume that in the interval [−L,L) (a)
f(x) is differentiable exept at a finite number of points, where there are jump
discontinuities, and (b) at L the right-hand limit of f(x) exists and at −L
the left-hand limit of f(x) exists. Then, if the function is continuous at a, its
associated Fourier series converges to f(a). If f(x) has a jump discontinuity
at a, then the series converges to the average of the left- and right-hand limits
at a. At the endpoints, L and −L, the Fourier series converges to the average
of limx→−L+ f(x) and limx→L− f(x).

Note that there is no mention of the existence of any derivative, first-order,
second-order, or any higher order derivatives.

The name Joseph Fourier (1768—1830) is attached to trigonometric series be-
cause he explored and applied them in his classic Analytic Theory of Heat,
published in 1822. He came upon the formulas for the coefficients by an in-
direct route, starting with the Maclaurin series for sin(x) and cos(x). For
the details, see Morris Kline’s Mathematical Thought from Ancient to Modern
Times, Oxford University Press, New York, 1972 (especially pages 671–675,
but see further references in its index). In the nineteenth and twentieth cen-
turies mathematicians developed a variety of conditions that implied the series
converges to the function. The most recent is due to Lenart Carleson (1928–
) in 1966, which settled a famous conjecture.

Summary

While Taylor Series are useful for dealing with a function that is very smooth
(having derivatives of all orders), Fourier series can represent a function that
is not even continuous. While the coefficients in Taylor series are expressed in
terms of derivatives, those in Fourier series are expressed in terms of integrals.
Even non-periodic functions can be treated by Fourier series. For instance,
to deal with x2 on, say, [0, 100) just extend its domain to the whole x-axis
by defining a function of period 100 that agrees with x2 on [0, 100). If the
even extension is used, the Fourier series has only cosine terms but, if the odd
extension is used, the Fourier series has only sine terms.
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pdflteEXERCISES for Section 12.7 Key: R–routine, M–moderate, C–
challenging

The following table of integrals will be helpful in evaluating some of the integrals in
these exercises.∫

sin(ax) dx = − 1
a cos(ax) + C∫

cos(ax) dx = 1
a sin(ax) + C∫

x sin(ax) dx = 1
a2 sin(ax)− x

a cos(ax) + C∫
x cos(ax) dx = 1

a2 cos(ax) + x
a sin(ax) + C∫

x2 sin(ax) dx = 2
a3 cos(ax) + 2x

a2 sin(ax)− x2

a cos(ax) + C∫
x2 cos(ax) dx = −2

a3 sin(ax) + 2x
a2 cos(ax) + x2

a sin(ax) + C∫
sin(x) sin(ax) dx = 1

2(a−1) sin((a− 1)x)− 1
2(a+1) sin((a+ 1)x) + C∫

sin(x) cos(ax) dx = 1
2(a−1) cos((a− 1)x)− 1

2(a+1) cos((a+ 1)x) + C∫
cos(x) sin(ax) dx = −1

2(a−1) cos((a− 1)x)− 1
2(a+1) cos((a+ 1)x) + C∫

cos(x) cos(ax) dx = 1
2(a−1) sin((a− 1)x) + 1

2(a+1) sin((a+ 1)x) + C

In Exercises 1 to 6 give the period of the function
1.[R] tan(x)
2.[R] 2/ cos2(x)
3.[R] sin(3x)
4.[R] sin(2πx)
5.[R] sin(πx/3)
6.[R] sin(x/3)

7.[R] Let f(x) = x2 for x in [−π, π) and have period 2π.

(a) Find f(π), f(2π), f(−π), and f(−2π).

(b) Graph f(x) for x in [−4π, 4π].

(c) Show that the Fourier series of f(x) is

2 sin(x)− sin(2x) +
2
3

sin(3x)− 1
2

sin(4x)

(d) Why are there no sine terms in the Fourier series?

(e) What is the average value of f(x) over any interval of length 2π?

8.[R] Let f(x) = −x2 for x in [−π, 0) and x2 for x in [0, π) and have period 2π.

(a) Find f(π), f(2π), f(−π), and f(−2π).

(b) Graph f(x) for x in [−4π, 4π].
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(c) Show that the Fourier series of f(x) is

2
π2 − 4
π

sin(x)−π sin(2x)+2
9π2 − 4

27π
sin(3x)−π

2
sin(4x)+2

25π2 − 4
125π

sin(5x)−π
3

sin(6x)+· · · .

(d) Why are there no cosine terms in the Fourier series?

(e) What is the average value of f(x) over any interval of length 2π?

9.[R] Let f(x) = x for x in [−π, π) and have period 2π. Note: This function is
known as a sawtooth function.

(a) Find f(π), f(2π), f(−π), and f(−2π).

(b) Graph f(x) for x in [−4π, 4π].

(c) Show that the Fourier series of f(x) is

2 sin(x)− sin(2x) +
2
3

sin(3x)− 1
2

sin(4x).

(d) Why are there no sine terms in the Fourier series?

(e) What is the average value of f(x) over any interval of length 2π?

(f) What does the series converge to at the jump discontinuities?

10.[R] Let f(x) = x for x in [−1, 1) and have period 2. Note: This function is
known as a sawtooth function.

(a) Find f(1), f(2), f(−1), and f(−2).

(b) Graph f(x) for x in [−4, 4].

(c) Show that the Fourier series of f(x) is

2
π

(
sin(πx)− 1

2
sin(2πx) +

1
3

sin(3πx)− 1
4

sin(4πx) + · · ·
)
.

(d) Why are there no sine terms in the Fourier series?

(e) What is the average value of f(x) over any interval of length 2π?

(f) What does the series converge to at the jump discontinuities?

(g) How does this Fourier series compare with the one in Exercise 9?
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11.[R] Find the Fourier series of f(x) = sin(x) (for all x).

12.[R] Find the Fourier series of f(x) = cos(2x) (for all x).

In Exercises 13 to 22, compute the Fourier series of the indicated function. Sketch
at least two periods of the function corresponding to the Fourier series. Note: In
each case assume the function is periodic.
13.[R] f(x) = x2, −1 ≤ x < 1 (period 2)
14.[R] f(x) = x2, −2 ≤ x < 2 (period 4)

15.[R] f(x) =
{

0 for −1 ≤ x < 0
1 for 0 ≤ x < 1

16.[R] f(x) =
{

1 for −1 ≤ x < 0
0 for 0 ≤ x < 1

17.[R] f(x) =
{

0 for −1 ≤ x < 0
x for 0 ≤ x < 1

18.[R] f(x) =
{

1 for −1 ≤ x < 0
x for 0 ≤ x < 1

19.[R] f(x) =
{

0 for −π ≤ x < 0
sin(x) for 0 ≤ x < π

20.[R] f(x) =
{

1 for −π ≤ x < 0
cos(x) for 0 ≤ x < π

21.[R] f(x) =
{

0 for −2π ≤ x < 0
sin(x) for 0 ≤ x < 2π

22.[R] f(x) =
{

1 for −2π ≤ x < 0
cos(x) for 0 ≤ x < 2π

In Exercises 23 to 28, (a) extend the given function to be an odd periodic function
with period 2L, (b) compute the Fourier series of the function found in (a), (c) graph
at least two periods of the first three non-zero terms of the Fourier series found in
(b).
23.[R] f(x) = 1, 0 ≤ x ≤ 1 (L = 1)
24.[R] f(x) = x, 0 ≤ x ≤ 1 (L = 1)
25.[R] f)x) = x2, 0 ≤ x ≤ 1 (L = 1)
26.[R] f)x) = |x− 1|, 0 ≤ x ≤ 2 (L = 2)
27.[R] f)x) = sin(x), 0 ≤ x ≤ π (L = π)
28.[R] f)x) = cos(x), 0 ≤ x ≤ π (L = π)

In Exercises 29 to 34, (a) extend the given function to be an even periodic function
with period 2L, (b) compute the Fourier series of the function found in (a), (c)
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graph at least two periods of the function corresponding to the Fourier series found
in (b).
29.[R] f(x) from Exercise 23

30.[R] f(x) from Exercise 24

31.[R] f(x) from Exercise 25

32.[R] f(x) from Exercise 26

33.[R] f(x) from Exercise 27

34.[R] f(x) from Exercise 28

35.[M] Use the properties of even and odd functions to justifiy that:

(a) the product of two even functions is even.

(b) the product of two odd functions is even.

(c) the product of an even function and an odd function is odd.

36.[M] Determine which of the statements in Exercise 35 is true if the word “prod-
uct” is replaced with “sum”.

37.[M] Show that any function, f(x), can be written as the sum of an even function
(feven) and an odd function (fodd). Hint: Write f(x) = feven(x) + fodd(x). Use the
properties of feven and fodd to express f(−x) in terms of feven(x) and fodd(x).

38.[M] Write each of the following functions as the sum of an even function and
an odd function.

(a) f(x) = x2 + 2x

(b) f(x) = x3 − 2x

(c) f(x) = x3 + 3x2 − 2x+ 1

(d) f(x) = sin(4x)− 3x3

(e) f(x) = |x| sin(x)

(f) f(x) = |x| cos(x)

(g) f(x) = (sin(x) + 1)3

(h) f(x) = (cos(x) + 1)3
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39.[M] Show that

L∫
−L

sin
(
kπx

L

)
sin
(mπx

L

)
dx =

{
L if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

.

Hint: Use the trigonometric identity sin(u) sin(v) = 1
2 (cos(u− v)− cos(u+ v)).

40.[M] Show that

L∫
−L

cos
(
kπx

L

)
cos
(mπx

L

)
dx =

{
L if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

.

Hint: Use the trigonometric identity cos(u) cos(v) = 1
2 (cos(u− v) + cos(u+ v)).

41.[M] Show that
L∫
−L

sin
(
kπx

L

)
cos
(mπx

L

)
dx = 0.

Hint: While you could use the trigonometric identity sin(u) cos(v) = 1
2 (sin(u− v) + sin(u+ v))

this exercise can be completed without finding any integrals.

42.[M] Derive the formula

a0 =
1
L

L∫
−L

f(x) dx.

Hint: Integrate (12.7.4) term-by-term over the interval [−L,L].

43.[M] Derive the formula

bm =
1
L

L∫
−L

f(x) sin
(mπx

L

)
dx

for m = 1, 2, 3, . . . . Hint: Multiply (12.7.4) by sin
(
mπx
L

)
and integrate term-by-

term over the interval [−L,L].

44.[M] In Section 11.6, Example 3, it is claimed that the series

1
12

+
1
22

+
1
32

+ · · ·+ 1
k2
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converges to 1
12(3x2 − 6πx + 2π2) for 0 ≤ x ≤ 2π. Use Fourier series to verify this

claim.

45.[C] Let f(x) be a periodic function with period 2L.

(a) Show that
∫ 2L

0 f(x) dx =
∫ L
−L f(x) dx.

(b) Show that
∫ a+2L
a f(x) dx =

∫ L
−L f(x) dx.

(c) Show that
∫ 0
−2L f(x) dx =

∫ L
−L f(x) dx.

(d) Show that
∫ a+2L
a f(x) dx =

∫ L
−L f(x) dx for any number a.

Exercise 46 Just as the complex numbers revealed a close tie between the exponen-
tial and trigonometric functions, they also reveal a relation between power series
and Fourier series. Exercise 46 helps to make this connection.
46.[C] A Taylor series

∑∞
k=0 akz

k does not look like a Fourier series. However,
when ak is written as bk + ick and z is expressed as r(cos(θ) + i sin(θ)), one sees a
close resemblence. Check that this is so. That is, write the series in the form A+Bi
where A and B are Fourier series.
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12.S Chapter Summary

The Taylor polynomials first encountered in Section 5.4 suggested the powerful
power series associated with a function that has derivatives of all orders at a,
namely

∞∑
k=0

f (k)(a)

k!
(x− a)k (12.S.1)

which certainly converges when x is a. It may even converge for other values
of x, but not necessarily to f(x). For the common functions ex, sin(x), and
cos(x) the corresponding power series does converge to the function for all
values of x.

The error in using a front end up through the power (x− a)n to estimate
f(x) is given by Lagrange’s formula,

f(x)−
n∑
k=0

f (k)(a)

k!
(x−a)k =

f (n+1)(c)

(n+ 1)!
(x−a)n+1 for some c between x and a.

(12.S.2)
For some functions, such as tan(x), it is not easy to find the kth derivative.

So, we should be glad that ex, sin(x), and cos(x) have such convenient higher
derivatives. Replace x by −x2.

One can obtain a few terms of the Maclaurin series for tan(x) by dividing
the series for sin(x) by the series for cos(x). The series for 1/(1 + x2) is easily
found by massaging the sum of the geometric series 1/(1−x) = 1+x+x2 +. . . .
Integration of that series yields painlessly the Maclaurin series for arctan(x).

Each power series
∑∞

k=0 ak(x − a)k has a radius of convergence, R. For
|x− a| < R, the series converges absolutely and for |x− a| > R the series does
not converge. If it converges for all x, then R =∞. For |x− a| < R, one may
safely differentiate and integrate a series, getting new series.

Estimating an integrand f(x) by the front end of a power series, we can

then estimate
∫ b
a
f(x) dx. Also, power series are of use in finding indeterminate

limits, such as limx→0
f(x)
g(x)

.
Maclaurin series, combined with complex numbers, exposed a fundamental

relation between exponential and trigonometric functions:

eiθ = cos(θ) + i sin(θ).

Other important truths, not covered in this chapter, are revealed with the
aid of complex numbers. For instance, if we allow complex coefficients, every
polynomial can be written as the product of first-degree polynomials, thus
simplifying the partial fractions of Section 8.4. Complex numbers can also
help us find the radius of convergence. For instance, what is the radius of
convergence of the Taylor series in powers of x− 3 associated with 1/(1 +x2)?
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Function Maclaurin Series Interval of Convergence How Found?

ex
∑∞

k=0
xk

k!
all x: (−∞,∞) Taylor’s Theorem

sin(x)
∑∞

k=0
(−1)kx2k+1

(2k+1)!
all x: (−∞,∞) Taylor’s Theorem

cos(x)
∑∞

k=0
(−1)kx2k

(2k)!
all x: (−∞,∞) Taylor’s Theorem

1
1−x

∑∞
k=0 x

k |x| < 1 Geometric Series (or Taylor’s Theorem)

ln(1 + x)
∑∞

k=1(−1)k+1 xk

k
−1 < x ≤ 1 Integrate Geometric Series (or Taylor’s Theorem)

arctan(x)
∑∞

k=0(−1)k x
2k+1

2k+1
|x| ≤ 1 Integrate Geometric Series (or Taylor’s Theorem)

arcsin(x) x+ 1
2
x3

3
+ 1·3

2·4
x5

5
+ 1·3·5

2·4·6
x7

7
+ · · · |x| ≤ 1 Integrate Geometric Series (or Taylor’s Theorem)

(1 + x)r 1 + rx+ r(r−1)
2!

x2 + r(r−1)(r−2)
3!

x3 + · · · |x| < 1 Taylor’s Theorem
1

(1−x)2

∑∞
k=0 kx

k−1 |x| < 1 Differentiate Geometric Series (or Taylor’s Theorem)

Table 12.S.1:

Answer: it is the distance from the point (3, 0) to the nearest complex number
at which 1/(1 + x2) “blows up,” that is, when 1 + x2 = 0. This occurs when
x is i or −i, both of which, by the Pythagorean Theorem, are at a distance√

12 + 32 =
√

10 from (3, 0). So, R =
√

10.
The final section introduced Fourier series. In contrast to Taylor series, its

coefficients are given by integrals, rather than by derivatives. Consequently,
Fourier series apply to a larger class of functions. However, this method applies
directly only to periodic functions. In the case of a non-periodic function, one
restricts the domain to an interval (−L,L) and extends the function to have
period 2L

EXERCISES for 12.S Key: R–routine, M–moderate, C–challenging

Exercise 1 provides additional detail for the historical discussion (see page 58) about
Newton’s calculation of the area under a hyperbola to more than 50 decimal places.
(See also Exercises 29 and 30 in Section 6.5.)
1.[R] Let c be a positive constant.

(a) Show that the area under the curve y = 1/(1 + x) above the interval [0, c] is

−
∞∑
k=1

(−c)k

k
.

(b) Show that the area under the curve y = 1/(1 +x) above the interval [−c, 0] is
∞∑
k=1

ck

k
.

2.[M] Assume that a Maclaurin series M(x) is associated with f(x) for x in (−a, a).
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Show that M(x2) is the Maclaurin series associated with g(x) = f(x2) for x in
(−
√
a,
√
a).

3.[M] The integral
∫ 2π

0 (1− cos(x))/xdx occurs in the theory of antennas.

(a) Show that it is an improper integral.

(b) Show that there is a continuous function whose domain is [0, 2π] that coincides
with the integrand when x is not 0.

(c) The integrand does not have an elementary antiderivative. Why is the power
series technique of approximation inconvenient here?

Exercises 4 to 6 use complex numbers to find the average value of the logarithm of
a function. Exercise 4 is related to Exercise 90 on page 781.
4.[C] Let a point 0̧ be a distance a 6= 1 from the center of a unit circle.

(a) Show that the average value of the (natural) logarithm of the distance from 0̧
to points on the circumference is

1
2π

2π∫
0

1
2

ln(1 + a2 − 2a cos(θ)) dθ.

(b) Spend at least three minutes, but at most 5 minutes, trying to evaluate the
integral in (a).

5.[C] This algebraic exercise is needed in Exercise 6. Let z0, z1, . . . , zn−1 be the n
nth roots of 1. Then it is shown in an algebra course that

(z − z0)(z − z1)(z − z2) · · · (z − zn−1) = zn − 1.

Check that this equation holds when n is (a) 2, (b) 3, (c) 4.

6.[C] Let z0, z1, . . . , zn−1 be the n nth roots of 1.

(a) Why is
1
n

n−1∑
i=0

ln |a− zi| an estimate of the average distance?

(b) Show that the average in (a) equals

1
n

ln |an − 1|. (12.S.3)

(c) If 0 < a < 1, show that the limit of (12.S.3) as n→∞ is 0.
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(d) If a > 1, show that the limit of (12.S.3) as n→∞ is ln(a).

(e) Use the results in (c) and (d) to evaluate the integral in Exercise 4(a).

7.[C] Find limx→∞
xex

ex2
.

8.[C] Does
∑∞

n=1

(
1− cos

(
1
n

))
converge or diverge? Explain.
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Calculus is Everywhere # 15

Sparse Traffic

Customers arriving at a checkout counter, cars traveling on a one-way road,
raindrops falling on a street and cosmic rays entering the atmosphere all illus-
trate one mathematical idea — the theory of sparse traffic involving indepen-
dent events. We will develop the mathematics, which is the basis of the study
of waiting time – whether customers at the checkout counter or telephone calls
at a switchboard.

First we sketch briefly a bit of probability theory.

Some Probability Theory

The probability that an event occurs is measured by a number p, which can
be anywhere from 0 up to 1; p = 1 implies the event will certainly occur
with negligible exceptions and p = 0 that it will not occur with negligible
exceptions. The probability that a penny turns up heads is p = 1/2 and that
a die turns up 2 is p = 1/6. (The phrase “certainly occurs with negligible
exceptions” means, roughly, that the times the event does not occur are so
rare that we may disregard them. Similarly, the phrase “certainly will not
occur with negligible exceptions” means, roughly, that the times the event
does not occur are so rare that we may disregard them.)

The probability that two events that are independent of each other both
occur is the product of their probabilities. For instance, the probability of
getting heads when tossing a penny and a 2 when tossing the die is p =(

1
2

) (
1
6

)
= 1

12
.

The probability that exactly one of several mutually exclusive events occurs
is the sum of their probabilities. For instance, the probability of getting a 2
or a 3 with a die is 1

6
+ 1

6
= 1

3
.

With that thumbnail introduction, we will analyze sparse traffic on a one-
way road. We will assume that the cars enter the traffic independently of each
other and travel at the same speed. Finally, to simplify matters, we assume
each car is a point.

The Model

To construct our model we introduce the functions P0, P1, P2, . . . , Pn, . . . where
Pn(x) shall be the probability that any interval of length x contains exactly n
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cars (independently of the location of the interval). Thus P0(x) is the proba-
bility that an interval of length x is empty. We shall assume that

P0(x) + P1(x) + · · ·+ Pn(x) + · · · = 1 for any x.

We also shall assume that P0(0) = 1 (“the probability is 1 that a given point
contains no cars”).

For our model we make the following two major assumptions:

(a) The probability that exactly one car is in any fixed short section of the
road is approximately proportional to the length of the section. That is,
there is some positive number k such that

lim
∆x→0

P1(∆x)

∆x
= k.

(b) The probability that there is more than one car in any fixed short section
of the road is neglible, even when compared to the length of the section.
That is,

lim
∆x→0

P2(∆x) + P3(∆x) + P4(∆x) + · · ·
∆x

= 0. (C.15.1)

We shall now put assumptions (a) and (b) into more useful forms. If we
let

ε =
P1(∆x)

∆x
− k (C.15.2)

where ε depends on ∆x, assumption (a) tells us that lim∆x ε = 0. Thus, solving
(C.15.2) for P1(∆x), we see that assumption (a) can be phrased as

P1(∆x) = k∆x+ ε∆x (C.15.3)

where ε→ 0 as ∆x→ 0.
Since P0(∆x) + P1(∆x) + · · ·+ Pn(∆x) + · · · = 1, assumption (b) may be

expressed as

lim
∆x→0

1− P0(∆x)− P1(∆x)

∆x
= 0. (C.15.4)

In light of assumption (a), equation (C.15.4) is equivalent to

lim
∆x→0

1− P0(∆x)

∆x
= k. (C.15.5)

In the manner in which we obtained (C.15.3), we may deduce that

1− P0(∆x) = k∆x+ δ∆x,
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where δ → 0 as ∆x→ 0. Thus

P0(∆x) = 1− k∆x− δ∆x, (C.15.6)

where δ → 0 as ∆x → 0. On the basis of (a) and (b), expressed in (C.15.3)
and (C.15.6), we shall obtain an explicit formula for each Pn.

Figure C.15.1: No cars in a
section of length x+ ∆x.

Let us determine P0 first. Observe that a section of length x+∆x is vacant
if its left-hand part of length x is vacant and its right-hand part of length ∆x is
also vacant. Since the cars move independently of each other, the probability
that the whole interval of length x + ∆x being empty is the product of the
probabilities that the two smaller intervals of lengths x and ∆x are both empty.
(See Figure C.15.1.) Thus we have

P0(x+ ∆x) = P0(x)P0(∆x). (C.15.7)

Recalling (C.15.6), we write (C.15.7) as

P0(x+ ∆x) = P0(x)(1− k∆x− δ∆x)

which a little algebra transforms to

P0(x+ ∆x)− P0(x)

∆x
= −(k + δ)P0(x). (C.15.8)

Taking limits on both sides of (C.15.8) as ∆x→ 0, we obtain

P ′0(x) = −kP0(x). (C.15.9)

(Recall that δ → 0 as ∆x → 0.) From (C.15.9) it follows that there is a
constant A such that P0(x) = Ae−kx. Since 1 = P0(0) = Ae−k0 = A, we
conclude that A = 1, hence

P0(t) = e−kx.

This explicit formula for P0 is reasonable; e−kx is a decreasing function of x,
so that the larger an interval, the less likely that it is empty.

Now let us determine P1. To do so, we examine P1(x + ∆x) and relate
it to P0(x), P0(∆x), P1(x), and P1(∆x), with the goal of finding an equation
involving the derivative of P1.

Again, imagine an interval of length x + ∆x cut into two intervals, the
left-hand subinterval of length x and the right-hand subinterval of length ∆x.
Then there is precisely one car in the whole interval if either there is exactly
one car in the left-hand interval and none in the right-hand subinterval or
there is none in the left-hand subinterval and exactly one in the right-hand
subinterval. (See Figure C.15.2.) Thus we have

P1(x+ ∆x) = P1(x)P0(∆x) + P0(x)P1(∆x). (C.15.10)
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(a) (b)

Figure C.15.2: The two ways to have exactly one care in an interval of length
x+ ∆x.

In view of (C.15.3) and (C.15.6), we may write (C.15.10) as

P1(x+ ∆x) = P1(x)(1− k∆x− δ∆x) + P0(x)(k∆x+ ε∆x)

which a little algebra changes to

P1(x+ ∆x)− P1(x)

∆x
= −(k + δ)P1(x) + (k + ε)P0(x). (C.15.11)

Letting ∆x → 0 in (C.15.11) and remembering that δ → 0 and ε → 0 as
∆x → 0, we obtain P ′1(x) = −kP1(x) + kP0(x); recalling that P0(x) = e−kx,
we deduce that

P ′1(x) = −kP1(x) + ke−kx. (C.15.12)

From (C.15.12) we shall obtain an explicit formula for P1(x). Since P0(x)
involves e−kx and so does (C.15.12). it is reasonable to guess that P1(x) involves
e−kx. Therefore let us express P1(x) as g(x)e−kx and determine the form of
g(x). (Since we have the identity P1(x) =

(
P1(x)ekx

)
e−kx, we know that g(x)

exists.)
According to (C.15.12) we have

(
g(x)e−kx

)′
= −kg(x)e−kx + ke−kx; hence

g(x)(ke−kx) + g′(x)e−kx = −kg(x)e−kx + ke−kx

from which it follows that g′(x) = k. Hence g(x) = kx + c1, where c1 is
some constant: P1(x) = (kx + c1)e−kx. Since P1(0) = 0, we have P1(0) =
(k · 0 + c1)e−k·0 = c1 and hence c1 = 0. Thus we have shown that

P1(x) = kxe−kx (C.15.13)
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(a) (b) (c)

Figure C.15.3: The three ways to have exactly two cars in an interval of length
x+ ∆x.

and P1 is completely determined.
To obtain P2 we argue as we did in obtaining P1. Instead of (C.15.10) we

have

P2(x+ ∆x) = P2(x)P0(∆x) + P1(x)P1(∆x) + P0(x)P2(∆x) (C.15.14)

an equation that records the three ways in which two cars in a section of length
x + ∆x can be situated in a section of length x and a section of length ∆x.
(See Figure C.15.3.)

Similar reasoning shows that See Exercise 8.

P2(x) =
k2x2

2
. (C.15.15)

Then, applying the same reasoning inductively leads to See Exercises 9 and 10.

Pn(x) =
(kx)n

n!
e−kx. (C.15.16)

We have obtained in (C.15.16) the formulas on which the rest of our anal-
ysis will be based. Note that these formujlas refer to a road section of any
length, though the assumptions (a) and (b) refer only to short sections. What
has enabled us to go from the “microscopic” to the “macroscopic” is the ad-
ditional assumption that the traffic in any one section is independent of the
traffic in any other section. The formulas (C.15.16) are known as the Poisson
formulas.

The Meaning of k

The constant k was defined in terms of arbitrarily short intervals, at the “mi-
croscopic level”. How would we compute k in terms of observable data, at
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the “macroscopic level”? It turns out that k records the traffic density: the
average number of events during an interval of length x is kx.

The average number of events in a section of length x is defined as
∑∞

n=0 nPn(x).
This weights each possible number of events (n) with it’s likelihood of occur-
ring (Pn(x)). This average is

∞∑
n=0

nPn(x) =
∞∑
n=1

nPn(x) =
∞∑
n=1

n
(kx)ne−kx

n!

= kxe−kx
∞∑
n=1

(kx)n−1

(n− 1)!

= kxe−kx
∞∑
n=0

(kn)n

n!
= kxe−kxekx = kx.

Thus the expected number of cars in a section is proportional to the length of
the section. This shows that the k appearing in assumption (a) is the measure
of traffic density, the number of cars per unit length of road.

To estimate k, in the case of traffic for instance, divide the number of cars
in a long section of the road by the length of that section.

EXAMPLE 4 (Traffic at a checkout counter.) Customers arrive at a check-
out counter at the rate of 15 per hour. What is the probability that exactly
five customers will arrive in any given 20-minute period?
SOLUTION We may assume that the probability of exactly one customer
coming in a short interval of time is roughly proportional to the duration of
that interval. Also, there is only a negligible probability that more than one
customer may arrive in a brief interval of time. Therefore conditions (a) and
(b) hold, if we replace “length of section” by “length of time”. Without fur-
ther ado, we conclude that the probability of exactly n customers arriving in
a period of x minutes is given by (C.15.16). Moreover, the “customer density”
is one per 4 minutes; hence k = 1/4, and thus the probability that exactly five
customers arrive during a 20-minute period, P5(20), is(

1

4
· 20

)5
e−(1/4)·20

5!
=

55e−5

120
≈ 0.17547.

�
Modeling of the type within this section is of use in predicting the length

of waiting lines (or times) or the waiting time to cross. This is part of the
theory of queues. See, for instance, Exercises 2 and 3. (See also Exercise 65
in the Summary Exercises in Chapter 4.)

EXERCISES

1.[R]
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(a) Why would you expect that P0(a+ b) = P0(a) · P0(b) for any a and b?

(b) Verify that P0(x) = e−kx satisfies the equation in (a).

2.[R] A cloud chamber registers an average of four cosmic rays per second.

(a) What is the probability that no cosmic rays are registered for 6 seconds?

(b) What is the probability that exactly two are registered in the next 4 seconds?

3.[R] Telephone calls during the busy hour arrive at a rate of three calls per minute.
What is the probability that none arrives in a period of (a) 30 seconds, (b) 1 minute,
(c) 3 minutes?

4.[R] In a large continually operating factory there are, on the average, two acci-
dents per hour. Let Pn(x) denote the probability that there are exactly n accidents
in an interval of time of length x hours.

(a) Why is it reasonable to assume that there is a constant k such that P0(x),
P1(x), . . . satisfy 1 and 2 on page 1090?

(b) Assuming that these conditions are satisfied, show that Pn(x) = (kx)ne−kx/n!.

(c) Why must k = 2?

(d) Compute P0(1), P1(1), P2(1), P3(1), and P4(1).

5.[R] A typesetter makes an average of one mistake per page. Let Pn(x) be the
probability that a section of x pages (x need not be an integer) has exactly n errors.

(a) Why would you expect Pn(x) = xne−x/n!?

(b) Approximately how many pages would be error-free in a 300-page book?

6.[R] In a light rainfall you notice that on one square foot of pavement there are
an average of 3 raindrops. Let Pn(x) be the probability that there are n raindrops
on an area of x square feet.

(a) Check that assumptions 1 and 2 are likely to hold.

(b) Find the probability that an area of 3 square feet has exactly two raindrops.
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(c) What is the most likely number of raindrops to find on an area of one square
foot?

7.[R] Write x2 in the form g(x)e−kx.

8.[R] Show that P2(x) =
k2x2

2
e−kx.

9.[R] Show that P3(x) =
(kx)3

3!
e−kx.

10.[M] Show that Pn(x) =
(kx)n

n!
e−kx.

11.[R]

(a) Why would you expect P3(a + b) = P0(a)P3(b) + P1(a)P2(b) + P2(a)P1(b) +
P3(a)P0(b)?

(b) Do functions defined in (C.15.16) satisfy the equation in (a)?

12.[R]

(a) Why would you expect limn→∞ Pn(x) = 0?

(b) Show that the functions defined in (C.15.16) have the limit in (a).

13.[R]

(a) Why would you expect limx→0 P1(x) = 1 and, for all n ≥ 1, limx→0 Pn(x) = 0?

(b) Show that the functions defined in (C.15.16) satisfy the limit in (a).

14.[R] We obtained P0(x) = e−kx and P1(x) = kxe−kx. Verify that lim∆x→0 P1(∆x)/∆x =
k, and lim∆x→0 P0(∆x)/∆x = 1−k. Hence show that lim∆x→0(P2(∆x) +P3(∆x) +
· · ·+)/∆x = 0, and that assumptions 1 and 2 on page 1090 are indeed satisfied.

15.[R]

(a) Obtain assumption 1 from equation (C.15.3).

(b) Obtain equation (C.15.3) from assumption 2.
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(c) Obtain assumption 2 from equation (C.15.6).

16.[M] What length of road is most likely to contain exactly one car? That is,
what x maximizes P1(x)?

17.[M] What length of road is most likely to contain three cars?

18.[M] For any x ≥ 0,
∑∞

n=0 Pn(x) should equal 1 because it is certain that
some number of cars is in a given section of length x (maybe 0 cars). Check
that

∑∞
n=0 Pn(x) = 1. Note: This provides a probabilistic argument that eu =∑∞

n=0 u
n/n! for n ≥ 0.

19.[M] Planes arrive randomly at an airport at the rate of one per 2 minutes. What
is the probability that more than three planes arrive in a 1-minute interval?
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1100 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

13.1 Modeling and Differential Equations

We are now familiar with computing and interpreting derivatives of functions.
The derivative of a function at a point gives the slope of the graph of the func-
tion at that point (assuming the derivative exists). Points where the derivative
is zero (or does not exist) are the only possible locations for local extrema of
a function.

In this section we will see another use of derivatives: differential equations.
A differential equation is an equation that provides a relationship between
the derivatives of a function, the function, and the independent variables (input
to the function). Differential equations describe many physical situations, in
fact, differential equations are often referred to as the “language of science and
engineering”.

EXAMPLE 1 The radioactive substance Uranium-238 decays into Thorium-Get some specific
substances and decay rates. 234 with a half-life of 4.5× 109 years. The rate of change of the concentration

of Uranium-238 is always proportional to the current concentration. Let U(t)
denote the concentration of U-239 at time t. ThenNote that k > 0 and U > 0,

so that dU
dt < 0.

dU

dt
= −kU (13.1.1)

with k = ln(2)
4.5×109 . �

EXAMPLE 2 One model for a population subject that grows proportionalGet specifics from Ledder.

to its size but is also subject to a constant rate of reductions due to harvesting
is given by

dP

dt
= kP − h (13.1.2)

where P = P (t) is the size of the unknown population at time t, k is a positive
growth rate, and h is a positive constant reflecting the harvesting rate. �

EXAMPLE 3 A model for the temperature of an object is

dT

dt
= −k(T − S) (13.1.3)

where T = T (t) is the temperature of the object at time t, k > 0 is a constant
reflecting the rate at which heat leaves the object and S is the temperature of
the surrounding air. �

EXAMPLE 4 Newton’s Second Law of Motion states that the total force

Figure 13.1.1:

on a moving object is equal to the product of the object’s maas and accelera-
tion: F = ma. For an object with height y = y(t), the accelaration is a = y′′.
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If this object has mass m and is under the influence of both gravity and the
resistance of the air F = Fgrav + Fair. Let the object’s height be measured y = 0 is on the ground;

y > 0 is above the groundfrom the ground. The force of gravity is constant and works to pull the object g ≈ 9.8ft/sec2 ≈ 32m/sec2

back to the ground, so Fgrav = −mg. The force of air resistance is proportional
to velocity and works to retard the current motion, thus Fair = −ky′. The
differential equation that expresses Newton’s Second Law of Motion is

my′′ = −mg − ky′. (13.1.4)

�
The first three examples, (13.1.1), (13.1.2), and (13.1.3), are all first-order

differential equations. The fourth example (13.1.4) is a second-order differen-
tial equation. In general, the order of a differential equation is the order of
the highest derivative in the differential equation.

Differential equation (13.1.2) is a nonlinear differential equation because it
involves N2; the other three examples are all linear differential equations. More
generally, a linear differential equation is a differential equation that is
linear in the unknown function and its derivatives. A nonlinear differential
equation involves nonlinear terms such as y2, ey

′
, or cos(y).

Our current interest in differential equations is to recognize a differential
equation and to be able to make some basic classifications of the equation
(order, linear / nonlinear). We also want to begin to develop the ability to
write differential equations as a model of a real-world situation.

Absolute and Relative Rates of Change

When y(t) is the size of an object at time t, the absolute rate of change of
y is dy

dt
. The relateive rate of change of y, 1

y
dy
dt

, reflects the overall size of
the object.

EXAMPLE 5 Find the differential equation for the size of a population
that is growing at a constant absolute rate of change. Classify the differential
equation. Find all solutions that satisfy this equation.
SOLUTION Let the size of the population at time t be denoted by N =
N(t). The assumption that the population grows at a constant absolute rate
of change is expressed by

dN

dt
= k (13.1.5)

where k is a positive constant.
The differential equation (13.1.5) is both first-order and linear.
Any function whose first derivative is the constant k is a solution to (13.1.5).

In other words, any antiderivative of k is a solution to this differential equation.
Thus, N(t) = kt+ C for any choice of the constant C. �
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The size of any population with constant absolute rate of change is a linear
function. The slope of the solution is the constant k. The value of C is the
size of the population at time t = 0.

EXAMPLE 6 Find the differential equation for the size of a population
that is growing at a constant relative rate of change. Classify the differential
equation. Find all solutions that satisfy this equation.
SOLUTION When a population grows with a constant relative rate of change
k, 1

N
dN
dt

= k so thatNotice that the absolute
rate of change is not

constant — the larger N is,
the faster N changes.

dN

dt
= kN. (13.1.6)

The differential equation in (13.1.6) is also linear and first-order.
An explicit formula for the solutions to (13.1.6) can be found by noticing

that
1

N

dN

dt
=

d

dt
(ln |N(t)|) .

Thus, d
dt

(ln |N(t)|) = k so that ln |N(t)| must be an antiderivative of k. This
means ln |N(t)| = kt+C. Taking the exponential of both sides of this equation
yields

eln |N(t)| = ekt+C

|N(t)| = eCekt

N(t) = ±eCekt

N(t) = Aekt

where A = ±eC can be any real number. �

Any function whose relative rate of change is constant is an exponential
function. When the relative rate of change, k, is positive the population grows
exponentially; when k is negative the population decays exponentially.EXERCISE: Half-life,

doubling time

Summary
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EXERCISES for Section 13.1 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]
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13.2 Using Slope Fields to Analyze Differen-

tial Equations

• Use presentation and examples from ODE PowerTool

Summary
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EXERCISES for Section 13.2 Key: R–routine, M–moderate, C–challenging

1.[C] A

2.[C] B?
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13.3 Separable Differential Equations

Summary
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EXERCISES for Section 13.3 Key: R–routine, M–moderate, C–challenging

Exercises in other sections
that involve separable ODEs
include: Exercise 22 in
Section 5.6

1.[C]

2.[C]
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13.4 Euler’s Method

Summary
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EXERCISES for Section 13.4 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]
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13.5 Numerical Solutions to Differential Equa-

tions

This section will be written later.

Summary
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EXERCISES for Section 13.5 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]
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13.6 Picard’s Method

Summary
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EXERCISES for Section 13.6 Key: R–routine, M–moderate, C–challenging

1.[C]

2.[C]
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13.S Chapter Summary

The text and exercises for the summary will be written after the organization
of the chapters is firmly settled.

EXERCISES for 13.S Key: R–routine, M–moderate, C–challenging

1.[M] Assume that the outdoors temperature increases linearly, h(t) = t + 1, for
simplicity. The temperature of the house starts at time t = 0 to be c < 0. Then it
warms up by Newton’s law. If that temperature is T (t), then T ′(t) = k(t− T (t)).

(a) Find T (t).

(b) Is the graph of T (t) asymptotic to the graph of the outdoor temperature?

2.[C] Consider the differential equation (y′)2 = 1 − y2 with −1 < y(0) < 0 and
y′(0) > 0.

(a) Explain why y is never decreasing.

(b) Explain why y is bounded.

(c) What is the largest value y can be? (Call this value L.)

(d) Is it possible that limt→∞ y(t) < L?

(e) Explain why y must cross the t-axis.

(f) What can be said about the angle where y crosses the t-axis?

(g) When is the curve concave up? concave down? Hint: Differentiate the ode.

(h) What might the graph of the solution look like?

(i) Give an example of a specific function that satisfies the equation. Hint: Think
trigonometry.

3.[C] In CIE 20 (Chapter 15) we found that the equation of a tractrix, which is the
path of the rear wheel in the preceding exercise. That analysis depends on showing
that (

dy

dx

)2

=
y2

a2 − y2
. (13.S.1)

Obtain the equation by differentiating both sides of the equation

y(s) = ke−s/a

with respect to x.
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