
i

Derivatives

1.
d

dx
(xn) = nxn−1

2.
d

dx
(ln |x|) =

1
x

3.
d

dx
(sin(x)) = cos(x)

4.
d

dx
(cos(x)) = − sin(x)

5.
d

dx
(tan(x)) = sec2(x)

6.
d

dx
(sec(x)) = sec(x) tan(x)

7.
d

dx
(cot(x)) = − csc2(x)

8.
d

dx
(csc(x)) = − csc(x) cot(x)

9.
d

dx
(arcsin(x)) =

1√
1− x2

10.
d

dx
(arctan(x)) =

1
1 + x2

11.
d

dx
(arcsec(x)) =

1
|x|
√

x2 − 1

12.
d

dx
(ex) = ex

13.
d

dx
(ax) = ax(ln(a))

14.
d

dx
(sinh(x)) = cosh(x)

15.
d

dx
(cosh(x)) = sinh(x)

Antiderivatives

1.
∫

xn dx =
1

n + 1
xn+1 n 6= −1∫

dx

x
= ln(x), x > 0 or ln |x|, x 6= 0

2.
∫

ex dx = ex

3.
∫

sin(x) dx = − cos(x)

4.
∫

cos(x) dx = sin(x)

5.
∫

tan(x) dx = ln | sec(x)| = − ln | cos(x)|
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6.
∫

cot(x) dx = ln | sin(x)| = − ln | csc(x)|

7.
∫

sec(x) dx = ln | sec(x) + tan(x)| = ln
∣∣∣tan

(x

2
+

π

4

)∣∣∣
8.
∫

csc(x) dx = ln | csc(x)− cot(x)| = ln
∣∣∣tan

(x

2

)∣∣∣
9.
∫

dx

x2 + a2
=

1
a

arctan
(x

a

)
10.

∫
dx√

a2 − x2
=

1
a

arcsin
(x

a

)
, a > 0

11.
∫

dx

|x|
√

x2 − a2
=

1
a

arcsec
(x

a

)
Expressions Containing ax + b

12.
∫

(ax + b)n dx =
1

a(n + 1)
(ax + b)n+1

13.
∫

dx

ax + b
=

1
a

ln |ax + b|

14.
∫

dx

(ax + b)2
=

−1
a(ax + b)

15.
∫

x dx

(ax + b)2
=

b

a2(ax + b)
+

1
a2

ln |ax + b|

16.
∫

dx

x(ax + b)
=

1
b

ln
∣∣∣∣ x

ax + b

∣∣∣∣
17.

∫
dx

x2(ax + b)
=
−1
bx

+
a

b2
ln
∣∣∣∣ax + b

x

∣∣∣∣
18.

∫ √
ax + b dx =

2
3a

√
(ax + b)3

19.
∫

x
√

ax + b dx =
2(3ax− 2b)

15a2

√
(ax + b)3

20.
∫

dx√
ax + b

=
2
a

√
ax + b

21.
∫ √

ax + b

x
dx = 2

√
ax + b + b

∫
dx

x
√

ax + b

22.
∫

dx

x
√

ax + b
=

1√
b

ln

∣∣∣∣∣
√

ax + b−
√

b
√

ax + b +
√

b

∣∣∣∣∣, b > 0

23.
∫

dx

x
√

ax + b
=

2√
−b

arctan

√
ax + b

−b
, b < 0

24.
∫

dx

x2
√

ax + b
=
−
√

ax + b

bx
− a

2b

∫
dx

x
√

ax + b

25.
∫ √

cx + d

ax + b
dx =

√
ax + b

√
cx + d

a
+

ad− bc

2a

∫
dx√

ax + b
√

cx + d
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Expressions Containing ax2 + c, x2 ± p2, and p2 − x2, p > 0

26.
∫

dx

p2 − x2
=

1
2p

ln
∣∣∣∣p + x

p− x

∣∣∣∣

27.
∫

dx

ax2 + c
=



1√
ac

arctan
(
x
√

a
c

)
a > 0, c > 0

1
2
√
−ac

ln
∣∣∣x√a−

√
−c

x
√

a+
√
−c

∣∣∣ a > 0, c < 0

1
2
√
−ac

ln
∣∣∣√c+x

√
−a√

c−x
√
−a

∣∣∣ a < 0, c > 0

28.
∫

dx

(ax2 + c)n
=

1
2(n− 1)c

x

(ax2 + c)n−1
+

2n− 3
2(n− 1)c

∫
dx

(ax2 + c)n−1
n > 1

29.
∫

x(ax2 + c)n dx =
1
2a

(ax2 + c)n+1

n + 1
n 6= 1

30.
∫

x

ax2 + c
dx =

1
2a

ln
∣∣ax2 + c

∣∣
31.

∫ √
x2 ± p2 dx =

1
2

(
x
√

x2 ± p2 ± p2 ln
∣∣∣x +

√
x2 ± p2

∣∣∣)
32.

∫ √
p2 − x2 dx =

1
2

(
x
√

p2 − x2 + p2 arcsin
(

x

p

))
33.

∫
dx√

x2 ± p2
= ln

∣∣∣x +
√

x2 ± p2
∣∣∣

34.
∫

(p2 − x2)3/2 dx =
x

4
(
p2 − x2

)3/2
+

3p2x

8

√
p2 − x2 +

3p4

8
arcsin

(
x

p

)
Expressions Containing ax2 + bx + c

35.
∫

dx

ax2 + bx + c
=



1√
b2−4ac

ln
∣∣∣ 2ax+b−

√
b2−4ac

2ax+b+
√

b2−4ac

∣∣∣ b2 > 4ac

2√
4ac−b2

arctan
(

2ax+b√
4ac−b2

)
b2 < 4ac

−2
2ax+b b2 = 4ac

36.
∫

dx

(ax2 + bx + c)n+1
=

2ax + b

n(4ac− b2)(ax2 + bx + c)n
+

2(2n− 1)a
n(4ac− b2)

∫
dx

(ax2 + bx + c)n

37.
∫

x dx

ax2 + bx + c
=

1
2a

ln
∣∣ax2 + bx + c

∣∣− b

2a

∫
dx

ax2 + bx + c

38.
∫

dx√
ax2 + bx + c

=


1√
a

ln
∣∣2ax + b + 2

√
a
√

ax2 + bx + c
∣∣ a > 0

1√
−a

arcsin
(
−2ax−b√

b2−4ac

)
a < 0

39.
∫

x dx√
ax2 + bx + c

=
√

ax2 + bx + c

a
− b

2a

∫
dx√

ax2 + bx + c

40.
∫ √

ax2 + bx + c dx =
2ax + b

4a

√
ax2 + bx + c +

4ac− b2

8a

∫
dx√

ax2 + bx + c
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Expressions Containing Powers of Trigonometric Functions

41.
∫

sin2(ax) dx =
x

2
− sin(2ax)

4a

42.
∫

sin3(ax) dx =
−1
a

cos(ax) +
1
3a

cos3(ax)

43.
∫

sinn(ax) dx = − sin(n−1)(ax) cos(ax)
na

+
n− 1

n

∫
sin(n−2)(ax) dx, n ≥ 2 positive integer

44.
∫

cos2(ax) dx =
x

2
+

sin(2ax)
4a

45.
∫

cos3(ax) dx =
1
a

sin(ax)− 1
3a

sin3(ax)

46.
∫

cosn(ax) dx =
cos(n−1)(ax) sin(ax)

na
+

n− 1
n

∫
cos(n−2)(ax) dx, n ≥ positive integer

47.
∫

tan2(ax) dx =
1
a

tan(ax)− x

48.
∫

tan3(ax) dx =
1
2a

tan2(ax) +
1
a

ln | cos(ax)|

49.
∫

tann(ax) dx =
tan(n−1)(ax)

a(n− 1)
−
∫

tan(n−2)(ax) dx, n 6= 1

50.
∫

sec2(ax) dx =
1
a

tan(ax)

51.
∫

sec3(ax) dx =
1
2a

sec(ax) tan(ax) +
1
2a

ln | sec(ax) + tan(ax)|

52.
∫

secn(ax) dx =
sec(n−2)(ax) tan(ax)

a(n− 1)
− n− 2

n− 1

∫
sec(n−2)(ax) dx, n 6= 1

53.
∫

dx

1± sin(ax)
= ∓1

a
tan

(π

4
∓ ax

2

)
Expressions Containing Algebraic and Trigonometric Functions

54.
∫

x sin(ax) dx =
1
a2

sin(ax)− x

a
cos(ax)

55.
∫

x cos(ax) dx =
1
a2

cos(ax) +
x

a
sin(ax)

56.
∫

xn sin(ax) dx =
−1
a

xn cos(ax) +
n

a

∫
xn−1 cos(ax) dx n positive

57.
∫

xn cos(ax) dx =
1
a
xn sin(ax)− n

a

∫
xn−1 sin(ax) dx n positive

58.
∫

sin(ax) cos(bx) dx =
− cos((a− b)x)

2(a− b)
− cos((a + b)x)

2(a + b))
a2 6= b2
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Expressions Containing Exponential and Logarithmic Functions

59.
∫

xeax dx =
1
a2

eax(ax− 1)

60.
∫

xbax dx =
1
a2

bax

(ln(b))2
(a ln(b)x− 1)

61.
∫

xneax dx =
1
a
xneax − n

a

∫
xn−1eax dx

62.
∫

eax sin(bx) dx =
eax

a2 + b2
(a sin(bx)− b cos(bx))

63.
∫

eax cos(bx) dx =
eax

a2 + b2
(a cos(bx) + b sin(bx))

64.
∫

ln(ax) dx = x (ln(ax)− 1)

65.
∫

xn ln(ax) dx = xn+1

(
ln(ax)
n + 1

− 1
(n + 1)2

)
n = 0, 1, 2, . . .

66.
∫

(ln(ax))2 dx = x2
(
(ln(ax))2 − 2 ln(ax) + 2

)
67.

∫
ln(ax)

x
dx =

a

2
(ln(ax))2

Expressions Containing Inverse Trigonometric Functions

68.
∫

arcsin(ax) dx = x arcsin(ax) +
1
a

√
1− a2x2

69.
∫

arccos(ax) dx = x arccos(ax)− 1
a

√
1− a2x2

70.
∫

arcsec(ax) dx = x arcsec(ax)− 1
a

ln
∣∣∣ax +

√
a2x2 − 1

∣∣∣
71.

∫
arccsc(ax) dx = x arccsc(ax) +

1
a

ln
∣∣∣ax +

√
a2x2 − 1

∣∣∣
72.

∫
arctan(ax) dx = x arctan(ax)− 1

2a
ln
(
1 + a2x2

)
73.

∫
arccot(ax) dx = x arccot(ax) +

1
2a

ln
(
1 + a2x2

)
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Some Special Integrals

74.

π/2∫
0

sinn(x) dx =

π/2∫
0

cosn(x) dx =


1·3·5·7···(n−1)
2·4·6·8···(n)

π
2 n even

2·4·6·8···(n−1)
1·3·5·7···(n) n odd

75.

∞∫
−∞

e−x2
dx =

√
π
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Chapter 1

Pre-Calculus Review

This chapter reviews precalculus concepts needed in all subsequent chapters.
Because calculus is the study of functions, Section 1.1 begins with a review

of the terminology and notation used when talking about them. In Section 1.2
fundamental types of functions are reviewed: power functions, exponentials,
logarithms, and the trigonometric functions. Section 1.3 describes how func-
tions can be combined to create new functions.

The final two sections review two important topics that will be used often,
geometric series in Section 1.4 and logarithms in Section 1.5.

1



2 CHAPTER 1 PRE-CALCULUS REVIEW

1.1 Functions

This section reviews several ideas related to functions: piecewise-defined func-
tions, one-to-one functions, inverse functions, and increasing or decreasing
functions.

Figure 1.1.1

Definition of a Function

The area A of a square depends on the length of its side x and is given by the
formula A = x2. (See Figure 1.1.1.)

Similarly, the distance s (in feet) that a freely falling object drops in the
first t seconds is described by the formula s = 16t2. Each choice of t determines
a specific value for s. For instance, when t = 3 seconds, s = 16 · 32 = 144 feet.

Both of these formulas illustrate the notion of a function.

DEFINITION (Function.) Let X and Y be sets. A function
from X to Y assigns one (and only one) member in Y to each
member in X. A function may assign different values in Y to
different members in X.

Figure 1.1.2

The notion of a function is illustrated in Figure 1.1.2, where the member
y in Y is assigned to the member x in X. Usually X and Y will be sets of
numbers.

A function is often denoted by the symbol f . The member that the function
assigns to the member x is denoted f(x) (read “f of x”). In practice, though,
almost everyone speaks interchangeably of the function f or the function f(x).

If f(x) = y, x is called the input or argument and y is called the output
or value of the function at x. Also, x is called the independent variable
and y the dependent variable.

A function may be given by a formula, as in the function A = x2. Because
A depends on x, we say that “A is a function of x.” Because A depends on
only one number, x, it is called a function of a single variable. The area A of a
rectangle depends on its length l and width w; it is a function of two variables,
A = lw.

Intervals

Most of the sets we will be dealing with in calculus are intervals. The following
notations are standard.

[a, b] the closed interval consisting of all numbers between a and b including
both a and b, in short {x : a ≤ x ≤ b}.

April 22, 2012 Calculus



§ 1.1 FUNCTIONS 3

(a, b) the open interval consisting of all numbers between a and b excluding
both a and b, in short {x : a < x < b}.

[a, b) the half-open interval consisting of all numbers between a and b in-
cluding a but not b, in short {x : a ≤ x < b}.

(a, b] the half-open interval consisting of all numbers between a and b in-
cluding b but not a, in short {x : a < x ≤ b}.

[a,∞) the unbounded interval consisting of all numbers larger than a including
a, in short {x : x ≥ a}.

(a,∞) the unbounded interval consisting of all numbers larger than a not in-
cluding a, in short {x : x > a}.

(−∞, a) the unbounded interval consisting of all numbers smaller than a including
a, in short {x : x ≤ a}.

(−∞, a) the unbounded interval consisting of all numbers smaller than a not
including a, in short {x : x ≤ a}.

(−∞,∞) the set of all numbers, in short {x : −∞ < x <∞{.

Ways to write and talk about a function

There are several ways to describe the function that assigns to each argument
x the value x2.You may write x 7→ x2 (and say “x goes to x2” or “x is mapped
to x2”). Or you may say simply, “the formula x2”, “the function x2”, or,
sometimes, just “x2.” Using this abbreviation, we might say, “How does x2

behave when x is large?” Some people object to just “x2” because they fear
that it might be misinterpreted as the number x2, with no sense of a general
assignment. In practice, the context will make it clear whether x2 refers to a
number or to a function. A circle is a curve and a

disk is the flat region inside
a circle.EXAMPLE 1 In the circle of radius a shown in Figure 1.1.3 let f(x) be

the length of chord AB of the circle at a distance x from its center.

Figure 1.1.3

Find a
formula for f(x).

SOLUTION We are trying to find how the length |AB| varies as x varies.
That is, we are looking for a formula for |AB|, the length of AB, in terms of
x.

Before searching for the formula, it is a good idea to calculate f(x) for
some easy inputs. They can serve as a check on the formula we work out.

In this case f(0) and f(a) can be read at a glance at Figure 1.1.3: f(0) = 2a
and f(a) = 0. (Why?) Now let us find f(x) for all x in [0, a].

Calculus April 22, 2012



4 CHAPTER 1 PRE-CALCULUS REVIEW

Let M be the midpoint of the chord AB and let C be the center of the
circle. Because |CM | = x and |CB| = a, the Pythagorean theorem gives
|BM | =

√
a2 − x2. Hence |AB| = 2

√
a2 − x2. Thus

f(x) = 2
√

a2 − x2.

Does the formula give the correct values at x = 0 and x = a? �

Domain and Range

The set of permissible inputs and the set of possible outputs of a function are
essential parts of the definition of a function. They have special names, which
we now introduce.

DEFINITION (Domain and range) Let X and Y be sets and let
f be a function from X to Y . The set X is called the domain of
the function. The set of all outputs of the function is called the
range of the function. (The range is part or all of Y .)

When the function is given by a formula, the domain is usually understood
to consist of all the numbers for which the formula is defined.

Try it. What does your
calculator do? Some

advanced calculators go into
“complex number” mode to

handle square roots of
negative numbers. No

calculator, however
advanced, can permit

division by zero.

In Example 1 the domain is the closed interval [0, a] and the range is the
closed interval [0, 2a].

When using a calculator you must pay attention to the domain correspond-
ing to a function key or command. If you enter a negative number as x and
press the

√
x-key to calculate the square root of x you will get no result. It

might display an E for “error” or start flashing. Your error was entering a
number not in the domain of the square root function.

You can also get into trouble if you enter 0 and press the 1/x-key. The
domain of 1/x, the reciprocal function, consists of all numbers except 0.

Graph of a Function

If both the inputs and the outputs of a function are numbers, we can draw a
picture of the function, called its graph.

DEFINITION (Graph of a function) Let f be a function whose
inputs and output are numbers. The graph of f consists of those
points (x, y) in the xy-plane such that y = f(x).

The next example illustrates the usefulness of a graph.

EXAMPLE 2 A tray is to be made from a rectangular piece of paper by
cutting congruent squares from each corner and folding up the flaps. The size

April 22, 2012 Calculus



§ 1.1 FUNCTIONS 5

of the rectangle is 81
2

′′× 11′′. Find how the volume of the tray depends on the
size of the squares.

SOLUTION Let the side of each cut out square be x inches, as shown in
Figure 1.1.4(a). The resulting tray is shown in Figure 1.1.4(b).

(a) (b)

Figure 1.1.4 (a) A rectangular sheet with a square cut out from each corner.
(b) The tray formed when the sides are folded up.

The volume V (x) of the tray is the height, x, times the area of the base
(11− 2x)(8.5− 2x),

V (x) = x(11− 2x)(8.5− 2x). (1.1.1)

The domain of V contains all values of x that lead to an actual tray. This means
that x cannot be negative, nor can x be more than half of the shortest side.
Thus, the largest corners that can be cut out have sides of length 4.25 inches.
So, the domain of interest is only the interval [0, 4.25]. The trays obtained
when x = 0 or x = 4.25 are peculiar. What are their volumes?

Of course we are free to graph (1.1.1) viewed as a polynomial whose domain
is (−∞,∞).

6

60

20
1

−20

5

−60

−1

−100

−140

43

40

2

0

−40

0

−80

−120

x

Figure 1.1.5

A short table of inputs and corresponding outputs will help sketch the
graph. Figure 1.1.5 displays the graph of V (x).

x (in) -1 0 1 2 3 4 4.25 5 6
V (x) (in3) -136.5 0 5.85 63 37.5 6 0 -7.5 21

When 11 − 2x = 0, that is, when x = 11
2

= 5.5, V (x) = 0. When x is
greater than 11

2
two factors in the formula for V (x) are negative and one is

positive. Thus V (x) becomes very large for large values of x.
For negative x, two factors in (1.1.1) are positive and one is negative.

(Which factor is negative?) Thus V (x) is negative and has large absolute
value for negative inputs of large absolute value.

Calculus April 22, 2012



6 CHAPTER 1 PRE-CALCULUS REVIEW

Only the part of the graph above the interval [0, 4.25] is meaningful in the
tray problem. Other values of x have nothing to do with trays. �

0.8

y

4.0

1.6

0.0

x

5

5.6

4.8

−5

2.4

−0.8
100

6.4

−10

3.2

Figure 1.1.6

To test whether some curve drawn in the xy-plane is the graph of a function,
check that each vertical line meets the curve no more than once. If the vertical
line x = a meets the curve twice, say at (a, b) and (a, c), there would be the
two outputs b and c for the single input a.

Vertical Line Test
The input a is in the domain of f if and only if the vertical line x = a intersects
the graph of y = f(x) exactly once. Otherwise, a is not in the domain of f .

Figure 1.1.6 shows a graph that does not pass the vertical line test. The
corresponding input-output table would have three entries for each input x
between −2 and 2, two entries for x = −2 and x = 2 and exactly one entry
for each input x < −2 or x > 2.

In Example 2 the function is described by a single formula, V (x) = x(11−
2x)(8.5 − 2x). But a function may be described by different formulas for
different intervals or points in its domain, as in the next example.

Figure 1.1.7

EXAMPLE 3 A hollow sphere of radius a has mass M , distributed uni-
formly throughout its surface. Describe the gravitational force it exerts on a
particle of mass m at a distance r from the center of the sphere.

SOLUTION Let f(r) be the force at a distance r from the center of the
sphere. In an introductory physics course it is shown that the sphere exerts
no force at all on objects in its interior. Thus for 0 ≤ r < a, f(r) = 0.

The sphere attracts an external particle as though all its mass is at its
center. Thus, for r > a, f(r) = GMm

r2 , where G is a constant, whose value
depends on the units used for measuring length, time, mass, and force.

It can be shown by calculus that for a particle on the surface, that is, for
r = a, the force is GMm

2a2 . The graph of f is shown in Figure 1.1.8.

Figure 1.1.8

�
The formula describing the function in Example 3 changes for different

parts of its domain.

f(r) =


0 if 0 ≤ r < a

GMm
2a2 if r = a

GMm
r2 if r > a

Such a function is called a piecewise-defined function.
In a graph that consists of several different pieces, such as Figure 1.1.8, the

presence of a point on the graph of a function is indicated by a solid dot (•)
and the absence of a point by a hollow dot (◦).
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§ 1.1 FUNCTIONS 7

Inverse Functions

If you know a particular output of the function f(x) = x3 you can figure
out what the input must be. For instance, if x3 = 8, then x = 2 – you can
go backwards from output to input. This is not possible with the function
f(x) = x2. If you are told that x2 = 25, you do not know what x is. It can
be 5 or −5. However, if you are told that x2 = 25 and that x is positive, then
you know that x is 5.

This brings us to the notion of a one-to-one function.

DEFINITION (One-to-One Function) A function f that does
not assign the same output to two different inputs is one-to-one.
That is, if f(x1) = f(x2), then x1 = x2.

DEFINITION (Inverse Function) If f is a one-to-one function,
the inverse function is the function g that assigns to each output
of f the corresponding input. That is, if f(x) = y then g(y) = x.

Horizontal Line Test
The graph of a one-to-one function never meets a horizontal line more than
once. (See Figure 1.1.9.)

The scales of the horizontal
and vertical axes in
Figure 1.1.9 are not the
same. These scales have
been chosen for the sake of
clarity; they affect the
steepness of a graph but
preserves its general shape.x

8

1.0

0

−4

0.0

−8

y

10

6

1.5

4

2

−2
0.5

−6

−10

−0.5−1.0−1.5

(a)

0

0.0

5

0.75

−5

x

10

1.0

0.5

0.25

−10

(b)

Figure 1.1.9 The function in (a) is one-to-one as it passes the horizontal line
test. The function in (b) does not pass the horizontal line test, so it is not
one-to-one.

The function f(x) = x3 is one-to-one on the entire real line. A few entries
in the tables for f(x) and its inverse function are shown in Table 1.1.1(a) and
(b), respectively.
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8 CHAPTER 1 PRE-CALCULUS REVIEW

input 1 2 1
2

3 -2
output 1 8 1

8
27 -8

(a)

input 1 8 1
8

27 -8
output 1 2 1

2
3 -2

(b)

Table 1.1.1 (a) Table of input and output values for f(x) = x3. (b) Table of
input and output values for the inverse of f(x) = x3.

In this case an explicit formula for the inverse function can be found al-
gebraically: if y = x3 then y1/3 = (x3)1/3 = x. Then x = y1/3. Since it is
customary to use the x-axis for the input and the y-axis for the output, it is
convenient to rewrite x = y1/3 as y = x1/3. (Both say the same thing: “The
output is the cube root of the input.”)

By the way, an inverse of a one-to-one function may not be given by a nice
formula. As will be easily shown in Chapter 4 f(x) = 2x + cos(x) is one-to-
one. However, the inverse function is not described by a convenient formula.
Happily, we do not need to deal with an explicit formula for it.

The inverse function of the one-to-one function f is denoted invf or f−1.

Notation: The use of invf to denote the inverse function of f is based on the
fact that many calculators have a button marked inv to indicate the inverse of
a function. The mathematical notation for the inverse function of f is f−1 or
invf . (The −1 is not an exponent, and in general the inverse and reciprocal

functions are different: f−1 is not equal to 1
f
.)

The Graph of an Inverse Function

When you know the graph of a one-to-one function, it is easy to draw the
graph of the inverse function.

If (a, b) is a point on the graph of the function f , that is, b = f(a), then
(b, a) is a point on the graph of invf , shown in Figure 1.1.10(a).

EXAMPLE 4 Draw the graphs of (a) the inverse of the cubing function
given by f(x) = x3, and (b) the squaring function g(x) = x2 restricted to
x ≥ 0.
SOLUTION See Figure 1.1.10(b) and (c). �

EXAMPLE 5 Let m 6= 0 and b be constants and f(x) = mx + b. Show
that f is one-to-one and describe its inverse function.
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y

43

1

21

4

3

x

0

2

0

(a,b)                   

(b,a)                   

y=x                     

(a)

y

21

−1

0−1

2

1

x

−2

0

−2

y=x^3                   

y=x^(1/3)               

y=x                     

(b)

y

x

2.01.5

0.5

1.00.5

2.0

1.5

0.0

1.0

0.0

y=x^2                   

y=x^(1/2)               

y=x                     

(c)

Figure 1.1.10 (a) The point (b, a) is obtained by reflecting (a, b) around the
line y = x. (b) Plots of f(x) = x3 and invf(x) = x1/3. (c) Plots of g(x) = x2

(x ≥ 0) and inv g(x) =
√

x.

SOLUTION If f(x1) = f(x2) we have

mx1 + b = mx2 + b
mx1 = mx2 (subtract b from both sides)

x1 = x2 (divide both sides by m 6= 0)

Because f(x1) = f(x2) only when x1 = x2, f is one-to-one. 2.0

0.0

−1.6

x

−1

y

0.8

−1.2

0.4

1.2

−0.4

−0.8

−2.0

20

1.6

−2 1

Figure 1.1.11

This problem can also be analyzed graphically. The graph of y = f(x) is
the line with slope m and y-intercept b. (See Figure 1.1.11.) It passes the
horizontal line test.

To find the inverse function, solve the equation y = f(x) to express x in
terms of y:

y = mx + b
y − b = mx (subtract b from both sides

y−b
m

= x (divide by m 6= 0
x = y

m
− b

m
(move x to left-hand side)

y = x
m
− b

m
. (interchange x and y)

x

21

−1

0−1

2

1

y

−2

0

−2

y=mx+b                  

reflection of y=mx+b...

y=x                     

Figure 1.1.12

Reversing the roles of x and y in the final step is done only to present the
inverse function in a form where the input is called x and the output is called
y. The inverse function has the formula

f−1(x) =
x

m
− b

m
.

The graph of the inverse function is also a line; its slope is 1/m the reciprocal of
the slope of the original line, and its y-intercept is −b/m. (See Figure 1.1.12.)
�
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Decreasing and Increasing Functions

A function is increasing on an interval if whenever x1 and x2 are in the
interval and x2 is greater than x1, then f(x2) is greater than f(x1). As a
pencil moves along the graph of f from left to right, it goes up. This is shown
in Figure 1.1.13(a).

1

2

x

−3

−5

0

−1

−2

−4

109876543210

(a)

0.0

−5.0

7.5

5.0

2.5

−2.5

−7.5

x

210−1−2

(b)

21

0.8

−1

0.4

1.0

0

0.0

−3

−0.4

−5

−0.8

0.6

0.2

−2
−0.2

−0.6

−4

−1.0

−6

x

3 654

(c)

Figure 1.1.13 Graphs of (a) an increasing function, (b) a decreasing function,
and (c) a non-monotonic function.

In the case of a decreasing function, outputs decrease as the input in-
creases: if x2 > x1 then f(x2) < f(x1). (See Figure 1.1.13(b).)

The graph of f(x) = sin(x) is shown in Figure 1.1.13(c). On the interval
[−π/2, π/2] the values of sin(x) increase. On the interval [π/2, 3π/2] the values
of sin(x) decrease.

A monotonic function is either only increasing or only decreasing. It
always passes the horizontal line test, as the next example illustrates.Monotone is from the

Greek, mono=single,
tonos=tone, which also

gives us the word
‘monotonous’).

For k 6= 0 and x > 0, xk is a monotonic function. For k < 0, xk is monotone
decreasing for x > 0; for k > 0 it is monotone increasing for x > 0. The inverse
of xk is x1/k. If k = 0, we have a constant function, x0 = 1. It does not pass
the horizontal line test, so has no inverse.

Because strict inequalities are used in the definitions of increasing and
decreasing, we sometimes say these functions are strictly increasing or strictly
decreasing on an interval. A function f is said to be non-decreasing on an
interval if whenever x1 and x2 are in the interval and x2 is greater than x1, then
f(x2) ≥ f(x1). The graph of a non-decreasing function is increasing except on
intervals where it is constant. Likewise, f is non-increasing on an interval if
whenever x1 and x2 are in the interval and x2 > x1, then f(x2) ≤ f(x1).

The sign of a function’s outputs provides another way to describe some
functions. A function that has only positive outputs is called a positive
function; for instance, 2x. A negative function has only negative outputs;
for instance, −1

1+x2 . A non-negative function has outputs that are either
positive or zero; for instance x2. The outputs of a non-positive function are

April 22, 2012 Calculus
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either negative or zero, for instance, sin(x)− 1.

Summary

This section introduced concepts that will be used throughout the coming
chapters: interval, function, domain, range, graph, piecewise-defined function,
one-to-one function, inverse function, increasing function, decreasing function,
monotonic function, non-decreasing function, non-increasing function, positive
function, negative function, non-negative function, and non-positive function.

Every monotonic function has an inverse function and the graph of the
inverse function is the reflection across the line y = x of the graph of the
original function.

A function can be described in several ways: by a formula, such as V (x) =
x(11 − 2x)(8.5 − 2x), by a table of values, or by words, such as “the volume
of a tray depends on the size of the cut-out squares.”

Calculus April 22, 2012
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EXERCISES for Section 1.1

Figure 1.1.14 Exercises 1 to 4.

Exercises 1 to 4 refer to Figure 1.1.14.
1. Express the area of triangle ABC as a function of x = |CM |

2. Express the perimeter of triangle 4ABC as a function of x.

3. Express the area of triangle 4ABC as a function of θ.

4. Express the perimeter of triangle ABC as a function of θ.

In Example 2 a tray was formed from an 81
2” by 11” rectangle by removing squares

from the corners. Find and graph the corresponding volume function for trays
formed from sheets of sizes given in Exercises 5 to 8.
5. 4” by 13”

6. 5” by 7”

7. 6” by 6”

8. 5” by 5”

In Exercises 9 and 10 decide which curves are graphs of (a) functions, (b) increasing
functions, and (c) one-to-one functions.

9.

April 22, 2012 Calculus
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10.

11. Let f(x) = x3.

(a) Fill in this table

x 0 1/4 1/2 −1/4 −1/2 1 2
x3

(b) Graph f .

(c) Use the table in (a) to find seven points on the graph of f−1.

(d) Graph f−1 (use the same axes as in (b)).

12. Let f(x) = cos(x), 0 ≤ x ≤ π (angles in radians).

Calculus April 22, 2012
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(a) Fill in this table

x 0 π/6 π/4 2π/3 π/2 3π/4 π

cos(x)

(b) Graph f .

(c) Use the table in (a) to find seven points on the graph of inv cos.

(d) Graph inv cos (use the same axes as in (b)).

In Exercises 13 to 18 the functions are one-to-one. Find the formula for each inverse
function, expressed in the form y = g(x), so that the independent variable is labeled
x. (If you have trouble with the use of logarithms in Exercise 17 or Exercise 18,
read Section 1.5.)
13. y = 3x− 2
14. y = x/2 + 7
15. y = x5

16. y = 3
√

x

17. y = 3x

18. y = 5(2x)

In Exercises 19 to 23 the slope of line L is given. Let L′ be the reflection of L across
the line y = x. What is the slope of the reflected line, L′? In each case sketch a
possible L and its reflection, L′.
19. L has slope 2.
20. L has slope 1.
21. L has slope 1/10.
22. L has slope −1/3.
23. L has slope −2.

In Exercises 24 to 33 state the formula for the function f and give its domainn.

(a) (b) (c)

April 22, 2012 Calculus
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Figure 1.1.15
24. f(x) is the perimeter of a circle of radius x.
25. f(x) is the area of a disk of radius x.
26. f(x) is the perimeter of a square of side x.
27. f(x) is the volume of a cube of side x.
28. f(x) is the total surface area of a cube of side x.
29. f(x) is the length of the hypotenuse of the right triangle whose legs have
lengths 3 and x.
30. f(x) is the length of the side AB in the triangle in Figure 1.1.15(a).
31. For 0 ≤ x ≤ 4, f(x) is the length of the path from A to B to C in Fig-
ure 1.1.15(b).
32. For 0 ≤ x ≤ 10, f(x) is the perimeter of the rectangle ABCD, one side of
which has length x, inscribed in the circle of radius 5 shown in Figure 1.1.15(c).
33. A person at point A, two miles from shore in a lake, is going to swim to the
shore ST and then walk to point B, five miles from the shore. She swims at 1.5
miles per hour and walks at 4 miles per hour. If she reaches the shore at point P ,
x miles from S, let f(x) denote the time for her combined swim and walk. Obtain
a formula for f(x). (See Figure 1.1.16(a).)

34. A camper at A will walk to the river, put some water in a pail at P , and take
it to the campsite at B.

(a) Express the distance |AP |+ |PB| as a function of x.

(b) Where should P be located to minimize the length of the walk, |AP |+ |PB|?
(Reflect B across the line L. See Figure 1.1.16(b).)

(a) (b)

Figure 1.1.16 Sketches for situations in Exercises 33 and 34.
(A geometric trick solved (b). Chapter 4 develops a general procedure for finding
the maximum or minimum of a function.)

Calculus April 22, 2012
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In Exercises 35 to 39 give (a) three functions that satisfy the equation for all positive
x and y and (b) one function that does not.
35. f(x + y) = f(x) + f(y)
36. f(x + y) = f(x)f(y)
37. f(xy) = f(x) + f(y)
38. f(xy) = f(x)f(y)
39. f(x) = f(y)

40. The cost of life insurance depends on whether the person is a smoker or a
non-smoker. The following chart lists the annual cost for a male for a million-dollar
life insurance policy.

age (yrs) 20 30 40 50 60 70 80
cost for smoker ($) 1150 1164 1944 4344 9864 26500 104600
cost for non-smoker ($) 396 396 600 1490 3684 10900 41600

(A smoker is a person who has used tobacco during the previous three years.)

(a) Plot the data and sketch the graphs on the same axes for both groups of males.

(b) A smoker at age 20 pays as much as a non-smoker of about what age?

(c) A smoker pays about how many times as much as a non-smoker of the same
age?

41. Let f(x) be the diameter of the largest circle that fits in a 1× x rectangle

(a) Graph y = f(x) for x > 0.

(b) Give a formula for f(x). (This will be a piecewise-defined function.)

42. If f is an increasing function, what, if anything, can be said about f−1?

43. On a typical summer day in the Sacramento Valley the temperature is at a
minimum of 60◦ at 7 a.m. and a maximum of 95◦ at 4 p.m..

(a) Sketch a graph that shows how the temperature may vary during the twenty-
four hours from midnight to midnight.

(b) A closed shed with little insulation is in the middle of a treeless field. Sketch
a graph that shows how the temperature inside the shed may vary during the
same period.

April 22, 2012 Calculus
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(c) Sketch a graph that shows how the temperature in a well-insulated house may
vary. Assume that in the evening all the windows and skylights are opened
when the outdoor temperature equals the indoor temperature, and closed in
the morning when the two temperatures are again equal.

(Use the same set of axes for all three graphs.)

44. The monthly average air and water temperatures in Myrtle Beach, SC, are
shown in Table 1.1.2.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Air Temp (◦) 56 60 68 76 83 88 91 89 85 77 69 60

Water Temp (◦) 51 52 57 62 69 77 81 83 80 73 65 55

Table 1.1.2 Source: http://www.myrtle-beach-resort.com/weather.htm
(Assume, for convenience, that the temperatures in the table are the temperatures
on the first day of each month.)

(a) Sketch a graph that shows how the water temperature may vary during one
calendar year, that is, from January 1 through December 31.

(b) Sketch a graph that shows how the difference between the air and water tem-
peratures may vary during one calendar year. During what month is the
temperature difference greatest? least?

(c) During February, the water temperature increases 5◦ in 28 days so the average
daily change is 5/28 ≈ 0.1786◦/day. For each month, estimate the average
daily change in the water temperature from one day to the next. During which
month is this daily change greatest? least?

(d) Repeat (b) and (c) for the air temperature data.

45. This problem grew out of a question raised by Rebecca Stein-Wexler, the
daughter of one of the authors, when cutting cloth for a dress. She wanted to cut
out two congruent semicircles from a long strip of fabric 44 inches wide, as shown
in Figure 1.1.17. The radius, r, of the semicircles determines d, the length of fabric
used, d = f(r).

(a) Draw a picture to show that f(22) = 44.

(b) For 0 ≤ r ≤ 22, determine d as a function of r, d = f(r).

(c) For 22 ≤ r ≤ 44, determine d as a function of r, d = f(r).

(d) Obtain an equation expressing r as a function of d.

Calculus April 22, 2012
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(e) She had 104 inches of fabric, and guesed that the largest semicircle she could
cut has a radius of about 30 inches. Use (c) to see how good her guess is.

(f) Graph f .

Figure 1.1.17 Exercise 45.

46. Let f(x) be the length of the segment AB in Figure 1.1.18(b).

(a) What are f(0) and f(a)?

(b) What is f(a/2)?

(c) Find the formula for f(x) and explain your solution.

(a) (b)

Figure 1.1.18
47. Let f(x) be the area of the cross section of a right circular cone shown in
Figure 1.1.18(c).

(a) What are f(0) and f(h)?

(b) Find a formula for f(x) and explain your solution.

April 22, 2012 Calculus
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48. This is how the cost of a ride in a New York city taxi is calculated. At the
start the meter reads $2.50. For every fifth of a mile, 40 cents is added. Graph the
cost as a function of distance travelled. ( The cost also depends on other factors.
For every two minutes stopped in traffic, 40 cents is added. During the evening
rush, 4–8 p.m., there is a surcharge of one dollar. Between 8 p.m. and 6 a.m. there
is a surcharge of 50 cents. So the cost, which depends on distance travelled, time
stopped, and time of day, is actually a function of three variables.) )

49.

(a) Find all functions of the form f(x) = a + bx, where a and b are constants,
such that f = inv(f).

(b) Sketch the graph of one of the functions found in (a).

Calculus April 22, 2012
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1.2 The Basic Functions in Calculus

This section describes the basic functions in calculus. In the next section they
are used to build more complicated functions.

The Power Functions

The first group of functions consists of the power functions xk where the
exponent k is a fixed non-zero number and the base x is the input. When the
domain of xk is restricted to positive numbers, it is one-to-one, and has an
inverse, x1/k, with, again, a domain consisting of all positive numbers.

In Section 1.1 it was shown that the inverse of f(x) = x3 is f−1(x) = x1/3

for all x. However, g(x) = x4 does not pass the horizontal line test unless the
domain is restricted to, say, nonnegative inputs ([0,∞)). Thus, the inverse of
g(x) = x4 is g−1(x) = x1/4 only for x ≥ 0.

(a) (b)

Figure 1.2.1 Graphs of power functions. (a) xk for k = 1 (red), 5 (blue), and
1/5 (cyan), (b) xk for k = 1 (red), 4 (blue), and 1/4 (cyan), The pairs of blue
and cyan graphs are inverses in both (a) and (b). But in (b), the inverse of x4

exists only for x ≥ 0

An important property of power functions is that their inverse functions
are also power functions. When the exponent k is an even integer or a rational
number (in lowest terms) whose numerator is even (2/3, 4/7, etc.) the graph
of y = xk does not pass the horizontal line test unless the domain is reduced,
usually to [0,∞). And, when k = 0 we obtain the function x0, which is
constant (with all outputs equal to 1), the very opposite of being one-to-one.
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The Exponential and Logarithm Functions

Next we have the exponential functions bx where the base b is fixed and
the exponent x is the input. The inverses of exponential functions are not
exponential functions. The inverses are called logarithms and are the next
class of functions that we will consider.

To be specific, take a look at the case b = 2 and study f(x) = 2x.

Figure 1.2.2 Graph of
y = 2x and its inverse.

As x increases, so does 2x. So the function 2x has an inverse function. (See
Figure 1.2.2.) In other words, if y = 2x, then if we know the output y we can
determine the input x, the exponent, uniquely. For instance, if 2x = 8 then
x = 3. This is expressed as 3 = log2 8 and is read as “the logarithm of 8, base
2, is 3.” If y = bx, then we write x = logb y.

Since we usually denote the independent variable (the input or argument)
by x, and the dependent variable (the output, or value) by y, we will rewrite
this as y = logb(x).

The table of values of log2(x) in Table 1.2.1 helps us graph y = log2(x).
Putting a smooth curve through the seven points in Table 1.2.1 yields the
graph in Figure 1.2.3.

x 1 2 4 8 1/2 1/4 1/8
log2(x) 0 1 2 3 -1 -2 -3

Table 1.2.1 Table of values of y = log2(x).

0.0

15.012.510.07.55.02.50.0

−5.0

2.5

−2.5

Figure 1.2.3 Plot of y = log2(x) based on data in Table 1.2.1.

As x increases, log2(x) grows slowly. For instance log2 1024 = 10, as every
computer scientist knows. For x between 0 and 1, log2(x) is negative. As x
moves from 1 towards 0, | log2(x)| grows very large. For instance, log2

1
1024

=
−10.
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Because log2(x) is the inverse of the function 2x, we can sketch the graph
of y = log2(x) by first sketching the graph of y = 2x and reflecting it around
the line y = x.

For any positive base b, logb(x) is defined similarly. For x and b both
positive numbers, the logarithm of x to the base b, denoted logb(x), is the
power to which we must raise b to obtain x. By the definition of the logarithm

blogb(x) = x.

The Trigonometric Functions and Their Inverses

So far we have the power functions, xk, the exponential functions, bx, and the
logarithm functions, logb(x). The last major group of important functions con-
sists of the trigonometric functions, sin(x), cos(x), tan(x), and their inverses
(after we shrink their domains to make them one-to-one).

In calculus we generally
measure angles in radians.

The trigonometric functions are periodic. A function f is periodic if there
is a non-zero constant k such that f(x + k) = f(x) for x and x + k in the
domain of f . Note that if k is a period, so are 2k, 3k, . . . and −k, −2k, −3k,
. . . . The smallest positive period is often singled out as “the period” of f . For
example, sin(x) is periodic with period 2π.

0

x

0

Figure 1.2.4

sin(x) and its inverse

The graph of the sine function sin(x) has period 2π and is shown in Fig-
ure 1.2.4. Its range is [−1, 1]. On the domain [−π/2, π/2], sin(x) is increasing
and its values for these inputs already sweep out the full range.

When we restrict the domain of the function sin(x) to [−π/2, π/2] it is one-
to-one with range [−1, 1]. This means the sine function has an inverse with
domain [−1, 1] and range [−π/2, π/2]. The inverse sine function is denoted by
arcsin(x), sin−1(x), or inv sin(x).

Let us stop to summarize our findings: For x in [−1, 1], arcsin(x) is the
angle in [−π/2, π/2] whose sine is x. In equations:

Figure 1.2.5

y = arcsin(x) ⇐⇒ sin(y) = x.

For instance, arcsin(1) = π/2 because the angle in [−π/2, π/2] whose sine is
1 is π/2. Similarly, sin−1(1/2) = π/6, inv sin(0) = 0, arcsin(−1/2) = −π/6,
and sin−1(−1) = −π/2. A unit circle helps display these facts, as Figure 1.2.5
illustrates.

We could graph y = arcsin(x) with the aid of those five values. However,
it is easier to reflect the graph of y = sin(x) around the line y = x. (See
Figure 1.2.6(a).)
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−1.0

x

0.5

1.51.0

0.0

0.5

1.5

1.0

−1.0

−0.5

−0.5−1.5

−1.5

0.0

(a)

2.8

1.6

−0.4

1.2

x

2.4

2.0

2

0.8

0

−0.8

0.4

31

3.2

−1

0.0

(b)

Figure 1.2.6 (a) The graph of y = arcsin(x) (red) is the graph of y = sin(x)
(blue), with domain restricted to [−π/2, π/2], reflected around the line y = x.
(b) The graph of y = arccos(x) (red) is the graph of y = cos(x) (blue), with
domain restricted to [0, π], around the line y = x.

cos(x) and its inverse

0

50

x

Figure 1.2.7

The graph of the cosine function cos(x) is shown in Figure 1.2.7.

It is not one-to-one, even if we restrict the domain to the domain used
for sin(x), namely [−π/2, π/2]. Because cos(x) is decreasing on [0, π]. It is
one-to-one on [0, π]. Moreover, the values of cos(x) for x in [0, π] sweep out all
possible values of the cosine function, namely [−1, 1].

Because cos(x) is a one-to-one function on the domain [0, π], it has an
inverse function, called arccos(x), inv cos(x), or cos−1(x). Each of these is
short for “the angle in [0, π] whose cosine is x”. For instance, arccos(0) = π/2,
cos−1(1) = 0, and inv cos(−1) = π. Moreover, because the range of the cosine
function is [−1, 1], the domain of arccos is [−1, 1]. Figure 1.2.6(b) shows
that the graph of arccos(x) is obtained by reflecting the graph of cos(x), with
domain [0, π], around the line y = x.

x
K3 K2 K1 0 1 2 3 4 5 6

K10

K5

5

10

Figure 1.2.8

tan(x) and its inverse

The range of the function tan(x) = sin(x)
cos(x)

is (−∞,∞). (See Figure 1.2.8.)

When the inputs are restricted to (−π/2, π/2), tan(x) is one-to-one, and
therefore has an inverse function, denoted arctan(x), tan−1(x), or inv tan(x).
The domain of the inverse tangent function is (−∞,∞) and its range is
(−π/2, π/2).

For instance, tan−1(0) = 0, inv tan(1) = π/4, and as x increases, arctan(x)
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approaches π/2. Also, arctan(−1) = −π/4, and when x is negative and be-
comes ever more negative (that is, |x| becomes bigger and bigger) arctan(x)
approaches −π/2. Figure 1.2.9 is the graph of arctan(x). It is the reflection
of the blue part of the graph in Figure 1.2.8 across the line y = x. (See
Figure 1.2.9.)
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Figure 1.2.9 The graphs of y = tan(x) and y = arctan(x)

3

1q

Figure 1.2.10 The tradi-
tional symbol for angles is
the Greek letter θ (pro-
nounced “theta”).

EXAMPLE 1 Evaluate

(a) sin(sin−1(0.3)), (b) sin(tan−1(3)), and (c) tan(cos−1(0.4)).

SOLUTION

(a) The expression sin−1(0.3) is short for the angle in the interval [−π/2, π/2]
whose sine is 0.3. So, the sine of sin−1(0.3) is 0.3.

(b) To find sin(tan−1(3)), first draw the angle θ whose tangent is 3 (and lies
in the interval (−π/2, π/2). Figure 1.2.10 shows a simple way to draw
this angle. To find the sine of θ, recall that sine equals “ opposite

hypotenuse
.” By

the Pythagorean Theorem, the hypotenuse is
√

32 + 12 =
√

10. Thus,
sin(tan−1 3) = 3/

√
10.

(c) To evaluate tan(cos−1(0.4)), first draw an angle whose cosine is 0.4 =
2
5
, as in Figure 1.2.11, which is based on the fact that cosine equals

“ adjacent
hypotenuse

.” To find the tangent of this angle, we need the length of the

other

5

2q

Figure 1.2.11

leg in Figure 1.2.11. By the Pythagorean Theorem it is
√

52 − 22 =√
21.

From the relation tan(θ) = opposite/adjacent, we conclude that

tan(cos−1(0.4)) =
√

21/2 ≈ 2.291.

�
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csc(x), sec(x), and cot(x) and their inverses

The cosecant, secant, and cotangent functions are defined in terms of the
sine and cosine functions:

csc(x) =
1

sin(x)
, sec(x) =

1

cos(x)
, and cot(x) =

cos(x)

sin(x)
.

Each is defined only when the denominator is not zero. Figure 1.2.12 shows
their graphs.
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Figure 1.2.12 The graphs of (a) the cosecant, (b) the secant, and (c) the
cotangent functions. The restrictions to an interval where the funciton is one-
to-one is shown in bold.

Note that | sec(x)| ≥ 1 and | csc(x)| ≥ 1. In each case the range consists of
two separate intervals: [1,∞) and (−∞,−1].

These three functions have inverses when restricted to appropriate inter-
vals. Table 1.2.2 contains a summary of the three inverse functions, arccsc(x),
arcsec(x), and arctan(x). Figure 1.2.13 shows the graphs of (a) csc, (b) sec,
and (c) cot and their inverses.

function domain (input) range (output)
arccsc(x) (−∞,−1] and [1,∞) all of [−π/2, π/2] except 0

arcsec(x)(x) (−∞,−1] and [1,∞) all of [0, π] except 0, that is (0, π]
arccot(x)x (−∞,∞) the open interval (0, π)

Table 1.2.2 Summary of the inverse cosecant, inverse secant, and inverse
cotangent functions.

Summary

This section reviewed the basic functions in calculus, xk, bx, sin(x), cos(x),
tan(x), and their inverses. logb(x), arcsin(x), arccos(x), and arctan(x). (The
inverse of xk, k 6= 0, is just another power function x1/k).
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Figure 1.2.13 Graphs of (a) y = csc(x) and y = arccsc(x), (b) y = sec(x) and
y = arcsec(x), and (c) y = cot(x) and y = arccot(x). The inverse function is
the reflection of the original function across the line y = x.

The functions that may be hardest to have a feel for are the logarithms.
Now, log2(x) is typical of logb(x), b > 1. These are its key features:

• Its graph crosses the x-axis at (1, 0) because log2(1) = 0 (20 = 1),

• It is defined only for positive inputs, that is, the domain of log2 is (0,∞),
because only positive numbers can be expressed in the form 2x,

• It is an increasing function,

• It grows very slowly as the argument increases: log2(8) = 3, log2(16) = 4,
log2(32) = 5, log2(64) = 6, and log2(1024) = 10,

• For values of x in (0, 1), log2(x) is negative (2x < 1 then x is negative),

• For x near 0 (and positive), |log2(x)| is large.

The case when the base b is less than 1 is treated in Exercise 54.
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EXERCISES for Section 1.2

1. Graph the power function x3/2, x ≥ 0, and its inverse.

2. Graph the power function
√

x and its inverse.

3. What is the period of tan(x)?

4. What is the period of sin(x) + cos(2x)?

5. Explain your calculator’s response when you try to calculate log10(−3).

6. Explain your calculator’s response when you try to calculate arcsin(2).

7.

(a) Graph 2x and (1/2)x on the same axes.

(b) How could the second graph be obtained from the first?

8.

(a) Graph 3x and (1/3)x on the same axes.

(b) How could the second graph be obtained from the first?

9. For any base b, b0 = 1. What is the corresponding property of logarithms?
Explain.

10. For any base b, bx+y = bxby. What is the corresponding property of loga-
rithms? Explain. (If you have trouble with this exercise, study Section 1.5.)

11. Explain why logb (1/x) = − logb(x). (“The log of the reciprocal of x is the
negative of the log of x.”)

12. Explain why logb(cx) = x logb(c). (“The log of a number raised to a power x
is x times the log of the number.”)

13.

(a) Evaluate log2(x) and log4(x) at x = 1, 2, 4, 8, 16, and 1/16.

(b) Graph log2(x) and log4(x) on the same axes (clearly label each point found
in (a)).

(c) Compute log4(x)
log2(x) for the six values of x in (a).

(d) Explain the phenomenon observed in (c).

(e) How would the graph of y = log4(x) be obtained from that for y = log2(x)?
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14.

(a) Evaluate log2(x) and log8(x) at x=1, 2, 4, 8, 16, and 1/8.

(b) Graph log2(x) and log8(x) on the same axes. Clearly label each point found
in (a)

(c) Compute log8(x)
log2(x) for the six values of x in (a).

(d) Explain the phenomenon observed in (c).

(e) How would you obtain the graph of log8(x) from that for log2(x)?

15. Evaluate

(a) log10(1000)

(b) log100(10)

(c) log10(0.01)

(d) log10(
√

10)

(e) log10(10)

16. Evaluate

(a) log3(317)

(b) log3(1/9)

(c) log3(1)

(d) log3(
√

3)

(e) log3(81)

17. Evaluate 5log5(17).
18. Evaluate 3− log3(21).
19. For positive x near 0, what happens to the functions 2x, x2, and log2(x)?
20. For very large values of x what happens to the quotent x2/2x? Illustrate by
using specific values for x.
21. What happens to (log2(x))/x for large values of x? Illustrate by citing specific
x.
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22. Draw the graphs of cos(x) for x in [0, π], and arccos(x) on the same axes.
23. Draw the graphs of tan(x) for x in (−π/2, π/2), and arctan(x) on the same
axes.

24. Which of the following expressions is equal to csc(x)?

(a) sin−1(x)

(b) (sin(x))−1

(c) inv sin(x)

(d) 1/ sin(x)

In Exercises 25 to 41 evaluate the given expressions.
25.

(a) sin−1(1/2)

(b) arcsin(1)

(c) inv sin(−
√

3/2)

(d) arcsin(
√

2/2)

26.

(a) cos−1(0)

(b) inv cos(−1)

(c) arccos(1/2)

(d) arccos(−1/
√

2)

27.

(a) arctan(1)

(b) inv tan(−1)

(c) arctan(
√

3)

(d) arctan(1000) (approximately)

28.
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(a) arcsec(2)

(b) inv sec(−2)

(c) arcsec(
√

2)

(d) sec−1(1000) (approximately)

29.

(a) arcsin(0.3)

(b) arccos(0.3)

(c) arctan(0.3)

(d) arcsin(0.3)
arccos(0.3)

(Observe that (c) and (d) are different.)

30. sin(tan−1(2))

31. sin(cos−1(0.4))

32. tan(tan−1(3))

33. tan(sin−1(0.7))

34. tan(sec−1(3))

35. sec(tan−1(0.3))

36. sin(sec−1(5))

37. sec(cos−1(0.2))

38. arctan(tan(π
3 ))

39. arcsin(sin(−3π
4 ))

40. arccos(cos(5π
2 ))

41. arcsec(sec(−π
3 ))

42. Let k be a period of a function f . Show that 2k and −k are also periods of f .

In Exercises 43 to 46, use properties of logarithms to express log10 f(x) as simply
as possible.

43. f(x) = (cos(x))7
√

(x2+5)3

4+(tan(x))2

44. f(x) =
√

(1 + x2)5(3 + x)4
√

1 + 2x
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45. f(x) = (x
√

2 + cos(x))x2

46. f(x) =
√

x(1+x)√
1+2x

3

47. Imagine that your calculator fell on the floor and its multiplication and divi-
sion keys stopped working. However, all the other keys, including the trigonometric,
arithmetic, logarithmic, and exponential keys, still functioned. Show how you could
use it to calculate the product and quotient of two positive numbers, a and b.

48. (Richter Scale) In 1989, San Francisco and vicinity was struck by an earthquake
that measured 7.1 on the Richter scale. The strongest earthquake in recent years
had a Richter measure of 9.0 (Fukushima, Japan in 2011). There have also been two
earthquakes with Richter measures of 8.9 (Colombia-Equador in 1906 and Japan in
1933). A “major earthquake” typically has a measure of at least 7.5.
In his Introduction to the Theory of Seismology, Cambridge, 1965, pp. 271–272, K. E.
Bullen explains the Richter scale as follows:
“Gutenburg and Richter sought to connect the magnitude M with the energy E of
an earthquake by the formula

aM = log10

(
E

E0

)
and after several revisions arrived in 1956 at the result a = 1.5, E0 = 2.5×1011 ergs.”
(Energy E is measured in ergs. M is the number assigned to the earthquake on the
Richter scale. E0 is the energy of the smallest instrumentally recorded earthquake.)

(a) Deduce that log10(E) ≈ 11.4 + 1.5M .

(b) What is the ratio between the energy of the earthquake that struck Japan in
1933 (M = 8.9) and the San Francisco earthquake of 1989 (M = 7.1)?

(c) What is the ratio between the energy of the San Francisco earthquake of 1906
(M = 8.3) and that of the San Francisco earthquake of 1989 (M = 7.1)?

(d) Find a formula for E in terms of M .

(e) If one earthquake has a Richter measure 1 larger than that of another earth-
quake, what is the ratio of their energies?

(f) What is the Richter measure of a 10-megaton H-bomb, that is, of an H-bomb
whose energy is equivalent to that of 10 millon tons of TNT?

(One ton of TNT releases an energy of 4.2× 106 ergs.)

49. Translate the sentence, “She has a five-figure annual income” into logarithms.
How small can the income be? How large?

50. As of 2011 the largest known prime was 243112609 − 1.
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(a) When written in decimal notation, how many digits will it have?

(b) How many pages of this book would be needed to print it? (One page can
hold 50 70-character lines, a total of 3,500 digits per page).)

(There is a prize of $250,000 for the discovery of the first billion-digit prime. A web
search for “largest prime” will find the largest known prime.)

51. Newton computed the logarithms of 0.8, 0.9, 1.1, and 1.2 to 57 decimal places
by hand using a method developed in Section 10.4. Show how to compute

(a) log(2), using log(1.2), log(0.8) and log(0.9)

(b) log(3), using log(2), log(1.2) and log(0.8)

(c) log(4), using log(2)

(d) log(5), using log(2) and log(0.8)

(e) log(6), log(8), log(9), and log(10)

(f) log(11)

(You do not need to know the base. Why?)
52. The graph of y = log2(x) consists of the part to the right of (1, 0) and the
part to the left of (1, 0). Are the two parts congruent?

53. Say that you have drawn the graph of y = log2(x). Jane says that to get the
graph of y = log2(4x), you just raise that graph 2 units parallel to the y-axis. Sam
says, “No, just shrink the x-coordinate of each point on the graph by a factor of 4.”
Who is right?
54. Let b be a positive number less than 1.

(a) Sketch the graphs of y = bx and y = logb(x) on the same set of axes.

(b) What is the domain of logb?

(c) What is the x-intercept? That is, solve logb(x) = 0.

(d) For what values of x is logb(x) positive? negative?

(e) Is the graph of y = logb(x) an increasing or decreasing function?

(f) What can you say about the values of logb(x) when x is close to zero (and in
the domain)?

(g) What can you say about the values of logb(x) when x is a large positive
number?

(h) What can you say about the values of logb(x) when x is a large negative
number?
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55. Prove that log3(2) is irrational, that is, not rational. (Assume that it is ratio-
nal, that is, equal to m/n for some integers m and n, and obtain a contradiction.)
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1.3 Building More Functions from Basic Func-

tions

This section completes the list of functions needed for calculus. Starting with
the basic functions introduced in Section 1.1, we will see how to obtain a
function as complicated as

f(x) =
sin(2x) + 3 + 4x + 5x2

log2(x) + 3−5x +
√

1 + x3
. (1.3.1)

Before we see how to construct new functions from old ones, we introduce
one more type of basic function. These functions are so simple that they did
not deserve to appear with the functions in the preceding section. They are
the constant functions, whose graphs are horizontal lines. (See Figure 1.3.1.)

The Constant Functions

DEFINITION (Constant Function) A function f(x) is constant
if there is a number C such that f(x) = C for all x in its domain.
A special constant function is the zero function: f(x) = 0.

x

1.5

2.5

2.0

1.0

5.0

0.5

0.0

0.0−2.5−5.0

Figure 1.3.1

Using the Four Arithmetic Operations: +, −, ×, /

Let f and g be functions. We can produce other functions from them by using
the four operations of arithmetic:

f + g: For an input x, the output is f(x) + g(x).

f − g: For an input x, the output is f(x)− g(x).

fg: For an input x, the output is f(x)g(x).

f/g: For an input x with g(x) 6= 0, the output is f(x)/g(x).

The domains of f + g, f − g, and fg consist of the numbers that belong to
both the domain of f and the domain of g. The function f/g is defined for all
numbers x that belong to the domain of f and the domain of g with the extra
condition that g(x) 6= 0.

With the aid of these constructions any polynomial or rational function can
be built up from the simple function f(x) = x, called the identity function,
and the constant functions.
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A polynomial is a function of the form p(x) = a0+a1x+a2x
2+ . . .+anx

n,
where the coefficients a0, a1, a2, . . . , an are numbers. If an is not zero, the
degree of the polynomial is n. A rational function is the quotient of two
polynomials. The domain of a polynomial is the set of all real numbers. The
domain of a rational function is all real numbers except those for which the
denominator is zero.

EXAMPLE 1 Use addition, subtraction, and multiplication to form the
polynomial F (x) = x3 + 3x− 7.

SOLUTION We first build each of the three terms: x3, 3x, and 7. The last is
just a constant function. Multiplying the identity function x and the constant
function 3 gives 3x. The first term is obtained by first multiplying x and x to
obtain x2 and then multiplying x2 and x to yield x3. Adding x3 and 3x gives
x3 + 3x. Lastly, subtract the constant function 7 to obtain x3 + 3x− 7.

Each of the three functions involved in forming F is defined for all real
numbers. The domain of F is (−∞,∞). �

Example 1 shows how to build any polynomial using +, −, and ×. Con-
structing rational functions also requires a use of division.

But how would we build a function like
√

1 + 3x? This leads us to the most
important technique for combining functions to build more complicated ones.

Composite Functions

Let f and g be functions. We can use the output of g as the input for f . That
is, we can find f(g(x)). For instance, if g(x) = 1 + 3x and f is the square root
function, f(x) =

√
x, then f(g(x)) = f(1 + 3x) =

√
1 + 3x. This brings us to

the definition of a composite function.

DEFINITION (Composition of functions) Let X, Y , and Z be
sets. Let g be a function from X to Y and let f be a function from
Y to Z. Then the function that assigns to each element x in X the
element f(g(x)) in Z is called the composition of f with g. It
is denoted f ◦ g, which is read as “f circle g” or as “f composed
with g.” The function f ◦ g is called a composite function.

Thinking of f and g as input-output machines we may consider f ◦ g as
the machine built by hooking up the machine for f to process the outputs of
the machine for g (see Figure 1.3.2).

Through Chapter 13 the sets X, Y , and Z will consist of numbers.
Most functions we encounter are composite. For instance, sin(2x) is the

composition of g(x) = 2x and f(x) = sin(x). We can hook up three or more
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Figure 1.3.2 The output of the g-machine, g(x), becomes the input for the
f -machine. The result is the composition of f with g, (f ◦ g)(x) = f(g(x)).

functions to make even more complicated functions. The function sin3(2x) =
(sin(2x))3 is built up in three steps:

x −→ 2x −→ sin(2x) −→ (sin(2x))3. (1.3.2)

The first doubles the input, the second takes the sine of its input, and the
third cubes its input.

The order matters. If, instead, cubing is done first, then the sine, and then
end by doubling the input, the result is:

x −→ x3 −→ sin(x3) −→ 2 sin(x3). (1.3.3)

Before pressing the sin key,
be sure to check that your

calculator is in radians
mode.

When you enter a function on your calculator or on a computer, you have
to be careful of the order in which the functions are applied as you evaluate a
composite function. For example, the way to evaluate sin(log(240)) depends
on your calculator. On a traditional scientific calculator you enter 240, press
the log key, and then the sin key. On many of the newer graphing calculators
you press the sin key, then the log key, then enter 240, followed by two right
parenthesesThe left parentheses are

automatically included when
the sin and log keys are

pressed.

, )), and, finally, press the Enter key. The two approaches are
different. If you press the sin key before log, you will get log(sin(240)). For
most computer software it is necessary to use parentheses to indicate inputs
to functions. In this case you might enter sin(log(240)).

To describe the build-up of a composite function it is convenient to use
various letters, not just x, to denote the variables. This is illustrated in Ex-
amples 2 to 4.

EXAMPLE 2 Show how the function
√

4− x2 is built up by the composi-
tion of functions. Find its domain.

SOLUTION The function
√

4− x2 is obtained by applying the square-root
function to the function 4− x2. To be specific, let

g(x) = 4− x2 and f(u) =
√

u (u ≥ 0). (1.3.4)

Then
f(g(x)) = f(4− x2) =

√
4− x2. (1.3.5)
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The square-root function is defined for all u ≥ 0 and the polynomial g(x)
is defined for all numbers. So f(g(x)) is defined only when g(x) ≥ 0:

g(x) ≥ 0

4− x2 ≥ 0

4 ≥ x2

2 ≥ |x|.

Thus, the domain of
√

4− x2 is the closed interval [−2, 2]. �

EXAMPLE 3 Express 1/
√

1 + x2 as a composition of three functions. Find
its domain.

SOLUTION Call the input x. First, we compute 1 + x2. Second, we take
the square root of that output, getting

√
1 + x2. Third, we take the reciprocal

of that result, getting 1/
√

1 + x2. In summary, form

u = 1 + x2, then v =
√

u then y =
1

v
. (1.3.6)

Given x, we first evaluate the polynomial 1 + x2, then apply the square-root
function, then the reciprocal function.

The domain of 1+x2 consists of all real numbers; the domain of the square-
root function is [0,∞); and the domain of the reciprocal function is all numbers
except zero. Because u = 1 + x2 ≥ 1, v =

√
u =
√

1 + x2 is defined for all x.
Moreover, v =

√
1 + x2 ≥ 1, so that y = 1

v
= 1/

√
1 + x2 is defined for all real

numbers x. �

The function in Example 3 can also be written as the composition of two
functions: x −→ 1 + x2 −→ (1 + x2)−1/2.

EXAMPLE 4 Let f be the cubing function and g the cube-root function.
Compute (f ◦ g)(x), (f ◦ f)(x), and (g ◦ f)(x).

SOLUTION In terms of formulas, f(x) = x3 and g(x) = 3
√

x.

(f ◦ g)(x) = f(g(x)) = f( 3
√

x) =
(

3
√

x
)3

= x.

(f ◦ f)(x) = f(f(x)) = f(x3) =
(
x3
)3

= x9.

(g ◦ f)(x) = g(f(x)) = g(x3) =
3
√

x3 = x.

The domains of f and g are (−∞,∞). So f ◦ g, f ◦ f , and g ◦ f are defined
for all real numbers.
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Both f ◦ g and g ◦ f are the identity function. Whenever g is the inverse of
f , f ◦ g and g ◦ f are the identity function. Each function undoes the action
of the other. �

EXAMPLE 5 Show that every power function xk, x > 0, can be con-
structed as a composition using exponential and logarithmic functions.

SOLUTION The first step is to write x = 2log2(x). Then, xk =
(
2log2(x)

)k
or,

by properties of exponentials, xk = 2k log2(x). So xk is the composition of three
functions: First, find log2(x), then multiply by the constant function k, and
then raise 2 to the resulting power. �

That a power function can be expressed in terms of an exponential and a
logarithm will be used in Chapter 4.

An additional consequence of Example 5 is that it provides a meaning to
functions like x

√
2 and x−π for x > 0. We could even go so far as to remove

the power functions from our list of basic functions. We chose not to do so
because power functions with integer exponents are common and are defined
also at negative inputs. Lastly, while it might seem surprising that the power
functions can be expressed in terms of exponentials and logarithms, it is more
astonishing that trigonometric functions, such as sin(x), can be expressed in
terms of exponentials, as shown in Chapter 12.

Summary

This section showed how to build more complicated functions from power,
exponential, and trigonometric functions and their inverses, and the constant
functions. One method is to add, multiply, subtract, or divide outputs. The
other is to compose functions so that one function operates on the output
of a second function. Composite functions are extremely important in our
upcoming study of calculus.

Warning about notation Be careful when composing functions when one of them is a trigonometric
function. For instance, what is meant by sin x3? Is it sin(x3) or (sin(x))3?
Do we first cube x, then take the sine, or the other way around? There is a
general agreement that sin x3 stands for sin(x3); cube first, then take the sine.

Spoken aloud, sin x3 is usually “the sine of x cubed,” which is ambiguous.
We can either insert a brief pause – “sine of (pause) x cubed” – to emphasize
that x is cubed rather than sin(x), or rephrase it as “sine of the quantity x
cubed.”

On the other hand (sin(x))3, which is by convention usually written as
sin3(x), is spoken aloud as “the cube of sin(x)” or “sine cubed of x.”

Similar warnings apply to other trigonometric functions and logarithmic
functions.
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EXERCISES for Section 1.3

The function y =
√

1 + x2 is the composition of s = 1 + x2 and y =
√

s. In Exer-
cises 1 to 12 use a similar format to build the given functions as the composition of
two or more functions.
1. sin(2x)

2. sin3(x)

3. sin(3x)

4. sin(x3)

5. sin2(x3)

6. 2x2

7. (x2 + 3)10

8. log10(1 + x2)

9. 1/(x2 + 1)

10. cos3(2x + 3)

11.
(

2
3x+5

)3

12. arcsin(
√

x)

13. These tables show some of the values of functions f and g:

x 1 2 3 4 5
f(x) 6 8 9 7 10

x 6 7 8 9 10
g(x) 4 3 2 5 1

(a) Find f(g(7)).

(b) Find g(f(3)).

14. Figure 1.3.3 shows the graphs of functions f and g. Estimate

(a) f(g(0.6)),

(b) f(g(0.3)),

(c) f(f(0.5)).
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Figure 1.3.3
In Exercises 15 to 24 write y as a function of x. Simplify when possible.
15. u = sin(x), y = u2

16. u = x3, y = 1/u

17. u = 2x2 − 3, y = 1/u

18. u =
√

x, y = u2

19. u =
√

x, y = sin(u)
20. u = log3(x), y = 3u

21. v = 2x, u = v2 − 1, y = u2

22. v =
√

x, u = 1 + v, y = u2

23. v = x + x2, u = sin(v), y = u3

24. v = tan(x), u = 1 + v2, y = cos(u)

25. Figure 1.3.4 shows the graph of a function f whose domain is [0, 1]. Let
g(x) = f(2x).

(a) What is the domain of g?

(b) Graph y = g(x)
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Figure 1.3.4
26. Let f(x) = x3. Is there a function g(x) such that (f ◦g)(x) = x for all numbers
x? If so, how many such functions are there?
27. Let f(x) = x4. Is there a function g(x) such that (f ◦g)(x) = x for all negative
numbers x? If so, how many such functions are there?
28. Let f(x) = x4. Is there a function g(x) such that (f ◦g)(x) = x for all positive
numbers x? If so, how many such functions are there?

29. Let f(x) = 1/(1− x). What is the domain of f? of f ◦ f? of f ◦ f ◦ f? Show
that (f ◦ f ◦ f)(x) = x for all x in the domain of f ◦ f ◦ f.

30. Find all functions of the form f(x) = 1/(ax + b), where a 6= 0, such that
(f ◦ f ◦ f)(x) = x for all x in the domain of f ◦ f ◦ f .

31. Show that there is a function u(x) such that cos x = sinu(x). (This shows
that we did not need to include cos x among our basic functions.)
32. Find a function u(x) such that 3x = 2u(x).
33. If f and g are one-to-one, must f ◦ g be one-to-one?
34. If f ◦ g is one-to-one, must f be one-to-one? Must g be one-to-one?
35. If f has an inverse, invf , compute (f ◦ invf)(x) and ((invf) ◦ f)(x).

36. Let f(x) = 2x2 − 1 and g(x) = 4x3 − 3x.

(a) Find (f ◦ g)(x).

(b) Find (g ◦ f)(x).

(c) Show that (f ◦ g)(x) = (g ◦ f)(x).

While any two powers, such as x3 and x4, commute under composition, their compo-
sition in either order being x12, pairs of polynomials that commute with each other
under composition are rare. To convince yourself of this, try to find more examples.
Exercises 37 to 40 consider some specific cases. Exercise 41 shows a way to generate
many such examples.
37. Let g(x) = x2. Find all first degree polynomials f(x) = ax + b, a 6= 0, such
that f ◦ g = g ◦ f , that is, f(g(x)) = g(f(x)).

38. Let g(x) = x2. Find all second-degree polynomials f(x) = ax2 + bx+ c, where
a 6= 0, such that f ◦ g = g ◦ f , that is, f(g(x)) = g(f(x)).

39. Let f(x) = 2x + 3. Find all functions of the form g(x) = ax + b, where a and
b are constants, such that f ◦ g = g ◦ f .
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40. Let f(x) = 2x + 3. Find all functions of the form g(x) = ax2 + bx + c, where
a, b, and c are constants, such that f ◦ g = g ◦ f .

41. This exercise rests on the identities sin(x + y) = sin(x) cos(y) + cos(x) sin(y),
cos(x + y) = cos(x) cos(y)− sin(x) sin(y), and cos2 x + sin2 x = 1.

(a) Show that sin(2x) = 2 sin(x) cos(x) and cos(2x) = 2 cos2(x)− 1.

(b) Show that sin(3x) = 3 sin(x)− 4 sin3(x) and cos(3x) = 4 cos3(x)− 3 cos(x).

(c) Show that sin(4x) = cos(x)(4 sin(x) − 8 sin3(x)) and cos(4x) = 8 cos4(x) −
8 cos2(x) + 1.

(d) Show that for each positive integer n, cos(nx) is a polynomial in cos(x), that
is, there is a polynomial Pn such that cos(nx) = Pn(cos(x)). (You will have
to consider separately the forms of sin(nx) when n is odd or even.)

(e) Explain why (Pn ◦ Pm)(x) = (Pm ◦ Pn)(x) for x in [−1, 1]. Because Pn and
Pm are polynomials, it then follows that Pn ◦ Pm = Pm ◦ Pn.
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1.4 Geometric Series

Let a and r be numbers. The (infinite) sequence of numbers

a, ar, ar2, ar3, . . .

is called a geometric sequence. Its first term is a. Each term after the first
term is obtained by multiplying its predecessor by r, which is called the ratio.
The nth term is arn−1.

A finite collection of consecutive terms from a geometric sequence is called
a geometric progression.

Sn is also called a partial
sum of the geometric
sequence.

Let Sn be the sum of the first n terms of the geometric sequence:

Sn = a + ar + ar2 + · · ·+ arn−1.

There is a short formula for it, which we will use several times.
To find the formula, subtract rSn from Sn:

Sn = a+ ar + ar2 + · · ·+ arn−1

rSn = ar + ar2 + · · ·+ arn−1 + arn.

The many cancellations give

Sn − rSn = a− arn.

If r is not 1, we can divide by 1− r to obtain:

Short Formula for the Partial Sum of a Geometric Series

Sn =
a(1− rn)

1− r
r 6= 1 (1.4.1)

EXAMPLE 1 Find (a) 3+ 3
2
+ 3

4
+ 3

8
+ 3

16
+ 3

32
and (b) 1− 1

3
+ 1

9
− 1

27
+ 1

81
.

SOLUTION (a) Here a = 3, r = 1
2
, and n = 6. The sum is

S6 =
3
(
1−

(
1
2

)6)
1− 1

2

= 6

(
1−

(
1

2

)6
)

=
378

64
=

189

32
.

(b) In this case a = 1, r = −1
3

, and n = 5. So the sum is

S5 =
1
(
1−

(−1
3

)5)
1− −1

3

=
1−

(−1
3

)5
4
3

=
3

4

(
1 +

(
1

3

)5
)

=
61

81
.
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�
We now use the general formula, (1.4.1), to develop the partial sum of

another geometric progression that will be very useful.
Let x and a be two numbers and consider the sequence

xn−1, axn−2, a2xn−3, a3xn−4, . . . , an−3x2, an−2x, an−1. (1.4.2)

The exponent of x decreases from n− 1 to 0 while the exponent of a increases
from 0 to n − 1. While it might not look like it at first, (1.4.2) is the first n
terms of a geometric sequence. The first term is xn−1 and the ratio is a/x.
Thus, assuming x is not 0 or a,

xn−1 + axn−2 + a2xn−3 + a3xn−4 + · · ·+ an−3x2 + an−2x + an−1

= xn−1

((
1−

(
a
x

)n)
1− a

x

)
=

xn−1
(

xn−an

xn

)
x−a

x

=
xn − an

x− a
.

This leads us to conclude that

xn−1+axn−2+a2xn−3+a3xn−4+· · ·+an−3x2+an−2x+an−1 =
xn − an

x− a
x 6= a

(1.4.3)

In Chapter 2 we will use (1.4.3) in the reverse order, to express the quotient
xn−an

x−a
as a sum of n terms.

Equation (1.4.3) can also be established from the factorizations of xn− an:

x2 − a2 = (x− a)(x + a)

x3 − a3 = (x− a)(x2 + ax + a2)

x4 − a4 = (x− a)(x3 + ax2 + a2x + a3)

and so on. To establish the last, for instance, multiply out its right-hand side:

(x− a)(x3 + ax2 + a2x + a3)

= (x4 + ax3 + a2x2 + a3x)− (ax3 + a2x2 + a3x + a4)

= x4 − a4.

Summary

The key idea of this section is that the sum a + ar + ar2 + · · ·+ arn−1 equals
a1−rn

1−r
as long as r is not 1. If r is 1, then the sum is na, because each summand

is a. As a particularly useful case, we have

xn − an

x− a
= xn−1 + axn−2 + a2xn−3 + · · ·+ an−2x + an−1.
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EXERCISES for Section 1.4

In Exercises 1 to 6 calculate the sum using the formula for the sum of a geometric
progression.
1. 1 + 3 + 9 + 27 + 81 + 243

2. 1− 3 + 9− 27− 81 + 243

3. 2 + 1 + 1
2 + 1

4 + 1
8 + 1

16

4. 0.5− 0.05 + 0.005− 0.0005 + 0.00005− 0.000005 + 0.0000005

5. a4 + a3b + a2b2 + ab3 + b4

6. 1− 1
2 + 1

4 −
1
8 + 1

16 −
1
32

In Exercises 7 and 8 write the given polynomial in two different ways as a product
of two polynomials. Don’t just change the order of the factors.
7. x6 − a6

8. x9 − a9

9. Show that x4 − 16 = (x3 + 2x2 + 4x + 8)(x− 2).

10. Show that x5 − 32 = (x4 + 2x3 + 4x2 + 8x + 16)(x− 2).

11. This exercise obtains the sum of a geometric progression geometrically. Let r
be a a positive number less than 1 and n a positive integer .

(a) In the interval [0, 1] indicate the numbers r, r2, . . . , rn+1.

(b) The numbers in (a) break the interval [rn+1, 1] of length 1 − rn+1 into n + 1
intervals. By adding their lengths show that 1 + r + · · ·+ rn = 1−rn+1

1−r .

12.

(a) Why is (1 − r) + (r − r2) + (r2 − r3) + · · · + (rn−1 − rn) equal to 1 − rn for
any number r? (Look closely at the sum.)

(b) From (a) deduce the formula for the sum of the geometric series, 1 + r + r2 +
... + rn−1 when r is not 1.

13. What happens to x3−1
x2−1

when you choose x nearer and nearer 2? Nearer and
nearer 1?

(a) Base your answers on calculations.
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(b) Base your answers on geometric series.

14. What happens to x5+32
x+2 as x approaches 2? as x approaches −2?

(a) Base your answers on calculations.

(b) Base your answers on geometric series.

In Exercises 15 and 16 Sam and Jane discuss the term rn that appears in the short
formula, (1.4.1), for the sum of a geometric progression.
15.

Sam: I just computed 1.001n for really large values of n.

Jane: What did you find?

Sam: Well, 1.001500 is about 1.65 and 1.0011000 is about 2.72.

Jane: So?

Sam: So I think that as n grows, 1.001n is getting near 3 maybe, or maybe π.

Jane: Well, I just computed 1.0012000 and got about 7.38. I think it’s getting nearer
and nearer 20.

After computing some values of 1.001n for some larger values of n, offer your own
opinion on what happens to 1.001n as n increases. How do you think 1.000001n

behaves?
16.

Sam: When I graph 0.5n I see a sequence of numbers getting very near 0, as in
Figure 1.4.1.

Figure 1.4.1
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Jane: Maybe you’re right. I computed (0.999)1000 and got about 0.37.

Sam: So it looks like those numbers are getting real close to 1/3.

Jane: Why 1/3?

Sam: It’s the only number I know near 0.37.

Jane: That’s not much of a reason.

Based on your calculations, make a conjecture about what happens to 0.999n as n
gets larger and larger.

17. Express 5.14141414 as a fraction. Use the short formula for the sum of a
geometric progression.

18.

(a) Using your calculator, evaluate the product 2 ·
√

2 · 4
√

2 · 8
√

2.

(b) Each factor in (a) except the first is the square root of its predecessor. Con-
tinue the pattern with more factors. Evaluate the product in each case.

(c) Sam: I think the products will get arbitrarily large.

Jane: Why?

Sam: You’re multiplying numbers bigger than 1. So the products keep grow-
ing.

Jane: But the factors are getting closer and closer to 1.

Sam: So?

Jane: So maybe the products don’t get arbitrarily large.

Decide who is right.

19.

(a) What happens to (1− r5)/(1− r) for values of r near 1? (Experiment.)

(b) Let n be a positive integer. What happens to (1− rn)/(1− r) for values of r
near 1? Explain.
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1.5 Logarithms

How many 2s must be multiplied to get 32? Whatever the answer is, it is
called “the logarithm of 32 to the base 2.” Because 25 = 32, the logarithm of
32 to the base 2 is 5. More generally, a logarithm is defined in terms of an
exponential function.

Definition of Logarithm to the Base b
Let b and c be positive numbers, b 6= 1. There is a number d such that

bd = c.

The exponent d is called the logarithm of c to the base b. It is denoted

logb(c).

By the definition of a logarithm,

blogb(c) = c.

The word “logarithm” comes from the Greek. In a Greek restaurant, to
get the bill, you ask the waiter for the “logarismo”.

EXAMPLE 1 Find (a) log10(1000), (b) log2(1024), (c) log9(3), and (d)
log16

(
1
4

)
.

SOLUTION (a) Because 103 = 1000, log10(1000) = 3.
(b) Because 210 = 1024, log2(1024) = 10.
(c) Because 91/2 = 3, log9(3) = 1

2
.

(d) Because 16−1/2 = 1
4
, log16

(
1
4

)
= −1

2
. �

Every property of an exponential function translates into a property of
logarithms. For instance, here is how we write the equation bx+y = bxby with
the language of logarithms.

Let c = bx and d = by. We have

x = logb(c) and y = logb(d). (1.5.1)

Because
cd = bxby = bx+y

we know
logb(cd) = x + y.

Using (1.5.1), we conclude that
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logb(cd) = logb(c) + logb(d).

This generalizes to the logarithm of the product of several numbers. In words:

The logarithm of a product of two or more numbers is the sum of their loga-
rithms.

Table 1.5.1 lists the properties of exponential functions and the correspond-
ing properties of logarithms.

Exponential Language Logarithm Language
bx+y = bxby logb cd = logb c + logb d
bx−y = bx/by logb c/d = logb c− logb d

b0 = 1 logb 1 = 0
b1 = b logb b = 1

b−x = 1/bx logb(1/c) = − logb c
(bx)y = bxy logb cd = d logb c

Table 1.5.1

Figure 1.5.1 is the graph of y = log2(x). Notice that as x increases, so does

Figure 1.5.1

log2(x), but very slowly. Also, when x is near 0, log2(x) is negative but has
large absolute values.

Logarithms can be used to simplify products, quotients, and powers:
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logb

(√
x(2 + x)3

(1 + x2)5

)
= logb(

√
x) + logb

(
(2 + x)3

)
− logb

((
1 + x2

)5)
=

1

2
logb(x) + 3 logb(2 + x)− 5 logb

(
1 + x2

)
.

In the final expression, most of the exponents and radical sign no longer appear.
There is no way to simplify logb(2 + x) and logb (1 + x2).

Summary

This section reviewed logarithms, which are a different way of talking about
exponents. The two key properties of logarithms for a positive base b are
logb(xy) = logb(x) + logb(y) and logb(x

y) = y logb(x).
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EXERCISES for Section 1.5

1. Why is logb(c) defined only for positive values of c?

2. How is logb2(c) related to logb(c)?

3. Evaluate (a) logb

(√
b
)
, (b) logb

(
b3√

b

)
, (c) logb

(√
b 3
√

bb4
)

4. Simplify log2

(
(x3)5 3√x+2(1+x2)15

x5+7

)
.

5. Show that logb(x)−logb(y)
c = logb

((
x
y

)1/c
)

.

6. What happens to log10(x)/x for large values of x? (Experiment and form a
conjecture.)

7. Translate “She has a five-figure income” into logarithms.

In Exercises 8 to 12 establish the given property of logarithms by using a property
of exponentials. (Assume b > 0.)
8. logb(1) = 0
9. logb(b) = 1
10. logb(1/c) = − logb(c) (c > 0)
11. logb(cd) = d logb(c) (c > 0)
12. logb(c/d) = logb(c)− logb(d) (c, d > 0)

13.

(a) Graph log1/2(x) and log2(x).

(b) How is log1/b(c) related to logb(c) for any positive number c?

14. Show that

logb(a + h)− logb(a)
h

=

(
logb

((
1 +

h

a

)a/h
))1/a

.

15. How would you find log5(37) if your calculator has only a key for logarithms
to the base ten? (Start with the equation 5x = 37.)
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16. Until the appearance of calculators, slide rules were commonly used for
multiplication and division. Now, the International Slide Rule Museum (http:
//www.sliderulemuseum.com/ is the world’s largest repository of slide rule infor-
mation. To see how a slide rule multiplies two numbers, mark two pieces of paper
with the numbers 1, 2, 4, 8, 16, and 32 placed at equal distances apart, as shown in
Figure 1.5.2. To multiply, say, 4 times 8, slide the lower paper so its 1 is under the

1 2 4 8 16 32

1 2 4 8 16 32

Figure 1.5.2 Slide rule scales for multiplication and division.

4. Then the product of 4 and 8 appears above the 8.

(a) Why does the slide rule work?

(b) How would you make a slide rule for multiplying that has all the numbers 1,
2, 3, 4, 5, 6, 7, 8, 9, and 10 on both scales?

17.

(a) Show that for positive numbers b and c, neither equal to 1, logb(x)/ logc(x)
equals logb(c), independent of x (x > 0). (Start with blogb(x) = x.)

(b) What does (a) imply about the graphs of y = logb(x) and y = logc(x)?

18. Rarely is logb(x + y) equal to logb(x) + logb(y).

(a) Show that if logb(x + y) = logb(x) + logb(y), then y = x/(1− x).

(b) Give an example of x and y that satisfy the equation in (a).

The point of this Exercise is to show that while there is an identity for logb(xy),
there is no identity involving logb(x + y).

19. One way to compute b4 is to start with b and multiply by b three times, obtain-
ing b2, b3, and, finally, b4. But b4 can be computed with only two multiplications.
First compute b2, then compute b2 · b2. This raises a question encountered when
programming a computer. What is the fewest number of multiplications needed to
compute bn? Call that numer m(n). For instance, m(4) = 2.

(a) Show that m(2) = 1, m(3) = 2, m(5) = 3, m(6) = 3, m(7) = 3, m(8) = 3,
and m(9) = 4.
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(b) Show that m(n) ≥ log2(n). (Think of the final multiplication.)

(c) Show that, when n is a power of 2, then m(n) = log2(n). (n is a power of 2
when n = 2k, k a positive integer.)

20. Jane says to Sam, “I’m thinking of a whole number in the interval from 1 to
32. You have to find what it is. I’ll answer each question ‘yes’ or ‘no’.”

(a) What five questions, in order, should Sam ask to be sure he will guess the
number?

(b) If, instead, the interval is from 1 to 50, how should Sam modify his questions
to be guaranteed to guess the number in the fewest number of questions?

(c) How is this Exercise related to logarithms?
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1.S Chapter Summary

This chapter reviewed precalculus material concerning functions. Calculus
begins in the next chapter when we answer questions such as “What happens
to (2x − 1)/x as x gets very small?”. The answers are used in Chapter 3 to
settle questions such as “How rapidly does 2x change for a slight change in x?”

Section 1.1 introduced the terminology of functions: input (argument), out-
put (value), domain, range, independent variable, dependent variable, piecewise-
defined function, inverse of a function, graph of a function, decreasing, increas-
ing, non-increasing, non-decreasing, positive, and monotonic.

Section 1.2 reviewed xk and its inverse x1/k (constant exponent, variable
base), bx (constant base, variable exponent) and its inverse logb(x), and the six
trigonometric functions and their inverses. All angles are measured in radians,
unless otherwise stated.

Section 1.3 described five ways of getting new functions from functions f
and g, namely f + g, f − g, fg, f/g, and the composition f ◦ g.

Section 1.4 developed a short formula for a finite geometric sum with first
term a and ratio r, r 6= 1: a + ar + ar2 + · · ·+ arn−1 = a(1−rn)

1−r
.

Section 1.5 reviewed the logarithm function to base b, b positive and b not
1.

EXERCISES for 1.S

Exercises 1 to 10 concern logarithms.
1. Evaluate (a) log3

√
3, (b) log3(35), and (c) log3

(
1
27

)
.

2. If log4 A = 2.1, evaluate (a) log4(A2), (b) log4(1/A), and (c) log4(16A).

3. If log3 5 = a, what is log5 3?

4. Find x if 5 · 3x · 72x = 2.

5. Solve for x: (a) 2 · 3x = 7, (b) 35x = 27x, (c) 3 · 5x = 6x, and (d) 102x32x = 5.

6. Why do only positive numbers have logarithms? (Chapter 12 shows that neg-
ative numbers have logarithms also, but they are provided with the aid of complex
numbers.)

7. Evaluate (a) log2(243), (b) log2(32), and (c) log2(1/4).

Exercises 8 to 10 concern the relation between logarithms to different bases.
8. Suppose that you want to obtain log2(17) in terms of log3(17).
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(a) Which would be larger, log2(17) or log3(17)?

(b) Show that log2(17) = log2(3) log3(17). (Take logarithms to the base 2 of both
sides of the equation 3log3(17) = 17.)

9.

(a) Using only the log key (and +, -, ×, and /), compute log2(6) and log6(2).

(b) Compute the product of log2(6) and log6(2).

(c) Compute the product of log7(11) and log11(7).

(d) Make a conjecture about loga(b) · logb(a)

(e) Show that the conjecture made in (d) is correct. (Start with aloga(b) = b and
take logarithms to the base b.)

10. You can use your calculator with a key for base-ten logarithms to compute
logarithms to any base.

(a) Show why logb(x) = log10(x)
log10(b) .

(b) Compute log2(3).

(When using the formula in (a) it is easy to forget whether to multiply or divide
by log10(b). As a memory device keep in mind that when b is large, logb(x) is small,
so you want to divide by log10(b).)

11. If your scientific calculator lacks a key to display a decimal approximation to
π, how could you use other keys to display it?

12. Drawing pictures, find (a) tan(arcsin(1/2)), (b) tan(arctan(−1/2)), and (c)
sin(arctan(3)).

13. If f and g are decreasing functions, what (if anything) can be said about (a)
f + g, (b) f − g, (c) f/g, (d) f2, and (e) −f?

14. What type of function is f ◦ g if (a) f and g are increasing, (b) f and g are
decreasing, and (c) f is increasing and g is decreasing? Explain.

15. If f is increasing, what (if anything), can be said about g = inv(f)?
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Figure 1.S.1 Source: http://tidesandcurrents.noaa.gov/gmap3/
16. The predicted height of the tide at San Francisco for May 3, 2009 is shown in
Figure 1.S.1.

(a) At what time(s) was the tide falling the fastest?

(b) At what time(s) was it rising the fastest?

(c) At what time(s) was it changing most slowly?

(d) How high was the highest tide? The lowest?

(e) At what rate was the tide going down at 2 p.m.? (Express the answer in feet
per hour.)

17. Evaluate as simply as possible.

(a) log3

(
317.21

)
,

(b) log5

(
5
√

2/25
√

3
)
,

(c) log2

(
4123

)
,

(d) log2

(
(45)6

)
,

(e) tan(arctan(3)).

18. Give an example of (a) an increasing function f defined for positive x such
that f(f(x)) = x9 and (b) a decreasing function g such that g(g(x)) = x9.

19. Graph

(a) sin(x), x in [0, 2π],
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(b) sin(3x), x in [0, π/2],

(c) sin(x− π), x in [0, 2π],

(d) sin(3x− π/6), x in [0, π/2].

20. Imagine that the exponential key, xy, on your calculator is broken. How would
you compute (2.73)3.09?

21. Using only multiplication, exponential, and logarithm keys, how could you
compute 0.37 + 1.75? Carry out the computation.

(Semi-log graphs) In most graphs the scale on the y-axis is the same as the scale
on the x-axis, or a constant multiple of it. However, to graph a rapidly increasing
function, such as 10x, it is convenient to distort the y-axis. Instead of plotting the
point (x, y) at a height of, say, y inches, plot it at a height of log10 y inches. So the
datum (x, 1) is drawn at height zero, the datum (x, 10) at height 1 inch, and the
datum (x, 100) at 2 inches. Instead of graphing y = f(x), you graph Y = log10 f(x).
In particular, if f(x) = 10x, y = log10 10x = x: the graph would be a straight line.
To avoid having to calculate logarithms, it is convenient to use semi-log graph paper,
shown in Figure 1.S.2.

101

100

10−1

31

x

0−1 2

103

102

Figure 1.S.2

22. Using semi-log paper, graph y = 2 · 3x.

23. Using semi-log paper, graph y = 2
3x .

24. Let a, b, c, d be constants such that ad− bc 6= 0.

(a) Show that y = (ax + b)/(cx + d) is one-to-one.

(b) For which a, b, c, d does the function in (a) equal its inverse function?
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25. Show that for x in (0, π/2), x − sin(x) is an increasing function. (Display x
and sin(x) using a unit circle, for two values of x, a and b.)

26. Figure 1.S.3 shows a circle of radius 1 and a point P at a distance h from it.
An arc of the circle is visible from P . That arc subtends an angle.

Figure 1.S.3

(a) Express the angle (in radians) as a function of h, f(h).

(b) As P is chosen farther and farther from the circle what happens to f(h)?

(c) As P is chosen closer and closer to the circle what happens to f(h)?

27. The equation y = x− e sin(x), known as Kepler’s equation, is important in
the study of the motion of planets. Here e is the eccentricity of an elliptical orbit,
y is related to time, and x is related to an angle. For more information, do a web
search for Kepler equation.
The function f(x) = x− sin(x) is increasing for all numbers x. (See Exercise 25.)

(a) Graph f .

(b) Explain why, even though it cannot be solved explicitly, the equation y =
x− sin(x) can be solved for x as a function of y (x = g(y)).

(c) How are the graphs of y = x− sin(x) and y = g(x) related?
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Figure 1.S.4
28. Label the curves in Figure 1.S.4 with their equations.

(a) y = x2,

(b) y = x3,

(c) y = 2x,

(d) y = log2(x),

(e) y = log3(x), and

(f) f(x) =
(

1
2

)x.

29. The equation loga(b)·logb(a) = 1 makes one wonder, “Is loga(b)·logb(c) logc(a) =
1?” What is the answer? Either exhibit positive a, b, and c for which the equation
does not hold or else prove it always holds.

30. Find all numbers a and b such that loga(b) equals logb(a).

31.

(a) Are the graphs of y = x2 and y = 4x2 congruent?

(b) Are the graphs of y = x2 and y = 4x2 similar? (One figure is similar to
another if one is the other magnified by the same factor in all directions.)

32. A solar cooker can be made in the shape of part of a sphere. The one in
Figure 1.S.5 spans only π/3 (60◦) at the center O. For simplicity, take the radius to
be 1.
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Figure 1.S.5
Light parallel to OC strikes the cooker at P = (cos(θ), sin(θ)) and is reflected to a
point R on the radius OC.

(a) There are two angles of measure θ at P . Why is the top one equal to θ?

(b) Why is the bottom angle at P also θ?

(c) Show that OR = 1/(2 cos(θ)).

(d) Show that the heated part of the x-axis has length (1/
√

3) − (1/2) ≈ 0.077,
or about 1/13th of the radius.

The Calculus is Everywhere section at the end of Chapter 3 describes a parabolic
reflector, which reflects all the light to a single point.

April 22, 2012 Calculus



C.1– Graphs Tell It All 61

Calculus is Everywhere # 1

Graphs Tell It All

The graph of a function conveys a great deal of information quickly. Here are
four examples, all based on numerical data.

The Hybrid Car

A friend of ours bought a hybrid car that runs on a fuel cell at low speeds,
on gasoline at higher speeds, and on a combination of the two in between.
He also purchased the gadget that exhibits “miles-per-gallon” at any instant.
With the driver glancing at the speedometer and the passenger watching the
gadget, we collected data on fuel consumption (miles-per-gallon) as a function
of speed. Figure C.1.1 displays what we observed.

Figure C.1.1 A graph of fuel efficiency (miles per gallon) as a function of
speed (miles per hour).

The straight-line part is misleading, for at low speeds no gasoline is used.
So 100 plays the role of infinity. The “sweet spot,” the speed that maximizes
fuel efficiency (as determined by miles-per-gallon), is about 55 mph, while
speeds in the range from 40 mph to 70 mph are almost as efficient. However,
at 80 mph the car gets only about 30 mpg.

To avoid having to use 100 to represent infinity, we also graph gallons-per-
mile, the reciprocal of miles-per-gallon, as shown in Figure C.1.2. In this graph
the minimum occurs at 55 mph. The straight part of the graph on the speed
axis (horizontal) records zero gallons per mile.
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Figure C.1.2

Traffic and Accidents

Figure C.1.3 appears in S.K. Stein’s, Risk factors of sober and drunk drivers by
time of day, Alcohol, Drugs, and Driving 5 (1989), pp. 215–227. The vertical
scale is described in the paper.

Glancing at the graph labelled “Traffic” in Figure C.1.3 we see that there
are peaks at the morning and afternoon rush hours, with minimum traffic
around 3 a.m. However, the number of accidents is fairly high at that hour.
“Risk” is measured by the quotient, accidents divided by traffic. It reaches a
peak at 1 a.m. This cannot be explained by the darkness at that hour, for the
risk rapidly decreases the rest of the night. It turns out that the risk has the
same shape as the graph that records the number of drunk drivers.

It is a sobering thought that at any time of day a drunk’s risk of being
involved in an accident is on the order of one hundred times that of an alcohol-
free driver.

Figure C.1.3
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Petroleum

The three graphs in Figure C.1.4 show the rate of crude oil production in the
United States, the rate at which it was imported, and their sum, the rate of
consumption. They are expressed in millions of barrels per day, as a function
of time. A barrel contains 42 gallons. (For a few years after the discovery of
oil in Pennsylvania in 1859 it was transported in barrels.)

Figure C.1.4 Source: Energy Information Administration (Annual Energy
Review, 2006)

The graphs convey a good deal of history and a warning. In 1950 the
United States produced almost enough petroleum to meet its needs, but by
1996 it had to import most of the petroleum it consumed. Moreover, domestic
production peaked in 1970.

The imbalance between production and consumption raises serious ques-
tions, especially as exporting countries need more oil to fuel their own growing
economies, and developing nations, such as India and China, place increasing
demands on world production. Also, since the total amount of petroleum in the
earth is finite, it will run out, and the Age of Oil will end. Geologists, having
gone over the globe with a fine-tooth comb, believe they have already found all
the major oil deposits. No wonder that the development of alternative sources
of energy has become a high priority.
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Calculus is Everywhere # 2

Where Does All That Money Come From?

As of 2007 there were over 7 trillion dollars in the form of currency, deposits
in banks, in money market mutual funds, and so on. Where did they all come
from? How is money created?

Banks create some of the supply, and this is how they do it.
When someone makes a deposit at a bank, the bank lends most of it. It

cannot lend all of it, for it must keep a reserve to meet the needs of depositors
who may withdraw money from their accounts. The government stipulates
what this reserve must be, usually between 10 and 20 percent of the deposit
Let’s use 20 percent.

If a person deposits $1,000, the bank can lend $800. Assume that the
borrower deposits that amount in another bank; the second bank can lend 80
percent of the $800, or $640. The recipient of the $640 can then deposit it
at a third bank, which must retain 20 percent, but is free to lend 80 percent,
which is $512. At this point there are now

1000 + 800 + 640 + 512 dollars in circulation. (C.2.1)

Each summand is 0.8 times the preceding summand. The sum (C.2.1) can be
written as

1000
(
1 + 0.8 + 0.82 + 0.83

)
. (C.2.2)

The process goes on indefinitely, through a fifth person, a sixth, and so on. A
good approximation of the impact of the initial deposit of $1000 after n stages
is 1000 times the sum

1 + 0.8 + 0.82 + 0.83 + · · ·+ 0.8n. (C.2.3)

Being the sum of a geometric progression, the sum (C.2.3) equals (1 −
0.8n+1)/(1− 0.8) and that quotient approaches 1/0.2 = 5 as n increases. Thus
the original $1000 could create an amount approaching $5000. Economists say
that the multiplier is 5, and the total impact is five times the initial deposit.
There are now magically 4000 more dollars than at the start. This happens
because a bank can lend money it does not have. The sequence of deposits and
lends involve having faith in the future. If it is destroyed, then there may be
a run on the bank as depositors rush to take their money out. If that disaster
can be avoided, then banking is a delightful business.

The concept of the multiplier also appears in measuring economic activity.
Assume that the government spends a million dollars on a new road. That
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amount goes to firms and individuals who build the road. In turn, those firms
and individuals spend a certain fraction of that income. This process of earn
and spend continues to trickle through the economy. The total impact may
be much more than the initial amount the government spent. Again, the ratio
between the total impact and the initial expenditure is called the multiplier.

The mathematics behind the multiplier is the theory of the geometric series,
summing the successive powers of a fixed number.

EXERCISES

1. If the amount a bank must keep on reserve is cut in half, what effect does this
have on the multiplier?
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Chapter 2

Introduction to Calculus

Two main concepts in calculus are the derivative and the integral. Underlying
both is the concept of a limit, which this chapter introduces, with an emphasis
on giving you techniques for finding them.

The journey starts in Section 2.1 where knowledge about the slope of a line
is used to define the slope at a point on a curve. The four limits introduced
in Section 2.2 provide the foundation for computing other limits, particularly
the ones needed in Chapter 3. The next few sections present a definition of
the limit that pertains to cases other than finding the slope of a tangent line
(Section 2.3), explores continuous functions (Section 2.4) and three properties
of continuous functions (Section 2.5). We conclude, in Section 2.6, with a look
at graphing functions by hand and with the use of technology.
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2.1 Slope at a Point on a Curve

The slope of a (straight) line is the quotient of rise over run, as shown in
Figure 2.1.1(a).

(a) (b)

Figure 2.1.1 slope = rise
run

; (a) positive slope, (b) negative slope.

It does not matter which point P is chosen on the line. If the line goes
down as you move from left to right the rise is considered to be negative and
the slope is negative. This is the case in Figure 2.1.1(b).

Hills on US Interstates have slopes that never exceed 6%=0.06. This means
the road can rise (or fall) at most 6 feet in 100 (horizontal) feet, see Fig-
ure 2.1.2(a). On the other hand the steepest street in San Francisco is Filbert
Street, with a slope of 0.315, see Figure 2.1.2(b).

(a) (b)

Figure 2.1.2 (a) Steepest US interstate has slope 0.06 and (b) Filbert Street
has slope 0.315.

Figure 2.1.3

Now consider a line L placed in an xy-coordinate system, as in Figure 2.1.3.
Since two points determine the line, they also determine its slope.

To find the slope pick two distinct points on the line, (x1, y1) and (x2, y2).
As Figure 2.1.3 shows, they determine a rise of y2 − y1 and a run of x2 − x1,
hence

slope =
rise

run
=

y2 − y1

x2 − x1

.
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The run could be negative, which occurs if x2− x1. After all, even if the slope
is positive, both the run and the rise could be negative.

EXAMPLE 1 Find the slope of the line through (4,−1) and (1, 3).
SOLUTION Figure 2.1.4 shows two points and the line they determine. Let
(4,−1) be (x1, y1) and let (1, 3) be (x2, y2). So the slope is

Figure 2.1.4

3− (−1)

1− 4
=

4

−3
= −4

3
.

That the slope is negative is consistent with Figure 2.1.4 which shows that the
line descends as you go from left to right. �

The slope in Example 1 does not change if (4,−1) is called (x2, y2) and
(1, 3) is called (x1, y1).

If we know a point on a line and its slope we can draw the line. For
instance, say we know a line goes through (1, 2) and has slope 1.4, which is
7/5. We draw a triangle with a vertex at (1, 2) and legs parallel to the axes,
as in Figure 2.1.5. The rise and run of the triangle could be 7 and 5, or 1.4
and 1, or any two numbers in the ratio 1.4 : 1.

Figure 2.1.5

If we know a point on a line, say (a, b), and its slope, m, we can draw the
line and also write its equation. Any point (x, y) on the line, other than (a, b),
together with the point (a, b) determine the slope of the line:

slope =
y − b

x− a
= m.

The line’s equation is

y − b = m(x− a) or y = m(x− a) + b.

Slope at Points on a Circle

A circle with radius 2 and center at the origin (0, 0) is shown in Figure 2.1.6.
How do we find the tangent line to the circle at P = (x, y)? By “tangent line”
we mean, informally, the line that most closely resembles the curve near P .

Figure 2.1.6

The tangent line is perpendicular to the segment OP , and the slope of OP is
y/x. Thus the slope of the tangent line at (x, y) is −x/y. (Exercise 21 shows
that the product of the slopes of perpendicular lines is −1 assuming neither
line has slope 0.) For instance, at (0, 2) the slope is −0/2 = 0, which means
that the tangent line at (0, 2), is horizontal, that is, the tangent line at the top
of the circle is parallel to the x-axis.

We say that the slope of the circle at (x, y) is −y/x because that is the
slope of the tangent line at this point.
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For this special curve we could find the tangent line first, and then its slope.
If we had been able to find the slope of the tangent line first, we would then
be able to draw the tangent line. That is what we will have to do for other
curves, like the three considered next.

The Slope at a Point on the Curve y = x2

Figure 2.1.7

Figure 2.1.7 shows the graph of y = x2. How can we find the slope of the
tangent line at (2, 4)? If we knew the slope, we could draw the tangent.

If we know two points on the tangent, we could calculate its slope. But
we know only one point on it, namely (2, 4). To get around this difficulty we
will choose a point Q on the parabola y = x2 near P and compute the slope
of the line through P and Q. Such a line is called a secant. As Figure 2.1.8
suggests, when Q is near P the secant line resembles the tangent line at (2, 4).
For instance, choose Q = (2.1, 2.12) and compute the slope of the line through

(a) (b) (c)

Figure 2.1.8

P and Q shown in Figure 2.1.8(b).

Slope of secant = rise
run

= change in y
change in x

= 2.12−22

2.1−2
= 4.41−4

0.1
= 0.41

0.1
= 4.1.

Thus an estimate of the slope of the tangent line is 4.1. A glance at Fig-
ure 2.1.8(b) shows this is an overestimate of the slope of the tangent line. So
the slope of the tangent line is less than 4.1.

We can also choose the point Q on the parabola to the left of P = (2, 4).
For instance, choose Q = (1.9, 1.92). (See Figure 2.1.8(c).) Then

Slope of secant = rise
run

= change in y
change in x

= 1.92−22

1.9−2
= 3.61−4

−0.1
= −0.39

−0.1
= 3.9.

Inspecting Figure 2.1.8 shows that this underestimates the slope of the tangent
line. So the slope of the tangent line is greater than 3.9.
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We have trapped the slope of the tangent line between 3.9 and 4.1. To get
closer bounds we choose Q even nearer to (2, 4).

Using Q = (2.01, 2.012) leads to the estimate

2.012 − 22

2.01− 2
=

4.0401− 4

0.01
=

0.0401

0.01
= 4.01

and using Q = (1.99, 1.992) yields the estimate

1.992 − 22

1.99− 2
=

3.9601− 4

−0.01
=
−0.0399

−0.01
= 3.99.

Now we know the slope of the tangent at (2, 4) is between 3.99 and 4.01.
To make better estimates we could choose Q even nearer to (2, 4), say

(2.0001, 2.00012). But, still, the slopes we would get would just be estimates.
What we need to know is what happens to the quotient

x2 − 22

x− 2
as x gets closer and closer to 2.

This chapter is devoted to answering this and other questions of the same type:

What happens to the values of a function as the inputs are chosen
nearer and nearer to some fixed number?

The Slope at a Point on the Curve y = 1/x

Figure 2.1.9

Figure 2.1.9 shows the graph of y = 1/x. Let us estimate the slope of the
tangent line to this curve at (3, 1/3).

It is clear that the slope will be negative. We could draw a run-rise triangle
on the tangent and get an estimate for the slope. Better estimates are obtained
by selecting a nearby point Q on the curve and finding the slope of the secant
line through P and Q.

We pick Q = (3.1, 1/(3.1)). The points P = (3, 1/3) and Q determine a
secant whose slope is

1
3
− 1

3.1

3− 3.1
=

0.1
3(3.1)

−0.1
= − 1

3(3.1)
= − 1

9.3
.

This is an estimate of the slope of the tangent line.
Using Q = (2.9, 1/2.9), we get another estimate:

1
3
− 1

2.9

3− 2.9
=

−0.1
3(2.9)

0.1
= − 1

3(2.9)
= − 1

8.7
.

By choosing Q nearer (3, 1/3) we could get better estimates.
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The Slope at a Point on the Curve y = log2(x)

Figure 2.1.10

Figure 2.1.10 shows the graph of y = log2(x). Clearly, its slope is positive
at all points.

We will make two estimates of the slope at (4, log2(4)). Before going any
further, observe that (4, log2(4)) = (4, 2) because log2(4) = log2(2

2) = 2.
For the nearby point Q, let us use (4.001, log2(4.001)). The slope of the

secant through P = (4, 2) and Q is

log2(4.001)− 2

4.001− 4
=

log2(4.001)− 2

0.001
.

We use a calculator to estimate log2(4.001). First, we have, by Exercise 10 in
Section 1.5, to five decimal places,

log2(4.001) =
log10(4.001)

log10(2)
≈ 0.60217

0.30103
≈ 2.00036.

So the estimate of the slope of the tangent to y = 1/x at (2, 4) is

2.00036− 2

0, 001
=

0.00036

0.001
= 0.36.

The number 0.36 is an estimate of the slope of the graph of y = log2(x) at
P = (4, log2(4)). It is not the slope there, but even so it could help us draw
the tangent at P .

Summary

We introduced a method that uses a nearby point Q to construct a secant line
whose slope estimates the slope of the tangent line to a curve at a point P
on the curve. The closer Q is to P , the better the estimate. We applied the
technique to the curves y = x2, y = 1/x, and y = log2(x). In no case did we
have to draw the curve. Nor did we find the slope of the tangent except in
the special cases of a line and a circle. We found only estimates. The rest of
this chapter develops methods for finding what happens to a function, such
as f(x) = (x2 − 4)/(x − 2), as the argument gets nearer and nearer a given
number.
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EXERCISES for Section 2.1

1. Draw an x-axis and lines of slope 1/2, 1, 2, 4, 5, −1, and −1/2.

2. Draw an x-axis and lines of slope 1/3, 1, 3, −1, and −2/3.

In Exercises 3 and 4 copy the figure and estimate the slope of each line as well as
you can. In each case draw a “run–rise” triangle and measure the rise and run with
a ruler. (A centimeter ruler is more convenient than one marked in inches.)
3.

(a) (b) (c)

4.

(a) (b) (c)

In Exercises 5 to 8 draw the line determined by the given information and give an
equation for it.
5. through (1, 2) with slope −3
6. through (1, 4) and (4, 1)
7. through (−2,−4) and (0, 4)
8. through (2,−1) with slope 4

9.

(a) Graph the line whose equation is y = 2x + 3.

(b) Find its slope.
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10.

(a) Graph the line whose equation is y = −3x + 1.

(b) Find its slope.

11. Estimate the slope of the tangent line to y = x2 at (1, 1) using the nearby
points (1.001, 1.0012) and (0.999, 0.9992).

12. Estimate the slope of the tangent line to y = x2 at (−3, 9) using the nearby
points (−3.01, (−3.01)2) and (−2.99, (−2.99)2).

13. Estimate the slope of the tangent line to y = 1/x at (1, 1)

(a) by drawing a tangent line at (1, 1) and a rise-run triangle.

(b) by using the nearby point (1.01, 1/1.01).

(c) Is the slope of the tangent line smaller or larger than this estimate?

14. Estimate the slope of the tangent line to y = 1/x at (0.5, 2)

(a) by drawing a tangent line at (0.5, 2) and a rise-run triangle.

(b) by using the nearby point (0.49, 1/0.49).

(c) Is the slope of the tangent line smaller or larger than this estimate?

15. Estimate the slope of the tangent line to y = log2(x) at (2, log2(2))

(a) by drawing a tangent line at (2, log2(2)) and a rise-run triangle.

(b) by using the nearby point (2.01, log2(2.01)).

(c) Is the slope of the tangent line smaller or larger than this estimate?

16. Estimate the slope of the tangent line to y = log2(x) at (4, 2)

(a) by drawing a tangent line at (4, 2) and a rise-run triangle.

(b) by using the nearby point (3.99, log2(3.99)).

(c) Is the slope of the tangent line smaller or larger than this estimate?
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17.

(a) Graph y = x2 carefully for x in [−2, 3].

(b) Draw the tangent line to y = x2 at (1, 1) as well as you can and estimate its
slope.

(c) Using the nearby points (1.1, 1.12) and (0.9, 0.92), estimate the slope of the
tangent line at (1, 1).

(d) Is the slope of the tangent line smaller or larger than this estimate?

18.

(a) Graph y = 2x carefully for x in [0, 2].

(b) Draw the tangent line to y = 2x at (1, 2) as well as you can and estimate its
slope.

(c) Using the nearby point (1.03, 21.03), estimate the slope of the tangent line at
(1, 2).

(d) Is the slope of the tangent line smaller or larger than this estimate?

19.

(a) Show that when you compute the slope of the line through P = (1, 2) and
Q = (5, 3), you get the same answer no matter which you call (x1, y1) and
which you call (x2, y2).

(b) Show that in general both ways of labeling P and Q give the same slope.

20. The angle between the the x-axis and a line that crosses it is called the angle
of inclination of the line. It is measured counterclockwise from the positive x-axis
to the line, as shown in Figure 2.1.11(b). The symbol θ denotes both the angle and
its measure, 0 < θ < π. For a line parallel to the x-axis, θ is defined to be 0. Show
that tan(θ) equals the slope of the line.
21. (This exercise shows that the product of the slopes of perpendicular lines is
−1.) Let one line, L, have the positive slope m. Let L′ be a line through (1,m)
perpendicular to L of slope m′. For convenience, we assume L goes through the
origin. The point (1,m) also lies on L. See Figure 2.1.11(b).

(a) Use similar triangles 4ABC and 4BCD to show that L′ crosses the x-axis
at (1 + m2, 0).

(b) Show that the slope of L′ is −1/m. Thus mm′ = −1.
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l
 

(a) (b)

Figure 2.1.11
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2.2 Four Special Limits

This section develops the notion of a limit of a function, using four examples
that play key roles in Chapter 3.

A Limit Involving xn

Let a and n be fixed numbers, with n a positive integer.

What happens to the quotient
xn − an

x− a
as x is chosen nearer and nearer to a?

To keep the reasoning down-to-earth, look at a typical case:

What happens to
x3 − 23

x− 2
as x gets closer and closer to 2? (2.2.1)

As x approaches 2, the numerator approaches 23 − 23 = 0. Because 0
divided by anything (other than 0) is 0 we suspect that the quotient may
approach 0. But the denominator approaches 2 − 2 = 0. This is unfortunate
because division by zero is not defined.

That x3−23 approaches 0 as x approaches 2 may make the quotient small.
That the denominator approaches 0 as x approaches 2 may make the quo-
tient large. How the opposing forces balance determines what happens to the
quotient (2.2.1) as x approaches 2.

We have already seen that it is pointless to replace x in (2.2.1) by 2 as this
leads to (23 − 23)/(2− 2) = 0/0, a meaningless expression.

Instead, do some experiments and see how the quotient behaves for specific
values of x near 2, some less than 2, and some more than 2. Table 2.2.1 shows
the results as x increases from Math is not a spectator

sport. Check some of the
calculations recorded in
Table 2.2.1.

1.9 to 2.1. You are invited to fill in the empty
places in the table and add to the list with values of x even closer to 2.

x x3 x3 − 23 x− 2 x3−23

x−2

1.90 6.859 −1.141 −0.1 11.41
1.99 7.8806 −0.1194 −0.01 11.94
1.999
2.00 8.0000 0.0000 0.00 undefined
2.001
2.01 8.1206 0.1206 0.01 12.06
2.10 9.261 1.261 0.1 12.61

Table 2.2.1 Table showing the steps in the evaluation of x3−23

x−2
for four choices

of x near 2.
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The cases with x = 1.99 and 2.01, being closest to 2, provide the best
estimates of the quotient. They suggest that the quotient (2.2.1) approaches
a number near 12 as x approaches 2, whether from below or from above.

A hollow dot on a graph
indicates that that point is

NOT on the graph.

x
K2 K1 0 1 2 3

5

10

15

(a)

x
1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4

11.0

11.5

12.0

12.5

13.0

(b)

Figure 2.2.1 The graph of y = x3−23

x−2
suggests that the quotient approaches

12 as x approaches 2. In (b), zooming for x near 2 shows how the data in
Table 2.2.1 also suggest the quotient approaches 12 as x approaches 2.

The graphs in
Figure 2.2.1(b) and

Figure 2.2.2(b) are not
straight lines. They look
straight only because the

viewing windows are so
small. That the graphs of
many common functions

look straight as you zoom in
on a point will be important

in Section 3.1.

Figure 2.2.1 provides a graphical view. In (a), the graph of (x3−23)/(x−2)
for x between −2 and 3 looks like a parabola with the point corresponding to
x = 2 deleted. Confirmation that the values of the quotient approach the same
number when x approaches 2 from both the left and from the right is obtained
by zooming in to a smaller interval around x = 2. In (b), the quotient is plotted
for x between 1.6 and 2.4. It seems reasonable that the quotient approaches
12 as x approaches 2.

While the numerical and graphical evidence is suggestive, the question can
be answered once and for all with a little bit of algebra. By the formula for the
sum of a geometric series (see (1.4.3) in Section 1.4), x3 − 23 = (x − 2)(x2 +
2x + 22). We have

x3 − 23

x− 2
=

(x− 2)(x2 + 2x + 22)

x− 2
for all x other than 2. (2.2.2)

When x is not 2, (2.2.2) is meaningful, and we can cancel (x − 2), showing
that

x3 − 23

x− 2
= x2 + 2x + 22, x 6= 2.

It is easy to see what happens to x2 + 2x + 22 as x gets nearer and nearer
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to 2: x2 +2x+x2 approaches 4+4+4 = 12. This agrees with the calculations
(see Table 2.2.1).

We say “the limit of (x3− 23)/(x− 2) as x approaches 2 is 12” and use the
shorthand

lim
x→2

x3 − 23

x− 2
= lim

x→2
(x2 + 2x + 22)

= 3 · 22 = 12.

Similar algebra, depending on the formula for the sum of a geometric series,
yields

For any positive integer n and fixed number a,

lim
x→a

xn − an

x− a
= n · an−1

See also Exercises 42 and 43.

A Limit Involving bx

What happens to 2x−1
x

and to 4x−1
x

as x approaches 0?
Consider (2x − 1)/x first: As x approaches 0, 2x − 1 approaches 20 − 1 =

1− 1 = 0. Since the numerator and denominator in (2x− 1)/x both approach
0 as x approaches 0, we face the same challenge as with (x3 − 23)/(x − 2).
There is a battle between two opposing forces.

There are no algebraic tricks to help in this case. Instead, we will rely
upon numerical data. While this will be convincing, it is not mathematically
rigorous. Later, we will present a way to evaluate the limits that does not
depend upon numerical computations.

Table 2.2.2 records some results (rounded off) for four choices of x. You
are invited to fill in the blanks and to add values of x even closer to 0.

You should also take some time to examine the two graphs of (2x− 1)/x in
Figure 2.2.2 to convince yourself that the quotient approaches a single value
as x approaches 0 from the left and from the right. Also, the view in Fig-
ure 2.2.2(b) provides a better estimate of the y-coordinate of the missing point.

It seems that as x approaches 0, (2x − 1)/x approaches a number whose
decimal value begins 0.693. We write

lim
x→0

2x − 1

x
≈ 0.693
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x 2x 2x − 1 2x−1
x

−0.01 0.993093 −0.006907 0.691
−0.001 0.999307 −0.000693 0.693
−0.0001

0.0001
0.001 1.000693 0.000693 0.693
0.01 1.006956 0.006956 0.696

Table 2.2.2 Numerical evaluation of (2x− 1)/x for four different choices of x.
The numbers in the last column are rounded to three decimal places. See also
Figure 2.2.2.

x
K2 K1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

(a)

x
K0.10 K0.05 0.00 0.05 0.10

0.67

0.68

0.69

0.70

0.71

(b)

Figure 2.2.2 (a) Graph of y = (2x − 1)/x for x near 0. (b) View for x nearer
to 0, with the data points from Table 2.2.2. There is no point for x = 0 since
the quotient is not defined when x is 0.
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rounded to three decimal places. It is then a simple matter to find

lim
x→0

4x − 1

x
.

By factoring of the difference of two squares, a2− b2 = (a− b)(a + b), we have
4x − 1 = (2x)2 − 12 = (2x − 1)(2x + 1). Hence

4x − 1

x
=

(2x − 1)(2x + 1)

x
= (2x + 1)

2x − 1

x
.

As x → 0, 2x + 1 approaches 20 + 1 = 1 + 1 = 2 and (2x − 1)/x approaches
(approximately) 0.693. Thus,

lim
x→0

4x − 1

x
≈ 2 · 0.693 ≈ 1.386

rounded to three decimal places.

We now have strong evidence about the values of lim
x→0

bx − 1

x
for b = 2

and b = 4. They suggest that the larger b is, the larger the limit is. Since
limx→0

2x−1
x

is less than 1 and limx→0
4x−1

x
is more than 1, it seems reasonable

that there is a value of b such that limx→0
bx−1

x
= 1. This special number

is called e, Euler’s number. Euler named this constant
e, but no one knows why he
chose this symbol.

We know that e is between 2 and 4 and that
limx→0

ex−1
x

= 1. It turns out that e is an irrational number with an endless
decimal representation that begins 2.718281828 . . . . In Chapter 3 we will see
that e is as important in calculus as π is in geometry and trigonometry.

In any case we have

Basic Property of e

lim
x→0

ex − 1

x
= 1, and e ≈ 2.71828.

In Section 1.2 it was remarked that the logarithm to base b, logb, can be
defined for any base b > 0. The logarithm to the base b = e deserves special
attention: loge(x) is called the natural logarithm, and is typically written
as ln(x) or log(x). Thus, in particular,

y = ln(x) is equivalent to x = ey.

As with any logarithm function, the domain of ln is the set of positive numbers
(0,∞) and the range is the set of all real numbers (−∞,∞).

Often the exponential function with base e is written as exp. This notation
is convenient when the input is complicated:

exp

(
sin3(
√

x)

cos(x)

)
is easier to read than esin3(

√
x)/ cos(x).
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Many calculators and computer languages use exp to name the exponential
function with base e.

A Limit Involving sin(x)

What happens to sin(x)
x

as x gets nearer and nearer to 0?
Here x represents an angle, measured in radians. In Chapter 3 we will see

that in calculus radians are much more convenient than degrees.
Let x > 0. Because we are interested in x near 0, we assume that x < π/2.

Figure 2.2.3 identifies both x and sin(x) on a circle of radius 1, the unit circle.

Figure 2.2.3 On the circle with radius 1, x is the arclength subtended by an
angle of x radians and sin(x) = |AB|.

To get an idea of the value of the limit, try x = 0.1. Setting our calculator
in the radian mode, we find

sin(0.1)

0.1
≈ 0.099833

0.1
= 0.99833. (2.2.3)

Likewise, with x = 0.01,

sin(0.1)

0.01
≈ 0.0099998

0.01
= 0.99998. (2.2.4)

We suspect that maybe the limit is 1.
Geometry and a bit of trigonometry show that limx→0

sin(x)
x

is indeed 1.

First, using Figure 2.2.3, we show that sin(x)
x

is less than 1 for x between 0 and
π/2. We know that sin(x) = |AB|. Now, AB is shorter than AC, since a leg
of a right triangle is shorter than its hypotenuse and AC is shorter than the
circular arc joining A to C, since the shortest distance between two points is
a straight line. Thus,

sin(x) < |AC| < x.
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So sin(x) < x. Since x is positive, dividing by x preserves the inequality. We
have

sin(x)

x
< 1. (2.2.5)

Next, we show that sin(x)
x

is greater than something that gets near 1 as x
approaches 0. Figure 2.2.3 helps with this step.

The area of triangle 4OCD is greater than the area of the sector OCA.
The area of a sector of a disk of radius r subtended by an angle θ is θr2/2, so

1

2
· 1 · tan(x)︸ ︷︷ ︸

area of ∆OCD

>
x · 12

2︸ ︷︷ ︸
area of sector OCA

.

Multiplying by 2 gives
tan(x) > x.

In other words,
sin(x)

cos(x)
> x.

Now, multiplying by cos(x), which is positive, and dividing by x (also positive)
gives

sin(x)

x
> cos(x). (2.2.6)

Putting (2.2.5) and (2.2.6) together, we have

cos(x) <
sin(x)

x
< 1. (2.2.7)

Since cos(x) approaches 1 as x approaches 0, sin(x)
x

is squeezed between 1 and

something that gets closer and closer to 1; so sin(x)
x

must itself approach 1.

We still must look at sin(x)
x

for x < 0 as x gets nearer and nearer to 0.
Define u to be −x. Then u is positive, and

sin(x)

x
=

sin(−u)

−u
=
− sin(u)

−u
=

sin(u)

u
.

As x is negative and approaches zero, u is positive and approaches 0. Thus
sin(x)

x
approaches 1 as x approaches 0 through positive or negative values.

In short,

lim
x→0

sin(x)

x
= 1 where the angle is measured in radians.
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A Limit Involving cos(x)

Knowing that lim
x→0

sin(x)

x
= 1, we can show that

lim
x→0

1− cos(x)

x
= 0.

All we will say about this limit now is that the numerator, 1 − cos(x), is
the length of BC in Figure 2.2.3. Exercises 29 and 30 outline how to show the
limit is 0.

April 22, 2012 Calculus



§ 2.2 FOUR SPECIAL LIMITS 85

The Meaning of lim
x→→0

sin(x)

x
= 1

When x is near 0, sin(x) and x are both small. That their quotient is near 1
tells us much more, namely, that x is a good approximation of sin(x).

That means that the difference sin(x)−x is small, even in comparison to
sin(x). In other words, the relative error

sin(x)− x

sin(x)
(2.2.8)

approaches 0 as x approaches 0.
To show this, we compute

lim
x→0

sin(x)− x

sin(x)
.

We have

lim
x→0

sin(x)− x

sin(x)
= lim

x→0

(
sin(x)

sin(x)
− x

sin(x)

)
= lim

x→0

(
1− x

sin(x)

)
= lim

x→0

1− 1(
x

sin(x)

)


= 1− 1

1
= 0.

The relative error in (2.2.8) stays less than 1% for x less than 0.24 radians,
just under 14 degrees.

The force acting to return a swinging pendulum to its equilibrium is
proportional to sin(θ) where θ is the angle that the pendulum makes with the
vertical. As one physics book says, “If the angle is small, sin(θ) is nearly equal
to θ” and it then replaces sin(θ) by θ, which is easier to work with.

Summary

This section discussed four important limits:

lim
x→a

xn − an

x− a
= nan−1 (n a positive integer)

lim
x→0

ex − 1

x
= 1 (e ≈ 2.71828)

lim
x→0

sin(x)

x
= 1 (angle in radians)

lim
x→0

1− cos(x)

x
= 0 (angle in radians).
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That limx→0
ex−1

x
= 1 says, informally, that

exp(a small number)− 1

same small number

is near 1.
Each of these limits will be needed in Chapter 3, which introduces the

derivative.
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EXERCISES for Section 2.2

In Exercises 1 to 10 describe the two opposing forces involved in the limit. If you can
figure out the limit from results in this section, give it. Otherwise, use a calculator
to estimate it.

1. lim
x→2

x4 − 16
x− 2

2. lim
x→0

sin(x)
x cos(x)

3. lim
x→0

(1− x)1/x

4. lim
x→0

(cos(x))1/x

5. lim
x→0

xx, x > 0

6. lim
x→0

arcsin(x)
x

7. lim
x→0

tan(x)
x

(Write tan(x) = sin(x)/ cos(x).)

8. lim
x→0

tan(2x)
x

9. lim
x→0

8x − 1
2x − 1

(The numerator is the difference of two cubes; how does b3 − a3

factor?)

10. lim
x→0

9x − 1
3x − 1

Exercises 11 to 15 concern lim
x→a

xn − an

x− a
.

11. Using the factorization (x− a)(x + a) = x2 − a2 find lim
x→a

x2 − a2

x− a
.

12. Using Exercise 11,

(a) find lim
x→3

x2 − 9
x− 3

(b) find lim
x→

√
3

x2 − 3
x−
√

3

13.

(a) By multiplying, show that (x− a)(x2 + ax + a2) = x3 − a3.

(b) Use (a) to show that lim
x→a

x3 − a3

x− a
= 3a2.

(c) By multiplying, show that (x− a)(x3 + ax2 + a2x + a3) = x4 − a4.
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(d) Use (c) to show that limx→a
x4−a4

x−a = 4a3.

14.

(a) What is the domain of (x2 − 9)/(x− 3)?

(b) Graph (x2 − 9)/(x− 3).

(Use a hollow dot to indicate an absent point in the graph.)
15.

(a) What is the domain of (x3 − 8)/(x− 2)?

(b) Graph (x3 − 8)/(x− 2).

Exercises 16 to 19 concern lim
x→0

ex − 1
x

.
16. What is a definition of the number e?
17. Use a calculator to compute (2.7x− 1)/x and (2.8x− 1)/x for x = 0.001. How
do these results suggest that e is between 2.7 and 2.8.
18. Use a calculator to estimate (2.718x − 1)/x for x = 0.1, 0.01, and 0.001.
19. Graph y = (ex − 1)/x for x 6= 0.

Exercises 20 to 31 concern limx→0
sin(x)

x and limx→0
1−cos(x)

x .
20. Use your calculator to graph y = sin(x)

x .

21. Use your calculator to graph y = 1−cos(x)
x .

22. Using the fact that lim
x→0

sin(x)
x

= 1, find the limits of the following as t

approaches 0.

(a)
sin(3t)

3t
(Let u = 3t.)

(b)
sin(3t)

t

(c)
sin(3t)
sin(t)

(Resist the temptation to cancel the sin’s. Instead, do a little algebra.)

(d)
sin2(x)

x

23. Use lim
x→0

ex − 1
x

= 1 to find each limit.
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(a) lim
x→0

e10x − 1
x

(b) lim
x→0

eπx − 1
x

(a) (b)

Figure 2.2.4
24. Why is the arc length from A to C in Figure 2.2.4(a) equal to x?
25. Why is the length of CD in Figure 2.2.4(a) equal to tanx?
26. Why is the area of triangle 4OCD in Figure 2.2.4(a) equal to (tanx)/2?
27. An angle of θ radians in a circle of radius r subtends a sector, as shown in
Figure 2.2.4(b). What is its area?
28.

(a) Graph sin(x)/x for x in [−π, 0)

(b) Graph sin(x)/x for x in (0, π].

(c) How are the graphs in (a) and (b) related?

(d) Graph sin(x)/x for x 6= 0.

29. When x = 0, (1 − cos(x))/x is not defined. Estimate lim
x→0

1− cos(x)
x

by

evaluating (1− cos(x))/x at x = 0.1 (radians).

30. To find lim
x→0

1− cos(x)
x

check this algebra and trigonometry:

1− cos(x)
x

=
1− cos(x)

x

1 + cos(x)
1 + cos(x)

=
1− cos2(x)

x(1 + cos(x))
=

sin2(x)
x(1 + cos(x))

=
sin(x)

x

sin(x)
1 + cos(x)

.
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Then show that
lim
x→0

sin(x)
x

sin(x)
1 + cos(x)

= 0.

31. Show that
lim
x→0

1− cos(x)
x2

=
1
2
.

This suggests that, for small values of x, 1− cos(x) is close to x2

2 , so that cos(x) is
approximately 1− x2

2 .

(a) Use a calculator to compare cos(x) with 1− x2

2 for x = 0.2 and 0.1 radians.

(b) Use a graphing calculator to compare the graphs of cos(x) and 1− x2

2 for x in
[−π, π].

(c) What is the largest interval on which the values of cos(x) and 1 − x2

2 dif-
fer by no more than 0.1? That is, for what values of x is it true that∣∣∣cos(x)− (1− x2

2 )
∣∣∣ < 0.1?

32. The limit lim
θ→0

sin(4θ)
sin(θ)

appears in the design of a water sprinkler in the Calcu-

lus is Everywhere (CIE) in Chapter 5 Find the limit.

33.

(a) We examined (2x−1)/x only for x near 0. When x is large and positive 2x−1
is large. So both the numerator and denominator of (2x−1)/x are large. The
numerator influences the quotient to become large. The large denominator
pushes the quotient toward 0. Use a calculator to see how the two forces
balance for large values of x.

(b) Sketch the graph of f(x) = (2x − 1)/x for x > 0. (Pay special attention to
the behavior of the graph for large values of x.)

34.

(a) When x is negative and |x| is large what happens to (2x − 1)/x ?

(b) Sketch the graph of f(x) = (2x − 1)/x for x < 0. (Pay special attention to
the behavior of the graph for large negative values of x.)

35.
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(a) Using a calculator, explore what happens to
√

x2 + x − x for large positive
values of x.

(b) Show that for x > 0,
√

x2 + x < x + (1/2).

(c) Using algebra, find what number
√

x2 + x − x approaches as x increases.
(Multiply

√
x2 + x − x by

√
x2+x+x√
x2+x+x

, an operation that removes square roots
from the denominator.)

36. Using a calculator, examine the behavior of the quotient (θ − sin(θ))/θ3 for θ
near 0.

37. Using a calculator, examine the behavior of the quotient
(

cos(θ)− 1 +
θ2

2

)
/θ4

for θ near 0.

Exercises 38 to 41 concern f(x) = (1 + x)1/x.
38.

(a) Why is (1 + x)1/x not defined when x = −3/2 but is defined when x = −5/3?
Give an infinite number of x < −1 for which it is not defined.

(b) For x near 0, x > 0, 1 + x is near 1. So we might expect (1 + x)1/x to be near
1. However, the exponent 1/x is large, so perhaps (1 + x)1/x is also large. To
see what happens, fill in this table.

x 1 0.5 0.1 0.01 0.001
1 + x 2
1/x 1

(1 + x)1/x 2

(c) For x near 0 but negative, investigate (1 + x)1/x with the use of this table

x −0.5 −0.1 −0.01 −0.001
1 + x 0.5
1/x −2

(1 + x)1/x 4

39. Graph y = (1 + x)1/x for x in (−1, 0) and (0, 10).

Exercises 38 and 39 show that limx→0(1 + x)1/x is about 2.718. This suggests that
the number e may equal limx→0(1 + x)1/x. In Section 3.2 we show that this is so.
Exercises 40 and 41 give persuasive, but incomplete, arguments for this fact. You
are asked to find the big hole or unjustified leap in each argument.
40. Assume that all we know about the number e is that limx→0

ex−1
x = 1. We

Calculus April 22, 2012



92 CHAPTER 2 INTRODUCTION TO CALCULUS

will write this as
ex − 1

x
∼ 1,

and read it as “(ex − 1)/x is close to 1 when x is near 0.” Multiplying both sides
by x gives

ex − 1 ∼ x.

Adding 1 to both sides of this gives

ex ∼ 1 + x.

Finally, raising both sides to the power 1/x yields

(ex)1/x ∼ (1 + x)1/x,

hence
e ∼ (1 + x)1/x.

This suggests that
e = lim

x→0
(1 + x)1/x.

The conclusion is correct. Most of the steps are justified. Which steps are justified?
Which are not?
41. Assume that b = lim

x→0
(1 + x)1/x. We will “show” that

lim
x→0

bx − 1
x

= 1.

First of all, for x near (but not equal to) 0

b ∼ (1 + x)1/x.

Then
bx ∼ 1 + x.

Hence
bx − 1 ∼ x.

Dividing by x gives
bx − 1

x
∼ 1.

Hence
lim
x→0

bx − 1
x

= 1.

Which steps are justified? Which are not?

42. Let n be a positive integer and define Pn(x) = xn−1 + axn−2 + a2xn−3 +
· · ·+ an−2x + an−1. As shown in Section 1.4, it equals the quotient xn−an

x−a . That is,
(x− a)Pn(x) = xn − an.

April 22, 2012 Calculus



§ 2.2 FOUR SPECIAL LIMITS 93

(a) Verify that (x− a)P2(x) = x2 − a2. (Compare with Exercise 11.)

(b) Verify that (x− a)P3(x) = x3 − a3. (Compare with Exercise 13(a).)

(c) Verify that (x− a)P4(x) = x4 − a4. (Compare with Exercise 13(c).)

(d) Explain why (x− a)Pn(x) = xn − an for all positive integers n.

43. Using the formula for the sum of a geometric progression ((1.4.3) in Sec-

tion 1.4), show that lim
x→a

xn − an

x− a
= nan−1.

44. An intuitive argument suggested that lim
θ→0

(sin θ)/θ = 1, which turned out to

be correct. Try your intuition on another limit associated with the unit circle shown
in Figure 2.2.5.

(a) What do you think happens to the quotient

Area of triangle ABC

Area of shaded region

as θ approaches 0? More precisely, what does your intuition suggest is the
limit of the quotient as θ approaches 0?

(b) Estimate the limit in (a) using θ = 0.01.

This limit, which arose during research in geometry, is determined in Exercise 54
in Section 5.6. The authors guessed wrong, as has everyone they asked.

Figure 2.2.5
45. Show that limx→0

bx−1
x = ln(b) for any positive number b. (Write b as eln(b)

and use limx→0
ex−1

x = 1.)
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2.3 The Limit of a Function

Section 2.2 concerned four important limits:

lim
x→a

xn − an

x− a
= nan−1, lim

x→0

ex − 1

x
= 1, lim

x→0

sin(x)

x
= 1, lim

x→0

1− cos(x)

x
= 0.

They are of the form limx→a
f(x)
g(x)

, in which limx→a f(x) = 0 and limx→a g(x) =
0. However a limit may have a different form, as illustrated in Exercises 40
and 41 in Section 2.2, which concern limx→0(1 + x)1/x.

Limits are fundamental to all of calculus. In this section, we discuss the
concept of a limit, beginning with the notion of a one-sided limit.

One-Sided Limits

10

0.0

80 642−2

0.5

1.5

−0.5

1.0

x

Figure 2.3.1

The domain of the function shown in Figure 2.3.1 is (−∞,∞). In partic-
ular, it is defined when x = 2 and f(2) = 1/2. This is indicated by the solid
dot at (2, 1/2) in the figure. The hollow dots at (2, 0) and (2, 1) indicate that
these points are not on the graph of this function though some nearby points
are on the graph.

Look at the part of the graph for inputs x > 2, that is, for inputs to the
right of 2. As x approaches 2 from the right, f(x) approaches 1. This is
expressed as

lim
x→2+

f(x) = 1

and is read “the limit of f of x, as x approaches 2 from the right is 1.” Similarly,
looking at the graph of f in Figure 2.3.1 for x to the left of 2, that is, for x < 2,
we see that the values of f(x) approach a different number, namely, 0. This is
expressed as

lim
x→2−

f(x) = 0.

It might sound strange to say the values of f(x) “approach” 0 since the function
values are exactly 0 for all inputs x < 2. But, it is convenient, and customary,
to use the word “approach” even for constant functions.

This illustrates the concept of right-hand and left-hand limits, the two
one-sided limits.
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DEFINITION (Right-hand limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (a, c). If, as x approaches a from the right, f(x)
approaches a number L, then L is called the right-hand limit of
f(x) as x approaches a. This is written

lim
x→a+

f(x) = L

or
f(x)→ L as x→ a+.

The assertion that
lim

x→a+
f(x) = L

is read “the limit of f of x as x approaches a from the right is L” or “as x
approaches a from the right, f(x) approaches L.”

DEFINITION (Left-hand limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (b, a). If, as x approaches a from the left, f(x)
approaches a number L, then L is called the left-hand limit of
f(x) as x approaches a. This is written

lim
x→a−

f(x) = L

or
f(x)→ L as x→ a−.

The definitions of one-sided limits do not require that a be in the domain
of the function f . If f is defined at a, we do not consider f(a) when examining
limits as x approaches a.

The Two-Sided Limit

If the two one-sided limits of f(x) at x = a, lim
x→a−

f(x) and lim
x→a+

f(x), exist

and are equal to L then we say the limit of f(x) as x approaches a is L.

lim
x→a

f(x) = L means lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

For the function graphed in Figure 2.3.1 we found that limx→2+ f(x) = 1
and limx→2− f(x) = 0. Because they are different, the two-sided limit of f(x)
at 2, limx→2 f(x), does not exist.

EXAMPLE 1 Figure 2.3.2 shows the graph of a function f whose domain
is the closed interval [0, 5].
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(a) Does limx→1 f(x) exist?

(b) Does limx→2 f(x) exist?

(c) Does limx→3 f(x) exist?

Figure 2.3.2

SOLUTION

(a) Inspection of the graph shows that

lim
x→1−

f(x) = 1 and lim
x→1+

f(x) = 2.

Although the two one-sided limits exist, they are not equal. Thus,
limx→1 f(x) does not exist. That is, “f does not have a limit as x ap-
proaches 1.”

(b) Inspection of the graph shows that

lim
x→2−

f(x) = 3 and lim
x→2+

f(x) = 3.

Thus limx→2 f(x) exists and is 3. That f(2) = 2, as indicated by the
solid dot at (2, 2), plays no role in our examination of the limit of f(x)
as x→ 2 (either one-sided or two-sided).

(c) Inspection, once again, shows that

lim
x→3−

f(x) = 2 and lim
x→3+

f(x) = 2.

Thus limx→3 f(x) exists and is 2. That f(3) = 2 is irrelevant in deter-
mining limx→3 f(x).

�

We now define the two-sided limit without referring to one-sided limits.

DEFINITION (Limit of f(x) at a.) Let f be a function and a
some fixed number. Assume that the domain of f contains open
intervals (b, a) and (a, c), as shown in Figure 2.3.3. If there is a
number L such that as x approaches a, from both the right and
the left, f(x) approaches L, then L is called the limit of f(x) as x
approaches a. This is expressed as either

lim
x→a

f(x) = L or f(x)→ L as x→ a.
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Figure 2.3.3 The func-
tion f is defined on open
intervals on both sides of
a.

EXAMPLE 2 Let f be the function given by f(x) =
xn − an

x− a
where n is a

positive integer. It is defined for all x except a. How does it behave for x near
a?

SOLUTION In Section 2.2 and its Exercises we found that as x gets closer
and closer to a, f(x) gets closer and closer to nan−1. This is summarized by

lim
x→a

xn − an

x− a
= nan−1,

which is read as “the limit of xn−an

x−a
as x approaches a is nan−1.” �

EXAMPLE 3 Investigate the one-sided and two-sided limits for the square
root function at 0.

SOLUTION The function
√

x is defined only for x in [0,∞). We can say that
the right-hand limit at 0 exists since

√
x approaches 0 as x→ 0 through posi-

tive values of x; that is, limx→0+

√
x = 0. Because

√
x is not defined for neg-

ative values of x, the left-hand limit of
√

x at 0 does not exist.

0−1 1 4

1

0

2 3 6

2

5−2

Figure 2.3.4

Consequently,
the two-sided limit of

√
x at 0, limx→0

√
x, does not exist. �

EXAMPLE 4 Let the function f be defined so that f(x) = 2 if x is an
integer and f(x) = 1 otherwise. For which a does limx→a f(x) exist?
SOLUTION The graph of f , shown in Figure 2.3.4, will help us decide. If a is
not an integer, then for all x sufficiently near a, f(x) = 1. So limx→a f(x) = 1.
Thus the limit exists for all a that are not integers.

Now let a be an integer. In deciding whether limx→a f(x) exists we never
consider the value of f at a, namely f(a) = 2. For all x sufficiently near an
integer a, f(x) = 1. Thus, once again, limx→a f(x) = 1. The limit exists but
is not f(a).

Thus, limx→a f(x) exists and equals 1 for every number a. �

0−1

−0.4

0.6

0.8

x

−2

−0.2

−0.8

1.0

0.2

−1.0

0.0

−0.6

2

0.4

1

Figure 2.3.5 y =
sin(1/x).

EXAMPLE 5 Let g(x) = sin(1/x). For which a does limx→a g(x) exist?

SOLUTION To begin, graph the function. The domain of g consists of all x
except 0. When x is large, 1/x is small, so sin(1/x) is small. As x approaches
0, 1/x becomes large. For instance, when x = 1

2nπ
, for a non-zero integer n,

1/x = 2nπ and therefore sin(1/x) = sin(2nπ) = 0. Thus, the graph for x near
0 crosses the x-axis infinitely often. Similarly, g(x) takes the values 1 and −1
infinitely often for x near 0. The graph is shown in Figure 2.3.5.

Does limx→0 g(x) exist? In other words, does g(x) tend toward one specific
number as x → 0? No. The function oscillates, taking on all values from −1
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to 1 (repeatedly) for x arbitrarily close to 0. Thus limx→0 sin(1/x) does not
exist.

For other values of a, limx→a g(x) does exist and equals g(a) = sin(1/a). �

Infinite Limits at a

A function may assume arbitrarily large values as x approaches a fixed number.
One important example is the tangent function. As x approaches π/2 from
the left, tan(x) takes on arbitrarily large positive values. (See Figure 2.3.6.)

Figure 2.3.6

We write
lim

x→π
2
−

tan(x) = +∞.

However, as x → π
2

from inputs larger than π/2, tan(x) takes on negative
values of arbitrarily large absolute value. We write

lim
x→π

2
+

tan(x) = −∞.

DEFINITION (Infinite limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (a, c). If, as x approaches a from the right, f(x)
becomes and remains arbitrarily large and positive, then the limit
of f(x) as x approaches a is said to be positive infinity. This is
written

lim
x→a+

f(x) = +∞

or sometimes just
lim

x→a+
f(x) =∞.

If, as x approaches a from the left, f(x) becomes and remains
arbitrarily large and positive, then we write

lim
x→a−

f(x) = +∞.

Similarly, if f(x) assumes values that are negative and remain ar-
bitrarily large in absolute value, we write either

lim
x→a+

f(x) = −∞ or lim
x→a−

f(x) = −∞,

depending on whether x approaches a from the right or from the
left.
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Limits as x→∞
Sometimes it is useful to know how f(x) behaves when x is a large positive
number or a negative number of large absolute value.

EXAMPLE 6 Determine how f(x) = 1/x behaves for

(a) large positive inputs

(b) negative inputs of large absolute value

(c) small positive inputs

(d) negative inputs of small absolute value

SOLUTION

(a) To get started, make a table of values as shown in the margin. As x

becomes arbitrarily large, 1/x approaches 0: lim
x→∞

1

x
= 0. x 1/x

10 0.1
100 0.01
1000 0.001

This could be

read as “as x approaches ∞, f(x) approaches 0.”

(b) This is similar to (a), except that the reciprocal of a negative number
with large absolute value is a negative number with a small absolute

value. Thus, lim
x→−∞

1

x
= 0.

(c) Inputs that are positive and approaching 0 have reciprocals that are
positive and large: limx→0+

1
x

= +∞.

(d) Lastly, the reciprocal of inputs that are negative and approaching 0 from

the left are negative and arbitrarily large in absolute value: lim
x→0−

1

x
=

−∞.

�

x

Figure 2.3.7

More generally, for any positive exponent p,

lim
x→∞

1

xp
= 0.

Limits of the form limx→∞ P (x) and limx→∞
P (x)
Q(x)

, where P and Q are poly-
nomials are easy to treat, as the following examples show.

Keep in mind that ∞ is not a number. It is a symbol that tells us that
something — either the inputs or the outputs of a function — become arbi-
trarily large.

EXAMPLE 7 Find lim
x→∞

(2x3 − 5x2 + 6x + 5).
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SOLUTION When x is large, x3 is much larger than either x2 or x. With
this in mind, we use algebra to determine the limit:

2x3 − 5x2 + 6x + 5 = x3

(
2− 5

x
+

6

x2
+

5

x3

)
.

The expression in parentheses approaches 2, while x3 gets arbitrarily large.
Thus

lim
x→∞

(2x3 − 5x2 + 6x + 5) =∞.

�

EXAMPLE 8 Find limx→∞
2x3−5x2+6x+5

7x4+3x+2
.

SOLUTION We use the same technique as in Example 7.

2x3 − 5x2 + 6x + 5 = x3

(
2− 5

x
+

6

x2
+

5

x3

)
and

7x4 + 3x + 2 = x4

(
7 +

3

x3
+

2

x4

)
so that

2x3 − 5x2 + 6x + 5

7x4 + 3x + 2
=

x3
(
2− 5

x
+ 6

x2 + 5
x3

)
x4
(
7 + 3

x3 + 2
x4

) =
1

x

2− 5
x

+ 6
x2 + 5

x3

7 + 3
x3 + 2

x4

.

As x gets arbitrarily large, 1
x

approaches 0, 2− 5
x

+ 6
x2 + 5

x3 approaches 2, and
7 + 3

x3 + 2
x4 approaches 7. Thus,

lim
x→∞

2x3 − 5x2 + 6x + 5

7x4 + 3x + 2
= 0 ·

(
2

7

)
= 0.

�
As the two examples suggest, the limit of a quotient of two polynomials,

P (x)
Q(x)

, is completely determined by the limit of the quotient of the highest degree

term in P (x) and in Q(x).
Let

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0

and
Q(x) = bmxm + bm−1x

m−1 + · · ·+ b1x + b0,

where an and bm are not 0. Then

lim
x→∞

P (x)

Q(x)
= lim

x→∞

anx
n

bmxm
.

If m = n, the limit is an/bm. If m > n, the limit is 0. If n > m, the limit is
infinite, either ∞ or −∞, depending on the signs of an and bm.
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Summary

This section introduced the concept of a limit and notations for the various
types of limits. One-sided limits are the foundation for the two-sided limit as
well as for infinite limits and limits at infinity.

It is important to keep in mind that when deciding whether limx→a f(x)
exists, one never involves f(a). Perhaps a is not even in the domain of the
function. Even if a is in the domain, the value f(a) plays no role in deciding
whether limx→a f(x) exists.
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EXERCISES for Section 2.3

In Exercises 1 to 8 the limits exist. Find them.

1. lim
x→3

x2 − 9
x− 3

2. lim
x→4

x2 − 9
x− 3

3. lim
x→0

sin(x)
x

4. lim
x→π

2

sin(x)
x

5. lim
x→0

ex − 1
2x

6. lim
x→2

ex − 1
2x

7. lim
x→0

1− cos(x)
3x

8. lim
x→π

1− cos(x)
3x

In Exercises 9 to 12 the graph of a function y = f(x) is given. Decide whether
lim

x→1+
f(x), lim

x→1−
f(x), and lim

x→1
f(x) exist. If they exist, give their values.

9. Figure 2.3.8(a)

10. Figure 2.3.8(b)

11. Figure 2.3.8(c)

12. Figure 2.3.8(d)

(a) (b) (c) (d)

Figure 2.3.8

13.

(a) Sketch the graph of y = log2(x).

(b) What are lim
x→∞

log2(x), lim
x→4

log2(x), and lim
x→0+

log2(x)?
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14.

(a) Sketch the graph of y = 2x.

(b) What are lim
x→∞

2x, lim
x→4

2x, and lim
x→−∞

2x?

15. Find lim
x→a

x3 − 8
x− 2

for a = 1, 2, and 3.

16. Find lim
x→a

x4 − 16
x− 2

for a = 1, 2, and 3.

17. Find lim
x→a

ex − 1
x− 2

for a = −1, 0, 1, and 2.

18. Find lim
x→a

sin(x)
x

for a = π
6 , π

4 , and 0.

In Exercises 19 to 24, find the given limit (if it exists).

19. lim
x→∞

2−x sin(x)

20. lim
x→∞

3−x cos(2x)

21. lim
x→∞

3x5 + 2x2 − 1
6x5 + x4 + 2

22. lim
x→∞

13x5 + 2x2 + 1
2x6 + x + 5

23. lim
x→∞

10x6 + x5 + x + 1
x6

24. lim
x→∞

25x5 + x2 + 1
x3 + x + 2

In Exercises 25 to 27, information is given about functions f and g. In each case
decide whether the limit asked for can be determined on the basis of the information.
If it can, give its value. If it cannot, show by specific choices of f and g that it cannot.
25. Assume lim

x→∞
f(x) = 0 and lim

x→∞
g(x) = 1. Find, when possible,

(a) lim
x→∞

(f(x) + g(x))

(b) lim
x→∞

(f(x)/g(x))

(c) lim
x→∞

(f(x)/(g(x)− 1))

(d) lim
x→∞

(g(x)/f(x))

(e) lim
x→∞

(g(x)/|f(x)|)
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26. Assume lim
x→∞

f(x) =∞ and lim
x→∞

g(x) =∞. Find, when possible,

(a) lim
x→∞

(f(x) + g(x))

(b) lim
x→∞

(f(x)− g(x))

(c) lim
x→∞

(f(x)g(x))

(d) lim
x→∞

(g(x)/f(x))

27. Assume lim
x→∞

f(x) = 1 and lim
x→∞

g(x) =∞. Find, when possible,

(a) lim
x→∞

(f(x)/g(x))

(b) lim
x→∞

(f(x)g(x))

(c) lim
x→∞

(f(x)− 1)g(x)

28. Let f(x) = cos(1/x).

(a) What is the domain of f?

(b) Does lim
x→0

cos(1/x) exist?

(c) Graph f(x) = cos(1/x).

29. Let f(x) = x sin(1/x).

(a) What is the domain of f?

(b) Graph the lines y = x and y = −x.

(c) For which x does f(x) = x? When does f(x) = −x? (The graph of y = f(x)
goes back and forth between the lines.)

(d) Does lim
x→0

f(x) exist? If so, what is it?

(e) Does lim
x→∞

f(x) exist? If so, what is it?

(f) Graph y = f(x).

(g) Does limx→∞ |f(x)| exist? If so, what is it?
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30. Let f(x) = |x|
x , which is defined except at x = 0.

(a) What is f(3)?

(b) What is f(−2)?

(c) Graph y = f(x).

(d) Does lim
x→0+

f(x) exist? If so, what is it?

(e) Does lim
x→0−

f(x) exist? If so, what is it?

(f) Does lim
x→0

f(x) exist? If so, what is it?

(g) Graph f .

In Exercises 31 to 33, find lim
h→0

f(3 + h)− f(3)
h

.

31. f(x) = 5x

32. f(x) = x2

33. f(x) = ex

Figure 2.3.9 Exercise 34
34. Figure 2.3.9 shows a circle of radius a. Find

(a) lim
θ→0+

|AB|

|
_

CB |
(|

_
CB | is the length of the arc of the circle from C to B.)

(b) lim
θ→0+

|AB|
|CD|
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(c) lim
θ→0

area of 4ABC

area of ABDC
.

35. Let f(x) be the diameter of the largest circle that fits in a 1 by x rectangle.

(a) Find a formula for f(x).

(b) Graph y = f(x).

(c) Does lim
x→1

f(x) exist?

36. I am thinking of two numbers near 0. What, if anything, can you say about
their

(a) product?

(b) quotient?

(c) difference?

(d) sum?

37. I am thinking about two large positive numbers. What, if anything, can you
say about their

(a) product?

(b) quotient?

(c) difference?

(d) sum?

38. Find lim
h→0

f(θ + h)− f(θ)
h

for f(x) = sin(x). (sin(a + b) = sin(a) cos(b) +

cos(a) sin(b).)

39. Find lim
h→0

f(θ + h)− f(θ)
h

for f(x) = cos(x). (cos(a + b) = cos(a) cos(b) −
sin(a) sin(b).)

40. Find lim
x→0

e2x − 1
x

.
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41. Sam and Jane are discussing

f(x) =
3x2 + 2x

x + 5
.

Sam: For large x, 2x is small in comparison to 3x2, and 5 is small in comparison to
x. So the quotient 3x2+2x

x+5 behaves like 3x2

x = 3x. Hence, the graph of y = f(x)
is very close to the graph of the line y = 3x when x is large.

Jane: Nonsense. After all,
3x2 + 2x

x + 5
=

3x + 2
1 + (5/x)

which clearly behaves like 3x+2 for large x. Thus the graph of y = f(x) stays
very close to the line y = 3x + 2 when x is large.

Settle the argument.

42. Sam, Jane, and Wilber are arguing about limits in a case where lim
x→∞

f(x) = 0

and lim
x→∞

g(x) =∞.

Sam: lim
x→∞

f(x)g(x) = 0, since f(x) is going toward 0.

Jane: Rubbish! Since g(x) gets large, it will turn out that lim
x→∞

f(x)g(x) =∞.

Wilber: You’re both wrong. The two influences will balance out and you will see
that limx→∞ f(x)g(x) is near 1.

Settle the argument.

43. Sam and Jane are arguing about limits in a case where f(x) ≥ 1 for x > 0,
lim

x→0+
f(x) = 1 and lim

x→0
g(x) =∞. What can be said about limx→0+ f(x)g(x)?

Sam: That’s easy. Multiply a bunch of numbers near 1 and you get a number near
1. So the limit will be 1.

Jane: Rubbish! Since f(x) may be bigger than 1 and you are multiplying it lots
of times, you will get a really large number. There’s no doubt in my mind:
lim
x→0

f(x)g(x) =∞.

Settle the argument.

44. An urn contains n marbles. One is green and the remaining n − 1 are
red. When picking one marble at random without looking, the probability is 1/n
of getting the green marble, and (n − 1)/n of getting a red marble. If you do this
experiment n times, each time putting the chosen marble back, the probability of
not getting the green marble on any of the n experiments is ((n− 1)/n)n.
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(a) Let p(n) =
(

n−1
n

)n. Compute p(2), p(3), and p(4) to at least three decimal
places.

(b) Show that as n→∞, p(n) approaches the reciprocal of lim
x→0

(1 + x)1/x.
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2.4 Continuous Functions

This section introduces the notion of a continuous function. While almost all
functions met in practice are continuous, we must always remain alert that a
function might not be continuous. We begin with an informal description and
then give a more useful working definition.

An Informal Introduction to Continuous Functions

When we draw the graph of a function defined on some interval, we usually
do not have to lift the pencil off the paper. Figure 2.4.1 shows this typical
situation.

Figure 2.4.1

A function is said to be continuous if, when considered on any interval
in its domain, its graph can he traced without lifting the pencil off the paper.
(The domain may consist of several intervals.) According to this definition any
polynomial is continuous. So are the basic trigonometric functions, including
y = tan(x), whose graph is shown in Figure 2.3.6 of Section 2.3.

You may be tempted to say “But tan(x) blows up at x = π/2 and I have
to lift my pencil off the paper to draw the graph.” However, x = π/2 is not in
the domain of the tangent function. On every interval in its domain, tan(x)
behaves quite decently; we can sketch its graph without lifting the pencil
from the paper. That is why tan(x) is continuous. The function 1/x is also
continuous, since it “explodes” only at a number not in its domain, namely at
x = 0. The function whose graph is shown in Figure 2.4.2 is not continuous.
It is defined throughout the interval (−2, 3], but to draw its graph you must
lift the pencil from the paper near x = 1. However, when you consider the
function only for x in [1, 3], then it is continuous. A formula for it is:

Figure 2.4.2

f(x) =


x + 1 for x in (−2, 1)
x for x in [1, 2)
−x + 4 for x in [2, 3].

It is pieced together from three continuous functions.

The Definition of Continuity

Our informal moving pencil notion of a continuous function requires drawing
a graph of the function. Our working definition does not require such a graph.
Moreover, it generalizes to functions of more than one variable in later chapters.

x f(x)
0.9 2.93
0.99 2.9954
0.999 2.9999997

To get the feeling of this second definition, imagine that you had the infor-
mation shown in the table in the margin about some function f . What would
you expect the output f(1) to be?
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It would be quite a shock to be told that f(1) is, say, 625. A reasonable
function should present no such surprise. The expectation is that f(1) will
be 3. More generally, we expect the output of a function at the input a to
be closely connected with the outputs of the function at inputs near a. The
functions of interest in calculus usually behave that way. In short, “What you
expect is what you get.” With this in mind, we define continuity at a number
a. We first assume that the domain of f contains an open interval around a.

DEFINITION (Continuity at a number a) Assume that f(x) is
defined in some open interval that contains the number a. Then
the function f is continuous at a if limx→a f(x) = f(a). This
means that

1. f(a) is defined (that is, a is in the domain of f).

2. limx→a f(x) exists.

3. limx→a f(x) equals f(a).

Figure 2.4.3

As Figure 2.4.3 shows, whether a function is continuous at a depends on
its behavior both at a and at inputs near a. Being continuous at a is a local
matter, involving perhaps very tiny intervals about a.

To check whether a function f is continuous at a number a, we ask three
questions:

Question 1: Is a in the domain of f?

Question 2: Does limx→a f(x) exist?

Question 3: Does f(a) equal limx→a f(x)?

If the answers are “yes,” we say that f is continuous at a.
If a is in the domain of f and the answer to Question 2 or to Question 3

is “no,” then f is said to be discontinuous at a. If a is not in the domain
of f , we do not speak of it being continuous or discontinuous there.

We are now ready to define a continuous function.

DEFINITION (Continuous function) Let f be a function whose
domain is the x-axis or is made up of open intervals. Then f is a
continuous function if it is continuous at each number a in its
domain. A function that is not continuous is called a discontinu-
ous function.

EXAMPLE 1 Use the definition of continuity to decide whether f(x) = 1/x
is continuous.
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SOLUTION It is continuous at every point a for which the answers to Ques-
tions 1, 2, and 3 are all “yes”.

If a is not 0, it is in the domain of f . So, for a not 0, the answer to
Question 1 is “yes.” Since

lim
x→a

1

x
=

1

a
,

the answer to Question 2 is “yes.” Because

f(a) =
1

a
,

the answer to Question 3 is also “yes.” Thus f(x) = 1/x is continuous at every
number in its domain. Hence f is a continuous function. This agrees with the
moving pencil picture of continuity. �

Not every important function is continuous. Let f(x) be the greatest in-
teger that is less than or equal to x. For instance, f(1.8) = 1, f(1.9) = 1,
f(2) = 2, and f(2.3) = 2. It is often used in number theory and computer
science, where it is denoted [x] or bxc and called the floor of x. People use
the floor function every time they answer the question, “How old are you?”
The next example examines where the floor function fails to be continuous.

EXAMPLE 2 Let f be the floor function, f(x) = bxc. Graph f and find
where it is continuous. Is f a continuous function?

SOLUTION We begin with the following table to show the behavior of f(x)
for x near 1 or 2.

Figure 2.4.4

x 0 0.5 0.8 1 1.1 1.99 2 2.01
bxc 0 0 0 1 1 1 2 2

For 0 ≤ x < 1, bxc = 0. At the input x = 1 the output jumps to 1 since
b1c = 1. For 1 ≤ x < 2, bxc remains at 1. Then at 2 it jumps to 2. More
generally, bxc has a jump at every integer, as shown in Figure 2.4.4.

Let us show that f is not continuous at a = 2 by seeing which of the
three conditions in the definition are not satisfied. First of all, Question 1 is
answered “yes” since 2 lies in the domain of the function; indeed, f(2) = 2.

What is the answer to Question 2? Does limx→2 f(x) exist? We see that

lim
x→2−

f(x) = 1 and lim
x→2+

f(x) = 2.

Since the left-hand and right-hand limits at x = 2 are not equal, limx→2 f(x)
does not exist. Question 2 is answered “no.”
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Already we know that the function is not continuous at a = 2. Since the
limit does not exist there is no point in considering Question 3. Because there
is a point in the domain where bxc is not continuous, it is a discontinuous
function. In fact, it is discontinuous at a whenever a is an integer.

Is f continuous at a if a is not an integer? Let us take the case a = 1.5,
for instance.

Question 1 is answered “yes,” because f(1.5) is defined.
(In fact, f(1.5) = 1.)

Question 2 is answered “yes,” since limx→1.5 f(x) = 1.

Question 3 is answered “yes,” since limx→1.5 f(x) = f(1.5) = 1.

So the floor function is continuous at a = 1.5. Similarly, it is continuous at
every number that is not an integer.

On any interval that does not include an integer, bxc is continuous. For
instance, if we consider the function only on the interval (1.1, 1.9), it is con-
tinuous there. �

Continuity at an Endpoint

The functions f(x) =
√

x and g(x) =
√

1− x2 are graphed in Figures 2.4.5(a)
and (b), respectively. We would like to call both of them continuous. However,
there is a technical problem. The number 0 is in the domain of f , but there is
no open interval around 0 that lies completely in the domain, as our definition
of continuity requires. Since f(x) =

√
x is not defined for x to the left of 0, we

are not interested in numbers x to the left of 0. Similarly, g(x) =
√

1− x2 is
defined only when 1− x2 ≥ 0, that is, for −1 ≤ x ≤ 1. To cover this situation
we utilize one-sided limits to define one-sided continuity.

(a) (b)

Figure 2.4.5
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DEFINITION (Continuity from the right at a number) Assume
that f(x) is defined in some closed interval [a, c]. Then f is con-
tinuous from the right at a if

1. f(a) is defined

2. limx→a+ f(x) exists

3. limx→a+ f(x) equals f(a)

Figure 2.4.6

Figure 2.4.6 illustrates this definition, which also takes care of the continu-
ity of g(x) =

√
1− x2 at −1 in Figure 2.4.5(b). The next definition takes care

of the right-hand endpoints.

DEFINITION (Continuity from the left at a number a.) Assume
that f(x) is defined in some closed interval [b, a]. Then the function
f is continuous from the left at a if

1. f(a) is defined

2. limx→a− f(x) exists

3. limx→a− f(x) equals f(a)

Figure 2.4.7

Figure 2.4.7 illustrates this definition.
With these two extra definitions to cover some special cases in the domain,

we can extend the definition of continuous function to include those functions
whose domains may contain endpoints. We say, for instance, that

√
1− x2 is

continuous because it is continuous at any number in (−1, 1), is continuous
from the right at -1, and continuous from the left at 1.

These are minor matters that will little concern us in the future. The key
point is that

√
1− x2 and

√
x are both continuous functions. So are practically

all the functions studied in calculus.
The following example reviews the notion of continuity.

EXAMPLE 3

Figure 2.4.8

Figure 2.4.8 is the graph of a piecewise-defined function
f(x) whose domain is the interval (−2, 6]. Discuss its continuity at (a) 6, (b)
4, (c) 3, (d) 2, (e) 1, and (f) −2.

SOLUTION

(a) Since lim
x→6−

f(x) exists and equals f(6), f is continuous from the left at

6.

(b) Since lim
x→4

f(x) does not exist, f is not continuous at 4.
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(c) Inspection of the graph shows that lim
x→3

f(x) = 2. However, Question 3 is

answered “no” because f(3) = 3, which is not equal to lim
x→3

f(x). Thus

f is not continuous at 3.

(d) Though lim
x→2−

f(x) and lim
x→2+

f(x) exist, they are not equal. (The left-

hand limit is 2 and the right-hand limit is 1.) Thus lim
x→2

f(x) does not

exist, the answer to Question 2 is “no,” and f is discontinuous at x = 2.

(e) At 1, “yes” is the answer to all three questions: f(1) is defined, limx→1 f(x)
exists (it equals 2) and, finally, it equals f(1). f is continuous at x = 1.

(f) Since −2 is not even in the domain of this function, we do not speak of
continuity or discontinuity of f at −2.

�

As Example 3 shows, a function can fail to be continuous at a given number
a in its domain for either of two reasons:

1. limx→a f(x) might not exist

2. when limx→a f(x) does exist, f(a) might not be equal to that limit.

Continuity and Limits

Some limits can be found without any work; for instance, limx→2 5x = 52 = 25.
Others offer a challenge, such as, limx→2

x3−23

x−2
.

If you want to find limx→a f(x), and you know f is a continuous function
with a in its domain, then you just calculate f(a). In such a case there is no
challenge and the limit is called determinate.

The interesting case for finding limx→a f(x) occurs when f is not defined
at a. That is when you must consider the influences operating on f(x) when
x is near a. You may have to do some algebra or computations. Such limits
are called indeterminate.

The four limits encountered in Section 2.2, lim
x→a

xn − an

x− a
, lim

x→0

bx − 1

x
, lim

x→0

sin(x)

x
,

and lim
x→0

1− cos(x)

x
are indeterminate. Each required some work to find its

value.
Each property remains valid
when the two-sided limit is
replaced with a one-sided

limit.

We list the properties of limits which are helpful in computing limits.

Theorem 2.4.1 (Properties of Limits). Let g and h be two functions and
assume that limx→a g(x) = A and limx→a h(x) = B. Then
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Sum
lim
x→a

(g(x) + h(x)) = lim
x→a

g(x) + lim
x→a

h(x) = A + B:

the limit of the sum is the sum of the limits.

Difference
lim
x→a

(g(x)− h(x)) = lim
x→a

g(x)− lim
x→a

h(x) = A−B:

the limit of the difference is the difference of the limits.

Product
lim
x→a

(g(x)h(x)) =
(

lim
x→a

g(x)
)(

lim
x→a

h(x)
)

= AB:

the limit of the product is the product of the limits.

Constant Multiple

lim
x→a

(kg(x)) = k
(

lim
x→a

g(x)
)

= kA, for any constant k.

This is a special case of the product property when one factor is a con-
stant.

Quotient

lim
x→a

(
g(x)

h(x)

)
=

(limx→a g(x))

(limx→a h(x))
=

A

B
, provided B is not 0:

the limit of the quotient is the quotient of the limits, provided the denom-
inator is not 0.

Power

lim
x→a

(
g(x)h(x)

)
=
(

lim
x→a

g(x)
)limx→a h(x)

= AB, provided A is positive:

the limit of a varying base to a varying exponent is the limit of the base
raised to the limit of the exponent.

EXAMPLE 4 Find lim
x→0

(x4 − 16) sin(5x)

x2 − 2x
.

SOLUTION The denominator can be factored to obtain

(x4 − 16) sin(5x)

x2 − 2x
=

x4 − 24

x− 2
· sin(5x)

x

so the limit can be rewritten as

lim
x→0

x4 − 24

x− 2
· lim

x→0

sin(5x)

x
,

where we have also used 16 = 24. Now, limx→0
x4−24

x−2
= 4 · 24−1 = 32. Also,

lim
x→0

sin(5x)

x
= lim

x→0
5
sin(5x)

5x
= 5 lim

x→0

sin(5x)

5x
= 5 · 1 = 5.
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We conclude that

lim
x→0

(x4 − 16) sin(5x)

x2 − 2x
= lim

x→0

x4 − 24

x− 2
· lim

x→0

sin(5x)

5x
= 32 · 5 = 160.

�

Summary

This section opened with an informal view of continuous functions, expressed
in terms of a moving pencil. It then gave the definition, phrased in terms of
limits, which we will use throughout the text. It says that f is continuous at
a if f(a) is defined and equals limx→a f(x).
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EXERCISES for Section 2.4

In Exercises 1 to 12, which limits can be found at a glance and which require some
analysis? That is, decide in each case whether the limit is determinate or indeter-
minate. Do not evaluate the limit.
1. lim

x→0
(2x − 1)

2. lim
x→∞

2x − 1
2x + 1

3. lim
x→1

3x − 1
2x − 1

4. lim
x→2

3x − 1
2x − 1

5. lim
x→∞

x

2x

6. lim
x→0

x

2x

7. lim
x→0+

x2

ex − 1
8. lim

x→π
2
−

(sin(x))tan(x)

9. lim
x→0+

x log2(x)

10. lim
x→0+

(2 + x)3/x

11. lim
x→∞

(2 + x)3/x

12. lim
x→0−

(2 + x)3

x

In Exercises 13 to 16, evaluate the limit.

13. lim
x→π

2

sin(x)
ex − 1

x

14. lim
x→0

cos(x) (ex − 1)
x

15. lim
x→0

sin(2x)
x(cos(3x))2

16. lim
x→1

(x− 1) cos(x)
x3 − 1

In Exercises 17 to 20 the graph of a function y = f(x) is given. Determine all
numbers c for which lim

x→c
f(x) does not exist.

17. Figure 2.4.9(a)
18. Figure 2.4.9(a)
19. Figure 2.4.9(a)
20. Figure 2.4.9(a)
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(a) (b) (c) (d)

Figure 2.4.9 The images needed for Exercises 17 to 20.

Use the graph of f in Figure 2.4.10(a) to decide if the function is continuous on each
interval.
21.

(a) [−2,−1]

(b) (−2,−1)

(c) (−1, 1)

(d) [−1, 1)

(e) (−1, 1]

(f) [−1, 1]

(g) (1, 2)

(h) [1, 2)

(i) (1, 2]

(j) [1, 2]

22. Use the graph of f in Figure 2.4.10(b) to decide if the function is continuous
on each interval.

(a) [−3, 2]

(b) (−1, 3)

(c) (−1, 2)

(d) [−1, 2)

(e) (−1, 2]

(f) [−1, 2]
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(a) (b)

Figure 2.4.10 Figures for Exercises 21 and 22.

(g) (2, 3)

(h) [2, 3)

(i) (2, 3]

(j) [2, 3]

23. Let f(x) = x + |x|.

(a) Graph f .

(b) Is f continuous at −1?

(c) Is f continuous at 0?

24. Let f(x) = 21/x for x 6= 0.

(a) Find lim
x→∞

f(x).

(b) Find lim
x→−∞

f(x).

(c) Does lim
x→0+

f(x) exist?

(d) Does lim
x→0−

f(x) exist?

(e) Graph f , incorporating the information from parts (a) to (d).

(f) Is it possible to define f(0) so that f is continuous on the entire x-axis?
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25. Let f(x) = x sin(1/x) for x 6= 0.

(a) Find lim
x→∞

f(x).

(b) Find lim
x→−∞

f(x).

(c) Find lim
x→0

f(x).

(d) Is it possible to define f(0) so that f is continuous on the entire x-axis?

(e) Sketch the graph of f .

In Exercises 26 to 28 find equations that the numbers k, p, and m must satisfy to
make the function continuous.

26. f(x) =
{

sin(x)
2x x 6= 0
p x = 0

27. f(x) =


k x ≤ 0

arcsin(x) 0 < x ≤ π
2

p x > π
2

28. f(x) =


ln(x) x > 1

k −m
√

x 0 < x ≤ 1
pe−x x ≤ 0

29.

(a) Let f and g be two functions defined for all numbers. If f(x) = g(x) when x
is not 3, must f(3) = g(3)?

(b) Let f and g be two continuous functions defined for all numbers. If f(x) = g(x)
when x is not 3, must f(3) = g(3)?

Explain your answers.

30. The reason 00 is not defined. It might be hoped that if the positive number b
and the number x are both close to 0, then bx might be close to some fixed number.
If that were so, it would suggest a definition for 00. Experiment with various choices
of b and x near 0 and on the basis of your data write a paragraph on the theme,
“Why 00 is not defined.”
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2.5 Three Properties of Continuous Functions

Continuous functions have three properties important in calculus: the extreme
value property, the intermediate value property, and the permanence property.
All three are plausible, and a glance at the graph of a typical continuous
function may persuade you that they are obvious. No proofs will be offered:
they depend on the precise definitions of limits given in Sections 3.8 and 3.9
and are part of an advanced calculus course.

We will say that a function has a local or relative maximum at a point
(c, f(c)) when f(c) ≥ f(x) for x near c. More precisely, there is an open interval
I containing c such that if x is in I, and f(x) is defined, then f(x) ≤ f(c).
Likewise, a function has a local or relative minimum at a point (c, f(c))
when f(c) ≤ f(x) for x near c. The plural of extremum is

extrema.
Each maximum or minimum is referred to as

an extreme value or extremum of the function.

Extreme Value Property

The first property is that a function continuous throughout the closed interval
[a, b] takes on a largest value somewhere in the interval. (When we refer to an
interval [a, b] it is assumed that a and b are numbers with a < b.)

Theorem 2.5.1 (Maximum Value Property). Let f be continuous through-
out a closed interval [a, b]. Then there is at least one number in [a, b] at which
f takes on a maximum value. That is, for some number c in [a, b], f(c) ≥ f(x)
for all x in [a, b].

To persuade yourself that this is plausible, imagine sketching the graph of
a continuous function. (See Figure 2.5.1.)

Figure 2.5.1

The maximum value property guarantees that a maximum value exists,
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but it does not tell how to find it. The problem of finding it is addressed in
Chapter 4.

There is also a minimum value property that states that every contin-
uous function on a closed interval takes on a smallest value. See Figure 2.5.1
for an illustration of this property. Combining the two properties, we have:

Theorem 2.5.2 (Extreme Value Property). Let f be continuous through-
out the closed interval [a, b]. Then there is at least one number in [a, b] at
which f takes on a minimum value and there is at least one number in [a, b]
at which f takes on a maximum value. That is, for some numbers c and d in
[a, b], f(d) ≤ f(x) ≤ f(c) for all x in [a, b].

EXAMPLE 1 Find all numbers in [0, 3π] at which the cosine function,
f(x) = cos(x), takes on a maximum value. Also, find all numbers in [0, 3π] at
which f takes on a minimum value.

SOLUTION Figure 2.5.2 is a graph of f(x) = cos(x) for x in [0, 3π].

Figure 2.5.2

Inspection
of the graph shows that the maximum value of cos(x) for 0 ≤ x ≤ 3π is 1, and
it is attained twice: when x = 0 and when x = 2π. The minimum value is −1,
which is also attained twice: when x = π and when x = 3π. �

The extreme value property has two assumptions: “f is continuous” and
“the domain is a closed interval.” If either is removed, the conclusion need not
hold.

Figure 2.5.3(a) shows the graph of a function that is not continuous, is
defined on a closed interval, but has no maximum value. Though f(x) = 1

1−x2 is
continuous on (−1, 1), it has no maximum value, as a glance at Figure 2.5.3(b)
shows. This does not violate the extreme value property because the domain
(−1, 1) is not a closed interval.

(a) (b)

Figure 2.5.3
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Intermediate Value Property

Imagine graphing a continuous function f defined on the closed interval [a, b].
As your pencil moves from the point (a, f(a)) to the point (b, f(b)) the y-
coordinate of the pencil point goes through all values between f(a) and f(b).
Similarly, if you hike all day, starting at an altitude of 5,000 feet and ending
at 11,000 feet, you must have been at 7,000 feet at least once during the day.
In mathematical terms, “a function that is continuous throughout an interval
takes on all values between any two of its values”.

Theorem 2.5.3 (Intermediate Value Property). Let f be continuous
throughout the closed interval [a, b]. Let m be any number such that f(a) ≤
m ≤ f(b) or f(a) ≥ m ≥ f(b). Then there is at least one number c in [a, b]
such that f(c) = m.

Figure 2.5.4

Pictorially, the intermediate value property asserts that, if m is between
f(a) and f(b), a horizontal line of height m must meet the graph of f at least
once, as shown in Figure 2.5.4.

Even though the property guarantees the existence of c, it does not tell how
to find it. To find c we must be able to solve an equation, namely, f(x) = m.

EXAMPLE 2 Use the Intermediate Value Property to show that the equa-
tion 2x3 + x2 − x + 1 = 5 has a solution in the interval [1, 2].

SOLUTION Let P (x) = 2x3 + x2 − x + 1. Then

P (1) = 2 · 13 + 12 − 1 + 1 = 3

and
P (2) = 2 · 23 + 22 − 2 + 1 = 19.

Since P is continuous on [1, 2] and m = 5 is between P (1) = 3 and P (2) = 19,
the intermediate value property says there is at least one number c between 1
and 2 such that P (c) = 5.

To get a more accurate estimate for c such that P (c) = 5, find a shorter
interval for which the intermediate value property can be applied. For instance,
P (1.2) = 4.696 and P (1.3) = 5.784. By the intermediate value property, there
is a number c in [1.2, 1.3] such that P (c) = 5. �

EXAMPLE 3 Show that the equation −x5−3x2 +2x+11 = 0 has at least
one real root. In other words, show that the graph of y = −x5− 3x2 +2x+11
crosses the x-axis.

SOLUTION Let f(x) = −x5 − 3x2 + 2x + 11. We wish to show that there

Calculus April 22, 2012



124 CHAPTER 2 INTRODUCTION TO CALCULUS

is a number c such that f(c) = 0. To use the intermediate value property,
we need to find an interval [a, b] for which 0 is between f(a) and f(b), that
is, where one of f(a) and f(b) is positive and the other is negative. Then we
could apply the property, with m = 0.

y

5

−5

−15

20

15

10

0

−10

x

210−1−2

Figure 2.5.5

We show that there are numbers a and b with a < b, such that f(a) > 0
and f(b) < 0. Because limx→∞ f(x) = −∞, f(x) is negative for x large and
positive. Thus, there is a positive number b such that f(b) < 0. Similarly,
limx→−∞ f(x) =∞, so when x is negative and of large absolute value, f(x) is
positive. So there is a negative number a such that f(a) > 0. Thus there are
numbers a and b, with a < b, such that f(a) > 0 and f(b) < 0. For instance,
f(−1) = 7 and f(2) = −29.

The number 0 is between f(−1) and f(2). Since f is continuous on the
interval [−1, 2], there is a number c in [a, b] such that f(c) = 0. In particular
there is a number c in [−1, 2]. This number c is a solution to the equation
−x5 − 3x2 + 2x + 11 = 0. �

The argument in Example 3 shows that any polynomial of odd degree has
a real root. The argument does not hold for polynomials of even degree; the
equation x2 + 1 = 0, for instance, has no real solutions.

EXAMPLE 4 Use the intermediate value property to show that there is a
negative number such that ln(x + 4) = x2 − 3.
SOLUTION We wish to show that there is a negative number c where the
function ln(x + 4) has the same value as the function x2 − 3. The equation
ln(x+4) = x2−3 is equivalent to ln(x+4)−x2 +3 = 0. The problem reduces
to showing that the function f(x) = ln(x+4)−x2 +3 has the value 0 for some
input c, with c < 0.

We will proceed as in the previous example. We want to find negative
numbers a and b such that f(a) and f(b) have opposite signs.

Because ln(x + 4) is defined only for x + 4 > 0, that is, for x > −4, we
search for a and b by making a table of values of f(x) for some arguments in
(−4, 0).

x −3 −2 −1 0
f(x) −6 −0.307 3.099 4.386

4

y
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x
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1

−4

Figure 2.5.6

We see that f(−2) is negative and f(−1) is positive. Since 0 lies between
f(−2) and f(−1) and f is continuous on [−2,−1], the intermediate value
property asserts that there is a number, c, in [−2,−1] such that f(c) = 0. It
follows that ln(c + 4) = c2 − 3. �

In Example 4 the intermediate value property does not tell what c is. The
graphs of ln(x+1) and x2−3 in Figure 2.5.6 suggest that there are two points
of intersection, but only one with a negative input. The graph, and the table
of values, suggest that the intersection point occurs when the input is close to
−2. Calculations on a calculator or computer show that c ≈ −1.931.

April 22, 2012 Calculus



§ 2.5 THREE PROPERTIES OF CONTINUOUS FUNCTIONS 125

Permanence Property

The extreme value property as well as the intermediate value property in-
volve the behavior of a continuous function throughout an interval. The next
property concerns the local behavior of a continuous function.

Assume that a continuous function f is defined on an open interval that
contains a and that f(a) = p is positive. Then it seems plausible that f
remains positive in some open interval that contains a. We can say something
stronger:

Theorem 2.5.4 (Permanence Property). Assume that the domain of a
function f contains an open interval that includes the number a. Assume that
f is continuous at a and that f(a) = p is positive. Let q be any number less
than p. Then there is an open interval including a such that f(x) ≥ q for all
x in that interval.

To persuade yourself that the permanence principle is plausible, imagine
what the graph of y = f(x) looks like near (a, f(a)), as in Figure 2.5.7.

q

a

p

x

Figure 2.5.7

That
the permanence property is a consequence of the definition of continuity is
shown in Section 3.9.

Summary

This section stated the extreme value property, the intermediate value prop-
erty, and the permanence property. Each will be used in later chapters.
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EXERCISES for Section 2.5

1. Find the maximum value of cos(x) in the given interval and the value of x at
which it occurs.

(a) [0, π/2]

(b) [0, 2π]

2. Does the function x3+x4

1+5x2+x6 have (a) a maximum value for x in [1, 4]? (b) a
minimum value for x in [1, 4]? If so, use a graphing device to estimate the extreme
values.

3. Does the function 2x − x3 + x5 have (a) a maximum value for x in [−3, 10]?
(b) a minimum value for x in [−3, 10]? If so, use a graphing device to estimate the
extreme values.

4. Does the function x3 have a maximum value for x in (a) [2, 4]? (b) [−3, 5]?
(c) (1, 6)? If so, where does the maximum occur and what is the maximum value?

5. Does the function x4 have a minimum value for x in (a) [−5, 6]? (b) (−2, 4)? (c)
(3, 7)? (d) (−4, 4)? If so, where does the minimum occur and what is the minimum
value?

6. Does the function 2 − x2 have (a) a maximum value for x in (−1, 1)? (b) a
minimum value for x in (−1, 1)? If so, where?

7. Does the function 2 + x2 have (a) a maximum value for x in (−1, 1)? (b) a
minimum value for x in (−1, 1)? If so, where?

8. Show that x5 + 3x4 + x− 2 = 0 has at least one solution in [0, 1].

9. Show that x5 − 2x3 + x2 − 3x = −1 has at least one solution in [1, 2].

In Exercises 10 to 14 verify the intermediate-value property for the function f , the
interval [a, b], and the value m. Find all values of c in each case.
10. f(x) = 3x + 5, [a, b] = [1, 2], m = 10.
11. f(x) = x2 − 2x, [a, b] = [−1, 4], m = 5.
12. f(x) = sin(x), [a, b] = [π

2 , 11π
2 ], m = −1.

13. f(x) = cos(x), [a, b] = [0, 5π], m =
√

3
2 .

14. f(x) = x3 − x, [a, b] = [−2, 2], m = 0.
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15. Use the intermediate-value property to show that 3x3 + 11x2 − 5x = 2 has a
solution.

16. Show that 2x = 3x has a solution in [0, 1].

17. Does x + sin(x) = 1 have a solution?

18. Does x3 = 2x have a solution?

19. Let f(x) = 1/x, a = −1, b = 1, m = 0. We have f(a) ≤ 0 ≤ f(b). Is there
at least one c in [a, b] such that f(c) = 0? If so, find c; if not, does this imply the
intermediate-value property sometimes does not hold?

20. Use the intermediate-value property to show that there is a positive number
such that ln(x + 4) = x2 + 3.

Exercises 21 and 22 illustrate the permanence property.
21. Let f(x) = 5x. Then f(1) = 5. Find an interval (a, b) containing 1 such that
f(x) ≥ 4.9 for all x in (a, b).

22. Let f(x) = x2. Then f(2) = 4. Find an interval (a, b) containing 2 such that
f(x) ≥ 3.8 for all x in (a, b).

23. Let P (x) = anxn + an−1x
n−1 + · · ·+ a0 be a polynomial of odd degree n and

with positive leading coefficient an. Show that there is at least one real number r
such that P (r) = 0.

24. (This continues Exercise 23.) The factor theorem from algebra asserts that
the number r is a root of a polynomial P (x) if and only if x− r is a factor of P (x).
For instance, 2 is a root of the polynomial x2 − 3x + 2 and x − 2 is a factor of it:
x2 − 3x + 2 = (x− 2)(x− 1).

(a) Use the factor theorem and Exercise 23 to show that every polynomial of odd
degree has a factor of degree 1.

(b) Show that none of x2 + 1, x4 + 1, and x100 + 1 has a first-degree factor.

(c) Verify that x4 + 1 =
(
x2 +

√
2x + 1

) (
x2 −

√
2x + 1

)
. (It can be shown using

complex numbers that every polynomial with real coefficients is the product
of polynomials of degrees at most 2 with real coefficients.)
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25. Let f(x) = anxn + · · ·+ a1x + a0 where an and a0 have opposite signs. Show
that f(x) has a positive root, that is, that f(x) = 0 has a positive solution.

Convex Sets and Curves

A set in the plane bounded by a curve is convex if, for any two points P and Q, the
line segment joining them also lies in the set. (See Figure 2.5.8(a).) The boundary
of a convex set we will call a convex curve.
Disks, triangles, and parallelograms are convex sets. The quadrilateral shown in
Figure 2.5.8(b) is not convex. Convex sets will be referred to in the exercises and
occasionally in the Exercises.

(a) (b)

Figure 2.5.8 (a) There are no dents in the boundary of a convex set. (b) Not
a convex set.

Exercises 26 to 32 concern convex sets and show how the intermediate-value property
gives geometric information. In them you will need to define various functions
geometrically. You may assume these functions are continuous.

26. Let L be a line in the plane and let K be a convex set. Show that there is a
line parallel to L that cuts K into two pieces with equal areas.

Follow these steps.

(a) Introduce an x-axis perpendicular to L with its origin on L. Each line parallel
to L and meeting K crosses the x-axis at a number x. Label the line Lx. Let
a be the smallest and b the largest value of x. (See Figure 2.5.9.) Let the area
of K be A.
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Figure 2.5.9

(b) Let A(x) be the area of K to the left of the line Lx. What is A(a)? A(b)?

(c) Use the intermediate-value property to show that there is an x in [a, b] such
that A(x) = A

2 .

(d) Why does (c) show that there is a line parallel to L that cuts K into two
pieces of equal areas?

27. Solve the preceding exercise by applying the intermediate-value property to
the function f(x) = A(x)−B(x), where B(x) is the area to the right of Lx.

28. Let P be a point and let K be a convex set. Is there a line through P that
cuts K into two pieces of equal areas?

29. Let K1 and K2 be two convex sets in the plane. Is there a line that simulta-
neously cuts K1 into two pieces of equal areas and cuts K2 into two pieces of equal
areas? (This is known as the “two pancakes” question.)

30. Let K be a convex set in the plane. Show that there is a line that simulta-
neously cuts K into two pieces of equal area and cuts the boundary of K into two
pieces of equal length.

31. Let K be a convex set in the plane. Show that there are two perpendicular
lines that cut K into four pieces of equal areas.

32. Let K be a convex set in the plane whose boundary contains no line segments.
A polygon is said to circumscribe K if each edge of the polygon is tangent to the
boundary of K.

(a) Is there necessarily a circumscribing equilateral triangle? If so, how many?
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(b) Is there necessarily a circumscribing rectangle? If so, how many?

(c) Is there necessarily a circumscribing square?

33. Let f be a continuous function whose domain is the x-axis such that

f(x + y) = f(x) + f(y) for all x and y.

For any constant c, f(x) = cx satisfies the equation since c(x + y) = cx + cy. This
exercise shows that f must be of that form.

(a) Let f(1) = c. Show that f(2) = 2c.

(b) Show that f(0) = 0.

(c) Show that f(−1) = −c.

(d) Show that that for any positive integer n, f(n) = cn.

(e) Show that that for any negative integer n, f(n) = cn.

(f) Show that f(1
2) = c

2 .

(g) Show that that for any non-zero integer n, f( 1
n) = c

n .

(h) Show that that for any intger m and any positive integer n, f(m
n ) = m

n c.

(i) Show that for any irrational number x, f(x) = cx. This is where the continuity
of f enters. Parts (h) and (i) together complete the solution.

34.

(a) Let f be a continuous function defined for all real numbers. Is there necessarily
a number x such that f(x) = x?

(b) Let f be a continuous function with domain [0, 1] such that f(0) = 1 and
f(1) = 0. Is there necessarily a number x such that f(x) = x?

35. Let f be a continuous function defined on (−∞,∞) such that f(0) = 1 and
f(2x) = f(x) for all numbers x.

(a) Give an example of such a function f .

(b) Find all such functions and explain.
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2.6 Techniques for Graphing

One way to graph a function f(x) is to compute f(x) at several inputs x, plot
the points (x, f(x)), and draw a curve through them. This may be tedious
and, if you choose inputs that give misleading information, may result in an
inaccurate graph.

Another way is to use a graphing device such as a graphing calculator or
an app on a smartphone. These display only a portion of the graph and might
display a part of the graph that is misleading or of little interest. At points
with large function values, the graph may be distorted by the calculator’s
choice of scale.

It pays to be able to get an idea of the shape of a graph quickly, without
having to compute too many values. This section describes some shortcuts.

Intercepts

The x-coordinates of the points where the graph of a function meets the x-axis
are the x-intercepts of the function. The y-coordinates of the points where
a graph meets the y-axis are the y-intercepts of the function.

EXAMPLE 1 Find the intercepts of the graph of y = x2 − 4x− 5.
SOLUTION

Figure 2.6.1 The graph
of y = x2 − 4x − 5, with
intercepts.

To find the x-intercepts, set y = 0, obtaining

0 = x2 − 4x− 5.

This quadratic factors:

0 = x2 − 4x− 5 = (x− 5)(x + 1),

which is satisfied when x = 5 or x = −1. There are two x-intercepts, 5 and −1.
(If the equation did not factor easily, the quadratic formula could be used.)

To find y-intercepts, set x = 0, obtaining

y = 02 − 4 · 0− 5 = −5.

There is only one y-intercept, namely −5.
The intercepts give us three points on the graph. Tabulating a few more

points produces the parabola in Figure 2.6.1, where the intercepts are shown
as well. �

If f(x) is not defined when x = 0, there is no y-intercept. If f(x) is defined
when x = 0, then it’s easy to get the y-intercept: evaluate f(0). While there is
at most one y-intercept, there may be many x-intercepts. To find them, solve
the equation f(x) = 0. That is,
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Finding Intercepts of y = f(x)
To find the y-intercept, compute f(0).
To find the x-intercepts, solve the equation f(x) = 0.

Symmetry of Odd and Even Functions

Some functions have the property that when you replace x by −x you get the
same value. For instance, the function f(x) = x2 has this property since

f(−x) = (−x)2 = x2 = f(x).

So does f(x) = xn for any even integer n. There are other functions, such as
3x4 − 5x2 + 6x, cos(x), and ex + e−x, that also have this property.

DEFINITION (Even function) A function f such that f(−x) =
f(x) is called an even function.

For an even function f , if f(a) = b, then f(−a) = b also. In other words,
if the point (a, b) is on the graph of f , so is the point (−a, b), as indicated in
Figure 2.6.2(a).

(a) (b)

Figure 2.6.2

The graph of an even functino f is symmetric with respect to the y-axis,
as shown in Figure 2.6.2(b). If you notice that a function is even, you can
save half the work in finding its graph. Graph it for positive x and then get
the part for negative x by reflecting across the y-axis. If you wanted to graph
y = x4/(1− x2), for example, stick to x > 0, and then reflect the result.

DEFINITION (Odd function) A function f with f(−x) = −f(x)
is called an odd function.
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The function f(x) = x3 is odd since

f(−x) = (−x)3 = −(x3) = −f(x).

For any odd integer n, f(x) = xn is an odd function. The sine function is also
odd, since sin(−x) = − sin(x).

If the point (a, b) is on the graph of an odd function, so is (−a,−b), since

f(−a) = −f(a) = −b.

(See Figure 2.6.3(a).) The origin (0, 0) is the midpoint of the segment whose
ends are (a, b) and (−a,−b). The graph is said to be symmetric with respect
to the origin.

(a) (b)

Figure 2.6.3

If you graph an odd function for positive x, you can obtain the graph for
negative x by reflecting it point by point through the origin. For example, if
you graph y = x3 for x ≥ 0, as in Figure 2.6.3(b), you can complete the graph
by reflection with respect to the origin, as indicated by the dashed lines.

Figure 2.6.4

Most functions are neither even nor odd. For instance, x3 + x4 is neither
even nor odd since (−x)3 + (−x)4 = −x3 + x4, which is neither x3 + x4 nor
−(x3 + x4).

Asymptotes

If limx→∞ f(x) = L where L is a real number, the graph of y = f(x) gets
arbitrarily close to the horizontal line y = L as x increases. The line y = L is
called a horizontal asymptote of the graph of f . (See Figure 2.6.4.)

If a graph has an asymptote, we can draw it and use it as a guide in drawing
the graph.
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If limx→a f(x) = ∞, then the graph resembles the vertical line x = a for
x near a. The line x = a is called a vertical asymptote of the graph of
y = f(x). The same term is used if

lim
x→a

f(x) = −∞, lim
x→a+

f(x) =∞ or −∞, or lim
x→a−

f(x) =∞ or −∞.

Figure 2.6.5 presets some examples with vertical asymptotes.

(a) (b) (c) (d)

Figure 2.6.5

EXAMPLE 2 Graph f(x) = 1/(x− 1)2.
SOLUTION To see if there is any symmetry, check whether f(−x) is f(x)
or −f(x). We have

f(−x) =
1

(−x− 1)2
=

1

(x + 1)2
.

Since 1/(x + 1)2 is neither 1/(x − 1)2 nor −1/(x − 1)2, the function f(x) is
neither even nor odd. Therefore the graph is not symmetric with respect to
the y-axis or with respect to the origin.

To determine the y-intercept compute f(0) = 1/(0 − 1)2 = 1. The y-
intercept is 1. To find any x-intercepts, solve the equation f(x) = 0, that
is,

1

(x− 1)2
= 0.

Since no number has a reciprocal equal to zero, there are no x-intercepts.
To search for a horizontal asymptote examine

lim
x→∞

1/(x− 1)2 and lim
x→−∞

1/(x− 1)2.

Both limits are 0. The line y = 0, that is, the x-axis, is an asymptote both to
the right and to the left. Since 1/(x− 1)2 is positive, the graph lies above the
asymptote.
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Figure 2.6.6

To discover any vertical asymptotes, find where the function 1/(x − 1)2

blows up — that is, becomes arbitrarily large (in absolute value). This happens
when the denominator (x − 1)2 becomes zero. Solving (x − 1)2 = 0 we find
x = 1. The function is not defined for x = 1. The line x = 1 is a vertical
asymptote.

To determine the shape of the graph near the line x = 1, examine the
one-sided limits: limx→1+ 1/(x− 1)2 and limx→1− 1/(x− 1)2. Since the square
of a non-zero number is always positive, we see that limx→1+ 1/(x − 1)2 = ∞
and limx→1− 1/(x− 1)2 =∞. All this information is displayed in Figure 2.6.6.
�

Technology-Assisted Graphing

A graphing utility needs to know the function and the viewing window. We
will show by three examples some of the common obstacles and how to avoid
them.

The viewing window is the portion of the xy-plane escribed as [a, b]×[c, d]
when the window extends horizontally from x = a to x = b and vertically from
y = c to y = d. The graph of a function y = f(x) is created by evaluating f(x)
for a sample of numbers x between a and b. The point (x, f(x)) is added to the
plot. It is customary to connect the points to form the graph of y = f(x). The
examples in the remainder of this section demonstrate some of the unpleasant
messes that can happen, and how to avoid them.

EXAMPLE 3 Find a viewing window that shows the general shape of the
graph of y = x4 + 6x3 + 3x2 − 12x + 4. Use graphs to estimate the rightmost
x-intercept.
SOLUTION Figure 2.6.7(a) is typical of the first plot of a function. Choose
a wide x interval, here [−10, 10], and let the graphing software choose an
appropriate vertical range. While this view is useless for estimating any specific
x-intercept, it is tempting to say that any x-intercepts will be between x = −6
and x = 3. Figure 2.6.7(b) is the graph of this function on the viewing window
[−6, 3]× [−30, 30]. Now four x intercepts are visible. The rightmost one occurs
around x = 0.8. Figure 2.6.7(c) is the result of zooming in on this part of the
graph where we see that the rightmost x-intercept is about 0.83.

A computer algebra system (CAS) shows that the four x-intercepts are
0.8284, 0.4142, −2.4142, and −4.8284 (to four decimal places). �

Generating a collection of points and connecting the dots can sometimes
lead to ridiculous results, as in Example 4.

EXAMPLE 4 Find a viewing window that clearly shows the general shape
and periodicity of the graph of y = tan(x).
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x
0.82 0.84 0.86 0.88 0.90

y
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(c)

Figure 2.6.7

SOLUTION A computer-generated plot of y = tan(x) for x between −10
and 10 with no restriction on the vertical height of the viewing window is
shown in Figure 2.6.8(a). The graph is not periodic and it does not look like
the graph of a trigonometric function.

x
K10 K5 0 5 10

y

K1,000

K500

500

1,000

(a)

x
K10 K5 0 5 10

y

K10

K5

5

10

(b)

x
K10 K5 0 5 10

y

K10

K5

5

10

(c)

Figure 2.6.8

The default vertical height is long: [−1000, 1000]. Reducing this by a factor
of 100, that is, to [−10, 10], yields Figure 2.6.8(b). The graph is periodic and
exhibits the expected periodic behavior.

To understand this plot, realize that the software selects a sample of input
values from the domain, computes the value of tangent of each input, then
connects the points in order of the input values. The tangent of the last input
smaller than π/2 is large and positive and the tangent of the first input larger
than π/2 is large and negative. Neither point is in the viewing window, but the
line segment connecting them passes through the viewing window and appears
as the vertical line at x = π/2 in Figure 2.6.8(b). Because the tangent is
not defined for every odd multiple of π/2, similar reasoning explains the other
vertical lines at every odd multiple of π/2

These segments are not part of the graph. Figure 2.6.8(c) shows the graph
of y = tan(x) with them removed. �
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Example 4 illustrates why we must remain alert when using technology.
We have to check that the results are consistent with what we already know.

The next example shows that sometimes it is not possible to show all of
the important features of a function in a single graph.

EXAMPLE 5 Use one or more graphs to show all major features of the
graph y = e−x 3

√
x2 − 8.

SOLUTION The graph of this function on [−10, 10] with the vertical win-
dow chosen by the software is shown in Figure 2.6.9(a). In this window, the
exponential function dominates the graph.

x
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50,000
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90,000

(a)

x
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200
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(b)

x
K4 K3 K2 K1 0 1 2 3 4

y

K15

K10

K5

5

10

15

(c)

Figure 2.6.9 Three views of the graph of y = e−x 3
√

x2 − 8.

At x = 0 the value of the function is (0 − 8)1/3e0 = −2. To get enough
detail to see both the positive and negative values of the function, zoom in
by reducing the x interval to [−5, 5]. The result is Figure 2.6.9(b). Reduc-
ing the x interval to [−4, 4] and specifying the y interval as [−15, 15] gives
Figure 2.6.9(c).

We could continue to adjust the viewing window until we find suitable
views. A more systematic approach is to look at the graphs of y = 3

√
x2 − 8

and y = e−x separately, but on the same pair of axes, as in Figure 2.6.10(a),
where the solid red curve is y = 3

√
x2 − 8 and the dashed blue curve is y = e−x.

The exponential growth of e−x for negative values of x stretches (vertically)
the graph of y = 3

√
x2 − 8 to the left of the y-axis while the exponential decay

for x > 0 (vertically) compresses the graph of y = 3
√

x2 − 8 to the right of the
y-axis.

It is prudent to produce two separate plots. To the left of the y-axis, with
a viewing window of [−4, 0]× [−15, 100], the graph of the function is shown in
Figure 2.6.10(b). To the right of the y-axis, with a shorter viewing window of
[0, 4]× [−2.2, 0.2], the graph is as shown in Figure 2.6.10(c). �
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y=(x^2-8)^(1/3) y=exp(-x)

x
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y
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(b)

x
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K1.0

K0.5

0

(c)

Figure 2.6.10 Three more views of the graph of y = e−x 3
√

x2 − 8.

Summary

The first half of this section presents three tools for making a quick sketch of
the graph of y = f(x) by hand.

1. Check for intercepts. Find f(0) to get the y-intercept. Solve f(x) = 0 to
get the x-intercepts.

2. Check for symmetry. Is f(−x) equal to f(x) or −f(x)?

3. Check for asymptotes. If limx→∞ f(x) = L or limx→−∞ f(x) = L, then
y = L is a horizontal asymptote. If limx→a f(x) = +∞ or −∞, then x =
a is a vertical asymptote. This is also the case whenever limx→a+ f(x)
or limx→a− f(x) is +∞ or −∞.

The second half of the section provides some pointers for using an automatic
graphing utility. The key to their use for graphing is to specify an appropriate
viewing window.
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Computer-Based Mathematics
Graphing calculators provide an easy way to graph a function. Computer
algebra systems such as Maple, Mathematica, Sage, and Derive can perform
symbolic operations on mathematical expressions: for example, they can factor
a polynomial

x5 − 2x4 − 2x3 + 4x2 + x− 2 = (x− 1)2(x + 1)2(x− 2),

express the quotient of two polynomials as the sum of simpler quotients:

36

x5 − 2x4 − 2x3 + 4x2 + x− 2
=

−3

(x + 1)2
− 9

(x− 1)2
− 4

x + 1
+

4

x− 2
,

and solve equations, such as

arctan(x2 + 1) = π/3 and sin
(π

x

)
− π

x
cos
(π

x

)
= 0.

Some symbolic features are now available on calculators, smartphones, and
other handheld devices.
These tools can do more than graph functions. As they become easier to
operate, they will change the way mathematics is used. The ability to factor
a polynomial or to solve an equation will be less important than the ability
to apply basic principles of mathematics and science to set up and to analyze
the equations.
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EXERCISES for Section 2.6

1. Show that these are even functions.

(a) x2 + 2

(b)
√

x4 + 1

(c) 1/x2

(d) x3 sin(5x)

2. Show that these are even functions.

(a) 5x4 − x2

(b) cos(2x)

(c) ex + e−x

(d)
√

1− x2 tan2(x)

3. Show that these are odd functions.

(a) x3 − x

(b) x + 1/x

(c) ex − e−x

(d) cos(5x) sin(3x)

4. Show that these are odd functions.

(a) 2x + 1
2x

(b) tan(x) cos(2x)

(c) x5/3

(d) x3

cos(2x)

5. Show that these functions are neither odd nor even.

(a) 3 + x

(b) (x + 2)2
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(c) x
x+1

6. Show that these functions are neither odd nor even.

(a) 2x− 1

(b) ex

(c) x2 + 1/x

7. Label each function as even, odd, or neither.

(a) x + x3 + 5x4

(b) 7x4 − 5x2

(c) ex − e−x

8. Label each function as even, odd, or neither.

(a) 1+x
1−x

(b) ln(x2 + 1)

(c) 3
√

x2 + 1

In Exercises 9 to 18 find the x- and y-intercepts, if there are any.
9. y = 2x + 3
10. y = 3x− 7
11. y = x2 + 3x + 2
12. y = 2x2 + 5x + 3
13. y = 2x2 + 1
14. y = x2 + x + 1
15. y = sin(x + 1)
16. y = ln(x2 + 1)

17. y = x2−1
x2+1

18. y = ecos(x)

In Exercises 19 to 24 find the horizontal and vertical asymptotes.
19. y = x+2

x−2

20. y = x−2
x2−9
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21. y = x
x2+1

22. y = 3
1+e−x

23. y = sin(2x)
x

24. y = x
x2+2x+1

In Exercises 25 to 38 graph the function.
25. y = 1

x−2

26. y = 1
x+3

27. y = 1
x2−1

28. y = x
x2−2

29. y = x2

1+x2

30. y = 1
x3+x−1

31. y = 3
1+e−x

32. y = e−x

3+e−x

33. y = e−x/2

1+e−x

34. y = 2+e−x

3+e−2x

35. y = 1−ex

1+ex

36. y = 2−e−2x

3+e−3x

37. y = 1
x(x−1)(x+2)

38. y = x+2
x3+x2

Use a graphing utility to sketch a graph of the functions in Exercise 39 to 57. Be
sure to indicate the viewing window used to generate your graph.
39. (x2 + x− 6) ln(x + 2)
40. (x2 − x + 6) ln(x + 2)
41. (x2 + 4) ln(x + 1)
42. (x2 − 4) ln(x + 1)

43. x3

x2−4
arctan

(
x
5

)
44. (x2−4)

x3 arctan
(

x
5

)
45. x3−3x

x2−4

46. x3−2x
x2−4

47. sin(x)
x

48. sin(2x)
x

49. sin(2x)
3x

50. sin(x)
3x
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51. x−arctan(x)
x3

52. x−arctan(x)
x3+x

53. x−arctan(x)
x3−1

54. x−arctan(x)
x3+1

55. 5x3+x2+1
7x3+x+4

56. x3−3x
x2−4

arctan
(

x
4

)
57. x3−2x

x2−4
arctan

(
x
4

)
Exercises 58 to 64 concern even and odd functions.
58. If two functions are odd, what can be said about

(a) their sum?

(b) their product?

(c) their quotient?

59. If two functions are even, what can you say about

(a) their sum?

(b) their product?

(c) their quotient?

60. If f is odd and g is even, what can you say about

(a) f + g?

(b) fg?

(c) f/g?

61. What, if anything, can you say about f(0) if f is defined for all real numbers
and

(a) f is an even function?

(b) f is an odd function?

62. Which polynomials are even? Explain.
63. Which polynomials are odd? Explain.
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64. Is there a function that is both odd and even? Explain.

Exercises 65 to 68 concern tilted asymptotes. Let A(x) and B(x) be polynomials
such that the degree of A(x) is 1 more than the degree of B(x). When you divide
B(x) into A(x), you get a quotient Q(x), which is a polynomial of degree 1, and a
remainder R(x), which is a polynomial of degree less than the degree of B(x).
For example, if A(x) = x2 + 3x + 4 and B(x) = 2x + 2,

Thus

x2 + 3x + 4 =
(

1
2
x + 1

)
(2x + 2) + 2

This tells us that
x2 + 3x + 4

2x + 2
=

1
2
x + 1 +

2
2x + 2

.

When x is large, 2/(2x + 2) → 0. Thus the graph of y = x2+3x+4
2x+2 is asymptotic to

the line y = 1
2x + 1. (See Figure 2.6.11.)

Figure 2.6.11
Whenever the degree of A(x) exceeds the degree of B(x) by exactly 1, the graph of
y = A(x)/B(x) has a tilted asymptote. It can be found by dividing B(x) into A(x),
obtaining a quotient Q(x) and a remainder R(x). Then

A(x)
B(x)

= Q(x) +
R(x)
B(x)

.
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The asymptote is y = Q(x). In Exercises 65 through 68 graph the function, showing
all asymptotes.
65. y = x2

x−1

66. y = x3

x2−1

67. y = x2−4
x+4

68. y = x2+x+1
x−2

Read the directions for your graphing software to learn how to graph a piecewise-
defined function. Then use your graphing utility to sketch a graph of the functions
in Exercises 69 and 70.

69. y =
{

x2 − x x < 1√
x− 1 x ≥ 1

70. y =


sin(x)

x x < 0
sinx 0 ≤ x ≥ π
x− 2 x > π

Some graphing utilities have trouble plotting functions with fractional exponents.
General rules when graphing y = xp/q where p/q is a positive fraction in lowest
terms are:
If p is even and q is odd, then graph y = |x|p/q.
If p and q are both odd, then graph y = |x|

x |x|
p/q.

Use that advice and a calculator to sketch the graph of each function in Exercises 71
to 74.
71. y = x1/3

72. y = x2/3

73. y = x4/7

74. y = x3/7

75. Let P (x) be a polynomial of degree m and Q(x) a polynomial of degree n.
For which m and n does the graph of y = P (x)/Q(x) have a horizontal asymptote?

76. Assume you already have drawn the graph of y = f(x). How would you obtain
the graph of y = g(x) from it if

(a) g(x) = f(x) + 2?

(b) g(x) = f(x)− 2?

(c) g(x) = f(x− 2)?

(d) g(x) = f(x + 2)?

(e) g(x) = 2f(x)?

(f) g(x) = 3f(x− 2)?
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(g) g(x) = 3f(2x)?

(h) g(x) = f(2x) + e−100x?

77. Are there functions f defined for all x such that f(−x) = 1/f(x)? If so, how
many? If not, explain why there are none.

78. Are there functions f defined for all x such that f(−x) = 2f(x)? If so, how
many? If not, explain why there are no such functions.

79. Is there a constant k such that f(x) =
1

3x − 1
+ k is odd? even?
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2.S Chapter Summary

One concept underlies calculus: the limit of a function. For a function defined
near a (but not necessarily at a) we ask, “What happens to f(x) as x gets
nearer and nearer to a?” If the values get nearer and nearer a number, we call
it the limit of the function as x approaches a. Limits, which do not appear in
arithmetic, or algebra, or trigonometry, distinguish calculus.

When f(x) = (2x− 1)/x, which is not defined at x = 0, we conjectured on
the basis of numerical evidence that f(x) approaches 0.693 (to three decimals).
With that information we found that (4x− 1)/x approaches 2(0.693), which is
larger than 1. We then defined e as that number (between 2 and 4) such that
(ex − 1)/x approaches 1 as x approaches 0. The number e is as important in
calculus as π is in geometry or trigonometry. Its value to three decimal places
is about 2.718 and it is called Euler’s number. Scientific calculators have a
key for ex because it is the most convenient exponential for calculus, as will
become clear in the next chapter.

When angles are measured in radians,

lim
x→0

sin(x)

x
= 1 and lim

x→0

1− cos(x)

x
= 0.

These limits serve as the basis of the calculus of trigonometric functions de-
veloped in the next chapter. The simplicity of the first limit is one reason that
in calculus and its applications angles are measured in radians. If angles were
measured in degrees, the first limit would be π/180, which would complicate
computations.

Most of the functions of interest in later chapters are continuous. The value
of such a function at a number a in its domain is the same as the limit of the
function as x approaches a.

A continuous function has three properties, which will be referred to often:

• On a closed interval it attains a maximum value and a minimum value.

• On a closed interval it takes on all values between its values at the end
points of the interval.

• If it is positive at some number and defined at least on an open interval
containing that number, then it remains positive at least on some open
interval. More generally, if f(a) = p > 0, and q is less than p, then f(x)
remains larger than q, at least on some open interval containing a. A
similar statement holds when f(a) is negative.

A quick sketch of the graph of a continuous function makes the three prop-
erties plausible.
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Three Important Bases for Logarithms
While logarithms can be defined for any positive base, three numbers have
been used most often: 2, 10, and e. Logarithms to the base 2 are used in
information theory, for they record the number of “yes – no” questions needed
to pinpoint a piece of information. Base 10 has been used for centuries to
assist in computations. Since the decimal system is based on powers of 10,
certain convenient numbers had obvious logarithms; for instance, log10(1000) =
log10(103) = 3. Tables of logarithms to several decimal places facilitated the
calculations of products, quotients, and roots. To multiply two numbers, you
looked up their logarithms, and then searched the table for the number whose
logarithm is the sum of the two logarithms. The calculator made the tables
obsolete, just as it sent the slide rule into museums. However, a Google search
for “slide rule” returns a list of more than 15 million websites full of history,
instruction, and sentiment. The number e is the most convenient base for
logarithms in calculus. As early as 1728, Euler used it for that purpose.

EXERCISES for 2.S

1. Define Euler’s constant, e, and give its decimal value to five places.

In Exercises 2 to 4 state the given property in your own words, using as few math-
ematical symbols as possible.
2. The maximum-value property.

3. The intermediate-value property.

4. The permanence property.

5.

(a) Verify that x5 − y5 = (x− y)(x4 + x3y + x2y2 + xy3 + y4).

(b) Use (a) to find limx→a
x5−a5

x−a .

6. Let f(x) = 1
x+2 for x not equal to −2. Is there a continuous function g(x),

defined for all x, that equals f(x) when x is not −2? Explain your answer.

7. Let f(x) = 2x−1
x for x not equal to 0. Is there a continuous function g(x),

defined for all x, that equals f(x) when x is not 0? Explain your answer.

8. Let f(x) = sin(1/(x − 1)) for x not equal to 1. Is there a continuous func-
tion g(x), defined for all x, that equals f(x) when x is not 1? Explain your answer.
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9. Let f(x) = x sin(1/x) for x not equal to 0. Is there a continuous function g(x),
defined for all x, that equals f(x) when x is not 0? Explain your answer.

10. Show limx→1
x1/3−1

x−1 = 1
3 by writing the denominator as

(
x1/3

)3 − 1 and using
the factorization u3 − 1 = (u− 1)(u2 + u + 1).

11. Use the factorization in Exercise 5 to find limx→a
x−5−a−5

x−a .

12. Assume b > 1. If limx→0
bx−1

x = L, find limx→0
(1/b)x−1

x

13. By sketching a graph, show that if a function is not continuous it may not

(a) have a maximum even if its domain is a closed interval,

(b) satisfy the intermediate-value theorem even if its domain is a closed interval,

(c) have the permanence property even if its domain is an open interval.

14. Let g be an increasing function such that limx→a g(x) = L.

(a) Sketch the graph of a function f whose domain includes an open interval
around L such that

f
(

lim
x→a

g(x)
)

and lim
x→a

f(g(x))

both exist but are not equal

(b) What property of f would assure us that the two limits in (a) would be equal?

We obtained limx→a
xn−an

x−a by using the factorization of xn − an. Let h = x − a,

the limit can be written as limh→0
(a+h)n−an

h . Exercises 15 and 16 show the algebra
needed to evaluate it.
15.

(a) Show that (a + h)2 = a2 + 2ah + h2.

(b) Use (a) to evaluate limh→0
(a+h)2−a2

h .

16.

(a) Show that (a + h)3 = a3 + 3a2h + 3ah2 + h3.
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(b) Use (a) to evaluate limh→0
(a+h)3−a3

h .

17. For the positive integer k the symbol k!, called “k factorial,” is the product of
all the integers from 1 through k. The binomial theorem states that for any positive
integer n

(a + b)n =
(

n

0

)
a0hn +

(
n

1

)
a1hn−1 +

(
n

2

)
a2hn−2

+ · · ·+
(

n
n−2

)
an−2h2 +

(
n

n−1

)
an−1h1 +

(
n
n

)
anh0

where
(

n
m

)
= n!/(m!(n −m)!) for m = 0, 1, 2, . . . , n. Use it to show that for any

positive integer n, limh→0
(a+h)n−an

h = nan−1.

In Exercises 18 to 21 find each limit.
18. limx→∞

ln(5x)
ln(4x2)

19. limx→∞
ln(5x)
ln(4x)

20. limx→∞
log2(x2)
log4(x)

21. limx→∞
log3(x5)
log9(x)

22. Find limh→0
(e2)h−1

h by factoring the numerator.

23. Assuming that limx→0+ xx = 1 and that limx→∞ ln(x) =∞, find:

(a) limx→0 x ln(x)

(b) limx→∞
ln(x)

x (Use (a).)

(c) limx→∞ x1/x

(d) limx→∞
ln(x)
xk , k a positive constant

(e) limx→∞
x
ex

(f) limx→∞
xn

ex , n a positive integer

(g) limx→∞
(ln(x))n

x , n a positive integer

24. Let 2000x = 20012000.

(a) Without doing any calculations, estimate x.

(b) Use logarithms to estimate x.
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25. Now, suppose x2001 = 20012000.

(a) Without doing any calculations, estimate x.

(b) Use logarithms to estimate x.

26. Let f = g + h, where g is an even function and f is an odd function. Express
g and h in terms of f .

27.

(a) Show that any function f can be written as the sum of an even function and
an odd function.

(b) In how many ways can a function be written that way?

28. If f is an odd function and g is an even function, what, if anything, can be
said about (a) fg, (b) f2, (c) f + g, (d) f + f , and (e) f/g? Explain.

Exercises 29 to 31 provide an early glimpse of an area problem that will be addressed
with calculus. They require only a basic understanding of geometric series and
limits.
29. Figure 2.S.1 shows the region R under the curve y = 2−x and above the
interval [0, 1].

(a) (b) (c)

Figure 2.S.1
As shown in Figure 2.S.1(a), the region R lies inside a square of area 1 and contains
a rectangle of area 1/2. So its area is between 1/2 and 1.

(a) Use the rectangles in Figure 2.S.1(b) to estimate the area of R.
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(b) Use the rectangles in Figure 2.S.1(c) to estimate the area of R.

(c) On the basis of (a) and (b), fill in the blanks:

The area of R is between and .

30. Instead of the four rectangles used in the preceding exercise use 100 rectan-
gles, all of the same width, to get even closer estimates of the area of R. (You will
encounter the sum of 100 numbers in a geometric progression.)
31. Let R be the region under y = 2−x, to the right of the y-axis, and above the
x-axis. Decide if R is finite or infinite. (The technique in Exercises 29 and 30 can
help you decide. Assume that limn→∞ 1/2n = 0.)

32.

Sam: Did you know that the AB limit comes right out of the A + B limit, at least
for positive functions?

Jane: I don’t believe it.

Sam: All I do is write g(x) as eln g(x) and h(x) as eln h(x).

Jane: I see. But you also use the continuity of the exponential and natural loga-
rithm functions.

Sam: So I do. Even so it’s neat.

Check that Sam is right.

33. Using an approach like the one in Exercise 32, obtain the AB limit from the
AB limit for two positive functions.

34. The graph of a function f whose domain is [2, 4] and range is [1, 3] is shown
in Figure 2.S.2. Sketch the graphs of the following functions and state their domain
and range.

(a) g(x) = −3f(x)

(b) g(x) = f(x + 1)

(c) g(x) = f(x− 1)

(d) g(x) = 3 + f(x)

(e) g(x) = f(2x)

(f) g(x) = f(x/2)

(g) g(x) = f(2x− 1)

April 22, 2012 Calculus



§ 2.S CHAPTER SUMMARY 153

Figure 2.S.2

35. For a constant k, find limh→0
(ek)h−1

h . (Replace h in the denominator by
(hk)/k.)

36.

(a) Calculate (0.99999)x for various large values of x.

(b) Using the evidence gathered in (a), conjecture the value of limx→∞(0.99999)x.

(c) Why is limx→∞(0.99999)x+1 the same as limx→∞(0.99999)x?

(d) Denoting the limit in (b) as L, show that 0.99999L = L.

(e) Using (d), find L.
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37. (Contributed by G. D. Chakerian) This exercise obtains limθ→0
sin(θ)

θ without
using areas. Figure 2.S.3 shows a circle C of radius 1 with center at the origin
and a circle C(r) of radius r > 1 that passes through the center of C. Let S(r)
be the part of C(r) that lies within C. The ends of this curve are P and Q.
Let θ be the angle subtended by the top half of S(r) at the center of C(r). As
r → ∞, θ → 0. Define A(θ) to be the length of the arc S(r) as a function of θ.

Figure 2.S.3

(a) Looking at Figure 2.S.3, determine limθ→0 A(θ). (What happens to P as
r →∞?)

(b) Show that A(θ) is θ/2
sin(θ/2) .

(c) Combining (a) and (b), show that limθ→0
sin(θ)

θ = 1.
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Calculus is Everywhere # 3

Bank Interest and the Annual Percentage

Yield

The Truth in Savings Act, passed in 1991, requires a bank to post the Annual
Percentage Yield (APY) on deposits. It depends on the interest rate and on
how often the bank computes the interest earned. Imagine that you open an
account on January 1 by depositing $1000. The bank pays interest monthly
at the rate of 5 percent a year. How much will there be in your account at the
end of the year? For simplicity, assume all the months have the same length.

To begin, we find out how much there is in the account at the end of the
first month. The account then has the initial amount, $1000, plus the interest
earned during January. Because there are 12 months, the interest rate in each
month is 5 percent divided by 12, which is 0.05/12 percent per month. So the
interest earned in January is $1000 times 0.05/12. At the end of January the
account has

$1000 + $1000(0.05/12) = $1000(1 + 0.05/12).

The initial deposit is magnified by the factor (1 + 0.05/12).
The amount in the account at the end of February is found the same way,

but the initial amount is $1000(1 + 0.05/12) instead of $1000. Again the
amount is magnified by the factor 1 + 0.05/12 to become

$1000(1 + 0.05/12)2.

The amount at the end of March is

$1000(1 + 0.05/12)3

and at the end of the year the account has grown to

$1000(1 + 0.05/12)12,

which is about $1051.16.
The deposit earned $51.16. If instead the bank computed the interest only

once, at the end of the year, the deposit would earn only 5 percent of $1000,
which is $50. The depositor benefits when the interest is computed more than
once a year, so-called compound interest.

A competing bank may offer to compute the interest every day. In that
case, the account would grow to

$1000(1 + 0.05/365)365,
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which is about $1051.27, eleven cents more than the first bank offers. More
generally, if the initial deposit is A, the annual interest rate is r, and interest
is computed n times a year, the amount at the end of the year is

A(1 + r/n)n. (C.3.1)

In the examples, A is $1000, r is 0.05, and n is 12 and then 365.
Suppose that A is 1 and r is a generous 100 percent, that is, r = 1. Then

(C.3.1) becomes
(1 + 1/n)n. (C.3.2)

How does (C.3.2) behave as n increase?
Table C.3.1 shows a few values of (C.3.2) to five decimal places.

n (1 + 1/n)n (1 + 1/n)n

1 (1 + 1/1)1 2.00000
2 (1 + 1/2)2 2.25000
3 (1 + 1/3)3 2.37037

10 (1 + 1/10)10 2.59374
100 (1 + 1/100)100 2.70481

1000 (1 + 1/1000)1000 2.71692

Table C.3.1
The base, 1 + 1/n, approaches 1 as n increases, suggesting that (C.3.2)

may approach a number near 1. However, the exponent gets large, so we are
multiplying many numbers, all larger than 1. It turns out that as n increases
(1 + 1/n)n approaches the number e defined in Section 2.2. We can write

lim
x→0+

(1 + x)1/x = e.

The exponent, 1/x, is the reciprocal of x.
Knowing this we can figure out what happens when an account opens with

$1000, the annual interest rate is 5 percent, and the interest is compounded
more and more often. In that case we would be interested in

1000 lim
n→∞

(
1 +

0.05

n

)n

.

The exponent n is not the reciprocal of 0.05/n but(
1 +

0.05

n

)n

=

((
1 +

0.05

n

) n
0.05

)0.05

. (C.3.3)

The expression in parentheses has the form (1+x)1/x. Therefore, as n increases,(
1 + 0.05

n

)n
approaches e0.05, which is about 1.05127. No matter how often

interest is compounded, the $1000 would never grow beyond $1051.27.

April 22, 2012 Calculus



C.3– Bank Interest and the Annual Percentage Yield 157

The definition of e given in Section 2.2 has no obvious connection to the
fact that limx→0+(1+x)1/x equals the number e. It seems obvious, by thinking
in terms of bank accounts, that as n increases, so does (1 + 1/n)n. However,
as n increases, the base decreases and the exponent increases, producing two
competing influences. Without thinking about bank accounts, try showing
that (1 + 1/n)n does increase.

EXERCISES

1. A dollar is deposited at the beginning of the year in an account that pays an
interest rate r of 100% a year. Let f(t), for 0 ≤ t ≤ 1, be the amount in the account
at time t. Graph the function if the bank pays

(a) only simple interest, computed only at t = 1.

(b) compound interest, twice a year computed at t = 1/2 and 1.

(c) compound interest, three times a year computed at t = 1/3, 2/3, and 1.

(d) compound interest, four times a year computed at t = 1/4, 1/2, 3/4, and 1.

(e) Are the functions in (a), (b), (c), and (d) continuous?

(f) One could expect the account that is compounded more often than another
would always have more in it. Is that the case?

Calculus April 22, 2012



158 CHAPTER 2 INTRODUCTION TO CALCULUS

April 22, 2012 Calculus



Chapter 3

The Derivative

The two main applied concepts of calculus are defined with the aid of limits.
In this chapter we meet the first of these: the derivative of a function. The
derivative tells how rapidly or slowly a function changes. For instance, if the
function describes the position of a moving particle, the derivative tells us its
velocity.

The definition of a derivative rests on the notion of a limit. The particular
limits examined in Chapter 2 are the basis for finding the derivatives of all
functions of interest.

The goal of this chapter is twofold: to develop those techniques and to
impart an understanding of the meaning of a derivative.
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3.1 Velocity and Slope: Two Problems with

One Theme

This section discusses two problems that at first glance may seem unrelated.
The first concerns the slope of a tangent line to a curve. The second involves
velocity. A little arithmetic will show that they are both different versions of
one mathematical idea: the derivative.

Figure 3.1.1

Slope

Our first problem is important because it is related to finding the straight line
that most closely resembles a given graph near a point on the graph.

EXAMPLE 1 What is the slope of the tangent line to the graph of y = x2

at the point P = (2, 4), as shown in Figure 3.1.1?
In Section 2.1 we used a point Q on the curve near P to determine a

line that closely resembles the tangent line at (2, 4). Using Q = (2.01, 2.012)
and also Q = (1.99, 1.992), we found that the slope of the tangent line is
between 4.01 and 3.99. We did not find the slope of the tangent at (2, 4).
Rather than making more estimates by choosing points nearer (2, 4), such as
(2.00001, 2.000012), it is simpler to consider a typical point.

(a) (b)

Figure 3.1.2

SOLUTION Consider the line through P = (2, 4) and Q = (x, x2) when x is
close to 2, but not equal to 2. (See Figure 3.1.2(a).) It has slope

x2 − 22

x− 2
.
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To find out what happens to the quotient as Q moves closer to P (and x moves
closer to 2) apply the techniques of limits developed in Chapter 2. We have

lim
x→2

x2 − 22

x− 2
= lim

x→2

(x + 2)(x− 2)

x− 2
= lim

x→2
(x + 2) = 4.

Thus, we expect the tangent line to y = x2 at (2, 4) to have slope 4.
Figure 3.1.2(b) shows how secants approximate the tangent line. It suggests

a blowup of a small part of the curve y = x2. �
We never had to make any estimates with specific choices of the nearby

point Q. We did not even have to draw the curve.

Velocity

If an airplane or automobile is moving at a constant velocity, we know that
distance traveled equals velocity times time. Thus

velocity =
distance traveled

elapsed time
.

If the velocity is not constant, we still may speak of its average velocity, which
is defined as

average velocity =
distance traveled

elapsed time
.

If a trip from San Francisco to Los Angeles, a distance of 400 miles, takes 8
hours, the average velocity is 400/8 or 50 miles per hour.

Suppose that up to time t1 you have traveled a distance D1, while up to
time t2 you have traveled a distance D2, where t2 > t1. Then during the time
interval [t1, t2] the distance traveled is D2 − D1. Thus the average velocity
during the time interval [t1, t2], which has duration t2 − t1, is

average velocity =
D2 −D1

t2 − t1
.

The arithmetic of average velocity is the same as that for the slope of a line.
The next problem shows how to find the velocity at any instant for an

object whose velocity is not constant.

EXAMPLE 2 A rock initially at rest falls 16t2 feet in t seconds. What is
its velocity after 2 seconds? Whatever it turns out to be, it will be called the
instantaneous velocity.

SOLUTION
To start, make an estimate by finding the average velocity of the rock

during a short time interval, say from 2 to 2.01 seconds. At the start of
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(a) (b)

Figure 3.1.3 Note: (b) needs to have 2.01 replaced by t.

this interval the rock has fallen 16(22) = 64 feet. By its end it has fallen
16(2.012) = 16(4.0401) = 64.6416 feet. So, during 0.01 seconds the rock fell
0.6416 feet. Its average velocity is

average velocity =
64.6416− 64

2.01− 2
=

0.6416

0.01
= 64.16 feet per second.

This is an estimate of the velocity at time t = 2 seconds. (See Figure 3.1.3(a).)
Rather than make another estimate with the aid of a shorter interval of

time, let us consider the typical time interval from 2 to t seconds, t > 2.
(Although we will keep t > 2, estimates could just as well be made with
t < 2.) During t− 2 seconds the rock travels 16(t2)− 16(22) = 16(t2− 22) feet,
as shown in Figure 3.1.3(b). The average velocity of the rock is

average velocity =
16t2 − 16(22)

t− 2
=

16(t2 − 22)

t− 2
feet per second.

When t is close to 2, what happens to the average velocity? It approaches

lim
t→2

16(t2 − 22)

t− 2
= 16 lim

t→2

t2 − 22

t− 2
= 16 lim

t→2
(t + 2) = 16 · 4 = 64 feet per second.

We say that the (instantaneous) velocity at time t = 2 is 64 feet per second.
�

Even though Examples 1 and 2 seem unrelated, their solutions turn out
to be practically identical: the slope in Example 1 is approximated by the
quotient

x2 − 22

x− 2
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and the velocity in Example 2 is approximated by the quotient

16t2 − 16(22)

t− 2
= 16 · t

2 − 22

t− 2
.

The only difference between the solutions is that the second quotient has a
factor of 16 and x is replaced with t. This may not be too surprising, since
the functions involved, x2 and 16t2 differ by a factor of 16. (That the inde-
pendent variable is named t in one case and x in the other does not affect the
computations.)

The Derivative of a Function

In both the slope and velocity problems we were lead to studying similar limits.
For the function x2 it was

x2 − 22

x− 2
as x approaches 2.

For the function 16t2 it was

16t2 − 16(22)

t− 2
as t approaches 2.

In both cases we formed the change in outputs divided by change in inputs and
then found the limit of this quotient as the change in inputs became smaller
and smaller. This can be done for other functions, and brings us to one of the
two key ideas in calculus, the derivative of a function.

DEFINITION (Derivative of a function at a number a) Let f
be a function that is defined in an open interval that contains the
number a. If

lim
x→a

f(x)− f(a)

x− a

exists, it is called the derivative of f at a, and is denoted f ′(a).
Read f ′(a) as “f prime at
a” or “the derivative of f at
a.”

In this case the function f is said to be differentiable at a.

EXAMPLE 3 Find the derivative of f(x) = 16x2 at 2.
SOLUTION In this case, f(x) = 16x2 for any input x. By definition, its
derivative at 2 is

lim
x→2

f(x)− f(2)

x− 2
= lim

x→2

16x2 − 16(22)

x− 2
= 16 lim

x→2

x2 − 22

x− 2
= 16 lim

x→2
(x + 2) = 64.

We say that “the derivative of the function f(x) at 2 is 64” and write f ′(2) =
64. �

Calculus April 22, 2012



164 CHAPTER 3 THE DERIVATIVE

Now that we have the derivative of f , we can define the slope of its graph
at a point (a, f(a)) as the value of the derivative, f ′(a). Then we define the
tangent line at (a, f(a)) as the line through (a, f(a)) whose slope is f ′(a).

EXAMPLE 4 Find the derivative of ex at a.
SOLUTION We must find

lim
x→a

ex − ea

x− a
. (3.1.1)

The limit is not obvious. Let us write x as a + h and see what happens as h
approaches 0. The denominator x− a is just h. Then (3.1.1) now reads

lim
h→0

ea+h − ea

h
.

This form of the limit is more convenient:

lim
h→0

ea+h − ea

h
= lim

h→0

eaeh − ea

h
law of exponents

= ea lim
h→0

eh − 1

h
factor out a constant

= ea · 1 Section 2.2
= ea.

So the limit is ea. That is, the derivative of ex is ex itself. �

Differentiability and Continuity

If a function is differentiable at each point in its domain the function is said
to be differentiable.

A small piece of the graph of a differentiable function at a looks like part
of a straight line. You can check this by zooming in on the graph of a function
of your choice. Differential calculus can be described as the study of functions
whose graphs locally look almost like a line.

It is no surprise that a differentiable function is always continuous. To show
that a function is continuous at an argument a in its domain we must show
that limx→a f(x) equals f(a), which amounts to showing limx→a(f(x)− f(a))
equals 0. To relate this limit to f ′(a) we rewrite it:

lim
x→a

(f(x)− f(a)) = lim
x→a

f(x)− f(a)

x− a
(x− a)

= lim
x→a

(
f(x)− f(a)

x− a

)
lim
x→a

(x− a)

= f ′(a) · 0 ( definition of the derivative)
= 0.
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So, f is continuous at a.
A function can be continuous yet not differentiable. For instance, f(x) =

|x| is continuous but not differentiable at 0, as Figure 3.1.4 suggests.

1

1.0

2

2.0

1.5

0.5

0

0.0

−1−2

Figure 3.1.4

Summary

From a mathematical point of view, the problems of finding the slope of the
tangent line and the velocity of the rock are the same. In each case estimates
lead to the same type of quotient, f(x)−f(a)

x−a
. The behavior of this difference

quotient is studied as x approaches a. In each case the answer is a limit, called
the derivative of the function at the given number, a. Finding the derivative
of a function is called “differentiating” the function.
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EXERCISES for Section 3.1

1. Let g be a function and b a number. Define the “derivative of g at b”.

2. How is the tangent line to the graph of f at (a, f(a)) defined?

3.

(a) Find the slope of the tangent line to y = x2 at (4, 16).

(b) Use it to draw the tangent line to the curve at (4, 16).

4.

(a) Find the slope of the tangent line to y = x2 at (−1, 1).

(b) Use it to draw the tangent line to the curve at (−1, 1).

Exercises 5 to 17 concern slope. Use the technique of Example 1 to find the slope
of the tangent line to the curve at the point.
5. y = x2 at the point (3, 32) = (3, 9)

6. y = x2 at (1
2 ,
(

1
2

)2) = (1
2 , 1

4)
7. y = x3 at (2, 23) = (2, 8)
8. y = x3 at (−2, (−2)3) = (−2,−8)
9. y = sin(x) at (0, sin(0)) = (0, 0)
10. y = cos(x) at (0, cos(0)) = (0, 1)
11. y = cos(x) at (π/4, cos(π/4)) = (π/4,

√
2/2)

12. y = sin(x) at (π/6, sin(π/6)) = (π/6, 1/2)
13. y = 2x at (1, 21) = (1, 2)
14. y = 4x at (1/2, 41/2) = (1/2, 2)
15.

(a) Graph y = 1/x and, by eye, draw the tangent at (2, 1/2).

(b) Using a ruler, measure a rise-run triangle to estimate the slope of the tangent
line drawn in (a).

(c) Using no pictures at all, find the slope of the tangent line to the curve y = 1/x
at (2, 1/2).

16.
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(a) Sketch the graph of y = x3 and the tangent line at (0, 0).

(b) Find the slope of the tangent line to the curve y = x3 at the point (0, 0)

(Be careful when sketching the graph near (0, 0). In this case the tangent line
crosses the curve.)

17.

(a) Sketch the graph of y = x2 and the tangent line at (1, 1).

(b) Find the slope of the tangent line to the curve y = x2 at the point (0, 0)

In Exercises 18 to 21 use the method of Example 2 to find the velocity of the rock
after
18. 3 seconds
19. 1

2 second
20. 1 second
21. 1

4 second

22. An object travels t3 feet in the first t seconds.

(a) How far does it travel during the time interval from 2 to 2.1 seconds?

(b) What is the average velocity during that time interval?

(c) Let h be any positive number. Find the average velocity of the object from
time 2 to 2 + h seconds. (To find (2 + h)3, multiply out the product (2 +
h)(2 + h)(2 + h).)

(d) Find the velocity of the object at 2 seconds by letting h approach 0 in the
result found in (c).

23. An object travels t3 feet in the first t seconds.

(a) Find the average velocity during the time interval from 3 to 3.01 seconds?

(b) Find its average velocity during the time interval from 3 to t seconds, t > 3.

(c) By letting t approach 3 in the result found in (b), find the velocity of the
object at 3 seconds.

Exercises 24 and 25 illustrate a different notation to find the slope of the tangent.
24. For the parabola y = x2:
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(a) Find the slope of the line through P = (2, 4) and Q = (2 + h, (2 + h)2), where
h 6= 0.

(b) Show that as h approaches 0, the slope in (a) approaches 4.

25. For the curve y = x3.

(a) Find the slope of the line through P = (2, 8) and Q = (1.9, 1.93).

(b) Find the slope of the line through P = (2, 8) and Q = (2.01, 2.013).

(c) Find the slope of the line through P = (2, 8) and Q = (2 + h, (2 + h)3), where
h 6= 0.

(d) Show that as h approaches 0, the slope in (a) approaches 12.

26. For the curve y = sin(x).

(a) Find the slope of the line through P = (0, 0) and Q = (−0.1, sin(−0.1)).

(b) Find the slope of the line through P = (0, 0) and Q = (0.01, sin(0.01)).

(c) Find the slope of the line through P = (0, 0) and Q = (h, sin(h)), where h 6= 0.

(d) Show that as h approaches 0, the slope in (c) approaches 1.

(e) Use (d) to draw the tangent line to y = sin(x) at (0, 0).

27. For the curve y = cos(x).

(a) Find the slope of the line through P = (0, 1) and Q = (−0.1, cos(−0.1)).

(b) Find the slope of the line through P = (0, 1) and Q = (0.01, cos(0.01)).

(c) Find the slope of the line through P = (0, 1) and Q = (h, cos(h)), where
h 6= 0.

(d) Show that as h approaches 0, the slope in (c) approaches 0.

(e) Use (d) to draw the tangent line to y = cos(x) at (0, 1).

28. For the curve y = 2x.

(a) Find the slope of the line through P = (2, 22) and Q = (1.9, 21.9).
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(b) Find the slope of the line through P = (2, 22) and Q = (2.1, 22.1).

(c) Find the slope of the line through P = (2, 22) and Q = (2 + h, 22+h), where
h 6= 0.

(d) Show that the slope of the curve y = 2x at (2, 22) is approximately 4(0.693) =
2.772.

(e) Use (d) to draw the tangent line to y = 2x at (2, 4).

29. For the curve y = ex.

(a) Find the slope of the line through P = (−0.5, e−0.5) and Q = (−0.6, e−0.6).

(b) Find the slope of the line through P = (−0.5, e−0.5) and Q = (−0.49, e−0.49).

(c) Find the slope of the line through P = (−0.5, e−0.5) and Q = (−0.5 +
h, e−0.5+h), where h 6= 0.

(d) Show that as h approaches 0, the slope in (c) approaches e−0.5.

30. Show that the slope of the curve y = 2x at (3, 8) is approximately 8(0.693) =
5.544.

31.

(a) Use the method of this section to find the slope of the curve y = x3 at (1, 1).

(b) What does the graph of y = x3 look like near (1, 1)?

32.

(a) Use the method of this section to find the slope of the curve y = x3 at (−1,−1).

(b) What does the graph of y = x3 look like near (−1,−1)?

33.

(a) Draw the curve y = ex for x in the interval [−2, 1].

(b) Using a straightedge, draw the tangent line at (1, e) as well as you can.

(c) Estimate the slope of the tangent line by measuring its rise and run.
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(d) Using the derivative of ex, find the slope of the curve at (1, e).

34.

(a) Sketch the curve y = ex for x in [−1, 1].

(b) Where does the curve cross the y-axis?

(c) What is the (smaller) angle between the graph of y = ex and the y-axis at the
point found in (b)?

The phrase “slope of the graph of y = f(x)” is often shortened to “slope of y = f(x),”
as in Exercises 35 and 36.
35. With the aid of a calculator, estimate the slope of y = 2x at x = 1, using the
intervals

(a) [1, 1.1]

(b) [1, 1.01]

(c) [0.9, 1]

(d) [0.99, 1]

36. With the aid of a calculator, estimate the slope of y = x+1
x+2 at x = 2, using

the intervals

(a) [2, 2.1]

(b) [2, 2.01]

(c) [2, 2.001]

(d) [1.999, 2]

37. Estimate the derivative of sin(x) at x = π/3

(a) to two decimal places.

(b) to three decimal places.

38. Estimate the derivative of ln(x) at x = 2
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(a) to two decimal places.

(b) to three decimal places.

The ideas common to both slope and velocity also appear in other applications.
Exercises 39 to 42 present the same ideas in biology, economics, and physics.
39. A bacterial culture has a mass of t2 grams after t minutes of growth.

(a) How much does it grow during the time interval [2, 2.01]?

(b) What is the average rate of growth during the time interval [2, 2.01]?

(c) What is the instantaneous rate of growth when t = 2?

40. A thriving business has a profit of t2 million dollars in its first t years. Thus
from time t = 3 to time t = 3.5 (the first half of its fourth year) it has a profit of
(3.5)2 − 32 million dollars, giving an annual rate of

(3.5)2 − 32

0.5
= 6.5 million dollars per year.

(a) What is its annual rate of profit during the time interval [3, 3.1]?

(b) What is its annual rate of profit during the time interval [3, 3.01]?

(c) What is its instantaneous rate of profit after 3 years?

Exercises 41 and 42 concern density.
41. The mass of the leftmost x centimeters of a nonhomogeneous string 10
centimeters long is x2 grams, as shown in Figure 3.1.5. For instance, the string in
the interval [0, 5] has a mass of 52 = 25 grams and the string in the interval [5, 6]
has mass 62 − 52 = 11 grams. The average density of any part of the string is its
mass divided by its length, total mass

length grams per centimeter.

(a) Consider the leftmost 5 centimeters of the string, the middle 2 centimeters of
the string, and the rightmost 2 centimeters of the string. Which piece has the
largest mass?

(b) Which piece is densest?

(c) What is the mass of the string in the interval [3, 3.01]?

(d) Using the interval [3, 3.01], estimate the density at 3.
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(e) Using the interval [2.99, 3], estimate the density at 3.

(f) By considering intervals of the form [3, 3 + h], h positive, find the density at
the point 3 centimeters from the left end.

(g) By considering intervals of the form [3 + h, 3], h negative, find the density at
the point 3 centimeters from the left end.

Figure 3.1.5
42. The left x centimeters of a string have a mass of x2 grams.

(a) What is the mass of the string in the interval [2, 2.01]?

(b) Using the interval [2, 2.01], estimate the density at 2.

(c) Using the interval [1.99, 2], estimate the density at 2.

(d) By considering intervals of the form [2, 2 + h], h positive, find the density at
the point 2 centimeters from the left end.

(e) By considering intervals of the form [2 + h, 2], h negative, find the density at
the point 2 centimeters from the left end.

43.

(a) Graph the curve y = 2x2 + x.

(b) By eye, draw the tangent line to the curve at the point (1, 3). Using a ruler,
estimate its slope.

(c) Sketch the line that passes through the point (1, 3) and the point (x, 2x2 +x).

(d) Find the slope of the line in (c).

(e) Letting x get closer and closer to 1, find the slope of the tangent line at (1, 3).

(f) How close was your estimate in (b)?
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44. An object travels 2t2 + t feet in t seconds.

(a) Find its average velocity during the interval of time [1, x], for x > 1.

(b) Letting x get closer and closer to 1, find the velocity at time 1.

45. Find the slope of the tangent line to the curve y = x2 of Example 1 at
P = (x, x2). To do this, consider the slope of the line through P and the nearby
point Q = (x + h, (x + h)2) and let h approach 0.

46. Find the velocity of the falling rock of Example 2 at any time t. To do
this, consider the average velocity during the time interval [t, t + h] and then let h
approach 0.

47. Does the tangent line to the curve y = x2 at the point (1, 1) pass through the
point (6, 12)?

48.

(a) Graph the curve y = 2x as well as you can for −2 ≤ x ≤ 3.

(b) Using a straightedge, draw as well as you can a tangent to the curve at (2, 4).
Estimate its slope by using a ruler to draw and measure a rise-and-run triangle.

(c) Using a secant through (2, 4) and (x, 2x) for x near 2, estimate the slope of
the tangent to the curve at (2, 4). (Choose particular values of x and use your
calculator to create a table of the results.)

49. Using your calculator estimate the slope of the tangent line to the graph of
f(x) = sin(x) at

(
π
4 ,

√
2

2

)
to two decimal places.

50.

(a) Sketch the curve y = x3 − x2.

(b) Using the method of the nearby point, find the slope of the tangent line to
the curve at the point (a, a3 − a2).

(c) Find all points on the curve where the tangent line is horizontal.

(d) Find all points on the curve where the tangent line has slope 1.
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51. Repeat Exercise 50 for the curve y = x3 − x.

52. An astronaut is traveling from left to right along the curve y = x2. When she
shuts off the engine, she will fly off along the line tangent to the curve at the point
where she is at the moment the engine turns off. At what point should she shut off
the engine in order to reach the point

(a) (4, 9)?

(b) (4,−9)?

53. See Exercise 52. Where can an astronaut who is traveling from left to right
along y = x3 − x shut off the engine and pass through the point (2, 2)?

54.

Sam: I don’t like the book’s definition of the derivative.

Jane: Why not?

Sam: I can do it without limits, and more easily.

Jane: How?

Sam: Just define the derivative of f at a as the slope of the tangent line at (a, f(a))
on the graph of f .

Jane: Something must be wrong with that.

Who is right, Sam or Jane?
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3.2 The Derivatives of the Basic Functions

In this section we use the definition of the derivative to find the derivatives of
the important functions xa (a rational), ex, sin x, and cos x. We also introduce
some of the standard notations for the derivative. For convenience, we begin
by repeating the definition of the derivative.

DEFINITION (Derivative of a function at a number) Assume
that the function f is defined in an open interval containing a. If

lim
x→a

f(x)− f(a)

x− a
(3.2.1)

exists, it is called the derivative of f at a.

There are several notations for the quotient that appears in (3.2.1) and
also for the derivative. Sometimes it is convenient to use a + h instead of x
and let h approach 0. Then, (3.2.1) reads

lim
h→0

f(a + h)− f(a)

h
. (3.2.2)

Expression (3.2.2) says the same thing as (3.2.1): determine how the quotient,
change in output divided by change in input, behaves as the change in input
gets smaller and smaller.

Sometimes it is useful to call the change in output “∆f” ∆, pronounced del-t e, is the
upper-case Greek letter
corresponding to the Latin
“D”. In mathematics,
“∆f ,” read ‘delta eff,”
generally indicates a
difference or change in f .

and the change
in input “∆x.” That is, ∆f = f(x)− f(a) and ∆x = x− a. Then

f ′(a) = lim
∆x→0

∆f

∆x
.

There is nothing sacred about the letters a, x, and h. One could say

f ′(x) = lim
t→x

f(t)− f(x)

t− x

or

f ′(x) = lim
u→x

f(u)− f(x)

u− x
.

The symbol “f ′(a)” is read aloud as “f prime at a” or “the derivative of f
at a.” The symbol f ′(x) is read similarly. The notation f ′(x) reminds us that
f ′, like f , is a function. For each input x the derivative, f ′(x), is the output.
The derivative of the function f is also written as D(f).

For instance, the derivative of the squaring function, x2, is

lim
u→x

u2 − x2

u− x
= lim

u→x

(u− x)(u + x)

u− x
= lim

u→x
(u + x) = 2x.
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The derivative of a specific function, in this case x2, is denoted (x2)′ or D(x2).
Then, D(x2) = 2x is read aloud as “the derivative of x2 is 2x.” This is
shorthand for “the derivative of the function that assigns x2 to x is the function
that assigns 2x to x.” Since the value of the derivative depends on x, the
derivative is a function.

EXAMPLE 1

0

x

10

y

0

−5

−1 1 2

5

−2

y=x^3                   

y=3x^2                  

Figure 3.2.1

Find the derivative of x3 at a.
SOLUTION

(x3)′ = lim
x→a

x3 − a3

x− a
= 3a2.

This limit was evaluated by noticing that it is one of the four limits in Sec-
tion 2.2. We can write (x3)′ = 3x2 or D(x3) = 3x2. �

In the same manner, lim
x→a

xn − an

x− a
= n · an−1 implies that for any positive

integer n, the derivative of xn is nxn−1. The exponent n becomes the coefficient
and the exponent of x shrinks from n to n− 1:

Derivative of xn

(xn)′ = nxn−1 where n is a positive integer.

The next example treats an exponential function with a fixed base.
EXAMPLE 2 Find the derivative of 2x.

SOLUTION

D(2x) = lim
h→0

2(x+h) − 2x

h

= lim
h→0

2x2h − 2x

h

= lim
h→0

2x 2h − 1

h

= 2x lim
h→0

2h − 1

h
.

In Section 2.2 we found that limh→0
2h−1

h
≈ 0.693. Thus,

D(2x) ≈ (0.693)2x.

�
No one wants to remember the (approximate) constant 0.693, which ap-

pears when we use base 2. Recall that in Section 3.1 we found that the deriva-
tive of ex is ex, with no multiplying constant.

We emphasize this simple and important formula
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Derivative of ex

D(ex) = ex.

The function ex has the remarkable property that it equals its derivative.
Next, we turn to trigonometric functions.

EXAMPLE 3 Find the derivative of sin(x).
SOLUTION Recall that sin(a + b) =

sin(a) cos(b)+ cos(a) sin(b).

D(sin x) = lim
h→0

sin(x + h)− sin(x)

h

= lim
h→0

sin(x) cos(h) + cos(x) sin(h)− sin(x)

h

= lim
h→0

sin(x)(cos(h)− 1) + cos(x) sin(h)

h

= lim
h→0

sin x
cos(h)− 1

h
+ cos(x)

sin(h)

h
.

In Section 2.2 we found that limh→0
sin(h)

h
= 1 and limh→0

1−cos(h)
h

= 0. Thus

limh→0
cos(h)−1

h
= 0 and

D(sin x) = (sin x)(0) + (cos x)(1) = cos(x).

�
We have the important formula

Derivative of sin(x)

D(sin(x)) = cos(x).

If we graph y = sin(x) (see Figure 3.2.2), and consider its shape, the
formula D(sin(x)) = cos(x) is not a surprise.

3p/2pp/2-p/2

x

1

5p/22p-1

y=sin(x)                

y=cos(x)                

Figure 3.2.2

For instance, for x in (−π/2, π/2)
the slope is positive. So is cos(x). For x in (π/2, 3π/2) the slope of the sine
curve is negative. So is cos(x). Since sin(x) has period 2π, we would expect
its derivatve also to have period 2π. Indeed, cos(x) has period 2π.

Similarly, using the definition of the derivative and the identity cos(a+b) =
cos(a) cos(b)− sin(a) sin(b), we have the formula

Derivative of cos(x)

D(cos(x)) = − sin(x).
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Derivatives of Other Power Functions

We showed that if n is a positive integer, D(xn) = nxn−1. Now let us find the
derivative of power functions xn where n is not a positive integer.

EXAMPLE 4 Find the derivative of x−1 = 1
x
.

SOLUTION Before we calculate the necessary limit, let’s pause to see how
the slope of y = 1/x behaves. Figure 3.2.3

Figure 3.2.3

shows that the slope is always
negative. For x near 0, the absolute value of the slope is large, but when |x|
is large, the slope is near 0.

Now, let us find the derivative of 1/x:

D(1/x) = lim
t→x

1/t− 1/x

t− x

= lim
t→x

1

t− x

(
x− t

xt

)
( since 1

t −
1
x = x−t

xt )

= lim
t→x

−1

xt

= − 1

x2
.

As a check, we see that −1/x2 is always negative, has large absolute value
when x is near 0, and is near 0 when |x| is large. �

It is worth memorizing that

Derivative of x−1

D

(
1

x

)
= − 1

x2
.

Or, in exponential notation,

D(x−1) = −x−2.

The second form fits the pattern established for positive integers n, D(xn) =
nxn−1.

EXAMPLE 5 Find the derivative of x2/3.
SOLUTION Once again we use the definition of the derivative:

D(x2/3) = lim
t→x

t2/3 − x2/3

t− x
.
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A bit of algebra will help us find the limit. We write the four terms t2/3, x2/3,
t, and x as powers of t1/3 and x1/3. Thus

D(x2/3) = lim
t→x

(
t1/3
)2 − (x1/3

)2
(t1/3)

3 − (x1/3)
3 .

Because a2 − b2 = (a− b)(a + b) and a3 − b3 = (a− b)(a2 + ab + b2), we find

D(x2/3) = lim
t→x

((
t1/3
)
−
(
x1/3

)) ((
t1/3
)

+
(
x1/3

))
((t1/3)− (x1/3))

(
(t1/3)

2
+ (t1/3) (x1/3) + (x1/3)

2
)

= lim
t→x

(
t1/3
)

+
(
x1/3

)
(t1/3)

2
+ (t1/3) (x1/3) + (x1/3)

2

=

(
x1/3

)
+
(
x1/3

)
(x1/3)

2
+ (x1/3) (x1/3) + (x1/3)

2

= 2x1/3

3x2/3 = 2
3
x−1/3.

In short,

D(x2/3) =
2

3
x−1/3.

This formula follows the pattern we found for D(xn) for n = 1, 2, 3, . . . and
n = −1. The exponent of x becomes the coefficient and the exponent of x is
lowered by 1. �

The method used in Example 5 applies to any positive rational exponent.
In the next two sections we will show how the result extends first to negative
rational exponents and then to irrational exponents. In all cases the formula
will be the same. We state the general result here, but remember that — so
far — we have justified it only for positive rational exponents and for −1.

Derivative of Power Functions xa

For any fixed number a, D(xa) = axa−1.

The formula holds for values of x where both xa and xa−1 are defined. For
instance, x1/2 =

√
x is defined for x ≥ 0, but its derivative 1

2
x−1/2 is defined

only for x > 0.
Because the derivative of the square root function occurs so often we em-

phasize its formula

Derivative of Square Root Function (as Power Function)

D(x1/2) =
1

2
x−1/2.
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or, in terms of the usual square root sign,

Derivative of Square Root Function (
√

x)

D(
√

x) =
1

2
√

x
.

Another Notation for the Derivative

We have used the notations f ′ and D(f) for the derivative of a function f .
There is another notation that is also convenient.

If y = f(x), the derivative is denoted by the symbols

dy

dx
or

df

dx
.

The symbol dy
dx

is read as “the derivative of y with respect to x” or “dee y, dee
x.”

In this notation the derivative of x3 is written

d (x3)

dx
.

If the function is expressed in terms of another letter, such as t, we would write

d (t3)

dt
.

Keep in mind that in the notations df/dx and dy/dx, the symbols df , dy,
and dx have no meaning by themselves. The symbol dy/dx should be thought
of as a single entity, like the numeral 8, which we do not think of as formed of
two 0’s.

In the study of motion, Newton’s dot notation is often used. If x is a
function of time t, then ẋ denotes the derivative dx/dt.

Summary

In this section we saw why limits are important in calculus. We need them
to define the derivative of a function. The definition can be stated in several
ways, but each one says, informally, “look at how a small change in input
changes the output.” Here is the formal definition, in various notations:

f ′(a) = lim
h→0

f(a + h)− f(a)

h
f ′(x) = lim

x→0

f(x + h)− f(x)

h

f ′(x) = lim
t→x

f(t)− f(x)

t− x
f ′(x) = lim

∆x→0

∆f

∆x
.
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The following derivatives should be memorized. However, if one is forgotten
it can be recovered by using the definition as a limit.

Function Derivative
f(x) f ′(x)
xa axa−1

ex ex

sin(x) cos(x)
cos(x) − sin(x)
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EXERCISES for Section 3.2

1. Show that D(cos(x)) = − sin(x). (cos(a + b) = cos(a) cos(b)− sin(a) sin(b).)

Using the definition of the derivative, compute the appropriate limit to find the
derivatives of the functions in Exercises 2 to 12.
2. 1/(x + 2)

3. 2x− x2

4. 3x. (Use your calculator to estimate the coefficient that appears.)

5. 6x3

6. x4/3

7. 5x2

8. 4 sin(x)

9. 2ex + sin(x)

10. x2 + x3

11. 1/(2x + 1)

12. 1/x2

13. Use the formulas obtained for the derivatives of ex, xa, sin(x), and cos(x) to
evaluate the derivatives of the given function at the given input.

(a) ex at −1

(b) x1/3 at −8

(c) 3
√

x at 27

(d) cos(x) at π/4

(e) sin(x) at 2π/3

14. Use the formulas obtained for the derivatives of ex, xa, sin(x), and cos(x) to
evaluate the derivatives of the given function at the given input.

(a) ex at 0

(b) x2/3 at −1

(c)
√

x at 25

(d) cos(x) at −π

(e) sin(x) at π/3
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15. State the definition of the derivative of a function in words, using no mathe-
matical symbols.
16. State the definition of the derivative of g(t) at b as a mathematical formula,
with no words.

In Exercises 17 to 22 use the definition of the derivative to show that the given
equation is correct.
17. D (e−x) = −e−x

18. D
(
e3x
)

= 3e3x

19. D(1/ cos(x)) = sin(x)/ cos2(x)
20. D(tan(x)) = 1 + tan2(x) = sec2(x)
(Use the identity tan(A−B) = tan(A)−tan(B)

1+tan(A) tan(B))

21. D(sin(2x)) = 2 cos(2x)
22. D(cos(x/2)) = −1/2 sin(x/2)

23. This Exercise shows why in calculus angles are measured in radians. Let
Sin(x) denote the sine of an angle of x degrees and let Cos(x) denote the cosine of
an angle of x degrees.

(a) Graph y = Sin(x) on the interval [−180, 360], using the same scale on the x-
and y-axes.

(b) Find lim
x→0

Sin(x)
x

.

(c) Find lim
x→0

1− Cos(x)
x

.

(d) Using the definition of the derivative, differentiate Sin(x).

24. Use a limit to show that D
(
(x−5

)
= −5x−6.
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Figure 3.2.4
Let f be a differentiable function and a a number such that f ′(a) is not zero. The
tangent to the graph of f at A = (a, f(a)) meets the x-axis at a point B = (b, 0),
see Figure 3.2.4. The subtangent of f is the line AB. Its length is |a− b|.
Exercises 25 and 26 involve the subtangent of a function.
25. Show that for ex the length of the subtangent is the same for all values of a.

26. Find the length of the subtangent at (a, f(a)) for any differentiable function
f . (Assume f ′(a) is not zero.)
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3.3 Shortcuts for Computing Derivatives

This section develops methods for finding the derivative of a function, or what
is called differentiating a function. Using them will make it easy to find, for
instance, the derivative of

(3 + 4x + 5x2)ex

sin(x)

without going back to the definition of the derivative and finding the limit of
a complicated quotient.

We first find the derivative of a constant function.

The Derivative of a Constant Function

Constant Rule
The derivative of a constant function f(x) = C is 0.

dC

dx
= (C)′ = 0

Proof

Let C be a number and let f be the constant function, f(x) = C for all inputs
x. By the definition of a derivative,

f ′(x) = lim
∆x→0

f(x + ∆x)− f(x)

∆x
.

∆x is another name for hSince f has the same output C for all inputs,

f(x + ∆x) = C and f(x) = C.

Thus

f ′(x) = lim
∆x→0

C − C

∆x

= lim
∆x→0

0

∆x

= lim
∆x→0

0 ( since ∆x 6= 0 )

= 0.

This shows the derivative of a constant function is 0 for all x. •
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From two points of view, the constant rule is no surprise.

(0,c)y

x

Figure 3.3.1

Since the graph
of f(x) = C is a horizontal line, it coincides with each of its tangent lines,
which have slope 0, as can be seen in Figure 3.3.1. Also, if we think of x as
time and f(x) as the position of a particle at time x, the constant rule implies
that a stationary particle has zero velocity.

Derivatives of f + g and f − g

The next theorem asserts that if the functions, f and g have derivatives, so
does their sum f + g and

d

dx
(f + g) =

df

dx
+

dg

dx
.

In other words, “the derivative of the sum is the sum of the derivatives.”
Equivalently, (f + g)′ = f ′+ g′ and D(f + g) = D(f)+D(g). Similar formulas
hold for the derivative of f − g.

Sum Rule and Difference Rule
If f and g are differentiable functions, then so are f + g and f − g. The sum
rule and difference rule for computing their derivatives are

(f + g)′ = f ′ + g′ ( sum rule )
(f − g)′ = f ′ − g′. ( difference rule )

Proof

To justify this we go back to the definition of the derivative. To begin, we give
the function f + g the name u, that is, u(x) = f(x) + g(x). We will examine

lim
∆x→0

u(x + ∆x)− u(x)

∆x

or, equivalently,

lim
∆x→0

∆u

∆x
. (3.3.1)

To evaluate (3.3.1), we will express ∆u in terms of ∆f and ∆g. Here are the
details:

∆u = u(x + ∆x)− u(x)
= (f(x + ∆x) + g(x + ∆x))− (f(x) + g(x)) ( definition of u )
= (f(x) + ∆f) + (g(x) + ∆g)− (f(x) + g(x)) ( definition of ∆f and ∆g )
= ∆f + ∆g

April 22, 2012 Calculus



§ 3.3 SHORTCUTS FOR COMPUTING DERIVATIVES 187

All told, ∆u = ∆f + ∆g. The change in u is the change in f plus the change
in g.

We can now evaluate (3.3.1):

lim
∆x→0

∆u

∆x
= lim

∆x→0

∆f + ∆g

∆x
= lim

∆x→0

∆f

∆x
+ lim

∆x→0

∆g

∆x
= f ′(x) + g′(x).

Thus, u = f + g is differentiable and

u′(x) = f ′(x) + g′(x).

A similar argument applies to f − g. •

The sum and difference rules extend to any finite number of differentiable
functions. For example,

(f + g + h)′ = f ′ + g′ + h′

(f − g + h)′ = f ′ − g′ + h′.

EXAMPLE 1 Using the sum rule, differentiate x2 + x3 + cos(x) + 3.
SOLUTION

D (x2 + x3 + cos(x) + 3) = D(x2) + D(x3) + D(cos(x)) + D(3)
= 2x2−1 + 3x3−1 + (− sin(x)) + 0
= 2x + 3x2 − sin(x).

�

EXAMPLE 2 Differentiate x4 −
√

x− ex.
SOLUTION

d
dx

(x4 −
√

x− ex) = d
dx

(x4)− d
dx

(
√

x)− d
dx

(ex)
= 4x3 − 1

2
√

x
− ex.

�

The Derivative of fg

The following theorem, concerning the derivative of the product of two func-
tions, may be surprising, for it turns out that the derivative of the product is
not the product of the derivatives. The formula is more complicated than the
one for the derivative of the sum. It asserts that “the derivative of the product
is the derivative of the first function times the second plus the first function
times the derivative of the second.”
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Product Rule
If f and g are differentiable functions, then so is their product fg. Its derivative
is given by

(fg)′ = f ′g + fg′.

Proof

The proof is similar to that for the sum and difference rules. This time we
give the product fg the name u. Then we express ∆u in terms of ∆f and
∆g. Finally, we determine u′(x) by examining lim∆x→0

∆u
∆x

. These steps are
practically forced upon us.

We have

u(x) = f(x)g(x) and u(x + ∆x) = f(x + ∆x)g(x + ∆x).

Rather than subtract u(x) from u(x + ∆x) directly, we write

f(x + ∆x) = f(x) + ∆f and g(x + ∆x) = g(x) + ∆g.

Then

u(x + ∆x) = (f(x + ∆x)) (g(x + ∆x))
= (f(x) + ∆f) (g(x) + ∆g)
= f(x)g(x) + (∆f)g(x) + f(x)∆g + (∆f)(∆g).

Hence

∆u = u(x + ∆x)− u(x)
= f(x)g(x) + (∆f)g(x) + f(x)(∆g) + (∆f)(∆g)− f(x)g(x)
= (∆f)g(x) + f(x)(∆g) + (∆f)(∆g)

and
∆u

∆x
=

(∆f)g(x) + f(x)(∆g) + (∆f)(∆g)

∆x

=
∆f

∆x
g(x) + f(x)

∆g

∆x
+ ∆f

∆g

∆x
.

As ∆x → 0, ∆g/∆x → g′(x) and ∆f/∆x → f ′(x). Furthermore, because
f is differentiable and hence continuous, ∆f → 0 as x→ 0. It follows that

lim
∆x→0

∆u

∆x
= f ′(x)g(x) + f(x)g′(x) + 0 · g′(x).

Therefore, u is differentiable andThe formula for (fg)′ was
discovered by Leibniz in

1676. His first guess was
wrong.

u′ = f ′g + fg′.

•
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Remark: Figure 3.3.2 illustrates the product rule and its proof.
With f , ∆f , g, and ∆g taken to be positive, the inner rectangle
has area u = fg and the whole rectangle has area u + ∆u =
(f +∆f)(g +∆g). The shaded region whose area is ∆u is made up
of rectangles of areas f · (∆g), (∆f) · g, and (∆f) · (∆g).

Figure 3.3.2

The little
corner rectangle, of area (∆f) · (∆g), is negligible in comparison
with the other two rectangles. Thus, ∆u ≈ (∆f)g + f(∆g), which
suggests the formula for the derivative of a product.

EXAMPLE 3 Find D ((x2 + x3 + cos(x) + 3) (x4 −
√

x− ex)).
SOLUTION The function to be differentiated is the product of the functions
differentiated in Examples 1 and 2. By the product rule,

D
((

x2 + x3 + cos(x) + 3
) (

x4 −
√

x− ex
))

= (D (x2 + x3 + cos(x) + 3)) (x4 −
√

x− ex)
+ (x2 + x3 + cos(x) + 3) (D (x4 −

√
x− ex))

= (2x + 3x2 − sin(x)) (x4 −
√

x− ex)

+ (x2 + x3 + cos(x) + 3)
(
4x3 − 1

2
√

x
− ex

)
.

�

Derivative of Constant Times f

A special case of the formula for the product rule occurs so frequently that it
is singled out in the constant multiple rule.

Constant Multiple Rule
If C is a constant function and f is a differentiable function, then Cf is
differentiable and its derivative is given by

(Cf)′ = C(f ′).

In other notations, d(Cf)
dx

= C df
dx

and D(Cf) = CD(f).

In words, the derivative of a constant times a function is the constant times
the derivative of the function.

Proof

Because we have a product of two differentiable functions, C and f , we may
use the product rule. We have

(Cf)′ = (C ′)f + C(f ′) ( derivative of a product )
= 0 · f + Cf ′ ( derivative of constant is 0 )
= C(f ′).
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•
The constant multiple rule asserts that “it is legal to move a constant factor

outside the derivative symbol.”

EXAMPLE 4 Find D(6x3).
SOLUTION

D(6x3) = 6D(x3) ( 6 is a constant )
= 6 · 3x2 ( D(xn) = nxn−1 )
= 18x2.

With a little practice, one could immediately write D(6x3) = 18x2. �

EXAMPLE 5 Find D (
√

x/11).
SOLUTION

D
(√

x
11

)
= D

(
1
11

√
x
)

= 1
11

D(
√

x) = 1
11

1
2
√

x
= 1

22
x−1/2.

�
Example 5 generalizes to the fact that for a non-zero C,

Constant Division Rule(
f

C

)′
=

f ′

C
C 6= 0.

The formula for the derivative of the product extends to the product of
several differentiable functions. For instance,

Generalized Product Rule

(fgh)′ = (f ′)gh + f(g′)h + fg(h′).

In each summand only one derivative appears. The next example illustrates
the use of this formula.

EXAMPLE 6 Differentiate
√

xex sin(x).
SOLUTION(√

xex sin(x)
)′

= (
√

x)′ex sin(x) +
√

x(ex)′ sin(x) +
√

xex(sin(x))′

=
(

1
2
√

x

)
ex sin(x) +

√
xex sin(x) +

√
xex cos(x)
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�

Any polynomial can be differentiated by the methods already developed.

EXAMPLE 7 Differentiate 6t8 − t3 + 5t2 + π3.
SOLUTION The independent variable in this polynomial is t, and the poly-
nomial is to be differentiated with respect to t. Differentiate a polynomial

“term-by-term”. Note that
π3 is a constant.d

dt
(6t8 − t3 + 5t2 + π3) = d

dt
(6t8)− d

dt
(t3) + d

dt
(5t2) + d

dt
(π3)

= 48t7 − 3t2 + 10t + 0
= 48t7 − 3t2 + 10t.

�

Derivative of 1/g

Often one needs the derivative of the reciprocal of a function g, that is, (1/g)′.

Reciprocal Rule
If g is a differentiable function, then(

1

g

)′
= − g′

g2
, where g(x) 6= 0.

Proof

Again we go back to the definition of the derivative.

Assume g(x) 6= 0 and let u(x) = 1/g(x). Then u(x+∆x) = 1/g(x+∆x) =
1/(g(x) + ∆g). Thus

∆u = u(x + ∆x)− u(x)

=
1

g(x) + ∆g
− 1

g(x)

=
g(x)− (g(x) + ∆g)

g(x)(g(x) + ∆g)
( common denominator )

=
−∆g

g(x)(g(x) + ∆g)
( cancellation in numerator ).

Calculus April 22, 2012



192 CHAPTER 3 THE DERIVATIVE

Then

u′(x) = lim
∆x→0

∆u

∆x

= lim
∆x→0

−∆g/ (g(x)(g(x) + ∆g))

∆x

= lim
∆x→0

−∆g/∆x

g(x)(g(x) + ∆g)
( algebra: (a/b)

c = (a/c)
b )

=

lim
∆x→0

(
−∆g

∆x

)
lim

∆x→0
(g(x)(g(x) + ∆g))

( quotient rule for limits )

=
−g′(x)

g(x)2
. ( g(x) is continuous, lim

∆x→0
∆g = 0 )

•

EXAMPLE 8 Find D
(

1
cos(x)

)
.

SOLUTION In this case, g(x) = cos(x) and g′(x) = − sin(x). Therefore,

D

(
1

cos(x)

)
=
−(− sin(x))

(cos(x))2

=
sin(x)

cos2(x)
for all x with cos(x) 6= 0.

�
Example 8 gives a formula for the derivative of sec(x), which is defined as

1/ cos(x).

D(sec(x)) = D
(

1
cos(x)

)
=

sin(x)

cos2(x)
=

sin(x)

cos(x)

1

cos(x)
= tan(x) sec(x).

Therefore,

Derivative of sec(x)

D(sec(x)) = sec(x) tan(x)

The reciprocal rule allows us to complete the justification of the power rule
for exponents that are negative rational numbers.

EXAMPLE 9 Show that the power rule, in Section 3.2, is valid when a is
a negative rational number. That is, show that D(x−p/q) = (−p/q)x(−p/q)−1
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for any positive integers p and q, with q 6= 0.
SOLUTION The reciprocal rule to find the derivative of x−p/q Write x−p/q

as 1/xp/q, then

D
(
x−p/q

)
= D

(
1

xp/q

)
=
−D(xp/q)

(xp/q)2
=
−p

q
x

p
q
−1

x
2p
q

= −p

q
x( p

q )−1−2( p
q ) = −p

q
x−(p/q)−1.

�

The Derivative of f/g

EXAMPLE 10 Derive a formula for the derivative of the quotient f/g.
SOLUTION Write the quotient f/g as a product, f · 1

g
. Assuming f and

g are differentiable functions, we may use the product and reciprocal rules to
find(

f(x)
g(x)

)′
=

(
f(x) 1

g(x)

)′
( rewrite quotient as product )

= f ′(x)
(

1
g(x)

)
+ f(x)

(
1

g(x)

)′
( product rule )

= f ′(x)
(

1
g(x)

)
+ f(x)

(
−g′(x)
g(x)2

)
( reciprocal rule, assuming g(x) 6= 0 )

= f ′(x)
g(x)
− f(x)g′(x)

g(x)2
( algebra )

= g(x)f ′(x)−f(x)g′(x)
g(x)2

. ( algebra: common denominator )

�
Example 10 is the proof of the quotient rule. The quotient rule should

be committed to memory. A simple case of the quotient rule has already been
used to find the derivative of sec(x) = 1

cos(x)
(Example 8). The quotient rule

will be used to find the derivative of tan(x) = sin(x)
cos(x)

(Example 11). Because
the quotient rule is used so often, it should be memorized.

Quotient Rule
Let f and g be differentiable functions at x, and assume g(x) 6= 0. Then the
quotient f/g is differentiable at x, and

d

dx

(
f(x)

g(x)

)
=

g(x)f ′(x)− f(x)g′(x)

g(x)2
where g(x) 6= 0.
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Because the numerator in the quotient rule is a difference, it is important
to get the terms in the correct order. Here is an easy way to remember the
quotient rule.

Step 1. Write down the parts where g2 and g appear:

g

g2
.

This ensures that the denominator is correct and one has a good start
on the numerator.

Step 2. To complete the numerator, remember that it has a minus sign:

gf ′ − fg′

g2
.

EXAMPLE 11 Find the derivative of the tangent function.
SOLUTION

(tan(x))′ =

(
sin(x)

cos(x)

)′
=

cos(x)(sin(x))′ − sin(x)(cos(x))′

(cos(x))2
( quotient rule )

=
(cos(x)) cos(x)− sin(x)(− sin(x))

(cos(x))2

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
( sin2(x) + cos2(x) = 1 )

= sec2(x). ( sec(x) = 1/ cos(x) )

This result is valid whenever cos(x) 6= 0, and should be memorized. �

Derivative of tan(x)

D(tan(x)) = sec2(x) for all x in the domain of tan(x).
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EXAMPLE 12 Compute (x2/(x3 + 1))
′
, showing each step.

SOLUTION(
x2

x3 + 1

)′
=

(x3 + 1) · · ·
(x3 + 1)2

( write denominator and start numer-
ator )

=
(x3 + 1)(x2)′ − (x2)(x3 + 1)′

(x3 + 1)2
( complete numerator, remembering
the minus sign )

=
(x3 + 1)(2x)− (x2)(3x2)

(x3 + 1)2
( compute derivatives )

=
2x4 + 2x− 3x4

(x3 + 1)2
( algebra )

=
2x− x4

(x3 + 1)2
. ( algebra: collecting )

�
As Example 12 illustrates, the techniques for differentiating polynomials

and quotients can be combined to differentiate any rational function, that is,
any quotient of polynomials.

Summary

Let f and g be two differentiable functions and let C be a constant function.
We obtained formulas for differentiating f + g, f − g, fg, Cf , 1/g, and f/g.

Rule Formula Comment
Constant Rule C ′ = 0 C a constant

Sum Rule (f + g)′ = f ′ + g′

Difference Rule (f − g)′ = f ′ − g′

Product Rule (fg)′ = f ′g + fg′

Constant Multiple Rule (Cf)′ = Cf ′

Reciprocal Rule
(

1
g

)′
= −g′

g2 g(x) 6= 0

Quotient Rule
(

f
g

)′
= gf ′−fg′

g2 g(x) 6= 0

Table 3.3.1

With the aid of the formulas in Table 3.3.1, we can differentiate sec(x),
csc(x), tan(x), and cot(x) using (sin(x))′ = cos(x) and (cos(x))′ = − sin(x).
Exercises 17(a) and 17(c) concern the differentiation of cot(x) and csc(x). We
also have shown that D(xa) = axa−1 for any fixed rational number a.
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Function Derivative Comment
xa axa−1 a is a fixed number

tan(x) sec2(x) for all x except odd multiples of π/2
sec(x) sec(x) tan(x) for all x except odd multiples of π/2

Table 3.3.2
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EXERCISES for Section 3.3

In Exercises 1 to 15 differentiate the given function. Use only the formulas presented
in this and earlier sections.
1. 5x3

2. 5x3 − 7x + 23

3. 3
√

x− 3
√

x

4. 1/
√

x

5. (5 + x)(x2 − x + 7)
6. sin(x) cos(x)
7. 3 tan(x)
8. 3(tan(x))2 (Write (tan(x))2 as tan(x) tan(x).)

9.
x3 − 1
2x + 1

10.
sin(x)

ex

11.
3x2 + x +

√
2

cos(x)

12.
2
x3

+
3
x4

13. x2 sin(x)ex

14.
√

x sin(x)
15.

√
x/ex

16. Differentiate the following functions:

(a)
(1 +

√
x)(x3 + sin(x))

x2 + 5x + 3ex

(b)
(3 + 4x + 5x2)ex

sin(x)

17. Use the quotient rule to obtain the following derivatives.

(a) D(cot(x)) = −(csc(x))2

(b) D(sec(x)) = sec(x) tan(x)

(c) D(csc(x)) = − csc(x) cot(x)

(There is a pattern here: the minus sign goes with each “co” function (cos, cot,
csc).)

18. Find
(
e2x
)′ by writing e2x as exex.
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19. Find
(
e3x
)′ by writing e3x as exexex.

20. Find (e−x)′ by writing e−x as 1
ex .

21. Find
(
e−2x

)′ by writing e−2x = e−x · e−x. (See Exercise 20.)

22. Find
(
e−2x

)′ by writing e−2x = 1
e2x . (See Exercise 18.)

In Exercises 23 to 41 find the derivative of the function using formulas from this
section.
23. 23 −

√
π

24. (x− x−1)2

25. 3 sin(x)− 5 cos(x)

26. 5 tan(x)

27. u5 − 6u3 + u− 7

28. t8/8

29. s−7/(−7)

30.
√

t(t + 4)

31. 5/u5

32. (x3)1/2

33. 6 tan(x)

34. 3 sec(x)− 4 cos(x)

35. sec2(θ)− tan2(θ) (Simplify your answer.)

36. (3x)4

37. u2eu

38. et sin(t)/
√

t

39. (3 + x5)e−x tan(x)

40. (x− x2)3 (multiply it out first.)

41. 3
√

x/ 5
√

x

42. In Section 3.1 we showed that D(1/x) = −1/x2. Obtain this formula by using
the Quotient Rule.

43. If you had lots of time, how would you differentiate (1 + 2x)100 using the for-
mulas developed so far? (In Section 3.5 we will obtain a shortcut for differentiating
this function.)

44. At what point on the graph of y = xe−x is the tangent horizontal?

45. Using the formula for the derivative of a product, obtain the formula for
(fgh)′. (First write fgh as (f)(gh). Then use the product rule twice.)
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46. Obtain the formula for (f − g)′ by first writing f − g as f + (−1)g.

47. Using the definition of the derivative as a limit, show that (f − g)′ = f ′ − g′.

48. Using the version of the definition of the derivative that makes use of both x
and x + h, obtain the formula for differentiating the sum of two functions.

49. Using the version of the definition of the derivative in the form lim
x→a

f(x)− f(a)
x− a

,

obtain the formula for differentiating the product of two functions.

Exercises 50 to 52 are examples of proof by mathematical induction. In this
technique the truth of the statement for n is used to prove the truth of the statement
for n + 1.
50. In Section 3.2 we showed that D(xn) = nxn−1, when n is a positive integer.
Now that we have the formula for the derivative of a product of two functions we
can obtain this result more easily.

(a) Show, using the definition of the derivative, that the formula D(xn) = nxn−1

holds when n = 1.

(b) Using (a) and the formula for the derivative of a product, show that the
formula holds when n = 2. (x2 = x · x.)

(c) Using (b) and the formula for the derivative of a product, show that it holds
when n = 3.

(d) Show that if it holds for some positive integer n, it also holds for n + 1.

(e) Combine (c) and (d) to show that the formula holds for n = 4.

(f) Why must it hold for n = 5?

(g) Why must it hold for all positive integers?

51. Using induction, as in Exercise 50, show that for each positive integer n,
D (x−n) = −nx−n−1.

52. Using induction, as in Exercise 50, show that for each positive integer n,
D(sinn(x)) = n sinn−1(x) cos(x).

53. We obtained the formula for (f/g)′ by writing f/g as the product of f and
1/g. Obtain (f/g)′ directly from the definition of the derivative. (Review how we
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obtained the formula for the derivative of a product.)

54. For every x in [0.001, 0.002] the polynomial P (x) has the value 0.

(a) Show that P (x) = 0 for all x in (−∞,∞).

(b) Justify the last step in Exercise 41(e) in Section 1.3.
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3.4 The Chain Rule

We come now to the most frequently used formula for computing derivatives.
For example, it will help us to find the derivative of (1+x2)100 without having
to multiply out one hundred copies of (1+x2). You might expect the derivative
of (1 + x2)100 to be 100(1 + x2)99. This cannot be right.

When you expand (1 + x2)100 you get a polynomial of degree 200, so its
derivative is a polynomial of degree 199. But when you expand (1 + x2)99 you
get a polynomial of degree 198. Something is wrong.

At this point we know the derivative of sin(x), but what is the derivative
of sin(x2)? It is not the cosine of x2. In this section we obtain a way to
differentiate these functions easily.

Figure 3.4.1

The key is that both (1 + x2)100 and sin(x2) are composite functions. This
section shows how to differentiate composite functions.

How to Differentiate a Composite Function

The composite function y = (f ◦g)(x) = f(g(x)) is built up by setting u = g(x)
and y = f(u). The derivative of y with respect to x is the limit of ∆y/∆x as
∆x approaches 0. The change in ∆x causes a change ∆u in u, which in turn
causes the change ∆y in y. (See Figure 3.4.1.) If ∆u is not zero, then we may
write It could happen that

∆u = 0, as it would, for
instance, if g were a
constant function. This
special case is treated in
Exercise 75.

∆y

∆x
=

∆y

∆u

∆u

∆x
. (3.4.1)

Then

(f ◦ g)′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0

∆y

∆u

∆u

∆x
= lim

∆x→0

∆y

∆u
lim

∆x→0

∆u

∆x
.

Since g is continuous, ∆u→ 0 as ∆x→ 0. So we have

(f ◦ g)′(x) = lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x
= f ′(u)g′(x).

Which gives us

Chain Rule
Let g be differentiable at x and f be differentiable at g(x). Then

(f ◦ g)′(x) = f ′(g(x))g′(x).

The formula tells us how to differentiate a composite function, f ◦ g:
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Step 1. Compute the derivative of the outer function f , evaluated at the inner
function. This is f ′(g(x)).

Step 2. Compute the derivative of the inner function, g′(x).

Step 3. Multiply the derivatives found in Steps 1 and 2, obtaining f ′(g(x))g′(x).

In short, to differentiate f(g(x)), think of g as the inner function and f as
the outer function. Then the derivative of f ◦ g is

f ′(g(x))︸ ︷︷ ︸
derivative of
outer function
evaluated at inner
function

times g′(x)︸︷︷︸
derivative of inner
function

Examples

EXAMPLE 1 Find D ((1 + x2)100).
SOLUTION Here g(x) = 1 + x2 (the inner function) and f(u) = u100 (the
outer function). The first step is to compute f ′(u) = 100u99, which gives us
f ′(g(x)) = 100(1 + x2)99. The second step is to find g′(x) = 2x. Then,

(f◦g)′(x) = f ′( u︸︷︷︸
u=g(x)

)g′(x) = 100u99︸ ︷︷ ︸
f ′(u)

· 2x︸︷︷︸
g′(x)

= 100(1 + x2)99︸ ︷︷ ︸
f ′(g(x))

·2x = 200x(1+x2)99.

The answer is not just 100(1 + x2)99. There is a factor of 2x that comes from
the derivative of the inner function, so the derivative of (1 + x2)100 has degree
199, as expected. �

The same example, done with Leibniz notation, looks like this:

y = (1 + x2)100 = u100, u = 1 + x2.

Then the chain rule reads

dy

dx
=

dy

du

du

dx︸ ︷︷ ︸
chain rule

= 100u99 · 2x = 100(1 + x2)99(2x)︸ ︷︷ ︸
Using u = 1 + x2

= 200x(1 + x2)99.
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WARNING George Berkeley, 1734, The
Analyst: A Discourse
Addressed to an Infidel
Mathematician.

We avoided using Leibniz notation earlier, in par-
ticular, during the derivation of the chain rule, because it tempts
the reader to cancel the du’s in (3.4.1). However, the expressions
dy, du, and dx are meaningless in themselves. In Leibniz’s time in
the late seventeenth century their meaning was fuzzy, standing for
a quantity that was zero and also vanishingly small at the same
time. Bishop Berkeley poked fun at this, asking “may we not call
them the ghosts of departed quantities?”

With practice, you will be able to do the calculation without introducing
extra symbols, such as u, which do not apear in the final answer. You will be
writing just

D
(
(1 + x2)100

)
= 100(1 + x2)99 · 2x = 200x(1 + x2)99.

Developing this skill, like playing the guitar, takes practice, which the exercises
at the end of this section (and chapter) provide.

When we write dy
du

and du
dx

, the u serves two roles. In dy
du

it denotes an
independent variable while in du

dx
, u is a dependent variable. The double role

usually causes no problem in computing derivatives.

EXAMPLE 2 If y = sin(x2), find dy
dx

.
SOLUTION Starting from the outer function, let y = sin(u) and u = x2.
Then, by the chain rule,(

sin(x2)
)′

=
dy

dx
=

dy

du

du

dx︸ ︷︷ ︸
chain rule

= cos(u) · 2x = cos(x2) · 2x = 2x cos(x2).

The outer function is the sine and the inner function is x2. So we have, in
short,

( sin︸︷︷︸
outer

(x2)︸︷︷︸
inner

)′ = cos(x2)︸ ︷︷ ︸
derivative of
outer function
evaluated at inner
function

times 2x︸︷︷︸
derivative of inner
function

= 2x cos(x2).

�
The chain rule holds for compositions of more than two functions. We

illustrate this in the next example.

EXAMPLE 3 Differentiate y =
√

sin(x2).
SOLUTION Tthe function is the composition of three functions:

u = x2 v = sin(u) y =
√

v.
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ThenDo this example yourself
without introducing any

auxiliary symbols (u, v, and
y).

dy

dx
=

dy

dv

dv

dx︸ ︷︷ ︸
chain rule

=
dy

dv

dv

du

du

dx︸ ︷︷ ︸
chain rule,
again

=
1

2
√

v
· cos(u) · 2x

=
1

2
√

sin(x2)
· cos(x2) · 2x =

x cos(x2)√
sin(x2)

.

�

EXAMPLE 4 Let y = 2x. Find y′.
SOLUTION As it stands, 2x is not a composite function. However,b = eln(b) for any b > 0 we can

write 2 = eln(2) and then 2x equals (eln(2))x = eln(2)x, so 2x can be expressed as
the composite function

y = eu, where u = (ln(2))x.

Then

y′ =
dy

dx
=

dy

du

du

dx
= eu · ln(2) = eln(2)x ln(2) = 2x ln(2).

In Example 2 (Section 3.2), using a calculator, we found D(2x) ≈ (0.693)2x.
We have just seen that the exact formula is D(2x) = 2x ln(2). This means that
0.693 is an approximation of ln(2). �

The next Example shows how the chain rule is used in combination with
other differentiation rules such as the product and quotient rules.

EXAMPLE 5 Find D (x3 tan(x2)).
SOLUTION The function x3 tan(x2) is the product of two functions. We
first apply the product ruleproduct rule:

(fg)′ = f ′ · g + f · g′
to obtain

D (x3 tan(x2)) = (x3)
′
tan(x2) + x3 (tan(x2))

′

= 3x2 tan(x2) + x3 (tan(x2))
′
.

Since the derivative of the tangent is the square of the secant,(tan(x))′ = sec2(x) the chain rule
tells us that (

tan(x2)
)′

= sec2(x2)(x2)′ = 2x sec2(x2).

Thus,
D (x3 tan(x2)) = 3x2 tan(x2) + x3 (tan(x2))

′

= 3x2 tan(x2) + x3 (2x sec2(x2))
= 3x2 tan(x2) + 2x4 sec2(x2).

�
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In the computation of D(tan(x2)) we did not introduce any new symbols.
That is how your computations will look, once you become proficient using
the chain rule.

Famous Composite Functions

Certain types of composite functions occur so often that it is worthwhile mem-
orizing their derivatives. This table lists the most common ones.

Function Derivative Example

(g(x))n ng(x)n−1g′(x) ((1 + x2)100)
′
= 100(1 + x2)99(2x)

1
g(x)

−g′(x)
(g(x))2

D
(

1
cos(x)

)
= −(− sin(x))

(cos(x))2√
g(x) g′(x)

2
√

g(x)

(√
tan(x)

)′
= (sec(x))2

2
√

tan(x)

eg(x) eg(x)g′(x)
(
ex2
)′

= ex2
(2x)

Table 3.4.1

Summary

This section presented the single most important tool for computing deriva-
tives: the chain rule, which says that the derivative of f ◦ g at x is

f ′(g(x))︸ ︷︷ ︸
derivative of outer
function evalu-
ated at the inner
function

times g′(x)︸︷︷︸
derivative of inner
function

Introducing the symbol u, we described the chain rule for y = f(u) and u =
g(x) with the brief notation

dy

dx
=

dy

du

du

dx
.

When the function is built up from more than two functions, such as y = f(u),
u = g(v), and v = h(x), we have

dy

dx
=

dy

du

du

dv

dv

dx
,

a chain of more derivatives.
With practice, applying the chain rule becomes second nature.
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EXERCISES for Section 3.4

In Exercises 1 to 4, repeat the specified example from this section without introduc-
ing an extra variable (such as u).
1. Example 1
2. Example 2
3. Example 3
4. Example 4

In Exercises 5 to 40 find the derivative of the function. Simplify your answers.
5. (x3 + 2)5

6. (x2 + 3x + 1)4

7.
√

cos(x3)
8.

√
tan(x2)

9.
(

1
x

)10
10. cos(3x) sin(2x)
11. x2 tan(x3)
12. (1 + 2x) sin(x4)
13. 5(tan(x3))2

14. cos3(2x)
x5

15. sin(2 exp(x))
16. ecos(x)

17. (1+2x)2

x3

18. (sec(5x))(cos(5x))
19. (5x2 + 3)10

20. (sin(3x))3

21. 1
5t2+t+2

22. 1
e5s+s

23.
√

4 + u2

24.
(√

cos(2θ)
)3

25. e5x3

26. sin2(3x)
27. etan(3t)

28.
√

tan(2u)

29. 3
√

tan(s2)
30. v3 tan(2v)
31. e2r sin(3r)
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32. sec(2x)
x2

33. exp(sin(2x))

34. (3t+2)4

sin(2t)

35. e−5s tan(3s)
36. ex2

37. (sin(2u))5(cos(3u))6

38.
(
x + 33x

)2 (sin(
√

x))3

39. t3

(t+sin2(3t))

40. (3x+2)4

(x3+x+1)2

Learning to use the chain rule takes practice. Exercises 41 to 68 offer opportunities.
They also show that sometimes the derivative of a function can be simpler than the
function. In each case show that the derivative of the first function is the second
function, the functions being separated by a semi-colon. The letters a, b, and c
denote constants.
41. b

2a2(ax+b)2
− 1

a2(ax+b)
; x

(ax+b)2

42. −1
2a(ax+b)2

; 1
(ax+b)3

43. 2
3a

√
(ax + b)3;

√
ax + b

44. 2(3ax−2b)
15a2

√
(ax + b)3; x

√
ax + b

45. −
√

ax2+c
cx ; 1

x2
√

ax2+c

46. x
c
√

ax2+c
; (ax2 + c)−3/2

47. 1
a sin(ax)− 1

3a sin3(ax); cos3(ax)
48. 1

a(n+1) sinn+1(ax); sinn(ax) cos(ax)

49. 2(ax−2b)
3a2

√
ax + b; x√

ax+b

50. 2(3a2x2−4abx+8b2)
15a3

√
ax + b; x2

√
ax+b

51. −
√

ax2+c
cx ; 1

x2
√

ax2+c

52. −x2

a
√

ax2+c
+ 2

a2

√
ax2 + c; x3

(ax2+c)3/2

53. −1
a cos(ax) + 1

3a cos3(ax); sin3(ax)

54. 3x
8 −

3 sin(2ax)
16a − sin3(ax) cos(ax)

4a ; sin4(ax)

55. sin((a−b)x)
2(a−b) − sin((a+b)x)

2(a+b) ; sin(ax) sin(bx) (Assume a2 6= b2.)

56. x
2 + sin(2ax)

3a ; cos3(ax)
57. 1

a tan(ax); 1
cos2(ax)

58. 1
a tan

(
ax
2

)
; 1

1+cos(ax)

59. 2
√

2 sin
(

x
2

)
;
√

1 + cos(x) (You will need to use a trigonometric identity.)
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60. sin((a−b)x
2(a−b) + sin((a+b)x)

2(a+b) ; cos(ax) cos(bx) (Assume a2 6= b2.)

61. 1
a (tan(ax)− cot(ax)); 1

sin2(ax) cos2(ax)

62. 1
a tan(ax)− 1; tan2(ax)

63. secn(ax)
an ; tan(ax) secn(ax) (Assume n 6= 0.)

64. sin(ax)
a2 − x cos(ax)

a ; x sin(ax)

65. cos(ax)
a2 + x sin(ax)

a ; x cos(ax)
66. 1

a2 eax(ax− 1); xeax

67. 1
a3 eax(a2x2 − 2ax + 2); x2eax

68. eax(a sin(bx)−b cos(bx))
a2+b2

; eax sin(bx)

Exercises 69 and 70 illustrate how differentiation can be used to obtain one trigonom-
etry identity from another.
69.

(a) Differentiate both sides of the identity sin2(x) = 1
2(1−cos(2x)). What trigono-

metric identity do you get?

(b) Differentiate the identity found in (a) to obtain another trigonometric identity.
What identity is obtained?

(c) Does this process continued forever produce new identities?

70. Let k be a constant. Differentiate both sides of the identity sin(x + k) =
sin(x) cos(k) + cos(x) sin(k) to obtain the corresponding identity for cos(x + k).

71. Differentiate (ex)3

(a) Directly, by the chain rule

(b) After writing it as ex · ex · ex and using the product rule

(c) After writing it as e3x and using the chain rule

(d) Which of these approaches do you prefer? Why?

72. In Section 3.3 we obtained the derivative of 1/g(x) by using the definition of
the derivative. Obtain that formula for the reciprocal rule by using the chain rule.

73. In our proof of the chain rule we had to assume that ∆u is not 0 when ∆x is
sufficiently small. Show that if the derivative of g is not 0 at the argument x, then
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the proof is valid.

74. Here is an example of a differentiable g not covered by the proof of the chain
rule given in the text. Define g(x) to be x2 sin

(
1
x

)
for x different from 0 and g(0)

to be 0.

(a) Sketch the part of the graph of g near the origin.

(b) Show that there are arbitrarily small values of ∆x such that

∆u = g(∆x)− g(0) = 0.

(c) Show that g is differentiable at 0.

75. Here is a proof of the chain rule that manages to avoid division by ∆u = 0.
Let f(u) be differentiable at g(a), where g is differentiable at a. Let ∆f = f(g(a) +
∆u)− f(g(a)). Then ∆f

∆u − f ′(g(a)) is a function of ∆u, which we call p(∆u). It is
defined for ∆u 6= 0. By the definition of f ′, p(∆u) tends to 0 as ∆u approaches 0.
Define p(0) to be 0. Note that p is continuous at 0.

(a) Show that ∆f = f ′(g(a))∆u+p(∆u)∆u when ∆u is different than 0, and also
when ∆u = 0.

(b) Define q(∆x) = ∆u
∆x − g′(a). Observe that q(∆x) approaches 0 as ∆x ap-

proaches 0. Show that ∆u = g′(a)∆x + q(∆x)∆x when ∆x is not 0.

(c) Combine (a) and (b) to show that

∆f = f ′(g(a))
(
g′(a)∆x + q(∆x)∆x

)
+ p(∆u)∆u.

(d) Using (c), show that

lim
∆x→0

∆f

∆x
= f ′(g(a))g′(a).

(e) Why did we have to define p(0) but not q(0)?
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3.5 Derivative of an Inverse Function

In this section we obtain the derivatives of the inverse functions of ex and
of the six trigonometric functions. This will complete the inventory of basic
derivatives. The chain rule will be our main tool.

Differentiability of Inverse Functions

As mentioned in Section 1.1, the graph of an inverse function is a copy of
the graph of the original function. One graph is obtained from the other by
reflection across the line y = x. If the original function, f , is differentiable
at a point (a, b), b = f(a), then the graph of y = f(x) has a tangent line at
(a, b). The reflection across y = x of the tangent line to the graph of f is the
tangent line to the inverse function at (b, a). Thus, we expect that the inverse
function, f−1, is differentiable at (b, a), and we will assume it is.a = f−1(b) means b = f(a)

First, the chain rule will be used to find the derivative of loge(x).

The Derivative of loge(x)

(a,log_e(a))

(log_e(a),a)

6

0

−2

2−2

x

4

40

2

6

Figure 3.5.1

Let y = loge(x). Figure 3.5.1 shows the graphs of y = ex and the inverse
function y = loge(x). We want to find y′ = dy

dx
. By the definition of logarithm

as the inverse of the exponential function,

x = ey. (3.5.1)

We differentiate both sides of (3.5.1) with respect to x:

d(x)
dx

= d(ey)
dx

( ey is a function of x, since y is a
function of x

1 = d(ey))
dx

( dx
dx = 1 )

1 = ey dy
dx

( chain rule. )

Solving for dy
dx

, we obtain
dy

dx
=

1

ey
=

1

x
.

This is another important differentiation rule.

Derivative of loge(x)

(loge(x))′ =
1

x
, x > 0.
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It may come as a surprise that such a complicated function has such a
simple derivative. It may also be a surprise that loge(x) is one of the most
important functions in calculus, mainly because it has the derivative 1/x.

EXAMPLE 1 Find (logb(x))′ for any b > 0.
SOLUTION The function logb x is a constant times loge(x):

logb(x) = (logb(e)) loge(x).

Therefore

(logb(x))′ = (logb(e))
1

x
.

If b is not e, then logb(e) is not 1. If e is chosen as the base for logarithms,
then the coefficient of 1

x
becomes loge(e) = 1. That is another reason why we

prefer e as the base for logarithms in calculus �
Recall from Section 2.2 that loge(x) is the natural logarithm, which is

denoted ln(x).

WARNING (Logarithm Notation) ln(x) is often written simply
as log(x), with the base understood to be e. All references in this
book to the base-10 logarithm will use the notation log10.

The Derivative of arcsin(x)

Inverse trigonometric
functions were introduced in
Section 1.2.

For x in [−π/2, π/2] sin(x) is one-to-one and therefore has an inverse func-
tion, arcsin(x), which gives the angle, in radians, if you know the sine of the an-
gle. For instance, arcsin(1) = π/2, arcsin(

√
2/2) = π/4, arcsin(−1/2) = −π/6,

and arcsin(−1) = −π/2. The domain of arcsin(x) is [−1, 1] and its range
is [−π/2, π/2]. For convenience we include the graphs of y = sin(x) and
y = arcsin(x) in Figure 3.5.2, but will not need them to find (arcsin(x))′.

(a,arcsin(a))

(arcsin(a),a)

1.0

0.0

−1.0

x

1.5

1.5

0.5

0.5

0.0

−0.5

−1.5

−0.5−1.0−1.5 1.0

Figure 3.5.2

To find (arcsin(x))′, we proceed as we did when finding (loge(x))′. Let
y = arcsin(x), so

x = sin(y).

We then have

x = sin(y).
d(x)

dx
=

d(sin(y))

dx
( differentiate with respect to x )

1 = (cos(y)) y′ ( chain rule )

y′ =
1

cos(y)
( algebra. )

Figure 3.5.3 displays the diagram that defines the sine of an angle. The
line segment AB represents cos(y) and the line segment BC represents sin(y).
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The cosine is positive for angles y in
(−π

2
, π

2

)
, the first and fourth quadrants.

When x = sin(y), x2 + cos2(y) = 1 gives cos(y) = ±
√

1− x2. We use the
positive value: cos(y) =

√
1− x2 because arcsin is an increasing function.

C

BA

1 sin(y)

cos(y)

y

1

0

1

−1 0

−1

Figure 3.5.3

Consequently, we find

Derivative of arcsin(x)

d

dx
(arcsin(x)) =

1√
1− x2

, |x| < 1.

The formula for the derivative of the inverse sine should be memorized.

At x = 1 or at x = −1, the derivative is not defined. However, for x near 1
or −1 the derivative is very large (in absolute value), telling us that the graph
of the arcsine function is very steep near its two ends. That is a reflection of
the fact that the graph of sin(x) is horizontal at x = −π/2 and x = π/2.

Functions such as x3−x, x2/7, and 1√
1−x2 that can be written in terms of the

algebraic operations of addition, subtraction, multiplication, division, raising
to a power, and extracting a root are called algebraic functions. Functions
that cannot be written in this way, including ex, cos(x), and arcsin(x), are
known as transcendental functions.An algebraic function always

has an algebraic derivative.
The derivative of ln(x) and arcsin(x)

shows that the derivative of a transcendental function can be an algebraic
function. The derivative of an algebraic function will always be algebraic.

EXAMPLE 2 Differentiate arcsin (x2).
SOLUTION By the chain rule,

d

dx

(
arcsin

(
x2
))

=
1√

1− (x2)2
· d

dx

(
x2
)

=
2x√

1− x4
.

�

EXAMPLE 3 Differentiate 1
2

(
x
√

a2 − x2 + a2 arcsin
(

x
a

))
where a is a con-

stant.
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SOLUTION

D

(
1

2

(
x
√

a2 − x2 + a2 arcsin
(x

a

)))
= 1

2
D
((

x
√

a2 − x2 + a2 arcsin
(

x
a

)))
= 1

2

(
D
(
x
√

a2 − x2
)

+ a2D
(
arcsin

(
x
a

)))
= 1

2

((
(1)
√

a2 − x2
)

+

(
x

(
( 1

2)(−2x)
√

a2−x2

))
( product and chain rules )

+a2

(
1
aq

1−(x
a)

2

))
( D(arcsin(x)) = 1√

1−x2
)

= 1
2

(√
a2 − x2 + −x2

√
a2−x2 + a2

√
a2−x2

)
( algebra )

= 1
2

(
a2−x2−x2+a2

√
x2−a2

)
( common denominator )

=
√

a2 − x2.

A complicated function can have a simple derivative. �

(a,arctan(a))

(arctan(a),a)

4

4

2

0

−2

0

−4

x

5

5

3

3

2

1

−1
1

−3

−5

−1−2−3−4−5

Figure 3.5.4

The Derivative of arctan(x)

For x in (−π/2, π/2) the function tan(x) is one-to-one and has an inverse
function, arctan(x), which tells us the angle, in radians, if we know the tangent
of the angle. For instance, arctan(1) = π/4, arctan(0) = 0, and arctan(−1) =
−π/4. When x is a large positive number, arctan(x) is near, and smaller than,
π/2. When x is a large negative number, arctan(x) is near, and larger than,
−π/2. Figure 3.5.4 shows the graph of y = arctan(x) and y = tan(x). We will
not need this graph when differentiating arctan(x), but it serves as a check on
the formula. See Exercise 82.

To find (arctan(x))′, we again use the chain rule. Starting with

y = arctan(x),

we proceed as before:

x = tan(y).
d(x)

dx
=

d(tan(y))

dx
( differentiate with respect to x )

1 =
(
sec2(y)

)
y′ ( chain rule )

y′ =
1

sec2(y)
( algebra )

y′ =
1

1 + tan2(y)
( trigonometric identity )

y′ =
1

1 + x2
( x = tan(y) ).
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This derivation is summarized by a simple formula, which should be mem-
orized.

Derivative of arctan(x)

D(arctan(x)) =
1

1 + x2
for all inputs x.

EXAMPLE 4 Find D (arctan(3x)).
SOLUTION By the chain rule

D (arctan(3x)) =
1

1 + (3x)2

d(3x)

dx
=

3

1 + 9x2
.

�

EXAMPLE 5 Find D
(
x tan−1(x)− 1

2
ln (1 + x2)

)
.

SOLUTION

D
(
x tan−1(x)− 1

2
ln (1 + x2)

)
= D (x tan−1(x))− 1

2
D (ln (1 + x2))

=

(
tan−1(x) +

x

1 + x2

)
− 1

2

2x

1 + x2

= tan−1(x).

�

More on ln(x)

An antiderivative of a function, f(x), is another function, F (x), whose
derivative is equal to f(x). That is, F ′(x) = f(x), and so ln(x) is an an-
tiderivative of 1/x. We showed that for x > 0, ln(x) is an antiderivative of
1/x. But what if we needed an antiderivative of 1/x for negative x?Recall that ln(x) is not

defined for x < 0.
The next

example answers this question.

EXAMPLE 6 Show that for negative x, ln(−x) is an antiderivative of 1/x.
SOLUTION Let y = ln(−x). By the chain rule,

dy

dx
=

(
1

−x

)
d(−x)

dx
=

1

−x
(−1) =

1

x
.

So ln(−x) is an antiderivative of 1/x when x is negative. �
In view of Example 6, ln |x| is an antiderivative of 1/x, whether x is positive

or negative.
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Derivative of ln |x|

D(ln |x|) =
1

x
for x 6= 0.

We know the derivative of xa for any rational number a. To extend this
result to xk for any number k, and positive x, we write x as eln(x).

EXAMPLE 7 Find D(xk) for x > 0 and any constant k 6= 0, rational or
irrational.
SOLUTION For x > 0 we can write x = eln(x). Then

xk =
(
eln(x)

)k
= ek ln(x).

Looking at y = ek ln(x) as a composite function, y = eu where u = k ln(x), we
have

dy

dx
=

dy

du

du

dx
= eu k

x
= xk k

x
= kxk−1.

�

The example shows that for positive x and any fixed exponent k,
(
xk
)′

=
kxk−1. It probably does not come as a surprise. You may wonder why we
worked so hard to get the derivative of xa when a is an integer or rational
number when this example covers all exponents. We had two reasons for
treating the special cases. First, they include cases when x is negative. Second,
they were simpler and helped introduce the derivative.

The Derivatives of the Six Inverse Trigonometric Func-
tions

Of the six inverse trigonometric functions, the most important are arcsin and
arctan. The other four are treated in Exercises 71 to 74. Table 3.5.1 summa-
rizes all six derivatives. There is no reason to memorize the formulas. If we
need, say, an antiderivative of −1

1+x2 , we do not have to use arccot(x). Instead,
− arctan(x) would do. For finding antiderivatives, we don’t need arccot, or any
of the inverse co-functions. The formulas for the derivatives of arcsin, arctan,
and arcsec suffice.
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D(arcsin(x)) =
1√

1− x2
D(arccos(x)) =

−1√
1− x2

(−1 < x < 1)

D(arctan(x)) =
1

1 + x2
D(arccot(x)) =

−1

1 + x2
(−∞ < x <∞)

D(arcsec(x)) =
1

x
√

x2 − 1
D(arccsc(x)) =

−1

x
√

x2 − 1
(x > 1 or x < −1)

Table 3.5.1 Derivatives of the six inverse trigonometric functions.
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Another View of e

For each choice of the base b (b > 0), we obtain a value for lim
x→0

bx − 1

x
. We

defined e to be the base for which the limit is as simple as possible, namely 1:

lim
x→0

ex − 1

x
= 1.

Now that we know that the derivative of ln x = loge x is 1/x, we can obtain a
new view of e.
The derivative of ln(x) at 1 is 1/1 = 1. By the definition of the derivative,

lim
h→0

ln(1 + h)− ln(1)

h
= 1.

Since ln(1) = 0, we have

lim
h→0

ln(1 + h)

h
= 1.

By a property of logarithms, we may rewrite the limit as

lim
h→0

ln
(
(1 + h)1/h

)
= 1.

Writing ex as exp(x) for convenience, we conclude that

exp
(

lim
h→0

ln
(
(1 + h)1/h

))
= exp(1) = e.

Since exp is a continuous function, we may switch exp and lim, getting

lim
h→0

(
exp

(
ln
(
(1 + h)1/h

)))
= e.

But exp(ln(p)) = p for any positive number, by the definition of a logarithm.
That tells us that

lim
h→0

(1 + h)1/h = e.

This is a more direct view of e than the one in Section 2.2. As a check, let
h = 1/1000 = 0.001. Then (1 + 1/1000)1000 ≈ 2.717, and values of h closer to
0 give better estimates for e, whose decimal expansion begins 2.718.

Summary

A geometric argument suggested that the inverse of every differentiable func-
tion is differentiable. The chain rule then helped find the derivatives of ln(x),
arcsin(x), and arctan(x) and of the other four inverse trigonometric functions.
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EXERCISES for Section 3.5

In Exercises 1 to 6 evaluate the function and its derivative at the given argument.
1. arcsin(x); 1/2

2. arcsin(x); −1/2

3. arctan(x); −1

4. arctan(x);
√

3

5. ln(x); e

6. ln(x); 1

In Exercises 7 to 28 differentiate the function.
7. arcsin(3x) sin(3x)

8. arctan(5x) tan(5x)

9. e2x ln(3x)

10. e

“
ln(3x)x

√
2

”
11. x2 arcsin(x2)

12. (arcsin(3x))2

13. arctan(2x)
1+x2

14. x3

arctan(6x)

15. log10(x) (Express log10 in terms of the natural logarithm.)

16. logx(10) (Express logx in terms of the natural logarithm.)

17. arcsin(x3)

18. arctan(x2)

19. (arctan(3x))2

20. (arccos(5x))3

21. arcsin(1+x2)
1+3x

22. arcsec(x3)

23. x2 arcsin(3x)

24. arctan(3x)
tan(2x)

25. arctan(x3)
arctan(x)

26. ln(sin(3x))

27. ln
(
(sin(x)3)

)
28. ln(exp(4x))

In Exercises 29 to 65 check that the derivative of the first function is the second,
separated by a semi-colon. The letters a, b, and c denote constants.
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29. 1
cn ln

(
xn

axn+c

)
; 1

x(axn+c) (To simplify the calculation, first use the property
ln(p/q) = ln(p)− ln(q).)

30. 1
nc ln

(√
axn+c−

√
c√

axn+c+
√

c

)
; 1

x
√

axn+c
(Assume c > 0.)

31. 2
n
√
−c

arcsec
(√

axn

−c

)
; 1

x
√

axn+c
(Assume c < 0.)

32.
√

ax2 + c +
√

c ln
(√

ax2+c−
√

c
x

)
;
√

ax2+c
x (Assume c > 0.)

33.
√

ax2 + c−
√
−c arctan

(√
ax2+c√
−c

)
;
√

ax2+c
x (Assume c < 0.)

34. 2√
4ac−b2

arctan
(

2ax+b√
4ac−b2

)
; 1

ax2+bx+c
(Assume b2 < 4ac.)

35. −2
2ax+b ;

1
ax2+bx+c

(Assume b2 = 4ac.)

36. 1√
b2−4ac

ln
(

2ax+b−
√

b2−4ac
2ax+b+

√
b2−4ac

)
; 1

ax2+bx+c
(Assume b2 > 4ac. Use properties of ln

before differentiating.)

37. 1
2

(
(x− a)

√
2ax− x2 + a2 arcsin

(
x−a

a

))
;
√

2ax− x2

38. arccos
(

a−x
a

)
; 1√

2ax−x2

39. arcsin(x)−
√

1− x2;
√

1+x
1−x

40. 2 arcsin
(√

x−b
a−b

)
; 1√

x−b
√

x−a

41. 1
a ln

(
tan

(
ax
2

))
; 1

sin(ax)

42. ln(ln(ax)); 1
x ln(ax)

43. −1
(n−1)(ln(ax))n−1 ; 1

x(ln(ax))n

44. x arcsin(ax) + 1
a

√
1− a2x2; arcsin(ax)

45. x (arcsin(ax))2 − 2x + 2
a

√
1− a2x2 arcsin(ax); (arcsin(ax))2

46. 1
ab (ax− ln (b + ceax)); 1

b+ceax

47. 1
a
√

bc
arctan

(
eax
√

b
c

)
; 1

beax+ce−ax (Assume b, c > 0.)

48. x (ln(ax))2 − 2x ln(ax) + 2x; ln2(ax) = (ln(ax))2

49. −1
2 ln

(
1+cos(x)
1−cos(x)

)
; 1

sin(x) = csc(x)

50. 1
b2

(a + bx− a ln(a + bx)); x
ax+b (Assume a + bx > 0.)

51. 1
b3

(
a + bx− 2a ln(a + bx)− a2

a+bx

)
; x2

(a+bx)2
, (Assume a + bx > 0.)

52. 1
ab arctan

(
bx
a

)
; 1

a2+b2x2

53. x
2a2(a2+x2)

+ 1
2a2 arctan

(
x
a

)
; 1

(a2+x2)2

54. 1
2a2 arctan

(
x2

a2

)
; x

a4+x4

Calculus April 22, 2012



220 CHAPTER 3 THE DERIVATIVE

55. 2
√

x
b − 2 a

b3
arctan

(
b
√

x
a

)
;

√
x

a2+b2x

56. x arcsec(ax)− 1
a ln

(
ax +

√
a2x2 − 1

)
; arcsec(ax)

57. x arctan(ax)− 1
2a ln

(
1 + a2x2

)
; arctan(ax)

58. x arccos(ax)− 1
a

√
1− a2x2; arccos(ax)

59. x2

2 arcsin(ax)− 1
4a2 arcsin(ax) + x

2a

√
1− a2x2; x arcsin(ax)

60. x (arcsin(ax))2 − 2x + 2
a

√
1− a2x2 arcsin(ax); (arcsin(ax))2

61. 1
a2 cos(ax) + x

a sin(ax); x cos(ax)

62. 1
a3 eax

(
a2x2 − 2ax + 2

)
; x2eax

63. 1
ab (ax− ln (b + ceax)); 1

b+ceax

64. 1
a2+b2

eax (a sin(bx)− b cos(bx)); eax sin(bx)

65. ln (sec(x) + tan(x)); sec(x)

66. Find D(ln3(x))

(a) By the chain rule.

(b) By writing ln3(x) as ln(x) · ln(x) · ln(x).

Which method do you prefer? Why?

67. We have used the equation sec2(x) = 1 + tan2(x).

(a) Derive it from the equation cos2(x) + sin2(x) = 1.

(b) Derive cos2(x) + sin2(x) = 1 from the Pythagorean Theorem.

68. Find two antiderivatives of

(a) 2x

(b) x2

(c) 1/x

(d)
√

x

69. Find two antiderivatives of

(a) e3x

(b) cos(x)

(c) sin(x)
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(d) 1/(1 + x2)

70. This problem provides some additional experience with the development of
the formula logb(x) = logb(e) loge(x). Let b > 0. Recall that logb(a) = loge(a)

loge(b)
.

(a) Show that logb(e) = 1/ loge(b).

(b) Conclude that logb(x) = logb(e) loge(x).

(This was used in Example 1.)

In Exercises 71 to 74 use the chain rule to obtain the derivative.
71. (arccos(x))′ = −1√

1−x2

72. (arcsec(x))′ = 1
x
√

x2−1

73. (arccot(x))′ = −1
1+x2

74. (arccsc(x))′ = −1
x
√

x2−1

75. Verify that D
(
2(
√

x− 1)e
√

x
)

= e
√

x.

76.

Sam: I say that D(logb(x)) = 1
x ln(b) . It’s simple. Let y = logb(x). That tells

me x = by. I differentiate both sides of that, getting 1 = by(ln(b))y′. So
y′ = 1

by ln(b) = 1
x ln(b) .

Jane: Well, not so fast. I start with the equation logb(x) = (logb(e)) ln(x). So
D(logb(x)) = logb(e)

x .

Sam: Something is wrong. Where did you get that equation you started with?

Jane: Just take logb of both sides of x = eln(x).

Sam: I hope this won’t be on the next midterm.

Settle this argument.

We did not need the chain rule to find the derivatives of inverse functions. Instead,
we could have taken a geometric approach, using the interpretation of the derivative
of the slope of the tangent line. When we reflect the graph of f around the line
y = x to obtain the graph of f−1, the reflection of the tangent line to the graph
of f with slope m is the tangent line to the graph of f−1 with slope 1/m. (See
Section 1.1.) Exercises 77 to 81 use this approach to develop formulas obtained in
this section.
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77. Let f(x) = ln(x). The slope of the graph of y = ln(x) at (a, ln(a)), a > 0,
is the reciprocal of the slope of the graph of y = ex at (ln(a), a). Use this to show
that the slope of the graph of y = ln(x) when x = a is 1/a.

In Exercises 78 to 81 use the technique illustrated in Exercise 77 to differentiate the
function.
78. f(x) = arctan(x)
79. f(x) = arcsin(x)
80. f(x) = arcsec(x)
81. f(x) = arccos(x)

82.

(a) Evaluate lim
x→∞

1
1 + x2

and lim
x→−∞

1
1 + x2

.

(b) What do these results tell you about the graph of the arctangent function?

83.

Sam: I can get the formula for (fg)′ real easy if I assume fg is differentiable when
f and g are.

Jane: How?

Sam: Start with ln(fg) = ln(f) + ln(g), which is OK if f(x) and g(x) are positive.
Then differentiate like mad, using the chain rule:

1
fg

(fg)′ =
f ′

f
+

g′

g
.

Jane: So?

Sam: Then solve for (fg)′ and out pops (fg)′ = f ′g + fg′.

Jane: I wonder why the book used all those ∆s instead.

Why didn’t the book use Sam’s approach?

84. Use the assumptions and methods in Exercise 83 to find D(f/g).

85.

Sam: In Exercise 83 I assumed that fg is differentiable if f and g are. I can get
around that by using the differentiability of exp and ln.

Jane: How so?
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Sam: Again I assume f(x) and g(x) are positive and I write fg as exp(ln(fg)).

Jane: So?

Sam: But ln(fg) = ln(f) + ln(g), and that does it.

Jane: I’m lost.

Sam: Well, fg = exp(ln(f) + ln(g)) and use the chain rule. It’s good for more
than grinding out derivatives. In fact, when you differentiate both sides of my
equation, you get that fg is differentiable and (fg)′ is f ′g + fg′.

Jane: Why wouldn’t the authors use this approach?

Sam: It would make things too easy and reveal that calculus is all about e, expo-
nentials, and logarithms. I peeked at Chapter 12 and saw that you can even
get sine and cosine out of ex.

Is Sam’s argument correct?
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3.6 Antiderivatives and Slope Fields

So far in this chapter we have started with a function and found its derivative.
In this section we will go in the opposite direction: given a function f , we will
be interested in finding a function F whose derivative is f . Why? Because
going from the derivative back to the function plays a central role in integral
calculus, as we will see in Chapter 5. Chapter 6 describes several ways to
find antiderivatives.

Some Antiderivatives

EXAMPLE 1 Find an antiderivative of x6.
SOLUTION When we differentiate xa we get axa−1. The exponent in the
derivative, a − 1, is one less than the original exponent, a. So we expect an
antiderivative of x6 to involve x7.

Because (x7)
′
= 7x6, x7 is an antiderivative of 7x6, not of x6. We want to

get rid of that coefficient 7 in front of x6. If we divide x7 by 7 we have(
x7

7

)′
= 7x6

7
(
(

f
C

)′
= f ′

C )

= x6 ( canceling the 7s ).

We conclude that 1
7
x7 is an antiderivative of x6.

However, 1
7
x7 is not the only antiderivative of x6. For instance,

(
1

7
x7 + 2012

)′
=

1

7
7x6 + 0 = x6.

A constant added to any
antiderivative of a function

f gives another
antiderivative of f .

We can add any constant to 1
7
x7 and the result is always an antiderivative of

x6. �

As Example 1 suggests, if F (x) is an antiderivative of f(x) so is F (x) + C
for any constant C.

The reasoning in this example suggests that 1
a+1

xa+1 is an antiderivative
of xa. This formula is meaningless when a + 1 = 0. We have to expect
a different formula for antiderivatives of x−1 = 1

x
. In Section 3.5 we saw

that (ln(x))′ = 1/x. That’s one reason the function ln(x) is so important: it
provides an antiderivative for 1/x.
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Antiderivatives of xa

For any number a, except −1, the antiderivatives of xa are

1

a + 1
xa+1 + C for any constant C.

The antiderivatives of x−1 = 1
x

are, when x > 0,

ln(x) + C for any constant C.

Every time you compute a derivative, you are also finding an antiderivative.
For instance, since D(sin(x)) = cos(x), sin(x) is an antiderivative of cos(x).
So is sin(x) + C for any constant C. There are tables of antiderivatives that
go on for hundreds of pages. Search Google for

“antiderivative table”.
Here is a small table with entries corresponding

to the derivatives that we have found so far.

Function (f) Antiderivative (F ) Comment
xa 1

a+1
xa+1 for a 6= −1

x−1 = 1
x

ln(x)
ex ex

cos(x) sin(x)
sin(x) − cos(x)
sec2(x) tan(x) Example 8 in Section 3.3

sec(x) tan(x) sec(x) Example 11 in Section 3.3
1√

1−x2 arcsin(x) Section 3.4
1

1+x2 arctan(x) Section 3.4

Table 3.6.1 Table of antiderivatives (F ′ = f).

An elementary function is a function that can be expressed in terms of
polynomials, powers, trigonometric functions, exponentials, logarithms, and
the functions obtained from them by algebra and by composition of functions.
The derivative of an elementary function is elementary. We might expect that
every elementary function would have an elementary antiderivative.

Joseph Liouville
(1809–1882)

In 1833 Joseph Liouville proved that there are elementary functions that do
not have elementary antiderivatives. Here are five examples of such functions:

e−x2
is important in

statisticians’ bell curve
ex2 sin(x)

x
x tan(x)

√
x 3
√

1 + x
4
√

1 + x2

There are two types of elementary functions: algebraic and transcendental.
Algebraic functions, defined in Section 3.5, consist of polynomials, quotients
of polynomials (the rational functions), and functions that can be built up by
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the four operations of algebraThe four operations of
algebra are +, −, × and /.

and taking roots. For instance,

√
x + 3
√

x + x2

(1 + 2x)5

is algebraic while functions such as sin(x) and 2x are not algebraic. These
functions are called transcendental.

It is difficult to tell whether a given elementary function has an elementary
antiderivative. For instance, x sin(x) does, namely −x cos(x) + sin(x), as may
be checked, but x tan(x) does not. The function ex2

does not, as mentioned
earlier. However, e

√
x, which looks more complicated, has an elementary an-

tiderivative. (See Exercise 75.)

The importance of antiderivatives will be revealed in Chapter 5. Techniques
for finding them are developed in Chapter 8.

Picturing Antiderivatives

If it is not possible to find an explicit formula for the antiderivative of many
elementary functions, why do we believe that they have antiderivatives? The
following shows why.

The slope field for a function f(x) is made of short line segments with
slope f(x) at a few points whose x-coordinate is x. By drawing a slope field
you can convince yourself that an antiderivative exists, and see the shape of
its graph.

EXAMPLE 2 Imagine that we are looking for an antiderivative F (x) of√
1 + x3. We want F ′(x) to be

√
1 + x3. Or, to put it geometrically, we

want the slope of the curve y = F (x) to be
√

1 + x3. For instance, when
x = 2, we want the slope to be

√
1 + x3 = 3. We do not know what F (2)

is, but at least we can draw a short piece of the tangent line at all points
for which x = 2: they all have slope 3. (See Figure 3.6.1(a).) When x = 1,√

1 + x3 =
√

2 ≈ 1.4. So we draw short lines with slope
√

2 on the vertical
line x = 1. When x = 0,

√
1 + x3 = 1: the tangent lines for x = 0 all have

slope 1. When x = −1, the slopes are
√

1 + x3 = 0 so the tangent lines are all
horizontal. (See Figure 3.6.1(b).)

The plot of a slope field is most commonly made with the aid of specialized
software on a graphing calculator or computer.For a sample of available

resources, search Google for
“calculus slope field plot”.

A typical slope field, showing
more segments of tangent lines than we have the patience to draw by hand, is
in Figure 3.6.2(a) which shows a computer-generated direction field for f(x) =√

1 + x3 that has many more segments of tangent lines than Figure 3.6.1(a).

We can imagine the curves that follow the slope field for f(x) =
√

1 + x3.
Start at a point, say (−1, 0). There the slope is F ′(−1) = f(−1) = 0, and the
curve starts moving horizontally to the right. As soon as the curve leaves this
initial point the slope, as given by F ′(x) = f(x), becomes slightly positive.
This pushes the curve upward. The slope continues to increase as x increases.
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G’(2)=3

y 3

1

−1

0

6

5

4

2

0

1

x

2−1

(a)

G’(−1)=0 G’(0)=1 G’(1)=sqrt(2) G’(2)=3

4

5

y(x)

1

6

3

0

2

−1

10−1

x

2

(b)

Figure 3.6.1 Constructing the slope field for f(x) =
√

1 + x3. (a) For x = 2
all slopes are f(2) = 3. (b) For x = −1 all slopes are f(1) = 0, for x = 0, the
slopes are f(0) = 1, and for x = 1 all slopes are f(1) =

√
2.

4

0−1

5

6

−1

2

x

0

1

y(x) 3

2

1

(a)

0

y(x)

1

2

x

3

−1

6

−1

2

5

4

0

1

(b)

y(x)

5

1

0

4

x

6

3

2

2−1

−1

10

(c)

Figure 3.6.2 (a) Slope field for f(x) =
√

1 + x3. (b) The antiderivative of f(x)
that passes through (−1, 0). (c) Three more antiderivatives of f(x), passing
through (0, 0), (0, 1), and (0, 2).
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The curve in Figure 3.6.2(b) is the graph of the antiderivative of f(x) =√
1 + x3 that equals 0 when x is −1.

Starting at a different initial point will produce a different antiderivative.
Three antiderivatives are shown in Figure 3.6.2(c). Many other antiderivatives
for f(x) =

√
1 + x3 are visible in the slope field. None is elementary. �

Example 2 suggests that different antiderivatives of a function differ by a
constant: the graph of one is the graph of the other raised or lowered by their
constant difference. The next example suggests that the constant functions
are the only antiderivatives of the zero function. Both suggestions are correct,
as will be shown in Section 3.7.

EXAMPLE 3 Draw the slope field for dy
dx

= 0.
SOLUTION Since the slope is 0 everywhere, each of the tangent lines is rep-
resented by a horizontal line segment, as in Figure 3.6.3(a). In Figure 3.6.3(b)

−1

32

x

10−1

3

−3

5

0

−2

4

y

2

1

(a)

−1

321

5

0−1

3

4

−3

2

y

0

−2

1

x

(b)

Figure 3.6.3

two possible antiderivatives of 0 are shown, namely the constant functions
f(x) = 2 and g(x) = 4. �

We will assume from now on that

Every antiderivative of the zero function on an interval is constant. That is,
if f ′(x) = 0 for all x in an interval, then f(x) = C for some constant C.
Two antiderivatives of a function on an interval differ by a constant. That
is, if F ′(x) = G′(x) for all x in an interval, then F (x) = G(x) + C for some
constant C.

April 22, 2012 Calculus



§ 3.6 ANTIDERIVATIVES AND SLOPE FIELDS 229

These results will be established using the definitions and theorems of cal-
culus in Section 3.7.

How computers find antiderivatives
There are algorithms implemented in software on computers, hand-held de-
vices, and calculators that determine if a given elementary function has an
elementary antiderivative. The most well-known is the Risch algorithm, de-
veloped in 1968, based on differential equations and abstract algebra. A web
search for “risch antiderivative elementary symbolic” produces links related to
the Risch algorithm.

Summary

If F ′ = f , then F is an antiderivative of f ; so is F + C for any constant C.
We introduced the notion of an elementary function. Such a function is

built up from polynomials, logarithms, exponentials, and the trigonometric
functions by algebraic operations and the most important operation, compo-
sition. While the derivative of an elementary function is elementary, its an-
tiderivative does not need to be. Each elementary function is either algebraic
or transcendental.

We showed how a slope field can help analyze an antiderivative even though
we may not know a formula for it. Slope fields will be used later for other
purposes.
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EXERCISES for Section 3.6

1.

(a) Verify that −x cos(x) + sin(x) is an antiderivative of x sin(x).

(b) Spend at least one minute and at most ten minutes trying to find an an-
tiderivative of x tan(x).

In Exercises 2 to 11 give two antiderivatives for each function.
2. x3

3. x4

4. x−2

5. 1
x3

6. 3
√

x

7. 2
x

8. sec(x) tan(x)
9. sin(x)
10. e−x

11. sin(2x)

In Exercises 12 to 20

(a) Draw the slope field for the given derivative,

(b) Use it to draw the graphs of two possible antiderivatives F (x).

12. F ′(x) = 2
13. F ′(x) = x

14. F ′(x) = −x
2

15. F ′(x) = 1
x , x > 0

16. F ′(x) = cos(x)
17. F ′(x) =

√
x

18. F ′(x) = e−x, x > 0
19. F ′(x) = 1/x2, x 6= 0
20. F ′(x) = 1/(x− 1), x 6= 1

In Exercises 21 to 30 use differentiation to check that the first function is an an-
tiderivative of the second function.
21. 2x sin(x)− (x2 − 2) cos(x); x2 sin(x)
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22. (4x3 − 24x) sin(x)− (x4 − 12x2 + 24) cos(x); x4 sin(x)

23. −1
2x2 ; 1

x3

24. −2√
x
; 1

x3/2

25. (x− 1)ex; xex

26. (x2 − 2x + 2)ex; x2ex

27. 1
2eu(sin(u)− cos(u)); eu sin(u)

28. 1
2eu(sin(u) + cos(u)); eu cos(u)

29. x
2 −

sin(x) cos(x)
2 ; sin2(x)

30. 2x cos(x)− (x2 − 2) sin(x); x2 cos(x)

31.

(a) Draw the slope field for dy
dx = e−x2

.

(b) Draw the graph of the antiderivative of e−x2
that passes through the point

(0, 1).

32.

(a) Draw the slope field for dy
dx = sin(x)

x when x 6= 0. For the slopes when x = 0,
use 1, which is limx→0

sin(x)
x .

(b) What is the slope for any point on the y-axis?

(c) Draw the graph of the antiderivative of f(x) that passes through the point
(0, 1).

33. A table of antiderivatives lists two antiderivatives of 1
x2(a+bx)

, where a and b

are constants, namely

−1
a2

(
a + bx

x
− b ln

(
a + bx

x

))
and − 1

ax
+

b

a2
ln
(

a + bx

x

)
.

Assume a+bx
x > 0.
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(a) By differentiating the expressions, show that both are correct.

(b) Show that they differ by a constant by finding their difference.

34. If F (x) is an antiderivative of f(x), find a function that is an antiderivative
of

(a) g(x) = 2f(x)

(b) h(x) = f(2x)

35.

(a) Draw the slope field for dy/dx = −y.

(b) Draw the graph of the function y = F (x) such that F (0) = 1 and F ′(X) = −y.

(c) What do you think limx→∞ F (x) is?
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3.7 Motion and the Second Derivative

In a drag race Melanie Troxel reached a speed of 324 miles per hour, which is
about 475 feet per second, in a mere 4.539 seconds. By comparison, a 1968
Fiat 850 Idromatic could reach a speed of 60 miles per hour in 25 seconds and
a 1997 Porsche 911 Turbo S in 3.6 seconds. Numerical acceleration data

can be found with a web
search for “automobile
acceleration.”

Since Troxel increased her speed from 0 feet per second to 475 feet per
second in 4.539 seconds her speed was increasing at the rate of 475

4.539
≈ 105

feet per second per second, assuming she kept the motor at constant power
throughout the time interval. That acceleration is more than three times
the acceleration due to gravity at sea level (32 feet per second per second).
Ms. Troxel must have felt quite a force as her seat pressed against her back.

This brings us to the definition of acceleration and an introduction to
higher derivatives.

Acceleration

The sign of the velocity
indicates direction. Speed,
the absolute value of
velocity, does not indicate
direction.

Velocity is the rate at which the position of an object moving on a line
changes. The rate at which velocity changes is called acceleration, denoted a.
Thus if y = f(t) denotes position on the y-axis at time t, then the derivative dy

dt

equals the velocity, and the derivative of the derivative equals the acceleration.
That is,

v =
dy

dt
and a =

dv

dt
=

d

dt

(
dy

dt

)
.

The derivative of the derivative of a function y = f(x) is called the second
derivative. It is denoted in many different ways, including

d2y

dx2
, D2y, y′′, f ′′, D2f, f (2), and

d2f

dx2
.

If y = f(t), where t denotes time, the first and second derivatives dy/dt and
d2y/dt2 are sometimes denoted ẏ and ÿ, respectively.

For instance, if y = x3,

dy

dx
= 3x2 and

d2y

dx2
= 6x.

Other ways of denoting the second derivative are

D2(x3) = 6x,
d2(x3)

dx2
= 6x, and (x3)′′ = 6x.

The table in the margin lists the function and its first and second deriva-
tives.
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Most functions met in applications of calculus can be differentiated repeat-
edly in the sense that Df exists, the derivative of Df , namely, D2f , exists,
the derivative of D2f exists, and so on.

y dy
dx

d2y
dx2

x3 3x2 6x
1
x

−1
x2

2
x3

sin(5x) 5 cos(5x) −25 sin(5x)

The derivative of the second derivative is called the third derivative and
is denoted many ways, such as

d3y

dx3
, D3y, y′′′, f ′′′, f (3), and

d3f

dx3
.

The fourth derivative is defined similarly, as the derivative of the third deriva-
tive. In the same way we can define the nth derivative for any positive integer
n and denote this by such symbols as

dny

dxn
, Dny, f (n), and

dnf

dxn
.

It is read as “the nth derivative of y with respect to x.” For instance, if
f(x) = 2x3 + x2 − x + 5, we have

f (1)(x) = 6x2 + 2x− 1
f (2)(x) = 12x + 2
f (3)(x) = 12
f (4)(x) = 0
f (n)(x) = 0 for n ≥ 5.

EXAMPLE 1 Find Dn(e−2x) for each positive integer n.
SOLUTION

D1 (e−2x) = D (e−2x) = −2e−2x

D2 (e−2x) = D (−2e−2x) = (−2)2e−2x

D3 (e−2x) = D ((−2)2e−2x) = (−2)3e−2x

At each differentiation another (−2) becomes part of the coefficient. Thus

Dn
(
e−2x

)
= (−2)ne−2x.

This can also be written

Dn
(
e−2x

)
= (−1)n2ne−2x,

because the power (−1)n records a plus if n is even and a minus if n is odd. �
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Finding Velocity and Acceleration from Position

EXAMPLE 2 A falling rock drops 16t2 feet in the first t seconds. Find its
velocity and acceleration.

Figure 3.7.1

SOLUTION Place the y-axis in the usual position, with 0 at the beginning
of the fall and the part with positive values above 0, as in Figure 3.7.1. At
time t the object has the y coordinate

y = −16t2.

The velocity is v = (−16t2)′ = −32t feet per second, and the acceleration is
a = (−32t)′ = −32 feet per second per second. The velocity changes at a
constant rate. That is, the acceleration is constant. �

Finding Position from Velocity and Acceleration

To calculate the position of a moving object it is enough to know the object’s
acceleration, its initial position, and its initial velocity. This will be demon-
strated in the next two examples in the special case that the acceleration is
constant. In the first example, the acceleration is 0.

EXAMPLE 3

Figure 3.7.2

In the simplest motion, no forces act on a moving particle,
hence its acceleration is 0. Assume that a particle is moving on the x-axis and
no forces act on it. Let its location at time t seconds be x = f(t) feet. See
Figure 3.7.2. If at time t = 0, x = 3 feet and the velocity is 5 feet per second,
determine f(t).

SOLUTION The assumption that no force operates on the particle tells us
that there is no acceleration: d2x/dt2 = 0. Call the velocity v. Then

dv

dt
=

d

dt

(
dx

dt

)
=

d2x

dt2
= 0

That is, v is a function of time whose derivative is 0. At the end of Section 3.6
we saw that constant functions are the antiderivatives of 0. Thus, v must be
constant:

v(t) = C for some constant C.

Since v(0) = 5, the constant C must be 5.
We know that the derivative of the position x is the velocity v. Hence

dx

dt
= 5.
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Similar reasoning tells us that x = f(t) has the form

x = 5t + K for some constant K.

When t = 0, x = 3, so K = 3. Thus at time t seconds the particle is at
x = 5t + 3 feet. �

In the next example the acceleration is constant, but not zero.

EXAMPLE 4

Figure 3.7.3

A ball is thrown straight up, with an initial speed of 64 feet
per second, from a cliff 96 feet above a beach. Where is the ball t seconds
later? When does it reach its maximum height? How high above the beach
does the ball rise? When does the ball hit the beach? Assume that there is no
air resistance and that the acceleration due to gravity is constant.

SOLUTION Introduce a vertical coordinate axis to describe the position of
the ball. It is more natural to call it the y-axis, and so the velocity is dy/dt and
acceleration is d2y/dt2. Place the origin at ground level and let the positive
part of the y-axis be above the ground, as in Figure 3.7.3. At time t = 0,
the velocity dy/dt is 64, since the ball is thrown up at a speed of 64 feet per
second.If it had been thrown down

dy/dt would be −64.
As time increases, dy/dt decreases from 64 to 0 (when the ball reaches

the top of its path and begins its descent) and continues to decrease through
larger and larger negative values as the ball falls to the ground. Since v is
decreasing, the acceleration dv/dt is negative. The constant value of dv/dt,
gravitational acceleration, is approximately −32 feet per second per second.

From the equation

a =
dv

dt
= −32

Velocity is an antiderivative
of acceleration.

it follows that
v = −32t + C,

where C is some constant. To find C, we use the fact that v = 64 when t = 0
so

64 = −32 · 0 + C

and C = 64. Hence v = −32t + 64 for any time t until the ball hits the beach.
So we have

dy

dt
= v = −32t + 64.

Since the position function y is an antiderivative of the velocity, −32t+64,
we have

y(t) = −16t2 + 64t + K,

where K is a constant. To find K, recall that y = 96 when t = 0. Thus

96 = −16 · 02 + 64 · 0 + K,
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and K = 96.
We have obtained a complete description of the position of the ball at any

time t while it is in the air:

y = −16t2 + 64t + 96.

This, together with v = −32t + 64, provides answers to many questions about
the ball’s flight. (As a check, note that when t = 0, y = 96, the initial height.)

Figure 3.7.4

When does it reach its maximum height? When it is neither rising nor
falling. That is, the velocity is neither positive nor negative, and so must be
0. The velocity is zero when −32t + 64 = 0, which is when t = 2 seconds.

How high above the ground does the ball rise? Compute y when t = 2.
This gives −16 · 22 + 64 · 2 + 96 = 160 feet. (See Figure 3.7.4.)

When does the ball hit the beach? When y = 0. Find t such that

y = −16t2 + 64t + 96 = 0.

Division by −16 yields t2 − 4t− 6 = 0, which has the solutions

t =
4±
√

16 + 24

2
= 2±

√
10.

Since 2−
√

10 is negative and the ball cannot hit the beach before it is thrown,
the only physically meaningful solution is 2+

√
10. The ball lands 2+

√
10 sec-

onds after it is thrown, so it is in the air for about 5.2 seconds.
The graphs of position, velocity, and acceleration as functions of time pro-

vide another perspective on the motion of the ball, as shown in Figure 3.7.4.

(a) (b) (c)

Figure 3.7.5 (a) position, (b) velocity, and (c) acceleration for the object in
Example 4.

�
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Reasoning like that in Examples 3 and 4 establishes the following descrip-
tion of motion in all cases where the acceleration is constant.

Motion Under Constant Acceleration
Assume that a particle moving on the y-axis has a constant acceleration a.
Assume that at time t = 0 it has the initial velocity v0 and has the initial
y-coordinate y0. Then at any time t ≥ 0 its y-coordinate is

y =
a

2
t2 + v0t + y0.

In Example 3, a = 0, v0 = 5, and y0 = 3 and in Example 4, a = −32
v0 = 64, and y0 = 96. The data must be given in consistent units, for instance,
all in meters or all in feet.

Summary

We defined the higher derivatives of a function. They are obtained by repeat-
edly differentiating. The second derivative is the derivative of the derivative,
the third derivative is the derivative of the second derivative, and so on. The
first and second derivatives, D(f) and D2(f), are used in many applications.
We used them to analyze motion under constant acceleration.
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EXERCISES for Section 3.7

In Exercises 1 to 16 find the first and second derivatives of the functions.
1. y = 2x + 3
2. y = e−x3

3. y = x5

4. y = ln(6x + 1)
5. y = sin(πx)
6. y = 4x3 − x2 + x

7. y = x
x+1

8. y = x2

x−1

9. y = x cos(x2)
10. y = x

tan(3x)

11. y = (x− 2)4

12. y = (x + 1)3

13. y = e3x

14. y = tan(x2)
15. y = x2 arctan(3x)

16. y = −arcsin(2x)
x2

17. Use calculus, specifically derivatives, to restate the following report about the
Leaning Tower of Pisa.

Until 2001, the tower’s angle from the vertical was increasing more
rapidly.

(Let θ = f(t) be the angle of deviation from the vertical at time t. Incidently, the
tower, begun in 1174 and completed in 1350, is 179 feet tall and leans about 14 feet
from the vertical. Each day it leaned on the average, another 1

5000 inch until the
tower was propped up in 2001.)

Exercises 18 to 20 concern Example 4.
18.

(a) How long after the ball in Example 4 is thrown does it pass by the top of the
hill?

(b) What are its speed and velocity at this instant?

19. Suppose the ball in Example 4 had simply been dropped from the cliff. Find
the position y as a function of time. How long would it take the ball to reach the
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beach?

20. In view of the result of Exercise 19, provide a physical interpretation of the
three terms on the right-hand side of the formula y = −16t2 + 64t + 96.

21. At time t = 0 a particle is at y = 3 feet and has a velocity of −3 feet per
second; it has a constant acceleration of 6 feet per second per second. Find its
position at any time t.

22. At time t = 0 a particle is at y = 10 feet and has a velocity of 8 feet per
second and has a constant acceleration of −8 feet per second per second.

(a) Find its position at any time t.

(b) What is its maximum y coordinate?

23. At time t = 0 a particle is at y = 0 feet and has a velocity of 0 feet per second.
Find its position at any time t if its acceleration is always −32 feet per second per
second.

24. At time t = 0 a particle is at y = −4 feet and has a velocity of 6 feet per
second and it has a constant acceleration of −32 feet per second per second.

(a) Find its position at any time t.

(b) What is its largest y coordinate.

In Exercises 25 to 34 find the given derivatives.
25. D3

(
5x2 − 2x + 7

)
26. D4 (sin(2x))
27. Dn (ex)
28. D(sin(x)), D2(sin(x)), D3(sin(x)), and D4(sin(x))
29. D(cos(x)), D2(cos(x)), D3(cos(x)), and D4(cos(x))
30. D(ln(x)), D2(ln(x)), D3(ln(x)), and D4(ln(x))
31. D4(x4) and D5(x4)
32. D200(sin(x))
33. D200(ex)
34. D2(5x)

35. Find all functions f such that D2(f) = 0 for all x.
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36. Find all functions f such that D3(f) = 0 for all x.

37. A jetliner begins its descent 120 miles from an airport. Its velocity when the
descent begins is 500 miles per hour and its landing velocity is 180 miles per hour.
Assuming a constant deceleration, how long does the descent take?

38. Let y = f(t) describe the motion on the y-axis of an object whose acceleration
has the constant value a. Show that

y =
a

2
t2 + v0t + y0,

where v0 is the velocity when t = 0 and y0 is the position when t = 0.

39. Which has the highest acceleration? Melanie Troxel’s dragster, a 1997 Porsche
911 Turbo S, or an airplane being launched from an aircraft carrier? The plane
reaches a velocity of 180 miles per hour in 2.5 seconds, within a distance of 300 feet.
(Assume each acceleration is constant.)

40. Why do engineers call the third derivative of position with respect to time
the jerk?

41. Give two functions f such that D2(f) = 9f , neither a constant multiple of
the other.

42. Give two functions f such that D2(f) = −4f , neither a constant multiple of
the other.

43. A car accelerates with constant acceleration from 0 (rest) to 60 miles per hour
in 15 seconds. How far does it travel in this period? Be sure to do your computa-
tions either all in seconds, or all in hours. (60 miles per hour is 88 feet per second.)

44. Show that a ball thrown straight up from the ground takes as long to rise as
to fall back to its initial position. Disregard air resistance. How does the velocity
with which it strikes the ground compare with its initial velocity? How do the initial
and landing speeds compare?
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3.8 Precise Definition of Limits at Infinity: lim
x→∞

f (x) =

L

One day a teacher drew on the board the graph of y = x/2 + sin(x), shown in
Figure 3.8.1. Then the class was asked whether they thought that

lim
x→∞

f(x) =∞.

A third of the class voted “No” because “it keeps going up and down.”

Figure 3.8.1

A third
voted ”Yes” because ”the function tends to get very large as x increases.” A
third didn’t vote. Such a variety of views on such a fundamental concept sug-
gests that we need a more precise definition of a limit than the ones developed
in Sections 2.2 and 2.3. (How would you vote?)

The definitions of the limits considered in Chapter 2 used such phrases as
“x approaches a,” “f(x) approaches a specific number,” “as x gets larger,”
and “f(x) becomes and remains arbitrarily large.” Such phrases, although
appealing to the intuition and conveying the sense of a limit, are not precise.
The definitions seem to suggest moving objects and call to mind the motion
of a pencil point as it traces out the graph of a function.

The informal approach was adequate during the early development of calcu-
lus, from Leibniz and Newton in the seventeenth century through the Bernoullis,
Euler, and Gauss in the eighteenth and early nineteenth centuries. By the
mid-nineteenth century, mathematicians, facing more complicated functions
and more difficult theorems, no longer could depend solely on intuition. They
realized that glancing at a graph was no longer adequate to understand the
behavior of functions, especially if theorems covering a broad class of functions
were needed.

It was Weierstrass who developed, over the period 1841–1856, a way to
define limits without any reference to motion or pencils tracing out graphs.
His approach, on which he lectured after joining the faculty at the University
of Berlin in 1859, has since been followed by pure and applied mathemati-
cians throughout the world. Even an undergraduate advanced calculus course
depends on Weierstrass’s approach.

In this section we examine how Weierstrass would define the limits at in-
finity:

lim
x→∞

f(x) =∞ and lim
x→∞

f(x) = L.

In the next section we consider limits at finite points:

lim
x→a

f(x) = L.
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The Precise Definition of limx→∞ f(x) =∞
First we treat the case in which the limit is infinite, which includes the example
that introduces this section. We had a definition of limx→∞ f(x) = ∞ in
Section 2.2.

Informal definition of limx→∞ f(x) =∞

1. f(x) is defined for all x beyond some number.

2. As x gets large through positive values, f(x) becomes and
remains arbitrarily large and positive.

To take us part way to the precise definition, let us reword the informal defi-
nition, paraphrasing it in the following definition, which is still informal.

Reworded informal definition of limx→∞ f(x) =∞

1. Assume that f(x) is defined for all x greater than some num-
ber c.

2. If x is sufficiently large and positive, then f(x) is necessarily
large and positive.

The precise definition parallels the reworded definition.

DEFINITION (Precise definition of limx→∞ f(x) =∞)

1. Assume the f(x) is defined for all x greater than some number
c.

2. For each number E there is a number D such that for all
x > D it is true that f(x) > E.

If those two conditions are met, then limx→∞ f(x) =∞.

The challenge and reply
approach to limits. Think of
E as the “enemy” and D as
the “defense.”

Think of the number E as a challenge and D as the reply. The larger E is,
the larger D must usually be. Only if a number D (which depends on E) can
he found for every number E can we make the claim that limx→∞ f(x) = ∞.
In other words, D could be expressed as a function of E. To picture the idea
behind the precise definition, consider the graph in Figure 3.8.2(a) of a function
f for which limx→∞ f(x) = ∞. For each possible choice of a horizontal line,
say at height E, if you are far enough to the right on the graph of f , you stay
above that horizontal line. That is, there is a number D such that if x > D,
then f(x) > E.

The number D in Figure 3.8.2(b) is not a suitable reply. It is too small
since there are some values of x > D such that f(x) ≤ E. The number D in
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(a) (b) (c)

Figure 3.8.2

Figure 3.8.2(c) does fulfill the second part of the definition. For every value of
x > D, f(x) > E.

Examples 1 and 2 illustrate how the precise definition is used.

EXAMPLE 1 Using the precise definition, show that limx→∞ 2x =∞.
SOLUTION Let E be any positive number. We must show that there is a
number D such that whenever x > D it follows that 2x > E. (For example,
if E = 100, then D = 50 would do because if x > 50, then 2x > 100.) The
number D will depend on E. Our goal is to find a formula for D for any value
of E.

The inequality 2x > E is equivalent to

x >
E

2
.

D depends on E So if x > E/2, then 2x > E. Choosing D = E/2 will suffice. To verify this,

when x > D (= E/2), 2x > 2D = 2E
2

= E. This allows us to conclude that

lim
x→∞

2x =∞.

�

Figure 3.8.3

In Example 1 a formula was provided for a suitable D in terms of E,
namely, D = E/2 (see Figure 3.8.3). When challenged with E = 1000, the
response D = 500 suffices. Any larger value of D also is suitable. If x > 600,
it is still the case that 2x > 1000 (since 2x > 1200). If one value of D is a
satisfactory response to a given challenge E, then any larger value of D also
is a satisfactory response.

Now that we have a precise definition of limx→∞ f(x) = ∞ we can settle
the question, is limx→∞(x/2 + sin(x)) =∞?

EXAMPLE 2 Using the precise definition, show that lim
x→∞

x

2
+sin(x) =∞.

SOLUTION Let E be any number. We need to exhibit a number D, depend-
ing on E, such that x > D implies

x

2
+ sin(x) > E. (3.8.1)
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Now, sin(x) ≥ −1 for all x. So, if we can force

x

2
+ (−1) > E

then it will follow that
x

2
+ sin(x) > E.

The smallest value of x that satisfies (3.8.1) can be found as follows:

x
2

> E + 1 ( add 1 to both sides of (3.8.1) )
x > 2(E + 1). ( multiply by a positive constant )

D depends on EThus D = 2(E + 1) will suffice. That is,

If x > 2(E + 1), then
x

2
+ sin(x) > E.

To verify this we check that D = 2(E +1) is a satisfactory reply to E. Assume
that x > D = 2(E + 1). Then

x

2
> E + 1

and

sin(x) ≥ −1.

Adding the inequalities gives If a > b and c ≥ d, then
a + c > b + d.

x

2
+ sin(x) > (E + 1) + (−1)

or
x

2
+ sin(x) > E,

which is inequality (3.8.1). Therefore we can conclude that

lim
x→∞

(x

2
+ sin(x)

)
=∞.

As x increases, the function does become and remain large, despite the
small dips downward. �

The Precise Definition of limx→∞ f(x) = L

We defined limx→∞ f(x) = L informally in Section 2.2. L is a finite number.
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Informal definition of limx→∞ f(x) = L

1. f(x) is defined for all x beyond some number.

2. As x gets large through positive values, f(x) approaches L.

Again we reword this definition before offering the precise definition.

Reworded informal definition of limx→∞ f(x) = L

1. Assume that f(x) is defined for all x greater than some num-
ber c.

2. If x is sufficiently large, then f(x) is necessarily near L.

Once again, the precise definition parallels the reworded definition. In
order to make precise the phrase “f(x) is necessarily near L,” we shall use
the absolute value of f(x) − L to measure the distance from f(x) to L. The
following definition says that if x is large enough, then |f(x) − L| is as small
as we please.

DEFINITION (Precise definition of limx→∞ f(x) = L)

1. Assume that f(x) is defined for all x beyond some number c.

2. For each positive number ε there is a number D such that for
all x > D it is true that

|f(x)− L| < ε.

If both conditions are met, then limx→∞ f(x) = L.

The number ε is the
challenge. The number D is

a reply.

Figure 3.8.4

This definition can also be interpreted graphically. Draw two lines parallel to
the x-axis, one of height L+ ε and one of height L− ε. They are the two edges
of a band of width 2ε centered at y = L. Assume that for each positive ε, a
number D can be found such that the part of the graph to the right of x = D
lies within the band. Then we say that as x approaches ∞, f(x) approaches
L and write

lim
x→∞

f(x) = L.

The positive number ε is the challenge, and D is a reply. The smaller ε
is, the narrower the band is, and the larger D usually must be chosen. The
geometric meaning of the precise definition of limx→∞ f(x) = L is shown in
Figure 3.8.4.“ε” (epsilon) is the Greek

letter corresponding to the
English letter “e”. EXAMPLE 3 Use the precise definition of limx→∞ f(x) = L to show that

lim
x→∞

(
1 +

1

x

)
= 1.
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SOLUTION Here f(x) = 1 + 1
x
, which is defined for all x 6= 0. The number

L is 1. We must show that for each positive number ε, however small, there is
a number D such that, for all x > D,∣∣∣∣(1 +

1

x

)
− 1

∣∣∣∣ < ε. (3.8.2)

Inequality (3.8.2) reduces to ∣∣∣∣1x
∣∣∣∣ < ε.

Since we may consider only x > 0, it is equivalent to

1

x
< ε. (3.8.3)

Multiplying inequality (3.8.3) by the positive number x yields the equivalent
inequality

1 < xε. (3.8.4)

Dividing inequality (3.8.4) by the positive number ε yields

1

ε
< x or x >

1

ε
.

D depends on ε.The steps are reversible, which shows that D = 1/ε is a suitable reply to
the challenge ε. If x > 1/ε, then∣∣∣∣(1 +

1

x

)
− 1

∣∣∣∣ < ε.

That is, (3.8.2) is satisfied.

Figure 3.8.5

According to the precise definition of limx→∞ f(x) = L, we conclude that

lim
x→∞

(
1 +

1

x

)
= 1.

�

The graph of f(x) = 1+ 1
x
, shown in Figure 3.8.5, reinforces the argument.

It seems plausible that no matter how narrow a band someone may place
around the line y = 1, it will always be possible to find a number D such that
the part of the graph to the right of x = D stays within it. In Figure 3.8.5 a
typical band is shown shaded.
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The precise definitions can also be used to show that some claim about an
alleged limit is false. The next example illustrates this.

EXAMPLE 4 Show that the claim that limx→∞ sin(x) = 0 is false.
SOLUTION To show that the claim is false, we must exhibit a challenge
ε > 0 for which no response D can be found. That is, we exhibit a positive
number ε such that no D exists for which | sin(x)− 0| < ε for all x > D.

Because sin(x) = 1 whenever x = π
2

+ 2nπ for any integer n, there are
arbitrarily large values of x for which sin(x) = 1. This suggests how to exhibit
an ε > 0 for which no response D can be found. Pick ε to be a positive number
less than or equal to 1. For instance, ε = 0.7 will do.

For any number D there is always x∗ > D such that we have sin(x∗) = 1.
This means that | sin(x∗)− 0| = 1 > 0.7. Hence no response can he found for
ε = 0.7. Thus the claim that limx→∞ sin(x) = 0 is false. �

To conclude this section, we show how the precise definition of the limit
can be used to obtain information about new limits.

EXAMPLE 5 Use the precise definition of limx→∞ f(x) = L to show that
if f and g are defined everywhere, limx→∞ f(x) = 2, and limx→∞ g(x) = 3,
then limx→∞(f(x) + g(x)) = 5.
SOLUTION The objective is to show that for each positive number ε, how-
ever small, there is a number D such that, for all x > D,

|(f(x) + g(x))− 5| < ε.

Because |(f(x) + g(x)) − 5| can be written as |(f(x) − 2) + (g(x) − 3))| it is
no larger than |f(x)− 2|+ |g(x)− 3|. If we can show that for all x sufficiently
large both |f(x) − 2| < ε/2 and |g(x) − 3| < ε/2, then their sum will be no
larger than ε/2 + ε/2 = ε.

Here is how we can do this.
Because limx→∞ f(x) = 2 we know that for any ε > 0 there exists a number

D1 with the property that |f(x) − 2| < ε/2 for all x > D1. (In this case ε/2
is the challenge and D1 is the response.) Likewise, because limc→∞ g(x) = 3
we know that for any ε > 0 there exists a number D2 with the property that
|g(x)− 2| < ε/2 for all x > D2.

Let D be the larger of D1 and D2. For any x greater than D we know that

|f(x) + g(x)− 5| < |f(x)− 2|+ |g(x)− 3| < ε/2 + ε/2 = ε.

According to the precise definition of a limit at infinity, we conclude that

lim
x→∞

(f(x) + g(x)) = 2 + 3 = 5.

�
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Summary

We developed a precise definition of the limit of a function as the argument
becomes arbitrarily large: limx→∞ f(x). The definition involves being able to
respond to a challenge. In the case of an infinite limit, the challenge is a large
number. In the case of a finite limit, the challenge is a small number used to
describe a narrow horizontal band.
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EXERCISES for Section 3.8

1. Let f(x) = 3x.

(a) Find a number D such that x > D implies f(x) > 600.

(b) Find another number D such that x > D implies f(x) > 600.

(c) What is the smallest number D such that x > D implies f(x) > 600?

2. Let f(x) = 4x.

(a) Find a number D such that x > D implies f(x) > 1000.

(b) Find another number D such that x > D implies f(x) > 1000.

(c) What is the smallest number D such that x > D implies f(x) > 1000?

3. Let f(x) = 5x. Find a number D such that, for all x > D,

(a) f(x) > 2000

(b) f(x) > 10, 000

4. Let f(x) = 6x. Find a number D such that, for all x > D,

(a) f(x) > 1200

(b) f(x) > 1800

In Exercises 5 to 12 use the precise definition of lim
x→∞

f(x) =∞ to establish
5. lim

x→∞
3x =∞

6. lim
x→∞

4x =∞

7. lim
x→∞

(x + 5) =∞

8. lim
x→∞

(x− 600) =∞

9. lim
x→∞

(2x + 4) =∞

10. lim
x→∞

(3x− 1200) =∞

11. lim
x→∞

(4x + 100 cos(x)) =∞

12. lim
x→∞

(2x− 300 cos(x)) =∞

13. Let f(x) = x2.
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(a) Find a number D such that, for all x > D, f(x) > 100.

(b) Let E be a nonnegative number. Find a number D such that, for all x > D,
it follows that f(x) > E.

(c) Let E be a negative number. Find a number D such that, for all x > D, it
follows that f(x) > E.

(d) Using the precise definition of lim
x→∞

f(x) =∞, show that lim
x→∞

x2 =∞.

14. Using the precise definition of lim
x→∞

f(x) = ∞, show that lim
x→∞

x3 = ∞. (See

Exercise 13.)

Exercises 15 to 26 concern the precise definition of lim
x→∞

f(x) = L.

15. Let f(x) = 3 + 1/x if x 6= 0.

(a) Find a number D such that x > D implies |f(x)− 3| < 1
10 .

(b) Find another number D such that x > D implies |f(x)− 3| < 1
10 .

(c) What is the smallest number D such that x > D implies |f(x)− 3| < 1
10?

(d) Using the precise definition of lim
x→∞

f(x) = L, show that lim
x→∞

(3 + 1/x) = 3.

16. Let f(x) = 2/x if x 6= 0.

(a) Find a number D such that x > D implies |f(x)− 0| < 1
100 .

(b) Find another number D such that x > D implies |f(x)− 0| < 1
100 .

(c) What is the smallest number D such that x > D implies |f(x)− 0| < 1
100?

(d) Using the precise definition of lim
x→∞

f(x) = L, show that lim
x→∞

(2/x) = 0.

In Exercises 17 to 22 use the precise definition of lim
x→∞

f(x) = L to establish

17. lim
x→∞

sin(x)
x

= 0 (| sin(x)| ≤ 1 for all x.)

18. lim
x→∞

x + cos(x)
x

= 1

19. lim
x→∞

4
x2

= 0

20. lim
x→∞

2x + 3
x

= 2
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21. lim
x→∞

1
x− 100

= 0

22. lim
x→∞

2x + 10
3x− 5

=
2
3

In Exercises 23 to 26 use the precise definition to prove each statement.
23. lim

x→∞
x/(x + 1) =∞ is false.

24. lim
x→∞

sin(x) =
1
2

is false.

25. lim
x→∞

3x = 6 is false.

26. lim
x→∞

2x = L is false.

Exercises 27 to 30 develop precise definitions of the limit. Phrase them in terms
of a challenge number E or ε and a reply D. Show the geometric meaning of your
definition on a graph.
27. lim

x→∞
f(x) = −∞

28. lim
x→−∞

f(x) =∞

29. lim
x→−∞

f(x) = −∞

30. lim
x→−∞

f(x) = L

31. Let f(x) = 5 for all x. (See Exercise 30.) Using a precise definition, show
that

(a) lim
x→∞

f(x) = 5.

(b) lim
x→−∞

f(x) = 5.

32. Is this argument correct?
I will prove that lim

x→∞
(2x + cos(x)) =∞. Let E be given. I want

2x + cos(x) > E
or 2x > E − cos(x)
so x > E−cos(x)

2 .

Thus, if D = E−cos(x)
2 , then 2x + cos(x) > E.

33. Use the precise definition of lim
x→∞

f(x) = L, to prove this version of the sum law

for limits: if limx→∞ f(x) = A and limx→∞ g(x) = B, then limx→∞(f(x) + g(x)) =
A + B. (See Example 5.)
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34. Use the precise definition of lim
x→∞

f(x) = L, to prove this version of the prod-

uct law for limits: if limx→∞ f(x) = A, then limx→∞(f(x)2) = A2. (f(x)2 − A2 =
(f(x)−A)(f(x) + A), and control the size of each factor.)

35. Use the precise definition of lim
x→∞

f(x) = L, to prove this version of the product

law for limits: if limx→∞ f(x) = A and limx→∞ g(x) = B, then limx→∞(f(x)g(x)) =
AB. (To use the two limits, write f(x) as A+(f(x)−A) and g(x) as B+(g(x)−B).)

36. Assume that limx→∞ f(x) = 5. Is there necessarily a number c such that for
x > c, f(x) stays in the closed interval [4.5, 5]? Explain in detail.

37. Assume that limx→∞ f(x) = 5. Is there necessarily a number c such that for
x > c, f(x) stays in the open interval (4.9, 5.3)? Explain in detail.

38.

Sam: I got lost in Example 5 when ε/2 came out of nowhere.

Jane: It’s just another small number. They were looking ahead to what they
needed.

Sam: Why must the two numbers add up to ε?

Jane: They don’t have to. They could add up to ε divided by 12 for instance.

Sam: What if they added up to 12ε? Would that work too?

Jane: No.

Sam: I’m getting a headache.

Explain Jane’s explanation for Sam’s benefit.
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3.9 Precise Definition of Limits at a Finite

Point: lim
x→a

f (x) = L

To conclude the discussion of limits, we extend the ideas developed in Sec-
tion 3.8 to the limit of a function at a number a.

Informal definition of limx→a f(x) = L

Let f be a function and a some fixed number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some c < a and some b > a.

2. If, as x approaches a, either from the left or from the right,
f(x) approaches a number L, then L is called the limit of
f(x) as x approaches a. This is written

lim
x→a

f(x) = L.

(a) (b) (c)

Figure 3.9.1 Three possibilities for limx→a f(x) = L.

Figure 3.9.1 illustrates three possibilities for limx→a f(x) = L: (a) a is in
the domain of f and f(a) = L, (b) a is in the domain of f and f(a) 6= L, and
(c) a is not in the domain of f . These remind us that a need not be in the
domain of f . And, even if it is, the value of f(a) plays no role in determining
whether limx→a f(x) exists.

Reworded informal definition of limx→a f(x) = L

Let f be a function and a some number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some c < a and some b > a.

2. If x is is sufficiently close to a but not equal to a, then f(x)
is necessarily near L.
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The following precise definition parallels the reworded informal definition.
δ (delta) is the lower case
version of the Greek letter
∆; they correspond to the
English letters d and D.

DEFINITION (Precise definition of limx→a f(x) = L) Let f be
a function and a some fixed number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some c < a and some b > a.

2. For each positive number ε there is a positive number δ such
that

for all x that satisfy the inequality 0 < |x− a|< δ
it is true that |f(x)− L|< ε.

The meaning of
0 < |x− a| < δ

The inequality 0 < |x− a| that appears in the definition is a way of saying
“x is not a.” The inequality |x− a| < δ asserts that x is within a distance δ of
a. The two inequalities are combined as the single statement 0 < |x− a| < δ,
which describes the open interval (a− δ, a + δ) from which a is deleted. This
deletion is made since f(a) plays no role in the definition of limx→a f(x).

Once again ε is the challenge. The reply is δ. Usually, the smaller ε is, the
smaller δ will have to be.

(a) (b) (c)

Figure 3.9.2 (a) The number ε is the challenge. (b) δ is not small enough.
(c) δ is small enough.

The geometric significance of the precise definition of limx→a f(x) = L is
shown in Figure 3.9.2. The narrow horizontal band of width 2ε is the challenge
(see Figure 3.9.2(a)). The desired response is a sufficiently narrow vertical
band, of width 2δ, such that the part of the graph within the vertical band
(except perhaps at x = a) also lies in the horizontal band of width 2ε. In
Figure 3.9.2(b) the vertical band is not narrow enough to meet the challenge
of the horizontal band, but the vertical band in Figure 3.9.2(c) is narrow
enough.

Assume that for each positive number ε it is possible to find a positive
number δ such that the parts of the graph between x = a− δ and x = a and
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between x = a and x = a + δ lie within the given horizontal band. Then we
say that “as x approaches a, f(x) approaches L”. The narrower the horizontal
band around the line y = L, the smaller δ usually must be.

EXAMPLE 1 Use the precise definition of lim
x→a

f(x) = L to show that

lim
x→2

(3x + 5) = 11.

SOLUTION Here f(x) = 3x + 5, a = 2, and L = 11. Let ε be a positive
number. We wish to find a number δ > 0 such that for 0 < |x − 2| < δ we
have |(3x + 5)− 11| < ε.

Let us find out for which x it is true that |(3x + 5) − 11| < ε. This is
equivalent to

|3x− 6| < ε

or
3|x− 2| < ε

or
|x− 2| < ε

3
.

Any positive number less
than ε/3 is also a suitable

response.

Thus δ = ε/3 is a suitable response. If 0 < |x−2| < ε/3, then |(3x+5)−11| < ε.
�

The algebra of finding a response δ can be more involved for other functions,
such as f(x) = x2. The precise definition of limit can actually be easier to
apply in more general situations where f and a are not given explicitly. To
illustrate, we present a proof of the permanence property.

When the permanence property was introduced in Section 2.5, the only
justification we provided was a picture and an appeal to intuition that a con-
tinuous function cannot jump instantaneously from a positive value to zero or
a negative value — the function has to remain positive on some open interval.
Mathematicians call this a “proof by handwaving.” We can prove without the
use of intuition or handwaving that there must be an open interval around a
given input, a, such that for any x in that interval f(x) stays near f(a).

EXAMPLE 2 Prove the permanence property: Assume that f is continu-
ous in an open interval that contains a and that f(a) = p > 0. Then for any
q < p there is an open interval I containing a such that f(x) > q for all x in
I.
SOLUTION Let p = f(a) > 0 and let q be a number less than p. Pick
ε = p − q. (The reason for this choice for ε will become clear in a moment.)
Because f is continuous at a, limx→a f(x) = f(a). By the precise definition of
limx→a f(x) = L, when ε = p− q there is a positive number δ such that

|f(a)− f(x)| < p− q for a− δ < x < a + δ.
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Thus
−(p− q) < f(a)− f(x) < p− q.

In particular,
f(a)− f(x) < p− q (3.9.1)

Because f(a) = p, (3.9.1) can be rewritten as

p− f(x) < p− q

or
f(x) > q.

Thus f(x) is greater than q if x is in the interval I = (a− δ, a + δ).
�

One of the common uses of the permanence property is to say that if a
continuous function is positive at a then there is an interval containing a on
which the function remains positive. (This corresponds to p = f(a) > 0 and
q = 0.)

Summary

This section developed a precise definition of the limit of a function as the
argument approaches a fixed number: limx→a f(x). It involves being able to
respond to an arbitrary challenge number. For a finite limit, the challenge is a
small positive number. The smaller that number, the harder it is to meet the
challenge.

In addition, it also gave a rigorous proof of the permanence principle. That
we could deduce it from the precise definition of a limit reassures us that the
precise definition expresses what we feel the word “limit” means.
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EXERCISES for Section 3.9

In Exercises 1 to 4 use the precise definition of lim
x→a

f(x) = L to justify
1. lim

x→2
3x = 6

2. lim
x→3

(4x− 1) = 11

3. lim
x→1

(x + 2) = 3

4. lim
x→5

(2x− 3) = 7

In Exercises 5 to 8 find a number δ such that the point (x, f(x)) lies in the shaded
band for all x in the interval (a − δ, a + δ). (Draw a suitable vertical band for the
given value of ε.)

5.

6.
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7.

8.

In Exercises 9 to 12 use the precise definition of limx→a f(x) = L to justify
9. lim

x→1
(3x + 5) = 8

10. lim
x→1

5x + 3
4

= 2

11. lim
x→0

x2

4
= 0

12. lim
x→0

4x2 = 0

13. Give an example of a number δ > 0 such that |x2 − 4| < 1 if 0 < |x− 2| < δ.

14. Give an example of a number δ > 0 such that |x2+x−2| < 0.5 if 0 < |x−1| < δ.

Develop precise definitions of the limits in Exercises 15 to 20. Phrase your defini-
tions in terms of a challenge, E or ε, and a response, δ.
15. lim

x→a+
f(x) = L

16. lim
x→a−

f(x) = L

17. lim
x→a

f(x) =∞
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18. lim
x→a

f(x) = −∞

19. lim
x→a+

f(x) =∞

20. lim
x→a−

f(x) =∞

21. Let f(x) = 9x2.

(a) Find δ > 0 such that, for 0 < |x− 0| < δ, it follows that |9x2 − 0| < 1
100 .

(b) Let ε be any positive number. Find a positive number δ such that, for
0 < |x− 0| < δ we have |9x2 − 0| < ε.

(c) Show that limx→0 9x2 = 0.

22. Let f(x) = x3.

(a) Find δ > 0 such that, for 0 < |x− 0| < δ, it follows that |x3 − 0| < 1
1000 .

(b) Show that limx→0 x3 = 0.

23. Show that the assertion that limx→2 3x = 5 is false. To do this, it is necessary
to exhibit a positive number ε such that there is no response number δ > 0.
(Draw a picture.)

24. Show that the assertion“limx→2 x2 = 3” is false.

25. In the proof of the permanence property given in Example 2, p = f(a) > 0
and q < p.

(a) Would the argument have worked if we had used ε = 2(p− q)?

(b) Would the argument have worked if we had used ε = 1
2(p− q)?

(c) Would the argument have worked if we had used ε = q?

(d) What is the largest value of ε for which the proof of the permanence property
works?

26. The permanence property discussed in Example 2 and Exercise 25 pertains
to limits at a finite point a. State, and prove, a version of the permanence property
that is valid when a is replaced by ∞.

27.
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(a) Show that if 0 < δ < 1 and |x− 3| < δ then |x2 − 9| < 7δ. (Factor x2 − 9.)

(b) Use (a) to deduce that limx→3 x2 = 9.

28.

(a) Show that if 0 < δ < 1 and |x− 4| < δ then

|
√

x− 2| < δ√
3 + 2

.

(b) Use (a) to deduce that limx→4
√

x = 2.

29.

(a) Show that if 0 < δ < 1 and |x− 3| < δ then |x2 + 5x− 24| < 12δ.
(Factor x2 + 5x− 24.)

(b) Use (a) to deduce that limx→3(x2 + 5x) = 24.

30.

(a) Show that if 0 < δ < 1 and |x− 2| < δ then∣∣∣∣1x − 1
2

∣∣∣∣ < δ

2
.

(b) Use (a) to deduce that limx→2
1
x = 1

2 .

31. Use a precise definition of limit to prove: if f is defined in an open interval
including a and f is continuous at a, so is 3f .

32. Use a precise definition of limit to prove: if f and g are both defined in an
open interval including a and both are continuous at a, so is f + g.

33. Use a precise definition of limit to prove: if f and g are both continuous at
a, then their product, fg, is also continuous at a. Assume that both functions are
defined at least in an open interval around a.
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34. Assume that f(x) is continuous at a and is defined on an open interval con-
taining a. Assume that f(x) = p > 0 and that q is a number greater than p. Using
the precise definition of a limit, show that there is an open interval, I, containing a

such that f(x) < q for all x in I.
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3.S Chapter Summary and Look Ahead

In this chapter we defined the derivative of a function, developed ways to
compute derivatives, and applied them to graphs and motion.

The derivative of a function f at a number x = a is defined as the limit of
the slopes of secants through the points (a, f(a)) and (b, f(b)) as the input b
is taken closer and closer to a.

Algebraically, the derivative is the limit of a quotient, the change in the
output divided by the change in the input. It is usually written as

lim
x→a

f(x)− f(a)

x− a
, or lim

h→0

f(a + h)− f(a)

h
, or lim

∆x→0

∆y

∆x
.

The derivative is denoted in several ways, such as

f ′, or f ′(x), or
df

dx
, or

dy

dx
, or D(f).

For functions most frequently encountered in applications, derivatives exist.
Geometrically, the derivative exists whenever the graph of the function on a
small interval looks almost like a straight line.

The derivative records how fast something changes. The velocity of a mov-
ing object is defined as the derivative of the object’s position. Also, the deriva-
tive gives the slope of the tangent line to the graph of a function.

We then developed ways to compute the derivative of functions expressible
in terms of the functions met in algebra and trigonometry, as well as exponen-
tials with a fixed base and logarithms, the elementary functions. They were
based on three limits:

lim
x→a

xn − an

x− a
= nan−1, n a positive integer

lim
x→0

ex − 1

x
= 1

lim
x→0

sin(x)

x
= 1.

Using them, we obtained the derivatives of xn, ex, and sin(x). We showed,
if we knew the derivatives of two functions, how to compute the derivatives of
their sum, difference, product, and quotient.

The next step was the development of a most important computational
tool: the chain rule. It enables us to differentiate a composite function, such
as cos3(x2), telling us that its derivative is 3 cos2(x2)(− sin(x2))(2x).

Differentiating inverse functions enabled us to show that the derivative of
ln(x) is 1

x
for x > 0 and the derivative of arcsin(x) is 1√

1−x2 for −1 < x < 1.
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The following list of derivatives of key functions should be memorized.

Function Derivative
xa (a constant) axa−1

sin(x) cos(x)
cos(x) − sin(x)

ex ex

ax (a constant) write ax = ex(ln(a))

ln(x) (x > 0) 1/x
ln |x| (x 6= 0) 1/x

tan(x) sec2(x)
sec(x) sec(x) tan(x)

arcsin(x) 1√
1−x2

arctan(x) 1
1+x2√

x 1
2
√

x
= 1

2
x−1/2

1
x

−1/x2

Table 3.S.1 Table of Common Functions and Derivatives.
As you work with derivatives you may begin to think of them as slope

or velocity or rate of change, and forget their underlying definition as limits.
However, we will return to the definition in terms of limits as we develop more
applications of the derivative.

We also introduced the antiderivative and, related to it, the slope field.
While the derivative of an elementary function is again elementary, an an-
tiderivative often is not. For instance,

√
1 + x3 does not have an elementary

antiderivative. However, as we will see in Chapter 6, it does have an antideriva-
tive. Chapter 8 will present different ways to find antiderivatives. Slope fields
will be met again in Chapter 13.

The derivative of the derivative is the second derivative. For motion, the
second derivative describes acceleration. It can be denoted several ways, such
as D2f , d2f

dx2 , f ′′, and f (2). While the first and second derivatives suffice for
most applications, higher derivatives of all orders are used in Chapter 5 to
estimate the error when approximating a function by a polynomial.

The final two sections provided precise definitions of limits and a proof of
the permanence property.
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EXERCISES for 3.S

In Exercises 1 to 19 differentiate the expression.
1. exp(x2)
2. 2x2

3. x3 sin(4x)

4. 1+x2

1+x3

5. ln(x3)
6. ln(x3 + 1)
7. cos4(x2) tan(2x)
8.

√
5x2 + x

9. arcsin(
√

3 + 2x)
10. x2 arctan(2x)e3x

11. sec2(3x)
12. sec2(3x)− tan2(3x)

13.
(

3+2x
4+5x

)3

14. 1
1+2e−x

15. x√
x2+1

16. (arcsin(3x))2

17. x2 arctan(3x)
18. sin5(3x2)
19. 1

(2x+3x)20

In Exercises 20 to 29 give an antiderivative of the expression. Use differentiation to
check each answer.
20. 4x3

21. x3

22. 3/x2

23. cos(x)
24. cos(2x)
25. sin100(x) cos(x)
26. 1/(x + 1)
27. 5e4x

28. 1/ex

29. 2x

In Exercises 30 to 51 evaluate the derivative to verify each equation. The letters
a, b, c, and d denote constants. These exercises, based on tables of antiderivatives,
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provide practice in differentiation and algebra.
30. d

dx

(
1
a tan−1

(
x
a

))
= 1

a2+x2

31. D
(

1
2a ln

(
a+x
a−x

))
= 1

a2−x2

32.
(
ln
(
x +
√

a2 + x2
))′

= 1√
a2+x2

33. d
dx

(
1
a ln

(
x+

√
a2−x2

x

))
= 1

x
√

a2+x2

34. D
(

−1
b(a+bx)

)
= 1

(a+bx)2

35.
(

1
b2

(a + bx− a ln(a + bx))
)′ = x

a+bx

36. d
dx

(
1
b2

(
a

2(a+bx)2
− 1

a+bx

))
= x

(a+bx)3

37. D
(

1
ad−bc ln

(
c+dx
a+bx

))
= 1

(a+bx)(c+dx)

38.
(

2√
4ac−b2

arctan
(

2cx+b√
4ac−b2

))′
= 1

a+bx+cx2 (4ac > b2)

39. d
dx

(
−2√

b2−4ac
ln
(

2cx+b−
√

b2−4ac
2cx+b+

√
b2−4ac

))
= 1

a+bx+cx2 (4ac < b2)

40. D
(

1
a cos−1

(
a
x

))
= 1

x
√

x2−a2

41.
(

1
2

(
x
√

a2 − x2 + a2 arcsin
(

x
a

)))′
=
√

a2 − x2 (|x| < |a|)

42. d
dx

(
−x
2

√
a2 − x2 + a2

2 arcsin
(

x
a

))
= x2

√
a2−x2

(|x| < |a|)

43. D
(
−
√

a2−x2

x − arcsin
(

x
a

))
=

√
a2−x2

x2 (|x| < |a|)

44.
(
arcsin(x)−

√
1− x2

)′
=
√

1+x
1−x (|x| < 1)

45. d
dx

(
x
2 −

1
2 cos(x) sin(x)

)
= sin2(x)

46. D
(
x arcsin x +

√
1− x2

)
= arcsin(x) (|x| < 1)

47.
(
x tan−1(x)− 1

2 ln(1 + x2)
)′ = arctan(x)

48. d
dx

(
eax

a2

(
a2 − 1

))
= xeax

49. D (x− ln(1 + ex)) = 1
1+ex

50.
(

x
2 (sin(ln(ax))− cos(ln(ax)))

)′ = sin(ln(ax))

51.
(

eax(a sin(bx)−b cos(bx))
a2+b2

)′
= eax sin(bx)

In Exercises 52 to 55 give two antiderivatives for each expression.
52. xex2

53. (x2 + x)ex3+3x

54. cos3(x) sin(x)
55. sin(2x)

56. Verify that 2(
√

x− 1)e
√

x is an antiderivative of e
√

x.
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In Exercises 57 to 60 (a) sketch the slope field and (b) draw the solution curve
through the point (0, 1).
57. dy/dx = 1/(x + 1)
58. dy/dx = e−x2

59. dy/dx = −y

60. dy/dx = y − x

61. Sam threw a baseball straight up and caught it 6 seconds later.

(a) How high above his head did it rise?

(b) How fast was it going as it left his hand?

(c) How fast was it going when he caught it?

(d) Translate the answers in (b) and (c) to miles per hour. (60 mph = 88 fps.)

62. Assuming that D(x4) = 4x3 and D(x7) = 7x6, you could find D(x3) from
them by viewing x3 as x7/x4 and using the formula for differentiating a quotient.
Show how you could use them to find

(a) D(x11)

(b) D(x−4)

(c) D(x28)

(d) D(x8)

63. Let y = xm/n, where x > 0 and m and n 6= 0 are integers. Assuming that y is
differentiable, show that dy

dx = m
n x

m
n
−1 by starting with yn = xm and differentiating

both sides with respect to x. (Think of y as y(x) and remember to use the chain
rule when differentiating yn with respect to x.)

64. A spherical balloon is being filled with helium at the rate of 3 cubic feet per
minute. At what rate is the radius increasing when the radius is (a) 2 feet? (b)
3 feet? (The volume of a ball of radius r is 4

3πr3.)

65. An object at the end of a vertical spring is at rest. When pulled down and
released, it goes up and down for a while. With the origin of the y-axis at the rest
position, the position of the object t seconds later is 3e−2t cos(2πt) inches.

(a) What is the physical significance of 3 in the formula?
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(b) What does e−2t tell us?

(c) What does cos(2πt) tell us?

(d) How long does it take the object to complete a full cycle (go from its rest
position, down, up, then down to its rest position)?

(e) What happens to the object after a long time?

66. The motor on a moving motor boat is turned off. It then coasts along the
x-axis. Its position, in meters, at time t (seconds) is 500− 50e−3t.

(a) Where is it at time t = 0?

(b) What is its velocity at time t?

(c) What is its acceleration at time t?

(d) How far does it coast?

(e) Show that its acceleration is proportional to its velocity. (This means the
force of the water slowing the boat is proportional to the velocity of the boat.
(See also Exercise 78.))

67. It is safe to switch the “sin” and “lim” in sin
(
limx→0

ex−1
x

)
= limx→0

(
sin
(

ex−1
x

))
.

However, such a switch sometimes is not correct. Let f be defined by f(x) = 2 for
x 6= 1 and f(1) = 0.

(a) Show that f

(
lim
x→0

ex − 1
x

)
is not equal to limx→0 f

(
ex−1

x

)
.

(b) What property of sin(x) permits us to switch it with lim?

It is important to keep in mind the definition of a derivative as a limit. Exercises 68
to 72 are intended to reinforce the definition.
68. Define the derivative of the function g(x) at x = a in (a) the x and x + h
notation, (b) the x and a notation, and (c) the ∆y and ∆x notation.

69. We obtained the derivative of sin(x) using the x and x + h notation and the
addition identity for sin(x + h). Instead, obtain the derivative of sin(x) using the x
and a notation. That is, find

lim
x→a

sin(x)− sin(a)
x− a

.
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(a) Show that sin(x)− sin(y) = 2 sin
(

1
2(x− y)

)
cos
(

1
2(x + y)

)
.

(b) Use the identity in (a) to find the limit.

70. We obtained the derivative for tan(x) by writing it as sin(x)/ cos(x). Instead,
obtain it directly by finding

lim
h→0

tan(x + h)− tan(x)
h

.

(The identity tan(a + b) = tan(a)+tan(b)
1−tan(a) tan(b) will help.)

71. Show that tan(a)
tan(b) > a

b > sin(a)
sin(b) for all angles a and b in the first quadrant with

a > b. (Use the two inequalities that squeezed sin(x)/x toward 1.)

72. We obtained the derivative of ln(x), x > 0, by viewing it as the inverse of
exp(x). Instead, find it directly from the definition. (Use the x and h notation.)

Exercises 73 and 74 show how we could have predicted that ln(x) would provide an
antiderivative for 1/x.
73. The antiderivative of 1/x that passes through (1, 0) is ln(x). One would
expect that for t near 1, the antiderivative of 1/xt that passes through (1, 0) would
look much like ln(x) when x is near 1. To verify that this is true

(a) graph the slope field for 1/xt with t = 1.1

(b) graph the antiderivative of 1/xt that passes through (1, 0) for t = 1.1

(c) repeat (a) and (b) for t = 0.9

(d) repeat (a) and (b) for t = 1.01

(e) repeat (a) and (b) for t = 0.99

0.0

y(x)

−2.0

−0.5

−1.5

x

0.5

0.5

1.0

−1.0

2.01.00.0 1.5
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Figure 3.S.1
The slope field for 1/x and the antiderivative of 1/x passing through (1, 0) are shown
in Figure 3.S.1.

74. (See Exercise 73.)

(a) Verify that for t 6= 1 the antiderivative of 1/xt that passes through (1, 0) is
x1−t−1

1−t .

(b) Holding x fixed and letting t approach 1, show that

lim
t→1

x1−t − 1
1− t

= ln(x).

(Recognize the limit as the derivative of a function at a certain input. Keep
in mind that x is constant in this limit.)

75. Define f as

f(x) =
{

x if x is rational,
−x if x is irrational.

(a) What does the graph of f look like? (A dotted curve may be used to indicate
that points are missing.)

(b) Does lim
x→0

f(x) exist?

(c) Does lim
x→1

f(x) exist?

(d) Does lim
x→

√
2
f(x) exist?

(e) For which numbers a does lim
x→a

f(x) exist?

76. Define f as

f(x) =
{

x2 if x is rational,
x3 if x is irrational.

(a) What does the graph of f look like? (A dotted curve may be used to indicate
that points are missing.)

(b) Does lim
x→0

f(x) exist?

(c) Does lim
x→1

f(x) exist?
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(d) Does lim
x→

√
2
f(x) exist?

(e) For which numbers a does lim
x→a

f(x) exist?

77. A heavy block rests on a horizontal table covered with thick oil. The block,
which is at the origin of the x-axis, is given an initial velocity v0 at time t = 0. It
then coasts along the positive x-axis.
Assume that its acceleration is −k

√
v(t), where v(t) is the velocity at time t and

k is a constant. (That means it meets a resistance force proportional to the square
root of its velocity.)

(a) Show that
dv

dt
= −kv1/2.

(b) Is k positive or negative? Explain.

(c) Show that 2v1/2 and −kt have the same derivative with respect to t.

(d) Show that 2v1/2 = −kt + 2v
1/2
0 .

(e) When, in terms of v0 and k, does the block come to a rest?

(f) How far, in terms of v0 and k, does the block slide?

78. A motorboat traveling along the x-axis at the speed v0 stops its motor at time
t = 0 when it is at the origin. It then coasts along the positive x-aixis.
Assume the resistance force of the water is proportional to the velocity. That im-
plies the acceleration of the boat is proportional to its velocity, v(t). (See also
Exercise 66.)

(a) Show that there is a constant k such that
dv

dt
= −kv(t).

(b) Is k positive or negative? Explain.

(c) Deduce that ln(v) and −kt have the same derivative with respect to t.

(d) Deduce that ln(v(t)) = −kt + ln(v0).

(e) Deduce that v(t) = v0e
−kt.

(f) According to (e), how long, in terms of v0 and k, does the boat continue to
move?

(g) How far, in terms of v0 and k, does it move during that time?
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79. Archimedes used the following property of a parabola in his study of the equi-
librium of floating bodies. Let P be a point on the parabola y = x2 other than the
origin. The line perpendicular to the parabola at P meets the y-axis in a point Q.
The line through P and parallel to the x-axis meets the y-axis in a point R. Show
that the length of QR is constant, independent of the choice of P . (This problem
introduces the subnormal of the graph; compare this with Exercises 25 and 26 in
Section 3.2.)
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Calculus is Everywhere # 4

Solar Cookers

Figure C.4.1

A satellite dish is parabolic in shape. It is formed by rotating a parabola
about its axis. The reason is that all radio waves parallel to the axis of the
parabola, after bouncing off the parabola, pass through a common point, called
the focus of the parabola. (See Figure C.4.1.) The reflector behind a flashlight
bulb is also parabolic.

An ellipse also has a reflection property. Light, or sound, or heat radiating
from a focus, after bouncing off the ellipse, goes through the other focus. This
fact is applied in the construction of computer chips where it is necessary to
bake a photomask onto the surface of a silicon wafer. The heat is focused at
the mask by placing a heat source at one focus of an ellipse and positioning
the wafer at the other focus, as in Figure C.4.2.

Figure C.4.2

The reflection property is used in wind tunnel tests of aircraft noise. The
test is run in an elliptical chamber, with the aircraft model at one focus and a
microphone at the other.

Whispering rooms, such as the rotunda in the Capitol in Washington, D.C.,
are based on the same principle. A person talking quietly at one focus can
be heard easily at the other focus but not at points between the foci. (The
whisper would be unintelligible except for the additional property that all the
paths of the sound from one focus to the other have the same length.)

An ellipsoidal reflector cup is used for crushing kidney stones. (An ellipsoid
is formed by rotating an ellipse about the line through its foci.) An electrode
is placed at one focus and an ellipsoid positioned so that the stone is at the
other focus. Shock waves generated at the electrode bounce off the ellipsoid,
concentrate on the other focus, and pulverize the stones without damaging
other parts of the body. The patient recovers in three to four days instead
of the two to three weeks required after surgery. This advance also reduced
the mortality rate from kidney stones by a factor of 200, from 1 in 50 to 1 in
10,000.

The reflecting property of the ellipse also is used in the study of air pollu-
tion. One way to detect air pollution is by light scattering. A laser is aimed
through one focus of a shiny ellipsoid. When a particle passes through this
focus, the light is reflected to the other focus where a light detector is located.
The number of particles detected is used to determine the amount of pollution
in the air.
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The Angle Between Two Lines

Figure C.4.3

To establish the reflection properties we will use the principle that the angle
of reflection equals the angle of incidence, as in Figure C.4.3, and work with
the angle between two lines, given their slopes.

Let L be a line in the xy-plane. It forms an angle of inclination α, 0 ≤
α < π, with the positive x-axis. The slope of L is tan(α). (See Figure C.4.4(a).)
If α = π/2, the slope is not defined.

(a) (b)

Figure C.4.4

Two lines L and L′ with angles of inclination α and α′ and slopes m and m′,
respectively, as in Figure C.4.4(b) intersect so that there are two supplementary
angles between them. The following definition distinguishes one as the angle
between L and L′.

DEFINITION (Angle between two lines.) Let L and L′ be two
lines in the xy-plane, named so that L has the larger angle of
inclination, α > α′. The angle θ between L and L′ is defined to be

θ = α− α′.

If L and L′ are parallel, θ is defined to be 0.

So, θ is the counterclockwise angle from L′ to L and 0 ≤ θ < π. The
tangent of θ can be expressed in terms of the slopes m of L and m′ of L′:

tan(θ) = tan(α− α′) ( definition of θ )
= tan(α)−tan(α′)

1+tan(α) tan(α′)
( by the identity for tan(A−B) )

= m−m′

1+mm′ .
( definition of m and m′ )

Thus
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tan(θ) =
m−m′

1 + mm′ . (C.4.1)

The Reflection Property of a Parabola

Figure C.4.5 shows a graph of the parabola y = x2.

Figure C.4.5

We wish to show that
angles A and B at the typical point (a, a2) on the parabola are equal. We will
do this by showing that tan(A) = tan(B).

First of all, tan(C) = 2a, the slope of the parabola at (a, a2). Since A is
the complement of C,

tan(A) = tan(
π

2
− C) =

1

tan(C)
= 1/(2a).

The slope of the line through the focus (0, 1
4
) and a point on the parabola

(a, a2) is
a2 − 1

4

a− 0
=

4a2 − 1

4a
.

Therefore,

tan(B) =
2a− 4a2−1

4a

1 + 2a
(

4a2−1
4a

) .
Exercise 1 asks you to supply the algebraic steps to complete the proof that
tan(B) = tan(A).

The Reflection Property of an Ellipse

An ellipse consists of points such that the sum of the distances from a point
to two fixed points is constant. Let the two fixed points, called the foci of
the ellipse, be a distance 2c apart, and the sum of the distances be 2a, where
a > c. If the foci are at (c, 0) and (−c, 0) and b2 = a2− c2, the equation of the
ellipse is

Figure C.4.6

x2

a2
+

y2

b2
= 1.

(See Figure C.4.6.)
As for the parabola, one shows tan(A) = tan(B).
Exercise 3 asks you to carry out the calculation, which uses the same

approach as was used for the parabola. One reason to do Exercise 3 is to
appreciate more fully the power of vector calculus, developed in Chapter 15, for
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with that tool you can establish the reflection property of either the parabola
or the ellipse in one line.

Diocles, in his book On Burning Mirrors, written around 190 b.c., studied
spherical and parabolic reflectors, both of which had been considered by earlier
writers. Some had thought that a spherical reflector focuses incoming light at
a single point. This is false, and Diocles showed that a spherical reflector
subtending an angle of 60◦ reflects light that is parallel to its axis of symmetry
to points on the axis that occupy about one-thirteenth of the radius. He
proposed an experiment, “Perhaps you would like to make two examples of
a burning-mirror, one spherical, one parabolic, so that you can measure the
burning power of each.” Though the reflection property of a parabola was
already known, On Burning Mirrors contains the first known proof.

Exercise 4 shows that a spherical oven is fairly effective. After all, a potato
or hamburger is not a point.

EXERCISES

1. Do the algebra to complete the proof that tan(A) = tan(B) in the case of the
parabola.

2. Let C be an angle with −π
2 < C < π

2 . Show that tan(π
2 − C) = tan(C).

3. This exercise establishes the reflection property of an ellipse. Refer to Fig-
ure C.4.6 for the meaning of the notation.

(a) Find the slope of the tangent line at (x, y).

(b) Find the slope of the line through F = (c, 0) and (x, y).

(c) Find tan(B).

(d) Find the slope of the line through F ′ = (c′, 0) and (x, y).

(e) Find tan(A).

(f) Check that tan(A) = tan(B).

4. Use trigonometry to show that a spherical mirror of radius r and subtending
an angle of 60◦ causes light parallel to its axis of symmetry to reflect and meet the
axis in an interval of length

(
1√
3
− 1

2

)
r ≈ r/12.9. (See Figure C.4.7.)
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Figure C.4.7
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Chapter 4

Derivatives and Curve Sketching

When you graph a function you typically plot a few points and connect them
with straight line segments or a curve. Most electronic graphing devices use
the same approach and obtain better results by plotting more points and using
shorter segments. The more points used, the smoother the graph will appear.
This chapter will show how to choose the key points.

Three properties of the derivative developed in Section 4.1 and proved in
Section 4.4 will be used used in Section 4.2 to help graph a function. In
Section 4.3 we will see what the second derivative tells about a graph.
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4.1 Three Theorems about the Derivative

This section is based on plausible observations about the graphs of differen-
tiable functions, which we restate as theorems. The ideas will be applied in
Section 4.2 to sketch graphs of functions.

OBSERVATION 1 (Tangent Line at an Extreme Value)
Suppose that f(c) is the largest value of f(x) over an open interval
that contains c.

Figure 4.1.1

Figure 4.1.1 illustrates this. The maximum occurs
at a point (c, f(c)), which we call P . If f(x) is differentiable at c,
then the tangent line at P will exist. What can we say about it?

If the tangent at P were not horizontal (that is, not parallel to
the x-axis), then it would be tilted. So a small piece of the graph
around P that appears to be almost straight would look as shown
in Figure 4.1.2(a) or (b).

(a) (b) (c)

Figure 4.1.2

In the first case P could not be the highest point on the curve
because there would be higher points to the right of P . In the
second case P could not be the highest point because there would
be higher points to the left of P . Therefore the tangent at P must
be horizontal, as shown in Figure 4.1.2(c). That is, f ′(c) = 0.

This suggests a criterion for identifying local extrema.

Theorem of the Interior Extremum

Theorem 4.1.1 (Theorem of the Interior Extremum). Let f be a function
defined on the open interval (a, b). If f takes on an extreme value at c in this
interval, then either

1. f ′(c) = 0 or
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2. f ′(c) does not exist.

The basic message of Theorem 4.1.1 is this: if an extreme value occurs
within an open interval and the derivative exists there, the derivative must
be 0 there. While this makes intuitive sense, we have to be careful not to
misapply it in either of the following ways.

1. If in Theorem 4.1.1 the open interval (a, b) is replaced by a closed interval
[a, b] the conclusion may not hold. A glance at Figure 4.1.3(a) shows why
— the extreme value could occur at an endpoint (x = a or x = b).

(a) (b)

Figure 4.1.3

2. The converse of Theorem 4.1.1 is not true. Having the derivative equal
to 0 at a point does not guarantee that there is an extremum at this
point. The graph of y = x3, Figure 4.1.3(b), shows why. Since f ′(x) =
3x2, f ′(0) = 0. While the tangent line is indeed horizontal at (0, 0), it
crosses the curve at this point. The graph has neither a maximum nor a
minimum at the origin.

Though the next observation is phrased in terms of slopes we will see that
it has implications for velocity and any changing quantity.

OBSERVATION 2 (Chord and Tangent Line with Same Slope)
A line segment that joins
two points on the graph of
a function f is called a
chord of f .

Let A = (a, f(a)) and B = (b, f(b)) be two points on the graph of
a differentiable function f defined on the interval [a, b], as shown in
Figure 4.1.4(a). Draw the chord AB joining A and B. Assume part
of the graph lies above that line. Imagine holding a ruler parallel
to AB and lowering it until it just touches the graph of y = f(x),
as in Figure 4.1.4(b). The ruler touches the curve at a point P and
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(a) (b)

Figure 4.1.4

lies along the tangent at P . At P the slope of AB is f ′(c). (In
Figure 4.1.4(b) there is a second number between a and b where
the tangent line to y = f(x) is parallel to the chord between A and
B.)

It is customary to state two separate theorems based on the observation
about chords and tangent lines. The first, Rolle’s theorem, is a special case of
the second, the mean value theorem.

Michel Rolle (1652–1719)
was a French

mathematician and an early
critic of calculus before later
changing his opinion. He is

the first person known to
have placed the index in the

opening of a radical to
denote the nth root of a

number: n
√

x.

Rolle’s Theorem

The next theorem is suggested by a special case of Observation 2. When the
points A and B in Figure 4.1.4(a) have the same y-coordinate, the chord AB
has slope 0. (See Figure 4.1.5.) In this case, the observation tells us there
must be a horizontal tangent to the graph. Expressed in terms of derivatives,
this suggests Rolle’s theorem.

Theorem 4.1.2 (Rolle’s Theorem). Let f be a continuous function on the
closed interval [a, b] and have a derivative at all x in the open interval (a, b).
If f(a) = f(b), then there is at least one number c in (a, b) such that f ′(c) = 0.

EXAMPLE 1 Verify Rolle’s theorem for f(t) = (t2 − 1) ln
(

t
π

)
on [1, π].

SOLUTION The function f(t) is defined and differentiable for t > 0, in
particular, on the closed interval [1, π]. We see that f(1) = 0 and, because
ln(1) = 0, f(π) = 0. Therefore, by Rolle’s theorem, there must be a value of
c between 1 and π where f ′(c) = 0.
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(a) (b)

Figure 4.1.5

c

10.0

5

2.5

420

7.5

0.0

−2.5

1 3

5.0

Figure 4.1.6 Graph of
y = f(t) (black) and y =
f ′(t) (blue).

The derivative f ′(t) = 2t ln
(

t
π

)
+ t2−1

t
is complicated. Though it is not

possible to find the exact value of c with f ′(c) = 0, Rolle’s theorem guarantees
that it exists. Figure 4.1.6 indicates that there is only one solution to f ′(c) = 0
on [1, π]. �

In this example we relied upon the graph of y = f ′(x) to conclude that
there is only one c satisfying Rolle’s theorem. Now we describe a technique
for showing that a function has at most one x-intercept.

Assume that f(x) is a differentiable function such that f ′(x) is never 0 for
x in an interval. Then the equation f(x) = 0 can have at most one solution in
that interval. See Figure 4.1.7. (If it had two solutions, a and b, then f(a) = 0
and f(b) = 0, and we could apply Rolle’s theorem on [a, b].)

This justifies the observation:

Monotone functions have at most one x-intercept
In an interval in which the derivative f ′(x) is never 0, the graph of y = f(x)
can have no more than one x-intercept.

Example 2 applies this.

Figure 4.1.7

EXAMPLE 2 Use Rolle’s theorem to determine how many real roots there
are for the equation

x3 − 6x2 + 15x + 3 = 0. (4.1.1)

SOLUTION The intermediate value theorem guarantees that an odd degree
polynomial, such as f(x) = x3 − 6x2 + 15x + 3, has at least one x-intercept.
Call it r. Could there be another x-intercept, s? If so, by Rolle’s theorem,
there would be a number c between r and s at which f ′(c) = 0.
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We compute the derivative of f(x) and see if it is ever 0. We have f ′(x) =
3x2−12x+15. To find when f ′(x) is 0, we solve the equation 3x2−12x+15 = 0
by the quadratic formula, obtaining

x =
−(−12)±

√
(−12)2 − 4(3)(15)

6
=

12±
√
−36

6
= 2±

√
−1.

Because −1 is negative, the equation x3− 6x2 + 15x + 3 = 0 has only one real
root, which is approximately −0.186. �

Figure 4.1.8

Mean Value Theorem

The mean value theorem is a generalization of Rolle’s theorem in that it applies
to any chord, not just horizontal ones.

In geometric terms, the theorem asserts that for any chord of the graph of
a well-behaved function (as in Figure 4.1.8), somewhere above or below it the
graph has at least one tangent line parallel to the chord. (See Figure 4.1.4(a).)
Let us translate this geometric statement into the language of functions.

Call the ends of the chord (a, f(a)) and (b, f(b)). The slope of the chord is

f(b)− f(a)

b− a
.

Since the tangent line and the chord are parallel, they have the same slopes.
If the tangent line is at the point (c, f(c)), then

f ′(c) =
f(b)− f(a)

b− a
.

This observation suggests

Theorem 4.1.3 (Mean Value Theorem). Let f be a continuous function on
the closed interval [a, b] and have a derivative at every x in the open interval
(a, b). Then there is at least one number c in (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

EXAMPLE 3 Verify the mean value theorem for f(t) =
√

4− t2 on the
interval [0, 2].
SOLUTION Because 4− t2 ≥ 0 for t between −2 and 2 (including these two
endpoints), f is continuous on [0, 2] and is differentiable on (0, 2). The slope
of the chord through (a, f(a)) = (0, 2) and (b, f(b)) = (2, 0) is

f(b)− f(a)

b− a
=

0− 2

2− 0
= −1.
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According to the mean value theorem, there is at least one number c between
0 and 2 where f ′(c) is −1.

Let us try to find c. Since f ′(t) =
−2t

2
√

4− t2
, we need to solve the equation

−c√
4−c2

= −1. We get

−c√
4− c2

= −1

−c = −
√

4− c2 (multiply both sides by
√

4− c2)
c2 = 4− c2 (square both sides)

2c2 = 4 (add c2 to both sides)
c2 = 2 (divide both sides by 2).

While both c =
√

2 and c = −
√

2 satisfy c2 = 2, only
√

2 lies in [0, 2]. The
other root, −

√
2, is of no interest because it is not in [0, 2]. Thus c =

√
2

is the only number in [0, 2] whose existence is guaranteed by the mean value
theorem. �

The interpretation of the derivative as slope suggested the mean value
theorem. What does the mean value theorem say when the function describes
the position of a moving object, and the derivative, its velocity? This is
answered in Example 4.

EXAMPLE 4 A car moving on the x-axis has x-coordinate x = f(t) at
time t. At time a its position is f(a). At some later time b its position is f(b).
What does the mean value theorem assert for this car?
SOLUTION The quotient

f(b)− f(a)

b− a
equals

Change in position

Change in time
.

The mean value theorem asserts that at some time c, f ′(c) is equal to the

quotient
f(b)− f(a)

b− a
. This says that the velocity at time c is the same as the

average velocity during the time interval [a, b]. For example, if a car travels
210 miles in 5 hours, then at some time its speedometer must read 42 miles
per hour. �

Consequences of the Mean Value Theorem

There are several ways of writing the mean value theorem. The equation

f ′(c) =
f(b)− f(a)

b− a
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is equivalent to
f(b)− f(a) = (b− a)f ′(c)

and hence to
f(b) = f(a) + (b− a)f ′(c). (4.1.2)

In this last form, the mean value theorem asserts that f(b) is equal to f(a)
plus a quantity that involves the derivative f ′ at some number c between a
and b. The following important corollaries are based on this form.

Corollary 4.1.4. If the derivative of a function is 0 throughout an interval I,
then the function is constant on the interval.

Proof

Let a and b be two numbers in the interval I and let the function be denoted
by f . To prove the corollary, it suffices to prove that f(a) = f(b), for that is
the defining property of a constant function.

By the mean value theorem in the form (4.1.2), there is a number c between
a and b such that

f(b) = f(a) + (b− a)f ′(c).

But f ′(c) = 0, since f ′(x) = 0 for all x in I. Hence

f(b) = f(a) + (b− a)(0)

which proves that
f(b) = f(a).

•
Corollary 4.1.4 is seen to be plausible when interpreted in terms of motion.

It asserts that if an object has zero velocity for a period of time, then it does
not move during that time.

EXAMPLE 5 Use calculus to show that f(x) = (ex + e−x)2− e2x− e−2x is
a constant. Find the constant.
SOLUTION The function f is differentiable for all numbers x. Its derivative
is

f ′(x) = 2(ex + e−x)(ex − e−x)− 2e2x + 2e−2x

= 2(e2x − e−2x)− 2e2x + 2e−2x

= 0.

Because f ′(x) is always zero, f must be a constant.
To find the constant, evaluate f(x) for any convenient value of x. If we

choose x = 0 we see f(0) = (e0 + e0)2 − e0 − e0 = 22 − 2 = 2. Thus,

(ex + e−x)2 − e2x − e−2x = 2 for all numbers x.
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�
This identity found in Example 5 can be checked by squaring ex + e−x.
We now turn our attention to understanding the relationship between two

functions with the same derivative.

Corollary 4.1.5. If two functions have the same derivative throughout an
interval, then they differ by a constant. That is, if F ′(x) = G′(x) for all x in
an interval, then there is a constant C such that F (x) = G(x) + C.

Proof

Define h as h(x) = F (x)−G(x). Then, because F ′(x) = G′(x),

h′(x) = F ′(x)−G′(x) = 0.

Figure 4.1.9

Since the derivative of h is 0, Corollary 4.1.4 implies that h is constant, that
is, h(x) = C for some fixed number C. Thus

F (x)−G(x) = C or F (x) = G(x) + C,

and Corollary 4.1.5 is proved. •
Is Corollary 4.1.5 plausible when the derivative is interpreted as slope? In

this case, it asserts that if the graphs of two functions have, for every x, parallel
tangent lines, then one graph can be obtained from the other by raising (or
lowering) it by a constant amount C. If you sketch two such graphs (as in
Figure 4.1.9), you will see that the corollary is reasonable.

EXAMPLE 6 What functions have a derivative equal to 2x everywhere? In the language of
Section 3.5, any
antiderivative of 2x must be
of the form x2 + C.

SOLUTION One such solution is x2; another is x2 + 25. For a constant C,
D(x2 + C) = 2x. Are there any other possibilities? Corollary 4.1.5 tells us
there are not, for if F is a function such that F ′(x) = 2x, then F ′(x) = (x2)′

for all x. Thus the functions F and x2 differ by a constant, say C,

F (x) = x2 + C.

The only antiderivatives of 2x are of the form x2 + C. �

Figure 4.1.10

Corollary 4.1.4 asserts that if f ′(x) = 0 for all x, then f is a constant. What
can be said about f if f ′(x) is positive for all x in an interval? In terms of the
graph of f , this implies that all tangent lines slope upward. It is reasonable
to expect that as we move from left to right on the graph in Figure 4.1.10, the
y-coordinate increases, that is, the function is increasing. (See Section 1.1.)

Corollary 4.1.6. If f is continuous on the closed interval [a, b] and has a
positive derivative on the open interval (a, b), then f is increasing on [a, b].

If f is continuous on the closed interval [a, b] and has a negative derivative
on the open interval (a, b), then f is decreasing on [a, b].
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Proof

We prove the increasing case; the other case is handled in Exercise 43. Take
two numbers x1 and x2 such that

a ≤ x1 < x2 ≤ b.

The goal is to show that f(x2) > f(x1).
By the mean value theorem, there is a number c between x1 and x2 such

that
f(x2) = f(x1) + (x2 − x1)f

′(c).

Because x2 > x1 we know x2 − x1 is positive. Since f ′(c) is assumed to be
positive, and the product of two positive numbers is positive, it follows that

(x2 − x1)f
′(c) > 0.

Thus, f(x2) > f(x1); so f(x) is an increasing function. •

EXAMPLE 7 Determine whether 2x + sin(x) is an increasing function, a
decreasing function, or neither.
SOLUTION The function 2x + sin(x) is the sum of two simpler functions:
2x and sin(x). The first part is an increasing function. The second increases
for x between 0 and π/2 and decreases for x between π/2 and π. It is not
clear what type of function you will get when you add 2x and sin(x). Let us
see what Corollary 4.1.6 tells us.

y=2x y=sin(x) y=2x+sin(x)

x
K4 K2 0 2 4

K8

K6

K4

K2

2

4

6

8

Figure 4.1.11

The derivative of 2x + sin(x) is 2 + cos(x). Since cos(x) ≥ −1 for all x,

(2x + sin(x))′ = 2 + cos(x) ≥ 2 + (−1) = 1.

Because (2x+sin(x))′ is positive for all numbers x, 2x+sin(x) is an increasing
function. Figure 4.1.11 shows its graph together with the graphs of 2x and
sin(x). �

While Corollary 4.1.6 and the definitions of increasing and decreasing are
stated in terms of intervals, there are times when we will talk about a function
being increasing or decreasing at a point. When we say a function is increas-
ing at c we mean the function is “increasing in an interval that contains c.”
In particular, if f ′ is continuous and f ′(c) > 0, the permanence property in
Section 2.5 tells us there is an interval (a, b) containing c where f ′(x) remains
positive for all numbers x in (a, b). Thus, f is increasing on (a, b), and hence
increasing at c. The meaning of decreasing at c is analogous.

More generally, if f ′(x) is never negative, that is f ′(x) ≥ 0 for all x, then
f is non-decreasing. In the same manner, if f ′(x) ≤ 0 for all x, then f is
non-increasing.
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Summary

This section focused on three theorems, which we state informally.
The theorem of the interior extremum says that at a local extreme the

derivative must be zero. (The converse is not true.)
Rolle’s Theorem asserts that if a function has equal values at two inputs,

its derivative must equal zero at least at one number between these inputs.
The mean value theorem, a generalization of Rolle’s theorem, asserts that for
any chord on the graph of a function, there is a tangent line parallel to it.
This means that for a < b there is c in (a, b) such that f ′(c) = f(b)−f(a)

b−a
, or in

a more useful form, f(b) = f(a) + f ′(c)(b− a).
From the mean value theorem it follows that where a derivative is positive,

a function is increasing; where it is negative it is decreasing; and where it
stays at the value zero, it is constant. The last assertion implies that two
antiderivatives of the same function differ by a constant (which may be zero).
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EXERCISES for Section 4.1

1. State Rolle’s Theorem in words, using as few mathematical symbols as you
can.

2. Draw a graph illustrating Rolle’s Theorem. Identify its critical features.

3. Draw a graph illustrating the mean value theorem. Identify its critical features.

4. Express the mean value theorem in words, using no symbols to denote the
function or the interval.

5. Express the mean value theorem in symbols, where the function is denoted g
and the interval is [e, f ].

6. Which of the corollaries to the mean value theorem implies that

(a) if two cars on a straight road have the same velocity at every instant, they
remain a fixed distance apart?

(b) if all tangents to a curve are horizontal, the curve is a horizontal line?

Explain each answer in terms of theorems in this section.

Exercises 7 to 12 concern the Theorem of the Interior Extremum.
7. Let the function f(x) = x2 be defined for x in [−1, 2].

(a) Graph f(x) for x in [−1, 2].

(b) What is the maximum value of f(x) for x in [−1, 2]?

(c) Does f ′(x) exist at the maximum?

(d) Does f ′(x) equal zero at the maximum?

(e) What is the minimum value of f(x) for x in [−1, 2]?

(f) Does f ′(x) equal zero at the minimum?

8. Let the function f(x) = sin(x) be defined for x in [0, π].

(a) Graph f(x) for x in [0, π].

(b) What is the maximum value of f(x) for x in [0, π]?
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(c) Does f ′(x) exist at the maximum?

(d) Does f ′(x) equal zero at the maximum?

(e) What is the minimum value of f(x) for x in [0, π]?

(f) Does f ′(x) equal zero at the minimum?

9.

(a) Repeat Exercise 7 on the interval [1, 2].

(b) Repeat Exercise 7 on the interval (−1, 2).

(c) Repeat Exercise 7 on the interval (1, 2).

(d) Repeat Exercise 8 on the interval [0, 2π].

(e) Repeat Exercise 8 on the interval (0, π).

(f) Repeat Exercise 8 on the interval (0, 2π).

10.

(a) Graph y = −x2 + 3x + 2 for x in [0, 2].

(b) Looking at the graph, estimate the x-coordinate where the maximum value of
y occurs for x in [0, 2].

(c) Find where dy/dx = 0.

(d) Using (c), determine exactly where the maximum occurs.

11.

(a) Graph y = 2x2 − 3x + 1 for x in [0, 1].

(b) Looking at the graph, estimate the x-coordinate where the maximum value of
y occurs for x in [0, 1]. At which value of x does it occur?

(c) Looking at the graph, estimate the x coordinate where the minimum value of
y occurs for x in [0, 1].

(d) Find where dy/dx = 0.

(e) Using (d), determine exactly where the minimum occurs.
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12. For the following functions, (a) show that the derivative of the function is 0
when x = 0 and (b) decide whether the function has an extremum at x = 0.

(a) x2 sin(x)

(b) 1− cos(x)

(c) ex − x

(d) x2 − x3

(e) x3 − x4

Exercises 13 to 21 concern Rolle’s Theorem.
13.

(a) Graph f(x) = x2/3 for x in [−1, 1].

(b) Show that f(−1) = f(1).

(c) Is there a number c in (−1, 1) such that f ′(c) = 0?

(d) Why does this not contradict Rolle’s Theorem?

14.

(a) Graph f(x) = 1/x2 for x in [−1, 1].

(b) Show that f(−1) = f(1).

(c) Is there a number c in (−1, 1) such that f ′(c) = 0?

(d) Why does this not contradict Rolle’s Theorem?

In Exercises 15 to 20, verify that the function satisfies Rolle’s Theorem for the in-
terval. Find all numbers c that satisfy the conclusion of the theorem.
15. f(x) = x2 − 2x− 3 and [0, 2]
16. f(x) = x3 − x and [−1, 1]
17. f(x) = x4 − 2x2 + 1 and [−2, 2]
18. f(x) = sin(x) + cos(x) and [0, 4π]
19. f(x) = ex + e−x and [−2, 2]
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20. f(x) = x2e−x2
and [−2, 2]

21. Let f(x) = ln(x2). Note that f(−1) = f(1). Is there a number c in (−1, 1)
such that f ′(c) = 0? If so, find at least one such number. If not, does this contradict
Rolle’s Theorem?

Exercises 22 to 27 concern the mean value theorem. In Exercises 22 to 25, find all
values of c that satisfy the mean value theorem for the given functions and inter-
vals.
22. f(x) = x2 − 3x and [1, 4]
23. f(x) = 2x2 + x + 1 and [−2, 3]
24. f(x) = 3x + 5 and [1, 3]
25. f(x) = 5x− 7 and [0, 4]

26.

(a) Graph y = sin(x) for x in [π/2, 7π/2].

(b) Draw the chord joining (π/2, f(π/2)) and (7π/2, f(7π/2)).

(c) Draw all tangents to the graph parallel to the chord drawn in (b).

(d) Using (c), determine how many numbers c there are in (π, 7π/2) such that

f ′(c) =
f(7π/2)− f(π/2)

7π/2− π/2
.

(e) Use the graph to estimate the values of the cs.

27.

(a) Graph y = cos(x) for x in [0, 9π/2].

(b) Draw the chord joining (0, f(0)) and (9π/2, f(9π/2)).

(c) Draw all tangents to the graph that are parallel to the chord drawn in (b).

(d) Using (c), determine how many numbers c there are in (0, 9π/2) such that

f ′(c) =
f(9π/2)− f(0)

9π/2− 0
.

(e) Use the graph to estimate the values of the c’s.

28. At time t seconds a thrown ball has the height f(t) = −16t2 + 32t + 40 feet.
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(a) What is the initial height? That is, the height when t is zero.

(b) Show that after 2 seconds it returns to its initial height.

(c) What does Rolle’s Theorem imply about the velocity of the ball?

(d) Verify Rolle’s Theorem in this case by computing the numbers c that it asserts
exist.

29. Find all points where f(x) = 2x3(x−1) has an extreme value on the following
intervals

(a) (−1/2, 1)

(b) [−1/2, 1]

(c) [−1/2, 1/2]

(d) (−1/2, 1/2)

30. Let f(x) = |2x− 1|.

(a) Explain why f ′(1/2) does not exist.

(b) Find f ′(x). (Treat the cases x < 1/2 and x > 1/2 separately.)

(c) Does the mean value theorem apply for this function and the interval [−1, 2]?

31. The year is 2015. Because a gallon of gas costs six dollars and Highway 80 is
full of tire-wrecking potholes, the California Highway Patrol no longer patrols the
77 miles between Sacramento and Berkeley. Instead it uses two cameras. One, in
Sacramento, records the license number and time of a car on the freeway, and another
does the same in Berkeley. A computer processes the data instantly. Assume that
the two cameras show that a car that was in Sacramento at 10:45 reached Berkeley
at 11:40. Show that the mean value theorem justifies giving the driver a ticket for
exceeding the 70 mile-per-hour speed limit.
While it makes a nice story, reality is that the California Vehicle Code forbids this
way to catch speeders. It reads, “No speed trap shall be used in securing evidence as
to the speed of any vehicle. A ‘speed trap’ is a particlar section of highway measured
as to distance in order that the speed of a vehicle may be calculated by securing the
time it takes the vehicle to travel the known distance.”
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32. Verify the mean value theorem for f(t) = x2e−x/3 on [1, 10]. (See Example 1.)

33. Find all antiderivatives of the following functions. Check your answer by
differentiation.

(a) 3x2

(b) sin(x)

(c) 1
1+x2

(d) ex

34. Find all antiderivatives of each of the following functions. Check your answer
by differentiation.

(a) cos(x)

(b) sec(x) tan(x)

(c) 1/x (x > 0)

(d)
√

x (x > 0)

35.

(a) Differentiate sec2(x) and tan2(x).

(b) The derivatives in (a) are equal. Corollary 4.1.5 then asserts that there exists
a constant C such that sec2(x) = tan2(x) + C. Find the constant.

36. Show by differentiation that f(x) = ln(x/5)− ln(5x) is constant for all positive
x. Find the constant.

37. Find all functions whose second derivatives are 0 for all x in (−∞,∞).

38. Use Rolle’s Theorem to determine how many real roots there are for the
equation x3 − 6x2 + 15x + 3 = 0.

39. Use Rolle’s Theorem to determine how many real roots there are for the
equation 3x4 +4x3− 12x2 +4 = 0. For each root give an interval that contains that
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root and no other root.

40. Use Rolle’s Theorem to determine how many real roots there are for the
polynomial f(x) = 3x4 +4x3−12x2 +A. The number may depend on A. For which
A is there exactly one root? Are there any values of A for which there is an odd
number of real roots? (Exercise 39 uses this equation with A = 4.)

41. The number of real roots to x3 − ax2 + 15x + 3 = 0 depends on the value of
a.

(a) Find all values of a when the equation has 3 real roots.

(b) Find all values of a when the equation has 1 real root.

(c) Are there any values of a with exactly two real roots?

(Exercise 38 uses this equation with a = 6.)

42. If f is differentiable for all real numbers and f ′(x) = 0 has three solutions,
what can be said about the number of solutions of f(x) = 0? of f(x) = 5?

43. Prove the decreasing case of Corollary 4.1.6.

44. For which values of the constant k is the function 7x + k sin(2x) always in-
creasing?

45. If two functions have the same second derivative for all x in (−∞,∞), what
can be said about their difference?

46. If a function f is differentiable for all x and c is a number, is there necessarily
a chord of the graph of f that is parallel to the tangent line at (c, f(c))? Explain.

47. Sketch a graph of a differentiable function f(x) such that f ′(1) is 2, yet there
is no open interval around 1 on which f is increasing.

48. Establish that, for x in [0, π/2), tan(x) is greater than x by first showing by

(a) showing that f(x) = tan(x)− x is increasing

(b) showing that f(x) = tan(x)/x is increasing.

Exercises 49 and 50 are related.
49. Using trigonometric identities but no calculus show that
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(a) for θ in (0, π/4), sin(2θ)/ sin(θ) is decrasing

(b) for θ in (0, π/6), sin(3θ)/ sin(θ) is decreasing

Incidentally, one may establish by trigonometric identities that for each positive
integer n, sin(nθ)/ sin(θ) is decreasing for θ in (0, π/(2n)). We resist making this an
exercise because this is a calculus text, not a trigonometry text.
50. Using calculus, show that for any positive integer k, sin(kθ)/ sin(θ) is decreas-
ing for θ in (0, π/(2k)).
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4.2 The First Derivative and Graphing

Section 4.1 showed the connection between extrema and the places where the
derivative is zero. In this section we use this connection to find high and low
points on a graph.

S

R

Q

P

x

y

Figure 4.2.1

The graph of a differentiable function f is shown in Figure 4.2.1. The
points P , Q, R, and S are of special interest. S is the highest point on the
graph for all x in the domain. We call it a global maximum or absolute
maximum. The point P is higher than all points near it on the graph; it
is called a local maximum or relative maximum. Similarly, Q is called a
local minimum or relative minimum. The point R is neither a relative
maximum nor a relative minimum.

A point that is either a maximum or minimum is called an extremum.
If you were to walk left to right along the graph in Figure 4.2.1, you would

call P the top of a hill, Q the bottom of a valley, and S the highest point
on your walk (it is also a top of a hill). You might notice R, for you get a
momentary break from climbing from Q to S. For just this one instant it
would be like walking along a horizontal path.

These aspects of a function and its graph are made precise in definitions
phrased in terms of a general domain. In most cases the domain of the function
will be an interval — open, closed, or half-open.

DEFINITION (Relative Maximum (Local Maximum)) The func-
tion f has a relative maximum (or local maximum) at c if
there is an open interval around c such that f(c) ≥ f(x) for all x
in that interval that lie in the domain of f .

Figure 4.2.2

DEFINITION (Relative Minimum (Local Minimum)) The func-
tion f has a relative minimum (or local minimum) at c if there
is an open interval around c such that f(c) ≤ f(x) for all x in that
interval that lie in the domain of f .

DEFINITION (Absolute Maximum (Global Maximum)) The func-
tion f has an absolute maximum (or global maximum) at c if
f(c) ≥ f(x) for all x in the domain of f .

DEFINITION (Absolute Minimum (Global Minimum))Each global extremum is
also a local extremum.

The func-
tion f has an absolute minimum (or global minimum) at c if
f(c) ≤ f(x) for all x in the domain of f .

A local extremum is like the summit of a single mountain or the lowest
point in a valley. A global maximum corresponds to Mt. Everest at more than
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29,000 feet above sea level and a global minimum corresponds to the Mariana
Trench in the Pacific Ocean 36,000 feet below sea level, the lowest point on
Earth’s crust.

In this section it is assumed that functions are differentiable. If a function
is not differentiable at an isolated point, the point will need to be considered
separately.

DEFINITION (Critical Number and Critical Point) A number c
at which f ′(c) = 0 is called a critical number for the function f .
The corresponding point (c, f(c)) on the graph of f is a critical
point.

The theorem of the interior extremum, in Section 4.1, says that every local
maximum and minimum of a function f occurs where the tangent line to the
curve either is horizontal or does not exist.

Some functions have extreme values and others do not. The following
theorem gives conditions under which both a global maximum and a global
minimum are guaranteed to exist. To convince yourself that this is plausible,
imagine drawing the graph of the function. Somewhere your pencil will reach
a highest point and elsewhere a lowest point.

210

y

2

1

0

x

−1

Figure 4.2.3

Extreme Value Theorem

Theorem 4.2.1. Let f be a continuous function on a closed interval [a, b].
Then f attains an absolute maximum value M = f(c) and an absolute mini-
mum value m = f(d) at some c and d in [a, b].

EXAMPLE 1 Find the absolute extrema on the interval [0, 2] of the func-
tion whose graph is shown in Figure 4.2.3.
SOLUTION The function has an absolute maximum value of 2 but no abso-
lute minimum value. The range is (−1, 2]. This function takes on values that
are arbitrarily close to −1, but −1 is not in the range of this function. This
can occur because the function is not continuous at x = 1. �

Corollary 4.1.6 provides a convenient test to determine if a function is
increasing or decreasing at a point: if f ′(c) > 0 then f is increasing at x = c
and if f ′(c) < 0 then f is decreasing at x = c.

EXAMPLE 2 Let f(x) = x ln(x) for all x > 0. Determine the intervals on
which f is increasing, decreasing, or neither.
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SOLUTION The function is increasing at numbers x where f ′(x) > 0 and
decreasing where f ′(x) < 0. More effort is needed to determine the behavior
at points where f ′(x) = 0 (or does not exist). (The domain of f is x > 0.) By
the Product Rule,

f ′(x) = ln(x) + x

(
1

x

)
= ln(x) + 1.

To find where f ′(x) is positive or is negative, we first find where it is zero.
At such numbers the derivative may switch sign, and the function may switch
between increasing and decreasing. So we solve the equation f ′(x) = 0. We
have

ln(x) + 1 = 0
ln(x) = −1
eln(x) = e−1

x = e−1.

When x is larger than e−1 ≈ 0.3679, ln(x) is larger than −1 so that f ′(x) =
ln(x) + 1 is positive and f is increasing. Finally, f is decreasing when x is
between 0 and e−1 because ln(x) < −1, which makes f ′(x) = ln(x)+1 negative.
The graph of y = x ln(x) in Figure 4.2.4 confirms these findings.

Figure 4.2.4

In addition,
observe that x = e−1 provides a minimum value of e−1 ln (e−1) = −1/e. �

Using Critical Numbers to Identify Local Extrema

Previous examples suggest there is a connection between critical points and
local extrema. Generally, just to the left of a local maximum the function is
increasing, while just to the right it is decreasing. The opposite holds for a
local minimum. The First-Derivative Test for a Local Extreme Value at x = c
is a precise statement of this observation.
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First Derivative Test for a Local Extreme Value at x = c

Theorem 4.2.2. Let f be a function and let c be a number in its domain.
Suppose f is continuous on an open interval that contains c and is differentiable
there, except possibly at c. Then

1. If f ′ changes from positive to negative as x moves from left to right
through the value c,
then f has a local maximum at c.

2. If f ′ changes from negative to positive as x moves from left to right
through the value c,
then f has a local minimum at c.

3. If f ′ does not change sign at c,
then f does not have a local extremum at c.

EXAMPLE 3 Classify each critical number of f(x) = 3x5 − 20x3 + 10 as
local maximum, local minimum, or neither.
SOLUTION To identify the critical numbers of f , we find and factor the
derivative:

f ′(x) = 15x4 − 60x2 = 15x2(x2 − 4) = 15x2(x− 2)(x + 2).

The critical numbers of f are 0, 2, and −2. To determine if they provide
local extrema it is necessary to know where f is increasing and where it is
decreasing.

Because f ′ is continuous the critical numbers are the only places the sign of
f ′ can possibly change. As a result, on each of the intervals (−∞,−2), (−2, 0),
(0, 2), and (2,∞), f is either increasing or decreasing; all that remains is to
determine which. This is easily determined from the table of function values
shown in the first two rows of Table 4.2.1. From f(−2) = 74 > 10 = f(0) we

x → −∞ −2 0 2 →∞
f(x) → −∞ 74 10 −54 →∞
f ′(x) 0 0 0

Table 4.2.1

conclude f is decreasing on (−2, 0). Likewise, f must be decreasing on (0, 2)
because f(0) = 10 > −54 = f(2). For the two unbounded intervals, limits
at ±∞ must be used but the idea is the same. Since limx→−∞ f(x) = −∞,
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the function must be increasing on (−∞,−2). Likewise, in order to have
limx→∞ f(x) = +∞, f must be increasing on (2,∞). (See Figure 4.2.5.)

Figure 4.2.5

Because the graph of f changes from increasing to decreasing at x = −2,
there is a local maximum at (−2, 74). At x = 2 the graph changes from
decreasing to increasing, so a local minimum occurs at (2,−54). Because the
derivative does not change sign at x = 0, this critical number does not provide
a local extremum. �

EXAMPLE 4 Find all local extrema of f(x) = (x + 1)2/7e−x.
SOLUTION (The domain of f is (−∞,∞).) The product and chain rules
for derivatives can be used to obtain

f ′(x) = 2
7
(x + 1)−5/7e−x + (x + 1)2/7e−x(−1)

= 2
7
(x + 1)−5/7e−x − (x + 1)2/7e−x

= (x + 1)−5/7e−x
(

2
7
− (x + 1)

)
= (x + 1)−5/7e−x

(
−x− 5

7

)
=

−x− 5
7

(x+1)5/7ex .

The only solution to f ′(x) = 0 is x = −5/7; so c = −5/7 is the only critical
number. In addition, because the denominator of f ′(x) is zero when x = −1,
f is not differentiable for x = −1. Using the information in Table 4.2.2, we

x → −∞ −1 −5/7 →∞
f(x) →∞ 0 (2/7)(2/7)e5/7 ≈ 1.43 → 0
f ′(x) dne 0

Table 4.2.2 We use “dne” to mean the limit does not exist.

conclude f is decreasing on (−∞,−1), increasing on (−1,−5/7), and decreas-
ing on (−5/7,∞).

2

x

1

6

4

3

7

5

2

1

−1 0−2

Figure 4.2.6

By the First-Derivative Test, f has a local minimum at

(−1, 0) and a local maximum at (−5/7, (2/7)(2/7)e5/7) ≈ (−0.71, 1.43).
The First Derivative Test applies at x = −1 even though f is not differen-

tiable at −1. A graph is shown in Figure 4.2.6. �

Extreme Values on a Closed Interval

Many applied problems involve a continuous function whose domain is a closed
interval [a, b].
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The Extreme Value Theorem guarantees the function attains both a max-
imum and a minimum at some numbers in the interval. The extreme values
occur either at

1. an endpoint (x = a or x = b),

2. a critical number (x = c where f ′(c) = 0), or

3. where f is not differentiable (x = c where f ′(c) is not defined).

EXAMPLE 5 Find the absolute maximum and minimum values of f(x) =
x4 − 8x2 + 1 on the interval [−1, 3].
SOLUTION The function is continuous on a closed and bounded interval.
The absolute maximum and minimum values occur either at a critical number
or at an end of the interval. The ends are x = −1 and x = 3. To find the
critical numbers we solve f ′(x) = 0:

f ′(x) = 4x3 − 16x = 4x(x2 − 4) = 4x(x− 2)(x + 2) = 0.

There are three critical numbers, x = 0, 2, and −2, but only x = 0 and x = 2
are in the interval.

Figure 4.2.7

We simply scan the list of four function values at the

x −1 0 2 3
f(x) −6 1 −15 10
f ′(x) 0 0 0

Table 4.2.3

ends and at the critical numbers – row 2 of Table 4.2.3 – for the largest and
smallest values of f(x). The largest value is 10: the global maximum occurs
at x = 3. The smallest value is −15: the global minimum occurs at x = 2.
See Figure 4.2.7. �

Summary

This section showed how to use the first derivative to find extreme values of a
function. Namely, identify when the derivative is zero, positive, and negative,
and where it changes sign.

A continuous function on a closed interval [a, b] always has a maximum and
a minimum. All extrema occur either where f ′(c) = 0, at a or b, or where f is
not differentiable.
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EXERCISES for Section 4.2

In Exercises 1 to 28, sketch the graph of the function. Find all intercepts and crit-
ical points, determine the intervals where the function is increasing and where it is
decreasing, and identify all local extreme values.
1. f(x) = x5

2. f(x) = (x− 1)4

3. f(x) = 3x4 + x3

4. f(x) = 2x3 + 3x2

5. f(x) = x4 − 8x2 + 1

6. f(x) = x3 − 3x2 + 3x

7. f(x) = x4 − 4x + 3

8. f(x) = 2x2 + 3x + 5

9. f(x) = x4 + 2x3 − 3x2

10. f(x) = 2x3 + 3x2 − 6x

11. f(x) = xe−x/2

12. f(x) = xex/3

13. f(x) = e−x2

14. f(x) = xe−x2/2

15. f(x) = x sin(x) + cos(x)

16. f(x) = x cos(x)− sin(x)

17. f(x) = cos(x)−1
x2

18. f(x) = x ln(x)

19. f(x) = ln(x)
x

20. f(x) = ex−1
x

21. f(x) = e−x

x

22. f(x) = x−arctan(x)
x3

23. f(x) =
3x + 1
3x− 1

24. f(x) =
x

x2 + 1

25. f(x) =
x

x2 − 1

26. f(x) =
1

2x2 − x

27. f(x) =
1

x2 − 3x + 2

28. f(x) =
√

x2 + 1
x
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In Exercises 29 to 36 sketch the graph, using the given information. Assume the
function and its derivative are defined for all x and are continuous. Explain your
reasoning.
29. Critical point (1, 2), f ′(x) < 0 for x < 1, and f ′(x) > 0 for x > 1.

30. Critical point (1, 2), and f ′(x) < 0 for all x except x = 1.

31. x intercept−1, critical points (1, 3) and (2, 1), lim
x→∞

f(x) = 4, and lim
x→−∞

f(x) =
−1.

32. y intercept 3, critical point (1, 2), lim
x→∞

f(x) =∞, and lim
x→−∞

f(x) = 4.

33. x intercept−1, critical points (1, 5) and (2, 4), lim
x→∞

f(x) = 5, and lim
x→−∞

f(x) =
−∞.

34. x intercept 1, y intercept 2, critical points (1, 0) and (4, 4), lim
x→∞

f(x) = 3, and

lim
x→−∞

f(x) =∞.

35. x intercepts 2 and 4, y intercept 2, critical points (1, 3) and (3,−1), lim
x→∞

f(x) =

∞, and lim
x→−∞

f(x) = 1.

36. No x intercepts, y intercept 1, no critical points, lim
x→∞

f(x) = 2, and

lim
x→−∞

f(x) = 0.

Exercises 37 to 52 concern functions whose domains are restricted to closed intervals.
Find the maximum and minimum values for the given function on the interval.
37. f(x) = x2 − x4 on [0, 1]

38. f(x) = 4x− x2 on [0, 5]

39. f(x) = 2x2 − 5x on [−1, 1]

40. f(x) = x3 − 2x2 + 5x on [−1, 3]

41. f(x) =
x

x2 + 1
on [0, 3]

42. f(x) = x2 + x4 on [0, 1]

43. f(x) =
x + 1√
x2 + 1

on [0, 3]

44. f(x) = sin(x) + cos(x) on [0, π]

45. f(x) = sin(x)− cos(x) on [0, π]

46. f(x) = x + sin(x) on [−π/2, π/2]

47. f(x) = x + sin(x) on [−π, 2π]

48. f(x) = x/2 + sin(x) on [−π, 2π]

49. f(x) = 2 sin(x)− sin(2x) on [−π, π]

50. f(x) = sin(x2) + cos(x2) on [0,
√

2π]

51. f(x) = sin(x)− cos(x) on [−2π, 2π]

52. f(x) = sin2(x)− cos2(x) on [−2π, 2π]
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In Exercises 53 to 59 graph the function.

53. f(x) =
sin(x)

1 + 2 cos(x)

54. f(x) =
√

x2 − 1
x

55. f(x) =
1

(x− 1)2(x− 2)

56. f(x) =
3x2 + 5
x2 − 1

57. f(x) = 2x1/3 + x4/3

58. f(x) =
3x2 + 5
x2 + 1

59. f(x) =
√

3 sin(x) + cos(x)

60. Graph f(x) = (x2 − 9)1/3e−x. (This function is difficult to graph in one
picture. Instead, create separate sketches for x > 0 and for x < 0. Watch out for
points where f is not differentiable.)

61. A differentiable function has f ′(x) < 0 for x < 1 and f ′(x) > 0 for x > 1.
Moreover, f(0) = 3, f(1) = 1, and f(2) = 2.

(a) What is the minimum value of f(x) for x in [0, 2]? Why?

(b) What is the maximum value of f(x) for x in [0, 2]? Why?

In Exercises 62 to 64 decide if there is a function that meets all the conditions. If
you think there is, sketch its possible graph. Otherwise, explain why a function
cannot meet all of the conditions.
62. f(x) > 0 for all x and f ′(x) < 0 for all x

63. f(3) = 1, f(5) = 1, and f ′(x) > 0 for x in [3, 5]
64. f ′(x) 6= 0 for all x except x = 3 and 5, when f ′(x) = 0 and f(x) = 0 for
x = −2, 4, and 5
65. What is the minimum value of y = (x3 − x)/(x2 − 4) for x > 2?
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4.3 The Second Derivative and Graphing

The sign of the first derivative tells whether a function is increasing or decreas-
ing. In this section we examine what the sign of the second derivative tells us
about a function and its graph. This information will be used to help graph
functions and also to provide an additional way to test whether a critical point
is a maximum or minimum.

Concavity and Points of Inflection

The second derivative is the derivative of the first derivative. Thus, the sign of
the second derivative determines if the first derivative is increasing or decreas-
ing. If f ′′(x) is positive for all x in an interval (a, b), then f ′ is an increasing
function throughout the interval. In other words, the slope of the graph of
y = f(x) increases as x increases from left to right. The slope may increase

(a) (b) (c)

Figure 4.3.1

from negative values to zero to positive values, as in Figure 4.3.1(a). It may
be positive throughout (a, b), as in Figure 4.3.1(b), or it may be negative
throughout (a, b), as in Figure 4.3.1(c).

If f ′′(x) is negative on the interval (a, b) then f ′ is decreasing on (a, b). The
slope of the graph of y = f(x) decreases as x increases from left to right on
that part of the graph corresponding to (a, b).

DEFINITION (Concave Up and Concave Down)

A function f whose first derivative is increasing throughout the
open interval (a, b) is called concave up in that interval.

A function f whose first derivative is decreasing throughout the
open interval (a, b) is called concave down in that interval.
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(a) (b)

Figure 4.3.2

When a curve is concave up, it lies above its tangent lines and below
its chords. The graph of a concave up function is shaped like a cup. See
Figure 4.3.2(a).

When a curve is concave down, it lies below its tangent lines and above
its chords. The graph of a concave down function is shaped like a frown. See
Figure 4.3.2(b).

EXAMPLE 1 Where is the graph of f(x) = x3 concave up? concave
down?
SOLUTION

Figure 4.3.3

First, compute the second derivative f ′′(x) = 6x, which is pos-
itive when x is positive and negative when x is negative. Thus, the graph is
concave up for x > 0 and is concave down for x < 0. The sense of concavity
changes at x = 0, where f ′′(x) = 0. (See Figure 4.3.3.) �

In an interval where f ′′(x) is positive, the function f ′(x) is increasing, and
so the function f is concave up. However, if a function is concave up, f ′′(x)
need not be positive for all x in the interval. For instance, y = x4 has a second
derivative 12x2 that is zero for x = 0, but the first derivative 4x3 is increasing
on any interval; so the graph is concave up over any interval.

A point where the graph of a function changes concavity is important.

DEFINITION (Inflection Number and Inflection Point) Let f be
a function and let a be a number. Assume there are numbers b and
c such that b < a < c and

1. f is continuous on the open interval (b, c)

2. f is concave up on (b, a) and concave down on (a, c)
or
f is concave down on (b, a) and concave up on (a, c).
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Then the point (a, f(a)) is called an inflection point or point of
inflection of f . The number a is called an inflection number of
f .

Remember that f ′′(a) = 0 does not automatically make a an inflection
number of f . To be an inflection number, concavity has to change at a.

If the second derivative changes sign at the number a, then a is an inflection
number. If the second derivative exists at an inflection number, it must be 0.
There can be an inflection point if f ′′(a) is not defined, as is illustrated in the
next example.

EXAMPLE 2 Examine the concavity of the graph of y = x1/3.
SOLUTION

Figure 4.3.4

Here y′ = 1
3
x−2/3 and y′′ = 1

3

(−2
3

)
x−5/3. Although x = 0 is in

the domain of y, neither y′ nor y′′ is defined for x = 0. When x is negative,
y′′ is positive; when x is positive, y′′ is negative. Thus, the concavity changes
from concave up to concave down at x = 0. This means x = 0 is an inflection
number and (0, 0) is an inflection point. See Figure 4.3.4. �

The simplest way to look for inflection points is to use both the first and
second derivatives.

Identifying Inflection Points of y = f(x)
Inflection points of y = f(x) correspond to sign changes of f ′′. The sign
changes of f ′′(x) are found as follows:

1. Compute f ′(x) and f ′′(x).

2. Look for numbers a such that f ′′(a) = 0 or f ′′ is not defined at a.

3. For each interval defined by the numbers found in Step 2, determine the
sign of f ′′(x).

This process can be done using the same ideas used to identify critical
points, as Example 3 shows.

EXAMPLE 3 Find the inflection point(s) of f(x) = x4 − 8x3 + 18x2.
SOLUTION We have f ′(x) = 4x3 − 24x2 + 36x and

f ′′(x) = 12x2 − 48x + 36 = 12(x2 − 4x + 3) = 12(x− 1)(x− 3).

Because f ′′ is defined for all real numbers, the only candidates for inflection
numbers are the solutions to f ′′(x) = 0, that is, the solutions to

12(x− 1)(x− 3) = 0.
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The solutions are 1 and 3.
To decide whether 1 and 3 are inflection numbers, look at the sign of

f ′′(x) = 12(x−1)(x−3). For x > 3 both x−1 and x−3 are positive; so f ′′(x)
is positive. For x in (1, 3), x− 1 is positive and x− 3 is negative; so f ′′(x) is
negative. For x < 1, both x − 1 and x − 3 are negative; so f ′′(x) is positive.
This is recorded in Table 4.3.1. Since sign changes in f ′′(x) correspond to

x (−∞, 1) 1 (1, 3) 3 (3,∞)
f ′′(x) + 0 − 0 +

Table 4.3.1

changes in concavity of the graph of f , the function has two inflection points:
(1, 11) and (3, 27).

�

Using Concavity in Graphing

The second derivative, together with the first derivative and the other tools
of graphing, can help us sketch the graph of a function. Example 4 continues
Example 3.

EXAMPLE 4 Graph f(x) = x4 − 8x3 + 18x2.
SOLUTION As a non-constant polynomial, it has no asymptotes. Its y-
intercept is 0 since f(0) = 04− 8(03)+ 18(02). To find its x-intercepts look for
solutions of f(x) = 0:

x4 − 8x3 + 18x2 = 0

x2(x2 − 8x + 18) = 0.

Thus x = 0 or x2−8x+18 = 0, which can be solved by the quadratic formula.
The discriminant of

ax2 + bx + c is b2 − 4ac.
The discriminant is (−8)2 − 4(1)(18) = −8 which is negative, so there are no
real solutions of x2− 8x + 18 = 0. The only (real-valued) x-intercept is x = 0.

In Example 3 we found

f ′(x) = 4x3 − 24x2 + 36x = 4x(x2 − 6x + 9) = 4x(x− 3)2,

which is 0 only when x = 0 and x = 3. The two critical points are (0, f(0)) =
(0, 0) and (3, f(3)) = (3, 27). The information in Table 4.3.2 allows us to
conclude that f is decreasing on (−∞, 0) and increasing on (0,∞) with a local
minimum at (0, 0).

x (−∞, 0) 0 (0, 3) 3 (3,∞)
f ′(x) − 0 + 0 +
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Table 4.3.2
By Example 3, the graph is concave up on (−∞, 1) and (3,∞) and concave

down on (1, 3).
To begin to sketch the graph of y = f(x), plot the three points (0, f(0)) =

(0, 0), (1, f(1)) = (1, 11), and (3, f(3)) = (3, 27). They divide the domain into
four intervals. On (−∞, 0) the function is decreasing and concave up, on (0, 1)
it is increasing and concave up, on (1, 3) it is increasing and concave down,
and on (3,∞) it is once again increasing and concave up. The final graph is
shown in Figure 4.3.5. Each colored part indicates a section where both f ′

and f ′′ do not change sign.

x
K2 K1 0 1 2 3 4 5

10

20

30

40

50

Figure 4.3.5

�

The procedure in Example 4 has several advantages. It was necessary to
evaluate f(x) only at a few important inputs x, which cut the domain into
intervals where neither the first derivative nor the second derivative changes
sign. On each of these intervals the graph of the function will have one of the
four shapes shown in Figure 4.3.6. A graph usually is made up of these four
shapes.

(a) (b) (c) (d)

Figure 4.3.6 The general shape of a function that is (a) increasing and concave
up, (b) increasing and concave down, (c) decreasing and concave up, and (d)
decreasing and concave down.

Local Extrema and the Second-Derivative Test

Figure 4.3.7

The second derivative is also useful in testing whether a critical number
corresponds to a relative minimum or relative maximum. For this, we will use
the relationships between concavity and tangent lines shown in Figure 4.3.2.

Let a be a critical number for the function f . Assume, for instance, that
f ′′(a) is negative. If f ′′ is continuous in some open interval that contains a, then
(by the permanence property) f ′′(x) remains negative for a small open interval
that contains a. This means the graph of f is concave down near (a, f(a)): it
lies below its tangent lines. In particular, it lies below the horizontal tangent
line at the critical point (a, f(a)), as illustrated in Figure 4.3.7. Thus the
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function f has a relative maximum at the critical number a. Similarly, if
f ′(a) = 0 and f ′′(a) > 0, the critical point (a, f(a)) is a relative minimum
because the graph of f is concave up and lies above the horizontal tangent
line at (a, f(a)). These observations justify the following test for a relative
extremum.

Second-Derivative Test for a Relative Extremum

Theorem 4.3.1. Let f be a function such that f ′(x) and f ′′9x) are defined on
some open interval containing the number a. Assume that f ′′(x) is continuous.

If f ′(a) = 0 and f ′′(a) > 0, then f has a relative minimum at (a, f(a)).

If f ′(a) = 0 and f ′′(a) < 0, then f has a relative maximum at (a, f(a)).

EXAMPLE 5Compare with Examples 3
and 4.

Use the second derivative test to classify all local extrema
of f(x) = x4 − 8x3 + 18x2.
SOLUTION This is the same function as in Examples 3 and 4. The two
critical points are (0, 0) and (3, 27). The second derivative is f ′′(x) = 12x2 −
48x + 36. At x = 0 we have

f ′′(0) = 12(02)− 48(0) + 36 = 36,

which is positive. Since f ′(0) = 0 and f ′′(0) > 0, f has a local minimum at
(0, 0). At x = 3 we have

f ′′(3) = 12(32)− 48(3) + 36 = 0.

Since f ′′(3) = 0, the second derivative test tells us nothing about the critical
number 3.

This is consistent with our previous findings. The point (3, 27) is an inflec-
tion point and not a local extreme point. �
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Summary

Table 4.3.3 shows the meaning of the signs of f(x), f ′(x), and f ′′(x) in terms
of the graph of y = f(x).

Where the is positive (> 0) is negative (< 0) changes sign is zero (= 0)
ordinate f(x) the graph is above

the x-axis.
the graph is below
the x-axis.

the graph crosses the
x-axis.

there is an x inter-
cept.

slope f ′(x) the graph slopes up-
ward.

the graph slopes
downward.

the graph has a hori-
zontal tangent and a
relative extremum.

there is a critical
point.

f ′′(x) the graph is concave
up (like a cup).

the graph is concave
down (like a frown).

the graph has an in-
flection point.

there may be an in-
flection point.

Table 4.3.3 Interpreting the signs of f(x), f ′(x), and f ′′(x)
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EXERCISES for Section 4.3

In Exercises 1 to 16 describe the intervals where the function is concave up and
concave down, and list all inflection points.
1. f(x) = x3 − 3x2 + 2

2. f(x) = x3 − 6x2 + 1

3. f(x) = x2 + x + 1

4. f(x) = 2x2 − 5x

5. f(x) = x4 − 4x3

6. f(x) = 3x5 − 5x4

7. f(x) = 1
1+x2

8. f(x) = 1
1+x4

9. f(x) = x3 + 6x2 − 15x

10. f(x) = x2

2 + 1
x

11. f(x) = e−x2

12. f(x) = xex

13. f(x) = tan(x)

14. f(x) = sin(x) +
√

3 cos(x)

15. f(x) = cos(x)

16. f(x) = cos(x) + sin(x)

In Exercises 17 to 29 graph the functions, showing critical points, inflection points,
and intercepts.
17. f(x) = x3 + 3x2

18. f(x) = 2x3 + 9x2

19. f(x) = x4 − 4x3 + 6x2

20. f(x) = x4 + 4x3 + 6x2 − 2

21. f(x) = x4 − 6x3 + 12x2

22. f(x) = 2x6 − 10x4 + 10

23. f(x) = 2x6 + 3x5 − 10x4

24. f(x) = 3x4 + 4x3 − 12x2 + 4

25. f(x) = xe−x

26. f(x) = ex3

27. f(x) = 3x5 − 20x3 + 10 (This function was first met in Example 3 in Sec-
tion 4.2.)

28. f(x) = 3x4 + 4x3 − 12x2 + 4
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29. f(x) = 2x6 − 15x4 + 20x3 − 20x + 10

In Exercises 30 to 37 sketch the general appearance of the graph of the function
near (1, 1) on the basis of the information given. Assume that f , f ′, and f ′′ are
continuous.
30. f(1) = 1, f ′(1) = 0, and f ′′(1) = 1

31. f(1) = 1, f ′(1) = 0, and f ′′(1) = −1

32. f(1) = 1, f ′(1) = 0, and f ′′(1) = 0 (Sketch four quite different possibilities.)

33. f(1) = 1, f ′(1) = 0, f ′′(1) = 0, f ′′(x) < 0 for x < 1, and f ′′(x) > 0 for x > 1

34. f(1) = 1, f ′(1) = 0, f ′′(1) = 0, and f ′′(x) < 0 for x near 1

35. f(1) = 1, f ′(1) = 1, and f ′′(1) = −1

36. f(1) = 1, f ′(1) = 1, f ′′(1) = 0, f ′′(x) < 0 for x < 1, and f ′′(x) > 0 for x > 1

37. f(1) = 1, f ′(1) = 1, f ′′(1) = 0, and f ′′(x) > 0 for x near 1

38. Find all inflection points of f(x) = x ln(x). On what intervals is the graph
of y = f(x) concave up? concave down? Graph y = f(x) on an interval large
enough to show all interesting features of the graph. On what intervals is the graph
increasing? decreasing? (This graph appeared in Example 2 of Section 4.2.)

39. Find all inflection points of f(x) = x+ln(x). On what intervals is the graph of
y = f(x) concave up? concave down? Graph y = f(x) on an interval large enough
to show all interesting features of the graph. On what intervals is the function in-
creasing? decreasing?

40. Find all inflection points of f(x) = (x + 1)2/7e−x. On what intervals is the
graph of y = f(x) concave up? concave down? On what intervals is the function
increasing? decreasing? (This function was first met in Example 4 of Section 4.2.)

41. Find the critical points and inflection points of f(x) = x2e−x/3. (See Exam-
ple 1 of Section 4.1.)

In Exercises 42 to 43 sketch a graph of a function that meets the conditions. Assume
f ′ and f ′′ are continuous. Explain your reasoning.
42. Critical point (2, 4), inflection points (3, 1) and (1, 1), lim

x→∞
f(x) = 0, and

lim
x→−∞

f(x) = 0

43. Critical points (−1, 1) and (3, 2); inflection point (4, 1), lim
x→0+

f(x) = −∞, and

lim
x→0−

f(x) =∞, lim
x→∞

f(x) = 0, and lim
x→−∞

f(x) =∞
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Figure 4.3.8
44. (Contributed by David Hayes) Let f be a function that is continuous for all x
and differentiable for all x other than 0. Figure 4.3.8 is the graph of its derivative
f ′(x) as a function of x.

(a) Answer the following questions about f (not about f ′). Where is f increasing?
decreasing? concave up? concave down? What are the critical numbers?
Where do any relative extrema occur? Explain.

(b) Assuming that f(0) = 1, graph a hypothetical function f that satisfies the
conditions.

(c) Graph a possible f ′′(x).

45. Graph y = 2(x− 1)5/3 + 5(x− 1)2/3, paying attention to points where y′ does
not exist.

46. Graph y = x + (x + 1)1/3.

47. Find the critical points and inflection points in [0, 2π] of f(x) = sin2(x) cos(x).

48. Can a polynomial of degree 6 have (a) no inflection points? (b) exactly one
inflection point? Explain.

49. Can a polynomial of degree 5 have (a) no inflection points? (b) exactly one
inflection point? Explain.

50. Let f be a function such that f ′′(x) = (x− 1)(x− 2).

(a) For which x is f concave up?

April 22, 2012 Calculus



§ 4.3 THE SECOND DERIVATIVE AND GRAPHING 317

(b) For which x is f concave down?

(c) List its inflection number(s).

(d) Find a function f whose second derivative is (x− 1)(x− 2).

51. In the theory of inhibited growth it is assumed that the growing quantity
y approaches a limiting size M . Specifically, one assumes that the rate of growth is
proportional to both the quantity present and teh amount left to grow:

dy

dt
= ky(M − y),

where k is a positive number. Prove that the graph of y as a function of time has
an inflection point when the amount y is exactly half the limiting amount M .

52. A function y = f(x) has the property that

y′ = sin(y) + 2y + x.

Show that at a critical number it has a local minimum.

53. Assume that the domain of f(x) is the entire x-axis, and that f ′(x) and f ′′(x)
are continuous. Assume that (1, 1) is the only critical point and that lim

x→∞
f(x) = 0.

(a) Can f(x) be negative for some x > 1?

(b) Must f(x) be decreasing for x > 1?

(c) Must f(x) have an inflection point?
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4.4 Proofs of the Three Theorems

In Section 4.1 two observations about tangent lines led to the theorem of the
interior extremum, Rolle’s theorem, and the mean-value theorem. Now, using
the definition of the derivative, and no pictures, we prove them. That the
proofs need only the definition of the derivative as a limit reassures us that
the definition is suitable to serve as part of the foundation of calculus.

Theorem 4.1.1: Let f be a
function defined on (a, b). If
f takes on an extreme value

at c in this interval, then
f ′(c) = 0 or f ′(c) does not

exist.

Proof of the Theorem of the Interior Extremum

Suppose the maximum of f on the open interval (a, b) occurs at c. This means
that f(c) ≥ f(x) for each x between a and b.

Our challenge is to use only this information and the definition of the
derivative as a limit to show that either f ′(c) = 0 or f is not differentiable at
c.

Assume that f is differentiable at c. We will show that f ′(c) ≥ 0 and
f ′(c) ≤ 0, forcing f ′(c) to be zero.

By the definition of the derivative,

f ′(c) = lim
∆x→0

f(c + ∆x)− f(c)

∆x
.

The assumption that f is differentiable on (a, b) means that f ′(c) exists. In
the difference quotient

f(c + ∆x)− f(c)

∆x
(4.4.1)

take ∆x so small that c + ∆x is in the interval (a, b). Then f(c + ∆x) ≤ f(c).
Hence f(c + ∆x) − f(c) ≤ 0. Therefore, when ∆x is positive, the difference
quotient in (4.4.1) will be negative or zero. Consequently, as ∆x→ 0 through

negative
positive = negative positive values,

f ′(c) = lim
∆x→0+

f(c + ∆x)− f(c)

∆x
≤ 0.

If, on the other hand, ∆x is negative, then the difference quotient in (4.4.1)
will be positive or zero. Hence, as ∆x→ 0 through negative values,negative

negative = positive

f ′(c) = lim
∆x→0−

f(c + ∆x)− f(c)

∆x
≥ 0.

The only way f ′(c) ≤ 0 and f ′(c) ≥ 0 can both hold is when f ′(c) = 0.
This proves that if f has a maximum on (a, b), then f ′(c) = 0.

The proof when f has a minimum on (a, b) is essentially the same. (See
Exercise 16.) •

The proofs of Rolle’s theorem and the mean value theorem are related.
Suppose f is continuous on [a, b] and differentiable on (a, b).
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Theorem 4.1.2: Let f be
continuous on [a, b] and
differentiable on (a, b). If
f(a) = f(b), then there is
at least one c in (a, b)
where f ′(c) = 0.

Proof of Rolle’s Theorem

The goal is to use the facts that f is continuous on [a, b], differentiable on
(a, b), and f(a) = f(b) to conclude that there must be a number c in (a, b)
with f ′(c) = 0.

Since f is continuous on the closed interval [a, b], it has a maximum value
M and a minimum value m on the interval. There are two cases: m = M and
m < M .

Case 1: If m = M , f is constant and f ′(x) = 0 for all x in [a, b]. Then any
number in (a, b) will serve as c.

Case 2: Suppose m < M . Because f(a) = f(b) the minimum and max-
imum cannot both occur at the ends of the interval. At least one of the
extrema occurs at a number c strictly between a and b. By assumption, f is
differentiable at c, so f ′(c) exists. By the theorem of the interior extremum,
f ′(c) = 0.

This completes the proof of Rolle’s theorem. •

The idea behind the proof of the mean-value theorem is to define a function
to which Rolle’s theorem can be applied.

Theorem 4.1.3: Let f be
continuous on [a, b] and
differentiable on (a, b).
Then there is at least one c
in (a, b) where

f ′(c) = f(b)−f(a)
b−a .

Proof of the mean value theorem

Let y = L(x) be the equation of the chord through (a, f(a)) and (b, f(b)).

Its slope is L′(x) =
f(b)− f(a)

b− a
. Define h(x) = f(x) − L(x). Note that

h(a) = h(b) = 0 because f(a) = L(a) and f(b) = L(b).
By assumption, f is continuous on the closed interval [a, b] and differen-

tiable on the open interval (a, b). So h, being the difference of f and L, is also
continuous on [a, b] and differentiable on (a, b).

Rolle’s theorem applies to h on [a, b]. Therefore, there is at least one c in
(a, b) where h′(c) = 0. Because h′(c) = f ′(c) − L′(c), we have f ′(c) = L′(c)
and therefore

f ′(c) =
f(b)− f(a)

b− a
.

•

Summary

Using only the definition of the derivative and the assumption that a contin-
uous function defined on a closed interval assumes maximum and minimum
values, we proved the theorem of the interior extremum, Rolle’s theorem, and
the mean value theorem. We did not appeal to any pictures or to geometric
intuition.
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EXERCISES for Section 4.4

In each of Exercises 1 to 3 sketch a graph of a differentiable function that meets the
given conditions. (There is no need to give a formula for the function.)
1. f ′(x) < 0 for all x

2. f ′(3) = 0 and f ′(x) < 0 for x not equal to 3
3. f ′(x) = 0 only when x = 1 or 4; f(1) = 3, f(4) = 1; f ′(x) > 0 for x < 1 and
for x > 4

In Exercises 4 to 5 explain why no differentiable function satisfies all the conditions.
4. f(1) = 3, f(2) = 4, f ′(x) < 0 for all x

5. f(x) = 2 only when x = 0, 1, and 3; f ′(x) = 0 only when x = 1
4 , 3

4 , and 4.

6. In Surely You’re Joking, Mr. Feynman, Norton, New York, 1985, Nobel
laureate Richard P. Feynman writes:

I often liked to play tricks on people when I was at MIT. One time, in
mechanical drawing class, some joker picked up a French curve (a piece
of plastic for drawing smooth curves — a curly funny-looking thing) and
said, “I wonder if the curves on that thing have some special formula?”

I thought for a moment and said, “Sure they do. The curves are
very special curves. Lemme show ya,” and I picked up my French curve
and began to turn it slowly. “The French curve is made so that at the
lowest point on each curve, no matter how you turn it, the tangent is
horizontal.”

All the guys in the class were holding their French curve up at dif-
ferent angles, holding their pencil up to it at the lowest point and laying
it down, and discovering that, sure enough, the tangent is horizontal.

How was Feynman playing a trick on his classmates?

7. Let f be a differentiable function. What can be said about the number of
solutions of f(x) = 3 if

(a) f ′(x) > 0 for all x?

(b) f ′(x) > 0 for x < 7 and f ′(x) < 0 for x > 7?

8. For f(x) = x3 + ax2 + c. show that if a < 0 and c > 0, then f(x) = 0 has
exactly one negative solution.

9. With the book closed, obtain the mean-value theorem from Rolle’s theorem.

10.
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(a) Using the definition of L(x) in the proof of the mean-value theorem, show
that

L(x) = f(a) +
x− a

b− a
(f(b)− f(a)) .

(b) Using (a), show that

L′(x) =
f(b)− f(a)

b− a
.

11. Show that Rolle’s theorem is a special case of the mean-value theorem.

12. Is this argument a proof of the mean-value theorem?
Alleged Proof
Tilt the x- and y-axes and the graph of the function until the x-axis is parallel to
the given chord. The chord is now horizontal, and we may apply Rolle’s theorem. •

13. This exercise shows that a polynomial f(x) of degree n, n ≥ 1, can have at
most n distinct real roots, that is, solutions to f(x) = 0.

(a) Use algebra to show that the statement holds for n = 1 and n = 2.

(b) Use calculus to show that the statement then holds for n = 3.

(c) Use calculus to show that the statement continues to hold for n = 4 and n = 5.

(d) Why does it hold for all positive integers n?

14. Is there a differentiable function f whose domain is the x-axis such that f is
increasing and yet the derivative is not positive for all x?

15. Prove that if f is continuous on [a, b] and has a negative derivative on (a, b)
then f is decreasing on the interval [a, b].

16. Prove the theorem of the interior extremum when the minimum of f on (a, b)
occurs at c.

17. This Exercise provides an analytic justification for the first part of the state-
ment, in Section 4.3, that when a curve is concave up, it lies above its tangent lines
and below its chords. The second part is proved in Exercise 52 of the Chapter 4
Summary.
Show that in an open interval in which f ′′ is positive, tangents to the graph of f
lie below the curve. (Why do you want to show that if a and x are in the inter-
val, then f(x) > f(a)+f ′(a)(x−a)? Treat the cases a < x and x > a separately.)
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18. We stated in Section 4.3 that if f(x) is defined in an open interval around
a critical number a and f ′′(a) is negative, then f(x) has a relative maximum at a.
Explain why this is so, following these steps.

(a) Why is lim
∆x→0

f ′(a + ∆x)− f ′(a)
∆x

negative?

(b) Deduce that if ∆x is small and positive, then f ′(a + ∆x) is negative.

(c) Show that if ∆x is small and negative, then f ′(a + ∆x) is positive.

(d) Show that f ′(x) changes sign from positive to negative at a. By the First-
Derivative Test for a Relative Maximum, f(x) has a relative maximum at
a.

19. To keep differentiation skills sharp, differentiate

(a)
√

1− x2 sin(3x)

(b)
3
√

x

x2 + 1

(c) tan
(

1
(2x + 1)2

)

(d) ln

(
(x2 + 1)3

√
1− x2

sec2(x)

)

(e) ex4
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4.S Chapter Summary

In this chapter we saw that the signs of the function and of its first and second
derivatives influence the shape of its graph. In particular the derivatives show
where the function is increasing or decreasing and where it is concave up or
down. That enabled us to find extreme points and inflection points.

We state here the main ideas informally for a function, f , with continuous
first and second derivatives.

If a function f has an extremum at a number c, then either f ′(c) = 0, or
f ′(c) is not defined, or c may be the end point of the domain. This narrows
the search for extrema. If f ′(c) = 0 and f ′′(c) is not zero, the function has an
extremum at c.

Rolle’s theorem asserts that if a differentiable function has the same value at
two inputs on an interval in its domain, its derivative must be zero somewhere
between them. This helps find the number of solutions to f(x) = 0, and thus
the number of x-intercepts of the graph of f .

The mean-value theorem generalizes Rolle’s theorem. It says that between
any two points on the graph of a differentiable function f there is a point on
the graph where the tangent is parallel to the chord through the two points.
We use this to show that if a and b are numbers, then f(b) = f(a)+f ′(c)(b−a)
for some c between a and b.

If f ′(a) is positive and f ′ is continuous on an open interval containing
a, then, by the permanence property, f ′(x) remains positive for some open
interval containing a. This implies that if the derivative is positive at some
number, then the function is increasing for inputs near that number. A similar
statement holds when f ′(a) is negative.
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Sam: Why bother me with limits? The authors say we need them to define
derivatives.

Jane: Aren’t you curious about why the formula for the derivative of a product
is what it is?

Sam: No. It’s been true for over three centuries. Just tell me what it is. If
someone says the speed of light is 186,000 miles per second am I supposed
to find a meter stick and clock and check it out?

Jane: But what if you forget the formula during a test?

Sam: That’s not much of a reason.

Jane: I agree. But avoiding limits and proofs based on them is like building a
brick wall. At any moment you will collapse, especially during an exam.

Sam: Don’t mention exams.

Jane: Well, my physics class uses limits all the time. Density of mass, density
of electric charge, for instance.

Sam: All right, I’ll go review the whole course.

Jane: You’ll see that once you delete the exercises and examples, there aren’t
many pages to read. We really haven’t covered much. Just master the
proofs and you’ll be as confident as our instructor.

Sam: That cheers me on.

EXERCISES for 4.S

In each of Exercises 1 to 13 decide if it is possible for a differentiable function to have
all the properties listed. If it is possible, sketch a graph of a differentiable function
that meets the conditions. (There is no need to try to find a formulat for it.) If it
is not possible, explain why.
1. f(0) = 1, f(x) > 0 for all x, and f ′(x) < 0 for all positive x

2. f(0) = −1, f ′(x) < 0 for all x in [0, 2], and f(2) = 0
3. x-intercepts at 1 and 5, y intercept at 2, f ′(x) < 0 for x < 4 and f ′(x) > 0 for
x > 4
4. x-intercepts at 2 and 5, y intercept at 3, f ′(x) > 0 for x < 1 and for x > 3, and
f ′(x) < 0 for x in (1, 3)
5. f(0) = 1, f ′(x) < 0 for all positive x, and limx→∞ f(x) = 1/2
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6. f(2) = 5, f(3) = −1, and f ′(x) ≥ 0 for all x

7. x-intercepts only at 1 and 2 and f(3) = −1, f(4) = 2

8. f ′(x) = 0 only when x = 1 or 4, f(1) = 3, f(4) = 1, f ′(x) < 0 for x < 1, and
f ′(x) > 0 for x > 4

9. f(0) = f(1) = 1 and f ′(0) = f ′(1) = 1

10. f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and f(x) 6= 0 for all x in [0, 1]

11. f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and f(x) = 0 for exactly one number x in
[0, 1]

12. f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and f(x) has exactly two inflection
numbers in [0, 1]

13. f(0) = f(1) = 1, f ′(0) = f ′(1) = 1, and f(x) has exactly two extrema in [0, 1]

14. State the assumptions and conclusions of the theorem of the interior extremum
for a function F defined on (a, b).

15. State the assumptions and conclusions of the mean value theorem for a func-
tion g defined on [c, d].

16. Find all functions f(x) such that f ′(x) = 2 for all x and f(1) = 4.

17. Find all differentiable functions such that f(1) = 3, f ′(1) = −1, and
f ′′(1) = ex.

18. The following discussion on higher derivatives in economics appears on
page 124 of the College Mathematics Journal 37 (2006):
Charlie Marion of Shrub Oak, NY, submitted this excerpt from “Curses! The Second
Derivative” by Jeremy J. Siegel in the October 2004 issue of Kiplinger’s (p. 73):

“... I think what is bugging the market is something that I have seen
happen many times before: the Curse of the Second Derivative. The
second derivative, for all those readers who are a few years away from
their college calculus class, is the rate of change of the rate of change —
or, in this case, whether corporate earnings, which are still rising, are
rising at a faster or slower pace.”

In the October 1996 issue of the Notices of the American Mathematical Society,
Hugo Rossi wrote, “In the fall of 1972 President Nixon announced that the rate of
increase of inflation was decreasing. This was the first time a sitting president used
the third derivative to advance his case for reelection.”
Explain why the third derivative is involved in President Nixon’s statement.

Calculus April 22, 2012



326 CHAPTER 4 DERIVATIVES AND CURVE SKETCHING

Figure 4.S.1
19. The newspaper headline shown in Figure 4.S.1 appeared in newspapers in
February 2012. Let f(t) be the average home price at time t. Translate this head-
line into a sentence about calculus, that is, about the derivatives of f .

20. At high tide and at low tide, the height of the tide changes very slowly. The
same holds for an outdoor thermometer: the temperature changes the slowest when
it is at its highest or at its lowest. Why is that?

21.

(a) Graph y = sin2(2θ) cos(2θ) for θ in [−π/2, π/2].

(b) What is the maximum value of y?

In Exercises 22 to 25, from the graph of function f with continuous f ′ and f ′′, sketch
a possible graph of f ′ and a possible graph of f ′′.
22. Figure 4.S.2(a)

23. Figure 4.S.2(b)

24. Figure 4.S.2(c)

25. Figure 4.S.2(d)

(a) (b) (c) (d)

Figure 4.S.2
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In Exercises 26 and 27 sketch the graphs of two possible functions f whose derivative
f ′ is graphed in the given figure.
26. Figure 4.S.3(a)
27. Figure 4.S.3(b)

(a) (b)

Figure 4.S.3
28. Sketch the graph of a function f whose second derivative is graphed in
Figure 4.S.4.

Figure 4.S.4
29. Figure 4.S.5(a) shows the only x-intercepts of a function f . Sketch possible
graphs of f ′ and f ′′.
30. Figure 4.S.5(b) shows the only arguments at which f ′(x) = 0. Sketch possible
graphs of f ′ and f ′′.
31. Figure 4.S.5(c) shows the only arguments at which f ′′(x) = 0. Sketch possible
graphs of f ′ and f ′′.

(a) (b) (c)
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Figure 4.S.5
In Exercises 32 to 39 graph the functions, showing extrema, inflection points, and
asymptotes.
32. e−2x sin(x), x in [0, 4π]
33. ex

1−ex

34. x3 − 9x2

35. x
√

3− x

36. x−1
x−2

37. cos(x)− sin(x), x in [0, 2π]
38. x1/2 − x1/4

39. x
4−x2

40. Figure 4.S.6 shows the graph of f . Estimate where

(a) f changes sign,

(b) f ′ changes sign,

(c) f ′′ changes sign.

Figure 4.S.6
41. Assume f has continuous first and second derivatives defined on an open
interval.

(a) If f ′(a) = 0 and f ′′(a) = 0, does f necessarily have an extremum at a?
Explain.

(b) If f ′′(a) = 0, does f necessarily have an inflection point at x = a?

(c) If f ′(a) = 0 and f ′′(a) = 3, does f necessarily have an extremum at a?
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42. Find the maximum value of e2
√

3x cos(2x) for x in [0, π/4].

43.

(a) Show that the equation 5x− cos(x) = 0 has exactly one solution.

(b) Find an interval of length less than 0.1 that contains the solution.

44. Define f(x) = x3 − 3x.

(a) Solve f ′(x) = 0.

(b) Use the theorem of the interior extremum to show that the maximum value
of x3 − 3x for x in [1, 5] occurs either at 1 or at 5.

45. Let f and g be polynomials without a common root.

(a) Show that if the degree of g is odd, the graph of f/g has a vertical asymptote.

(b) Show that if the degree of f is less than or equal to the degree of g, then f/g
has a horizontal asymptote.

46. If limx→∞ f ′(x) = 0, does it follow that f has a horizontal asymptote? Ex-
plain.

47. Let f be a positive function on (0,∞) with f ′ and f ′′ both continuous. Let
g = f2.

(a) If f is increasing, is g?

(b) If f is concave up, is g?

48. Give an example of a positive function f on (0,∞) that is concave down but
f2 is concave up.

49. Graph cos(2θ) + 4 sin(θ) for θ in [0, 2π].

50. Graph cos(2θ) + 2 sin(θ) for θ in [0, 2π].

51. Figure 4.S.7 shows part of a unit circle. The line segment CD is tangent to
the circle and has length x. This exercise uses calculus to show that |AB| < |BC| <
|CD|. (|BC| is the length of arc joining B and C.)
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(a) Express |AB| and |BC| in terms of x.

(b) Using (a) and calculus, show that for x > 0, |AB| < |BC| < |CD.

Figure 4.S.7
52. Assume that f ′′(x) is positive for x in an open interval. Let a and b, a < b, be
in the interval. This exercise shows that the chord joining (a, f(a)) to (b, f(b))) lies
above the graph of f . (“A concave up curve has chords that lie above the curve.”)
Compare with Exercise 17 in Section 4.4.

(a) Why does one want to prove that

f(a) +
f(b)− f(a)

b− a
(x− a) > f(x), for a < x < b?

(b) Why does one want to prove that

f(b)− f(a)
b− a

>
f(x)− f(a)

x− a
? (4.S.1)

(c) Show that right-hand side of (4.S.1) in (b) is increasing for a < x < b. Why
does this show that the chords lie above the curve?

53.

Sam: I can do Exercise 52 more easily. I’ll show that (4.S.1) is true. By the mean
value theorem, I can write the left side as f ′(c) where c is in [a, b] and the
right side as f ′(d) where d is in [a, x]. Since b > x, I know c > d, hence
f ′(c) > f ′(d). Nothing to it.

Is Sam’s reasoning correct?

54.
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(a) Graph y = sin(x)
x showing intercepts and asymptotes.

(b) Graph y = x and y = tan(x) on the same axes.

(c) Use (b) to find how many solutions there are to x = tan(x).

(d) Write a short commentary on the critical points of sin(x)/x. (Part (c) may
come in handy.)

(e) Refine the graph in (a) to show several critical points.

55. Let f(x) = ax3 + bx2 + cx + d, where a 6= 0.

(a) Show that the graph of y = f(x) always has exactly one inflection point.

(b) Show that the inflection point separates the graph into two parts that are
congruent. (Show the graph is symmetric with respect to the inflection point.
Why can one assume it is enough to show this for the special case with a = 1
and d = 0, that is, for x3 + bx2 + cx?)

56.

(a) Graph y = 1/(1 + 2−x).

(b) The point (0, 1/2) is on the graph and divides it into two pieces. Are the
pieces congruent?

(Curves of this type model the depletion of a finite resource; x is time and y is the
fraction of the resource consumed to time x.)

57.

(a) If the graph of f has a horizontal asymptote (say limx→∞ f(x) = L), does it
follow that limx→∞ f ′(x) exists?

(b) If limx→∞ f ′(x) exists in (a), must it be 0?

58. Assume that f is continuous on [1, 3], f(1) = 5, f(2) = 4, and f(3) = 5. Show
that the graph of f has a horizontal chord of length 1.

59. Can a straight line meet the curve y = x5 four times?
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60. A function f defined on the whole x-axis has continuous first and second
derivatives and exactly one inflection point. In at most how many points can a
straight line intersect the graph of f? Explain. (Examples include xn, n an odd
integer greater than 1.)

61. Let f be an increasing function with continuous f ′ and f ′′. What, if anything,
can be said about the concavity of the composite function f ◦ f if

(a) f is concave up?

(b) f is concave down?

62. Assume f has continuous first and second derivatives. Show that if f and
g = f2 have inflection points at the same argument a, then f ′(a) = 0.

63. Assume lim
x→∞

f ′(x) = 3. Show that for x sufficiently large, f(x) is greater than

2x. (Review the mean-value theorem.)

64. Assume that f is differentiable for all numbers x.

(a) If f is an even function, what, if anything, can be said about f ′(0)?

(b) If f is an odd function, what, if anything, can be said about f ′(0)?

Explain your answers.

65. Graph y = sin(x2) on the interval [−
√

π,
√

π]. Identify the extreme points
and the inflection points.

66. Assume that f(x) is a continuous function not identically 0 defined on
(−∞,∞) and that f(x + y) = f(x) · f(y) for all x and y.

(a) Show that f(0) = 1.

(b) Show that f(x) is never 0.

(c) Show that f(x) is positive for all x.

(d) Letting f(1) = a, find f(2), f(1/2), and f(−1), in terms of a.

(e) Show that f(x) = ax for all x.

67. Assume y = f(x) is a twice differentiable function with f(0) = 1 and
f ′′(x) < −1 for all x. Is it possible that f(x) > 0 for all x in (1,∞)?
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68. If limx→∞ f ′(x) = 3, does it follow that the graph of y = f(x) is asymptotic
to some line of the form y = a + 3x for some constant a?

69. Assume that f(x) is defined for all real numbers and has a continuous
derivative. Assume that f ′(x) is positive for all x other than c and that f ′(c) = 0.

(a) Give an two examples of functions with these properties.

(b) Must any function with these properties be increasing?

Exercises 70 to 73 involve the hyperbolic functions. The hyperbolic sine func-
tion is sinh(x) = ex−e−x

2 and the hyperbolic cosine function is cosh(x) = ex+e−x

2 .
Hyperbolic functions are discussed in greater detail in Section 5.8.
70.

(a) Show that d
dx sinh(x) = cosh(x).

(b) Show that d
dx cosh(x) = sinh(x).

71. Define sech(x) =
1

cosh(x)
=

2
ex + e−x

and tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x
.

(a) Show that d
dx tanh(x) = (sech(x))2.

(b) Show that d
dx sech(x) = − sech(x) tanh(x).

72. Use calculus to show that (cosh(x))2 − (sinh(x))2 is a constant. Find the
constant.

73. Use calculus to show that (sech(x))2 + (tanh(x))2 is a constant. Find the
constant.
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Calculus is Everywhere # 5

Calculus Reassures a Bicyclist

Both authors enjoy bicycling for pleasure and running errands in our flat towns.
Some of these trips across campus involve navigating through a parking lot.
On each side of the route is a row of parked cars. (See Figure C.5.1.) At any
moment a car can back into his path. Wanting to avoid a collision, one of the
authors wondered where he should ride. The farther he rode from a row, the
safer he was with respect to that row. However, the farther he rode from one
row, the closer he would be to the other row. Where should he ride?

Instinct told him to ride midway between the two rows, an equal distance
from both.

Figure C.5.1

But he had second thoughts. Maybe it is best to ride, say, one-
third of the way from one row to the other, which is the same as two-thirds
of the way from the other row. That would mean he had two safest routes,
depending on which row he was nearer. Wanting a definite answer, he resorted
to calculus.

He introduced a function, f(x), which is the probability that he got through
safely when his distance from one row was x, considering only cars in that row.
Then he let d represent the distance between the two rows. When he was at a
distance x from one row, he was at a distance d− x from the other row. The
probability that he did not collide with a car backing out from either row was
then the product, f(x)f(d − x). His intuition said that this was maximized
when x = d/2, putting him midway between the two rows.

What did he know about f? First of all, the farther he rode from one
line of cars, the less likely he would collide with a car backing out from that
line. Thus f was an increasing function and so f ′ is positive. Moreover, when
he was very far from the cars, the probability of riding safely through the lot
approached 1. So he assumed limx→∞ f(x) = 1 (which it turned out he did
not need).

The derivative of f ′ measured the rate at which he gained safety as he
increased his distance from the cars. When x was small and he rode near the
cars, f ′(x) was large: he gained a great deal of safety by increasing x. However,
when he was far from the cars, he gained very little. That means that f ′ was
a decreasing function. In other words, f ′′ was negative.

Does that information about f imply that midway is the safest route?

In other words, does the maximum of f(x)f(d − x) occur when x = d/2?
Symbolically, is

f(d/2)f(d/2) ≥ f(x)f(d− x)?
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He took the logarithm of that expression, in order to replace a product by
something easier, a sum. He wanted to see if

2 ln(f(d/2)) ≥ ln(f(x)) + ln(f(d− x)).

Letting g(x) denote the composite function ln(f(x)), he faced the inequality,

2g(d/2) ≥ g(x) + g(d− x),

or

g(d/2) ≥ 1

2
(g(x) + g(d− x)).

This inequality asserts that the point (d/2, g(d/2)) on the graph of g is at least

(a) (b)

Figure C.5.2

as high as the midpoint of the chord joining (x, g(x)) to (d−x, g(d−x)). This
would be the case if the second derivative of g were negative, and the graph
of g were concave down. He had to compute g′′ and hope it was negative.
Because g′(x) is f ′(x)/f(x), we have

g′′(x) =
f(x)f ′′(x)− (f ′(x))2

f(x)2
.

The denominator is positive. Because f(x) is positive and f ′′(x) is negative,
the numerator is negative; so the quotient is negative. That means that the
safest path is midway between the two rows. The bicyclist continued to follow
that route, but, after these calculations, with more confidence that it is indeed
the safest way.
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Calculus is Everywhere # 6

Graphs in Economics

Elementary economics texts are full of graphs. They provide visual images of
a variety of concepts, such as production, revenue, cost, supply, and demand.
Here we show how economists use graphs to help analyze production as a
function of the amount of labor, that is, the number of workers.

Let P (L) be the amount of some product, such as cell phones, produced
by a firm employing L workers. Since both workers and cell phones come
in integer amounts, the graph of P (L) is a bunch of dots. In practice, they
suggest a curve, and economists use it in their analysis. So P (L) is viewed as
a differentiable function defined for some interval of the form [0, b].

If there are no workers, there is no production, so P (0) = 0. When the
first few workers are added, production may increase rapidly, but as more are
hired, production may still increase but not as rapidly. Figure C.6.1 is a typical
production curve. It seems to have an inflection point when the gain from
adding more workers begins to decline.

Figure C.6.1

The inflection point of P (L) occurs at
L2 in Figure C.6.2.

When the firm employs L workers and adds one more, production increases
by P (L + 1) − P (L), the marginal production. Economists relate this to the
derivative by writing:

P (L + 1)− P (L) =
P (L + 1)− P (L)

(L + 1)− L
(C.6.1)

The right-hand side of (C.6.1) is change in output divided by change in input,
which is, by the definition of the derivative, an approximation to the derivative,
P ′(L). For this reason economists define the marginal production as P ′(L),
and think of it as the extra product produced by the “L plus first” worker.
We denote the marginal product as m(L), that is, m(L) = P ′(L).

The average production per worker when there are L workers is defined
as the quotient P (L)/L, which we denote a(L). We have three functions:
P (L), m(L) = P ′(L), and a(L) = P (L)/L.

Now the fun begins.

At what point on the graph of the production function is the av-
erage production a maximum?

Since a(L) = P (L)/L, it is the slope of the line from the origin to the point
(L, P (L)) on the graph. Therefore we are looking for the point on the graph
where the slope is a maximum. One way to find it is to rotate a straightedge
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around the origin clockwise, starting at the vertical axis until it meets the
graph, as in Figure C.6.2.

Figure C.6.2

Call the point of tangency (L1, P (L1)). For L less
than L1 or greater than L1, average productivity is less than a(L1).

At L1, the average product is the same as the marginal product, for the
slope of the tangent at (L1, P (L1)) is both the quotient P (L1)/L1 and the
derivative P ′(L1).

We can use calculus to obtain the same conclusion: Since a(L) has a max-
imum when the input is L1, its derivative is 0 then. The derivative of a(L) is

d

dL

(
P (L)

L

)
=

LP ′(L)− P (L)

L2
. (C.6.2)

At L1 the quotient in (C.6.2) is 0. Therefore, its numerator is 0, from which
it follows that P ′(L1) = P (L1)/L1. (You might take a few minutes to see why
this equation should hold, without using graphs or calculus.)

The graphs of m(L) and a(L) cross when L is L1. For smaller values of L,
the graph of m(L) is above that of a(L), and for larger values it is below, as
shown in Figure C.6.3.

Figure C.6.3

What does the maximum point on the marginal product graph tell
about the production graph?

Assume that m(L) has a maximum at L2. For L smaller than L2 the
derivative of m(L) is positive. For L larger than L2 the derivative of m(L)
is negative. Since m(L) is defined as P ′(L), the second derivative of P (L)
switches from positive to negative at L2, showing that the production curve
has an inflection point at (L2, P (L2)).

Economists use similar techniques to deal with a variety of concepts, such as
marginal and average cost or marginal and average revenue, viewed as functions
of labor or of capital.
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Chapter 5

More Applications of
Derivatives

Chapter 2 constructed the foundation for derivatives, namely the concept of
a limit. Chapters 3 and 4 developed the derivative and applied it to graphs
of functions. The present chapter will apply the derivative in a variety of
ways, such as finding the most efficient method to accomplish a task (Sec-
tion 5.1), connecting the rate one variable changes to the rate another changes
(Sections 5.2 and 5.3), approximating functions such as ex by polynomials
(Sections 5.4 and 5.5), evaluating limits (Section 5.6), understanding natu-
ral growth and decay (Section 5.7), and presenting certain special functions
(Section 5.8).
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5.1 Applied Maximum and Minimum Prob-

lems

In Chapter 4 we saw how the derivative and second derivative are of use
in finding the maxima and minima of a function – the locally high and low
points on its graph. Now we will use these techniques to find extrema in
applied problems. Though the examples will be drawn mainly from geometry
they illustrate the general procedure. The main challenge in these situations
is figuring out the formula for the function that describes the quantity to be
maximized (or minimized).

The General Procedure

This is the general approach used to solve applied optimization problems.

1. Get a feel for the problem by experimenting with particular cases.

2. Devise a formula for the function whose maximum or minimum you want
to find.

3. Determine the domain of the function – that is, the inputs that make
sense in the application.

4. Find the maximum or minimum of the function found in Step 2 for inputs
that are in the domain identified in Step 3.

The most important step is finding a formula for the function. To become
skillful at doing this takes practice.

A Large Garden

EXAMPLE 1

Figure 5.1.1

A couple have enough wire to construct 100 feet of fence.
They wish to use it to form three sides of a rectangular garden, one side of
which is along a building, as shown in Figure 5.1.1. What shape garden should
they choose in order to enclose the largest possible area?

SOLUTION Step 1. First make a few experiments. Figure 5.1.2 shows three
ways of laying out the 100 feet of fence. In the first the side parallel to the
building is very long, in an attempt to make a large area. However, doing this
forces the other sides of the garden to be short. The area is 90 × 5 = 450
square feet. In the second, the garden has a larger area, 60×20 = 1200 square
feet. In the third case, the side parallel to the building is only 20 feet long,
but the other sides are longer. The area is 20× 40 = 800 square feet.
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(a) (b) (c)

Figure 5.1.2

In all cases, once the length of the side parallel to the building is set, the
other side lengths are known and the area can be computed.

Clearly, we may think of the area of the garden as a function of the length
of the side parallel to the building.

Figure 5.1.3

Step 2. Let A(x) be the area of the garden when the length of the side
parallel to the building is x feet, as in Figure 5.1.3. The other sides of the
garden have length y. Since the total length of the fence is 100 feet, y is
completely determined by x:

x + 2y = 100.

Thus y = (100− x)/2.

Figure 5.1.4

Since the area of a rectangle is its length times its width,

A(x) = xy = x

(
100− x

2

)
= 50x− x2

2
. (5.1.1)

(See Figure 5.1.4.) We now have the function.
Step 3. Which values of x in (5.1.1) correspond to possible gardens?
Since there is only 100 feet of fence, x ≤ 100. Furthermore, it makes no

sense to have a negative amount of fence; so x ≥ 0. Therefore the domain on
which we wish to consider the function (5.1.1) is the closed interval [0, 100].

Step 4. To maximize A(x) = 50x − x2/2 on [0, 100] we examine A(0),
A(100), and the value of A(x) at any critical numbers.

To find critical numbers, differentiate A(x):

A(x) = 50x− x2

2
so A′(x) = 50− x

and solve A′(x) = 0 to find

0 = 50− x or x = 50.

There is one critical number, 50.

Calculus April 22, 2012



342 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

All that is left is to find the largest of A(0), A(100), and A(50). We have

A(0) = 50 · 0− 02

2
= 0,

A(100) = 50 · 100− 1002

2
= 0,

and

A(50) = 50 · 50− 502

2
= 1250.

Figure 5.1.5

The maximum possible area is 1250 square feet, and the fence should be
laid out as shown in Figure 5.1.5. �

A Large Tray

EXAMPLE 2 Four congruent squares are cut out of the corners of a square
piece of cardboard 12 inches on each side. The four flaps are folded up to obtain
a tray without a top. (See Figure 5.1.6.) What size squares should be cut in
order to maximize the volume of the tray?

(a) (b) (c)

Figure 5.1.6

SOLUTION Step 1. To get a feel for the problem we consider some special
cases.

Say that we remove small squares that are 1 inch by 1 inch, as in Fig-
ure 5.1.7(a). When we fold up the flaps we obtain a tray whose base is a
10-inch by 10-inch square and whose height is 1 inch, as in Figure 5.1.7(b).
The volume of the tray is

Area of base× height = 10× 10︸ ︷︷ ︸
base area

× 1︸︷︷︸
height

= 100 cubic inches.
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(a) (b) (c) (d)

Figure 5.1.7

For our second experiment, let’s try cutting out a large square, say 5 inches
by 5 inches, as in Figure 5.1.7(c). When we fold up the flaps, we get a very
tall tray with a very small base, as in Figure 5.1.7(d). Its volume is

Area of base× height = 2× 2× 5 = 20 cubic inches.

The volume depends on the size of the cut-out squares. The function we

(a) (b)

Figure 5.1.8

will investigate is V (x), the volume of the tray formed by removing four squares
whose sides all have length x.

Step 2. To find the formula for V (x) we make a large, clear diagram of the
typical case, as in Figure 5.1.8(a) and Figure 5.1.8(b). We see that

Volume of tray = (12− 2x)︸ ︷︷ ︸
length

(12− 2x)︸ ︷︷ ︸
width

x︸︷︷︸
height

= (12− 2x)2x,
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hence

V (x) = (12− 2x)2x = 4x3 − 48x2 + 144x.

We have obtained a formula for volume as a function of the length of the
sides of the cut-out squares.

Step 3. Next determine the domain of the function V (x) that is meaningful
in the problem.

The smallest that x can be is 0. Then the tray has height 0 and is just a
flat piece of cardboard, with volume 0. The size of the cut cannot be more
than 6 inches, since the cardboard has sides of length 12 inches. The cut can
be as near 6 inches as we please, and the nearer it is to 6 inches, the smaller
is the base of the tray. For convenience, we allow cuts with x = 6, when the
area of the base is 0 square inches and the height is 6 inches. The volume is
again 0 cubic inches. Therefore the domain of the volume function V (x) is the
closed interval [0, 6].

Step 4. To maximize V (x) = 4x3 − 48x2 + 144x on [0, 6], evaluate V (x) at
critical numbers in [0, 6] and at the endpoints of [0, 6].

We have

V ′(x) = 12x2 − 96x + 144 = 12(x2 − 8x + 12) = 12(x− 2)(x− 6).

A critical number is a solution to the equation

0 = 12(x− 2)(x− 6).

Hence x− 2 = 0 or x− 6 = 0. The critical numbers are 2 and 6.
The endpoints of the interval [0, 6] are 0 and 6. Therefore the maximum

value of V (x) for x in [0, 6] is the largest of V (0), V (2), and V (6). Since
V (0) = 0 and V (6) = 0, the largest value is

V (2) = 4(23)− 48(22) + 144 · 2 = 128 cubic inches.

The cut that produces the tray with the largest volume is x = 2 inches. �

Figure 5.1.9

Figure 5.1.9 shows the graph of V . At x = 2 and x = 6 the tangent line is
horizontal.

In Example 2 one might say x = 0 and x = 6 do not correspond to what
would be called a tray. That would restrict the domain of V (x) to the open
interval (0, 6). It would be necessary to examine the behavior of V (x) for x
near 0 and for x near 6. Making the domain [0, 6] from the start avoids the
extra work of examining V (x) for x near the ends of the interval.

The key step in these two examples, and in any applied problem, is Step
2: finding a formula for the quantity whose extremum is to be found. If the
problem is geometrical, the following chart may help.
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Setting Up the Objective Function for a Max/Min Problem

1. Draw and label the appropriate diagrams.
(Make them large enough so that there is room for labels.)

2. Label the various quantities by letters, such as x, y, A, V .

3. Identify the quantity to be maximized (or minimized).

4. Express the quantity to be maximized (or minimized) in terms of one or
more of the other variables.

5. Finally, express it in terms of only one variable.

An Economical Can

EXAMPLE 3 Of all the tin cans that enclose a volume of 100π cubic
centimeters, which requires the least metal?

(a) (b) (c)

Figure 5.1.10

SOLUTION Step 1. The can may be flat or tall. If it is flat, the side uses
little metal, but then the top and bottom bases are large. If it is shaped like
a mailing tube, then the two bases require little metal, but the curved side
requires a great deal of metal. (See Figure 5.1.10, where r denotes the radius
and h the height of the can.) What is the ideal compromise between these
extremes?
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(a) (b)

Figure 5.1.11

Step 2. The surface area S of the can is the sum of the area of the top,
side, and bottom. The top and bottom are disks with radius r. Their total
area is 2πr2. Figure 5.1.11 shows why the area of the side is 2πrh. The total
surface area of the can is

S = 2πr2 + 2πrh. (5.1.2)

Since the amount of metal in the can is proportional to S, it suffices to minimize
S.

Equation (5.1.2) gives S as a function of two variables, but we can express
one in terms of the other. The radius and height are related by

V = πr2h = 100π (5.1.3)

since the volume is 100π cubic centimeters. To express S as a function of one
variable, use (5.1.3) to eliminate either r or h. If we choose to eliminate h, we
solve (5.1.3) for h,

h =
100

r2
.

Substitution into (5.1.2) yields

S = 2πr2 + 2πr
100

r2
or S = 2πr2 +

200

r
π. (5.1.4)

Equation (5.1.4) expresses S as a function of just one variable, r.
There is no upper limit on the radius, r.
Step 3. The function S(r) is continuous and differentiable on (0,∞).
Step 4. Compute dS/dr:

dS

dr
= 4πr − 200π

r2
=

4πr3 − 200π

r2
. (5.1.5)
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Set the derivative equal to 0 to find critical numbers. We have

0 =
4πr3 − 200π

r2
,

hence

0 = 4πr3 − 200π

or

4πr3 = 200π

r3 =
200

4

r =
3
√

50 ≈ 3.684.

When r is near 0 or very large, S is large. Thus there will be no maximum,
but there will be a minimum. Because there is only one critical number a
minimum must occur there. But we will check that this is the case in two
ways: first by the first-derivative test, then by the second-derivative test.

The first derivative is

dS

dr
=

4πr3 − 200π

r2
. (5.1.6)

When r = 3
√

50, the numerator in (5.1.6) is 0. When r < 3
√

50 the numerator
is negative and when r > 3

√
50 it is positive. (The denominator is always

positive.) Since dS/dr < 0 for r < 3
√

50 and dS/dr > 0 for r > 3
√

50, S(r)
decreases for r < 3

√
50 and increases for r > 3

√
50. That shows that a local

minimum occurs at 3
√

50. That local minimum is also the global minimum.
(See Figure 5.1.12(a).)

(a) (b) (c)

Figure 5.1.12
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Let us now use the second-derivative test. Differentiation of (5.1.5) gives

d2S

dr2
= 4π +

400

r3
π. (5.1.7)

which shows that for all meaningful values of r, that is r in (0,∞), d2S/dr2

is positive. (S is concave up, as shown in Figure 5.1.12(b).) Not only is P
a relative minimum, it is a global minimum, since the graph lies above its
tangents, in particular, the tangent at P .

The minimum of S(r) is shown in Figure 5.1.12(c).
To find the height of the most economical can, solve (5.1.5) for h:

h = 100
r2 = 100

( 3√50)2

= 100

( 3√50)2

3√50
3√50

(rationalize the denominator)

= 100
50

3
√

50 = 2 3
√

50.

The height of the can is equal to twice its radius, that is, its diameter. The
total surface area is

S = 2π(501/3)2+
200π

501/3
= (2π+4π)502/3 = 6π502/3 ≈ 255.83 square centimeters.

�

Summary

We showed how to use calculus to solve applied problems: experiment, set up
a function, find its domain and its critical points. Then test the critical points
and endpoints of the domain to determine the extrema.

1. Draw and label appropriate diagrams.

2. Express the quantity to be optimized as a function of one variable.

3. Determine the domain of the function.

4. Use the first or second derivative test to determine the maximum or
minimum of the function in its domain.

If the domain is a closed interval, the maximum or minimum will occur
at a critical point or an endpoint. If the interval is not closed, more care is
needed to confirm that a critical number provides an extremum.
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EXERCISES for Section 5.1

1. A gardener wants to make a rectangular garden with 100 feet of fence. What
is the largest area the fence can enclose?

2. Of all rectangles with area 100 square feet, find the one with the shortest
perimeter.

3. Solve Example 1, expressing A in terms of y instead of x.

4. A gardener is going to put a rectangular garden inside one arch of the cosine
curve, as shown in Figure 5.1.13. What is the garden with the largest area?

Figure 5.1.13
Exercises 5 to 8 are related to Example 2. In each find the length of the cut that
maximizes the volume of the tray. The dimensions of the cardboard are given.
5. 5 inches by 5 inches

6. 7 inches by 15 inches

7. 5 inches by 8 inches,

8. 3 inches by 8 inches,

(a) (b)
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Figure 5.1.14
9. Starting with a square piece of paper 10′′ on a side, Sam wants to make a paper
holder with three sides. The pattern he will use is shown in Figure 5.1.14 along with
the tray. He will remove two squares and fold up three flaps.

(a) What size square maximizes the volume of the tray?

(b) What is that volume?

10. A chef wants to make a cake pan out of a circular piece of aluminum of radius
12 inches. To do this he plans to cut the circular base from the center of the piece
and then cut the side from the remainder. What should the radius and height be to
maximize the volume of the pan? (See Figure 5.1.15(a).)

(a) (b)

Figure 5.1.15
11. Solve Example 3, expressing S in terms of h instead of r.

12. Of all cylindrical tin cans without a top that contain 100 cubic inches, which
requires the least material?

13. Of all enclosed rectangular boxes with square bases that have a volume of
1000 cubic inches, which uses the least material?

14. Of all topless rectangular boxes with square bases that have a volume of 1000
cubic inches, which uses the least material?

15. Find the dimensions of the rectangle of largest area that can be inscribed in a
circle of radius a. The typical rectangle is shown in Figure 5.1.15(b). (Express the
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area in terms of θ.)

16. Solve Exercise 15, expressing the area in terms of half the width of the rect-
angle, x. (Square the area to avoid square roots.)

17. Find the dimensions of the rectangle of largest perimeter that can be inscribed
in a circle of radius a.

18. Show that of all rectangles of a given area, the square has the shortest perime-
ter. (Call the fixed area A and keep in mind that it is a constant.)

19. A rancher wants to construct a rectangular corral. He also wants to divide
it by a fence parallel to one of the sides. He has 240 feet of fence. What are the
dimensions of the corral of largest area he can enclose?

20. A river has a 45◦ turn, as indicated in Figure 5.1.16(a). A rancher wants to
construct a corral bounded on two sides by the river and on two sides by 1 mile of
fence ABC, as shown. Find the dimensions of the corral of largest area.

21.

(a) How should one choose two nonnegative numbers whose sum is 1 in order to
maximize the sum of their squares?

(b) To minimize the sum of their squares?

22. How should one choose two nonnegative numbers whose sum is 1 in order to
maximize the product of the square of one of them and the cube of the other?

(a) (b)

Figure 5.1.16
23. A concrete irrigation channel is to have a cross section in the form of an
isosceles trapezoid, three of whose sides are 4 feet long. See Figure 5.1.16(b). How
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should the trapezoid be shaped if it is to have the maximum area? (Think of the
area as a function of x and solve.)

24.

(a) Solve Exercise 23 expressing the area as a function of θ instead of x.

(b) Do the answers in (a) and Exercise 23 agree? Explain.

In Exercises 25 to 28 use the fact that the combined length and girth (distance
around) of a package to be sent through the mail by the United States Postal Ser-
vice (USPS) cannot exceed 108 inches. (The combined length and girth of a packages
sent as parcel post is 130 inches. The United Parcel Service (UPS) limit is 165 inches
for combined length and girth with the length not exceeding 108 inches.)
25. Find the dimensions of the right circular cylinder of largest volume that can
be sent through the mail.

26. Find the dimensions of the right circular cylinder of largest surface area that
can be sent through the USPS.

27. Find the dimensions of the rectangular box with square base of largest volume
that can be sent through the USPS.

28. Find the dimensions of the rectangular box with square base of largest surface
area that can be sent through the USPS.

29.

(a) Repeat Exercise 25 for a package sent by UPS.

(b) Generalize your solutions to Exercise 25 for a package subject to a combined
length and girth that does not exceed M inches.

30.

(a) Repeat Exercise 26 for a package sent by UPS.

(b) Generalize your solutions to Exercise 26 for a package subject to a combined
length and girth that does not exceed M inches.

Exercises 31 to 38 concern minimal cost problems.
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31. A cylindrical can is to be made to hold 100 cubic inches. The material for
its top and bottom costs twice as much per square inch as the material for its side.
Find the radius and height of the most economical can. (This is not the same as
Example 3.)

(a) Would you expect the most economical can in this problem to be taller or
shorter than the solution to Example 3? (Use common sense, not calculus.)

(b) Call the cost of 1 square inch of the material for the side k cents. Thus the
cost of 1 square inch of the material for the top and bottom is 2k cents. (The
value of k will not affect the answer.) Show that a can of radius r and height
h costs

C = 4kπr2 + 2kπrh cents.

(c) Find r that minimizes the function C in (b). Keep in mind that k is constant.

(d) Find the corresponding h.

32. A camper at A will walk to the river in Figure 5.1.17, put some water in a
pail at P , and take it to the campsite at B.

(a) Express AP + PB as a function of x.

(b) Use calculus to decide where P should be located to minimize the length of
the walk, AP + PB?

(This exercise was first encountered as Exercise 34 in Section 1.1, where it was
solved by geometry.)

Figure 5.1.17
33. Sam is at the edge of a circular lake of radius one mile and Jane is at the
edge, directly opposite. Sam wants to visit Jane. He can walk 3 miles per hour and
he has a canoe. What mix of paddling and walking should Sam use to minimize the
time needed to reach Jane if

(a) he paddles at least three miles an hour?
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(b) he paddles at 1.5 miles per hour?

(c) he paddles at 2 miles per hour?

34. Let 4ABC be a right triangle with C being at the right angle. There are two
routes from A to B. One is direct, along the hypotenuse. The other is along the
two legs, from A to C and then to B. The shortest path between two points is the
straight one. What is the largest percentage saving possible by walking along the
hypotenuse instead of along the two legs? For which shape right triangle does the
maximum occur?

35. A rectangular box with a square base is to hold 100 cubic inches. Material for
the top of the box costs 2 cents per square inch, material for the sides costs 3 cents
per square inch, and material for the bottom costs 5 cents per square inch. Find
the dimensions of the most economical box.

36. The cost of operating a truck (for gasoline, oil, and depreciation) is (20+ s/2)
cents per mile when it travels at a speed of s miles per hour. A truck driver earns
$18 per hour. What is the most economical speed at which to operate the truck
during a 600-mile trip?

(a) If you considered only the truck, would you want s to be small or large?

(b) If you, the employer, considered only the expense of the driver’s wages, would
you want s to be small or large?

(c) Express cost as a function of s and solve. (Be sure to put all costs in terms
of cents or in terms of dollars.)

(d) Would the answer be different for a 1000-mile trip?

37. A government contractor who is removing earth from a large excavation can
route trucks over either of two roads. There are 10, 000 cubic yards of earth to move.
Each truck holds 10 cubic yards. On one road the cost per truckload is 1+2x2 cents,
when x trucks use that road. (The function records the cost of congestion.) On the
other road the cost is 2 + x2 cents per truckload when x trucks use it. How many
trucks should be dispatched to each of the two roads?

38. On one side of a river 1 mile wide is an electric power station and on the other
side, s miles upstream, is a factory. (See Figure 5.1.18.) It costs 3 dollars per foot to
run cable over land and 5 dollars per foot under water. What is the most economical
way to run cable from the station to the factory?
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(a) Using no calculus, what do you think would be (approximately) the best route
if s were very small? if s were very large?

(b) Solve with the aid of calculus, and draw the routes for s = 1
2 , 3

4 , 1, and 2.

(c) Solve for arbitrary s.

(Minimizing the length of cable is not the same as minimizing its cost.)

Figure 5.1.18
39. A text on the dynamics of airplanes states “Recalling that

I = A cos2 θ + C sin2 θ − 2E cos θ sin θ,

we wish to find θ when I is a maximum or a minimum.” Show that at an extremum
of I,

tan 2θ =
2 E

C −A
(assume thatA 6= C)

40. A physics text states “By differentiating the equation for the horizontal range,

R =
v2
0 sin(2θ)

g
,

show that the initial elevation angle θ for maximum range is 45◦.” In the formula
for R, v0 and g are constants. (R is the horizontal distance traveled by a projectile
thrown at an angle θ with speed v0, disregarding air resistance.)

(a) Using calculus, show that the maximum range occurs when θ = 45◦.

(b) Solve the same problem without calculus.
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41. A gardener has 10 feet of fence and wishes to make a triangular garden next
to two buildings, as in Figure 5.1.19(a). How should he place the fence to enclose
the maximum area?

(a) (b)

Figure 5.1.19

42. Fencing is to be added to an existing wall of length 20 feet, as shown in
Figure 5.1.19(b). How should the extra fence be added to maximize the area of the
enclosed rectangle if the additional fence is

(a) 40 feet long?

(b) 80 feet long?

(c) 60 feet long?

43. Let A and B be constants. Find the maximum and mimimum values of
A cos t + B sin t.

44. A spider at corner S of a cube of side 1 inch wishes to capture a fly at the
opposite corner F . (See Figure 5.1.20(a).) The spider, who must walk on the surface
of the solid cube, wishes to find the shortest path.

(a) Find a shortest path without the aid of calculus.

(b) Find a shortest path with calculus.
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(a) (b)

Figure 5.1.20
45. A ladder of length b leans against a wall of height a, a < b. What is the
maximum horizontal distance that the ladder can extend beyond the wall if its base
rests on the horizontal ground?

46. A woman can walk 3 miles per hour on grass and 5 miles per hour on sidewalk.
She wishes to walk from point A to point B, shown in Figure 5.1.20(b), in the least
time. What route should she follow if s is (a) 1

2? (b) 3
4? (c) 1?

47. The potential energy, U , in a diatomic molecule is given by the formula

U(r) = U0

((r0

r

)12
− 2

(r0

r

)6
)

,

where U0 and r0 are constants and r is the distance between the atoms. For which
value of r is U(r) a minimum?

48. What are the dimensions of the right circular cylinder of largest volume that
can be inscribed in a sphere of radius a?

49. The stiffness of a rectangular beam is proportional to its product of the width
and the cube of the height of its cross section. What shape beam should be cut
from a log in the form of a right circular cylinder of radius r in order to maximize
its stiffness?

50. A rectangular box-shaped house is to have a square floor. Three times as
much heat per square foot enters through the roof as through the walls. What shape
should the house be if it is to enclose a volume of 12, 000 cubic feet and minimize
heat entry? (Assume no heat enters through the floor.)
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51. (See Figure 5.1.21(a).) Find the coordinates of the points P = (x, y), with
y ≤ 1, on the parabola y = x2, that

(a) minimize |PA|2 + |PB|2,

(b) maximize |PA|2 + |PB|2.

(a) (b)

Figure 5.1.21
52. The speed of traffic through the Lincoln Tunnel in New York City depends
on the amount of traffic. Let S be the speed in miles per hours at which the traffic
moves and let D be the amount of traffic measured in vehicles per mile. The relation
between S and D was seen to be approximated closely, for D ≤ 100, by

S = 42− D

3
.

(a) Express in terms of S and D the total number of vehicles that enter the tunnel
in an hour.

(b) What value of D will maximize the flow in (a)?

53. When a tract of timber is to be logged, a main logging road is built from
which small roads branch off as feeders. If too many feeders are built, the cost
of construction would be prohibitive. If too few feeders are built, the time spent
moving the logs to the roads would be prohibitive. The formula for total cost,

y =
CS

4
+

R

V S
,

is used in a logger’s manual to find how many feeder roads are to be built. R, C,
and V are constants: R is the cost of road at unit spacing, C is the cost of moving
a log a unit distance, and V is the value of timber per acre. S denotes the distance
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between the regularly spaced feeder roads. (See Figure 5.1.21(b).) Thus the cost y
is a function of S, and the object is to find the value of S that minimizes y. The
manual says, “To find the desired S set the two summands equal to each other and
solve

CS

4
=

r

V S
.′′

Show that the method is valid.

54. A delivery service is deciding how many warehouses to build in a large
city. The warehouses will serve similarly shaped regions of equal area A and, let us
assume, an equal number of people.

(a) Why would transportation costs per item presumably be proportional to
√

A?

(b) Assuming that the warehouse cost per item is inversely proportional to A,
show that C, the cost of transportation and storage per item, is of the form
t
√

A + w/A, where t and w are constants.

(c) Show that C is a minimum when A = (2w/t)2/3.

Exercises 55 and 56 are related.
55. A pipe of length b is carried down a long corridor of width a < b and then
around corner C. (See Figure 5.1.22.) During the turn y starts at 0, reaches a
maximum, and then returns to 0. (Try this with a short stick.) Find the maximum
in terms of a and b. (Express y in terms of a, b, and θ; θ is a variable, while a and
b are constants.)

(a) (b) (c)

Figure 5.1.22
56. (Do Exercise 55 first.) Figure 5.1.22(c) shows two corridors meeting at right
angle. One has width 8 feet and the other, width 27 feet. Find the length of the
longest pipe that can be carried horizontally from one hall, around the corner and
into the other hall. Suggestion:
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57. The base of a painting on a wall is a feet above the eye of an observer, as shown
in Figure 5.1.23(a). The vertical side of the painting is b feet long. How far from the
wall should the observer stand to maximize the angle that the painting subtends? (It
is more convenient to maximize tan(θ) than θ itself. Use tan(A−B) = tan A−tan B

1+tan A tan B .)

(a) (b) (c)

Figure 5.1.23

58. Find the point P on the x-axis such that the angle APB in Figure 5.1.23(b)
is maximal. (See the hint in Exercise 57.)

59. (Economics) Let p denote the price of a commodity and y the number of
shares sold at that price. Assume that y = 250 − p for 0 ≤ p ≤ 250 and that it
costs the producer 100 + 10y dollars to manufacture y units. What price p should
the producer choose in order to maximize total profit, that is, revenue minus cost?

60. (Leibniz on light) A ray of light travels from point A to point B in Fig-
ure 5.1.23(c) in minimal time. The point A is in one medium, such as air or a
vacuum. The point B is in another medium, such as water or glass. In the first
medium, light travels at velocity v1 and in the second at velocity v2. The media are
separated by line L. Show that for the path APB of minimal time,

sinα

v1
=

sin(β)
v2

.

Leibniz solved this problem with calculus in a paper published in 1684. (The result
is called Snell’s law of refraction.)
Leibniz wrote, “Other very learned men have sought in many devious ways what
someone versed in this calculus can accomplish in these lines as by magic.” (See
C. H. Edwards Jr., The Historical Development of the Calculus, p. 259, Springer-
Verlag, New York, 1979.)
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Exercises 61 to 64 concern the intensity of light.

(a) (b)

Figure 5.1.24
61. Why is it reasonable to assume that the intensity of light from a lamp is
inversely proportional to the square of the distance from the lamp? (Imagine the
light spreading out in all directions.)

62. A solar panel perpendicular to the sun’s rays catches more light than when
it is tilted at any other angle, as shown in Figure 5.1.24(a). Let θ be the angle the
panel is tilted, as in Figure 5.1.24(b). Show that it then receives cos(θ) times the
light the panel would receive when perpendicular to the sun’s rays.

63. In view of the preceding two exercises, the intensity of light on a small (flat)
surface is inversely proportional to the square of the distance from the source and
proportional to the angle between the surface and a surface perpendicular to the
source.

(a) A person wants to put a light at a horizontal distance of ten feet from his
address, which is on a wall (a vertical surface). At what height should the
lamp be placed to maximize the intensity of light at the address? (No calculus
is needed for this.)

(b) Suppose the address is painted on the horizontal surface of the curb. the lamp
will be placed at a horizontal distance of ten feet from the address. Without
doing any calculations sketch what the graph of “intensity of light on the
address versus height of lamp might look like.

(c) Find the height the lamp should have to maximize the light on the address.
(Use height as the independent variable.)

64. Solve Exercise 63(c) using an angle as the independent variable.
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65. The following calculation occurs in an article concerning the optimum size of
new cities: “The net utility to the total client-centered system is

U =
RLv

A
n1/2 − nK − ALc

v
n−1/2.

All symbols except U and n are constant; n is a measure of decentralization. Re-
garding U as a differentiable function of n, we can determine when dU/dn = 0. This
occurs when

RLv

2A
n−1/2 −K +

ALc

2v
n−3/2 = 0.

This is a cubic equation for n−1/2.”

(a) Check that the differentiation is correct.

(b) Of what cubic polynomial is n−1/2 a root?

66. A tangent to the curve y = x−2 at a point in the first quadrant, together with
the x- and y-axes, determine a triangle.

(a) What is the largest area of such a triangle?

(b) The smallest area?

67. Let f be a differentiable function that is never zero on its domain. Let
g(x) = (f(x))2. Show that the functions f and g have the same critical numbers.
(This is useful for avoiding square roots.)

68. In which of these cases must the continuous function f(x) have a global
minimum?

(a) Domain: [0, 1]

(b) Domain: (0, 1)

(c) Domain: (0,∞)

(d) Domain: (0,∞) with limx→0 f(x) =∞ and limx→∞ f(x) =∞
In each case explain your answer.
69. The differentiable function f(x) has domain (0,∞) with limx→0 f(x) = ∞
and limx→∞ f(x) =∞. The only number where f ′(x) = 0 is x = a.

(a) Must f(x) have a relative minimum at a?

(b) Must f(x) have a global minimum at a?
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5.2 Implicit Differentiation

Sometimes a function y = f(x) is given indirectly by an equation that links
y and x. This section shows how to differentiate the function without solving
for it in terms of x.

A Function Given Implicitly

The equation

x2 + y2 = 25 (5.2.1)

describes a circle of radius 5 and center at the origin, as in Figure 5.2.1(a).
This circle is not the graph of a function since some vertical lines meet the

(a) (b) (c)

Figure 5.2.1

circle in more than one point. However, the top half is the graph of a function
and so is the bottom half. To find these functions explicitly, solve (5.2.1) for
y:

y2 = 25− x2

y = ±
√

25− x2.

So either y =
√

25− x2 or y = −
√

25− x2. The graph of y =
√

25− x2 is the
top semicircle (see Figure 5.2.1(b)) and the graph of y = −

√
25− x2 is the

bottom semicircle (see Figure 5.2.1(c)). There are two continuous functions
that satisfy (5.2.1).

The equation x2 + y2 = 25 is said to describe the function y = f(x)
implicitly. The equations

y =
√

25− x2 and y = −
√

25− x2

describe the function y = f(x) explicitly.
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Differentiating an Implicit Function

It is possible to differentiate a function given implicitly without having to
express it explicitly. An example will illustrate the method, which is to dif-
ferentiate both sides of the equation that defines the function implicitly. This
procedure is called implicit differentiation.

EXAMPLE 1 Let y = f(x) be the continuous function that satisfies the
equation

x2 + y2 = 25

such that y = −4 when x = 3. Find dy/dx when x = 3 and y = −4.
SOLUTION In this case we can solve for y explicitly, y =

√
25− x2 or

y = −
√

25− x2. Because y equals −4 when x is 3, we are involved with
y = −

√
25− x2, not

√
25− x2. We could then find the derivative by direct

differentiation. However, the square roots complicate the algebra. Instead we
differentiate both sides of the equation

x2 + y2 = 25

with respect to x. This yields

d

dx
(x2 + y2) =

d

dx
(25),

2x +
d(y2)

dx
= 0.

To differentiate y2 with respect to x, write w = y2, where y is a function of x.
By the chain rule

dw

dx
=

dw

dy

dy

dx

which gives us
d(y2)

dx
= 2y

dy

dx
.

Thus

2x + 2y
dy

dx
= 0,

or

x + y
dy

dx
= 0.

In particular, when x = 3 and y = −4,

3 + (−4)
dy

dx
= 0,

and therefore
dy

dx
=

3

4
.
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The algebra involves no square roots. �
We used implicit differentiation in Section 3.5 when finding the derivatives

of ln(x), arcsin(x), and arctan(x). For instance, y(x) = ln(x) was defined
implicitly by ey(x) = x. We differentiated both sides of the equation with
respect to x to find y′(x).

In the next example implicit differentiation is the only way to find the
derivative, for in this case there is no formula expressible in terms of trigono-
metric and algebraic functions giving y explicitly in terms of x.

EXAMPLE 2 Assume that the equation

2xy + π sin(y) = 2π

Verify that the point
(1, π/2) is on the graph of
y = f(x) by checking that
the equation is satisfied
when x = 1 and y = π/2.

defines a function y = f(x). Find dy/dx when x = 1 and y = π/2.

SOLUTION Implicit differentiation yields

d

dx
(2xy + π sin y) =

d(2π)

dx

or (
2
dx

dx
y + 2x

dy

dx

)
+ π(cos y)

dy

dx
= 0,

by the formula for the derivative of a product and the chain rule. Hence

2y + 2x
dy

dx
+ π(cos y)

dy

dx
= 0.

Solving for the derivative, dy/dx, we get

dy

dx
=

−2y

2x + π cos y
.

In particular, when x = 1 and y = π/2,

dy

dx
= −

2 · π
2

2 · 1 + π cos π
2

= − π

2 + π · 0
= −π

2
.

�

Implicit Differentiation and Extrema

Example 3 of Section 5.1 answered the question, “Of all the tin cans that
enclose a volume of 100π cubic inches, which requires the least metal?” The
radius of the most economical can is 3

√
50. From this and the fact that its
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volume is 100π cubic inches, its height was found to be 2 3
√

50, exactly twice
the radius. In the next example implicit differentiation is used to answer the
same question. Not only will the algebra be simpler but it will provide the
shape – the proportion between height and radius – easily.

EXAMPLE 3 Of all the tin cans that enclose a volume of 100π cubic inches,
which requires the least metal?

SOLUTION The height h and radius r of any can of volume 100π cubic
inches are related by

πr2h = 100π. (5.2.2)

The surface area S of the can is

S = 2πr2 + 2πrh. (5.2.3)

While h, and hence S, are functions of r, it is not necessary to find h and
S explicitly in terms of r. Differentiation of (5.2.2) and (5.2.3) with respect
to r yields

2πrh + πr2dh

dr
=

d(100π)

dr
= 0 (5.2.4)

and
dS

dr
= 4πr + 2πh + 2πr

dh

dr
.

When S is a minimum, dS/dr = 0, so we have

0 = 4πr + 2πh + 2πr
dh

dr
. (5.2.5)

Equations (5.2.4) and (5.2.5) yield, with a little algebra, a relation between h
and r:

Factoring πr out of (5.2.4) and 2π out of (5.2.5) shows that

2h + r
dh

dr
= 0 and 2r + h + r

dh

dr
= 0. (5.2.6)

Elimination of dh/dr from (5.2.6) yields

2r + h + r

(
−2h

r

)
= 0,

which simplifies to
2r = h. (5.2.7)

We have obtained the shape before finding the specific dimensions. Equa-
tion (5.2.7) asserts that the height of the most economical can is the same as
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its diameter. Moreover, this is the ideal shape, no matter what the prescribed
volume happens to be.

The specific dimensions of the most economical can are found by eliminat-
ing h from (5.2.2) and (5.2.4). This shows that

πr2(2r) = 100π or r3 = 50.

Hence

r =
3
√

50 and h = 2r = 2
3
√

50

�

The procedure illustrated in Example 3 is general. It may be of use when
maximizing (or minimizing) a quantity that at first is expressed as a function
of two variables that are linked by an equation. The equation that links them
is called the constraint. In Example 3, the constraint is πr2h = 100π.

Using Implicit Differentiation in Max/Min Problems

1. Name the various quantities in the problem by letters, such as x, y, h,
r, A, V .

2. Identify the quantity to be maximized (or minimized).

3. Express it in terms of other quantities, such as x and y.

4. Obtain an equation relating x and y.
(This equation is called a constraint.)

5. Differentiate implicitly both the constraint and the quantity to be max-
imized (or minimized), interpreting all quantities as functions of a single
variable (which you choose).

6. Set the derivative of the quantity to be maximized (or minimized) equal
to 0 and use the derivative of the constraint to obtain an equation relating
x and y at a maximum (or minimum).

7. Step 6 gives only a relation between x and y at an extremum. If the
explicit values of x and y are needed, find them by noting that x and y
also satisfy the constraint.

Sometimes an extremum occurs where a derivative, such as dy/dx, is not
defined, as Exercise 38 illustrates.
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Implicit Differentiation and the Second Derivative

As the next example shows, second derivatives can also be found by implicit
differentiation.

EXAMPLE 4 In Example 2, y = y(x) was given implicitly by 2xy +
π sin(y) = 2π. We found that y′ = −2y/(2x + π cos(y)). Find y′′.
SOLUTION

y′′ = (y′)′ =
(

−2y

2x + π cos(y)

)′
=

(2x + π cos(y)) (−2y′)− (−2y) (2− π sin(y)y′)
(2x + π cos(y))2

=
(2x + π cos(y))

(
−2
(

−2y
2x+π cos(y)

))
− (−2y)

(
2− π sin(y)

(
−2y

2x+π cos(y)

))
(2x + π cos(y))2

.

If need be, this can be simplified. The idea is to differentiate y′ and whenever y′

appears in the computations replace it by its expression in terms of x and y. �

Logarithmic Differentiation

If ln(f(x)) is simpler than f(x), there is a technique for finding f ′(x) that
saves labor. Example 5 illustrates it.Properties of Logarithms:

ln(AB) = ln(A) + ln(B)
ln(A/B) = ln(A)− ln(B)

ln(AB) = B ln(A)
EXAMPLE 5 Let y = cos(3x)

( 3√x2+5)
4 . Find dy

dx
.

SOLUTION The solution to this problem by logarithmic differentiation
begins by simplifying ln(y) using properties of logarithms:

ln(y) = ln (cos(3x))− ln
((

3
√

x2 + 5
)4)

[ln(A/B) = ln(A)− ln(B)]

= ln (cos(3x))− 4
3
ln (x2 + 5) [ln(AB) = B ln(A)].

Now y is given implicitly.
Since d

dx
(ln(y)) = 1

y
dy
dx

by the chain rule, we have

1

y

dy

dx
=

d

dx

(
ln (cos(3x))− 4

3
ln
(
x2 + 5

))
=
−3 sin(3x)

cos(3x)
− 4

3

2x

x2 + 5
.

Therefore
dy

dx
= y

(
−3 tan(3x)− 4

3

2x

x2 + 5

)
.

Replace y by its formula, getting

dy

dx
=

cos(3x)(
3
√

x2 + 5
)4 (−3 tan(3x)− 4

3

2x

x2 + 5

)
.
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To appreciate logarithmic differentiation, find the derivative directly, as re-
quested in Exercise 26. �

Summary

If a function is given implicitly, differentiate both sides of the equation it
satisfies, and solve for the derivative. The derivative is then expressed in terms
of the function and its independent variable. To find the second derivative,
differentiate the resulting expression, replacing the derivative that appears in
it by its formula.

If a function y(x) is a product or a quotient of powers, it may be easier to
find y′(x) by differentiating ln(y(x)) implicitly.
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EXERCISES for Section 5.2

In Exercises 1 to 4 find dy/dx at (x, y) in two ways: explicitly (solving for y first)
and implicitly.
1. xy = 4 at (1, 4)

2. x2 − y2 = 3 at (2, 1)

3. x2y + xy2 = 12 at (3, 1)

4. x2 + y2 = 100 at (6,−8)

In Exercises 5 to 8 find dy/dx at the point by implicit differentiation.
5. 2xy

π + sin y = 2 at (1, π/2)

6. 2y3 + 4xy + x2 = 7 at (1, 1)

7. x5 + y3x + yx2 + y5 = 4 at (1, 1)

8. x + tan(xy) = 2 at (1, π/4)

9. Solve Example 3 by implicit differentiation, but differentiate (5.2.2) and (5.2.3)
with respect to h instead of r.

10. What is the shape of the cylindrical can of largest volume that can be con-
structed with a given surface area? Do not find the radius and height of the largest
can; find the ratio between them. (Call the surface area S and keep in mind that it
is constant.)

11. Using implicit differentiation, find D(arctanx). (Start with x = tan(y).)

12. Using implicit differentiation, find D(arcsinx). (Start with x = sin(y).)

In Exercises 13 to 16 find dy/dx.
13. xy3 + tan(x + y) = 1

14. sec(x + 2y) + cos(x− 2y) + y = 2

15. −7x2 + 48xy + 7y2 = 25

16. sin3(xy) + cos(x + y) + x = 1

In Exercises 17 to 20 implicit differentiation is used to find a second derivative.
17. Assume that y(x) is a differentiable function of x and that x3y + y4 = 2.
Assume that y(1) = 1. Find y′′(1), following these steps.

(a) Show that x3y′ + 3x2y + 4y3y′ = 0.

(b) Use (a) to find y′(1).

(c) Differentiate the equation in (a) and show that x3y′′ + 6x2y′ + 6xy + 4y3y′′ +
12y2(y′)2 = 0.

(d) Use the equation in (c) to find y′′(1). (y(1) and y′(1) are known.)
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18. Find y′′(1) if y(1) = 2 and x5 + xy + y5 = 35.
19. Find y′(1) and y′′(1) if y(1) = 0 and sin y = x− x3.
20. Find y′′(2) if y(2) = 1 and x3 + x2y − xy3 = 10.

21. Use implicit differentiation to find the highest and lowest points on the ellipse
x2 +xy+y2 = 12. (What do you know about dy/dx at the highest and lowest points
on the graph of a function?)

In Exercises 22 to 25 find y′′.
22. y′ = (x + y) sin(x)
23. y′ = sin(xy)
24. x(y′)3 = (x + 3)2y
25. y′ sin(y) + exy = 0

26. Differentiate the function in Example 5 directly, without taking logarithms
first.

27. Does the tangent line to the curve x3 + xy2 + x3y5 = 3 at (1, 1) pass through
(−2, 3)? (Explain.)

In Exercises 28 to 31, find y′ two ways: (a) by using the given explicit formula for
y and (b) by simplifying ln(y) and using implicit differentiation.
28. y =

√
1 + 3x 3

√
1 + 2x

29. y = (cos(3x))5/2 (sin(2x))1/3

30. y = (1+e3x)4

(1+e2x)3

31. y =
(tan(3x))4(x+x3)5

√
x

Exercises 32 and 33 obtain the formulas for differentiating x1/n and xm/n by im-
plicit differentiation. Here m and n are integers and we assume the functions are
differentiable.
32. Let n be a positive integer. Assume that y = x1/n is a differentiable function
of x. From yn = x deduce by implicit differentiation that y′ = (1/n)x1/n−1.
33. Let m be a non-zero integer and n a positive integer. Assume that y = xm/n is
a differentiable function of x. From yn = xm deduce by implicit differentiation that
y′ = (m/n)xm/n−1.

34. Find D(xk), x > 0, by logarithmic differentiation of y = xk.

35. Let y = xx.
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(a) Find y′ by logarithmic differentiation. That is, first take the logarithm of both
sides.

(b) Find y′ by first writing the base as eln(x). That is, write y = xx =
(
eln(x)

)x
=

ex ln(x).

36. If x3 + y3 = 1, find y′ and y′′ in terms of x and y.

37. Find the first and second derivatives of y = sec(x2) sin(x2)
x .

38.

(a) What difficulty arises when you use implicit differentiation to maximize x2+y2

subject to x2 + 4y2 = 16?

(b) Show that a maximum occurs when dy/dx is not defined. What is the maxi-
mum ?

(c) The problem can be viewed geometrically as maximizing the square of the
distance from the origin for points on the ellipse x2 + 4y2 = 16. Sketch the
ellipse and interpret (b) in terms of it.

April 22, 2012 Calculus



§ 5.3 RELATED RATES 373

5.3 Related Rates

The rate at which one quantity changes affects the rate at which another
quantity connected to it changes. Implicit differentiation is a convenient tool
for finding the relation between the two rates, as the next few examples will
illustrate.

Figure 5.3.1

EXAMPLE 1 An angler has a fish at the end of his line, which is reeled in
at 2 feet per second from a bridge 30 feet above the water. At what speed is
the fish moving through the water when the amount of line out is 50 feet? 31
feet? Assume the fish is at the surface of the water. (See Figure 5.3.1.)

SOLUTION Our first impression might be that since the line is reeled in at
a constant speed, the fish at the end of the line moves through the water at a
constant speed. This is not the case.

Figure 5.3.2

Let s be the length of the line and x the horizontal distance of the fish
from the bridge. (See Figure 5.3.2.)

Since the line is reeled in at the rate of 2 feet per second, s is shrinking,
and

ds

dt
= −2.

The rate at which the fish moves through the water is given by the derivative,
dx/dt. The problem is to find dx/dt when s = 50 and also when s = 31.

We need an equation that relates s and x at any time, not just when s = 50
or s = 31. If we consider only s = 50 or s = 31, there would be no motion,
and no chance to use derivatives.

The quantities x and s are related by the Pythagorean Theorem: This equation is the heart of
the example.

x2 + 302 = s2.

Both x and s are functions of time t. Thus both sides of the equation may be
differentiated with respect to t, yielding

d(x2)

dt
+

d(302)

dt
=

d(s2)

dt

or

2x
dx

dt
+ 0 = 2s

ds

dt
.

Hence

x
dx

dt
= s

ds

dt
.

This equation provides the tool for answering the questions.
Since ds/dt = −2,

x
dx

dt
= (s)(−2).

Calculus April 22, 2012



374 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

Hence
dx

dt
=
−2s

x
.

This means the fish moves with velocity dx
dt

= −2 s
x
. The negative sign indicates

that the fish is being reeled in. The fish’s speed is
∣∣dx

dt

∣∣ = 2 s
x
.

When s = 50,

x2 + 302 = 502

and we find x = 40. Thus when 50 feet of line is out, the speed is∣∣∣∣dx

dt

∣∣∣∣ =
2s

x
=

2 · 50

40
= 2.5 feet per second.

When s = 31,

x2 + 302 = 312.

Hence

x =
√

312 − 302 =
√

961− 900 =
√

61.

Thus when 31 feet of line is out, the fish is moving at the speed of∣∣∣∣dx

dt

∣∣∣∣ =
2s

x
=

2 · 31√
61

=
62√
61
≈ 7.9 feet per second.

Let us look at the situation from the fish’s point of view. When it is x feet
from the point in the water directly below the bridge, its speed is 2s/x feet
per second. Since s is larger than x, its speed is always greater than 2 feet per
second. When x is very large, s/x is near 1 and the fish is moving through the
water only a little faster than the line is reeled in. However, when the fish is
almost at the point under the bridge, x is very small, then 2s/x is huge, and
the fish finds itself moving at huge speeds. �

In Example 1 it would be an error to indicate in Figure 5.3.2 that the
hypotenuse of the triangle is 50 feet long, for if one leg is 30 feet and the
hypotenuse is 50 feet, the triangle is completely determined; there is nothing
left free to vary with time.

In general, label all the lengths or quantities that can change with letters
x, y, s, and so on, even if not all are needed in the solution. Only after you
finish differentiating do you determine what the rates are at a specified value
of the variable.

The General Procedure

The method used in Example 1 applies to many related rate problems. This
is the general procedure, broken into steps:
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Procedure for Finding a Related Rate

1. Find an equation that relates the varying quantities.
(If the quantities are geometric, draw a picture and label the varying
quantities with letters.)

2. Differentiate both sides of the equation with respect to time, obtaining
an equation that relates the various rates of change.

3. Solve the equation obtained in Step 2 for the unknown rate.
(Only at this step do you substitute constants for variable.)

Differentiate, then substitute the specific numbers for the variables. If the
order is reversed, there would only be constants to differentiate.

Finding an Acceleration

The method described in Example 1 for determining unknown rates from
known ones extends to finding unknown accelerations. Differentiate one more
time. Example 2 illustrates this.

EXAMPLE 2 Water flows into a conical tank at the constant rate of 3 cubic
meters per second. The radius of the cone is 5 meters and its height is 4 meters.
Let h(t) represent the height of the water above the bottom of the cone at time
t. Find dh/dt (the rate at which the water is rising in the tank) and d2h/dt2

(the rate at which that rate changes) when the tank is filled to a height of 2
meters. (See Figure 5.3.3.)

(a) (b)

Figure 5.3.3

SOLUTION Let V (t) be the volume of water in the tank at time t. That
water flows into the tank at 3 cubic meters per second is expressed as

dV

dt
= 3,
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and, since it is constant,
d2V

dt2
= 0.

To find dh/dt and d2h/dt2, obtain an equation relating V and h.
When the tank is filled to the height h, the water forms a cone of height h

and radius r. (See Figure 5.3.3(b).) By similar triangles,

r

h
=

5

4
or r =

5h

4
.

Thus

V =
1

3
πr2h =

1

3
π

(
5

4
h

)2

h =
25

48
πh3.

So the equation relating V and h is

V =
25π

48
h3. (5.3.1)

From here on, differentiate as often as needed.
Differentiating both sides of (5.3.1) once (using the chain rule) yields

dV

dt
=

25π

48

d(h3)

dh

dh

dt

or
dV

dt
=

25π

16
h2dh

dt
.

Since dV/dt = 3 all the time,

3 =
25πh2

16

dh

dt
,

from which it follows that

dh

dt
=

48

25πh2
meters per second. (5.3.2)

Even though the water
enters the tank at a

constant rate, its surface
does not rise at a constant

rate.

As (5.3.2) shows, the larger h is, the slower the water rises. (Why is this to
be expected?)

To find dh/dt when h = 2 meters, substitute 2 for h in (5.3.2), obtaining

dh

dt
=

48

25π22
=

12

25π
≈ 0.1528 meters per second.

Now we turn to the acceleration, d2h/dt2. We do not differentiate dh/dt =
12/(25π) since it holds only when h = 2. We go back to (5.3.2), which holds
at any time.
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Differentiating (5.3.2) with respect to t yields

d2h

dt2
=

48

25π

d

dt

(
1

h2

)
=

48

25π

−2

h3

dh

dt
=
−96

25πh3

dh

dt
, (5.3.3)

which expresses the acceleration in terms of h and dh/dt. Substituting (5.3.2)
into (5.3.3) gives

d2h

dt2
=
−96

25πh3

48

25πh2

or
d2h

dt2
=
−(96)(48)

(25π)2h5
meters per second per second. (5.3.4)

Equation (5.3.4) tells us that, since d2h/dt2 is negative, the rate at which the
water rises in the tank is decreasing.

The problem also asked for the value of d2h/dt2 when h = 2. To find it,
replace h by 2 in (5.3.4), obtaining

d2h

dt2
=
−(96)(48)

(25π)225

or
d2h

dt2
=
−144

625π2
≈ −0.02334 meters per second per second.

�

Summary

If two variables are linked by an equation, the rates at which they change are
also related. To find an equation involving those two rates, differentiate both
sides of the original equation implicitly.

To find an acceleration, differentiate the equation just obtained once again.
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EXERCISES for Section 5.3

1. How fast is the fish in Example 1 moving through the water when it is 1 foot
horizontally from the bridge?

2. The angler in Example 1 decides to let the line out as the fish swims away. The
fish swims away at a constant speed of 5 feet per second relative to the water. How
fast is the angler playing out his line when the horizontal distance from the bridge
to the fish is

(a) 1 foot?

(b) 100 feet?

3. A 10-foot ladder is leaning against a wall. A person pulls the base of the ladder
away from the wall at the rate of 1 foot per second.

(a) Draw a picture and label the varying lengths by letters and the fixed lengths
by numbers.

(b) Obtain an equation involving the variables in (a).

(c) Differentiate it with respect to time.

(d) How fast is the top going down the wall when the base of the ladder is 6 feet
from the wall? 8 feet from the wall? 9 feet from the wall?

4. A kite is flying at a height of 300 feet in a horizontal wind.

(a) Draw a picture and label the varying lengths by letters and the fixed lengths
by numbers.

(b) When 500 feet of string is out, the kite is pulling the string out at a rate of
20 feet per second. What is the kite’s velocity? (Assume the string remains
straight.)
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Figure 5.3.4
5. A beachcomber walks 2 miles per hour along the shore as the beam from a
rotating light 3 miles offshore follows him. (See Figure 5.3.4.)

(a) What do you think happens to the rate at which the light rotates as the beach-
comber walks further and further along the shore away from the lighthouse?

(b) Let x denote the distance of the beachcomber from the point on the shore
nearest the light and θ the angle of the light. Obtain an equation relating θ
and x.

(c) With the aid of (b), show that dθ/dt = 6/(9 + x2) (radians per hour).

(d) Does the formula in (c) agree with your guess in (a)?

6. A man 6 feet tall walks at the rate of 5 feet per second away from a street lamp
that is 20 feet high. At what rate is his shadow lengthening when he is

(a) 10 feet from the lamp?

(b) 100 feet from the lamp?

7. A large spherical balloon is being inflated at the rate of 100 cubic feet per
minute. At what rate is the radius increasing when its radius is

(a) 10 feet?

(b) 20 feet?

(The volume of a sphere of radius r is V = 4πr3/3.)
8. A shrinking spherical balloon loses air at the rate of 1 cubic inch per second.
At what rate is its radius changing when the radius is

(a) 2 inches?

(b) 1 inch?
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9. Bulldozers are moving earth at the rate of 1, 000 cubic yards per hour onto a
conically shaped hill. How fast is the height of the hill increasing when the hill is

(a) 20 yards high?

(b) 100 yards high?

(The volume of a cone of radius r and height h is V = πr2h/3.)

10. The lengths of the two legs of a right triangle depend on time. One leg, whose
length is x, increases at the rate of 5 feet per second, while the other, of length y,
decreases at the rate of 6 feet per second. At what rate is the hypotenuse changing
when x = 3 feet and y = 4 feet? Is the hypotenuse increasing or decreasing then?

11. Two sides of a triangle and their included angle are changing with respect
to time. The angle increases at the rate of 1 radian per second, one side increases
at the rate of 3 feet per second, and the other side decreases at the rate of 2 feet
per second. Find the rate at which the area is changing when the angle is π/4, the
first side is 4 feet long, and the second side is 5 feet long. Is the area decreasing or
increasing then?

12. The length of a rectangle is increasing at the rate of 7 feet per second, and
the width is decreasing at the rate of 3 feet per second. When the length is 12 feet
and the width is 5 feet, find the rate of change of

(a) the area

(b) the perimeter

(c) the length of the diagonal

Exercises 13 to 17 concern acceleration.
13. What is the acceleration of the fish described in Example 1 when the length of
line is

(a) 300 feet?

(b) 31 feet?

(The notation ẋ for dx/dt, θ̇ for dθ/dt, ẍ for d2x/dt2, and θ̈ for d2θ/dt2 was
introduced by Newton and is still common in physics.)

14. A woman on the ground is watching an airplane through a telescope. The
airplane is moving in a path that will take it directly over her at a speed of 10 miles
per minute at an altitude of 7 miles. At what rate (in radians per minute) is the
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angle of elevation of the telescope changing when the horizontal distance of the jet
from the woman is 24 miles? When the jet is directly above the woman?

15. Find θ̈ in Exercise 14 when the horizontal distance from the jet is

(a) 7 miles.

(b) 1 mile.

16. A particle moves on the parabola y = x2 in such a way that ẋ = 3 throughout
the journey. Find the formulas for (a) ẏ and (b) ÿ.

17. Call one acute angle of a right triangle θ. The adjacent leg has length x and
the opposite leg has length y.

(a) Obtain an equation relating x, y and θ.

(b) Obtain an equation involving ẋ, ẏ, and θ̇.

(c) Obtain an equation involving ẍ, ÿ, and θ̈.

18. A two-piece extension ladder leaning against a wall is collapsing at the rate of
2 feet per second and the base of the ladder is moving away from the wall at the rate
of 3 feet per second. How fast is the top of the ladder moving down the wall when
it is 8 feet from the ground and the foot is 6 feet from the wall? (See Figure 5.3.5.)

Figure 5.3.5

19. At an altitude of x kilometers, the atmospheric pressure decreases at a rate of
128(0.88)x millibars per kilometer. A rocket is rising at the rate of 5 kilometers per
second vertically. At what rate is the atmospheric pressure changing (in millibars
per second) when the altitude of the rocket is (a) 1 kilometer? (b) 50 kilometers?
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20. A woman is walking on a bridge that is 20 feet above a river as a boat passes
directly under the center of the bridge (at a right angle to the bridge) at 10 feet per
second. At that moment the woman is 50 feet from the center and approaching it
at the rate of 5 feet per second.

(a) At what rate is the distance between the boat and woman changing at that
moment?

(b) Is the rate increasing, decreasing, or staying the same?

21. A spherical raindrop evaporates at a rate proportional to its surface area.
Show that its radius shrinks at a constant rate.

22. A couple is on a Ferris wheel when the sun is directly overhead. The diameter
of the wheel is 50 feet and its speed is 0.01 revolution per second.

(a) What is the speed of their shadows on the ground when they are at a two-
o’clock position?

(b) A one-o’clock position?

(c) Show that the shadow is moving fastest when they are at the top or bottom,
and slowest when they are at the three-o’clock or nine-o’clock position.

23. Water is flowing into a hemispherical bowl of radius 5 feet at the constant
rate of 1 cubic foot per minute.

(a) At what rate is the top surface of the water rising when its height above the
bottom of the bowl is 3 feet? 4 feet? 5 feet?

(b) If h(t) is the depth in feet at time t, find ḧ when h = 3, 4, and 5.

24. A detective is aiming a flashlight at a door. The axis of the conical beam is
perpendicular to the door. Let x(t) be the distance between the detective and the
door at time t. Let A(t) be the area of the illuminated disk on the door at time t.
The detective is walking towards the door.

(a) Is dx/dt positive or negative?

(b) Is dA/dt positive or negative?
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(c) Is there a constant k such that dA
dt = k dx

dt ?

Explain each answer.

25. The rate at which the variable B(t) changes is proportional to the square of
the rate at which the variable C(t) changes. Does it follow that the acceleration of
A(t), A′′(t), is proportional to the square of B′′(t)? Explain.

26. Soup is poured into a hemispherical soup bowl of radius a at a constant
rate, k cubic centimeters per second. At what rate is the wetted part of the bowl
increasing when the soup has depth h?
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5.4 Higher Derivatives and the Growth of a

Function

The only higher derivative we used so far is the second derivative. In the study
of motion, if y denotes position then y′′ is acceleration. In the study of graphs,
the second derivative determines whether the graph is concave up (y′′ > 0) or
down (y′′ < 0).

Now we will see how higher derivatives (including the second derivative)
influence the growth of a function. The next section uses this information to
estimate the error in approximating a function by a polynomial.

Introduction

Imagine that you are in a motionless car parked at the origin of the x-axis.
Then you put your foot to the gas pedal and accelerate. The greater the
acceleration, the faster the speed increases and the greater the speed, the
further you travel in a given time. So the acceleration, which is the second
derivative of the position function, influences the function. In this section we
examine this influence in more detail.

The following lemma is the basis for our analysis. Informally, it says, “If
two runners start at the same place at the same time, the slower runner never
goes ahead of the faster one.”

Lemma 5.4.1. Let f(x) and g(x) be differentiable functions on an interval I.
Let a be a number in I where f(a) = g(a). Assume that f ′(x) ≤ g′(x) for x in
I. Then f(x) ≤ g(x) for all x in I to the right of a and f(x) ≥ g(x) for all x
in I to the left of a.

Figure 5.4.1

Figure 5.4.1 makes this plausible when the graphs of f and g are straight
lines. To the right of x = a the steeper line lies above the other line. To the
left of x = a the steeper line lies below the other line.

Proof of Lemma 5.4.1

Let h(x) = g(x) − f(x). Then h′(x) = g′(x) − f ′(x) ≥ 0. Thus, h is a
non-decreasing function on I.

Since h(a) = 0, it follows that h(x) ≥ 0 for x ≥ a. That is, g(x)−f(x) ≥ 0,
hence f(x) ≤ g(x) for x > a and in I.

By the same logic, h non-decreasing on I and h(a) = 0 imply h(x) ≤ 0 for
x ≤ a. Thus, f(x) ≥ g(x) for x < a and in I. •

Repeated application of Lemma 5.4.1 will enable us to establish a connec-
tion between higher derivatives of a function and the function.
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The Influence of Higher Derivatives

In the following theorem we name a function R(x) because that will be the
notation in the next section when R(x) is the remainder function. 5! = 5 · 4 · 3 · 2 · 1 = 120.The notation
n! (read “n factorial”) for a positive integer n is short for the product of all
integers from 1 through n: n! = n(n− 1) · · · 3 · 2 · 1. The symbol 0! is usually
defined to be 1.

Theorem 5.4.2 (Growth Theorem). Assume that at a the function R and its
first n derivatives are zero,

R(a) = R′(a) = R′′(a) = R(3)(a) = · · · = R(n)(a) = 0.

Assume also that R(x) has continuous derivatives up through the derivative
of order n + 1 in an open interval I containing the numbers a and x. Then,
assuming x > a, there is a number c in the interval [a, x] such that

R(x) = R(n+1)(c)
(x− a)n+1

(n + 1)!
. (5.4.1)

Before giving the proof, we illustrate the theorem by several examples.

The growth theorem with n = 1 and a = 0 describes the position of an
accelerating car. Let R(x) be the position of the car on the y-axis at time x.
One has R(0) = 0 (at time 0 the car is at position 0), R′(0) = 0 (at time 0 the
car is not moving), and R′′ describes the acceleration. If the acceleration is
constant and equal to k, then as was shown in Section 3.7, the car’s position
at time x is kx2/2. Whether the car’s acceleration is constant or not, (5.4.1)
says the car’s position at time x is the acceleration at some time multiplied by
x2/2.

EXAMPLE 1 Show that |ex − 1− x| ≤ e
2
x2 for x in (−1, 1).

SOLUTION Let R(x) = ex − 1 − x. Since R′(x) = ex − 1 and R′′(x) = ex

we see that R(0) = e0 − 1 − 0 = 0 and R′(0) = e0 − 1 = 0. By the growth
theorem, with a = 0 and n = 1, there is a number c in (−1, 1) such that

ex − 1− x = ec (x− 0)2

2!
.

We do not know the value of c, but, since it is less than 1, ec < e. Thus

|ex − 1− x| ≤ e
x2

2
. (5.4.2)

�
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The inequality (5.4.2) provides a way to estimate ex when x is small. For
instance, |e0.1 − 1− 0.1| ≤ e

2
(0.1)2 = e/200. The estimate 1.1 for e0.1 is off by

at most e/200 ≈ 0.013591.

EXAMPLE 2 Let R(x) = cos(x)− 1 + x2

2
. Show that |R(x)| ≤ |x

3|
6

.
SOLUTION As in Example 1 we use the growth theorem, but now with
a = 0, n = 2, and x > 0.

With n = 2 we will need the first three derivatives of R(x) = cos(x)−1− x2

2
:

R′(x) = − sin(x) + x, R′′(x) = − cos(x) + 1, and R(3)(x) = sin(x). Then,
R(0) = 1− 1 + 0 = 0, R′(0) = 0 + 0 = 0, and R′′(0) = −1 + 1 = 0.

By the growth theorem, with a = 0 and n = 2,

R(x) = sin(c)
x3

3!
for some number c between 0 and x.

Because | sin(x)| ≤ 1,

|R(x)| =
∣∣∣∣sin(c)

x3

3!

∣∣∣∣ ≤ ∣∣∣∣(1)
x3

6

∣∣∣∣ =
|x|3

6
.

�
Example 2 provides an estimate for values of the cosine function for small

angles.0.1 radians = 0.1180◦

π

◦ ≈
5.7◦

For instance, if x = 0.1 radians, we have∣∣∣∣cos(0.1)− 1 +
0.12

2

∣∣∣∣ ≤ 0.13

6
= 0.00016667 = 1.6667× 10−4.

Thus, 1− 0.12

2
= 1− 0.005 = 0.995 is an estimate of cos(0.1) with an error less

than 1
6
× 10−3 ≈ 1.6667× 10−4. In fact, cos(0.1) ≈ 0.9950041653. This means

the error is only 0.0000041653.
An even better bound on the growth of R(x) in Example 2 is possible

with no additional work. In addition to R(0) = R′(0) = R′′(0) = 0, we have

R(3)(0) = sin(0) = 0. This means that |R(x)| ≤
∣∣∣M4

(x−0)4

4!

∣∣∣ where M4 is the

maximum value of R(4)(t) = cos(t) in the interval [0, x], that is, M = 1. Thus,

|R(x)| ≤
∣∣∣∣(1)

x4

4!

∣∣∣∣ =
x4

24
.

In fact, | cos(0.1)− 0.995| ≈
4.16528× 10−6.

This means the difference between the exact value of cos(0.1) and the estimate

1−0.12

2
= 0.995 is no more than 0.14

24
= 4.16667×10−6, showing that the estimate

cos(0.1) ≈ 0.99500 is accurate to five decimal places.
In any case, 1− x2

2
is a good estimate of cos(x) for small values of x. The

next section describes how to find polynomials that provide good estimates of
functions.
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A Refinement of the Growth Theorem

When proving the growth theorem we will establish something stronger:

Theorem 5.4.3 (Refined Growth Theorem). In addition to the hypotheses of
the Growth Theorem, assume m ≤ R(n+1)(t) ≤M for all t in [a, x]. Then

R(x) is between m
(x− a)n+1

(n + 1)!
and M

(x− a)n+1

(n + 1)!
.

We remark that the bounds in the refined growth theorem hold even when
x is less than a. In these cases x− a is negative and (x− a)n is negative when
n is odd and is positive if n is even.

EXAMPLE 3 Let R(x) = ex − (1 + x + x2

2!
+ x3

3!
). Show that 1

1152
≤

R(1
2
) ≤ 1

128
. Use this estimate to obtain approximations, with error bounds,

for
√

e = e1/2.
SOLUTION With R(x) = ex−(1+x+x2

2!
+x3

3!
) we find R′(x) = ex−(1+x+x2

2!
),

R′′(x) = ex− (1+x), R(3)(x) = ex−1, and R(4)(x) = ex. Thus R(0) = R′(0) =
R′′(0) = R(3)(0) = 0.

For x in I = (−1, 1), e−1 ≤ ex = R(4)(x) ≤ e1. Assuming that e is less
than 3, we therefore have 1

3
< R(4)(x) < 3. The refined growth theorem with

a = 0, n = 3, m = 1
3
, M = 3, and x = 1

2
gives

1

3

(1/2)4

4!
≤ R(1/2) ≤ 3

(1/2)4

4!
.

So
1

1152
≤
√

e−
(

1 +
1

2
+

(1/2)2

2!
+

(1/2)3

3!

)
≤ 1

128

or

79

48
+

1

1152
≤
√

e ≤ 79

48
+

1

128
.

and finally

1.64670 ≤
√

e ≤ 1.65365.

As you can check with your calculator,
√

e ≈ 1.64872 to five decimal places.
�

As Example 3 shows, the refined growth theorem provides both upper
and lower bounds on the error made when approximating a function with a
polynomial.
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Proofs of the Growth Theorems

Lemma 5.4.1 is the key to proving the growth theorem. Its repeated application
is the basis of the proof of the refined growth theorem. Then an application
of the intermediate value theorem completes the proof.

Instead of a complete proof of the refined growth theorem, we provide only
a proof when n = 2. It illustrates the ideas used in the proof for any n.

Proof of the refined growth theorem (for n = 2)

For convenience, we take the case x > a. The case with x < a is complicated
by the fact that x− a is negative and the sign of (x− a)n depends on whether
n is odd or even.

Assume R(a) = R′(a) = R′′(a) = 0 and R(3) is continuous on [a, x].
Let M be the maximum of R(3)(t) and m the minimum of R(3)(t) on the

closed interval [a, x]. Thus

m ≤ R(3)(t) ≤M for all t in [a, x].

To see what the inequality R(3)(t) ≤M implies about R(x) rewrite R(3)(t)
as the derivative of R′′(t) and rewrite M as the derivative of M(t− a). Thus,
we rewrite the inequality as

d

dt
(R′′(t)) ≤ d

dt
(M(t− a)) .

The functions f(t) = R′′(t) and g(t) = M(t − a) satisfy f(a) = 0 = g(a) and
f ′(t) ≤ g′(t) on [a, x]. Then, by Lemma 5.4.1,

R(2)(t) ≤M(t− a) for all t in [a, x]. (5.4.3)

Next, rewrite (5.4.3) as

d

dt
(R′(t)) ≤ d

dt

(
M

(t− a)2

2

)
.

Let f(t) = R′(t) and g(t) = M (t−a)2

2
. Since f(a) = g(a) and f ′(t) ≤ g′(t), the

lemma implies that

R′(t) ≤M
(t− a)2

2
for all t in [a, x]. (5.4.4)

Finally, rewrite (5.4.4) as

d

dt
(R(t)) ≤ d

dt

(
M

(t− a)3

3 · 2

)
.
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This time, with f(t) = R(t) and g(t) = M (t−a)3

3!
, the lemma allows us to

conclude that

R(t) ≤M
(t− a)3

3!
for all t in [a, x]. (5.4.5)

Similar reasoning starting with m ≤ R(3)(t) shows that

m
(t− a)3

3!
≤ R(t) for all t in [a, x]. (5.4.6)

Combining (5.4.5) and (5.4.6) gives

m
(t− a)3

3!
≤ R(t) ≤M

(t− a)3

3!
for all t in [a, x].

Replacing t by x gives the bounds in the refined growth theorem. •
The proof of the growth theorem follows immediately from the refined

growth theorem. We illustrate the proof again with n = 2.

Proof of the growth theorem

We want to show there is a number c in [a, x] such that

R(x) = R(3)(c)
(x− a)3

3!
.

Because R(3) is continuous on [a, x] and m and M are its minimum and
maximum values on [a, x], R(3)(t) assumes all values between m and M . There-

fore, R(3)(t) (x−a)3

3!
, viewed as a function of t with x fixed, assumes all values

between m (x−a)3

3!
and M (x−a)3

3!
. Since R(x) is between these two values the

intermediate value theorem assures us that there is a number c in [a, x] such
that

R(x) = R(3)(c)
(x− a)3

3!
.

•

Summary

If all the derivatives up through the nth derivative of a function R are 0 at a,
then

R(x) = R(n+1)(c)
(x− a)n+1

(n + 1)!
for some c between a and x.

The number c depends on n, as well as on a, x, and the function R(x).
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This result, called the growth theorem, is a consequence of the refined
growth theorem, which states that if m is the minimum value and M is the
maximum value of R(n+1)(t) on [a, x], then

R(x) is between m
(x− a)n+1

(n + 1)!
and M

(x− a)n+1

(n + 1)!
.

Both growth theorems are based on Lemma 5.4.1, which, informally speak-
ing, says that the slower runner never passes the faster one.
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EXERCISES for Section 5.4

1. If f ′(x) ≥ 3 for all x ∈ (−∞,∞) and f(0) = 0, what can be said about f(2)?
about f(−2)?

2. If f ′(x) ≥ 2 for all x ∈ (−∞,∞) and f(1) = 0, what can be said about f(3)?
about f(−3)?

3. What can be said about f(2) if f(1) = 0, f ′(1) = 0, and 2.5 ≤ f ′′(x) ≤ 2.6 for
all x?

4. What can be said about f(4) if f(1) = 0, f ′(1) = 0, and 2.9 ≤ f ′′(x) ≤ 3.1 for
all x?

5. A car starts from rest and travels for 4 hours. Its acceleration is always at least
5 miles per hour per hour, but never exceeds 12 miles per hour per hour. What can
be said about the distance traveled during the 4 hours?

6. A car starts from rest and travels for 6 hours. Its acceleration is always at least
4.1 miles per hour per hour, but never exceeds 15.5 miles per hour per hour. What
can be said about the distance traveled during the 6 hours?

7. State the growth theorem for x ≥ a when R has at least five continuous deriva-
tives and R(a) = R′(a) = R′′(a) = R(3)(a) = R(4)(a) = 0.

8. State the growth theorem in words, using as little mathematical notation as
possible.

9. If R(1) = R′(1) = R′′(1) = 0, R(3)(x) is continuous on an interval that includes
1, and R(3)(x) ≤ 2, what can be said about R(4)?

10. If R(3) = R′(3) = R′′(3) = R(3)(3) = R(4)(3) = 0 and R(5)(x) ≤ 6, what can
be said about R(3.5)?

11. Let R(x) = sin(x)−
(
x− x3

6

)
. Show that

(a) R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

(b) R(4)(x) = sin(x).

(c) |R(x)| ≤ x4

24 .

(d) Use x− x3

6 to approximate sin(x) for x = 1/2.
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(e) Use (c) to estimate the difference between the exact value for sin
(

1
2

)
and the

approximation obtained in (d).

(f) Explain why |R(x)| ≤ |x|5
120 . How can this be used to obtain a better estimate

of the difference between the exact value for sin
(

1
2

)
and the approximation

obtained in (d)?

(g) By how much does the estimate in (d) differ from sin
(

1
2

)
?

An angle of 1
2 radian is about 29◦.

12. Let R(x) = cos(x)−
(
1− x2

2! + x4

4!

)
. Show that

(a) R(0) = R′(0) = R′′(0) = R(3)(0) = R(4)(0) = R(5)(0) = 0.

(b) R(6)(x) = − cos(x).

(c) |R(x)| ≤ x6

6! .

(d) Use 1− x2

2! + x4

4! to estimate cos(x) for x = 1.

(e) By how much does the estimate in (d) differ from cos(1)?

An angle of 1 radian is about 57◦.

13. Let R(x) = (1 + x)5 − (1 + 5x + 10x2). Show that

(a) R(0) = R′(0) = R′′(0) = 0.

(b) R(3)(x) = 60(1 + x)2.

(c) |R(x)| ≤ 80x3 on [−1, 1].

(d) Use 1 + 5x + 10x2 to estimate (1 + x)5 for x = 0.2.

(e) By how much does the estimate in (d) differ from (1.2)5?

14. If f(3) = 0 and f ′(x) ≥ 2 for all x in (−∞,∞), what can be said about f(1)?
Explain.

15. If f(0) = 3 and f ′(x) ≥ −1 for all x in (−∞,∞), what can be said about f(2)
and about f(−2)? Explain.

16. Use the polynomial in Example 3 to estimate e, with error bounds.

In Example 2 the polynomial 1− x2

2 was shown to be a good approximation to cos(x)
for x near 0. Exercise 17 shows how this polynomial was chosen.
17. Let P (x) = a0 + a1x + a2x

2 be a quadratic polynomial. Find the values of a0,
a1, and a2 for which
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(a) cos(0)− P (0) = 0

(b) cos′(0)− P ′(0) = 0

(c) cos′′(0)− P ′′(0) = 0

(d) Let R(x) = cos(x)− P (x). For which P (x) is R(0) = R′(0) = R′′(0) = 0?

18. Find constants a0, a1, a2, and a3 such that if R(x) = tan(x)−
(
a0 + a1x + a2x

2 + a3x
3
)

then R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

19. Find constants a0, a1, a2, and a3 such that if R(x) =
√

1 + x−
(
a0 + a1x + a2x

2 + a3x
3
)

then R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

Exercises 20 to 24 are related.
20. Because e > 1, it follows that ex ≥ 1 for every x ≥ 0.

(a) Use Lemma 5.4.1 to deduce that ex > 1 + x for x > 0.

(b) Use (a) and Lemma 5.4.1 to deduce that ex > 1 + x + x2

2! for x > 0.

(c) Use (b) and Lemma 5.4.1 to deduce that ex > 1 + x + x2

2! + x3

3! for x > 0.

(d) In view of (a), (b), and (c), what general inequality can be proved by this
approach?

21. Let k be a positive number. For x in [0, k], ex ≤ ek.

(a) Deduce that ex ≤ 1 + ekx for x in [0, k].

(b) Deduce that ex ≤ 1 + x + ek x2

2! for x in [0, k].

(c) Deduce that ex ≤ 1 + x + x2

2! + ek x3

3! for x in [0, k].

(d) In view of (a), (b), and (c), what general inequality can be proved by this
approach?

22. Combine the results of Exercises 20 and 21 to estimate e = e1 to two decimal
places. (Assume e ≤ 3.)

23. What properties of ex did you use in Exercises 20 and 21?

24. Let E(x) be a function such that E(0) = 1 and E′(x) = E(x) for all x.

(a) Show that E(x) ≥ 1 for all x ≥ 0.
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(b) Use (a) to show that E(x) is an increasing function for all x ≥ 0. (Show that
E′(x) ≥ 1, for all x ≥ 0.)

(c) Show E(x) ≥ 1 + x + x2

2 for all x ≥ 0.

Exercises 25 to 31 show that limx→∞
x
ex , limx→∞

ln(y)
y , limx→0+ x ln(x), limx→∞

xk

bx

(b > 1), and limx→0+ xx are closely connected. (If you know one of them you can
deduce the other four.)
Exercises 25 and 26 use the inequality ex > 1+x+ x2

2 for all x > 0 (see Exercise 20).
25. Evaluate limx→∞

x
ex .

26. Evaluate limy→∞
ln(y)

y . (Let y = ex and compare with Exercise 25.)

Exercises 27 and 28 provide proofs of the fact that the exponential function grows
faster than any power of x.
27.

(a) Let n be a positive integer. Write xn

ex =
(

x
ex/n

)(
x

ex/n

)
· · ·
(

x
ex/n

)
. Let y = x/n

so that x
ex/n = ny

ey . Use Exercise 25 n times to show that limx→∞
xn

ex = 0.

(b) Deduce that for any fixed number k, limx→∞
xk

ex = 0.

28. (See Exercise 27.) Show that for any positive integer n, limx→∞ xn/ex = 0,
using Exercise 20(d).

29. Evaluate limx→0+ x ln(x) as follows: Let x = 1/t, where t → ∞. Then
x ln(x) = 1

t ln
(

1
t

)
= − ln(t)

t , and refer to Exercise 26.

30. Evaluate limx→0+ xx as follows: Let y = xx. Then ln(y) = x ln(x), a limit
that was evaluated in Exercise 29. Explain why ln(y)→ 0 implies y → 1.

31. Evaluate limx→∞
xk

bx for any b > 1 and k is a positive integer. (Use the result
obtained in Exercises 27 or 28.)

32. Explain why f(a) = g(a) and f ′(x) ≤ g′(x) on [a, b] with a > b implies
f(x) ≥ g(x) for all x in [a, b].

33. In Example 1 it is shown that |ex − 1− x| ≤ e
2x2 for all x in (−1, 1). Find a

bound for

(a) R(x) = ex − 1− x on (−2, 1)
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(b) R(x) = ex − 1− x on (−1, 2)

(c) R(x) = ex − 1− x− x2

2 on (−1, 1)

(d) R(x) = ex − 1− x− x2

2 on (−2, 1)

(e) R(x) = ex − 1− x− x2

2 on (−1, 2)

(f) R(x) = ex − 1− x− x2

2 −
x3

6 on (−1, 1)

(g) R(x) = ex − 1− x− x2

2 −
x3

6 on (−1/2, 1/2)

34. Apply Lemma 5.4.1 for x > a to the case when R(a) = R′′(a) = 0, and
R(3)(t) ≤M , for all t in [a, x] but R′(a) = 5.

35. Sam was overheard making the following proposal: “As usual, I can do things
more simply than the text. For instance, say R(a) = R′(a) = R′′(a) = 0 and
R(3)(x) ≤M . I’ll show how M affects the size of R(x), for x > a.

By the mean value theorem, R(x) = R(x) − R(a) = R′(c1)(x − a) for some c1

in [a, x]. Then I use the MVT again, this time finding R′(c1) = R′(c1) − R′(a) =
R′′(c2)(c1−a) for some c2 in [a, c1]. One more application of this idea gives R′′(c2) =
R′′(c2)−R′′(a) = R(3)(c2)(c2 − a).

Then I put these all together, getting

R(x) ≤M(x− a)(c1 − a)(c2 − a).

Since c1 and c2 are in [a, x], I can say that

R(x) ≤M(x− a)3.

I didn’t need that lemma about two functions.”
Is Sam correct? Is this a valid substitute for the text’s treatment? Explain.

36. Prove the refined growth theorem for x > a and n = 3.

37. Prove the refined growth theorem for x > a and n = 4.

38. The proof of the refined growth theorem when x is less than a is slightly
different than the proof when x is greater than a. Prove it for the case n = 4. Here
(x− a)3 and (x− a) are negative because x < a.
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5.5 Taylor Polynomials and Their Errors

We spend years learning how to add, subtract, multiply, and divide. These
operations are built into any calculator or computer. Both we and machines
can evaluate a polynomial, such as

a0 + a1x + a2x
2 + · · ·+ anx

n,

when x and the coefficients a0, a1, a2, . . . , an are given. Only multiplication
and addition are needed. But how do we evaluate ex? We resort to our
calculators. If ex were a polynomial in disguise, then it would be easy to
evaluate it by finding the polynomial and evaluating it. There are many reasons
why ex cannot be a polynomial. Here are three:

1. Because ex equals its own derivative and no polynomial equals its own
derivative (other than the polynomial that has constant value 0).

2. When you differentiate a non-constant polynomial, you get a polynomial
with a lower degree.

3. Also, ex → 0 as x → −∞ and no non-constant polynomial has this
property.

Since we cannot write ex as a polynomial, we settle for the next best thing.
We look for a polynomial that closely approximates ex. No polynomial can be
a good approximation of ex for all x, since ex grows too fast as x → ∞. We
search, instead, for a polynomial that is close to ex for x in some short interval.

In this section we develop a method to construct polynomial approxima-
tions to functions. Its accuracy can be determined using the growth theorem.
Higher derivatives play a pivotal role.

Fitting a Polynomial, Near 0

Suppose we want to find a polynomial that closely approximates a function
y = f(x) for x near 0. For instance, what polynomial p(x) of the form a0 +
a1x + a2x

2 + a3x
3 might produce a good fit?

First we insist that

p(0) = f(0) (5.5.1)

so the approximation is exact when x = 0.
Second, we would like the slope of the graph of p(x) to be the same as that

of f(x) when x is 0. Therefore, we require

p′(0) = f ′(0). (5.5.2)
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There are many polynomials that satisfy (5.5.1) and (5.5.2). To find the best
choices for the four numbers a0, a1, a2, and a3 we need four equations. To get
them we continue the pattern started by (5.5.1) and (5.5.2). So we also insist
that

p′′(0) = f ′′(0) (5.5.3)

and
p(3))(0) = f (3)(0).

Equation (5.5.3) forces the polynomial p(x) to have the same sense of concavity
as the function f(x) at x = 0. We expect the graphs of f(x) and p(x) to
resemble each other for x close to a.

To find the unknowns a0, a1, a2, and a3 we first compute p(x), p′(x), p′′(x),
and p(3)(x) at 0. Table 5.5.1 displays the computations that yield formulas for
the unknowns in terms of f(x) and its derivatives. For example, we compute
p′′(x) = 2a2+3·2a3x and evaluate it at 0 to obtain p′′(0) = 2a2+3·2a3 ·0 = 2a2.
Then we obtain an equation for a2 by equating p′′(0) and f ′′(0): 2a2 = f ′′(0),
so a2 = 1

2
f ′′(0).

p(x) and its derivatives Their values at 0 Equation for ak Formula for ak

p(x) = a0 + a1x + a2x
2 + a3x

3 p(0) = a0 a0 = f(0) a0 = f(0)
p(1)(x) = a1 + 2a2x + 3a3x

2 p(1)(0) = a1 a1 = f (1)(0) a1 = f (1)(0)
p(2)(x) = 2a2 + 3 · 2a3x p(2)(0) = 2a2 2a2 = f (2)(0) a2 = 1

2f (2)(0)
p(3)(x) = 3 · 2a3 p(3)(0) = 3 · 2a3 3 · 2a3 = f (3)(0) a3 = 1

3·2f (3)(0)

Table 5.5.1

We can write a general formula for ak if we let f (0)(x) denote f(x) Factorials appear in the
denominators.

and
recall that 0! = 1 (by definition), 1! = 1, 2! = 2 · 1 = 2, and 3! = 3 · 2.
According to Table 5.5.1,

ak =
f (k)(0)

k!
, k = 0, 1, 2, 3.

Therefore

p(x) = f(0) + f ′(0)x +
f ′′(0)

2!
x2 +

f (3)(0)

3!
x3.

The coefficient of xk is completely determined by the kth derivative of f eval-
uated at 0. It equals the kth derivative of f at 0 divided by k!. This suggests
the following definition.

DEFINITION (Taylor Polynomials at 0) The nth-order Taylor
polynomial has degree at
most n.

Let n be a non-negative
integer and let f be a function with derivatives at 0 of all orders
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through n. Then the polynomial

f(0) + f (1)(0)x +
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn (5.5.4)

is called the nth-order Taylor polynomial of f centered at 0
and is denoted Pn(x; 0). It is also called a Maclaurin polyno-
mial.

Whether Pn(x; 0) approximates f(x) for x near 0 is not obvious. First we
will compute some Maclaurin polynomials. Then we will examine how close
they are to the function they are designed to approximate.

EXAMPLE 1

at x at 0
f(x) = 1

1−x 1
f ′(x) = 1

(1−x)2
1

f ′′(x) = 2
(1−x)3

2
f (3)(x) = 3·2

(1−x)4
3 · 2

f (4)(x) = 4·3·2
(1−x)5

4 · 3 · 2

Table 5.5.2

Find the Maclaurin polynomial P4(x; 0) associated with
1/(1− x).
SOLUTION The first step is to compute 1/(1− x) and its first four deriva-
tives, then evaluate them at x = 0. Dividing them by suitable factorials gives
the coefficients of the Maclaurin polynomial. Table 5.5.2 records the compu-
tations.

So the fourth-degree Maclaurin polynomial is

P4(x; 0) = 1 +
1

1!
x +

2

2!
x2 +

3 · 2
3!

x3 +
4 · 3 · 2

4!
x4,

which simplifies to

P4(x; 0) = 1 + x + x2 + x3 + x4.

Figure 5.5.1

Figure 5.5.1 suggests that P4(x; 0) does a good job of approximating 1/(1−x)
for x near 0. �

The calculations in Example 1 suggest that

Maclaurin Polynomials for 1/(1− x)
The Maclaurin polynomial Pn(x; 0) associated with 1/(1− x) is

1 + x + x2 + x3 + · · ·+ xn−1.

Because all the derivatives of ex at 0 are 1,

Maclaurin Polynomials for ex

The Maclaurin polynomial Pn(x; 0) associated with ex is

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn−1

(n− 1)!
.
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EXAMPLE 2 Find the Maclaurin polynomial P5(x; 0) for f(x) = sin(x).
SOLUTION Again we make a table for computing the coefficients of the
Taylor polynomial centered at 0. (See Table 5.5.3.)

at x at 0

f (0)(x) = sin(x) f (0)(0) = sin(0) = 0
f (1)(x) = cos(x) f (1)(0) = cos(0) = 1
f (2)(x) = − sin(x) f (2)(0) = − sin(0) = 0
f (3)(x) = − cos(x) f (3)(0) = − cos(0) = −1
f (4)(x) = sin(x) f (4)(0) = sin(0) = 0
f (5)(x) = cos(x) f (5)(0) = cos(0) = 1

Table 5.5.3

Thus

x sin(x) P5(x; 0)
0.0 0.000000 0.000000
0.1 0.099833 0.099833
0.5 0.479426 0.479427
1.0 0.841471 0.841667
2.0 0.909297 0.933333
π 0.000000 0.524044
2π 0.000000 46.546732

Table 5.5.4

P5(x; 0) = f (0)(0) + f (1)(0)x +
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5

= 0 + (1)x +
0

2!
x2 +

−1

3!
x3 +

0

4!
x4 +

1

5!
x5

= x− x3

3!
+

x5

5!
.

Figure 5.5.2 illustrates the graphs of P5(x; 0) and sin(x) near 0.

Figure 5.5.2

�

Having found the fifth-order Maclaurin polynomial for sin(x), let us see
how good an approximation it is. Table 5.5.4 compares values computed to
six-decimal-place accuracy for inputs both near 0 and far from 0. The closer
x is to 0, the better the approximation is. When x is large, P5(x; 0) gets large,
but the value of sin(x) stays between −1 and 1.
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Maclaurin Polynomials for sin(x)
The Maclaurin polynomials associated with sin(x) have only odd powers and
their terms alternate in sign:

Pm(x; 0) = x− x3

3!
+

x5

5!
− x7

7!
+ · · · ± xm

m!
.

The ± in front of xm/m! indicates the coefficient is either positive or negative.
For the terms involving x, x5, x9, . . . , the coefficient is +1. For x3, x7, x11,
. . . it is −1. If m is odd, m = 2n + 1 for some integer n. If n is even, the
coefficient of x2n+1 is +1. If n is odd, the coefficient of x2n+1 is −1. The
compact notation to write the typical summand is

(−1)n x2n+1

(2n + 1)!
.

So we may write

P2n+1(x; 0) = x− x3

3!
+

x5

5!
− · · ·+ (−1)n x2n+1

(2n + 1)!
.

Taylor Polynomials Centered at a

We may be interested in estimating a function f(x) near a number a other than
0. Then we express the approximating polynomial in terms of powers of x− a
instead of powers of x = x− 0 and make the derivatives of the approximating
polynomial, evaluated at a, coincide with the derivatives of the function at a.
Calculations similar to those that gave us the Maclaurin polynomial (5.5.4)
produce the polynomial that will be called a Taylor polynomial centered at a.
(If a is not 0, it is not called a Maclaurin polynomial.)

DEFINITION (Taylor Polynomials of nth order, Pn(x; a)) If the
function f has derivatives through order n at a, then the nth-order
Taylor polynomial of f centered at a is defined as

f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

and is denoted Pn(x; a).

The Maclaurin polynomial Pn(x, a) has the property that P
(i)
n (x, a) =

f (i)(x), i = 0, 1, . . . , n, when both functions are evaluated at x = a.

EXAMPLE 3 Find the nth-order Taylor polynomial centered at a for f(x) =
ex.
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SOLUTION All the derivatives of ex evaluated at a are ea. Thus

Pn(x; a) = ea + ea(x− a) +
ea

2!
(x− a)2 +

ea

3!
(x− a)3 + · · ·+ ea

n!
(x− a)n.

�

The Error in Using A Taylor Polynomial

There is no point using Pn(x; a) to estimate a function f(x) if we have no idea
how large the difference between f(x) and Pn(x; a) may be. So let us look at
the difference.

Define the remainder to be the difference between the function f(x) and
the Taylor polynomial Pn(x; a). Denote the remainder as Rn(x; a). Then

f(x) = Pn(x; a) + Rn(x; a).

We will be interested in the absolute value of the remainder and will call
|Rn(x; a)| the error in using Pn(x; a) to approximate f(x). While the sign
of the remainder indicates if the approximation is too large or too small, the
error reflects only the distance to the exact value.

Theorem 5.5.1 (The Lagrange Form of the Remainder). Assume that a func-
tion f(x) has continuous derivatives of orders through n+1 in an interval that
includes the numbers a and x. Let Pn(x; a) be the nth-order Taylor polynomial
associated with f(x) in powers of x − a. Then there is a number c between a
and x such that

Rn(x; a) =
f (n+1)(c)

(n + 1)!
(x− a)n+1.

Proof of Theorem 5.5.1

For simplicity, denote the remainder Rn(x; a) = f(x)− Pn(x; a) by R(x).
Since Pn(a; a) = f(a),

R(a) = f(a)− Pn(a; a) = f(a)− f(a) = 0.

Similarly, repeated differentiation of R(x) leads to

R(k)(x) = f (k)(x)− P (k)
n (x; a),

for each integer k, 1 ≤ k ≤ n. From the definition of Pn(x; a),

R(k)(a) = f (k)(a)− P (k)
n (a; a) = 0.

R(n+1)(x) = f (n+1)(x)Since Pn(x; a) is a polynomial of degree at most n, its (n + 1)st derivative
is 0. As a result, the (n + 1)st derivative of R(x) is the same as the (n + 1)st

derivative of f(x). Thus, R(x) satisfies all the assumptions of the growth
theorem. The conclusion is (5.4.1) in Section 5.4 with R(n+1)(c) replaced by
f (n+1)(c). •
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Lagrange Form of the Remainder
Under the assumptions in Theorem 5.5.1 there is a number c between a and x
such that

Rn(x; a) =
f (n+1)(c)

(n + 1)!
(x− a)n+1.

EXAMPLE 4 Discuss the error in using x− x3

3!
+ x5

5!
to estimate sin(x) for

x > 0.
SOLUTION Example 2 showed that x− x3

3!
+ x5

5!
is the fifth-order Maclaurin

polynomial, P5(x; 0), associated with sin(x). In this case f(x) = sin(x) and
each derivative of f(x) is either ± sin(x) or ± cos(x). Therefore, |fn+1(c)| is
at most 1, and we have

|f 5+1(c)|
6!

x6 ≤ x6

6!
.

Then ∣∣∣∣sin(x)−
(

x− x3

6
+

x5

120

)∣∣∣∣ ≤ |x|66!
=

x6

720
.

For instance, with x = 1/2,∣∣∣∣∣sin
(

1

2

)
−

((
1

2

)
−
(

1
2

)3
6

+

(
1
2

)5
120

)∣∣∣∣∣
≤

(
1
2

)6
720

=
1

(64)(720)
=

1

46, 080
≈ 0.0000217 = 2.17× 10−5.

This means the approximation

P5(
1

2
; 0) =

1

2
− 1

3!

(
1

2

)3

+
1

5!

(
1

2

)5

=
1

2
− 1

48
+

1

3840
=

1841

3840
≈ 0.4794271

differs from sin(1/2) by less than 2.17 × 10−5. Therefore at least the first
four decimal places are correct. The exact value of sin(1/2) to eight decimal
places is 0.47942553 and our estimate is correct to five decimal places. By
comparison, a calculator gives sin(1/2) ≈ 0.479426, which is also correct to
five decimal places. �

The Linear Approximation P1(x; a)

The graph of the Taylor polynomial P1(x; a) = f(a) + f ′(a)(x − a) is a line
that passes through the point (a, f(a)) and has the same slope as f does at
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a. That means that the graph of P1(x; a) is the tangent line to the graph of f
at (a, f(a)).

Figure 5.5.3

It is customary to call P1(x; a) = f(a) + f ′(a)(x− a) the linear
approximation to f(x) for x near a. It is often denoted L(x). Figure 5.5.3
shows the graphs of f and L near the point (a, f(a)).

Let x be a number close to a and define ∆x = x−a and ∆y = f(a+∆x)−
f(a), quantities used in the definition of the derivative: f ′(a) = lim∆x→0

∆y
∆x

.
Often ∆x is denoted by dx and f ′(a)dx is defined to be dy, as shown

in Figure 5.5.4. Then dy is an approximation to ∆y and f(a) + dy is an
approximation to f(a + ∆x) = f(a) + ∆y.

The expressions dx and dy are called differentials. In the seventeenth
century, dx and dy referred to infinitesimals, infinitely small numbers. Leibniz
viewed the derivative as the quotient dy

dx
, and his notation for the derivative

persists more than three centuries later.

Figure 5.5.4

However, the derivative is not a quotient. It is the limit of quotients.
The next example uses the linear approximation to estimate

√
x near x = 1.

EXAMPLE 5 Use P1(x; 1) to estimate
√

x for x near 1. Then discuss the
error.
SOLUTION In this case f(x) =

√
x, f ′(x) = 1

2
√

x
, and f ′(1) = 1/2. The

linear approximation of f(x) near a = 1 is

P1(x; 1) = f(1) + f ′(1)(x− 1) = 1 +
1

2
(x− 1)

and the remainder is

R1(x; 1) =
√

x−
(

1 +
1

2
(x− 1)

)
.

Table 5.5.5 shows how rapidly R1(x; 1) approaches 0 as x→ 1 and compares
it with (x− 1)2.

x R1(x; 1) (x− 1)2 R1(x; 1)/(x− 1)2

2.0
√

2 −
(
1 + 1

2(2− 1)
)

≈ −0.08578643 1 −0.08579
1.5

√
1.5 −

(
1 + 1

2(1.5− 1)
)
≈ −0.02525512 0.25 −0.10102

1.1
√

1.1 −
(
1 + 1

2(1.1− 1)
)
≈ −0.00119115 0.01 −0.11912

1.01
√

1.01 −
(
1 + 1

2(1.01− 1)
)
≈ −0.00001243 0.0001 −0.12438

Table 5.5.5

The final column in Table 5.5.5 shows that R1(x;1)
(x−1)2

is nearly constant. Be-

cause (x − 1)2 → 0 as x → 0, this means R1(x; 1) approaches 0 at the same
rate as the square of (x− 1).
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Since the Lagrange form for R1(x; 1) is approximately 1
2
f ′′(1)(x−1)2 when

x is near 1, R1(x;1)
(x−1)2

should be near 1
2
f ′′(1) when x is near 1. As a check, we

compute 1
2
f ′′(1). We have f ′′(x) = −1

4
x−3/2. Thus 1

2
f ′′(1) = 1

2

(−1
4

)
= −1

8
=

−0.125. This is consistent with the final column of Table 5.5.5. �

Summary

We define the “zeroth
derivative” of a function to

be the function itself and
start counting from 0. This
allows us to say simply that

the derivatives P
(k)
n (x; a)

coincide with f (k)(a) for
k = 0, 1, . . . , n.

Assume f is a function with n derivatives on an interval that contains the
number a. The nth-order Taylor polynomial at a is

Pn(x; a) = f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

In addition to Pn(x; a) and f having the same value at a, their first n derivatives
at a also agree.

If a = 0, Pn(x; 0) is call a Maclaurin polynomial.
The general Maclaurin polynomial associated with ex, sin(x), cos(x), and

1/(1− x) are given in Table 5.5.6.

f(x) Pn(x; 0)

ex 1 + x + x2

2!
+ x3

3!
+ · · ·+ xn

n!

sin(x) x− x3

3!
+ x5

5!
− · · ·+ (−1)n x2n+1

(n+1)!

cos(x) 1− x2

2!
+ x4

4!
− · · ·+ (−1)n x2n

(2n)!

1/(1− x) 1 + x + x2 + x3 + · · ·+ xn

Table 5.5.6 Four common Maclaurin polynomials.

The remainder in using the Taylor polynomial of degree n to estimate a
function involves the (n + 1)st derivative of the function:

Rn(x; a) = f(x)− Pn(x; a) =
f (n+1)(c)

(n + 1)!
(x− a)n+1

where c is a number between a and x . The error is the absolute value of the
remainder, |Rn(x; a)|.

The linear approximation to a function near a is

L(x) = P1(x; a) = f(a) + f ′(a)(x− a).

The differentials are dx = x − a and dy = f ′(a)dx. While dx = ∆x, dy ≈
∆y = f(x + ∆x)− f(x).
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EXERCISES for Section 5.5
Use a graphing calculator or computer algebra system to assist with the computa-

tions and graphing.
1. Give at least three reasons sin(x) cannot be a polynomial.

In Exercises 2 to 13 compute the Taylor polynomials. Graph f(x) and Pn(x; a) on
the same axes on a domain centered at a. Keep in mind that the graph of P1(x; a)
is the tangent line at the point (a, f(a)).
2. f(x) = 1/(1 + x), P1(x; 0) and P2(x; 0)

3. f(x) = 1/(1 + x), P1(x; 1) and P2(x; 1)

4. f(x) = ln(1 + x), P1(x; 0), P2(x; 0), and P3(x; 0)

5. f(x) = ln(1 + x), P1(x; 1), P2(x; 1), and P3(x; 1)

6. f(x) = ex, P1(x; 0), P2(x; 0), P3(x; 0), and P4(x; 0)

7. f(x) = ex, P1(x; 2), P2(x; 2), P3(x; 2), and P4(x; 2)

8. f(x) = arctan(x), P1(x; 0), P2(x; 0), and P3(x; 0)

9. f(x) = arctan(x), P1(x;−1), P2(x;−1), and P3(x;−1)

10. f(x) = cos(x), P2(x; 0) and P4(x; 0)

11. f(x) = sin(x), P7(x; 0)

12. f(x) = cos(x), P6(x;π/4)

13. f(x) = sin(x), P7(x;π/4)

14. Can there be a polynomial p(x) such that sin(x) = p(x) for all x in the interval
[1, 1.0001]? Explain.

15. Can there be a polynomial p(x) such that ln(x) = p(x) for all x in the interval
[1, 1.0001]? Explain.

16. State the Lagrange formula for the error in using a Taylor polynomial as an
estimate of the value of a function. Use as little mathematical notation as you can.

In Exercises 17 to 22 obtain the Maclaurin polynomial of order n associated with
the function.
17. 1/(1− x)

18. ex

19. e−x

20. sin(x)

21. cos(x)

22. 1/(1 + x)

23. Let f(x) =
√

x.
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(a) What is the linear approximation P1(x; 4) to
√

x?

(b) Fill in the following table.

x R1(x; 4) = f(x)− P1(x; 4) (x− 4)2 R1(x;4)
(x−4)2

5.0
4.1
4.01
3.99

(c) Compute f ′′(4)/2. Explain the relationship between it and the entries in the
fourth column of the table in (b).

24. Repeat Exercise 23 for the linear approximation to
√

x at a = 3. Use x = 4,
3.1, 3.01, and 2.99.

25. Assume f(x) has continuous first and second derivatives and that 4 ≤ f ′′(x) ≤
5 for all x.

(a) What can be said about the error in using f(2) + f ′(2)(x− 2) to approximate
f(x)?

(b) How small should x− 2 be to be sure that the error — the absolute value of
the remainder — is less than or equal to 0.005? (This ensures the approximate
value is correct to 2 decimal places.)

26. Let f(x) = 2 + 3x + 4x2.

(a) Find P2(x; 0).

(b) Find P3(x; 0).

(c) Find P2(x; 5).

(d) Find P3(x; 5).

27.

(a) What can be said about the degree of the polynomial Pn(x; 0)?

(b) When is the degree of Pn(x; 0) less than n?

(c) When is the degree of Pn(x; a) less than n?
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28. For f(x) = 1/(1 − x) the error Rn(x; 0) in using a Maclaurin polynomial
Pn(x; 0) to estimate the function can be calculated exactly. Show that it equals∣∣xn+1/(1− x)

∣∣.
Exercises 29 to 32 are related.
29. Let f(x) = (1 + x)3.

(a) Find P3(x; 0) and R3(x; 0).

(b) Check that your answer to (a) is correct by multiplying out (1 + x)3.

30. Let f(x) = (1 + x)4.

(a) Find P4(x; 0) and R4(x; 0).

(b) Check that your answer to (a) is correct by multiplying out (1 + x)4.

31. Let f(x) = (1 + x)5. Using P5(x; 0), show that

(1 + x)5 = 1 + 5x +
5 · 4
1 · 2

x2 +
5 · 4 · 3
1 · 2 · 3

x3 +
5 · 4 · 3 · 2
1 · 2 · 3 · 4

x4 +
5 · 4 · 3 · 2 · 1
1 · 2 · 3 · 4 · 5

x5.

For a positive integer n and a non-negative integer k, with k ≤ n, the symbol
(

n
k

)
denotes the binomial coefficient:(

n
k

)
=

n(n− 1)(n− 2) · · · (n− k + 1)
1 · 2 · 3 · · · k

=
n!

k!(n− k)!
.

Thus

(1 + x)5 =
(

5
0

)
+
(

5
1

)
x +

(
5
2

)
x2 +

(
5
3

)
x3 +

(
5
4

)
x4 +

(
5
5

)
x5.

Using Pn(x; 0) one can show that for any positive integer n

(1+x)n =
(

n
0

)
+
(

n
1

)
x+
(

n
2

)
x2+· · ·+

(
n

n− 1

)
xn−1+

(
n
n

)
xn =

n∑
k=0

(
n
k

)
xk.

The Binomial Theorem asserts that

(a + b)n =
n∑

k=0

(
n
k

)
akbn−k.
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(We have
(

n
0

)
= n!

0!n! = 1 and
(

n
n

)
= n!

n!0! = 1.)

32.

(a) Using algebra (no calculus) derive the binomial theorem for (a + b)3 from the
binomial theorem for (1 + x)3.

(b) Obtain the binomial theorem for (a + b)12 from the special case (1 + x)12 =
12∑

k=0

(
12
k

)
xk.

In Exercises 33 and 34, use a calculator or computer to help evaluate the Taylor
polynomials
33. Let f(x) = ex.

(a) Find P10(x; 0).

(b) Compute f(x) and P10(x; 0) at x = 1, x = 2, and x = 4.

34. Let f(x) = ln(x).

(a) Find P10(x; 1).

(b) Compute f(x) and P10(x; 1) at x = 1, x = 2, and x = 4.

35.

(a) Find P5(x; 0) for f(x) = ln(1 + x).

(b) What is Pn(x; 0)?

(c) Estimate ln(1.05) using P5(x; 0) and put a bound on the error.

Exercises 36 to 39 involve even and odd functions A function is even if f(−x) = f(x)
and is odd if f(−x) = −f(x).
36. Show that if f is an odd function, f ′ is an even function.

37. Show that if f is an even function, f ′ is an odd function.

38.
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(a) Which polynomials are even functions?

(b) If f is an even function, are its associated Maclaurin polynomials necessarily
even functions? Explain.

39.

(a) Which polynomials are odd functions?

(b) If f is an odd function, are its associated Maclaurin polynomials necessarily
odd functions? Explain.

40. This exercise constructs Maclaurin polynomials that do not approximate the
associated function. Let f(x) = e−1/x2

if x 6= 0 and f(0) = 0.

(a) Find f ′(0).

(b) Find f ′′(0).

(c) Find P2(x; 0).

(d) What is P100(x; 0)?

(Use the definition of the derivative.)

41. In an open interval in which f ′′′ is positive, show that f(x) > f(a)+f ′(a)(x−
a) + 1

2f ′′(a)(x − a)2. (Treat the cases a < x and x > a separately. See also Exer-
cise 17 in Section 4.4.)

42. We defined the Taylor polynomials but did not show that at a their derivatives
equal those of the function. Show that if P (x) = P4(x; a), the Taylor polynomial
of order 4 associated with f(x), then P (a) = f(a), P ′(a) = f ′(a), P ′′(a) = f ′′(a),
P (3)(a) = f (3)(a), and P (4)(a) = f (4)(a).

43. The quantity
√

1− v2/c2 occurs in the theory of relativity. Here v is the
velocity of an object and c the velocity of light. Justify the following approximations
that physicists use:

(a)
√

1− v2

c2
≈ 1− 1

2
v2

c2
.

(b) 1q
1− v2

c2

≈ 1 + 1
2

v2

c2
.
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Even for a rocket v/c is very small.

44. If Pn(x; 0) is the Maclaurin polynomial associated with f(x), is Pn(−x; 0) the
Maclaurin polynomial associated with f(−x)? Explain.

45. Let P (x) be the Maclaurin polynomial of the second order associated with
f(x). Let Q(x) be the Maclaurin polynomial of the second order associated with
g(x). What part, if any, of P (x)Q(x) is a Maclaurin polynomial associated with
f(x)g(x)? Explain.
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5.6 L’Hôpital’s Rule for Finding Certain Lim-

its

There are two types of limits in calculus: those that can be evaluated at a
glance, and those that require some work to evaluate. In Section 2.4 we called
limits that can be evaluated easily determinate and those that require some
work indeterminate.

For instance limx→π/2
sin(x)

x
is clearly 1/(π/2) = 2/π. That’s easy. But the

value of limx→0(sin(x))/x is not obvious. In Section 2.2 we used a diagram of
circles, sectors, and triangles to show that it is 1.

In this section we describe a technique for evaluating more indeterminate
limits, for instance

lim
x→a

f(x)

g(x)

when both f(x) and g(x) approach 0 as x approaches a. The numerator is
trying to drag f(x)/g(x) toward 0 at the same time as the denominator is
trying to make the quotient large. L’Hôpital is pronounced

lope - ee - tall.
L’Hôpital’s rule helps determine which

term wins or whether there is a compromise.

Indeterminate Limits

The following limits are called indeterminate because they cannot be deter-
mined without knowing more about the functions f and g.

lim
x→a

f(x)

g(x)
, where lim

x→a
f(x) = 0 and lim

x→a
g(x) = 0

lim
x→a

f(x)

g(x)
, where lim

x→a
f(x) =∞ and lim

x→a
g(x) =∞

L’Hôpital’s Rule provides a way for dealing with these limits and limits that
can be transformed to those forms. In short, l’Hôpital’s rule applies only when
needed.

Theorem 5.6.1 (L’Hôpital’s Rule (zero-over-zero case)). Let f and g be dif-
ferentiable over some open interval that contains a. Assume also that g′(x) is
not 0 for any x in that interval except perhaps at a. If

lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, and lim
x→a

f ′(x)

g′(x)
= L,

then

lim
x→a

f(x)

g(x)
= L.

Calculus April 22, 2012



412 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

That is, to evaluate the limit of a quotient that is indeterminant, evaluate
the limit of the quotient of their derivatives (not the derivative of the quotient).
We will discuss the proof after some examples.

EXAMPLE 1 Find limx→1(x
5 − 1)/(x3 − 1).

SOLUTION Here

a = 1, f(x) = x5 − 1, and g(x) = x3 − 1.

Remember to check that
the hypotheses of l’Hôpital’s

Rule are satisfied.

The assumptions of l’Hôpital’s rule are satisfied because

lim
x→1

(x5 − 1) = 0 and lim
x→1

(x3 − 1) = 0.

Each application of
l’Hôpital’s rule is indicated

by
l’H= . The two limits are

not actually equal until the
one on the right is known to

exist.

According to l’Hôpital’s rule,

lim
x→1

x5 − 1

x3 − 1
l’H
= lim

x→1

(x5 − 1)′

(x3 − 1)′

if the second limit exists. We see

limx→1
(x5−1)′

(x3−1)′
= limx→1

5x4

3x2 (differentiation of numerator and dif-
ferentiation of denominator)

= limx→1
5
3
x2 (algebra)

= 5
3
.

Thus

lim
x→1

x5 − 1

x3 − 1
=

5

3
.

�

Sometimes it may be necessary to apply l’Hôpital’s Rule more than once,
as in the next example.

EXAMPLE 2 Find limx→0(sin(x)− x)/x3.
SOLUTION As x → 0, both numerator and denominator approach 0. By
l’Hôpital’s Rule,

lim
x→0

sin(x)− x

x3

l’H
= lim

x→0

(sin(x)− x)′

(x3)′
= lim

x→0

cos(x)− 1

3x2
.

As x→ 0, both cos(x)− 1→ 0 and 3x2 → 0. So use l’Hôpital’s Rule again:

lim
x→0

cos(x)− 1

3x2

l’H
= lim

x→0

(cos(x)− 1)′

(3x2)′
= lim

x→0

− sin(x)

6x
.

April 22, 2012 Calculus
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Or recall from Section 2.2

that limx→0
sin x

x = 1.

Both sin(x) and 6x approach 0 as x → 0. Use l’Hôpital’s Rule yet another
time:

lim
x→0

− sin(x)

6x
l’H
= lim

x→0

(− sin(x))′

(6x)′
= lim

x→0

− cos(x)

6
=
−1

6
.

After three applications of l’Hôpital’s Rule we find that

lim
x→0

sin(x)− x

x3
= −1

6
.

�

Sometimes a limit may be simplified before l’Hôpital’s Rule is applied. For
instance, consider

lim
x→0

(sin(x)− x) cos5(x)

x3
.

Since limx→0 cos5(x) = 1, we have

lim
x→0

(sin(x)− x) cos5(x)

x3
=

(
lim
x→0

sin(x)− x

x3

)
· 1,

which, by Example 2, is −1
6
. This saves a lot of work, as may be checked by

finding the limit using l’Hôpital’s Rule without separating cos5(x).
Theorem 5.6.1 concerns limits as x → a. L’Hôpital’s Rule also applies if

x → ∞, x → −∞, x → a+, or x → a−. In the first case, we would assume
that f(x) and g(x) are differentiable in some interval (c,∞) and g′(x) is not
zero there. In the case of x→ a+, assume that f(x) and g(x) are differentiable
in some open interval (a, b) and g′(x) is not 0 there.

Infinity-over-Infinity Limits

Infinity-over-infinity is
indeterminate.

Theorem 5.6.1 concerns the limit of f(x)/g(x) when both f(x) and g(x)
approach 0. A similar problem arises when both f(x) and g(x) get arbitrarily
large as x → a or as x → ∞. The behavior of the quotient f(x)/g(x) will be
influenced by how rapidly f(x) and g(x) become large.

If limx→a f(x) = ∞ and limx→a g(x) = ∞, then limx→a(f(x)/g(x)) is an
indeterminate form. The next theorem presents a l’Hôpital Rule for this case.

Theorem 5.6.2 (L’Hôpital’s Rule (infinity-over-infinity case). Let f and g be
defined and differentiable for all x larger than some number c. Then, if g′(x)
is not zero for all x > c,

lim
x→∞

f(x) =∞, lim
x→∞

g(x) =∞, and lim
x→∞

f ′(x)

g′(x)
= L,
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it follows that

lim
x→∞

f(x)

g(x)
= L.

A similar result holds for x→ a, x→ a−, x→ a+, or x→ −∞. Moreover,
limx→∞ f(x) and limx→∞ g(x) could both be −∞, or one could be ∞ and the
other −∞.

EXAMPLE 3 Find limx→∞
ln(x)
x2 .

SOLUTION Since ln(x) → ∞ and x2 → ∞ as x → ∞, we may use
l’Hôpital’s Rule in the infinity-over-infinity form.

We have

lim
x→∞

ln(x)

x2

l’H
= lim

x→∞

(ln(x))′

(x2)′
= lim

x→∞

1/x

2x
= lim

x→∞

1

2x2
= 0.

Hence limx→∞ ((ln(x))/x2) = 0. �

Example 3 says that while ln(x) and x2 both grow without bound, ln(x)
grows much more slowly than x2.

EXAMPLE 4 Find

lim
x→∞

x− cos(x)

x
. (5.6.1)

SOLUTION Both numerator and denominator approach ∞ and x → ∞.
Trying l’Hôpital’s Rule, we obtain

lim
x→∞

x− cos(x)

x
l’H
= lim

x→∞

(x− cos(x))′

x′
= lim

x→∞

1 + sin(x)

1
.

But limx→∞(1+sin(x)) does not exist, since sin(x)L’Hôpital’s Rule may fail to
provide an answer.

oscillates back and forth
from −1 to 1 as x→∞

What can we conclude about the limit in (5.6.1)? Nothing at all.
L’Hôpital’s Rule says that if limx→∞ f ′(x)/g′(x) exists, then limx→∞ f(x)/g(x)

exists and has the same value.Moral: Look carefully at a
limit before you decide to

use l’Hôpital’s Rule.

It says nothing when limx→∞ f ′(x)/g′(x) does
not exist.

It is not difficult to evaluate (5.6.1) directly:

lim
x→∞

x− cos(x)

x
= lim

x→∞

(
1− cos(x)

x

)
(algebra)

= 1− 0 ( since | cos(x)| ≤ 1)
= 1.

�

April 22, 2012 Calculus
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We now turn our attention to understanding why Theorem 5.6.2 is true.
Imagine that f(t) and g(t) describe the locations on the x-axis of two cars at
time t. Call the cars the f -car and the g-car. Assume the cars are on endless
journeys, that is limt→∞ f(t) = ∞ and limt→∞ g(t) = ∞. Their velocities are
f ′(t) and g′(t). See Figure 5.6.1. Assume that as time t→∞ the f -car tends
to travel at a speed closer and closer to L times the speed of the g-car. That
is, assume that

Figure 5.6.1

lim
t→∞

f ′(t)

g′(t)
= L.

No matter how the two cars move in the short run, in the long run the f -car
will tend to travel about L times as far as the g-car; that is,

lim
t→∞

f(t)

g(t)
= L.

Transforming Limits So l’Hôpital’s Rule is Useful

Many limits can be transformed to limits to which l’Hôpital’s Rule applies.
For instance, the problem of finding zero-times-infinity is

indeterminate
lim

x→0+
x ln(x)

does not fit into l’Hôpital’s Rule, since it does not involve the quotient of two
functions. As x→ 0+, one factor, x, approaches 0 and the other factor ln(x),
approaches −∞. So this is another type of indeterminate limit, involving a
small number times a large number (zero-times-infinity). It is not obvious how
the product, x ln(x), behaves as x→ 0+. (The limit can turn out to have any
value.) A little algebra transforms the zero-times-infinity case into a form to
which l’Hôpital’s Rule applies, as the next example illustrates.

EXAMPLE 5 Find limx→0+ x ln(x).

SOLUTION Rewrite x ln(x) as a quotient, ln(x)
(1/x)

. Then

lim
x→0+

ln(x) = −∞ and lim
x→0+

1

x
=∞,

so by l’Hôpital’s Rule,

lim
x→0+

ln(x)

1/x
l’H
= lim

x→0+

1/x

−1/x2
= lim

x→0+
(−x) = 0.

Thus

lim
x→0+

ln(x)

1/x
= 0,
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from which it follows that limx→0+ x ln(x) = 0. �

From limx→0+ x ln(x) = 0 we conclude that the factor x, which approaches
0, dominates the factor ln(x) which slowly approaches −∞.

The final example illustrates another type of limit that can be found by
first relating it to limits to which l’Hôpital’s Rule applies.

EXAMPLE 6 limx→0+ xx.Try this on your calculator
first. SOLUTION Since the limit involves an exponential it does not fit directly

into l’Hôpital’s Rule. Algebra can change it to one covered by l’Hôpital’s Rule.
Let

y = xx.

Then

ln(y) = ln(xx) = x ln(x)

By Example 5,

lim
x→0+

x ln(x) = 0.

Therefore, limx→0+ ln(y) = 0. By the definition of ln(y) and the continuity of
ex = exp(x),

lim
x→0+

y = lim
x→0+

exp(ln(y)) = exp

(
lim

x→0+
(ln(y))

)
= e0 = 1.

Hence xx → 1 as x→ 0+. �

Concerning the Proof of Theorem 5.6.1

A complete proof of Theorem 5.6.1 may be found in Exercises 71 to 73. The
following argument is intended to make the theorem plausible. To do so,
consider the special case where f , f ′, g, and g′ are continuous throughout an
open interval containing a — so they are defined at a. Assume that g′(x) 6= 0
throughout the interval. Since we have limx→a f(x) = 0 and limx→a g(x) = 0,
it follows by continuity that f(a) = 0 and g(a) = 0.
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Assume that limx→a
f ′(x)
g′(x)

= L. Then

lim
x→a

f(x)

g(x)
= lim

x→a

f(x)− f(a)

g(x)− g(a)
(since f(a) = 0 and g(a) = 0)

= lim
x→a

f(x)−f(a)
x−a

g(x)−g(a)
x−a

(algebra)

=
limx→a

f(x)−f(a)
x−a

limx→a
g(x)−g(a)

x−a

(limit of quotient = quotient of limits)

=
f ′(a)

g′(a)
(definitions of f ′(a) and g′(a))

=
limx→a f ′(x)

limx→a g′(x)
(f ′, g′ continuous, by assumption)

= lim
x→a

f ′(x)

g′(x)
(quotient of limits = limit of quo-
tients)

= L (by assumption.)

Consequently,

lim
x→a

f(x)

g(x)
= L.

Summary

We described l’Hôpital’s Rule, which is a technique for dealing with limits of
the indeterminate forms zero-over-zero and infinity-over-infinity. In both cases

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

if the second limit exists. The second limit involves the quotient of two deriva-
tives, f ′(x)/g′(x), not the derivative of the quotient.

Table 5.6.1 shows how some limits of other indeterminate forms can be
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converted into these forms.
Indeterminate Forms Name Conversion Method New Form

f(x)g(x); Zero-times-infinity Write as f(x)
1/g(x)

0
0

f(x)→ 0, g(x)→∞ (0 · ∞) or g(x)
1/f(x)

or ∞
∞

f(x)g(x); One-to-infinity Let y = f(x)g(x); ln(y) has
f(x)→ 1, g(x)→∞ (1∞) take ln(y), find the

limit of ln(y), and then
find the limit of y =
eln(y)

form ∞ · 0

f(x)g(x); Zero-to-zero Same as for 1∞ ln(y) has
f(x)→ 0, g(x)→ 0 (00) form 0 · ∞.

Table 5.6.1
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EXERCISES for Section 5.6

In Exercises 1 to 16 check that l’Hôpital’s Rule applies and use it to find the limits.
Identify all uses of l’Hôpital’s Rule, including the type of indeterminant form.

1. lim
x→2

x3 − 8
x2 − 4

2. lim
x→1

x7 − 1
x3 − 1

3. lim
x→0

sin(3x)
sin(2x)

4. lim
x→0

sin(x2)
(sin(x))2

5. lim
x→0

sin(5x) cos(3x)
x

6. lim
x→0

sin(5x) cos(3x)
x− π

2

7. lim
x→π

2

sin(5x) cos(3x)
x

8. lim
x→π

2

sin(5x) cos(3x)
x− π

2

9. lim
x→∞

x3

ex

10. lim
x→∞

x5

3x

11. lim
x→0

1− cos(x)
x2

12. lim
x→0

sin(x)− x

(sin(x))3

13. lim
x→0

tan(3x)
ln(1 + x)

14. lim
x→1

cos(πx/2)
ln(x)

15. lim
x→2

(ln(x))2

x

16. lim
x→0

arcsin(x)
e2x − 1

In Exercises 17 to 22 transform the problem into one to which l’Hôpital’s Rule ap-
plies and find the limit. Identify all uses of l’Hôpital’s Rule, including the type of
indeterminant form.
17. lim

x→0
(1− 2x)1/x

18. lim
x→0

(1 + sin(2x))csc(x)
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19. lim
x→0+

(sin(x))(e
x−1)

20. lim
x→0+

x2 ln(x)

21. lim
x→0+

(tan(x))tan(2x)

22. lim
x→0+

(ex − 1) ln(x)

Do not overuse l’Hôpital’s Rule. Remember that l’Hôpital’s Rule, carelessly applied,
may give a wrong answer or no answer.
In Exercises 23 to 51 find the limits. Use l’Hôpital’s Rule only if it applies. Identify
all uses of l’Hôpital’s Rule, including the type of indeterminant form.

23. lim
x→∞

2x

3x

24. lim
x→∞

2x + x

3x

25. lim
x→∞

log2(x)
log3(x)

26. lim
x→1

log2(x)
log3(x)

27. lim
x→∞

(
1
x
− 1

sin(x)

)
28. lim

x→∞

(√
x2 + 3−

√
x2 + 4x

)
29. lim

x→∞

x2 + 3 cos(5x)
x2 − 2 sin(4x)

30. lim
x→∞

ex − 1/x

ex − 1/x

31. lim
x→0

3x3 + x2 − x

5x3 + x2 + x

32. lim
x→∞

3x3 + x2 − x

5x3 + x2 + x

33. lim
x→∞

sin(x)
4 + sin(x)

34. lim
x→∞

x sin(3x)

35. lim
x→1+

(x− 1) ln(x− 1)
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36. lim
x→π/2

tan(x)
x− (π/2)

37. lim
x→0

(cos(x))1/x

38. lim
x→0+

x1/x

39. lim
x→0

(1 + x)1/x

40. lim
x→0

(
1 + x2

)x
41. lim

x→1

x2 − 1
x3 − 1

42. lim
x→0

xex(1 + x)3

ex − 1

43. lim
x→0

xex cos2(6x)
e2x − 1

44. lim
x→0

(csc(x)− cot(x))

45. lim
x→0

csc(x)− cot(x)
sin(x)

46. lim
x→0

5x − 3x

sin(x)

47. lim
x→0

(tan(x))5 − (tan(x))3

1− cos(x)

48. lim
x→2

x3 + 8
x2 + 5

49. lim
x→π/4

sin(5x)
sin(3x)

50. lim
x→0

(
1

1− cos(x)
− 2

x2

)
51. lim

x→0

arcsin(x)
arctan(2x)

52. In Figure 5.6.2(a) the unit circle is centered at O, BQ is a vertical tangent
line, and the length of BP is the same as the length of BQ. What happens to the
point E as Q→ B?

53. In Figure 5.6.2(b) the unit circle is centered at the origin, BQ is a vertical

tangent line, and the length of BQ is the same as the arc length
_

BP . Show that
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the x-coordinate of R approaches −2 as P → B.

(a) (b) (c)

Figure 5.6.2
54. Exercise 44 of Section 2.2 asked you to guess a certain limit. Now that limit
will be computed.
In Figure 5.6.2(c), which shows a circle, let f(θ) be the area of triangle ABC and
g(θ) be the area of the shaded region formed by deleting triangle OAC from sector
OBC.

(a) Why is f(θ) smaller than g(θ)?

(b) What would you guess is the value of limθ→0 f(θ)/g(θ)?

(c) Find limθ→0 f(θ)/g(θ).

55. The following appears in an economics text:
“Consider the production function

y = k
(
αx−ρ

1 + (1− α)x−ρ
2

)−1/ρ
,

where k, α, x1, and x2 are positive constants and α < 1. Taking the limit as ρ→ 0+,
we find that

lim
ρ→0+

y = kxα
1 x1−α

2 ,

which is the Cobb-Douglas function, as expected.”
Fill in the details.

56. Sam proposes the following proof for Theorem 5.6.1: “Since

lim
x→a+

f(x) = 0 and lim
x→a+

g(x) = 0,

I will define f(a) = 0 and g(a) = 0. Next I consider x > a but near a. I now have
continuous functions f and g defined on the closed interval [a, x] and differentiable
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on the open interval (a, x). So, using the mean value theorem, I conclude that there
is a number c, a < c < x, such that

f(x)− f(a)
x− a

= f ′(c) and
g(x)− g(a)

x− a
= g′(c).

Since f(a) = 0 and g(a) = 0, these equations tell me that

f(x) = (x− a)f ′(c) and g(x) = (x− a)g′(c)

Thus f(x)
g(x) = f ′(c)

g′(c)

Hence lim
x→a+

f(x)
g(x)

= lim
x→a+

f ′(c)
g′(c)

.

Sam made one error. What is it?

57. Find limx→0

(
1+2x

x

)1/x.

58. R. P. Feynman, in Lectures in Physics, wrote: “Here is the quantitative answer
of what is right instead of kT . This expression

h̄ω

eh̄ω/kT − 1

should, of course, approach kT as ω → 0. . . . . See if you can prove that it does —
learn how to do the mathematics.”
Do the mathematics. All symbols, except ω, denote constants.

59. Graph y = xx for 0 < x ≤ 1, showing its minimum point.

In Exercises 60 to 62 graph the function, being sure to show (a) where it is increas-
ing and decreasing, (b) where the function has any asymptotes, and (c) how the
function behaves for x near 0.
60. f(x) = (1 + x)1/x for x > −1, x 6= 0

61. y = x ln(x)

62. y = x2 ln(x)

63. Is it possible to determine limx→a f(x)g(x) without further information about
the functions? If so, find the limit. If not, explain why.

(a) limx→a f(x) = 0, limx→a g(x) = 7

(b) limx→a f(x) = 2, limx→a g(x) = 0

(c) limx→a f(x) = 0, limx→a g(x) = 0
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(d) limx→a f(x) = 0, limx→a g(x) =∞

(e) limx→a f(x) =∞, limx→a g(x) = 0

(f) limx→a f(x) =∞, limx→a g(x) = −∞

64. Is it possible to determine limx→a f(x)g(x) without further information about
the functions? If so, find the limit. If not, explain why.

(a) limx→a f(x) = 0, limx→a g(x) =∞

(b) limx→a f(x) = 0, limx→a g(x) = 1

(c) limx→a f(x) = 0, limx→a g(x) = 0

(d) limx→a f(x) =∞, limx→a g(x) = −∞

65. Sam is angry. “Now I know why calculus books are so long. This one spent
all of page 82 showing that limx→0

sin(x)
x is 1. They could have saved space and me

a lot of trouble if they had just used l’Hôpital’s Rule.”
Is Sam right, for once?

66. Jane says, “I can get limx→0
ex−1

x easily. It’s just the derivative of ex evaluated
at 0. I don’t need l’Hôpital’s Rule.” Is Jane right, or has Sam’s influence affected
her ability to reason?

67. If limt→∞ f(t) =∞, limt→∞ g(t) =∞, and limt→∞
f(t)
g(t) = 3. what can be said

about
lim
t→∞

ln(f(t))
ln(g(t))

?

Do not assume f and g are differentiable.

68. Give an example of functions f and g such that limx→0 f(x) = 1, limx→0 g(x) =
∞, and limx→0 f(x)g(x) = 2.

69. Obtain l’Hôpital’s Rule for limx→∞
f(x)
g(x) from the case limt→0+

f(t)
g(t) . (Let

t = 1/x.)

70. Find the limit of (1x + 2x + 3x)1/x as

(a) x→ 0

(b) x→∞

April 22, 2012 Calculus
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(c) x→ −∞.

The proof of Theorem 5.6.1, to be outlined in Exercise 73, depends on the following
result.

Theorem 5.6.3 (Generalized Mean-Value Theorem). Let f and g be two functions
that are continuous on [a, b] and differentiable on (a, b). Assume that g′(x) is never
0 for x in (a, b). Then there is a number c in (a, b) such that

f(b)− f(a)
g(b)− g(a)

=
f ′(c)
g′(c)

.

The proof of this is in Exercise 72.
71. During a time interval one car travels twice as far as another car. Use the
generalized mean value theorem to show that there is at least one instant when the
first car is traveling exactly twice as fast as the second car.

72. To prove the generalized mean value theorem, introduce the function

h(x) = f(x)− f(a)− f(b)− f(a)
g(b)− g(a)

(g(x)− g(a)). (5.6.2)

Show that h(b) = 0 and h(a) = 0. Then apply Rolle’s Theorem to h on (a, b).
(Rolle’s Theorem is Theorem 4.1.2 in Section 4.1.)
By the way, what does the equation say in terms of the f -car and the g-car intro-
duced at the beginning of this section?
The function h in (5.6.2) is similar to the function h used in the proof of the
mean value theorem (Theorem 4.1.3 in Section 4.1). Check that h(x) is the ver-
tical distance between the point (g(x), f(x)) and the line through (g(a), f(a)) and
(g(b), f(b)).
73. Assume the hypotheses of Theorem 5.6.1. Define f(a) = 0 and g(a) = 0, so
that f and g are continuous at a and

f(x)
g(x)

=
f(x)− f(a)
g(x)− g(a)

.

Apply the generalized mean value theorem from Exercise 71. (This Exercise proves
Theorem 5.6.1, l’Hôpital’s Rule in the zero-over-zero case.)

74. If limt→∞ f(t) =∞, limt→∞ g(t) =∞, and limt→∞
ln(f(t))
ln(g(t)) = 1, must

lim
t→∞

f(t)
g(t)

= 1?

Explain.

75. Assume that f , f ′, and f ′′ are defined in [−1, 1] and are continuous. Also,
f(0) = 0, f ′(0) = 0, and f ′′(0) > 0.
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(a) Sketch what the graph of f may look like for x in [0, a], where a is a small
positive number.

(b) Interpret the quotient

Q(a) =

∫ a
0 f(x) dx

af(a)−
∫ a
0 f(x) dx

in terms of the graph in (a).

(c) What do you think happens to Q(a) as a→ 0?

(d) Find lima→0 Q(a).

(Because f ′′′ might not be continuous at 0, you need to use lima→0
f ′(a)

a = f ′′(0).)

76.

Sam: I bet I can find limx→0
ex−1−x−x2

2
x3 by using the Maclaurin polynomial P2(x; 0)

for ex and paying attention to the error.

Is Sam right?

Exercises 77 and 78 will be used in Exercises 79 and 80.
77. Find limx→0

tan(x)−x
2x−sin(2x) .

78. Find limx→0
tan(x)−x
x−sin(x) .

79. Let P (n) be the perimeter of a regular polygon with n sides that circumscribes
a circle of radius 1. Similarly, let p(n) be the perimeter of an inscribed regular poly-
gon of n sides. When n is large, which is the better estimate of the perimeter of
the circle? To decide, examine the limit of P (n)−2π

2π−p(n) . (Form an opinion before you
calculate.) (See Exercise 77.)

80. Let A(n) be the area of a regular polygon with n sides that circumscribes a
circle of radius 1. Similarly, let a(n) be the area of an inscribed regular polygon of
n sides. When n is large, which is the better estimate of the area of the circle? To
decide, examine the limit of A(n)−π

π−a(n) . (Form an opinion before you calculate.) (See
Exercise 78.)

Exercises 81 to 85 build upon the estimates of the circumference of a unit circle by
inscribed and circumscribed regular n-gons found in Exercise 79. The perimeter of
the inscribed n-gon in p(n) = 2n sin(π/n) and the perimeter of the circumscribed
n-gon is P (n) = 2n tan(π/n). These exercises provide more information about the
errors in these estimates; e(n) = 2π − p(n) and E(n) = P (n)− 2π.
81. Find limn→∞

E(n)
1/n , as follows:
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(a) Introduce f(x) = 2x tan(π/x)−2π
1/x and try to find limx→∞ f(x).

(b) If finding the limit in (a) is too difficult, try replacing 1/x in (a) by t, rewriting
f(x) as

g(t) =
(2/t) tan(πt)− 2π

t
=

2 tan(πt)− 2πt

t2
.

Then find limt→∞ g(t), which is the same as the limit in (a), limx→∞ f(x).

(c) Which is larger for large n, E(n) or 1/n?

82.

(a) Find k such that limn→∞
E(n)
1/nk is neither 0 nor ∞. That value of k indicates

how rapidly the error E(n) approaches 0.

(b) Show that for that value of k, E(n)/(1/nk) approaches 2π3/3 as n approaches
∞.

83. Now we turn to the error e(n) = 2π − 2n sin(π/n). Show that for large n,
e(n) is much smaller than 1/n.

84. Find k such that limn→∞
e(n)
1/nk is neither 0 nor∞. For that k the limit is π3/3.

85. Comparing Exercises 82(b) and 84 shows that E(n) tends to be about twice
e(n).

(a) Why might Q(n) = 1
3(P (n) + 2p(n)) be a better estimate than either P (n) or

p(n)?

(b) Find k such that limn→∞
Q(n)
1/nk is neither 0 nor ∞.

(c) Is Q(n) a better estimate than either P (n) or p(n)?
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5.7 Natural Growth and Decay

In 2011 the population of the United States was about 311 million and growing
at a rate of about 0.9% (roughly 3 million people) a year. The world population
was about 7 billion and growing at a rate of about 1.1% (roughly 110 million
people) a year. Both are examples of natural growth.

Natural Growth

If t denotes time in years
and P (t) is the US

population, k = 0.009.

Let P (t) be the size of a population at time t. If its rate of growth is
proportional to its size, there is a positive constant k such that

dP (t)

dt
= kP (t). (5.7.1)

To find an explicit formula for P (t) as a function of t, rewrite (5.7.1) as

dP (t)
dt

P (t)
= k. (5.7.2)

Because P (t) is positive, the left-hand side can be rewritten as the derivative
of ln(P (t)) and so (5.7.2) can be rewritten as

d(ln(P (t))

dt
=

d(kt)

dt
.

Therefore there is a constant C such that

ln(P (t)) = kt + C. (5.7.3)

From (5.7.3) it follows, by the definition of a logarithm, that

P (t) = ekt+C ,

hence
P (t) = eCekt.

Since C is a constant, so is eC , which we give a simpler name, A. We have a
simple, explicit formula for P (t):

Natural Growth
The equation for natural growth is

P (t) = Aekt

where k is a positive constant. Because P (0) = Aek(0) = A, the coefficient A
is the initial population.
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Because of the presence of the exponential ekt, natural growth is also called
exponential growth.

EXAMPLE 1 The size of the world population at the beginning of 2011
was approximately 6.916 billion. At the beginning of 2012 it was 6.992 billion.
Assume that the growth rate remains constant.

(a) What is the growth constant k?

(b) What would the population be in 2032?

(c) When will the population double is size?

SOLUTION Let P (t) be the population in billions at time t. For conve-
nience, measure time starting in the year 2011 so t = 0 corresponds to 2011
and t = 1 to 2012. Then P (0) = 6.916 and P (1) = 6.992. The natural growth
equation describing the population in billions at time is

P (t) = 6.916ekt.

(a) To find k, use P (1) = 6.916ek·1 to obtain

6.916ek = 6.992

ek =
6.992

6.916

k = ln

(
6.992

6.916

)
≈ 0.0109.

Hence

P (t) = 6.916e0.0109t,

which is all that we need to answer the remaining questions.

(b) The year 2032 corresponds to t = 21, so in the year 2032 the population,
in billions, would be

P (21) = 6.916e0.0109·21 = 6.916e0.229 ≈ 6.916(1.257) ≈ 8.693.

The Bureau of the Census estimates tha tthe world population in 2032
will be about 8.450 billion. It assumes that the growth rate will go down.
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(c) The population will double when it reaches 2(6.916) = 13.832 billion.
We must solve for t in the equation P (t) = 13.832. We have

6.916ekt = 13.832

ekt = 2

kt = ln(2)

t =
ln(2)

k
≈ 0.693

0.0109
≈ 63.578.

The world population will double approximately 63 years after 2011,
which corresponds to the year 2074.

�

The time it takes for a population to double is called the doubling time
and is denoted t2. Exponential growth is often described by its doubling time
t2 rather than by its growth constant k. If you know either t2 or k you can
figure out the other, as they are related by the equation

t2 =
ln(2)

k

that appeared during part (c) of the solution to Example 1.

EXAMPLE 2 Find the doubling time if the growth rate is 2 percent per
year.
SOLUTION The growth rate is 2 percent, so we set k = 0.02. Then

t2 =
ln(2)

k
≈ 0.693

0.02
= 34.65 years.

�

Exponential growth may also be described in terms of an annual percentage
increase, such as “The population is growing 6% annually. That is, each year
the population is multiplied by the factor 1.06: P (t + 1) = P (t)(1.06).

From the exponential growth function, we see that

P (t + 1) = P (0)ek(t+1) = P (0)ektek = P (t)ek.

That is, during each unit of time the population is magnified by a factor of
ek. When k is small, ek ≈ 1 + k. Consequently we can approximate 6 percent
annual growth by letting k = 0.06. The approximation is valid whenever the
growth rate is only a few percent. Since population figures are themselves only
approximations. Ssetting the growth constant k equal to the annual percentage
rate is a reasonable tactic.
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Natural Decay

As Glen Seaborg observes in the conversation reported on page 433, radioactive
elements decay at a rate proportional to the amount present. The time it takes
for half the initial amount to decay is denoted t1/2 and is called the element’s
half-life.

Similarly, in medicine one speaks of the half-life of a drug administered to
a patient, meaning the time required for half the drug to be removed from the
body. This half-life depends on the drug and the patient, and can be from 20
minutes for penicillin to 2 weeks for quinacrine, an antimalarial drug. This
half-life is critical to determining how frequently a drug can be administered.
Some elderly patients have died from overdoses before it was realized that the
half-life of some drugs is longer in the elderly than in the young.

Letting P (t) represent the amount present at time t, we have Now k is negative.

P ′(t) = kP (t), k < 0,

where k is the decay constant. This is the same equation as (5.7.1), so

P (t) = P (0)ekt,

as before, except now k is a negative number. Since k is negative, the factor
ekt is a decreasing function of t.

Just as the doubling time is related to (positive) k by the equation t2 =
(ln(2))/k, the half-life is related to (negative) k by the equation t1/2 = (ln(1/2))/k,
which can be rewritten as t1/2 = −(ln(2))/k.

EXAMPLE 3 The Chernobyl nuclear reactor accident in April 1986 re-
leased radioactive cesium 137 into the air. The half-life of 137Cs is 27.9 years.

(a) Find the decay constant k of 137Cs.

(b) When will only one-fourth of an initial amount remain?

(c) When will only 20 percent of an initial amount remain?

SOLUTION

(a) The formula for the half-life can be solved for k to give

k =
− ln(2)

t1/2

≈ −0.693

27.9
≈ −0.0248.
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(b) This can be done without the aid of any formulas. Since 1
4

= 1
2
· 1

2
, in two

half-lives only one-quarter of an initial amount remains. The answer is
2(27.9) = 55.8 years.

(c) We want to find t such that only 20 percent remains. While we know the
answer is greater than 55.8 years (since 20% is less than 25%), finding
the exact time requires using the formula for P (t).

We want
P (t) = 0.20P (0).

That is, we want to solve

P (0)ekt = 0.20P (0).

Then

ekt = 0.20

kt = ln(0.20)

t =
ln(0.20)

k
.

Since k ≈ −0.0248, this gives

t ≈ −1.609

−0.0248
= 64.9 years.

After 64.9 years (that is, in 2051) only 20% of the original amount will
remain.

�

Summary

We developed the mathematics of growth or decay that is proportional to the
amount present. This required solving the differential equation

dP

dt
= kP

where k is a constant, positive for growth and negative for decay. The solution
is

P (t) = Aekt

where A is P (0), the amount present when t = 0.
In the case of growth, the time for the quantity to double (the “doubling

time”) is denoted t2. In the case of decay, the time when only half the original
amount survives is denoted t1/2, the half-life. We have

t2 =
ln(2)

k
and t1/2 =

ln(1/2)

k
= − ln(2)

k
.
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The Scientist, The Senator, and Half-Life
In 1963, during the hearings before the Senate Foreign Relations Committee
on the nuclear test ban treaty, this exchange took place between Glen Sol-
borg, winner of the Nobel prize for chemistry in 1951, and Senator James W.
Fulbright.

Seaborg: Tritium is used in a weapon, and it decays with a half-life of about
12 years. But the plutonium and uranium have such long half-lives that
there is no detectable change in a human lifetime.

Fulbright: I am sure this seems to be a very naive question, but why do
you refer to half-life rather than whole life? Why do you measure by
half-lives?

Seaborg: Here is something that I could go into a very long discussion on.

Fulbright: I probably wouldn’t benefit adequately from a long discussion. It
seems rather odd that you should call it a half-life rather than its whole
life.

Seaborg: Well, I will try. If we have, let us say, one million atoms of a
material like tritium, in 12 years half of those will be transformed into a
decay product and you will have 500,000 atoms.

Then, in another 12 years, half of what remains transforms, so you have
250,000 atoms left. And so forth.

On that basis it never all decays, because half is always left, but of course
you finally get down to where your last atom is gone.
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EXERCISES for Section 5.7

1. Using no mathematical symbols, describe the basic assumption in natural
growth and decay.

2.

(a) Show that exponential growth can be expressed as P = Abt for constants A
and b.

(b) What can be said about b?

3.

(a) Show that exponential decay can be expressed as P = Abt for constants A
and b.

(b) What can be said about b?

4. If P (t) = 30e0.2t what are the initial size and the doubling time?

5. If P (t) = 30e−0.2t what are the initial size and the half-life?

6. What is the doubling time for a population always growing at 1% a year?

7. What is the half-life for a population always shrinking at 1% a year?

8. A quantity is increasing according to the law of natural growth. The amount
present at time t = 0 is A. It will double when t = 10.

(a) Express the amount at time t in the form Aekt.

(b) Express the amount at time t in the form Abt.

9. The mass of a bacterial culture after t hours is 10 · 3t grams.

(a) What is the initial amount?

(b) What is the growth constant k?

(c) What is the percent increase in any period of 1 hour?
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10. Let f(t) = 3 · 2t.

(a) Solve the equation f(t) = 12.

(b) Solve the equation f(t) = 5.

(c) Find k such that f(t) = 3ekt.

11. A population growing exponentially has a doubling time of 5 years. How long
will it take to qraduple in size?

12. The population of Latin America has a doubling time of 27 years. Estimate
the percent it grows per year.

13. At 1:00 p.m. a bacterial culture weighed 100 grams. At 4:30 p.m. it weighed
250 grams. Assuming that it grows at a rate proportional to the amount present,
find (a) at what time it will grow to 400 grams and (b) its growth constant.

14. A bacterial culture grows from 100 to 400 grams in 10 hours according to the
law of natural growth.

(a) How much was present after 3 hours?

(b) How long will it take the mass to double? quadruple? triple?

15. A radioactive substance disintegrates at the rate of 0.05 grams per day when
its mass is 10 grams.

(a) How much of the substance will remain after t days if the initial amount is A?

(b) What is its half-life?

16. In 2010 the population of Mexico was 108 million and of the United States 308
million. If the population of Mexico increases at 1.2% per year and the population
of the United States at 1.1% per year, when would the two nations have the same
size population?

17. The size of the population in India was 689 million in 1980 and 1,027 million
in 2007. What is its doubling time t2?
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Figure 5.7.1
18. The newspaper article shown in Figure 5.7.1 illustrates the rapidity of expo-
nential growth.

(a) Is the figure of $14 billion correct? Assume that the interest is compounded
annually.

(b) What interest rate would be required to produce an account of $14 billion if
interest were compounded once a year?

(c) Answer (b) for continuous compounding, which is another term for natural
growth (a bank account increasing at a rate proportional to the amount in
the account at any instant).

Figure 5.7.2
19. The headline shown in Figure 5.7.2 appeared in 2002. Is the number 69,315
correct? Explain.

20. Carbon 14 (chemical symbol 14C), an isotope of carbon, is radioactive and has
a half-life of approximately 5,730 years. If the 14C concentration in a piece of wood
of unknown age is half of the concentration in a present-day live specimen, then it
is about 5,730 years old, assuming that 14C concentrations in living objects remain
about the same. This gives a way of estimating the age of an undated specimen.
Show that if AC is the concentration of 14C in a live (contemporary) specimen and
Au is the concentration of 14C in a specimen of unknown age, then the age of the
undated material is about 8, 300 ln(AC/Au) years. This method, called radiocar-
bon dating, is reliable up to about 70,000 years.
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21. From a letter to an editor in a newspaper:

I’ve been hearing bankers and investment advisers talk about some-
thing called the “rule of 72.” Could you explain what it means?

How quickly would you like to double your money? That’s what the “rule of 72” will
tell you. To find out how fast your money will double at any given interest rate or
yield, simply divide that yield into 72. This will tell you how many years doubling
will take.
Let’s say you have a long-term certificate of deposit paying 12 percent [annually].
At that rate your money would double in six years. A money-market fund paying
10 percent would take 7.2 years to double your investment.

(a) Explain the rule of 72 and what number should be used instead of 72.

(b) Why do you think 72 is used?

22. Benjamin Franklin conjectured that the population of the United States would
double every 20 years, beginning in 1751, when the population was 1.3 million.

(a) If Franklin’s conjecture was right, what would the population of the United
States be in 2012?

(b) In 2012 the population was 313 million. Assuming natural growth, what would
the doubling time be?

(Assume P (0) = 1 and k > 0.)

23. (Doomsday equation) A differential equation of the form dP/dt = kP 1.01

is called a doomsday equation. The rate of growth is just slightly higher than
that for natural growth. Solve the differential equation to find P (t). How does P (t)
behave as t increases? Does P (t) increase forever?

24. The following are all mathematically the same:

1. A drug is administered in a dose of A grams to a patient and gradually leaves
the system through excretion.

2. Initially there is an amount A of smoke in a room. The air conditioner is
turned on and gradually the smoke is removed.

3. Initially there is an amount A of a pollutant in a lake, when further dumping
of toxic materials is prohibited. The rate at which water enters the lake equals
the rate at which it leaves. (Assume the pollution is thoroughly mixed.)

In each case, let P (t) be the amount present at time t (whether drug, smoke, or
pollutant).
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(a) Why is it reasonable to assume that there is a constant k such that for small
intervals of time, ∆t, ∆P ≈ kP (t)∆t?

(b) From (a) deduce that P (t) = Aekt.

(c) Is k positive or negative?

25. Newton’s law of cooling assumes that an object cools at a rate proportional
to the difference between its temperature and the room temperature. Denote the
room temperature as A. The differential equation for Newton’s law of cooling is
dy/dt = k(y −A) where k and A are constants.

(a) Explain why k is negative.

(b) Draw the slope field for the differential equation when k = −1/2.

(c) Use (b) to conjecture the behavior of y(t) as t→∞.

(d) Solve for y as a function of t.

(e) Draw the graph of y(t) on the slope field produced in (b).

(f) Find limt→∞ y(t).

26. Let I(x) be the intensity of sunlight at a depth of x meters in the ocean. As
x increases, I(x) decreases.

(a) Why is it reasonable to assume that there is a constant k (negative) such that
∆I ≈ kI(x)∆x for small ∆x?

(b) Deduce that I(x) = I(0)ekx, where I(0) is the intensity of sunlight at the
surface. Incidentally, sunlight at a depth of 1 meter is only one-fourth as
intense as at the surface.

27. A particle moving through a liquid meets a drag force proportional to the
velocity; so its acceleration is proportional to its velocity. Let x denote its position
and v its velocity at time t. Assume v > 0.

(a) Show that there is a positive constant k such that dv/dt = −kv.

(b) Show that there is a constant A such that v = Ae−kt.

(c) Show that there is a constant B such that x = − 1
kAe−kt + B.
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(d) How far does the particle travel as t goes from 0 to∞? (Is it a finite or infinite
distance?)

28.

(a) Show that the natural growth function P (t) = Aekt can be written in terms
of A and t2 as P (t) = A · 2t/t2 .

(b) Check that the function found in (a) is correct when t = 0 and t = t2.

29.

(a) Express the natural decay function P (t) = Aekt in terms of A and t1/2.

(b) Check that the function found in (a) is correct when t = 0 and t = t1/2.

30. A population is growing exponentially. At time 0, it is P0. At time u it is Pu.

(a) Show that at time t it is P0(Pu/P0)t/u.

(b) Check that the formula in (a) gives the correct population when t = 0 and
t = u.

31. Let P (t) = Aekt. Then P (t+1)−P (t)
P (t) = ek − 1. Show that when k is small,

ek−1 ≈ k. That means the relative change in one unit of time is approximately k.

32. A fish population increases at a rate proportional to the size of the population.
It is being harvested at a constant rate. Let P (t) be the size of the population at
time t.

(a) Show that there are positive constants h and k such that for small ∆t, ∆P ≈
kP∆t− h∆t.

(b) Find a formula for P (t) in terms of P (0), h, and k. (First divide by ∆t in (a)
and then take limits as ∆t→ 0.)

(c) Describe the behavior of P (t) in the cases h = kP (0), h > kP (0), and h <
kP (0)
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33. The half-life of a drug administered to a patient is 8 hours. It is given in a
1-gram dose every 8 hours.

(a) How much is there in the patient just after the second dose is administered?

(b) How much is there in the patient just after the third dose? The fourth dose?

(c) Let P (t) be the amount in the patient at t hours after the first dose. Graph
P (t) for a period of 48 hours. (P (t) has meaning for all values of t, not just
for integers.)

(d) Does the amount in the patient get arbitrarily large as time goes on?

34. The half-life of the drug in Exercise 33 is 16 hours when administered to a
different patient. Answer, for this patient, the questions in Exercise 33.

35. The half-life of a drug in a patient is t1/2 hours. It is administered every h
hours. Can the concentration of the drug get arbitrarily high? Explain your answer.

Exercises 36 to 38 introduce and analyze the inhibited or logistic growth model.
It will be encountered in the CIE about petroleum at the end of Chapter 10.
36. In many cases of growth there is a finite upper bound M which the population
cannot exceed. Why is it reasonable to assume that

dP

dt
= kP (t)(M − P (t)) 0 < P (t) < M (5.7.4)

for some constant k?

37.

(a) Solve the differential equation in Exercise 36. (You will need the partial
fraction identity

1
P (M − P )

=
1
M

(
1
P

+
1

M − P

)
and the property ln(A) − ln(B) = ln

(
A
B

)
.) After simplification, your answer

should have the form
P (t) =

M

1 + ae−Mkt

for a constant a.

(b) Find limt→∞ P (t). Is its value reasonable?
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(c) Express a in terms of P (0), M , and k.

38. By considering (5.7.4) in Exercise 36 directly (not the explicit formula in
Exercise 37), show that

(a) P is an increasing function.

(b) The maximum rate of change of P occurs when P (t) = M/2.

(c) The graph of P (t) has an inflection point.

39. A financial advisor, trying to persuade a client to invest in Standard Coag-
ulated Mutual Fund, shows him the graph in Figure 5.7.3, that records the value
of a similar investment made in the fund in 1965. “Look! In the first 5 years the
investment increased $1,000,” the salesman observed, “but in the past 5 years it
increased by $2,000. It’s really improving. Look at the part of the graph from 1985
to 1990.”

Figure 5.7.3
The investor replied, “Hogwash. Though your graph is steeper from 1985 to 1990,
in fact, the rate of return is less than from 1965 to 1970. In fact, that was your best
period.”

(a) If the percentage return on the accumulated investment remains the same over
each 5-year period as the first 5-year period, sketch the graph.

(b) Explain the investor’s reasoning.

40. The populations of two countries are growing exponentially but at different
rates. One is described by A1e

k1t, the other by A2e
k2t, and k1 is not equal to k2. Is
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their total population growing exponentially? That is, are there constants A and k
such that the formula for their total population has the form Aekt? Explain your
answer.

41. Assume c1, c2, and c3 are distinct constants. Can there be constants A1, A2,
and A3, not all 0, such that A1e

c1x + A2e
c2x + A3e

c3x = 0 for all x?

42. If two functions describe natural growth does their (a) product? (b) quotient?
(c) sum?
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5.8 The Hyperbolic Functions and Their In-

verses

Certain combinations of the exponential functions et and e−t occur often
enough — for instance, in the study of the shape of electrical transmission
or suspension cables — to be given names. They are called hyperbolic func-
tions. This section defines them and presents their basic properties.

The Hyperbolic Functions

Figure 5.8.1

DEFINITION (The hyperbolic cosine.) Let t be a real number.
The hyperbolic cosine of t, denoted cosh(t), is

cosh(t) =
et + e−t

2
.

Because

cosh(−t) =
e−t + e−(−t)

2
=

et + e−t

2
= cosh(t).

Pronounced as written, cosh
rhymes with gosh.

the cosh function is even. Therefore its graph is symmetric with respect to
the vertical axis. Furthermore, cosh(t) is the sum

cosh(t) =
et

2
+

e−t

2
.

As t → ∞, the second term, e−t/2, is positive and approaches 0. Thus, for
t > 0 and large, the graph of cosh(t) is just a little above the graph of et/2.
This, together with the fact that cosh(0) = (e0 + e−0)/2 = 1, is the basis for
Figure 5.8.1. It shows that the graph of y = cosh(t) is asymptotic to the graph
of y = et/2 as t→∞ and to the graph of y = e−t/2 as t→ −∞.

The curve y = cosh(t) in Figure 5.8.1 is called a catenary, from the Latin
catena meaning chain. It describes the shape of a free-hanging chain.

DEFINITION (The hyperbolic sine.) “sinh” is pronounced sinch,
rhyming with pinch.

Let t be a real number.
The hyperbolic sine of t, denoted sinh(t), is

sinh(t) =
et − e−t

2
.

Because sinh(0) = 0 and sinh(−t) = − sinh(t), the graph of y = sinh(t)
is symmetric with respect to the origin. It lies below the graph of et/2 and,
since e−t/2 → 0 as t → ∞, the graphs of y = sinh(t) and y = et/2 approach
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each other.

Figure 5.8.2

Thus, by symmetry, the graph of y = sinh(t) is asymptotic to the
graph of y = −et/2 as t→ −∞. Figure 5.8.2 shows the graph of sinh(t).

The graphs of sinh(t) and sin(t) exhibit very different behaviors. As |t|
becomes large, the hyperbolic sine becomes large, limt→∞ sinh(t) = ∞ and
limt→−∞ sinh(t) = −∞. There is a similar contrast between cosh(t) and cos(t).
The trigonometric functions are periodic, the hyperbolic functions are not.

Example 1 shows why the functions (et + e−t)/2 and (et− e−t)/2 are called
hyperbolic.

EXAMPLE 1 Show that for any real number t the point with coordinates

x = cosh(t), y = sinh(t)

lies on the hyperbola x2 − y2 = 1.
SOLUTION

Figure 5.8.3

Compute x2 − y2 = cosh2(t)− sinh2(t) and see whether it sim-
plifies to 1. We have

cosh2(t)− sinh2(t) =
(

et+e−t

2

)2

−
(

et−e−t

2

)2

(definitions)

= e2t+2ete−t+e−2t

4
− e2t−2ete−t+e−2t

4
(expand powers)

= 2+2
4

(simplification)
= 1.

Because cosh(t) ≥ 1, the point (cosh(t), sinh(t)) is on the right half of the
hyperbola x2 − y2 = 1, as shown in Figure 5.8.3. �

By contrast, (cos(θ), sin(θ)) lies on the circle x2 + y2 = 1, so the trigono-
metric functions are also called circular functions.

There are four more hyperbolic functions: the hyperbolic tangent, hyper-
bolic secant, hyperbolic cotangent, and hyperbolic cosecant. They are defined
as:

tanh(t) =
sinh(t)

cosh(t)
, sech(t) =

1

cosh(t)
, coth(t) =

cosh(t)

sinh(t)
, csch(t) =

1

sinh(t)
.

Figure 5.8.4

Each can be expressed in terms of exponentials. For instance,

tanh(t) =
(et − e−t)/2

(et + e−t)/2
=

et − e−t

et + e−t
.

As t → ∞, et → ∞ and e−t → 0. Thus limt→∞ tanh(t) = 1. Similarly,
limt→−∞ tanh(t) = −1. Figure 5.8.4 is a graph of y = tanh(t).
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The Derivatives of the Hyperbolic Functions

The derivatives of the hyperbolic functions can be computed directly. For
instance,

(cosh(t))′ =

(
et + e−t

2

)′
=

et − e−t

2
= sinh(t).

Function Derivative
cosh(t) sinh(t)
sinh(t) cosh(t)
tanh(t) sech2(t)
coth(t) − csch2(t)
sech(t) − sech(t) tanh(t)
csch(t) − csch(t) coth(t)

Table 5.8.1

Table 5.8.1 lists the derivatives. The formulas, except for the signs, are like
those for the derivatives of the trigonometric functions.

The Inverses of the Hyperbolic Functions

Inverse hyperbolic functions appear on some calculators and in tables of
mathematical functions. As the hyperbolic functions are expressed in terms
of exponential functions, each inverse hyperbolic function can be expressed in
terms of logarithms. They provide useful antiderivatives as well as solutions
to some differential equations.

Consider the inverse of sinh(t) first. Since sinh(t) is increasing, it is one-to-
one; there is no need to restrict its domain. To find its inverse, it is necessary
to solve the equation

x = sinh(t)

for t as a function of x. We have Finding the inverse of the
hyperbolic sine

x = et−e−t

2
, (definition of sinh(t))

2x = et − 1
et , (e−t = 1/et)

2xet = (et)2 − 1, (multiply by et)

or
(et)2 − 2xet − 1 = 0. (5.8.1)

Equation (5.8.1) is quadratic in et. By the quadratic formula,

et =
2x±

√
(−2x)2 + 4

2
= x±

√
x2 + 1.

Since et > 0 and
√

x2 + 1 > x, the plus sign is kept and the minus sign is
rejected. Thus

et = x +
√

x2 + 1 and t = ln
(
x +
√

x2 + 1
)

.

Thus,

arcsinh(x) = sinh−1(x) = ln
(
x +
√

x2 + 1
)

.

Computing arctanh(x) is a little different. Since the derivative of tanh(t)
is sech2(t), the function tanh(t) is increasing and has an inverse. However,
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| tanh(t)| < 1, so the inverse function will be defined only for |x| < 1. Compu-
tations similar to those for arcsinh(x) show that

arctanh(x) = tanh−1(x) =
1

2
ln

(
1 + x

1− x

)
|x| < 1.

Inverses of the other hyperbolic functions are computed similarly. The
functions arccosh(x) and arcsech(x) are chosen to be positive. Their formulas
are in Table 5.8.2.

The derivatives are found by
differentiating the formulas

in the second column.

Function Formula Derivative Domain

arccosh(x) ln(x +
√

x2 − 1) 1√
x2−1

x ≥ 1

arcsinh(x) ln(x +
√

x2 + 1) 1√
x2+1

x-axis

arctanh(x) 1
2
ln
(

1+x
1−x

)
1

1−x2 |x| < 1

arccoth(x) 1
2
ln
(

x+1
x−1

)
1

1−x2 |x| > 1

arcsech(x) ln
(

1+
√

1−x2

x

)
−1

x
√

1−x2 0 < x ≤ 1

arccsch(x) ln
(

1+
√

1+x2

x

)
−1

|x|
√

1+x2 x 6= 0

Table 5.8.2

Some Geometry of Hyperbolic Functions

The point (cosh(t), sinh(t)) lies on the graph of the hyperbola x2 − y2 = 1.
(See Example 1.) The parameter t, which can be any number, has a geometric
interpretation: it is the area of the shaded region in Figure 5.8.5(a). This
corresponds to the fact that a sector of the unit circle with angle 2θ has area
θ, as shown in Figure 5.8.5(b). (See Exercise 64 in the Chapter 6 Summary.)

(a) (b)

Figure 5.8.5
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Summary

We introduced the six hyperbolic functions and their inverses, including sinh
(pronounced sinch), cosh (pronounced cosh), tanh (pronounced tanch to rhyme
with ranch) and their inverses arcsinh, arccosh, and arctanh. Because they are
expressible in terms of exponentials, square roots, and logarithms, they do not
add to the collection of elementary functions. However, some of them are
especially convenient.
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EXERCISES for Section 5.8

1.

(a) Compute cosh(t) and et/2 for t = 0, 1, 2, 3, and 4.

(b) Using the data in (a) and the fact that cosh(t) is an even function, graph
y = cosh(t) and y = et/2 on the same axes.

2.

(a) Compute tanh(t) for t = 0, 1, 2, and 3.

(b) Using the data in (a) and the fact that tanh(t) is an odd function, graph
y = tanh(t).

In Exercises 3 to 5 obtain the derivatives of the functions and express them in terms
of hyperbolic functions.
3. tanh(x)
4. sinh(x)
5. cosh(x)

6.

(a) Compute sinh(t) and cosh(t) for t = −3, −2, −1, 0, 1, 2, and 3.

(b) Plot the seven points (x, y) = (cosh(t), sinh(t)) found in (a).

(c) Explain why the point plotted in (b) lie on the hyperbola x2 − y2 = 1.

7.

(a) Show that sech2(x) + tanh2(x) = 1.

(b) What equation links sec(θ) and tan(θ)?

In Exercises 8 to 16 use the definitions of the hyperbolic functions to verify the
identities. They are similar to, but differ from the corresponding identities for the
trigonometric functions.
8. cosh(x + y) = cosh(x) cosh(y) + sinh(x) sinh(y)
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9. sinh(x + y) = sinh(x) cosh(y) + cosh(x) sinh(y)

10. tanh(x + y) = tanh(x)+tanh(y)
1+tanh(x) tanh(y)

11. cosh(x− y) = cosh(x) cosh(y)− sinh(x) sinh(y)

12. sinh(x− y) = sinh(x) cosh(y)− cosh(x) sinh(y)

13. cosh(2x) = cosh2(x) + sinh2(x)

14. sinh(2x) = 2 sinh(x) cosh(x)

15. 2 sinh2(x/2) = cosh(x)− 1

16. 2 cosh2(x/2) = cosh(x) + 1

In Exercises 17 to 19 obtain a formula for the function in terms of logarithms.
17. arctanh(x)

18. arcsech(x)

19. arccosh(x)

In Exercises 20 to 23 show that the derivative of the first function is the second
function.
20. arccosh(x); 1/

√
x2 − 1

21. arcsinh(x); 1/
√

x2 + 1

22. arcsech(x); 1/(x
√

1− x2)

23. arccsch(x); 1/(x
√

1 + x2)

24. Find the inflection points on the curve y = tanh(x).

25. Graph y = sinh(x) and y = arcsinh(x) on the same axes. Show any inflection
points.

26. One of the applications of hyperbolic functions is the study of motion in which
the resistance of the medium is proportional to the square of the velocity. Suppose
that a body starts from rest and falls x meters in t seconds. Let g (a constant) be
the acceleration due to gravity. It can be shown that there is a constant V > 0 such
that x = V 2

g ln
(
cosh

(gt
V

))
.

(a) Find the velocity v(t) = dx/dt as a function of t.

(b) Show that limt→∞ v(t) = V .

(c) Compute the acceleration a(t) = dv/dt as a function of t.

(d) Show that the acceleration equals g − g(v/V )2.

(e) What is the limit of the acceleration as t→∞?

(f) What is limt→∞ x(t)?
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27. This exercise concerns antiderivatives of

f(x) =
1√

ax + b
√

cx + d
.

(a) Show that 2√
−ac

arctan
√

−c(ax+b)
a(cx+d) is an antiderivative of f(x) when a > 0 and

c < 0.

(b) Show that 2√
ac

arctanh
√

c(ax+b)
a(cx+d) is an antiderivative of f(x) when a > 0 and

c > 0.
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5.S Chapter Summary

This chapter showed the derivative at work: applying it to practical problems,
estimating errors, and evaluating some limits.

To determine the extrema of a quantity we need to find a function that
tells how it depends on other quantities. Then, finding the extrema is like
finding the highest or lowest points on the graph of the function.

When two varying quantities are related by an equation, differentiate both
sides of that equation to find a relationship between their rates of change.

The next two sections formed a unit that presents one of the main uses
of higher derivatives: to estimate errors when approximating a function by a
polynomial and later, in Section 6.5, to estimate errors in approximating area
under a curve by trapezoids and parabolas.

The key to the growth theorem is that if R is a function such that

0 = R(a) = R′(a) = R′′(a) = · · · = R(n)(a)

and in some interval around a we know R(n+1)(x) is continuous, then there is
a number c in [a, x] such that

|R(x)| ≤
∣∣R(n+1)(c)

∣∣ |x− a|n+1

(n + 1)!
for all x in [a, x].

This gives us information on how rapidly R(x) can grow for x near a. It was
used to control the error when using a polynomial to approximate a function.

A likely candidate for the polynomial of degree n that closely resembles
a given function f near x = a is the one whose derivatives at a, up through
order n, agree with those of f at a. That polynomial is

P (x) = Pn(x; a) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

Because the polynomial was chosen so that P (k)(a) = f (k)(a) for all k up
through n, the remainder function function R(x) = f(x) − P (x) has all its
derivatives up through order n at a equal to 0. Moreover, since the (n + 1)st

derivative of any polynomial of degree at most n is identically 0, R(n+1)(x) =
f (n+1)(x). Using these facts we obtained Lagrange’s formula for the error:

f (n+1)(c)

(n + 1)!
(x− a)n+1 for some c between a and x.

Section 5.6 concerned l’Hôpital’s rule, a tool for computing limits, such as
the limit of a quotient whose numerator and denominator both approach zero.

The chapter concludes with sections on natural growth and decay and the
hyperbolic functions.
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EXERCISES for 5.S

1. Arrange the following numbers in order of increasing size as x→∞.

(a) 1000x

(b) log2(x)

(c)
√

x

(d) (1.0001)x

(e) log1000(x)

(f) 0.01x3

In Exercises 2 to 28 find the limits, if they exist.

2. lim
u→∞

(
u + 1

u

)u+1 1√
u

3. lim
x→∞

(
x + 2
x + 1

)x+3

4. lim
x→∞

(
x

x + 1

)x+1

5. lim
x→3

x− 2
cos(πx)

6. lim
x→3

x− 2
sin(πx)

7. lim
x→∞

√
1 + x2

x

8. lim
x→∞

√
1 + x2

√
2 + x2

9. lim
x→∞

(1 + x2)1/2

(2 + x2)1/3

10. lim
x→∞

1 + x + x2

2 + 3x + 4x2

11. lim
x→1

ln(x) tan
(

πx
4

)
cos
(

πx
2

)
12. lim

x→0

f(3 + x)− f(3)
x

where f(x) = (x2 + 5) sin2(3x).

13. lim
x→∞

ln(6x)− ln(5x)
ln(7x)− ln(6x)

14. lim
x→∞

ln(6x)− ln(5x)
x ln(7x)− x ln(6x)
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15. lim
x→π

e−x2
sin(x)

x2 − π2

16. lim
x→π

ln(x3 − sin(x))− 3 ln(π)
x− π

17. lim
x→0

(x + 2)
(x + 3)

(cos(5x)− 1)
cos(7x)− 1)

18. lim
x→∞

(
x + 2
x + 1

)2x

19. lim
x→π

sin4(x)
(π4 − x4)2

20. lim
x→∞

sec4(x) tan(3x)
sin(2x)

21. lim
x→1

e3x(x2 − 1)
cos(
√

2x) tan(3x− 3)

22. lim
x→0

(1 + 0.005x)20x

23. lim
t→0

e3(x+t) − e3x

5t

24. lim
t→0

e3(x+t) − e3x

5t

25. lim
x→0

(
1 + 2x

2

)1/x

26. lim
x→0

(
1 + 2x

1 + 3x

)1/x

27. lim
x→∞

(1 + 0.003x)20/x

28. lim
x→∞

(1 + 0.003x)20/x

In Exercises 29 to 36 find the derivative of the given function.
29. (cos(x))1/x2

30. ln
(
sec2(3x)

√
1 + x2

)
31. ln

(√
ex3
)

32. 5+3x+7x2

58−4x+x2

33. tan2(2x)
(1+cos(2x))4

34. (cos2(3x))cos2(2x)
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35. f(x) =
{

x2 sin(π/x) if x 6= 0
0 if x = 0

36. f(x) =
{

sin(πx)
x if x 6= 0
π if x = 0

37.

(a) Find P1(x; 64) for f(x) =
√

x.

(b) Use P1(x; 64) to estimate
√

67.

(c) Put bounds on the error in the estimate in (b).

38.

(a) Show that when x is small 3
√

1 + x is approximately 1 + x/3.

(b) Use (a) to estimate 3
√

0.94 and 3
√

1.06.

39.

(a) Show that when x is small 1/ 3
√

1 + x is approximately 1− x/3.

(b) Use (a) to estimate 1/ 3
√

0.94 and 1/ 3
√

1.06.

40.

(a) Find the Maclaurin polynomial of degree 6 associated with cos(x).

(b) Use (a) to estimate cos(π/4).

(c) What is the error between the estimate found in (b) and the exact value,√
2/2?

(d) What is the Lagrange bound for the error?

In Exercises 41 to 52 determine whether the limit exists, and, if it does exist, find
its value.
41. lim

x→1

1− ex

1− e2x

42. lim
x→0

x√
1 + x2
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43. lim
x→0

1− ex

1− e2x

44. lim
x→∞

x2

(1 + x3)2/3

45. lim
x→∞

x2 sin(x)

46. lim
x→8

2x − 28

x− 8

47. lim
x→1

ex2 − ex

x− 1

48. lim
x→4

2x + 24

x + 4

49. lim
x→0

sin(x)− e2x

x

50. lim
x→0

e3x sin(2x)
tan(3x)

51. lim
x→0

√
1 + x2 − 1

3
√

1 + x2 − 1

52. lim
x→π/2

sin 9x) cos(x)
x− π/2

53. If limx→∞ f ′(x) = 3 and limx→∞ g′(x) = 3, what, if anything, can be said
about

(a) limx→∞
f(x)
3x

(b) limx→∞(g(x)− f(x))

(c) limx→∞
f(x)
g(x)

(d) limx→∞(f(x)− 3x)

(e) limx→∞
(f(x))3

(g(x))3

54. Let f(x) = (5x3 + x + 2)20. Find (a) f (60)(4) and (b) f (61)(2).

55. The point P = (c, d) lies in the first quadrant. A line through P with negative
slope determines a triangle whose vertices are the origin and the intercepts of the
line on the axes.

(a) Find the slope of the line that minimizes the area of the triangle.

(b) Find the minimum area.

Calculus April 22, 2012



456 CHAPTER 5 MORE APPLICATIONS OF DERIVATIVES

56. Figure 5.S.1(a) shows a rectangle whose base is the x-axis inscribed in the
parabola y = 1− x2.

(a) Find the rectangle of largest perimeter.

(b) Find the rectangle of largest area.

(a) (b)

Figure 5.S.1
57. A rectangle of perimeter 12 inches is spun around one of its edges to produce
a circular cylinder.

(a) For which rectangle is the area of the curved surface of the cylinder a maxi-
mum?

(b) For which rectangle is the volume of the cylinder a maximum?

Exercises 58 to 60 are related.
58. Consider isosceles triangles whose equal sides have length a and whose angle
where the equal sides meet is θ. For which θ is the area of the triangle a maximum?

(a) Solve using calculus.

(b) Solve without calculus.
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Figure 5.S.2
59. Let c and d be positive numbers. Figure 5.S.2 shows the line segments through
P = (c, d) whose ends are on the positive x- and y-axes.
Let θ be the acute angle between the line and the x-axis. Show that the angle α
that produces the shortest line segment through P has tan3(α) = d/c.

60. (See Exercise 59.)

(a) Show that for the angle β such that the the area of the triangle in Exercise 59
is a minimum, tan(β) = d/c.

(b) Show that for β as in (a), OP bisects the line segment.

61. Let f(x) = 1/x for positive x. Let g(a) be the area of the triangle formed by
the tangent to y = f(x) at (a, 1/a), the x-axis, and the y-axis.

(a) How do you think g(a) behaves as a increases?

(b) Find lima→∞ g(a).

(c) Does the limit in (b) agree with your opinion in (a)?

(d) Now that you know the answer to (b), find this limit using elementary geom-
etry.

(e) What if the line through (a, 1/a) is not tangent?

Exercises 62 to 65 are all related.
62. Let (a, b) be a point in the first quadrant. Each line through (a, b) with a
negative slope, together with the x- and y-axes, forms a triangle. Find the slope of
the line that minimizes the area of the triangle.

63.
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(a) Use the result from Exercise 62 to draw a slope field with the slope at (a, b)
being the slope of the line that minimizes the area of the triangle formed by
the line and the x- and y-axes.

(b) Sketch three curves that follow the slope field created in (a).

(c) Let C be one of the curves drawn in (b). If (a, b) is on C, why is the tangent
to C at (a, b) the line through (a, b) that minimizes the area?

64.

(a) Show that if y = f(x) is a curve suggest by the slope field in Exercise 63, then
(dy/dx)/y = −1/x.

(b) Deduce that f(x) = k/x where k is a constant (different for each curve).

65. Exercises 62 to 64 show, in particular, tha the tangent to the graph of
y = 1/x at a point P is the line through P that minimizes the area of the triangles
formed by a line through P and the positive x- and y-axes. Establish this directly.

66. A farmer has 200 feet of fence that he wants to use to enclose a rectangle
divided into six congruent rectangles, as shown in Figure 5.S.1(b). He wishes to
enclose a maximum area.

(a) If x is near 0, what is the area, approximately?

(b) How large can x be?

(c) In the case that produces the maximum area, which do you think will be larger
x or y? Why?

(d) Find the dimensions x and y that maximize the area.

67. A semicircle of radius a < r ≤ 1 rests upon a semicircle of radius 1, as shown
in Figure 5.S.3(a). The length of PQ, the segment from the origin of the lower circle
to the top of the upper circle, is a function of r, f(r).

(a) Find f(0) and f(1).

(b) Find f(r).

(c) Maximize f(r), testing the maximum by the second derivative.
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(a) (b)

Figure 5.S.3

Exercises 68 to 70 are independent, but related. They contain a surprise.
68. Figure 5.S.3(b) shows the unit circle x2 + y2 = 1, the line L whose equation is
y = 1/3, and a rectangle with base on L, inscribed in the circle. Find the rectangle
with base on L that has (a) minimum perimeter and (b) maximum perimeter.

69. As Exercise 68 but this time the line L has the equation y = 1/2.

70. The analyses in Exercises 68 to 69 are different. Let the line L have the
equation y = c, 0 < c < 1. For which values of c is the analysis like that for (a)
Exercise 68? (b) Exercise 69?

71. A. Bellemans, in “Power demand in walking and pace optimization,” Amer.
J. Physics 49(1981) pp. 25–27, develops a model for the work spent while walk-
ing. At one point he writes “H = L(1 − cos(γ) or, to a sufficient approximation
for the present purpose, H = Lγ2/2.” Justify this approximation when γ is small.

72. Two houses, A and B, are a distance p apart. They are on the same side of
the road at distances q and r, respectively, from it. Find the length of the shortest
path that goes from A to the road, and then to B.

(a) Use calculus.

(b) Use only elementary geometry. (Introduce an imaginary house C such that
the midpoint of B and C is on the road and the segment BC is perpendicular
to the road. That is, reflect B across the road to become C.)
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73. Let k be a constant. Determine limx→∞ x
(
e−k −

(
1− k

x

)x)
.

74. Let k be a constant. Determine limx→∞ x
(
ek −

(
1 + k

x

)x)
.

75. Let pn(x) be the Maclaurin polynomial of degree n associated with ex. Because
ex · e−x = 1, we might expect that pn(x)pn(−x) would also be 1. But that cannot
be because the degree of the product is 2n.

(a) Compute p2(x)p2(−x) and p3(x)p3(−x).

(b) Make a conjecture about pn(x)pn(−x) based on (a).

76. Let pn(x) be the Maclaurin polynomial of degree n associated with ex. Because
e2x = ex · ex, we might expect that p2n(x) = pn(x)pn(x).

(a) Why is that false for n ≥ 1?

(b) To what extent does p2(x)p2(x) resemble p2(2x) and p3(x)p3(x) resemble
p3(2x)?

(c) Make a conjecture based on (a) and (b).

77. Let pn(x) be the Maclaurin polynomial of degree n associated with ex. The
equation ex+y = ex · ey suggests that pn(x + y) might equal pn(x)pn(y).

(a) Why is that not so?

(b) To what extent does p2(x)p2(y) resemble p2(x + y)?

78. What can be said about f(10) if f(1) = 5, f ′(1) = 3, and f ′′(x) < 4 for x in
(−10, 20)?

79. The demand for a product is influenced by its price. In one example an
economics text links the amount sold (x) to the price (P ) by the equation x = b−aP ,
where b and a are positive constants. As the price increases the sales decrease. The
cost of producing x items is an increasing function C(x) = c + kx, where c and k
are positive constants.

(a) Express P in terms of x.

(b) Express the total revenue R(x) in terms of x.
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(c) What is the economic significance of c? (C(0) = c)

(d) What is the economic significance of k? (C ′(0) = k)

(e) Let E(x) be the profit, that is, the revenue minus the cost. Express E(x) as
a function of x.

(f) Which value of x produces the maximum profit?

(g) The marginal revenue is defined as dR/dx and the marginal cost as dC/dx.
Show that for the value of x that produces the maximum profit, dR/dx =
dC/dx.

(h) What is the economic significance of dR/dx = dC/dx in (g)?

80. This exercise concerns a function used to describe the consumption of a finite
resource, such as petroleum. Let Q be the amount initially available. Let a be a
positive constant and b be a negative constant. Let y(t) be the amount consumed
by time t. The function Q/(1 + aebt) is often used to represent y(t).

(a) Show that limt→∞ y(t) = Q and limt→−∞ y(t) = 0. Why are these realistic?

(b) Show that y(t) has an inflection point when t = − ln(a)/b.

(c) Show that at the inflection point, y(t) = Q/2, that is, half the resource has
been used up.

(d) Sketch the graph of y(t).

(e) Where is y′(t), the rate of using the resource, greatest?

(The same function describes limited growth that is bounded by Q, so called lo-
gistic growth.)

81. About 100 cubic yards are added to a landfill every day. The operator decides
to pile the debris up in the form of a cone whose base angle is π/4. At what rate
is the height of the cone increasing when the height is (a) 10 yards? (b) 20 yards?
(c) 100 yards? (d) How long will it take to make a cone 100 yards high? 300 yards
high? (The volume of a circular cone is one third the product of its height and the
area of its base.)

82. A wine dealer has a case of wine that he could sell today for $100. Or, he
could decide to store it, letting it age, and sell later for a higher price. Assume he
could sell in t years for $ 100e

√
t. To decide which option to choose he computes the

present value of the sale. If the interest rate is r, the present value of one dollar t
years hence is e−rt. When should he sell the wine?
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83. A differentiable function is defined throughout (−∞,∞). Its derivative is 0
at exactly two inputs.

(a) Can there be exactly one relative extremum?

(b) Could it have two relative maxima?

(c) What is the maximum number of relative extrema possible?

(d) What is the minimum number?

(Sketch graphs, then explain.)

84. A differentiable function is defined throughout (−∞,∞). Its derivative is 0
at exactly three inputs. and the function approaches 0 as x approaches ∞

(a) Can there be exactly two relative extremum?

(b) Could it have three relative maxima?

(c) What is the maximum number of relative extrema possible?

(d) What is the minimum number?

(Sketch graphs, then explain.)

85. A differentiable function is defined throughout (−∞,∞). Its derivative is 0 at
exactly two inputs and the function approaches the same finite limit as x approaches
∞ and −∞.

(a) Can there be exactly one relative extremum?

(b) Could it have two relative maxima?

(c) What is the greatest number of relative extrema possible?

(d) What is the least number?

(Sketch graphs, then explain.)

86. In the paper cited in the Exercise 71, Bellemans writes “The total mechanical
power required for walking is P (v, a) = αMv3/a+(βMgv)/L)a. Enlarging the pace,
a, at a constant speed v, lowers the first term and increases the second one so that
the formula predicts an optimal pace a∗(v), minimizing P (v, a).” In the formula, α,
M , v, β, g, and L are constants.

(a) Show that a∗(v) =
(

α
β

)1/2 (
L
g

)1/2
v.

(b) Verify that the corresponding minimum power is

P (v, a∗(v)) = 2(αβ)1/2
( g

L

)1/2
Mv2.
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“One would therefore expect that, when walking naturally on the flat at a fixed
velocity, a subject will adjust its pace automatically to the optimum value corre-
sponding to the minimum work expenditure. This has indeed been verified experi-
mentally.”

87. Figure 5.S.4(a) shows two points A and B a mile apart and both at a distance
a from the river CD. Sam is at A. He will walk in a straight line to the river at
4 mph, fill a pail, then continue on to B at 3 mph. He wishes to do this in the
shortest time.

(a) For the fastest route which angle in Figure 5.S.4 do you expect to be larger,
α or β?

(b) Show that for the fastest route sin(α)/ sin(β) equals 4/3.

(a) (b)

Figure 5.S.4
88. A fence b feet high is a feet from a tall building, whose wall contains BC. as
shown in Figure 5.S.4(b). Find the angle θ that minimizes the length of AB. (That
angle produces the shortest ladder to reach the building and stay above the fence.)

89. Show that

(a) If pn(x) is the Maclaurin polynomial associated with f(x), then p′n(x) is the
Maclaurin polynomial associated with f ′(x).

(b) Use (a) to find the 6th-order Maclaurin polynomial for 1/(1− x)2.

90. (Assume e < 3.) Let P1(x) be the Maclaurin polynomial associated with ex.
For how large an x can one be sure that

(a) |ex − P1(x)| < 0.01?
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(b) |ex − P2(x)| < 0.01?

(c) |ex − P3(x)| < 0.01?

91. A number b is algebraic if there is a non-zero polynomial
∑n

i=0 aix
i =

a0 + a1x + a2x
2 + · · · + anxn, with coefficients ai that are rational numbers, such

that
∑n

i=0 aib
i = 0. In other words, b is algebraic if there is a function f that

satisfies f(b) = 0, all derivatives of f at 0 are rational, but not all zero, and there
is a positive integer m such that Dm(f) = 0. (Recall that D is the differentiation
operator.)
We call a number b almost algebraic if b is not algebraic and there is a function
f with f(b) = 0, all derivatives of f at 0 are rational, but not all zero, and there is
a non-zero polynomial p(D) such that p(D)(f) = 0. For example, if p(x) = x2 + 1
then p(D)(f) = D2(f) + f = f ′′ + f .
Show that π is almost algebraic. (Assume it is not algebraic.)

Figure 5.S.5
92. Kepler, the astrologer and astronomer, to celebrate his wedding in 1613,
ordered some wine, which was available in cylindrical barrels of various shapes. He
was surprised by the way the volume of a barrel was measured. A ruler was pushed
through the opening in the side of the barrel (used to fill the barrel) until it came
to a stop at the edge of a circular base. The length of the part of the ruler inside
the barrel was used to determine the volume of the barrel. Figure 5.S.5 shows the
method.
The barrel in Figure 5.S.5 has radius r, height h, and volume V . The length of the
ruler inside the barrel is d.

(a) Using common sense, show that d does not determine V .

(b) How small can V be for a given value of d?

(c) Using calculus, show that the maximum volume for a given d occurs when
h = 2

√
2d/
√

6 and r = d/
√

6.
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(d) Show that to maximize the volume the height must be
√

2 times the diameter.
(This is what Kepler showed.)

Try to solve this problem two different ways, one without implicit differentiation
and the other with it.

93. Let m and n be positive integers. Let f(x) = sinm(x) cosn(x) for x in [0, π/2].

(a) For which x is f(x) a minimum?

(b) For which x is f(x) a maximum?

(c) What is the maximum value of f(x)?

94.

(a) Let P (x) be a polynomial such that D2(x2P (x)) = 0. Show that P (x) = 0.

(b) Does the same conclusion follow if instead we assume D2(xP (x)) = 0?

(If P (x) has degree n, what are the degrees of xP (x) and x2P (x)?)

95. Translate this news item into the language of calculus: “The one positive sign
during the quarter was a slowing in the rate of increase in home foreclosures.”

96. In May 2009 it was reported that “the nation’s industrial production fell in
April by the smallest amount in six months, fresh evidence that the pace of the
economy’s decline is slowing.”
Let P (t) denote the industrial production up to time t with t representing the
number of months since January 2000 (t = 0).

(a) Translate the statement into the language of calculus, that is, in terms of P (t)
and its derivatives (evaluated at appropriate values of t).

(b) Sketch a possible graph of P (t) for November 2008 through April 2009.
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Figure 5.S.6
97. (A challenge to your intuition.) In Figure 5.S.6 AB is tangent to an arc of a
circle, OA is a radius and DC is parallel to AB.

(a) What do you think happens to the ratio of the area of ABC to the area of
ADC as θ → 0?

(b) Using calculus, find the limit of the ratio as θ → 0.

98. Evaluate.

(a) lim
x→0

(
1 + 2x

2

)1/x

(b) lim
x→0

(
1 + 2x

1 + 3x

)1/x

99. Evaluate limx→∞
x(x+1)x

xx+1 .

100. Evaluate limx→∞
(x+1)x

xx+1 .

101. Graph y = x2 ln(x), showing extrema and inflection points. (What is
limx→0+ x2 ln(x)?)

102.

Jane: I wonder which is bigger, 20012000 or 20002001?

Sam: Obviously the one with the bigger base.

Jane: But its exponent is smaller than the exponent of the other.
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Sam: I think the base has more influence.

Jane: And I think the exponent has more impact.

Settle the dispute by examining the ratio 20012000/20002001.

103.

Sam: I can use Taylor polynomials to get l’Hôpital’s theorem.

Jane: How so?

Sam: I write f(x) = f(0) + f ′(0)x + f ′′(c)x2

2 and g(x) = g(0) + g′(0)x + g′′(d)x2

2 .

Jane: O.K.

Sam: Since limx→0 f(x) and limx→0 g(x) are both zero I have f(0) = g(0) = 0. I
can write, after canceling some x’s

f(x)
g(x)

=
f ′(0) + f ′′(c)x

2

g′(0) + g′′(d)x
2

.

Jane: But you don’t know the second derivatives.

Sam: It doesn’t matter. I just take limits and get

lim
x→0

f(x)
g(x)

= lim
x→0

f ′(0) + f ′′(c)x
2

g′(0) + g′′(d)x
2

.

So

lim
x→0

f(x)
g(x)

=
f ′(0)
g′(0)

= lim
x→0

f ′(x)
g′(x)

.

There you have it.

Jane: Let me check your steps.

Check the steps and comment on Sam’s proof.

When a fair six-sided die is thrown many times, a 5 is expected to show about 1/6
of the times. That is, throwing a die n times and getting k 5’s, you would expect
k/n to be near 1/6.
More generally, if a trial has probability p of success and q = 1− p of failure and is
repeated n times with k successes, k/n is expected to be near p. That means that
if n is large you would expect (k/n)− p to be small. So, if ε = (k/n)− p, you would
expect that ε approaches 0 as n→∞. If so, then k = np + εn, or k = np + z, where
z/n→ 0 as n→∞.
The probability of exactly k successes (and exactly n− k failures) in n trials is

n!
k!(n− k)!

pkqn−k. (5.S.1)
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Exercises 104 to 108 show that for large n (and k) (5.S.1) is approximately

1√
2πnpq

exp
(
−z2

2npq

)
. (5.S.2)

Note that (5.S.2) involves exp(−x2), which appears in the normal (or Gaussian)
distribution in probability and statistics.
104. In Exercise 28 in Section 11.6 we will derive Stirling’s formula for an approx-
imation to n!,

n! ≈
√

2πn
(n

e

)n
.

Use Stirling’s formula to show that (5.S.1) is approximately(
n

2πk(n− k)

)1/2 (np

k

)k
(

nq

n− k

)n−k

(5.S.3)

in the sense that (5.S.2) divided by (5.S.3) approaches 1 as n→∞.

105. Show that as n→∞, the first factor in (5.S.3) is asymptotic to(
1

2πpqn

)1/2

(5.S.4)

in the sense that the ratio between it and (5.S.4) approaches 1 as n→∞.

106. To relate the rest of (5.S.3) to the exponential function, exp(x), we take its
logarithm. Show that

ln

((np

k

)k
(

nq

n− k

)n−k
)

= −(np + z) ln
(

1 +
z

np

)
− (nq − z) ln

(
1− z

nq

)
.

107. Using the Maclaurin polynomial of degree two to approximate ln(1+t), show
that for large n, (5.S.5) is approximately

−z2

2pqn
.

108. Conclude that for large n, (5.S.1) is approximately (5.S.2).

109. If P (x) is a Maclaurin polynomial associated with f(x), what is the Maclau-
rin polynomial of the same order associated with f(2x)?

April 22, 2012 Calculus



§ 5.S CHAPTER SUMMARY 469

110. Find the Maclaurin polynomial of order 6 associated with 1/ex.

111. Find the Maclaurin polynomial of order 6 associated with sin(x) cos(x).
(There is a short way and a long way to find it.)

112. The center (x, 0) of a circle C1 of radius 1 is at a distance x < 3 from the
center (0, 0) of a circle C2 of radius 2. AB is the chord joining the two points the
circkes have in common. Let A1 be the area within C1 to the left of the chord and
A2 the area within C2 to the right of the chord.

(a) Which is larger, A1 or A2? (Sketch a diagram of the circles and the chord.)

(b) If limx→3− A2/A1 exists, what do you think it is?

(c) Determine whether the limit in (b) exists. If it does, find it.

113. In Exercise 112, let O1 be the center of C1 and O2 the center of C2. What
happens to the ratio of the area common to the two circles and the area of the
quadrilateral AO1BO2 as x→ 3−?

114. Let g(x) = f(x2).

(a) Express the Maclaurin polynomial for g(x) up through the term of degree 4
in terms of f and its derivatives.

(b) How is the answer in (a) related to a Maclaurin polynomial associated with
f?

115. Find limx→π/2−(sec(x)− tan(x))

(a) using l’Hôpital’s rule

(b) without using l’Hôpital’s rule

116. Assume that the function f(x) is defined on [0,∞), has a continuous positive
second derivative, and limx→∞ f(x) = 0.

(a) Can f(x) ever be negative?

(b) Can f ′(x) ever be positive?

(c) What are the possible shapes for the graph of f?
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(d) Give an explicit formula for such a function.

117. Every six hours a patient takes an amount A of a medicine. Once in the
patient, the amount decays exponentially. In six hours it declines from A to kA,
where k is less than 1 (and positive). Thus, in 12 hours, the amount in the system
is kA + k2A. At exactly 12 hours, the patient takes another pill and the amount in
her system is A + kA + k2A.

(a) Graph the general shape of the amount of medicine in the patient as a function
of time.

(b) When a pill is taken at the end of n six-hour periods how much is in the
system?

(c) Does the amount in the system become arbitrarily large? (If so, this could be
dangerous.)

The constant k depends on many factors, such as the age of the patient. For this
reason, a dosage tested on a 20-year old may be lethal on a 70-year. (See also Ex-
ercise 30 in Section 11.2.)

The remaining exercises offer an opportunity to practice differentiating. In each case
show that the derivative of the first function is the second one.
118. arctan

(
x
a

)
; a

x2+a2 .

119. 2(3ax−2b)
15a2

√
(ax + b)3; x

√
ax + b.

120. sin(ax)− 1
3 sin3(ax); a cos3(ax).

121. eax(a cos(bx) + b sin(bx)); (a2 + b2)eax cos(bx).

April 22, 2012 Calculus



C.7– The Uniform Sprinkler 471

Calculus is Everywhere # 7

The Uniform Sprinkler

One day one of the authors (SS) realized that his sprinkler did not water his
lawn evenly. Placing empty cans throughout the lawn, he discovered that some
places received as much as nine times as much water as others. That meant
some parts of the lawn were getting too much water and others not enough.

The sprinkler, which had no moving parts, consisted of a hemisphere, with
holes distributed uniformly on its surface, as in Figure C.7.1(a). Though the
holes were uniformly spaced, water was not supplied uniformly to the lawn.
Why not?

(a) (b)

Figure C.7.1

A little calculus answered that question and showed how the holes should
be placed to have an equitable distribution. Assume that the radius of the
spherical head is 1, that the speed of the water as it left the head was the
same at any hole, and disregard air resistance.

Our objective is to find how much water is contributed to the lawn by the
uniformly spaced holes in a narrow band of width dφ near the angle φ, as
shown in Figure C.7.1(b). To be sure the jet was not blocked by the grass, the
angle φ is assumed to be no more than π/4.

Figure C.7.2

Water from the band wets the
ring shown in Figure C.7.2.

The area of the band on the sprinkler is then roughly 2π sin(φ) dφ. As
shown in Section 9.3 (Exercises 24 and 25), water from the band lands at a
distance from the sprinkler of about

x = kv2 sin(2φ).
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Here k is a constant and v is the speed of the water as it leaves the sprinkler.
The width of the ring on the lawn is roughly

dx = 2kv2 cos(2φ)dφ.

Since its radius is approximately kv2 sin(2φ), its area is approximately

2πxdx ≈ 2π
(
kv2 sin(2φ)

) (
2kv2 cos(2φ) dφ

)
,

which is proportional to sin(2φ) cos(2φ), hence to sin(4φ).
Thus the water supplied by the band was proportional to sin(φ) but the

area watered by it was proportional to sin(4φ). The ratio

sin(4φ)

sin(φ)
=

Area watered on lawn

Area of supply on sprinkler

is the key to understanding why the distribution was not uniform and to finding
out how the holes should be placed to water the lawn uniformly.

By l’Hôpital’s rule, the fraction approaches 4 as φ approaches zero:

lim
φ→0

sin(4φ)

sin(φ)
= 4. (C.7.1)

For angles φ near 0 the ratio is near 4. When φ is π/4, that ratio is
sin(π)

sin(π/4)
=

0, and water was supplied much more heavily far from the sprinkler than
near it. To compensate for this the number of holes in the band should be
proportional to sin(4φ)/ sin(φ). Then the amount of water is proportional to
the area watered, and watering is therefore uniform.

Professor Anthony Wexler of the Mechanical Engineering Department of
UC-Davis calculated where to drill the holes and made a prototype, which
produced a beautiful fountain and a more even supply of water. Moreover, if
some of the holes were removed, it would water a rectangular lawn.

We offered the idea to the firm that made the biased sprinkler. After
keeping the prototype for half a year, it turned it down because “it would
compete with the product we have.”

As water becomes more expensive our uniform sprinkler may be used to
water many a lawn. In fact, the State of California has introduced criteria on
how uniformly a sprinkler must distribute water. Recently, we mentioned our
sprinkler to another manufacturer, who showed great interest.

EXERCISES

1. Show that the limit (C.7.1) is 4

(a) using only trigonometric identities.
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(b) using l’Hôpital’s rule.

2. An oscillating sprinkler goes back and forth at a fixed angular speed.

(a) Does it water a lawn uniformly?

(b) If not, how would you modify it to provide more uniform coverage?
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Chapter 6

The Definite Integral

Up to this point we have been concerned with the derivative, which provides
local information, such as the slope at a particular point on a curve or the
velocity at a particular time. Now we introduce the second major concept of
calculus, the definite integral. The definite integral provides global informa-
tion, such as the area under a curve.

Section 6.1 motivates the definite integral through three of its applications.
Section 6.2 defines the definite integral and Section 6.3 presents ways to esti-
mate it. Sections 6.4 and 6.5 develop the connection between the derivative
and the definite integral, which culminates in the Fundamental Theorems of
Calculus. The derivative turns out to be essential for evaluating many definite
integrals.

Chapters 2 to 6 form the core of calculus. Later chapters are mostly vari-
ations or applications of their key ideas.
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6.1 Three Problems That Are One Problem

Figure 6.1.1

We introduce the definite integral with three problems. At first glance they
may seem unrelated, but by the end of the section it will be clear that they
represent one basic problem in different guises. They lead up to the concept
of the definite integral, defined in the next section.

Estimating an Area

To find the area of a rectangle, multiply its length by its width (see Fig-
ure 6.1.1).

Figure 6.1.2

But how can we find the area of the region in Figure 6.1.2? In
this section we will show how to make accurate estimates of that area. The
technique we use will lead to the definition of the definite integral of a function.

PROBLEM 1 Estimate the area of the region bounded by the curve y = x2,
the x-axis, and the vertical line x = 3, as shown in Figure 6.1.2.

Since we know how to find the area of a rectangle, we use rectangles to ap-
proximate the region. Figure 6.1.3(a) shows an approximation by six rectangles
whose total area is more than the area under the parabola. Figure 6.1.3(b)
shows a similar approximation whose area is less than the area under the
parabola.

(a) (b) (c)

Figure 6.1.3

In each case we break the interval [0, 3] into six intervals of width 1
2
. To

find the areas of the overestimate and of the underestimate, we find the heights
of the rectangles. They are determined by the curve y = x2. Let us examine
only the overestimate, leaving the underestimate for the Exercises.

There are six rectangles in the overestimate shown in Figure 6.1.3(a). The
smallest rectangle is shown in Figure 6.1.3(c). Its height is equal to the value
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of x2 when x = 1
2
, or

(
1
2

)2
, so its area is

(
1
2

)2 (1
2

)
, the product of its height and

its width. The areas of the other rectangles can be found similarly. In each
case evaluate x2 at the right end of the rectangle’s base to find the height. The
total area of the rectangles is(

1

2

)2(
1

2

)
+

(
2

2

)2(
1

2

)
+

(
3

2

)2(
1

2

)
+

(
4

2

)2(
1

2

)
+

(
5

2

)2(
1

2

)
+

(
6

2

)2(
1

2

)
.

Figure 6.1.4

This equals

1

8

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

8
= 11.375.

The area under the parabola is therefore less than 11.375.
To get a closer estimate we should use more rectangles. Figure 6.1.4 shows

an overestimate in which there are 12 rectangles. Each has width 3
12

= 1
4
. The

total area of the overestimate is(
1

4

)2(
1

4

)
+

(
2

4

)2(
1

4

)
+

(
3

4

)2(
1

4

)
+ · · ·+

(
12

4

)2(
1

4

)
.

This equals

1

43

(
12 + 22 + 32 + · · ·+ 122

)
=

650

64
= 10.15625.

Now we know the area under the parabola is less than 10.15625.

Figure 6.1.5

To get closer estimates we would cut the interval [0, 3] into more sections,
maybe 100 or 10,000 or more, and calculate the total area of the corresponding
rectangles. (This is an easy computation on a computer.)

In general, we would divide [0, 3] into n sections of equal length. The length
of each section is then 3

n
. Their endpoints are shown in Figure 6.1.5.

For each integer i = 1, 2, . . . , n, the ith section from the left has endpoints
(i− 1)

(
3
n

)
and i

(
3
n

)
, as shown in Figure 6.1.6.

Figure 6.1.6

To make an overestimate, because x2 is increasing for x > 0, we evaluate
x2 at the right endpoint of each interval. Multiply the result by the width of
the interval, getting (

i

(
3

n

))2
3

n
= 33 i2

n3
.

Sum the overestimates for all n intervals:

33 12

n3
+ 33 22

n3
+ 33 32

n3
+ · · ·+ 33 (n− 1)2

n3
+ 33n2

n3

which simplifies to

33

(
12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3

)
. (6.1.1)
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In summation notation this equals

33

n3

n∑
i=1

i2.

We have seen that the overestimates become more accurate as the number of
intervals increases. We would like to know what happens to the overestimate
as n gets larger. Does

lim
n→∞

12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3
(6.1.2)

exist? If it does, call it L. Then the area would be 33L.
The numerator becomes large, tending to make the fraction large. But

the denominator also becomes large, which tends to make the fraction small.
Once again we encounter one of the limit battles that occur in the foundation
of calculus.

Archimedes, some 2200
years ago, found a short

formula for the numerator
in (6.1.1), enabling him to

find the limit in (6.1.2).
See, for instance, S. Stein,
Archimedes: What did he

do besides cry Eureka?,
Mathematical Association

of America, 1999.

To estimate L, use, say, n = 6. Then we have

1

63

(
12 + 22 + 32 + 42 + 52 + 62

)
=

91

216
≈ 0.42130.

Try a larger value of n to get a closer estimate of L.
If we knew L we would know the area under the parabola and above the

interval [0, 3], for the area is 33L. Since we do not know L, we don’t know the
area. We will find L indirectly in this section. You may want to compute the
quotient in (6.1.2) for some n and guess what L is. With n = 12, the estimate
is 650

123 = 650
1728
≈ 0.37616.

Estimating a Distance Traveled

If you drive at a constant speed of v miles per hour for a period of t hours,
you travel vt miles:The units simplify:

mi
hr × hr = mi.

Distance = Speed × Time = vt miles.

How would you compute the total distance traveled if your speed was not
constant? (Imagine that the odometer, which records distance traveled, was
broken. However, the speedometer is still working fine, so you know the speed
at any instant.) The next problem illustrates how you could make accurate
estimates of the total distance traveled.

PROBLEM 2 A snail is crawling and knows that she is traveling at the
rate of t2 feet per minute at time t minutes. For instance, after half a minute,

she is slowly moving at the rate of
(

1
2

)2
feet per minute. After three minumtes
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she is moving along at 32 feet per minute. Estimate how far she has traveled
during the three minutes.

Figure 6.1.7

The speed during the three-minute trip increases from 0 to 9 feet per
minute. During shorter time intervals, such a wide fluctuation does not occur.
As in Problem 1, cut the three minutes of the trip into six equal intervals,
each 1/2 minute long, and use them to estimate the total distance covered.
Represent time by a line segment cut into six parts of equal length, as in
Figure 6.1.7.

Speed increases as t
increases.

Consider the distance the snail travels during one of the six half-minute
intervals, say during the interval [3

2
, 4

2
]. At the beginning of the interval her

speed was
(

3
2

)2
feet per minute and at the end she was going

(
4
2

)2
feet per

minute. The highest speed during this half-minute was
(

4
2

)2
feet per minute.

Therefore, she traveled at most
(

4
2

)2 (1
2

)
feet during the time interval [3

2
, 4

2
].

Similar reasoning applies to the other half-minute periods. Adding the upper
estimates for the distance traveled, we find that the total distance traveled is
less than(

1

2

)2(
1

2

)
+

(
2

2

)2(
1

2

)
+

(
3

2

)2(
1

2

)
+

(
4

2

)2(
1

2

)
+

(
5

2

)2(
1

2

)
+

(
6

2

)2(
1

2

)
=

91

8
.

If we divide the time interval into n equal sections of duration 3
n
, the right

endpoint of the ith interval is i
(

3
n

)
. At that time the speed is (3i/n)2 feet per

minute. So the distance covered during the ith interval of time is less than(
3i

n

)2

︸ ︷︷ ︸
max speed

3

n︸︷︷︸
time

=
33i2

n3
.

The total overestimate is then

33 12

n3
+ 33 22

n3
+ 33 32

n3
+ · · ·+ 33 (n− 1)2

n3
+ 33n2

n3

or

33

(
12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3

)
. (6.1.3)

The calculations in the area problem (6.1.1) and the distance problem (6.1.3)
are the same. Thus, the area and distance have the same upper estimates.
Their lower estimates are also the same, as you can check. The limit of the
quantity in (6.1.3) is 33L. The two problems are really the same problem.
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Estimating a Volume

Figure 6.1.8

The volume of a rectangular box is the product of its length, width, and
height. See Figure 6.1.8. Finding the volume of a pyramid or ball requires
more work. The next example illustrates how we can estimate the volume
inside a tent.

PROBLEM 3 Estimate the volume inside a tent with a square floor of side
3 feet, whose vertical pole, 3 feet long, is located above one corner of the floor.
The tent is shown in Figure 6.1.9(a).

(a) (b) (c)

Figure 6.1.9

The cross section of the tent made by a plane parallel to the base is a square,
as shown in Figure 6.1.9(b). The width of the square equals its distance from
the top of the pole, as shown in Figure 6.1.9(c). Using this, we can approximate
the volume inside the tent with rectangular boxes with square cross sections.

(a) (b) (c)

Figure 6.1.10

Cut a vertical line, representing the pole, into six sections of equal length,
each 1

2
foot long. Draw the corresponding square cross section of the tent,

as in Figure 6.1.10(a). Use them to form rectangular boxes. The part of the
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(a) (b)

Figure 6.1.11

tent corresponding to the interval [3
2
, 4

2
] on the pole has a square base with

sides 4
2

feet. The box with this square as a base and height 1
2

foot encloses
completely the part of the tent corresponding to [3

2
, 4

2
]. (See Figure 6.1.10(c).)

The volume of the box is
(

4
2

)2 (1
2

)
cubic feet. Figures Figure 6.1.11(a) and (b)

show six boxes, whose total volume is greater than the volume of the tent.
Since the volume of each box is the area of its base times its height, the

total volume of the six boxes is(
1

2

)2(
1

2

)
+

(
2

2

)2(
1

2

)
+

(
3

2

)2(
1

2

)
+

(
4

2

)2(
1

2

)
+

(
5

2

)2(
1

2

)
+

(
6

2

)2(
1

2

)
=

91

8
cubic feet.

This sum, which we have encountered twice before, equals 11.375. It is an
overestimate of the volume of the tent. Better estimates can be obtained by
cutting the pole into shorter pieces.

Figure 6.1.12

The arithmetic for the tent volume is the
same as for the area and distance problems.

We now know that the number describing the volume of the tent is the same
as the number describing the area under the parabola and also the length of
the snail’s journey, 33L. The arithmetic of the estimates is the same in each
case.

A Neat Bit of Geometry

If we knew the limit L in (6.1.1), we could then answer to all three problems.
But we have not found L. Luckily, there is a way to find the volume of the
tent without knowing L.

The key is that three identical copies of the tent fill up a cube of side 3 feet.
To see why, imagine a flashlight at one corner of the cube, aimed into the cube,
as in Figure 6.1.12.
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(a) (b) (c)

Figure 6.1.13

The flashlight illuminates the three square faces not meeting the corner at
the flashlight.This is like finding the area

of a right triangle by
arranging two copies of it to

form a rectangle.

The rays from the flashlight to the top, side, and back, as shown
in Figure 6.1.13(a), (b), and (c), respectively, fill out a copy of the tent.

Since three copies of the tent fill a cube of volume 33 = 27 cubic feet,
the tent has volume 9 cubic feet. From this, we see that the area under the
parabola above [0, 3] is 9 and the snail travels 9 feet. The limit L must be 1

3
,

since the area under the parabola is both 9 and 33L. That is,

lim
n→∞

12 + 22 + 32 + · · ·+ (n− 1)2 + n2

n3
= lim

n→∞

1

n3

n∑
i=1

i2 =
1

3
.

Summary

Using upper estimates, we showed that problems concerning area, distance
traveled, and volume were the same problem. We were studying a problem
concerning a particular function, x2, over a particular interval [0, 3]. We solved
the last problem, and hence the other two, by cutting a cube into three congru-
ent pieces. This chapter will develop general techniques that will make such a
special device unnecesary.
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EXERCISES for Section 6.1

Exercises 1 to 21 concern estimates of areas under curves.
1. In Problem 1 we broke the interval [0, 3] into six sections. Instead, break [0, 3]
into four sections of equal lengths and estimate the area under y = x2 and above
[0, 3] as follows.

(a) Draw the four rectangles whose total area is larger than the area under the
curve. The value of x2 at the right endpoint of each section determines the
height of each rectangle.

(b) On the diagram in (a), show the height and width of each rectangle.

(c) Find the total area of the four rectangles.

2. Like Exercise 1, but this time obtain an underestimate of the area by using
the value of x2 at the left endpoint of each section to determine the height of the
rectangle.

3. Estimate the area under y = x2 and above [1, 2] using the five rectangles with
equal widths shown in Figure 6.1.14(a).

4. Repeat Exercise 3 with the five rectangles in Figure 6.1.14(b).

(a) (b)

Figure 6.1.14
5. Evaluate

(a)
∑4

i=1 i2

(b)
∑4

i=1 2i

(c)
∑4

n=3(n− 3)
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6. Evaluate

(a)
∑4

i=1 i3

(b)
∑5

i=2 2i

(c)
∑4

k=1(k
3 − k2)

7. Figure 6.1.15(a) shows the curve y = 1
x above the interval [1, 2] and an

approximation to the area under the curve by five rectangles of equal width.

(a) Make a large copy of Figure 6.1.15(a).

(b) On your diagram show the height and width of each rectangle.

(c) Find the total area of the five rectangles.

(d) Find the total area of the five rectangles in Figure 6.1.15(b).

(e) On the basis of (c) and (d), what can you say about the area under the curve
y = 1/x and above [1, 2]?

(a) (b)

Figure 6.1.15
Exercises 8 and 9 develop underestimates for each of the problems considered in this
section.
8. In Problem 1 we found overestimates for the area under the parabola x2 over
the interval [0, 3]. Here we obtain underestimates for this area as follows.

(a) Break [0, 3] into six sections of equal lengths and draw the six rectangles whose
total area is smaller than the area under the curve.
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(b) Because x2 is increasing on [0, 3], the left endpoint of each section determines
the height of each rectangle. Show the height and width of each rectangle you
drew in (a).

(c) Find the total area of the six rectangles.

9. Repeat Exercise 8 with twelve sections of equal lengths.

10. Consider the area under y = 2x and above [−1, 1].

(a) Graph the curve and estimate the area by eye.

(b) Make an overestimate of the area, using four sections of equal width.

(c) Make an underestimate of the area, using four sections of equal width.

11. Use the information found in Exercises 3 and 4 to fill in the blanks:
The area in Problem 1 is certainly less than but larger than .
12. Estimate the area in Problem 1, using the division of [0, 3] into four sections
with endpoints 0, 1, 5

3 , 11
4 , and 3 (see Figure 6.1.16).

(a) Estimate the area when the right-hand endpoints of each section are used to
find the heights of the rectangles.

(b) Repeat (a), using the left-hand endpoints of each section to find the heights
of the rectangles.

(c) Repeat (a) computing the heights of the rectangles at the points 1
2 , 3

2 , 2, and
14
5 .

Figure 6.1.16
In each of Exercises 13 to 18

(a) Draw the region.
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(b) Draw six rectangles of equal widths whose total area overestimates the area
of the region.

(c) On your diagram indicate the height and width of each rectangle.

(d) Find the total area of the six rectangles accurate to two decimal places.

13. Under y = x2, above [2, 3].
14. Under y = 1

x , above [2, 3].
15. Under y = x3, above [0, 1].
16. Under y =

√
x, above [1, 4].

17. Under y = sin(x), above [0, π/2].
18. Under y = ln(x), above [1, e].
19. Estimate the area under y = x2 and above [−1, 2] by dividing the interval
into six sections of equal lengths.

(a) Draw the six rectangles that form an overestimate for the area under the
curve. You cannot do this using only left endpoints or only right endpoints.

(b) Find the total area of all six rectangles.

(c) Repeat (a) and (b) to find an underestimate for this area.

20. Estimate the area between the curve y = x3, the x-axis, and the vertical line
x = 6 using a division into

(a) six sections of equal lengths with left endpoints

(b) six sections of equal lengths with right endpoints

(c) three sections of equal lengths with midpoints

(d) six sections of equal lengths with midpoints

21. Estimate the area below the curve y = 1
x2 and above [1, 7] following the

directions in Exercise 20.

22. To estimate the area in Problem 1 one divides the interval [0, 3] into n sections
of equal lengths. Using the right-hand endpoint of each of the n sections provides
an overestimate. Using the left-hand endpoint provides an underestimate.

(a) Show that the estimates differ by 27
n .

(b) How large should n be chosen in order to be sure the difference between the
upper estimate and the area under the parabola is less than 0.01?
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23. Estimate the area of the region under the curve y = sin(x) and above the
interval [0, π

2 ], cutting the interval as shown in Figure 6.1.17(a) and using

(a) left endpoints

(b) right endpoints

(c) midpoints.

(All but the last section are of the same length.)

(a) (b)

Figure 6.1.17
24. Make three copies of the tent in Problem 3 by folding a pattern as shown in
Figure 6.1.17(b). Check that they fill up a cube.
25. An electron is being accelerated in such a way that its velocity is t3 kilometers
per second after t seconds. Estimate how far it travels in the first 4 seconds, as
follows:

(a) Draw the interval [0, 4] as the time axis and cut it into eight sections of equal
length.

(b) Using the sections in (a), make an estimate that is too large.

(c) Using the sections in (a), make an estimate that is too small.

26. A business that now shows no profit is to increase its profit flow gradually
in the next 3 years until it reaches a rate of 9 million dollars per year. At the end
of the first half year the rate is to be 1

4 million dollars per year and at the end of 2
years, 4 million dollars per year. In general, at the end of t years, where t is between
0 and 3, the rate of profit is to be t2 million dollars per year. Estimate the total
profit during its first 3 years if the plan is successful using
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(a) six intervals and left endpoints

(b) six intervals and right endpoints

(c) six intervals and midpoints

27. Oil is leaking out of a tank at the rate of 2−t gallons per minute after t
minutes. Describe how you would estimate how much oil leaks out during the first
10 minutes. Illustrate your procedure by computing one estimate.
28. Archimedes showed that

∑n
i=1 i2 = n(n+1)(2n+1)

6 .

(a) Check that the formula is correct for n = 1.

(b) Show that if the formula is correct for the integer n, it is also correct for the
next integer, n + 1.

(c) Why do (a) and (b) together show that Archimedes’ formula holds for all
positive integers n?

(This type of proof is known as mathematical induction.)
29.

(a) Explain why the area of the region under the curve y = x2 and above the
interval [0, b] is given by

lim
n→∞

n∑
i=1

(
bi

n

)2 b

n
.

(b) Use Exercise 28 to find the limit.

(c) Give an explicit formula for the area of the region under y = x2 and above
[0, b].

(d) For 0 < a < b, what is the area under the curve y = x2 and above [a, b]?

30. The function f(x) is increasing for x in the interval [a, b] and is positive. To
estimate the area under the graph of y = f(x) and above [a, b] divide the interval
[a, b] into n sections of equal lengths. Then form an overestimate B (for “big”)
using right-hand endpoints of the sections and an underestimate S (for “small”)
using left-hand endpoints. Express the difference between the two estimates, B−S,
as simply as possible.
31. A right circular cone has a height of 3 feet and a radius of 3 feet, as shown in
Figure 6.1.18(a). Estimate its volume by the sum of the volumes of six cylindrical
slabs, as we estimated the volume of the tent using six rectangular slabs.

(a) Make a large and neat diagram that shows the six cylinders used in making
an overestimate.
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(b) Compute the total volume of the six cylinders in (a).

(c) Make a separate diagram showing a corresponding underestimate.

(d) Compute the total volume of the six cylinders in (c). (One of the cylinders
has radius 0.)

(a) (b)

Figure 6.1.18
32. The kinetic energy of an object of mass m grams and speed v centimeters
per second is defined as 1

2mv2 ergs. In a machine a uniform rod 3 centimeters long
and weighing 32 grams rotates once per second around one of its ends as shown
in Figure 6.1.18(b). Estimate the kinetic energy of this rod by cutting it into six
sections, each 1

2 centimeter long, and taking as the speed of a section the speed of
its midpoint.

33. Express the sum
n∑

i=1

ln
(

i + 1
i

)
as simply as possible. (So that you could

compute the sum in the fewest steps.)

In Exercises 34 to 39 differentiate the function.
34. (1 + x2)4/3

35. (1+x3) sin(3x)
3√5x

36. 3x
8 + 3x sin(4x)

32 + cos3(2x) sin(2x)
8

37. 3
8(2x+3)2

− 1
4(2x+3)

38. cos3(2x)
6 − cos(2x)

2

39. x3
√

x2 − 1 tan(5x)
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In Exercises 40 to 50 give an antiderivative of the function.
40. (x + 2)3

41. (x2 + 1)2

42. x sin(x2)
43. x3 + 1

x3

44. 1√
x

45. 3
x

46. e3x

47. 1
1+x2

48. 1
x2

49. 2x

50. 4√
1−x2
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6.2 The Definite Integral

We now introduce the other main concept in calculus, the definite integral of
a function over an interval.

The preceding section was not really about area under a parabola, distance
a snail traveled, or volume of a tent. Common to all three was the procedure
we carried out with the function x2 and the interval [0, 3]: Cut the interval
into small pieces, evaluate the function somewhere in each section, form sums,
and see how those sums behave as we choose the sections smaller and smaller.

Here is the general procedure. We have a function f defined on an interval
[a, b]. We cut, or partition, the interval into n sections by the numbers x0 = a,
x1, x2, . . ., xn−1, xn = b, as in Figure 6.2.1. The sections [a, x1], [x1, x2], . . . ,
[xn−1, b] form a partition of [a, b].

Figure 6.2.1

The sections need not all be of the same length, though, for convenience,
they usually will be.

We pick a sampling number in each interval, c1 in [x0, x1], c2 in [x1, x2],
. . . , ci in [xi−1, xi], . . . , cn in [xn−1, xn] as in Figure 6.2.1. In Section 6.1, the ci’s
were mostly either right-hand or left-hand endpoints or midpoints. However,
they can be anywhere in a section.

Next we bring in the function f . (In Section 6.1 the function was x2.) We
evaluate that function at each ci and form the sum

f(c1)(x1 − x0) + f(c2)(x2 − x1) + · · ·+ f(ci)(xi − xi−1)

+ · · ·+ f(cn−1)(xn−1 − xn−2) + f(cn)(xn − xn−1). (6.2.1)

Rather than continue to write out such a long expression, we choose to take
advantage of the fact that each term in (6.2.1) is the function value at the
sampling number multiplied by the length of the section. Expressed in Σ-
notation the sum is:

n∑
i=1

f(ci)(xi − xi−1). (6.2.2)
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If the length of section i is written as ∆xi = xi − xi−1, the expression for the
sum becomes even shorter:

n∑
i=1

f(ci)∆xi. (6.2.3)

If all the sections have the same length, each ∆xi equals (b − a)/n since
the length of [a, b] is b− a. Let ∆x denote (b− a)/n. We can write (6.2.2) and
(6.2.3) as

n∑
i=1

f(ci)

(
b− a

n

)
or as

n∑
i=1

f(ci)∆x. (6.2.4)

The final step is to investigate what happens to the sums of the form (6.2.3)
(or (6.2.4)) as the lengths of the sections approach 0. That is, we try to find

lim
all ∆xi approach 0

n∑
i=1

f(ci)∆xi. (6.2.5)

The sums in (6.2.1)–(6.2.4) are called Riemann sums in honor of the nine-
teenth century mathematician, Bernhard Riemann.Bernhard Riemann,

1826–1866. In advanced mathematics it is proved that if f is continuous on [a, b] then
the limit in (6.2.5) exists. This brings us to the definition of the definite
integral.

The Definite Integral

DEFINITION (Definite Integral of a function f over an interval
[a, b]) Let f be a continuous function defined at least on the interval
[a, b]. The limit of sums of the form

∑n
i=1 f(ci)∆xi, for partitions

of [a, b] where every ∆xi approaches 0, exists (no matter how the
sampling numbers ci are chosen). The limiting value is called the
definite integral of f over the interval [a, b] and is denoted

b∫
a

f(x) dx.

Gottfried Liebniz,
1646–1716.

The symbol
∫

comes from “S,” for “sum.” The “dx” reminds us that we are
working with very short sections. Both symbols were introduced by Liebniz.

The limit in the definition is a little unusual. It requires the length of every
segment within the partition to approach 0. It is not sufficient to consider
partitions of [a, b] with more and more segments as there could be segments
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with lengths that do not approach 0. Another way of stating the requirement
is that the length of the largest segment in the partition must approach zero.

EXAMPLE 1 Express the area under y = x2 and above [0, 3] as a definite
integral.
SOLUTION Here the function is f(x) = x2 and the interval is [0, 3]. As we
saw in the previous section, the area equals the limit of Riemann sums

lim
as all ∆xi → 0

n∑
i=1

c2
i ∆xi =

3∫
0

x2 dx. (6.2.6)

�
The dx suggests the length of a small section of the x-axis and denotes

the variable of integration (usually x, as in this case). The function f(x)
is called the integrand, while the numbers a and b are called the limits of
integration; a is the lower limit of integration and b is the upper limit
of integration.

The symbol
∫ b

a
x2 dx is read as “the integral from a to b of x2.” Not referring

to x, we could say, “the integral from a to b of the squaring function”. There
is nothing special about x. We could just as well have used the letter t, or any
other letter. (We typically pick a letter near the end of the alphabet, since
letters near the beginning customarily denote constants.) The notations

b∫
a

x2 dx,

b∫
a

t2 dt,

b∫
a

z2 dz,

b∫
a

u2 du,

b∫
a

θ2 dθ

all denote the same number, the definite integral of the squaring function from
a to b. We could express (6.2.6) as

b∫
a

( )2 d( ),

but we find it more convenient to use some letter to name the independent
variable. Since the letter chosen to represent the variable has no significance
of its own, it is called a dummy variable. Later the interval of integration
will be [a, x] instead of [a, b]. Were we to write

∫ x

a
x2 dx, it would be easy to

think there is some relation between the x in x2 and the x in the upper limit of
integration. To avoid confusion, we use a different dummy variable and write,
for example,

∫ x

a
t2 dt in such cases.

It is important to realize that area, distance traveled, and volume are
applications of the definite integral. It is a mistake to link the definite integral
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too closely with one of its applications: we should not say “the definite integral
is the area under a curve.” The definite integral

∫ b

a
f(x) dx is also called the

Riemann integral.
Slope and velocity are interpretations or applications of the derivative,

which is a purely mathematical concept defined as a limit:
derivatives are limits

derivative of f at x = lim
∆x→0

f(x + ∆x)− f(x)

∆x
.

Similarly, area, total distance, and volume are interpretations of the definite
integral, which is also defined as a limit:

definite integrals are also
limits

definite integral of f over [a, b] = lim
as all ∆xi → 0

n∑
i=1

f(ci)∆xi.

The Definite Integral of a Constant Function

Let us use the definition to evaluate the definite integral of a constant function.

EXAMPLE 2 Let f be the function whose value at any number x is 4;
that is, f is the constant function given by f(x) = 4. Use only the definition
of the definite integral to compute

3∫
1

f(x) dx.

SOLUTION

Figure 6.2.2

Every partition of the interval [1, 3] has x0 = 1 and xn = 3. See
Figure 6.2.2. No matter how the sampling numbers ci are chosen, f(ci) = 4,
and so the approximating sum equals

n∑
i=1

f(ci)∆xi =
n∑

i=1

f(ci)(xi − xi−1) =
n∑

i=1

4(xi − xi−1)

Now

n∑
i=1

4(xi − xi−1) = 4
n∑

i=1

(xi − xi−1) = 4 · (xn − x0) = 4 · 2 = 8

because the sum of the widths of the sections is the width of the interval [1, 3],
namely 2. All approximating sums have the same value, namely, 8. For every
partition,

n∑
i=1

f(ci)∆xi =
n∑

i=1

f(ci)(xi − xi−1) = 8.
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Thus, as sections are chosen smaller, the values of the Riemann sums are
always 8. So the limit is 8 and:

3∫
1

4 dx = 8.

�

Figure 6.2.3

We could have guessed the value of
∫ 3

1
4 dx by interpreting the definite

integral as area. To do so, draw a rectangle of height 4 and base [1, 3]. (See
Figure 6.2.3.) Since the area of a rectangle is its base times its height, it follows

again that
∫ 3

1
4 dx = 8.

Similar reasoning shows that for a constant function that has the value c,

b∫
a

c dx = c(b− a) (c is a constant function).

The Definite Integral of x

In Exercise 34 at the end of this section, we find
∫ b

a
x dx directly from the

definition. Here, let us use the area interpretation of the definite integral to
predict the value of

∫ b

a
x dx.

When 0 < a < b the integrand is positive and the area in question then lies
above the x-axis, as shown in Figure 6.2.4(a). Two copies of this region form
a rectangle of width b− a and height a+ b, as shown in Figure 6.2.4(b). Thus,

(a) (b)

Figure 6.2.4
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the area shown in Figure 6.2.4(a) is half of (b− a)(b + a) = b2− a2. Therefore

b∫
a

x dx =
b2

2
− a2

2
.

The Definite Integral of x2

We will find
∫ b

0
x2 dx by examining the approximating sums when all the

sections have the same length, as they did in Section 6.1.
Pick a positive integer n and cut the interval [0, b] into n sections of length

∆x = b/n as in Figure 6.2.5. Then the points of subdivision are 0, ∆x, 2∆x,
. . . , (n− 1)∆x, and n∆x = b.

Figure 6.2.5

In the section [(i − 1)∆x, i∆x] we pick the right-hand endpoint as the
sampling number. The approximating sum is

n∑
i=1

(i∆x)2 (∆x) = (∆x)3

n∑
i=1

i2.

Since ∆x = b/n, these overestimates can be written as

b3

n3

n∑
i=1

i2. (6.2.7)

Or, see Exercise 29 in
Section 6.1.

In Section 6.1 we used geometry to find that

lim
n→∞

1

n3

n∑
i=1

i2 =
1

3
.

Thus, (6.2.7) approaches b3/3 as n increases, and we conclude that

b∫
0

x2 dx =
b3

3
.

When b = 3, we have b3/3 = 9, agreeing with the three problems in Section 6.1.

Figure 6.2.6

Geometry suggests the value of
∫ b

a
x2 dx, for 0 ≤ a < b. Interpret

∫ b

a
x2 dx

as the area under y = x2 and above [a, b]. It is equal to the area under y = x2

and above [0, b] minus the area under y = x2 and above [0, a], as shown in
Figure 6.2.6. Thus

b∫
a

x2 dx =
b3

3
− a3

3
.
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The Definite Integral of 2x

EXAMPLE 3 Use the definition of the definite integral to evaluate
∫ b

0
2x dx.

(Assume b > 0.)
SOLUTION Divide the interval [0, b] into n sections of equal length, d = b/n.
We will evaluate the integrand at the left-hand endpoint of each section. Call
it ci, ci = (i−1)d. The approximating sum has one term for each section. The
contribution from the ith section is d = width of section

2cid = 2(i−1)dd.

The total estimate is the sum

20d + 2dd + 22dd + · · ·+ 2(i−1)dd + · · ·+ 2(n−1)dd

or
d
(
1 + 2d + (2d)2 + · · ·+ (2d)i + · · ·+ (2d)n−1

)
. (6.2.8)

The terms inside the large parentheses in (6.2.8) form a geometric progression
with n terms, whose first term is 1 and whose ratio is 2d. Thus, its sum is Sum of geometric

progression:
a+ar+ar2 + · · ·+arn−1 =
a1−rn

1−r .

1− (2d)n

1− 2d
.

Therefore this typical underestimate is

d(1− (2d)n)

1− 2d
=

d(1− 2dn)

1− 2d
=

d(1− 2b)

1− 2d
. (6.2.9)

In the last step we used the fact that dn = b. We can rewrite (6.2.9) as

d

2d − 1

(
2b − 1

)
. (6.2.10)

It remains to take the limit as n increases without bound. To find what
happens to (6.2.10) as n → ∞, we must investigate how d

2d−1
behaves as d

approaches 0 from the right. Though we have not met this quotient before,
we have seen its reciprocal, 2d−1

d
. It occurs in the definition of the derivative

of 2x at x = 0:

lim
x→0

2x − 20

x
= lim

x→0

2x − 1

x
.

As we saw in Section 3.5, the derivative of 2x is 2x ln(2). Thus D(2x) at x = 0
is ln(2). Hence

lim
d→0

d

2d − 1
(2b − 1) = lim

d→0

1(
2d−1

d

) (2b − 1
)

=
2b − 1

ln(2)
.
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We conclude that
b∫

0

2x dx =
1

ln(2)

(
2b − 1

)
.

�

To evaluate
∫ b

a
2x dx with b > a ≥ 0, we reason as we did when we gener-

alized
∫ b

0
x2 dx to

∫ b

a
x2 dx:

b∫
a

2x dx =

b∫
0

2x dx−
a∫

0

2x dx =
2b − 1

ln(2)
− 2a − 1

ln(2)
=

2b

ln(2)
− 2a

ln(2)
.

Summary

We defined the definite integral of a function f(x) over an interval [a, b]. It is
the limit of sums of the form

∑n
i=1 f(ci)∆xi created from partitions of [a, b]. It

is a purely mathematical idea. We could estimate
∫ b

a
f(x) dx with a calculator

without any application in mind. However, the definite integral has many
applications: three of them are area under a curve, distance traveled, and
volume.

Table 6.2.1 contains a great deal of information. Compare the first three
lines with the fourth, which describes the fundamental definition of integral
calculus. In the table, all the functions, whether cross-sectional length, veloc-
ity, or cross-sectional area, are denoted by the same symbol f(x).

Spend some time studying
this table. The concepts it

summarizes will be used
often.

f(x)
∑n

i=1 f(ci)(xi − xi−1)
∫ b

a
f(x) dx

Variable length of the
cross section of a set
in the xy-plane

Approximate area of
the set

The area of the set

Variable velocity Approximation to
the distance traveled

The distance traveled

Variable cross section
of a solid

Approximate volume
of the solid

The volume of a solid

A function A certain sum The limit of the sums
as the largest ∆xi →
0

Table 6.2.1
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Underlying the applications is one mathematical concept, the definite inte-
gral,

∫ b

a
f(x) dx. It is essential to keep the definition of the number

∫ b

a
f(x) dx

clear. It is a limit of certain sums.
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EXERCISES for Section 6.2
1. Using the formula for

∫ b
a x2 dx, find the area under the curve y = x2 and above

the interval

(a) [0, 5]

(b) [0, 4]

(c) [4, 5]

Figure 6.2.7
2. Figure 6.2.7 shows the curve y = x2. What is the ratio between the shaded
area and the area of the rectangle ABCD?

3.

(a) Define “the definite integral of f(x) from a to b,
∫ b
a f(x) dx.”

(b) Define the definite integral, using as few mathematical symbols as you can.

(c) Give three applications of the definite integral.

4. Assume f(x) is decreasing for x in [a, b]. Is an approximating sum for
∫ b
a f(x) dx

with left-hand endpoints as sampling points too large or too small? Explain in
complete sentences.

In Exercises 5 to 8 evaluate
5.

(a)
∑3

i=1 i

(b)
∑7

i=3(2i + 3)

(c)
∑3

d=1 d2
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6.

(a)
∑4

i=2 i2

(b)
∑4

j=2 j2

(c)
∑3

i=1(i
2 + i)

7.

(a)
∑4

i=1 1i

(b)
∑6

k=2(−1)k

(c)
∑150

j=1 3

8.

(a)
∑5

i=3
1
i

(b)
∑4

i=0 cos(2πi)

(c)
∑3

i=1 2−i

In Exercises 9 to 12 write the sum in Σ-notation. Do not evaluate them.
9.

(a) 1 + 2 + 22 + 23 + · · ·+ 2100

(b) x3 + x4 + x5 + x6 + x7

(c) 1
3 + 1

4 + 1
5 + · · ·+ 1

102 + 1
103

10.

(a) 1
2 + 1

3 + · · ·+ 1
100

(b) 1
4 + 1

6 + 1
8 + 1

10 + 1
12 + 1

14

(c) 1
12 + 1

32 + 1
52 + · · ·+ 1

1012

11.
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(a) x2
0(x1 − x0) + x2

1(x2 − x1) + x2
2(x3 − x2)

(b) x2
1(x1 − x0) + x2

2(x2 − x1) + x2
3(x3 − x2)

12.

(a) 8t20(t1 − t0) + 8t21(t2 − t1) + · · ·+ 8t299(t100 − t99)

(b) 8t21(t1 − t0) + 8t22(t2 − t1) + · · ·+ 8t2n(tn − tn−1)

13.

(a) Use the definition of definite integral to evaluate
∫ b
0 ex dx. (See Example 3.)

(b) From (a), deduce that for 0 ≤ a < b,
∫ b
a ex dx = eb − ea.

14.

(a) Use the definition of definite integral to evaluate
∫ b
0 3x dx.

(b) From (a), deduce that for 0 ≤ a < b,
∫ b
a 3x dx = (3b − 3a)/ ln(3).

15. Knowing that
∫ b
a f(x) dx = limn→∞

∑n
i=1 f(ci)∆x gives us a way to evaluate

some limits of sums that would otherwise be difficult to evaluate. Write the following
limits as definite integrals. Do not evaluate them.

(a) lim
n→∞

n∑
i=1

ei/n 1
n

(b) lim
n→∞

n∑
i=1

1

1 +
(
1 + 2i

n

)2 2
n

(c) lim
n→∞

n∑
i=1

sin
(

iπ

n

)
π

n

(d) lim
n→∞

n∑
i=1

(
2 +

3i

n

)4 3
n

In Exercises 16 to 18 evaluate
∑n

i=1 f(ci)(xi−xi−1) for the given function, partition,
and sampling numbers.
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16. f(x) =
√

x, interval [1, 5], x0 = 1, x1 = 3, x2 = 5, c1 = 1, c2 = 4 (n = 2)
17. f(x) = 3

√
x, interval [0, 10], x0 = 0, x1 = 1, x2 = 4, x3 = 10, c1 = 0, c2 = 1,

c3 = 8 (n = 3)
18. f(x) = 1/x, interval [1, 2], x0 = 1, x1 = 1.25, x2 = 1.5, x3 = 1.75, x4 = 2,
c1 = 1, c2 = 1.25, c3 = 1.6, c4 = 2 (n = 4)

19. The speed of an automobile at time t is s(t) feet per second. The graph of s
for t in [0, 20] is shown in Figure 6.2.8(a). Explain, in complete sentences, why the
shaded area under the curve is the distance traveled.

(a) (b)

Figure 6.2.8
In Exercises 20 to 23 partition the interval into four sections of equal lengths. Esti-
mate the definite integral using sampling numbers chosen to be (a) the left endpoints
and (b) the right endpoints.

20.
∫ 2
1 (1/x2) dx

21.
∫ 5
1 ln(x) dx

22.
∫ 5
1

2x

x dx

23.
∫ 1
0

√
1 + x3 dx

24. Write the following expression using summation notation.

cn−1 + cn−2d + cn−3d2 + · · ·+ cdn−2 + dn−1

25. Assume that f(x) ≤ −3 for all x in [1, 5]. What can be said about the value
of
∫ 5
1 f(x) dx? Explain, in detail, using the definition of the definite integral.

26. A rocket’s varying speed is f(t) miles per second at time t seconds. Let t0,
. . . , tn be a partition of [a, b], and let T1, . . . , Tn be sampling numbers. What is the
physical interpretation of each of the following quantities?
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(a) ti − ti−1

(b) f(Ti)

(c) f(Ti)(ti − ti−1)

(d)
n∑

i=1

f(Ti)(ti − ti−1)

(e)
∫ b
a f(t) dt

27.

(a) Sketch y = cos(x) for x in [0, π/2].

(b) Estimate, by eye, the area under the curve and above [0, π/2].

(c) Partition [0, π/2] into three equal sections and use them to provide an over-
estimate of the area under the curve.

(d) Use the same partition to provide an underestimate of the area under the
curve.

28. Repeat Exercise 27 for the area under the curve y = e−x above [0, 3].

29. For x in [a, b], let A(x) be the area of the cross section of a solid perpendicular
to the x-axis at x (think of slicing a potato). Let x0, x1, . . . , xn be a partition of
[a, b]. Let c1, . . . , cn be the corresponding sampling numbers. What is the geometric
interpretation of the following quantities? (Refer to Figure 6.2.8(b).)

(a) xi − xi−1

(b) A(ci)

(c) A(ci)(xi − xi−1)

(d)
n∑

i=1

A(ci)(xi − xi−1)

(e)
∫ b
a A(x) dx

30. Show that the volume of a right circular cone of radius a and height h is πa3h
3 .

(First show that a cross section by a plane perpendicular to the axis of the cone and
a distance x from the vertex is a circle of radius ax/h. See Exercise 29.)
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31.

(a) Set up a definite integral
∫ b
a f(x) dx that equals the volume of the headlight

in Figure 6.2.9(a) whose cross section by a plane perpendicular to the x-axis
at x is a disk whose radius is

√
x/π.

(b) Evaluate the definite integral found in (a).

(a) (b)

Figure 6.2.9
32.

(a) By considering the area of region ACD in Figure 6.2.9(b), show that
∫ a
0

√
x dx =

2
3a3/2.

(b) Use (a) to evaluate
∫ b
a

√
x dx when 0 < a < b.

Exercises 33 to 36 involve telescoping sums. Let f be a function defined for the
positive integers. A sum of the form

∑n
i=1(f(i + 1) − f(i)) is called telescoping.

To show why, write it out:

(f(2)−f(1))+(f(3)−f(2))+(f(4)−f(3))+· · ·+(f(n)−f(n−1))+(f(n+1)−f(n)).

Everything cancels except −f(1) and f(n + 1). The sum shrinks like a collapsible
telescope and has value f(n + 1)− f(1).

33.

(a) Show that
∑n

i=1

(
(i + 1)2 − i2

)
= (n + 1)2 − 1. (It is a telescoping sum.)
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(b) From (a), show that
∑n

i=1(2i + 1) = (n + 1)2 − 1.

(c) From (b), show that n + 2
∑n

i=1 i = (n + 1)2 − 1.

(d) From (c), show that
∑n

i=1 i = n(n+1)
2 .

34. Exercise 33 showed that
∑n

i=1 i = n(n+1)
2 . Use this to find

∫ b
0 x dx directly

from the definition of the definite integral, not by interpreting it as an area. No
picture is needed.

35.

(a) Starting with the telescoping sum
∑n

i=1

(
(i + 1)3 − i3

)
show that

n + 3
n∑

i=1

i2 + 3
n∑

i=1

i = (n + 1)3 − 1.

(b) Use (a) to show that
∑n

i=1 i2 = 1
6n(n + 1)(2n + 1).

(c) Use (b) to show that
∫ b
0 x2 dx = b3

3 .

(See Exercise 34.)
36.

(a) Using the techniques of Exercises 33 to 35, find a short formula for the sum∑n
i=1 i3.

(b) Use it to show that
∫ b
0 x3 dx = b4

4 .

37. The function f(x) = 1/x has a remarkable property, namely, that for a and b
greater than 1,

a∫
1

1
x

dx =

ab∫
b

1
x

dx.

In words, magnifying the interval [1, a] by a positive number b does not change the
value of the definite integral. The following steps show why this is so.

(a) Let x0 = 1, x1, x2, . . . , xn = a divide the interval [1, a] into n sections. Using
left endpoints write an approximating sum for

∫ a
1

1
x dx.

(b) Let bx0 = b, bx1, bx2, . . . , bxn = ab divide the interval [b, ab] into n sections.
Using left endpoints write an approximating sum for

∫ ab
b

1
x dx.

(c) Explain why
∫ a
1

1
x dx =

∫ ab
b

1
x dx.

April 22, 2012 Calculus



§ 6.2 THE DEFINITE INTEGRAL 507

Figure 6.2.10
38. Let L(t) =

∫ t
1

1
x dx, t > 1.

(a) Show that L(a) = L(ab)− L(b).

(b) By (a), conclude that L(ab) = L(a) + L(b).

(c) What familiar function has the property listed in (b)?

Gregory St. Vincent noticed property (a) in 1647, and his friend A.A. de Sarasa saw
that (b) followed. Euler, in the 18th century, recognized that L(x) is the logarithm
of x to the base e. Thus the area under the hyperbola y = 1/x and above [1, a],
a > 1, is ln(a). It can be shown that for a in (0, 1), the negative of the area below the
curve and above [a, 1] is ln(a). (See C. H. Edwards Jr., The Historical Development
of the Calculus, Springer-Verlag, 1994, 154–158.)

39. In Exercise 13 it was shown that for 0 ≤ a ≤ b,
∫ b
a ex dx = eb − ea.

(a) Use this and a diagram to show that
∫ eb

ea ln(x) dx = eb(b− 1)− ea(a− 1).

(b) From (a), deduce that for 1 ≤ c ≤ d,
∫ d
c ln(x) dx = (d ln(d)−d)− (c ln(c)− c).

(c) By differentiating x ln(x)− x, show that it is an antiderivative of ln(x).

40.

(a) To estimate
∫ 2
1

1
x dx divide [1, 2] into n sections of equal lengths and use right

endpoints as the sampling points.

(b) Deduce from (a) that

lim
n→∞

2n∑
i=n+1

1
i

= lim
n→∞

(
1

n + 1
+

1
n + 2

+ · · ·+ 1
2n

)
= area under y = 1/x and above [1, 2].
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(c) Let g(n) = 1
n+1 + 1

n+2 + · · ·+ 1
2n . Show that 1

2 ≤ g(n) < 1 and g(n+1) < g(n).

Exercises 41 to 45 are related. Exercises 41 and 42 describe a method devised by
Pierre Fermat (1601–1665) to find the area under y = xk and above [1, b] (b > 1
and k a number) by using approximating sums. Fermat’s method is based on an
unusual partition of [1, b].
41. For b > 1 and n a positive integer define r(n) by (r(n))n = b.

(a) For b = 5, find r(n) for n = 1, 2, 3, and 10. (Because r = b1/n, you could use
the xy key on a calculator.)

(b) The calculations in (a) suggest that limn→∞ r(n) = 1. Show that this is
correct. (Start by taking ln of both sides of the equation (r(n))n = b.)

42. Fermat’s method begins by introducing, for a positive number n, the number
r such that rn = b. Exercise 41 shows r approaches 1 as n increases. Then he
partitioned [1, b] using the numbers r, r2, r3, . . . , rn−1, as shown in Figure 6.2.11.
The n sections are [1, r], [r, r2], . . . , [rn−1, rn] = [rn−1, b].

(a) Show that the width of the ith section, [ri−1, ri], is ri−1(r − 1).

(b) Using the left endpoint of each section as the sampling number, obtain an
underestimate of

∫ b
1 x2 dx.

(c) Show that the estimate in (b) is

b3 − 1
1 + r + r2

.

(d) Find limn→∞
b3−1

1+r+r2 . (Remember that r depends on n.)

(e) What does (d) imply about
∫ b
1 x2 dx?
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Figure 6.2.11
43. Use Fermat’s method (see Exercise 42) to find

∫ b
1 x3 dx.

44. Use Fermat’s method (see Exercise 42) to find
∫ b
1 x4 dx.

45. Obtain an overestimate for
∫ b
1 x2 dx by repeating Exercise 42(b) using the right

endpoint as the sampling number for each section. What is the limit as n→∞?

46.

(a) Obtain an underestimate and an overestimate of
∫ π/2
0 cos(x) dx that differ by

at most 0.1. (Remember that the angles are measured in radians.)

(b) Average the two estimates in (a).

(c) If
∫ π/2
0 cos(x) dx is a famous number, what do you think it is?

47. By considering the approximating sums in the definition of a definite integral,
show that

∫ 4
3

dx
(x+5)3

equals
∫ 3
2

dx
(x+6)3

.

48. For a continuous function f defined for all x is
∫ b
a f(x + 1) dx equal to∫ b+1

a+1 f(x) dx?

49. For continuous functions f and g defined for all x is
∫ b
a f(x)g(x) dx equal to

the product of
∫ b
a f(x) dx and

∫ b
a g(x) dx?

50. If f is an increasing function such that f(1) = 3 and f(6) = 7, what can be
said about

∫ 4
2 f(x) dx? Explain.

51.

(a) Using formulas already developed, evaluate G(x) =
∫ x
1 t2 dt.

(b) Find G′(x).

(c) Repeat (a) and (b) for G(x) =
∫ x
1 2t dt.

(d) In view of (b) and (c), what might the derivative of
∫ x
a f(t) dt be for any

continuous function?

In Exercises 52 to 59 give two antiderivatives for
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52. x2

53. 1/x3

54. e−4x

55. 1/(2x + 1)
56. 2x

57. sin(3x)
58. 3

1+9x2

59. 4√
1−x2
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6.3 Properties of the Antiderivative and the

Definite Integral

In Section 3.6 we defined an antiderivative of a function f(x) as a function
F (x) whose derivative is f(x). For instance, x3 is an antiderivative of 3x2. So
is x3 + 2013. Keep in mind that an antiderivative is a function.

In this section we discuss properties of antiderivatives and definite inte-
grals. They will be needed in Section 6.4 where we obtain a relation between
antiderivatives and definite integrals that will be a great time-saver in evalu-
ating many (but not all) definite integrals.

Notation for an Antiderivative

We have not yet introduced a symbol for an antiderivative of a function. We
will adopt the following standard notation:

Notation for an Antiderivative
If a function has an
antiderivative, then it has
many antiderivatives.

Any antiderivative of f is denoted
∫

f(x) dx.

For instance, x3 =
∫

3x2 dx. This equation is read “x3 is an antiderivative
of 3x2”. That means that the derivative of x3 is 3x2. It is true that x3+2011 =∫

3x2 dx, since x3 + 2011 is also an antiderivative of 3x2. That does not mean
that the functions x3 and x3 + 2011 are equal. All it means is that these two
functions both have the same derivative, 3x2. The symbol

∫
3x2 dx refers to

any function whose derivative is 3x2. ∫
f(x) dx is a function∫ b

a f(x) dx is a number.

If F ′(x) = f(x) we write F (x) =
∫

f(x) dx. The function f(x) is called
the integrand. The function F (x) is called an antiderivative of f(x). The
symbol for an antiderivative,

∫
f(x) dx, is similar to the symbol for a definite

integral,
∫ b

a
f(x) dx, but they denote different concepts. An antiderivative

is often called an integral or indefinite integral, but it should not be confused
with a definite integral. The symbol

∫
f(x)dx denotes a function, any function

whose derivative is f(x). The symbol
∫ b

a
f(x) dx denotes a number — one that

is defined by a limit of certain sums. The value of the definite integral may
vary as the interval [a, b] changes.

We apologize for the use of such similar notations,
∫

f(x) dx and
∫ b

a
f(x) dx,

for such distinct concepts. However, it is not for us to undo over three centuries
of custom. Rather, it is up to you to read the symbols

∫
f(x) dx and

∫ b

a
f(x) dx

carefully. You distinguish between such similar-looking words as “density”
and “destiny” or “nuclear” and “unclear”. Be just as careful when reading
mathematics.
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Properties of Antiderivatives

The tables inside the covers of this book list many antiderivatives. One exam-
ple is

∫
sin(x) dx = − cos(x). Of course, − cos(x)+17 also is an antiderivative

of sin(x). In Section 4.1 it was shown that if F and G have the same deriva-
tive on an interval, they differ by a constant, C. So F (x) − G(x) = C or
F (x) = G(x) + C. For emphasis, we state this as a theorem.

The theorem asserts that if F (x) is an antiderivatve for f(x), then any
other antiderivative of f(x) is of the form F (x) + C for some constant C.

This result was anticipated
back in Section 3.6.

Theorem 6.3.1. If F and G are both antiderivatives of f on some interval,
then there is a constant C such that

F (x) = G(x) + C.

When using an antiderivative, it is best to include the constant C. For
example, ∫

5 dx = 5x + C∫
ex dx = ex + C

and

∫
sin(2x) dx =

−1

2
cos(2x) + C.

Many tables of integrals,
including the ones in the

cover of this book, omit the
+C.

We know

d

dx

(∫
x3 dx

)
= x3 and

d

dx

(∫
sin(2x) dx

)
= sin(2x).

Are the equations profound or trivial? Read them aloud and decide.
The first says, The derivative of an antiderivative of x3 is x3.We know that the square of

the square root of 7 is 7 and
that eln(3) = 3, both by the

definition of inverse
functions.

It is true
simply because that is how we defined the antiderivative. We know that

d

dx

(∫
ln(1 + x2)

(sin(x))2
dx

)
=

ln(1 + x2)

(sin(x))2

even though we cannot write out a formula for an antiderivative of ln(1+x2)
(sin(x))2

.
By the definition of the antiderivative,
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d

dx

(∫
f(x) dx

)
= f(x).

Any property of derivatives gives us a corresponding property of antideriva-
tives. Three of the most important properties of antiderivatives are in the next
theorem.

Theorem 6.3.2 (Properties of Antiderivatives). Assume that f and g are
functions with antiderivatives

∫
f(x) dx and

∫
g(x) dx. Then

A.
∫

cf(x) dx = c
∫

f(x) dx for any constant c.

B.
∫

(f(x) + g(x)) dx =
∫

f(x) dx +
∫

g(x) dx.

C.
∫

(f(x)− g(x)) dx =
∫

f(x) dx−
∫

g(x) dx.

Proof

A. Before we prove that
∫

cf(x) dx = c
∫

f(x) dx, we stop to see what it means.
This equation says that “c times an antiderivative of f(x) is an antiderivative of
cf(x)”. Let F (x) be an antiderivative of f(x). Then the equation says “c times
F (x) is an antiderivative of c times f(x)”. To determine if this statement is
true we must differentiate cF (x) and check that we get cf(x). So, we compute
(cF (x))′:

(cF (x))′ = cF ′(x) (c is a constant)
= cf(x). (F is antiderivative of f)

Thus cF (x) is indeed an antiderivative of cf(x). Therefore, we may write

cF (x) =

∫
cf(x) dx.

Since F (x) =
∫

f(x) dx, we conclude that

c

∫
f(x) dx =

∫
cf(x) dx.
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B. The proof is similar. We show that
∫

f(x) dx+
∫

g(x) dx is an antiderivative
of f(x)+ g(x). To do this we compute the derivative of

∫
f(x) dx+

∫
g(x) dx:

d

dx

(∫
f(x) dx +

∫
g(x) dx

)
= d

dx

(∫
f(x) dx

)
+ d

dx

(∫
g(x) dx

)
(derivative of a sum)

= f(x) + g(x). (definition of antiderivatives)

C. The proof is similar to the one for (B). •

EXAMPLE 1 Find (a)
∫

6 cos(x) dx, (b)
∫

(6 cos(x) + 3x2) dx,
and (c)

∫
(6 cos(x)− 5

1+x2 dx.
SOLUTION

(a) Part A of the theorem is used to move the 6 (a constant) past the integral
sign,

∫
. We then have:∫

6 cos(x) dx = 6
∫

cos(x) dx (part A of the theorem)
= 6 sin(x) + C ((sin(x))′ = cos(x))

The +C is added as the last step in finding an antiderivative.

(b) ∫
(6 cos(x) + 3x2) dx

=
∫

6 cos(x) dx +
∫

3x2 dx (part B of the theorem)
= 6 sin(x) + x3 + C. (part (a) of the Example and (x3)′ =

3x2)

Separate constants are not needed for each antiderivative, only one +C
for the overall antiderivative.

(c) ∫ (
6 cos(x)− 5

1 + x2

)
dx

=
∫

6 cos(x) dx−
∫

5
1+x2 dx (part C of the theorem)

= 6 sin(x)− 5
∫

1
1+x2 dx (part A of the theorem)

= 6 sin(x)− 5 arctan(x) + C (part (a) of the Example and
arctan(x)′ = 1

1+x2 )

�
The last two parts of Theorem 6.3.2 extend to any finite number of func-

tions. For instance,∫
(f(x)− g(x) + h(x)) dx =

∫
f(x) dx−

∫
g(x) dx +

∫
h(x) dx.
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Antiderivative of xn

Theorem 6.3.3. For a 6= −1,∫
xa dx =

xa+1

a + 1
+ C.

Proof (
xa+1

a + 1

)′
=

(a + 1)x(a+1)−1

a + 1
= xa.

•

EXAMPLE 2 Find
∫ (

3√
1−x2 − 2

x
+ 1

x3

)
dx, 0 < x < 1.

SOLUTION∫ (
3√

1− x2
− 2

x
+

1

x3

)
dx = 3

∫
1√

1− x2
dx− 2

∫
1

x
dx +

∫
x−3 dx

= 3 arcsin(x)− 2 ln(x) +
x−2

−2
+ C

= 3 arcsin(x)− 2 ln(x)− 1

2x2
+ C.

�

Properties of Definite Integrals

Some of the properties of definite integrals look like properties of antideriva-
tives but they are assertions about numbers, not about functions. In the
definite integral,

∫ b

a
f(x) dx, b is larger than a. It will be useful to be able to

speak about the definite integral from a to b even if b is less than or equal to a.
The following definitions allow us to do that. We will use them in the proofs
of the two Fundamental Theorems of Calculus in the next section.

DEFINITION (Integral from a to b, where b < a.) If b is less
than a, then

b∫
a

f(x) dx = −
a∫

b

f(x) dx.
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EXAMPLE 3 Compute
∫ 0

3
x2 dx, the integral from 3 to 0 of x2.

SOLUTION The symbol
∫ 0

3
x2 dx is defined as −

∫ 3

0
x2 dx. As was shown in

Section 6.2,
∫ 3

0
x2 dx = 9. Thus

0∫
3

x2 dx = −9.

�

The definite integral is defined using partitions of an interval. Becaise
partitions do not have sections of length 0, we need to define

∫ a

a
f(x) dx. Here

it is.

DEFINITION (Integral from a to a.)

a∫
a

f(x) dx = 0

With these definitions the symbol
∫ b

a
f(x) dx is defined for any numbers a

and b and any continuous function f , assuming f(x) is defined for x in [a, b].
It is no longer necessary that a be less than b.

The definite integral has several properties, some of which we will be using
in this section and some in later chapters. Justifications of them are provided
immediately after the following theorem.
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Properties of the Definite Integral

Theorem 6.3.4. Let f and g be continuous functions, and let c be a constant.
Then

1. Moving a Constant Past
∫ b

a∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx

2. Definite Integral of a Sum∫ b

a
(f(x) + g(x)) dx =

∫ b

a
f(x) dx +

∫ b

a
g(x) dx

3. Definite Integral of a Difference∫ b

a
(f(x)− g(x)) dx =

∫ b

a
f(x) dx−

∫ b

a
g(x) dx

4. Definite Integral of a Non-Negative Function

If f(x) ≥ 0 for all x in [a, b], a < b, then

b∫
a

f(x) dx ≥ 0.

5. Definite Integrals Preserve Order
If f(x) ≥ g(x) for all x in [a, b], a < b, then

b∫
a

f(x) dx ≥
b∫

a

g(x) dx.

6. Sum of Definite Integrals Over Adjoining Intervals
If a, b, and c are numbers, then

c∫
a

f(x) dx +

b∫
c

f(x) dx =

b∫
a

f(x) dx.

7. Bounds on Definite Integrals
If m and M are numbers such that m ≤ f(x) ≤ M for all x between a
and b, then

m(b− a) ≤
∫ b

a
f(x) dx ≤M(b− a) if a < b

and

m(b− a) ≥
∫ b

a
f(x) dx ≥M(b− a) if a > b
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Proof of Property 1

Take the case a < b. The equation
∫ b

a
cf(x) dx = c

∫ b

a
f(x) dx resembles

part (a) of Theorem 6.3.2 about antiderivatives:
∫

cf(x) dx = c
∫

f(x) dx.

However, its proof is different, since
∫ b

a
cf(x) dx is defined as a limit of sums.

We have∫ b

a
cf(x) dx = lim

all ∆xi → 0+

n∑
i=1

cf(ci)∆xi (definition of definite integral)

= lim
all ∆xi → 0+

c
n∑

i=1

f(ci)∆xi (distributive law)

Figure 6.3.1

= c lim
all ∆xi → 0+

n∑
i=1

f(ci)∆xi (property of limits)

= c
∫ b

a
f(x) dx. (definition of definite integral)

•
Similar arguments justify the other properties. We will only make them

plausible by giving interpretations in terms of areas for positive functions.

Plausibility Argument for Property 5 when f(x) ≥ g(x) ≥ 0

This amounts to the assertion that when the graph of y = f(x) is always at
least as high as the graph of y = g(x), then the area of a region under the
curve y = f(x) is greater than or equal to the area under the curve

Figure 6.3.2

y = g(x)
above a given interval. (See Figure 6.3.) •
Plausibility Argument for Property 6

When a < c < b and f(x) assumes only positive values, this property asserts
that the area of the region below the graph of y = f(x) and above the interval
[a, b] is the sum of the areas of the regions below the graph and above the
smaller intervals [a, c] and [c, b]. Figure 6.3.2 shows that this is plausible. •
Plausibility Argument for Property 7

Figure 6.3.3

The inequalities in this property compare the area under the graph of y = f(x)
with the areas of two rectangles, one of height M and one of height m. (See
Figure 6.3.3.) For a < b, the area of the larger rectangle is M(b− a) and the
area of the smaller rectangle is m(b− a). •

The Mean Value Theorem for Definite Integrals

The mean value theorem for derivatives says that under suitable hypotheses
f(b)−f(a) = f ′(c)(b−a) for some number c in [a, b]. The mean-value theorem
for definite integrals is similar. First we state it geometrically.
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If f(x) is positive and a < b, then
∫ b

a
f(x) dx can be interpreted as the area

of the shaded region in Figure 6.3.4(a).

(a) (b) (c) (d)

Figure 6.3.4

What if m = M?Let m be the minimum and M the maximum value of f(x) for x in [a, b].
We assume that m < M . The area of the rectangle of height M is larger
than the shaded area; the area of the rectangle of height m is smaller than the
shaded area. (See Figures 6.3.4(b) and (c).) Therefore, there is a rectangle,
with height h somewhere between m and M , whose area is the same as the area
under the curve y = f(x). (See Figure 6.3.4(d).) Hence

∫ b

a
f(x) dx = h(b−a).

Because h is a number between m and M , the intermediate value property
for continuous functions, in Section 2.5 there is a number c in [a, b] such that
f(c) = h. (See Figure 6.3.4(d).) Hence,

Area of shaded region under curve = f(c)(b− a).

This suggests the mean value theorem for definite integrals.

Mean Value Theorem for Definite Integrals

Theorem 6.3.5. Let a and b be numbers, and let f be a continuous function
defined on the interval [a, b]. Then there is a number c in [a, b] such that

b∫
a

f(x) dx = f(c)(b− a).

Proof of the Mean Value Theorem for Definite Integrals, using only properties

of the definite integral
Suppose a < b. Let M be the maximum and m the minimum value of f(x) on
[a, b]. Property 7, combined with division by b− a, gives

m ≤
∫ b

a
f(x) dx

b− a
≤M,
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Because f is continuous on [a, b], by the intermediate value property of Sec-
tion 2.5 there is a number c in [a, b] such that

f(c) =

∫ b

a
f(x) dx

b− a

The case b < a can be
obtained from the case

a < b. (see Exercise 37).

and the theorem is proved without depending on a picture. •

EXAMPLE 4 Verify the mean value theorem for definite integrals when
f(x) = x2 and [a, b] = [0, 3].

SOLUTION In Section 6.2 it was shown that
∫ 3

0
x2 dx = 9. Since f(x) = x2,

we are looking for c in [0, 3] such that

3∫
0

x2 dx = 9 = c2(3− 0)

−
√

3 is not in [0, 3]. That is, 9 = 3c2, so c2 = 9
3

= 3, and c =
√

3. (See Figure 6.3.5.) The rectangle

with height f(
√

3) = (
√

3)2 = 3 and base [0, 3] has the same area as the region
under the curve y = x2 and above [0, 3].

Figure 6.3.5

�

The Average Value of a Function

Let f(x) be a continuous function defined on [a, b]. What shall we mean by
“the average value of f(x) over [a, b]”? We cannot add the values of f(x) for all
x’s in [a, b] and divide by the number of x’s, since there are an infinite number
of them. However, we can work with the average (or mean) of n numbers a1,
a2, . . . , an, which is their sum divided by n: 1

n

∑n
i=1 ai.

This suggests how to define “the average value of f(x) over [a, b]”. Choose
a large integer n and partition [a, b] into n sections of equal length, ∆x =
(b− a)/n. Let the sampling numbers ci be the left endpoints of each section,
c1 = a, c2 = a + ∆x, . . . , cn = a + (n− 1)∆x = b−∆x. Then an estimate of
the average would be

1

n
(f(c1) + f(c2) + · · ·+ f(cn)). (6.3.1)

Since ∆x = b−a
n

, it follows that 1
n

= ∆x
b−a

. Therefore, (6.3.1) can be rewritten
as

1

b− a

n∑
i=1

f(ci)∆x.

But
∑n

i=1 f(ci)∆x is an estimate of
∫ b

a
f(x) dx. It follows that, as n→∞, this

average of the n function values approaches 1
b−a

∫ b

a
f(x) dx. This motivates the

definition:
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DEFINITION (Average Value of a Function over an Interval)

Let f(x) be defined on the interval [a, b]. Assume that
∫ b

a
f(x) dx

exists. The average value or mean value of f on [a, b] is defined
to be

1

b− a

b∫
a

f(x) dx.

Figure 6.3.6

Geometrically speaking (if f(x) is positive), the average value is the height of
a rectangle that has base [a, b] and the same area as the area of the region
under the curve y = f(x) and above [a, b]. (See Figure 6.3.6.) The average
value of f(x) over [a, b] is between its maximum and minimum values but it is
not necessarily their average.

EXAMPLE 5 Find the average value of 2x over the interval [1, 3].
SOLUTION The average value of 2x over [1, 3] by definition equals

1

3− 1

3∫
1

2x dx.

By Example 3 in Section 6.2,

3∫
1

2x dx =
1

ln(2)
(23 − 21) =

6

ln(2)
.

Hence,

average value of 2x over [1, 3] =
1

3− 1

6

ln(2)
=

3

ln(2)
≈ 4.2381.

�
The average found in Example 5 is different from the average of the maxi-

mum and minimum values of 2x on [1, 3], namely (23 + 21)/2 = 5.

The Zero Integral Principle

Let f be a continuous function on the interval [a, b]. Suppose that for every

subinterval [c, d] of [a, b],
∫ d

c
f(x) dx is zero. The constant function f(x) = 0

has this property. We now show that it is the only function with this property.
Let f(x) be a continuous function on [a, b] that is not the constant function

0. Then there is a number q in [a, b] such that f(q) = p is not zero. We consider
the case when p is positive. (The case when p is negative can be treated the
same way. See Exercise 47.)
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By the permanence property (Theorem 2.5.4 in Section 2.5), there is a
subinterval [c, d] of [a, b] where the function values remain larger than p/2.
The integral of f over [c, d] is at least p/2 times the length of the interval [c, d]

and hence not 0. This contradicts the assumption that
∫ d

c
f(x) dx = 0 for all

subintervals [c, d] of the domain of f . As a result, the hypothesis must be false
and so f is zero on [a, b].

Zero Integral Principle
Let f be a continuous function on [a, b]. If

∫ d

c
f(x) dx = 0 for every subinterval

[c, d] of [a, b], then f(x) = 0 for all x on [a, b].

As mentioned earlier, an antiderivative is often called an integral or indef-
inite integral. This does not lead to confusion because the context will always
reveal whether the word “integral” refers to an antiderivative (a function) or
to a definite integral (a number). They are very different. Even so, the next
section will show that there is a close connection between them. It ties the
two halves of calculus — differential calculus and integral calculus — into one
package.

Summary

We introduced the notation
∫

f(x) dx for an antiderivative of f(x) and stated
several of its properties.

We defined the definite integral
∫ b

a
f(x) dx when b ≤ a and stated several

of its properties.
The mean value theorem for definite integrals asserts that for a continuous

function f(x),
∫ b

a
f(x) dx equals f(c) times (b − a) for at least one value of c

in [a, b].

The quantity 1
b−a

∫ b

a
f(x) dx is called the average value (or mean value) of

f(x) over [a, b]. For a positive function, it can be thought of as the height of
a rectangle whose area is the same as the area of the region under the curve
y = f(x).

We justified the zero integral principle, which says that if the integral of
a continuous function is 0 over each interval, then it must be the constant
function with valued 0.
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EXERCISES for Section 6.3

In Exercises 1 to 12 evaluate the antiderivative. Remember to add a constant. Check
the answer by differentiating it.
1.

∫
5x2 dx

2.
∫ (

7/x2
)

dx

3.
∫

(2x− x3 + x5) dx

4.
∫ (

6x2 + 2x−1 + 1√
x

)
dx

5.

(a)
∫

ex dx

(b)
∫

ex/3 dx

6.

(a)
∫

1
1+x2 dx

(b)
∫

1√
1−x2

dx

7.

(a)
∫

cos(x) dx

(b)
∫

cos(2x) dx

8.

(a)
∫

sin(x) dx

(b)
∫

sin(3x) dx

9.

(a)
∫

(2 sin(x) + 3 cos(x)) dx

(b)
∫

(sin(2x) + cos(3x)) dx

10.
∫

sec(x) tan(x) dx

11.
∫

(sec(x))2 dx

12.
∫

(csc(x))2 dx

Calculus April 22, 2012



524 CHAPTER 6 THE DEFINITE INTEGRAL

13. State the mean-value theorem for definite integrals in words, using no math-
ematical symbols.

14. Define the average value of a function over an interval, using no mathematical
symbols.

15. Evaluate

(a)
∫ 5
2 x2 dx

(b)
∫ 2
5 x2 dx

(c)
∫ 5
5 x2 dx

16. Evaluate

(a)
∫ 2
1 x dx

(b)
∫ 1
2 x dx

(c)
∫ 3
3 x dx

17. Find

(a)
∫

x dx

(b)
∫ 4
3 x dx

18. Find

(a)
∫

3x2 dx

(b)
∫ 4
1 3x2 dx

19. If 2 ≤ f(x) ≤ 3, what can be said about
∫ 6
1 f(x) dx?

20. If −1 ≤ f(x) ≤ 4, what can be said about
∫ 7
−2 f(x) dx?
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21. Write a sentence or two, in your own words, that tells what the symbols∫
f(x) dx and

∫ b
a f(x) dx mean. Include examples. Use as few mathematical sym-

bols as possible.

22. Let f(x) be a differentiable function. In this exercise you will determine if

f(x) =
∫

df

dx
(x) dx

is true or false.

(a) Pick several functions and test if the equation is true.

(b) Determine if the equation and justify your conclusion. (Read the equation
out loud.)

The mean value theorem for definite integrals asserts that if f(x) is continuous
throughout the interval with endpoints a and b, then

∫ b
a f(x) dx = f(c)(b − a) for

some number c in [a, b]. In Exercises 23 to 26 find f(c) and at least one value of c
in [a, b].
23. f(x) = 2x, [a, b] = [1, 5]

24. f(x) = 5x + 2, [a, b] = [1, 2]

25. f(x) = x2, [a, b] = [0, 4]

26. f(x) = x2 + x, [a, b] = [1, 4]

27. If
∫ 2
1 f(x) dx = 3 and

∫ 5
1 f(x) dx = 7, find

(a)
∫ 1
2 f(x) dx

(b)
∫ 5
2 f(x) dx

28. If
∫ 3
1 f(x) dx = 4 and

∫ 3
1 g(x) dx = 5, find

(a)
∫ 3
1 (2f(x) + 6g(x)) dx

(b)
∫ 1
3 (f(x)− g(x)) dx

29. If the maximum value of f(x) on [a, b] is 7 and its minimum value on [a, b] is
4, what can be said about
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(a)
∫ b
a f(x) dx?

(b) the mean value of f(x) on [a, b]?

30. Let f(x) = c (constant) for all x in [a, b]. Find the average value of f(x) on
[a, b].

Exercises 31 to 34 concern the average of a function over an interval. Find the
minimum, maximum, and average value of the function over the interval.
31. f(x) = x2, [2, 3]

32. f(x) = x2, [0, 5]

33. f(x) = 2x, [0, 4]

34. f(x) = 2x, [2, 4]

35. Let a, b, and c be constants. Assume that the integral of
(
ax2 + bx + c

)2 over
any interval is zero. Find a, b, and c.

36. Let a and b be constants. Assume that the integral of aex3
+ b cos10(x) over

every interval is zero. Find a and b.

37. Prove the mean value theorem for definite integrals when b < a. (Use the
definition of

∫ b
a f(x) dx when b < a.)

38.

Sam: The mean value theorem in Section 6.3 was not new.

Jane: What do you mean?

Sam: It’s just a special case of the mean value theorem for derivatives in Section 4.1,
the one that says f(b)− f(a) = f ′(c)(b− a).

Jane: I don’t believe it.

Sam: Just apply the one in Section 4.1 to the function G(x) =
∫ x
a f(t) dt. Then

G(b) −G(a) = G′(c)(b − a). But the left side is
∫ b
a f(t) dt and the right side

is f(c)(b− a).

Jane: You have used f for two purposes, but it looks fine. ANother page saved.

Sam: And lots of trees.
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Is Sam right? Explain.

39. Is
∫

f(x)g(x) dx always equal to
∫

f(x) dx
∫

g(x) dx? Are they ever equal?
Explain.

40.

(a) Show that 1
3(sin(x))3 is not an antiderivative of sin(x))2.

(b) Use the identity (sin(x))2 = 1
2(1−cos(2x)) to find an antiderivative of (sin(x))2.

(c) Verify your answer in (b) by differentiation.

In Exercises 41 and 42 verify the equations. Differentiate the right-hand side and see
that the result is the integrand on the left-hand side. (The number a is a constant.)
41.

∫
x2 sin(ax) dx = 2x

a2 sin(ax) + 2
a3 cos(ax)− x2

a cos(ax) + C

42.
∫

x(sin(ax))2 dx = x2

4 −
x
4a sin(2ax)− 1

8a2 cos(2ax) + C

43. Define f(x) =


−x 0 < x ≤ 1
−1 1 < x ≤ 2
1 2 < x ≤ 3

4− x 3 < x ≤ 4.

(a) Sketch the graphs of y = f(x) and y = (f(x))2 on the interval [0, 4].

(b) Find the average value of f on the interval [0, 4].

(c) The root mean square (RMS) of a function f on [a, b] is defined as
√

1
b−a

∫ b
a f(x)2 dx.

Find the root mean square value of f on the interval [0, 4]. That is, compute√
1

4−0

∫ 4
0 (f(x))2 dx.

(d) Why is it not surprising that your answer in (b) is zero and your answer in
(c) is positive?

Incidentally, the voltage of the alternating current is defined using RMS.

44.

Sam: The text makes the average value of a function on [a, b] too hard.

Jane: How so?

Sam: It’s easy. Just average f(a) and f(b).
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Jane: That sure is easier.

(a) Show that Sam is correct when f(x) is any polynomial of degree 0 or 1.

(b) Is Sam always correct? Explain.

Exercise 45 describes the famous Buffon neeedle problem, now over 200 years old.
Exercise 48 is related, but is not nearly as famous.
45. On the floor there are parallel lines a distance d from each other, such as
the edges of slats. You throw a straight wire of length d on the floor at random.
Sometimes it crosses a line, sometimes it does not.

(a) Find a floor with parallel lines, perform the experiment at least 20 times, and
clculate the percentage of times the wire crosses a line.

(b) If the wire makes an angle θ with a line perpendicular to the lines, show that
the probability that it crosses a line is cos(θ).

(c) Find the average value of that probability. That is the probability that the
wire crosses a line.

(d) How close is the experimental value in (a) to the theoretical value in (c)?

46. Assume that f and g are continuous functions and that
∫ b
a f(x) dx equals∫ b

a g(x) dx for every interval [a, b]. Show that f(x) equals g(x) for all x.

47. Prove the zero integral principle when p is negative.

48. An infinite floor is composed of congruent square tiles arranged as in a checker-
board. You have a straight wire whose length is the same as the length of a side of
a square. The edges of the squares form lines in perpendicular directions. What is
the probability that when you throw the wire at random it crosses two lines, one in
each of the two perpendicular directions? This is related to Exercise 45, the classic
Buffon needle problem. (You can check if your answer is reasonable by carrying out
the experiment.)

49. The average value of a function f(x) on [1, 3] is 4. On [3, 6] its average value
is 5. What is its average value on [1, 6]? Explain your answer.

50. This exercise evaluates two definite integrals that appear often in applications.
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(a) Draw the graphs of y = (cos(x))2 and y = (sin(x))2. From the picture, decide
how

∫ π/2
0 (cos(x))2 dx and

∫ π/2
0 (sin(x))2 dx compare.

(b) Using (a) and a trigonometric identity, show that

π/2∫
0

(cos(x))2 dx =
π

4
=

π/2∫
0

(sin(x))2 dx.

(c) Evaluate
∫ π
0 (cos(x))2 dx.
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6.4 The Fundamental Theorem of Calculus

This is the most important
section of the entire book.

In this section we obtain two closely related theorems. They are called
the Fundamental Theorems of Calculus I and II, or simply The Fundamental
Theorem of Calculus (FTC). The first part of the FTC provides a way to
evaluate a definite integral if you know an antiderivative of the integrand.FTC I gives a way to

evaluate
∫ b
a f(x) dx

That
means that the derivative, developed in Chapter 3, has yet another application.

The second Fundamental Theorem tells how rapidly the value of a defi-
nite integral changes as the interval of integration changes.FTC II gives a way to

evaluate d
dx

(∫ x
a f(t) dt

) This part of the
Fundamental Theorem is used to prove the first part of the FTC.

Motivation for the Fundamental Theorem of Calculus I

In Section 6.2 we found that
∫ b

a
c dx = cb − ca and

∫ b

a
x dx = b2

2
− a2

2
. In

the same section we found that
∫ b

a
x2 dx = b3

3
− a3

3
by knowing that congruent

lopsided tents filled a cube. Using the formula for the sum of a geometric
series, we showed that

∫ b

a
2x dx = 2b

ln(2)
− 2a

ln(2)
.

All four results follow a similar pattern:∫ b

a
c dx = cb− ca

∫ b

a
x dx = b2

2
− a2

2∫ b

a
x2 dx = b3

3
− a3

3

∫ b

a
2x dx = 2b

ln(2)
− 2a

ln(2)
.

Next, compute an antiderivative of each of the integrands:∫
c dx = cx

∫
x dx = x2

2∫
x2 dx = x3

3

∫
2x dx = 2x

ln(2)
.

In each case the definite integral equals the difference between the values of an
antiderivative of the integrand evaluated at b and at a, the endpoints of the
interval.

This suggests that maybe if F (x) is an antiderivative of the integrand f(x),
then

b∫
a

f(x) dx = F (b)− F (a). (6.4.1)

If this is correct, then, instead of evaluating a definite integral by a special
device, such as cutting up a cube or summing a geometric series, we can do it
if we know an antiderivative of the integrand.

We may reason using velocity and distance to provide further evidence for
(6.4.1). Picture a particle moving upwards on the y-axis. At time t it is at
position F (t). The velocity at time t is F ′(t).
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We saw that the definite integral of the velocity from time a to time b tells
the change in position, that is,

the definite integral of the velocity = the final position− the initial position.

In symbols,
b∫

a

F ′(t) dt = F (b)− F (a). (6.4.2)

If we give F ′(t) the name f(t), then we can restate (6.4.2) as:

If f(t) = F ′(t), then

b∫
a

f(t) dt = F (b)− F (a).

In other words,

If F is an antiderivative of f , then

b∫
a

f(t) dt = F (b)− F (a).

The difference F (b)− F (a) is denoted F (t)|ba.
The formulas we found for the integrands c, x, x2, and 2x and reason-

ing about motion are all consistent with the first part of the Fundamental
Theorem of Calculus.

Fundamental Theorem of Calculus I

Theorem 6.4.1. If f is continuous on [a, b] and if F is an antiderivative of
f then

b∫
a

f(x) dx = F |ba = F (b)− F (a).

This theorem says, that to evaluate the definite integral of f from a to b,
look for an antiderivative of f . Evaluate it at b and subtract its value at a.
The difference is the value of the definite integral. To apply the theorem it is
necessary to find an antiderivative of the integrand f . For many functions it is
easy to do this. For some it is hard, but they can be found; but for others, an
antiderivative expressible in terms of the common functions cannot be found.
Some techniques for finding antiderivatives are discussed in Chapter 7.
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Example 1 shows the power of FTC I.

EXAMPLE 1 Use the Fundamental Theorem of Calculus to evaluate
∫ π/2

0
cos(x) dx.

SOLUTION Since (sin(x))′ = cos(x), sin(x) is an antiderivative of cos(x).
By FTC I,

π/2∫
0

cos(x) dx = sin(x)|π/2
0 = sin

(π

2

)
− sin(0) = 1− 0 = 1.

Figure 6.4.1

This tells us that the area under the curve y = cos(x) and above [0, π/2],
shown in Figure 6.4.1, is 1.

The result is reasonable since the area lies inside a rectangle of area 1× π
2

=
π
2
≈ 1.57 and contains a triangle of area 1

2

(
π
2

)
1 = π

4
≈ 0.79. �

Would the evaluation in Example 1 still work if we used sin(x) + 5 as the
antiderivative of cos(x)?

Motivation for the Fundamental Theorem of Calculus II

Let f be a continuous function such that f(x) is positive for x in [a, b]. For x
in [a, b], let G(x) be the area of the region under the graph of f and above the
interval [a, x], as shown in Figure 6.4.2(a). In particular, G(a) = 0.

(a) (b) (c)

Figure 6.4.2

We will compute the derivative of G(x), that is,

G′(x) = lim
∆x→0

∆G

∆x
= lim

∆x→0

G(x + ∆x)−G(x)

∆x
.

This is one of several occasions when we go back to the definition of the
derivative as a limit. For simplicity, keep ∆x positive. Then G(x + ∆x) is the
area under the curve y = f(x) above the interval [a, x + ∆x]. If ∆x is small,
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G(x+∆x) is only slightly larger than G(x), as shown in Figure 6.4.2(b). Then
∆G = G(x + ∆x)−G(x) is the area of the shaded strip in Figure 6.4.2(c).

When ∆x is small, the narrow shaded strip above [x, x + ∆x] resembles a
rectangle of base ∆x and height f(x) with area f(x)∆x. Therefore, it seems
reasonable that when ∆x is small,

∆G

∆x
≈ f(x)∆x

∆x
= f(x).

Thus it seems plausible that

lim
∆x→0

∆G

∆x
= f(x)

or
G′(x) = f(x).

In words, the derivative of the area of the region under the graph of f and
above [a, x] with respect to x is the value of f at x.

We use t in the integrand to
avoid using x to denote
both an end of the interval
and the integrand.

In terms of definite integrals, if f is a continuous function, and G(x) =∫ x

a
f(t) dt, we expect

d

dx

 x∫
a

f(t) dt

 = f(x).

This equation says that the derivative of the definite integral of f with respect
to the right end of the interval is f evaluated at that end. This is the substance
of the second part of the Fundamental Theorem of Calculus. It tells how
rapidly the definite integral changes as we change the upper limit of integration.

Fundamental Theorem of Calculus II

Theorem 6.4.2. Let f be continuous on the interval [a, b]. Define

G(x) =

x∫
a

f(t) dt for all a ≤ x ≤ b.

Then G is differentiable on [a, b] and its derivative is f :

G′(x) = f(x).

As a consequence of FTC II, every continuous function is the derivative of
some function.

See Exercise 63.
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There is a similar theorem for H(x) =
∫ b

x
f(t) dt: H ′(x) = −f(x). Fig-

ure 6.4.3 shows why there is a minus sign:

Figure 6.4.3

the area shrinks as x increases.

EXAMPLE 2 Give an example of an antiderivative of sin(x)
x

.

SOLUTION There are many antiderivatives of sin(x)
x

. Any two differ by a

constant. Their graphs can be seen in the slope field for y′ = sin(x)
x

shown in
Figure 6.4.4 (a).

x
1 2 3 4 5 6 7 8 9 10

y(x)

K1.0

K0.5

0

0.5

1.0

(a)

x
1 2 3 4 5 6 7 8 9 10

y(x)

K1.0

K0.5

0

0.5

1.0

(b)

Figure 6.4.4 (a) slope field for y′ = sin(x)
x

and (b) same slope field with the
solution with y(1) = 0.

Let G(x) =
∫ x

1
sin(t)

t
dt. By FTC II, G′(x) = sin(x)

x
. The graph of y = G(x)

is shown in Figure 6.4.4(b). �

One might expect the answer in Example 2 to be an explicit formula ex-
pressed in terms of the functions discussed in Chapters 2 and 3. Though the
derivative of every elementary function is an elementary function Liouville
proved that there are elementary functions that do not have elementary an-
tiderivatives.Joseph Liouville,

1809–1882.
Nobody will ever find an explicit formula in terms of elementary

functions for an antiderivative of sin(x)
x

. (The proof is reserved for a graduate
course.)

EXAMPLE 3 Give an example of an antiderivative of sin(
√

x)√
x

.

SOLUTION This integrand appears more complicated than sin(x)
x

, yet it has
an elementary antiderivative, namely −2 cos(

√
x). To check, we differentiate

y = −2 cos(
√

x) using the chain rule. We have y = −2 cos(u) where u =
√

x.
Therefore,

dy

dx
=

dy

du

du

dx
= −2(− sin(u))

1

2
√

x
=

sin(
√

x)√
x

.
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�
Because the antiderivatives of sin(

√
x)√

x
are elementary functions, it would be

easy to calculate
∫ 2

1
sin(

√
x√

x
dx.

Any antiderivative of ex is of the form ex + C, an elementary function.
However, no antiderivative of e−x2

is elementary. Statisticians define the error
function to be erf(x) = 2√

π

∫ x

0
e−t2/2 dt. Except that erf(0) = 0, there is no

easy way to evaluate erf(x). Since erf(x) is not elementary, it is customary
to collect approximate values of it in a table. Approximate values of special
functions such as the error function can also be obtained from mathematical
software and even a few calculators.

Net Area

Figure 6.4.5 The area of
a region below the x-axis is
negative.

When we evaluate
∫ π

0
cos(x) dx, we obtain sin(π) − sin(0) = 0 − 0 = 0.

What does this say about areas? Inspection of Figure 6.4.5 shows what is
happening.

For x in [π/2, π], cos(x) is negative and the curve y = cos(x) lies below the
x-axis. If we interpret the corresponding area as negative, then we see that it
cancels the area from 0 to π/2. When we say that

∫ b

a
f(x) dx represents the

area under the curve y = f(x), we mean that it represents the area between the

curve and the x-axis, with area below the x-axis taken as negative.
∫ b

a
f(x) dx

is the net area under y = f(x) on the interval [a, b]. It can be positive, zero,
or negative.

EXAMPLE 4 Evaluate
∫ 2

1
1
x2 dx by the Fundamental Theorem of Calcu-

lus I.
SOLUTION In order to apply FTC I we need an antiderivative of 1

x2 . In
Section 6.3 we saw that∫

xa dx =
1

a + 1
xa+1 + C (a 6= −1).

Wth a = −2 we have∫
1

x2
dx =

∫
x−2 dx =

1

(−2) + 1
x(−2)+1 + C =

1

−1
x−1 + C =

−1

x
+ C.

By FTC I

2∫
1

1

x2
dx =

(
−1

x
+ C

)∣∣∣∣2
1

=

(
−1

2
+ C

)
−
(
−1

1
+ C

)
=
−1

2
− (−1) =

1

2
.

The C’s cancel. We do not need the C when applying FTC I.
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�

FTC I asserts that

2∫
1

1

x2
dx

︸ ︷︷ ︸
The definite integral:
a limit of sums

=

(∫
1

x2
dx

)∣∣∣∣2
1︸ ︷︷ ︸

The difference between an
antiderivative evaluated at 2
and at 1

The symbols on the right and left of the equal sign are so similar that it is
tempting to think that the equation is obvious or says nothing whatsoever,
but that is not so. It is an instance of FTC I.

Often we write
∫

1
x2 dx as

∫
dx
x2 , merging the 1 with the dx. Also,

∫ f(x)
g(x)

dx

may be written as
∫ f(x) dx

g(x)
.

Some Terms and Notation

The related processes of computing
∫ b

a
f(x) dx and of finding an antiderivative∫

f(x) dx are both called integrating f(x). The term refers to two separate

processes: computing a number
∫ b

a
f(x) dx or finding a function

∫
f(x) dx.

In practice, both FTC I and FTC II are called the Fundamental Theorem
of Calculus. The context makes it clear which one is meant.

Proof of the Two Parts of the FTC

We now prove both parts of the Fundamental Theorem of Calculus without
referring to motion, area, or examples. The proofs use only the mathematics
of functions and limits. We prove FTC II first and then use it to prove FTC
I.

Proof of the FTC II

The second Fundamental Theorem of Calculus asserts that the derivative of
G(x) =

∫ x

a
f(t) dt is f(x). We gave an argument using areas of regions. But

definite integrals are defined in terms of approximating sums, not areas, so it
was not a proof. We now give a proof that uses only properties of definite
integrals.

Proof of FTC II

We wish to show that G′(x) = f(x). To do this we make use of the definition
of the derivative of a function.
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We have

G′(x)

= lim
∆x→0

G(x + ∆x)−G(x)

∆x
(definition of derivative)

= lim
∆x→0

∫ x+∆x

a
f(t) dt−

∫ x

a
f(t) dt

∆x
(definition of G)

= lim
∆x→0

∫ x

a
f(t) dt +

∫ x+∆x

x
f(t) dt−

∫ x

a
f(t) dt

∆x
(property 6 in Section 6.3)

= lim
∆x→0

∫ x+∆x

x
f(t) dt

∆x
(canceling)

= lim
∆x→0

f(c)∆x

∆x
(MVT for Definite Integrals;
c between x and x + ∆x)

= lim
∆x→0

f(c) (canceling)

= f(x). (continuity of f ;
c→ x as ∆x→ 0)

Hence
G′(x) = f(x),

which is what we set out to prove. •
A similar argument shows that

d

dx

b∫
x

f(t) dt = −f(x).

Proof of FTC I

The first Fundamental Theorem of Calculus asserts that if F ′ = f , then∫ b

a
f(x) dx = F (b) − F (a). We saw that it is true in cases with f(x) = c,

f(x) = x, f(x) = x2, and f(x) = 2x. We now prove the theorem.

Proof of FTC I

We assume that F ′ = f and wish to show that F (b) − F (a) =
∫ b

a
f(x) dx.

Define G(x) to be
∫ x

a
f(t) dt. By FTC II, G is an antiderivative of f . Since F

and G are both antiderivatives of f , they differ by a constant, say C. That is,

F (x) = G(x) + C.

Thus,

F (b)− F (a) = (G(b) + C)− (G(a) + C)
= G(b)−G(a) (C’s cancel)

=
∫ b

a
f(t) dt−

∫ a

a
f(t) dt (definition of G)

=
∫ b

a
f(t) dt (

∫ a

a
f(t) dt = 0).
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•

Summary

This section linked the two basic ideas of calculus, the derivative (more pre-
cisely, the antiderivative) and the definite integral.

FTC I says that if you can find a formula for an antiderivative F of f , then
you can evaluate the definite integral

∫ b

a
f(x) dx:

b∫
a

f(x) dx = F (b)− F (a).

FTC II says that if f is continuous then it has an antiderivative, namely
G(x) =

∫ x

a
f(t) dt. The function G might not be an elementary function, but

G′(x) = f(x). A graph of an antiderivative of f can be obtained from the
slope field for dy

dx
= f(x).
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EXERCISES for Section 6.4

1. State (a) FTC I and (b) FTC II.

2. Using only words, no mathematical symbols, state the First Fundamental The-
orem of Calculus.

3. Using only words, no mathematical symbols, state the Second Fundamental
Theorem of Calculus.

4. Evaluate

(a) x3
∣∣2
1

(b) x2
∣∣2
−1

(c) cos(x)|π0

5. Evaluate

(a) (x + sec(x))|π/4
0

(b)
1
x

∣∣∣∣3
2

(c)
√

x− 1
∣∣10

5

In Exercises 6 to 19 use FTC I to evaluate the definite integrals.

6.

2∫
1

5x3 dx

7.

3∫
−1

2x4 dx

8.

4∫
1

(x + 5x2) dx

9.

2∫
1

(6x− 3x2) dx
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10.

π/3∫
π/6

5 cos(x) dx

11.

3π/4∫
π/4

3 sin(x) dx

12.

π/2∫
0

sin(2x) dx

13.

π/6∫
0

cos(3x) dx

14.

9∫
4

5
√

x dx

15.

9∫
1

1√
x

dx

16.

8∫
1

3
√

x2 dx

17.

4∫
2

4
x3

dx

18.

1∫
0

dx

1 + x2

19.

1/2∫
1/4

dx√
1− x2

In Exercises 20 to 25 find the average value of the given function over the given
interval.
20. x2; [3, 5]

21. x4, [1, 2]

22. sin(x), [0, π]

23. cos(x), [0, π/2]

24. (sec(x))2, [π/6, π/4]

25. sec(2x) tan(2x), [π/8, π/6]
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In Exercises 26 to 33 find
26. The area of the region under the curve y = 3x2 and above [1, 4].
27. The area of the region under the curve y = 1/x2 and above [2, 3].
28. The area of the region under the curve y = 6x4 and above [−1, 1].
29. The area of the region under the curve y =

√
x and above [25, 36].

30. The distance an object travels from time t = 1 second to time t = 2 seconds,
if its velocity at time t seconds is t5 feet per second.
31. The distance an object travels from time t = 1 second to time t = 8 seconds,
if its velocity at time t seconds is 7 3

√
t feet per second.

32. The volume of a solid located between a plane at x = 1 and a plane located
at x = 5 if the cross-sectional area of the intersection of the solid with the plane
perpendicular to the x-axis through the point (x, 0) has area 6x3 square centimeters.
(See Figure 6.4.6.)

Figure 6.4.6
33. The volume of a solid located between a plane at x = 1 and a plane located at
x = 5 if the cross-sectional area of the intersection of the solid with the plane per-
pendicular to the x-axis through the point (x, 0) has area 1/x3 square centimeters.

34. Let f be a continuous function. Estimate f(7) if
∫ 7
5 f(x)dx = 20.4 and∫ 7.05

5 f(x)dx = 20.53.

35. Determine if each of the following expressions is a function or a number.

(a)
∫

x2 dx

(b)
∫

x2 dx
∣∣3
1

(c)
∫ 3
1 x2 dx

36.
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(a) Determine which of the following numbers is defined as a limit of sums.

∫
x2 dx

∣∣∣∣2
1

and

2∫
1

x2 dx

(b) How is the other number defined?

(c) Why are they equal?

37. There is no elementary antiderivative of sin(x2). Does sin(x2) have an an-
tiderivative? Explain.

38. True or false:

(a) Every elementary function has an elementary derivative.

(b) Every elementary function has an elementary antiderivative.

Explain.

39.

(a) Draw the slope field for
dy

dx
=

e−x

x
for x > 0.

(b) Use (a) to sketch the graph of an antiderivative of e−x

x .

(c) On the slope field drawn in (a), sketch the graph of f(x) =

x∫
1

e−t

t
dt. (For

which one value of x is f(x) easy to compute?)

Exercises 40 and 41 illustrate why FTC I can be applied using any antiderivative of
the integrand.
40. Evaluate the definite integral

∫ b
a x dx using the following antiderivatives of

f(x) = x.

(a) F (x) = 1
2x2 + 1.

(b) F (x) = 1
2x2 − 3.

(c) F (x) = 1
2x2 + C.

41. Evaluate the definite integral
∫ b
a 2x dx using the following antiderivatives of

f(x) = 2x.
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(a) F (x) = 1
ln(2)2

x + 11.

(b) F (x) = 1
ln(2)2

x − 7.

(c) F (x) = 1
ln(2)2

x + C.

42. Let F (x) =
∫ x
0 et2 dt.

(a) Does the graph of F (x) have inflection points? If so, find them.

(b) Sketch the graph of F (x).

43. Area was used in Section 6.2 to develop
∫ b
a x dx = b2

2 −
a2

2 when 0 < a < b.
To see that this result is true for all values of a and b (with b > a) we will consider
additional cases:

(a) If a < b < 0, work with negative area.

(b) If a < 0 < b, divide the interval [a, b] into two pieces and work with signed
areas.

44. Find dy
dx if

(a) y =
∫

sin(x2) dx

(b) y = 3x +
∫ 3
−2 sin(x2) dx

(c) y =
∫ x
−2 sin(t2) dt

In Exercises 45 to 48 differentiate the functions.
45.

(a)
∫ x
1 t4 dt

(b)
∫ 1
x t4 dt

46.

(a)
∫ x
1

3
√

1 + sin(t) dt

Calculus April 22, 2012



544 CHAPTER 6 THE DEFINITE INTEGRAL

(b)
∫ x2

1
3
√

1 + sin(t) dt (Use the chain rule.)

47.
∫ x
−1 3−t dt

48.
∫ 3x
2x t tan(t) dt (Assume x is in the interval (−π/12, π/12) and rewrite the

integral as
∫ 0
2x t tan(t) dt +

∫ 3x
0 t tan(t) dt.)

49. Figure 6.4.7(a) shows the graph of a function f(x) for x in [1, 3]. Let
G(x) =

∫ x
1 f(t) dt. Graph y = G(x) for x in [1, 3] as well as you can. Explain

your reasoning.

(a) (b)

Figure 6.4.7
50. Figure 6.4.7(b) shows the graph of a function f(x) for x in [1, 3]. Let
G(x) =

∫ x
1 f(t) dt. Graph y = G(x) for x in [1, 3] as well as you can. Explain your

reasoning.

Figure 6.4.8
51. A plane at a distance x from the center of the ball of radius r, 0 ≤ x ≤ r,
meets the ball in a disk. (See Figure 6.4.8.)
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(a) Show that the radius of the disk is
√

r2 − x2.

(b) Show that the area of the disk is πr2 − πx2.

(c) Using the FTC, find the volume of the ball.

52. Let v(t) be the velocity at time t of an object moving on a straight line. It
may be positive or negative.

(a) What is the physical meaning of
∫ b
a v(t) dt? Explain.

(b) What is the physical meaning of the slope of the graph of y = v(t)? Explain.

(c) What is the physical meaning of
∫ b
a |v(t)| dt? Explain.

53. Give an example of a function f such that f(4) = 0 and f ′(x) = 3
√

1 + x2.

54. Let f be a continuous function. Show that d
dx

∫ b
x f(x) dx = −f(x)

(a) by using the definition of derivative as a limit

(b) by using properties of the definite integral and FTC II.

55. If f(x) =
∫ x
−1 sin3

(
et2
)

dt, find f ′(1).

56. If
∫ x
1 f(t)dt = sin3(5x), find f ′(3).

57. Figure 6.4.9 shows the graph of a function f . Let A(x) be the area under the
graph of f and above the interval [1, x].

(a) Find A(1), A(2), and A(3).

(b) Find A′(1), A′(2), and A′(3).
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Figure 6.4.9
58.

(a) If
∫ x+4
x g(t)dt = 5 for all x, what can be said about the graph of g?

(b) How would you construct such a function?

59. Find D
(∫ x3

x2 et2dt
)
.

60. Find D
(∫ 5

x2 sin10(3t)dt
)
.

61. Find the derivative of cos(t2)
∣∣3x

2x
.

62. How often should a machine be overhauled? This depends on the rate f(t)
at which it depreciates and the cost A of an overhaul. Denote the time between
overhauls by T .

(a) Explain why you would like to minimize g(T ) = 1
T (A +

∫ T
0 f(t) dt).

(b) Find dg
dT .

(c) Show that if dg
dT = 0, then f(T ) = g(T ).

(d) Is this reasonable? Explain.

63. Let f(x) be a continuous function with only positive values. Define H(x) =∫ b
x f(t) dt for all a ≤ x ≤ b. Let ∆x be positive.

(a) Interpreting the definite integral as an area of a region, draw the regions whose
areas are H(x) and H(x + ∆x).

(b) Is H(x + ∆x)−H(x) positive or negative?

(c) Draw the region whose area is related to H(x + ∆x)−H(x).

(d) When ∆x is small, estimate H(x + ∆x)−H(x) in terms of f .

(e) Use (d) to evaluate the derivative H ′(x):

dH

dx
= lim

∆x→0

H(x + ∆x)−H(x)
∆x

.
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64. Say that you want to find the area of a planar cross section of a rock. One
way to find it is by sawing the rock in two and measuring the area directly. Suppose
you do not want to ruin the rock. Suppose you have a measuring glass, as shown in
Figure 6.4.10, that gives excellent volume measurements. How could you use it to
get a good estimate of the cross-sectional area?

Figure 6.4.10
65. Let R be a function with continuous second derivative R′′. Assume R(1) = 2,
R′(1) = 6, R(3) = 5, and R′(3) = 8. Evaluate

∫ 3
1 R′′(x) dx. (Not all of the informa-

tion provided is needed.)

66.

Jane:
∫ b
a f(x) dx is a number.

Sam: But if I treat b as a variable, then it is a function.

Jane: How can it be both a number and a function?

Sam: It depends on what “it” means.

Jane: You can’t get out of this so easily.

Which student is correct? That is, either give two interpretations of “it” or explain
why “it” has only one meaning.

67. The function ex

x does not have an elementary antiderivative. Show that its
reciprocal, x

ex , does have an elementary antiderivative. (Write x
ex as xe−x.)

68. Show that if we knew that every continuous function has an antiderivative,
then FTC I would imply FTC II.

69.
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(a) Show that for a constant function, f(x) = c, the average value of f over [a, b]
is the same as the value of the function at the midpoint of the interval [a, b].

(b) Give an example of a non-constant function f such that for any interval [a, b],∫ b
a f(t)dt

b− a
= f

(
a + b

2

)
.

(c) Show that if a continuous function f on (−∞,∞) satisfies the equation in (b),
it is differentiable.

(d) Find all continuous functions that satisfy the equation in (b).

70. Find all continuous functions f such that their average over [0, t] always equals
f(t) for all t.

71. Give a geometric explanation of the following properties of definite integrals:

(a) If f is an even function, then
∫ a
−a f(t)dt = 2

∫ a
0 f(t)dt.

(b) If f is an odd function, then
∫ a
−a f(t)dt = 0.

(c) If f is a periodic function with period p, then, for positive integers m and n,∫ np
mp f(t)dt = (n−m)

∫ p
0 f(t)dt.

72. Use FTC II to explain why, if u and v are differentiable functions,

(a) d
dx

∫ v(x)
a f(t) dt = f(v(x))v′(x)

(b) d
dx

∫ b
u(x) f(t) dt = −f(u(x))u′(x)

(c) d
dx

∫ v(x)
u(x) dt = f(v(x))v′(x)− f(u(x))u′(x)

(In (c), write the integral as the sum of two integrals.)

73. For which continuous functions f is the average value of f on the interval
[0, b] a non-decreasing function of b?

74.

Jane: The mean value theorem for definite integrals is not new.

Sam: Why not?
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Jane: It’s just a special case of the old one in Chapter 4: f(b)−f(a) = f ′(c)(b−a).

Sam: I don’t believe it.

Jane: Just apply the old one to G(x) that’s in FTC II. I get G(b)−G(a = G′(c)(b−
a).

Sam: Now I’m lost.

Jane: Well, G(b)−G(a) =
∫ b
a f(x) dx and G′(c) = f(c).

Sam: Marvelous.

Is Jane right?
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6.5 Estimating a Definite Integral

It is easy to evaluate
∫ 1

0
x2
√

1 + x3 dx by the Fundamental Theorem of Cal-

culus because the integrand has an elementary antiderivative, 2
9
(1 + x3)3/2.

(Check that d
dx

2
9
(1 + x3)3/2 simplifies to x2

√
1 + x3.) However, an antideriva-

tive of
√

1 + x3 is not elementary, so
∫ 1

0

√
1 + x3 dx cannot be evaluated as

easily. Instead we estimate its value. This section describes three ways to do
this.

Approximation by Rectangles

The definite integral
∫ b

a
f(x) dx is, by definition, a limit of sums of the form

n∑
i=1

f(ci)(xi − xi−1).

Any such sum is an estimate of
∫ b

a
f(x) dx.

Figure 6.5.1

The area of a rectangle gives a local estimate of the area under the graph
of y = f(x) above the interval [xi−1, xi]. See Figure 6.5.1. The sum of the
areas of the rectangles is an estimate of the area under the curve.

To use rectangles to estimate
∫ b

a
f(x) dx, divide the interval [a, b] into n

sections of equal length by the n + 1 numbers a = x0 < x1 < x2 < · · · <
xn−1 < xn = b. (Choosing the sections to have the same length simplifies
the arithmetic.) The width of each section is h = (b − a)/n. Then choose a
sampling number ci in the ith section, i = 1, 2, . . . , n and form the Riemann
sum

∑n
i=1 f(ci)h. By the definition of the definite integral, this sum is an

estimate of the definite integral.

Denoting f(xi) by yi, and using the left endpoint xi−1 of each interval
[xi−1, xi] as the sampling number, we have the left endpoint rectangular
estimate

Left Endpoint Rectangular Estimate for
∫ b

a
f(x) dx

b∫
a

f(x) dx ≈ h(y0 + y1 + y2 + · · ·+ yn−2 + yn−1),

(
h =

b− a

n

)
.

If the right endpoints are used, we have the right endpoint rectangular
estimate:
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Right Endpoint Rectangular Estimate for
∫ b

a
f(x) dx

b∫
a

f(x) dx ≈ h(y1 + y2 + · · ·+ yn−1 + yn),

(
h =

b− a

n

)
.

We will illustrate this and other ways to estimate a definite integral by
estimating

∫ 1

0
dx

1+x2 . We chose it because it can be computed by the FTC:

1∫
0

dx

1 + x2
= arctan(x)|10 = arctan(1)− arctan(0) =

π

4
≈ 0.785398.

That enables us to judge the accuracy of each method.

EXAMPLE 1

Figure 6.5.2

Use the left endpoint rectangle estimate with four equal

width rectangles to estimate
∫ 1

0
dx

1+x2 . Repeat using the right endpoint rectangle
estimate.
SOLUTION Since the length of [0, 1] is 1, each of the four sections of equal
length has length 1

4
. See Figure 6.5.2. Using the height at the left endpoint of

each segment, the sum of the areas of the rectangles is

1

1 + 02
· 1
4

+
1

1 +
(

1
4

)2 · 14 +
1

1 +
(

2
4

)2 · 14 +
1

1 +
(

3
4

)2 · 14
= 1

4

(
1 + 16

17
+ 16

20
+ 16

25

)
≈ 1

4
(1.00000 + 0.94118 + 0.80000 + 0.64000) = 1

4
(3.38118) ≈ 0.84529.

The corresponding estimate using the height at the right endpoint of each
segment is

1

1 +
(

1
4

)2 · 14 +
1

1 +
(

2
4

)2 · 14 +
1

1 +
(

3
4

)2 · 14 +
1

1 +
(

4
4

)2 · 14
= 1

4

(
16
17

+ 16
20

+ 16
25

+ 1
2

)
≈ 1

4
(0.94118 + 0.80000 + 0.64000 + 0.50000) = 1

4
(2.88118) ≈ 0.72029.

�

As Figure 6.5.2 shows, the left endpoint rectangle estimate is an overesti-
mate and the right endpoint rectangle estimate is an overestimate. The exact
value is arctan(1) = π

4
≈ 0.785398. The error in each estimate is about 0.060
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(a) (b)

Figure 6.5.3

Approximation by Trapezoids

Trapezoids can also be used to find local estimates of the area under the graph
of y = f(x) above the interval [xi−1, xi]. The idea is shown in Figure 6.5.3(a).

The area, A, of a trapezoid with base width h and side lengths b1 and
b2 is the product of the base width and the average of the two side lengths:
A = 1

2
(b1 + b2)h. (See Figure 6.5.3(b).)

The formula for the trapezoidal estimate of
∫ b

a
f(x) dx follows from an

argument like the one for the rectangular estimate.

Let n be a positive integer. Divide the interval [a, b] into n sections of equal
length h = (b− a)/n with

x0 = a, x1 = a + h, x2 = a + 2h, . . . , xn = a + nh = b.

Denote f(xi) by yi. The local estimate of the area under y = f(x) and above
[xi−1, xi] is

1

2
(yi−1 + yi)h.

Summing the n local estimates of area gives the formula for the trapezoidal
estimate of

∫ b

a
f(x) dx:

y0 + y1

2
· h +

y1 + y2

2
· h + · · ·+ yn−1 + yn

2
· h

Factoring h/2 and collecting like terms gives us the trapezoidal estimate.

April 22, 2012 Calculus



§ 6.5 ESTIMATING A DEFINITE INTEGRAL 553

Trapezoidal Estimate for
∫ b

a
f(x) dx

b∫
a

f(x) dx ≈ h

2
(y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

(
h =

b− a

n

)
.

(6.5.1)

There are n sections of width h = (b− a)/n, each corresponding to one trape-
zoid. The function is evaluated at n + 1 points, including both ends of the
interval [a, b].

The values y0 and yn have coefficient 1 while the other yi’s have coefficient 2.
This is due to the double counting of the edges common to two trapezoids.

If f(x) is a polynomial of the form A + Bx, its graph is a straight line.
The top edge of each approximating trapezoid coincides with the graph. The
approximation (6.5.1) in this case gives the exact value of

∫ b

a
f(x) dx. There

is no error.
Figure 6.5.4 illustrate the trapezoidal estimate for the case n = 4 for con-

cave down and concave up functions.

(a) (b)

Figure 6.5.4

In Figure 6.5.4(a) the function is concave down and the trapezoidal esti-

mate underestimates
∫ b

a
f(x) dx. When the curve is concave up the trapezoids

overestimate, as shown in Figure 6.5.4(b). In both cases the trapezoids ap-

pear to give a better approximation of
∫ b

a
f(x) dx than the same number of

rectangles. We expect the trapezoidal method to provide better estimates of
a definite integral than those we obtain using rectangles.

EXAMPLE 2 Use the trapezoidal method with n = 4 to estimate
∫ 1

0
dx

1+x2 .
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SOLUTION In this case a = 0, b = 1, and n = 4, so h = (1− 0)/4 = 1
4
. The

four trapezoids are shown in Figure 6.5.5. The trapezoidal estimate is

h

2

(
f(0) + 2f

(
1

4

)
+ 2f

(
2

4

)
+ 2f

(
3

4

)
+ f(1)

)
.

Figure 6.5.5

Now, h/2 = 1
4
/2 = 1/8. To compute the sum of the five terms involving

values of f(x) = 1
1+x2 , make a list as shown in Table 6.5.1.

xi f(xi) coefficient summand decimal form
0 1

1+02 1 1 · 1
1+0

1.00000
1
4

1

1+( 1
4)

2 2 2 · 1
1+ 1

16

1.88236

2
4

1

1+( 2
4)

2 2 2 · 1
1+ 4

16

1.60000

3
4

1

1+( 3
4)

2 2 2 · 1
1+ 9

16

1.28000

4
4

1

1+( 4
4)

2 1 1 · 1
1+ 16

16

0.50000

Table 6.5.1

The trapezoidal sum is therefore, approximately,

1

8
(1.00000 + 1.88236 + 1.60000 + 1.28000 + 0.50000) ≈ 1

8
(6.26236) ≈ 0.78279.

Thus
1∫

0

dx

1 + x2
≈ 0.7828.

�
The trapezoid estimate differs from the definite integral by about 0.0026,

which is much smaller than 0.060, the error in the rectangular methods.

Comparison of Rectangular and Trapezoidal Estimates

If we divide out the 2 in the trapezoidal estimate, it takes the form

h
(y0

2
+ y1 + y2 + · · ·+ yn−1 +

yn

2

)
. (6.5.2)

which looks much like the rectangular estimate. It has n+1 summands, while
the rectangular estimate has only n summands. However, if f(a) happens to
equal f(b), that is, if y0 = yn, then (6.5.2) can be written either as h(y0 + y1 +
y2 + · · ·+ yn−1) (the left endpoint rectangular estimate) or as h(y1 + y2 + · · ·+
yn−1 + yn) (the right endpoint rectangular estimate). In the special case when

f(a) = f(b) the three estimates for
∫ b

a
f(x) dx coincide.
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Simpson’s Estimate: Approximation by Parabolas

Thomas Simpson,
1710–1761

In the trapezoidal estimate a curve is approximated by chords. Simpson’s
estimate for

∫ b

a
f(x) dx approximates a curve by parabolas. Given three points

on a curve, there is a unique parabola of the form y = Ax2 + Bx + C that
passes through them, as shown in Figure 6.5.6. (See Exercise 28.) The area
under that parabola is used to approximate the area under the curve.

Figure 6.5.6
Curve: y = f(x),
Parabola: y = Ax2+Bx+
C

The computations leading to the formula for the area under the parabola
are more involved than those for the area of a trapezoid. (They are outlined in
Exercises 28 and 29.) However, the final formula is fairly simple. Let the three
points be (x1, f(x1)), (x2, f(x2)), (x3, f(x3)), with x1 < x2 < x3, x2 − x1 = h,
and x3 − x2 = h, as shown in Figure 6.5.7(a). The shaded area under the
parabola turns out to be

h

3
(f(x1) + 4f(x2) + f(x3)) .

(a) (b)

Figure 6.5.7

To estimate
∫ b

a
f(x) dx, we pick an even number n and use n/2 parabolic

arcs, each of width 2h. As in the trapezoidal method, we start with a partition
of [a, b] into n sections of equal width, h: a = x0 < x1 < x2 < · · · < xn−1 <
xn = b. Denoting f(xi) by yi, sum the area under each parabola

h

3
((y0 + 4y1 + y2) + (y2 + 4y3 + y4) + · · ·+ (yn−2 + 4yn−1 + yn)) .

Collecting like terms gives us Simpson’s estimate for the definite integral∫ b

a
f(x) dx:
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Simpson’s Estimate for
∫ b

a
f(x) dx

b∫
a

f(x) dx ≈ h

3
(y0 + 4y1 + 2y2 + 4y3 + 2y4 + · · ·+ 2yn−2 + 4yn−1 + yn)(6.5.3)

(
h =

h

2
(b− a), n even

)

Except for the first and last terms, the coefficients alternate 4, 2, 4, 2, . . . ,
2, 4. To apply (6.5.3), pick an even number n. Then h = (b − a)/n. The
estimate uses n + 1 points, x0, x1, . . . , xn, and n/2 parabolas. Example 3
illustrates the method with n = 4.

EXAMPLE 3 Use Simpson’s method with n = 4 to estimate
∫ 1

0
dx

1+x2 .

SOLUTION The estimate takes the form

Figure 6.5.8

h

3
(y0 + 4y1 + 2y2 + 4y3 + y4)

with h = (1 − 0)/4 = 1/4. There are two parabolas, shown in Figure 6.5.8.
Because the parabolas look almost like the curve, we expect Simpson’s estimate
to be even better than the trapezoidal estimate.

The computations are shown in Table 6.5.2.

xi f(xi) coefficient summand decimal form
0 1

1+02 1 1 · 1
1+0

1.00000
1
4

1

1+( 1
4)

2 4 4 · 1
1+ 1

16

3.76472

2
4

1

1+( 2
4)

2 2 2 · 1
1+ 4

16

1.60000

3
4

1

1+( 3
4)

2 4 4 · 1
1+ 9

16

2.56000

4
4

1

1+( 4
4)

2 1 1 · 1
1+ 16

16

0.50000

Table 6.5.2

Combining the data in the table with the factor h/3 = 1/12 provides the
estimate

1

12
(1.00000 + 3.76472 + 1.60000 + 2.56000 + 0.50000) =

1

12
(9.42472) ≈ 0.78539.

�
As
∫ 1

0
dx/(1 + x2) = arctan(1) = π

4
≈ 0.785398, the estimate is accurate to

all five decimal places given.
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Comparison of the Four Methods

We know the value of
∫ 1

0
dx

1+x2 is 0.78539816, to eight decimal places. Table 6.5.3
compares the estimates made in the three examples to this value.

Error = |Estimate−Exact|
Method Estimate Error

Left Endpoint Rectangle 0.84529 0.05989
Right Endpoint Rectangle 0.72029 0.06511

Trapezoid 0.78279 0.00261
Simpson’s (Parabola) 0.78539 0.000008

Table 6.5.3

Though each method takes about the same amount of work, the table
shows that the Simpson’s estimate has the smallest error. The trapezoidal
method is next best. The left and right endpoint rectangular estimates have
the largest errors. That should not come as a surprise. Parabolas should fit
a curve better than chords, and chords should fit better than horizontal line
segments. The trapezoidal and Simpson’s estimates in Examples 2 and 3 used
the same sampling numbers to evaluate the integrand; they differ only in the
weights (coefficients) associated with the outputs of the integrand.

The size of the error is connected to the derivatives of the integrand. For
a positive number k, let Mk be the largest value of

∣∣f (k)(x)
∣∣ for x in [a, b].

Table 6.5.4 lists the upper bounds for the error when
∫ b

a
f(x) dx is estimated

by sections of length h = (b−a)/n. They are usually developed in a course on
numerical analysis. Recall that f (k)(x) is the

kth derivative of f . For
instance, f (2)(x) is the
second derivative.

They can also be obtained by using the Growth Theorem
of Section 5.4 and the Fundamental Theorem of Calculus. (See Exercises 44
and 45 in this section and Exercise 75 in the Chapter 6 Summary.) They offer
a good review of basic ideas.

Table 6.5.4 expresses the bounds on the size of the error for each method
in terms of h = (b− a)/n and n.

Method Bound on Error Bound on Error
in Terms of h in Terms of n

Rectangles M1(b− a)h M1(b− a)2/n
Trapezoids 1

12
M2(b− a)h2 1

12
M2(b− a)3/n2

Simpson’s (Parabolas) 1
180

M4(b− a)h4 1
180

M4(b− a)5/n4

Table 6.5.4

The coefficients in the error bounds tell us a great deal. For instance, if
M4 = 0, then there is no error in Simpson’s method. That is, if f (4)(x) = 0
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for all x in [a, b], then Simpson’s method produces an exact answer. Because
the error is M4(b− a)h4/180 = 0. As a consequence, for polynomials of degree
at most 3, Simpson’s approximation is exact. (See Exercise 78.)

We have seen that the trapezoidal estimate is exact for polynomials of
degree at most one, that is, for functions whose second derivative is zero. That
suggests that its error depends on the size of the second derivative; Table 6.5.4
shows that it is.

The power of h that appears in the error bound is even more important.
For instance, if you reduce the width h by a factor of 10 by using 10 times as
many sections you expect the error of the rectangular estimates to shrink by
a factor of 10, the error in the trapezoidal estimate to shrink by a factor of
102 = 100, and the error in Simpson’s estimate by a factor of 104 = 10, 000.
See Table 6.5.5.

Reduction Factor Expected Reduction
Estimate of h Factor of Error

Rectangles 10 10
Trapezoids 10 100

Simpson’s (Parabolas) 10 10,000

Table 6.5.5

Because the error in the rectangular method approaches 0 so slowly as
h→ 0, we will not refer to it further.
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Technology and Definite Integrals
William Kahan, “Handheld
Calculator Evaluates
Integrals,” Hewlett-Packard
Journal, 31(8), Aug. 1980,
pp. 23–32.

The trapezoidal estimate and Simpson’s estimate are two examples of what
is called numerical integration, studied in detail in courses on numerical
analysis. While the Fundamental Theorem of Calculus is useful for evaluating
definite integrals, it applies only when an antiderivative is known. Numerical
integration is an important tool in estimating definite integrals, particularly
when the FTC cannot be applied. Numerical integration can always be used
to find out something about the value of a definite integral.

The design of an efficient and accurate general-purpose numerical integra-
tion algorithm is harder than it might seem. Effective algorithms typically
divide the interval into sections of unequal lengths. The sections can be longer
where the function is almost constant. Shorter sections are used where the
function changes very rapidly. Large, or unbounded, intervals can lead to an-
other set of difficulties. Some examples of challenging definite integrals include∫ 2

0

√
x(4− x) dx

∫ 1

−1
dx

x2+10−10

∫ 600π

0
(sin(x))2√
x+

√
x+π

dx

The HP-34C was, in 1980, the first handheld calculator to perform numer-
ical integration. Now this is a common feature on most scientific calculators.
The algorithms used vary greatly, and their details are often corporate secrets.
The techniques are similar to those presented in this Section and in Exercise 40.

Summary

Four techniques for estimating definite integrals were suggested by the areas of
rectangles, the areas of trapezoids, and the areas under parabolas. The error
in each method is influenced by a derivative of the integrand and the distance,
h = (b− a)/n, between the numbers at which we evaluate the integrand. The
estimates have different coefficients to weight the function values yi = f(xi). In
the left-hand rectangular estimate the coefficients are 1, 1, 1, . . . , 1, 0 (because
yn = f(b) is not used). In the right-hand rectangular estimate the coefficients
are 0, 1, 1, . . . , 1. In the trapezoidal estimate, they are 1, 2, 2, . . . , 2, 1 and
in Simpson’s estimate they are 1, 4, 2, 4, 2, . . . , 2, 4, 1.

Higher-Order Interpolation Methods and Runge’s Counterexample
Carle Runge, 1856–1927.In the trapezoidal estimate we pass a line through two points to approximate

the curve. That uses a first-degree polynomial, Ax+B. In Simpson’s estimate
we pass a parabola through three points, using a second-degree polynomial,
Ax2+Bx+C. One would expect that as one passes higher-degree polynomials
through more points on the curve one would get even better approximations.
This is not always so. To see why not, search the WWW for “Runge’s coun-
terexample,” which is

∫ 1

−1
dx

1+25x2 .
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EXERCISES for Section 6.5

In the Exercises, Tn refers to the trapezoidal estimate with n trapezoids (partition
with n sections and n + 1 points), and Sn refers to Simpson’s estimate with n/2
parabolas (partition with n sections and n + 1 points).
In Exercises 1 to 8 approximate the definite integrals by the trapezoidal estimate
with the indicated Tn.

1.

2∫
0

dx

1 + x2
, T2

2.

2∫
0

dx

1 + x2
, T4

3.

2∫
0

sin(
√

x) dx, T2

4.

2∫
0

sin(
√

x) dx, T3

5.

3∫
1

2x

x
dx, T3

6.

3∫
1

2x

x
dx, T6

7.

3∫
1

cos(x2) dx, T2

8.

3∫
1

cos(x2) dx, T4

In Exercises 9 to 12 use Simpson’s estimate to approximate the definite integral with
the indicated Sn.

9.

1∫
0

dx

1 + x3
, S2

10.

1∫
0

dx

1 + x3
, S4

11.

1∫
0

dx

1 + x4
, S2
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12.

1∫
0

dx

1 + x4
, S4

13. Write out T6 for
∫ 4
1 5x dx but do not carry out the calculations.

14. Write out S10 for
∫ 1
0 ex2

dx but do not carry out the calculations.

15. By a direct computation, show that the trapezoidal estimate is not exact for
second-order polynomials. (Take the simplest case,

∫ 1
0 x2 dx.)

16. By a direct computation, show that the Simpson’s estimate is not exact for
fourth-order polynomials. (Take the simplest case,

∫ 1
0 x4 dx.)

17. In an interval [a, b] in which f ′′(x) is positive, do trapezoidal estimates of∫ b
a f(x) dx underestimate or overestimate the definite integral? Explain.

18. The cross section of a ship’s hull is shown in Figure 6.5.9(a). Estimate its
area by

(a) T6

(b) S6

Dimensions are in feet. Give your answer to four decimal places.

(a) (b)

Figure 6.5.9
19. A ship is 120 feet long. The cross-sectional area of its hull is given at intervals
in Table 6.5.6. Estimate the volume of the hull in cubic feet by

(a) a trapezoidal estimate and
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(b) a Simpson’s estimate.

Give your answer to four decimal places. (What is the largest n that can be used
in this problem?)

x 0 20 40 60 80 100 120 feet
area 0 200 400 450 420 300 150 square feet

Table 6.5.6

20. A map of Lake Tahoe is shown in Figure 6.5.9(b). Use Simpson’s method
and data from the map to estimate the surface area of the lake. Use cross sections
parallel to the side of the page. (Each little square represents a square mile.)

Exercises 21 and 22 present cases in which the maximum bound on the error is
attained.
21. Show that the error for the trapezoidal estimate of

∫ 1
0 x2dx is exactly

(b − a)M2h
2/12 where a = 0, b = 1, h = 1, and M2 is the maximum value of∣∣D2(x2)

∣∣ for x in [0, 1].

22. Show that the error for the Simpson estimate of
∫ 1
0 x4dx is exactly (b− a)M4h

4/180
where a = 0, b = 1, h = 1/2, and M4 is the maximum value of

∣∣D4(x4)
∣∣ for x in

[0, 1].

23. Figure 6.5.10(b) shows cross sections of a pond in two directions. Use Simp-
son’s method to estimate the area of the pond using

(a) vertical cross sections, three parabolas and

(b) horizontal cross sections, two parabolas.

24. For trapezoidal estimates, if you double the length of the interval [a, b] and
also the number of trapezoids, would you expect the error in the estimates to in-
crease, decrease, or stay about the same? Explain.

25. For Simpson estimates, if you double the length of the interval [a, b] and also
the number of parabolas, would you expect the error in the estimates to increase,
decrease, or stay about the same? Explain.

26.

(a) Fill in the table below concerning
∫ 6
0 x2 dx and its trapezoidal estimates.

April 22, 2012 Calculus



§ 6.5 ESTIMATING A DEFINITE INTEGRAL 563

(b) Do the errors in (a) seem to be proportional to hc for some constant c? If so,
what is c? (The width of the trapezoids is h.)∫ 6

0 x2 dx T1 T2 T3

Value
Error —

27.

(a) Fill in this table concerning
∫ 7
1 dx/(1 + x)2 and its Simpson estimates.

(b) Do the errors in (a) seem to be proportional to hc for some constant c? If so,
what is c? (The width of the sections is h.)∫ 7

1 dx/(1 + x)2 S2 S4 S6

Value
Error —

Exercises 28 to 30 provide the basis of Simpson estimates. For convenience we place
the origin of the x-axis at the midpoint of the interval for which a single parabola
will approximate the function. Because the interval has length 2h, its ends are −h
and h.
28. Let f(x) be a function defined on [−h, h], with f(−h) = y1, f(0) = y2, and
f(h) = y3. Show that there is exactly one parabola P (x) = Ax2 + Bx + C that
passes through (−h, y1), (0, y2), and (h, y3). (See Figure 6.5.10(a).)

(a) (b)

Figure 6.5.10
29. Let p(x) = Ax2 + Bx + C. Show, by computing both sides of the equation,
that

h∫
−h

p(x) dx =
h

3
(p(−h) + 4p(0) + p(h)) .
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This equation, expressed geometrically, was known to the ancient Greeks.

30. Let f(x) = x3. Show that

h∫
−h

f(x) dx =
h

3
(f(−h) + 4f(0) + f(h)) .

Combined with Exercise 29, this implies that Simpson’s method is exact for poly-
nomials of degree at most 3.

31. Table 6.5.7 lists a few values of a function f .

x 1 2 3 4 5 6 7
f(x) 1 2 1.5 1 1.5 3 3

Table 6.5.7

(a) Plot the points on the graph of f .

(b) Sketch six trapezoids that can be used to estimate
∫ 7
1 f(x) dx.

(c) Find the trapezoidal estimate of
∫ 7
1 f(x) dx.

(d) Sketch, by eye, the three parabolas used in Simpson’s method to estimate∫ 7
1 f(x) dx.

(e) Find Simpson’s estimate of
∫ 7
1 f(x) dx.

Exercises 32 to 34 describe the midpoint estimate.
32. Another way to estimate a definite integral is by a Riemann sum

∑n
i=1 f(ci)h,

where the ci are the midpoints of the intervals. Denote an estimate with n sections
by Mn. Find M4 for

∫ 1
0 dx/(1 + x2).

33. Using a diagram, show that the midpoint estimate is exact for functions of
the form f(x) = Ax + B.

34. Assume that f ′′(x) is negative for x in [a, b]. Using a diagram, show that
the midpoint method overestimates

∫ b
a f(x) dx. (Draw a tangent at the point

((a + b)/2, f((a + b)/2)).)

35. A function f is defined on [a, b] and f(x), f ′(x), and f ′′(x) are all positive for
x in that interval. Arrange the following quantities in order of size, from smallest
to largest. (Some may be equal.) Sketches may help.
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(a) the area of the trapezoid with base [a, b] and parallel sides of lengths f(a) and
f(b)

(b) the area of the midpoint rectangle with base [a, b] and height f((a + b)/2)

(c) the area of the right-endpoint rectangle with base [a, b] and height f(b)

(d) the area of the left-endpoint rectangle with base [a, b] and height f(a)

(e) the average of (c) and (d)

(f) the trapezoid whose base is [a, b] and whose top edge lies on the tangent line
at ((a + b)/2, f((a + b)/2))

(g)
∫ b
a f(x) dx.

36. If the Simpson estimate with four parabolas estimates a definite integral with
an error of 0.35, what error would you expect with (a) eight parabolas? (b) five
parabolas?

37. The equation in Exercise 28 is called the prismoidal formula. Use it to
compute the volume of

(a) a sphere of radius a and

(b) a right circular cone of radius a and height h.

Exercise 38 provides a review of several ideas as it involves the Fundamental Theorem
of Calculus (FTC I), the chain rule, l’Hôpital’s rule, and the intermediate value
theorem. The midpoint estimate is defined in Exercise 32.
38. Assume that f ′′(x) is continuous and negative for x in [0, 2h]. Then the
midpoint estimate, M , for

∫ h
−h f(x) dx is too large and the trapezoidal estimate,

T , is too small. The error of the first is M −
∫ h
−h f(x) dx and of the second is∫ h

−h f(x) dx− T . Show that

lim
h→0

M −
∫ h
−h f(x) dx∫ h

−h f(x) dx− T
=

1
2
.

This suggests that the error in the midpoint estimate when h is small is about half
the error of the trapezoidal estimate. However, the midpoint estimate is seldom
used because data at midpoints are usually not available and because the Simpson
estimate provides a more accurate estimate using the same data.

39. Simpson’s estimate is not exact for fourth-degree polynomials.
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(a) Estimate
∫ h
0 x4 dx by S2.

(b) What is the ratio between it and
∫ h
0 x4 dx?

(c) What does (b) imply about the ratio between Simpson’s estimate and
∫ h
0 P (x) dx

for a polynomial of degree at most 4?

40. There are other methods for estimating definite integrals. Some old meth-
ods, which had been of only theoretical interest because of their messy arithmetic,
have, with the advent of computers, assumed practical importance. This exercise
illustrates the simplest of the Gaussian quadrature formulas. For convenience,
we consider only integrals over [−1, 1].

(a) Show that
1∫

−1

f(x) dx = f

(
−1√

3

)
+ f

(
1√
3

)

for f(x) = 1, x, x2, and x3.

(b) Let a and b be two numbers, −1 ≤ a < b ≤ 1, such that

1∫
−1

f(x) dx = f(a) + f(b)

for f(x) = 1, x, x2, and x3. Show that only a = −1√
3

and b = 1√
3

satisfy the
equation.

(c) Show that the Gaussian approximation

1∫
−1

f(x) dx ≈ f

(
−1√

3

)
+ f

(
1√
3

)

has no error when f is a polynomial of degree at most 3.

(d) Use the formula in (a) to estimate

1∫
−1

dx

1 + x2
.

(e) Compare the answer in (d) to the exact value of

1∫
−1

dx

1 + x2
. How large is the

error?
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41. Let f be a function such that
∣∣f (2)(x)

∣∣ ≤ 10 and
∣∣f (4)(x)

∣∣ ≤ 50 for all x in
[1, 5]. If

∫ 5
1 f(x) dx is to be estimated with an error of at most 0.01, how small must

h be in

(a) the trapezoidal approximation?

(b) Simpson’s approximation?

42.

Sam: I bet I can find a better way than Simpson’s estimate to approximate
∫ h
−h f(x) dx

using the same three arguments (−h, 0, and h).

Jane: How so?

Sam: Look at his formula h
3 (f(−h) + 4f(0) + f(h)), which equals

2h

(
1
6
f(−h) +

4
6
f(0) +

1
6
f(h)

)
.

The width of the interval is 2h. That cannot be changed.

Jane: What would you change?

Sam: The weights 1
6 , 4

6 , and 1
6 . I’ll use weights w1, w2, and w3 and demand that

the estimates I get be exact when f(x) is either constant, x, or x2.

Jane: Go ahead.

Sam: If f(x) = c, a constant, then, because
∫ h
−h c dx = 2hc, I must have 2hc =

2h(w1c + w2c + w3c). That tells me that w1 + w2 + w3 must be 1.

Jane: But you need three equations for three unknowns.

Sam: When f(x) = x, I get
∫ h
−h f(x) dx = 0, so 0 = 2h(−w1h + w20 + w3h). Now

I know that w1 equals w3.

Jane: And the third equation?

Sam: With f(x) = x2, I find that 2
3h3 = 2h3(w1 + w3).

Jane: So what are your three w’s?

Sam: A little algebra shows they are 1
6 , 4

6 , and 1
6 . What a disappointment. But at

least I avoided all the geometry of parabolas. It is really all about assigning
proper weights.
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Check the missing details and show that Sam is right.

43. Another way to estimate a definite integral is to use Taylor polynomials
(Section 5.5). If the Maclaurin polynomial P2(x) for f(x) of degree 2 is used to
approximate f(x) for x in [0, h], express the possible error in using

∫ h
0 P2(x) dx to

estimate
∫ h
0 f(x) dx.

In Section 5.5 we showed why a higher derivative controls the error in using a
Taylor polynomial to approximate a function value. Exercises 44 and 45 show why
a higher derivative controls the error in using the trapezoidal or Simpson estimate
of a definite integral

∫ b
a f(x)dx. (Exercise 75 in the Chapter 6 Summary derives the

corresponding error estimate for the midpoint estimate.) In each case h = (b−a)/n
and a function E(t), 0 ≤ t ≤ h, is introduced. The local error is E(h), that is, the
error in using one trapezoid of width h or one parabola of width 2h. Once E(h) is
controlled by a higher derivative, we multiply by n, where nh = b − a, to obtain a
measure of the total error in estimating

∫ b
a f(x) dx. The argument involves both

FTC I and FTC II and provides a review of basic concepts.
44. (The error in the trapezoid estimate.) As usual, let h = (b − a)/n. We will
estimate the error for a single section of width h and then multiply by n to find the
error in estimating

∫ b
a f(x) dx. For convenience, we move the graph so the interval

(of length h) is [0, h].

(a) Show that the error when using T1 is E(h) =
∫ h
0 f(x) dx− h

2 (f(0) + f(h)).

(b) For t in [0, h] let E(t) =
∫ t
0 f(x) dx − t

2(f(0) + f(t)). Show that E(0) = 0,
E′(0) = 0, and E′′(t) = − t

2f ′′(t).

(c) Let M be the maximum of f ′′(x) on [a, b] and m be the minimum. Show that
−mt

2 ≥ E′′(t) ≥ −Mt
2 .

(d) Using (b) and (c), show that −mt2

4 ≥ E′(t) ≥ −Mt2

4 .

(e) Show that −mt3

12 ≥ E(t) ≥ −Mt3

12 .

(f) Show that −mh3

12 ≥ E(h) ≥ −Mh3

12 .

(g) Show that −m(b−a)h2

12 ≥
∫ b
a f(x) dx− Tn ≥ −M(b−a)h2

12 .

(h) Show that
∫ b
a f(x) dx− Tn = −f ′′(c)(b−a)h2

12 for some number c in [a, b].

(i) Deduce that
∣∣∣∫ b

a f(x) dx− Tn

∣∣∣ ≤ M2(b−a)h2

12 , where M2 is the maximum of
|f ′′(x)| for x in [a, b].
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45. (The error in the Simpson estimate.) Now n is even and [a, b] is divided into
n sections of width h = (b− a)/n. The Simpson estimate is based on n/2 intervals
of length 2h. We will place the origin at the midpoint of an interval, so that its
ends are −h and h. We wish to control the size of E(h) =

∫ h
−h f(x) dx− h

3 (f(−h) +
4f(0) + f(h)). For −h ≤ t ≤ h, let E(t) =

∫ t
−t f(x) dx− t

3(f(−t) + 4f(0) + f(t)).

(a) Show that

E′(t) =
2
3
(f(t) + f(−t))− 4

3
f(0)− t

3
(f ′(t)− f ′(−t)).

(b) Show that E′′(t) = 1
3(f ′(t)− f ′(−t))− t

3(f ′′(t) + f ′′(−t)).

(c) Show that E′′′(t) = − t
3(f ′′′(t)− f ′′′(−t)).

(d) Show that E′′′(t) = −2t2

3 f (4)(c) for some c in [−h, h].

(e) Show that E(0) = E′(0) = E′′(0) = 0.

(f) Let M4 be the maximum of |f (4)(t)| on [a, b]. Show that |E(t)| ≤ 2t5

180M4.

(g) Deduce that
∣∣∣∫ b

a f(x) dx− Sn

∣∣∣ ≤ M4(b−a)h4

180 .
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6.S Chapter Summary

This chapter introduced the second major concept in calculus, the definite
integral,

b∫
a

f(x) dx = lim
max∆xi→0

n∑
i=1

f(ci)∆xi.

For a continuous function the limit always exists and
∫ b

a
f(x) dx can be viewed

as the net area under the graph of y = f(x) on the interval [a, b]. Both the
definite integral and an antiderivative of a function f are called integrals.
Context tells which is meant. An antiderivative is also called an indefinite
integral.

Unlike the derivative, the definite integral gives global information.

Integrand: f(x) Integral:
∫ b

a
f(x) dx

velocity change in position
speed (|velocity|) distance traveled

cross-sectional length of plane region area of a plane region
cross-sectional area of solid volume of solid

rate at which a quantity grows total growth

As the first and last of these applications show, the definite integral of the
rate at which some quantity is changing gives the total change.

The FTC gives a way to evaluate many definite integrals. However, finding
an antiderivative can be tedious or impossible. For instance, exp(x2) does not
have an elementary antiderivative. However, continuous functions do have an-
tiderivatives, as slope fields suggest. Indeed G(x) =

∫ x

a
f(t) dt is an antideriva-

tive of the integrand. FTC II tells how to differentiate functions defined as a
definite integral,

d

dx

x∫
a

f(t) dt = f(x).

One way to estimate a definite integral is to employ one of the sums∑n
i=1 f(ci) ∆xi that appear in its definition. A more accurate method, which

involves the same amount of arithmetic, uses trapezoids. It is

b∫
a

f(x) dx ≈ h

2
(f(x0) + 2f(x1) + 2f(x2) + . . . + 2f(xn−1) + f(xn)) ,

where consecutive xi’s are a fixed distance h = (b− a)/n apart. In Simpson’s
method the graph is approximated by parabolas, n is even, and the estimate
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is

h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . . + 2f(xn−2) + 4f(xn−1) + f(xn)) .

EXERCISES for 6.S

1. State FTC I in words, using no mathematical symbols. (It refers to F (b)−F (a).)

2. State FTC II in words, using no mathematical symbols. (It refers to the
derivative of

∫ x
a f(t) dt.)

Evaluate the definite integrals in Exercises 3 to 16.
3.

∫ 2
1 (2x3 + 3x− 5) dx

4.
∫ 7
5

3
x dx

5.
∫ 4
1

dx√
x

6.
∫ 4
1

x+2x3
√

x
dx

7.
∫ 1
0 x(3 + x) dx

8.
∫ 2
0 (2 + 3x)2 dx

9.
∫ 2
1

(2+3x)2

x2 dx

10.
∫ 2
1 e2x dx

11.
∫ π
0 sin(3x) dx

12.
∫ π/4
0 sec2(x) dx

13.
∫ √2/2
0

3 dx√
1−x2

dx

14.
∫ π/4
0 cos(x) dx

15.
∫ π/4
0 sec(x) tan(x) dx

16.
∫ √2/2
1/2

dx
x
√

x2−1

In Exercises 17 to 24 find an antiderivative of the function by guess and experiment.
Check your answer by differentiating it.
17. (2x + 1)5

18. 1
(2x+1)5

19. 1
x+1

20. 1
2x+1

21. ln(x)
22. x sin(x)
23. sin(2x)
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24. xex2

Use Simpson’s estimate with three parabolas (n = 6) to approximate the definite
integrals in Exercises 25 and 26.
25.

∫ π/2
0 sin(x2) dx

26.
∫ 2
1

√
1 + x2 dx

27. Use the trapezoidal estimate with n = 6 to estimate the integral in Exer-
cise 25.

28. Use the trapezoidal estimate with n = 6 to estimate the integral in Exer-
cise 26.

Exercises 29 and 30 provide additional detail for the historical discussion on page 1086
of Newton’s calculation of the area under a hyperbola to more than 50 decimal places.
(See also Exercise 29 in Section 6.5.)
29. Let c be a positive constant less than 1.

(a) Show that the area under the curve y = 1/(1 + x) above the interval [0, c] is
ln(1 + c).

(b) Show that the area under the curve y = 1/(1 + x) above the interval [−c, 0] is
− ln(1− c).

30.

(a) In his approximation of ln(1.1) to 53 decimal places Newton used, in effect,
P53(0.1; 0) for f(x) = ln(1+x) to approximate ln(1.1). What is the bound on
the error for the approximation?

(b) Could Newton have used fewer terms to obtain an equally accurate answer?
Explain your answer.

31.

(a) What is the area under y = 1/x and above [1, b], b > 1?

(b) Is the area under y = 1/x and above [1,∞) finite or infinite?

(c) The region under y = 1/x and above [1, b] is rotated around the x-axis. What
is the volume of the solid produced?

32. The basis for this chapter is that if f is continuous and x > a, then
d
dx

∫ x
a f(t) dt = f(x).
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(a) Review how the equation was obtained.

(b) Use a similar method to show that if x < b, then d
dx

∫ b
x f(t) dt = −f(x).

33. Let f(x) and g(x) be differentiable functions with f(x) ≥ g(x) for all x in
[a, b], a < b.

(a) Is f ′(x) ≥ g′(x) for all x in [a, b]? Explain.

(b) Is
∫ b
a f(x)dx ≥

∫ b
a g(x)dx? Explain.

34. Find D
(∫ x3

x2 e−t2dt
)
.

35.

Jane: I’m not happy. The text says that a definite integral measures area. But
they never defined area under a curve. I know that the area of a rectangle is
width times length. But what is meant by the area under a curve? If they say,
“Well, its the definite integral of the cross sections,” that won’t do. What if
I integrate cross sections that are parallel to the x-axis instead of the y-axis?
How do I know I’ll get the same answer? Once again, the authors are hoping
no one will notice a big gap in their logic.

Is Jane right? Have the authors tried to slip something past the reader?

36. Let Ln be the left endpoint estimate of
∫ b
a f(x) dx with n rectangles, Rn be

the right endpoint estimate with n rectangles, and Tn be the trapezoidal estimate
with n trapezoids.

(a) Show that Rn − Tn = Tn − Ln = h
2 (f(b)− f(a)).

(b) Show that Tn = 1
2(Ln + Rn).

37. Let Tn be the trapezoidal estimate of
∫ b
a f(x) dx with n trapezoids and Mn be

the midpoint estimate with n sections. Show that 1
3Tn + 2

3Mn equals the Simpson
estimate S2n with n parabolas. (Consider a typical interval of length h.)

38. A river flows at the rate of r(t) cubic feet per second.

(a) Approximate how many cubic feet pass during the short time interval from
time t to time t + ∆t seconds.
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(b) How much passes from time t1 to time t2 seconds?

39. Let f(x) = xe−x for x ≥ 0. For which interval of length 1 is the area below
the graph of f and above the interval a maximum?

40. Let f(x) = x/(x + 1)2 for x ≥ 0.

(a) Graph f , showing any extrema.

(b) Looking at the graph, estimate for which interval of length one the area below
the graph of f and above the interval is a maximum.

(c) Using calculus, find the interval in (b) that yields the maximum area.

41.

(a) Estimate
∫ 1
0

sin(x)
x dx by approximating sin(x) by the Maclaurin polynomial

P6(x; 0).

(b) Use the Lagrange bound on the error to bound the error in (a).

42.

(a) Estimate
∫ 3
1

ex

x dx by using the Taylor polynomial P3(x; 2) to approximate ex.
(To avoid computing e2, approximate e by 2.71828.)

(b) Use the Lagrange bound on the error to bound the error in (a).

43. Assume f(2) = 0, f ′(2) = 0, and f ′′(x) ≤ 5 for all x in [0, 7]. Show that∫ 3
2 f(x)dx ≤ 5/6.

44. Find lim
t→0

∫ t
0

(
ex2 − 1

)
dx∫ t

0 sin(2x2) dx
.

45. Let G(t) =
∫ t
0 cos5(θ) dθ for t in [0, 2π].

(a) Sketch a graph of y = G′(t).

(b) Sketch a graph of y = G(t).
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(a) (b) (c)

Figure 6.S.1
46. Figure 6.S.1(a) shows a triangle ABC inscribed in the parabola y = x2 with
A = (−a, a2), B = (0, 0), and C = (a, a2). Let T (a) be its area and P (a) the
area bounded by AC and the parabola above the interval [−a, a]. Find lima→0

T (a)
P (a) .

(Archimedes established a much more general result. In Figure 6.S.1(b) the tangent
line at B is parallel to AC. He determined for any chord AC the ratio between the
area of triangle ABC and the area of the parabolic section .)

Usually we use a sum to estimate a definite integral. We can also use a definite
integral to estimate a sum. In Exercises 47 and 48, rewrite the sum so that it is a
sum estimating a definite integral. Then use the definite integral to estimate the
sum.

47.
1

100

100∑
i=1

1
i2

48.
100∑

n=51

1
n

49.

(a) Show that the average value of cos(θ) for θ in [0, π/2] is about 0.637.

(b) The average in (a) is much more than half of the maximum value of cos(θ).
Why is that good news for a farmer or solar engineer on Earth who depends
on heat from the sun? (See Figure 6.S.1(c).)

50. Assume f ′ is continuous on [0, t].

(a) Find the derivative of F (t) = 2
∫ t
0 f(x)f ′(x) dx− f(t)2.

(b) Give a shorter formula for F (t).
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51. Find a simple expression for the function F (t) =
∫ t
1 cos(x2) dx−

∫ t2

1
cos(u)
2
√

u
du.

52. A tent has a square base of side b and a pole of length b/2 above the center
of the base.

(a) Set up a definite integral for the volume of the tent.

(b) Evaluate the integral in (a) by the Fundamental Theorem of Calculus.

(c) Find the volume of the tent by showing that six copies of it fill a cube of side
b.

53.

Sam: I can get the first FTC, the one about F (b)− F (a), without all that stuff in
the second FTC.

Jane: That would be nice.

Sam: I assume F ′ is continuous and
∫ b
a F ′(x)dx exists. Now, F (b) − F (a) is the

total change in F . Well, bust up [a, b] by t0, t1, . . . , tn in the usual way.
Then the total change is just the sum of the changes in F over each of the n
intervals, [ti−1, ti], i = 1, 2, . . . , n.

Jane: That’s a no-brainer, but then what?

Sam: The change in F over the typical interval is F (ti) − F (ti−1). By the mean
value theorem for F , that equals F ′(t∗i )(ti−ti−1) for some t∗i in the ith interval.
The rest is automatic.

Jane: I see. You let all the intervals get shorter and shorter and the sums of the
F ′(t∗i )(ti − ti−1) approach

∫ b
a F ′(x) dx. But they are all already equal to

F (b)− F (a).

Sam: Pretty neat, yes?

Jane: Something must be wrong.

Is anything wrong?

54.

(a) Graph y = ex for x in [0, 1].

(b) Let c be the number such that the area under the graph of y = ex above [0, c]
equals the area under the graph above [c, 1]. From the graph in (a), decide
whether c is bigger or smaller than 1/2.
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(c) Find c.

55. Find lim
∆x→0

 1
∆x

7+∆x∫
5

ex3
dx− 1

∆x

7∫
5

ex3
dx

 .

56. Find lim
∆x→0

 1
∆x

7∫
5+∆x

ex3
dx− 1

∆x

7∫
5

ex3
dx

 .

57. A company is founded with capital investment A. It plans to have its rate
of investment proportional to its total investment at any time. Let f(t) denote the
rate of investment at time t.

(a) Show that there is a constant k such that f(t) = k(A +
∫ t
0 f(x)dx) for any

t ≥ 0.

(b) Find a formula for f .

There are two definite integrals in each of Exercises 58 to 61. One can be evaluated
by the FTC, the other not. Evaluate the one that can be evaluated by the FTC and
approximate the other by Simpson’s estimate with n = 4 (2 parabolas).
58.

∫ 1
0 (ex)2 dx,

∫ 1
0 ex2

dx.

59.
∫ π/4
0 sec(x2) dx,

∫ π/4
0 (sec(x))2 dx.

60.
∫ 3
1 ex2

x dx,
∫ 3
1

ex2

x dx.

61.
∫ 0.4
0.2

dx√
1−x2

,
∫ 0.4
0.2

dx√
1−x3

.

62. If F ′(x) = f(x), find an antiderivative for (a) g(x) = x + f(x), (b) g(x) =
2f(x), (c) g(x) = f(2x).

63. John M. Robson in “The Physics of Fly Casting,” American J. Physics
58(1990), pp. 234–240, lets the reader fill in calculus steps. For instance, he has

µ(4z + h)ż2 = 2

t∫
0

crhρż3dt + T (0)

where z is a function of time t, ż = dz/dt, and z̈ = d2z/dt2. He then states,
“differentiating this gives

(2µ− crhρ)ż2 + (4z + h)µz̈ = 0.”
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Check that he is correct.

Figure 6.S.2
64. This exercise verifies the claims made in the last paragraph of Section 5.8.

(a) Explain why, for each angle θ in [0, π], a sector of the unit circle with angle
2θ has area θ.

(b) In Figure 6.S.2, the area of the shaded region is twice the area of region
OAP . The area of OAP is the area of a triangle less the area under the
hyperbola. Express this area in terms of t. (It will include a definite integral
with integrand

√
x2 − 1.)

(c) Verify that 1
2

(
x
√

x2 − 1− ln(x +
√

x2 − 1)
)

is an antiderivative of
√

x2 − 1
for x > 1.

(d) Show that the area of the shaded region in Figure 6.S.2 is t.

65. Jane is running from a to b, on the x-axis. When she is at x, her speed is
v(x). How long does it take her to go from a to b?

66.

(a) Find all continuous functions f(t), t ≥ 0, such that
∫ x2

0 f(t) dt = 3x3, x ≥ 0.

(b) Check that they satisfy the equation.

67. Let f(x) be defined for x in [0, b], b > 0. Assume that f(0) = 0 and f ′(x) is
positive.

(a) Use Figure 6.S.3(a) to show that
∫ b
0 f(x) dx +

∫ f(b)
0 (invf)(x) dx = bf(b).
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(b) As a check on the equation in (a), differentiate both sides with respect to b.
You should get a valid equation.

(c) Use (a) to evaluate
∫ 1
0 arcsin(x) dx.

(a) (b)

Figure 6.S.3
68.

(a) Verify, without using the FTC, that
∫ 2
0

√
x(4− x) dx = π. (What region has

an area give by that integral?)

(b) Approximate the definite integral in (a) by the trapezoidal estimate with four
trapezoids and with eight trapezoids.

(c) Compute the error in each case.

(d) By trial and error, estimate how many trapezoids are needed to have an
approximation that is accurate to three decimal places.

(e) Why is the error bound for the trapezoidal estimate of no use in (d)?

69.

(a) Approximate the definite integral in Exercise 68 by Simpson’s estimate with
two parabolas and again with four parabolas. (These use the same number of
arguments as in Exercise 68.)

(b) Compute the error in each case.

(c) By trial-and-error, estimate how many parabolas are needed to have an esti-
mate accurate to three decimal places. (Use your calculator or computer to
automate the calculations.)
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(d) Why is the error bound for the Simpson’s estimate of no use in (c)?

70. In his Principia, published in 1687, Newton examined the error in approxi-
mating an area by rectangles. He considered an increasing differentiable function f
defined on the interval [a, b] and drew a figure similar to Figure 6.S.3(b). All rect-
angles have the same width h. Let R equal the sum of the areas of the rectangles
using right endpoints and let L equal the sum of the areas of the rectangles using
left endpoints. Let A be the area under the curve y = f(x) and above [a, b].

(a) Why is R− L = (f(b)− f(a))h?

(b) Show that any approximating sum for A, formed with rectangles of equal
width h and any sampling points, differs from A by at most (f(b)− f(a))h.

(c) Let M1 be the maximum value of |f ′(x)| for x in [a, b]. Show that any ap-
proximating sum for A formed with equal widths h differs from A by at most
M1(b− a)h.

(d) Newton also considered the case where the rectangles do not necessarily have
the same widths. Let h be the largest of their widths. What can be said about
the error in this case?

71. Let f be a continuous function such that f(x) > 0 for x > 0 and
∫ x
0 f(t) dt =

(f(x))2 for x ≥ 0.

(a) Find f(0).

(b) Find f(x) for x > 0.

72. A particle moves on a line so that the average velocity over any interval of
the form [a, b] is equal to the average of the velocities at a and b. Prove that the
velocity v(t) must be of the form ct + d for some constants c and d.

Exercises 73 and 74 present Archimedes’ derivations for the area of a disk and the
volume of a ball. He viewed the explanations as informal, and also presented rigor-
ous proofs for them.
73. Archimedes pictured a disk as made up of almost isosceles triangles, with a
vertex of each triangle at the center of the disk and the base of the triangle part
of the boundary of the disk. Using this he conjectured that the area of a disk is
one-half the product of the radius and its circumference. Explain why Archimedes’
reasoning is plausible.
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74. Archimedes pictured a ball as made up of almost pyramids, with the vertex
of each pyramid at the center of the ball and its base as part of the surface of the
ball. Using this he conjectured that the volume of a ball is one-third the product
of the radius and its surface area. Explain why Archimedes’ reasoning is plausible.

75. (The midpoint estimate for a definite integral is described in Exercises 32
to 34 in Section 6.5.) Let Mn be the midpoint estimate of

∫ b
a f(x) dx based on n

sections of width h = (b − a)/n. This exercise shows that the bound on the error,∣∣∣∫ b
a f(x) dx−Mn

∣∣∣, is half of the bound on the trapezoidal estimate. The argument
is like that in Exercises 44 and 45 of Section 6.5, and is an application of the Growth
Theorem of Section 5.4.

Let E(t) =
∫ t/2
−t/2 f(x) dx− f(0)t.

(a) Show that E(0) = E′(0) = 0, and that E′′(t) = 1
4

(
f ′
(

t
2

)
− f ′

(−t
2

))
.

(b) Show that
∣∣∣∫ b

a f(x) dx−Mn

∣∣∣ ≤ 1
24M(b − a)h2, where M is the maximum of

|f ′′(x)| for x in [a, b].

76. Let y = f(x) be a function such that f(x) ≥ 0, f ′(x) ≥ 0, and f ′′(x) ≥ 0
for all x in [1, 4]. An estimate of the area under y = f(x) is made by dividing the
interval into sections and forming rectangles. The height of each rectangle is the
value of f(x) at the midpoint of the corresponding section.

(a) Show that the estimate is less than or equal to the area under the curve.
(Draw a tangent to the curve at each of the midpoints.)

(b) How does the estimate compare to the area under the curve if, instead, f ′′(x) ≤
0 for all x in [1, 4]?

77. The definite integral
∫ 1
0

√
x dx gives numerical analysts a pain. The integrand

is not differentiable at 0. What is worse, the derivatives (first, second, etc.) of
√

x
become arbitrarily large for x near 0. It is instructive, therefore, to see how the
error in Simpson’s estimate behaves as h is made small.

(a) Use the FTC to show that
∫ 1
0

√
x dx = 2

3 .

(b) Fill in the table. (Keep at least seven decimal places in each answer.)
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h Simpson’s Estimate Error Ratio

1
2 —

1
4

1
8

1
16

1
32

1
64

(c) In the typical application of Simpson’s method, when h is reduced by a factor
of 2, the error is cut by a factor of 24 = 16. (That is, the ratio of the two
errors would be 1

16 = 0.0625.) Fill in the ratios of consecutive errors in the
table.

(d) Let E(h) be the error in using Simpson’s method to estimate
∫ 1
0

√
x dx with

sections of length h. Assume that E(h) = Ahk for constants k and A. Esti-
mate k and A.

78. Since Simpson’s method was designed to be exact when f(x) = Ax2 +Bx+C,
we expect the error associated with it to involve f (3)(x). By a quirk of good fortune,
Simpson’s method happens to be exact even when f(x) is a cubic, Ax3+Bx2+Cx+
D. This exercise confirms that this is so without using the formula for the error in
Simpson’s method.

(a) Show that if f(x) = x3, then

d∫
c

x3 dx =
d− c

6

(
f(c) + 4f

(
c + d

2

)
+ f(d)

)
.

(b) Why does (a) show that Simpson’s estimate exact for cubic polynomials?

79. This is an extension of Exercise 82 in the Summary of Chapter 5.
A producer of wine can choose to store it and sell it at a higher price after it has
aged. However, he also must consider storage costs. Assume the revenue received
from selling the wine at time t is V (t). If the interest rate on bank balances is r,
which we assume is constant, the present value of the sale is V (t)e−rt.

The cost c(t) of storing the wine varies with time. Assume the cost of storing
the wine during the short interval [t, t + ∆t] is approximately c(t)∆t.
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(a) What is the present value of storing the wine for the period [0, x]?

(b) What is the present value, P (x), of the profit made by selling all the wine at
time x? That is, what is the present value of the revenue minus the present
value of the storage cost if sold at time x?

(c) Show that P ′(x) = V ′(x)e−rx − rV (x)e−rx − c(x)e−rx.

(d) Show that if V ′(x)e−rx > rV (x)e−rx + c(x)e−rx, then P ′(x) is positive, and
he should continue to store the wine.

(e) What is the meaning of each of the terms in the inequality in (d)? Why does
the inequality make economic sense?

80. The average of a function that we have defined is called the arithmetic
average. In some applications the geometric average is more appropriate and useful.
The geometric average of n positive numbers is defined as the nth root of their
product.

(a) If the positive numbers are p1, p2, . . . , pn, their geometric average G is
(p1p2 · · · pn)1/n. Show that ln(G) is the arithmetic average of the n numbers
ln(p1), ln(p2), . . . , ln(pn).

(b) Let f be a continuous positive function on [a, b]. How would you define the
geometric average of f on [a, b]?

(c) Check that your definition in (b) is between the minimum and maximum of
f on [a, b].

(d) How would you define the geometric average of a continuous positive function
defined on (0,∞)?

Exercises 81 to 86 offer an opportunity to practice differentiation skills. In each
case, verify that the derivative of the first function is the second function.

81. ln
(

ex

1+ex

)
, 1

1+ex (To simplify, first take logs.)

82. 1
m arctan (emx), 1

emx+e−mx (m is a constant).

83. ln(tan(x)), 1
sin(x) cos(x)

84. tan
(

x
2

)
, 1

1+cos(x)
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85. 1
2 ln

(
1+sin(x)
1−sin(x)

)
, sec(x) = 1

cos(x)

86. arcsin(x)−
√

1− x2,
√

1+x
1−x

In Exercises 87 to 89 differentiate the functions.

87. sin(2x) tan(3x)
x3

88. 2x2
x3 cos(4x)

89. x2e3x
√

1+x2
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Calculus is Everywhere # 8

Peak Oil Production

Figure C.8.1

The United States in 1956 produced most of the oil it consumed and the
rate of production was increasing. Even so, M. King Hubbert, a geologist at
Shell Oil, predicted that production would peak near 1970 and then decline.
His prediction did not convince geologists, who were reassured by the rising
curve in Figure C.8.1.

Hubbert was right and the moment of maximum production is known today
as Hubbert’s Peak.

We present Hubbert’s reasoning drawn from “Nuclear Energy and the Fos-
sil Fuels,” available at http://www.hubbertpeak.com/hubbert/1956/1956.

pdf. In it he uses an integral over the entire positive x-axis, a concept we will
define in Section 7.8. However, since a finite resource is exhausted in a finite
time, his integral is an ordinary definite integral whose upper bound is not
known.

He stated two principles when analyzing curves that describe the rate of
exploitation of a finite resource:

“1. For any production curve of a finite resource of fixed amount,
two points on the curve are known at the outset, namely that
at t = 0 and again at t = ∞. The production rate will be
zero when the reference time is zero, and the rate will again
be zero when the resource is exhausted; that is to say, in the
production of any resource of fixed magnitude, the production
rate must begin at zero, and then after passing through one
or several maxima, it must decline again to zero.

2. The second consideration arises from the Fundamental Theo-
rem of Integral Calculus; namely, if there exists a single-valued
function y = f(x), then

x1∫
0

y dx = A, (C.8.1)

where A is the area between the curve y = f(x) and the x-axis
from the origin out to the distance x1.

In the case of the production curve plotted against time on an
arithmetical scale, we have as the ordinate

P =
dQ

dt
, (C.8.2)
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where dQ is the quantity of the resource produced in time dt. Like-
wise, from equation (C.8.1) the area under the curve up to any time
t is given by

A =

t∫
0

P dt =

t∫
0

(
dQ

dt

)
dt = Q, (C.8.3)

where Q is the cumulative production up to the time t. Likewise,
the ultimate production will be given by

Qmax =

∞∫
0

P dt, (C.8.4)

and will be represented on the graph of production-versus-time as
the total area beneath the curve.

Figure C.8.2

These basic relationships are indicated in Figure 11 [Figure C.8.2].
The only a priori information concerning the magnitude of the ul-
timate cumulative production of which we may be certain is that it
will be less than, or at most equal to, the quantity of the resource
initially present. Consequently, if we knew the production curves,
all of which would exhibit the common property of beginning and
ending at zero, and encompassing an area equal to or less than the
initial quantity.

That the production of exhaustible resources does behave this
way can be seen by examining the production curves of some of
the older producing areas.”

He then examined them for Ohio and Illinois. They resembled the curves
if Figure C.8.3, which describe more recent data on production in Alaska, the
United States, the North Sea, and Mexico.

Hubbert did not use a formula. Instead he employed the key idea in calcu-
lus, expressed in terms of production of oil, “The definite integral of the rate
of production equals the total production.”

He looked at the data up to 1956 and extrapolated the curve. This is his
reasoning:

Figure C.8.4 shows “a graph of the production up to the present,
and two extrapolations into the future. The unit rectangle in this
case represents 25 billion barrels so that if the ultimate potential
production is 150 billion barrels, then the graph can encompass
but six rectangles before returning to zero. Since the cumulative
production is already a little more than 50 billion barrels, then only
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(a) (b)

(c) (d)

Figure C.8.3 Annual production of oil in millions of barrels per day for (a)
Annual oil production for Prudhoe Bay in Alaska, 1977–2005 (Alaska Depart-
ment of Revenue), (b) moving average of preceding 12 months of monthly
oil production for the United States, 1920–2008 (EIA, “Crude Oil Produc-
tion”), (c) moving average of preceding 12 months of sum of U.K. and Norway
crude oil production, 1973–2007 (EIA, Table 11.1b), and (d) annual production
from Cantarell complex in Mexico, 1996–2007 (Pemex 2007 Statistical Year-
book and Green Car Congress (http://www.greencarcongress.com/2008/
01/mexicos-cantare.html)).

four more rectangles are available for future production. Also, since
the production rate is still increasing, the ultimate production peak
must be greater than the present rate of production and must occur
sometime in the future. At the same time it is possible to delay
the peak for more than a few years and still allow time for the
unavoidable prolonged period of decline due to the slowing rates of
extraction from depleting reservoirs.

Figure C.8.4 Ultimate
United States crude-oil
production based on
assumed initial reserves
of 150 and 200 billion
barrels.

With due regard for these considerations, it is almost impossi-
ble to draw the production curve based upon an assumed ultimate
production of 150 billion barrels in any manner differing signifi-
cantly from that shown in Figure C.8.4, according to which the
curve must culminate in about 1965 and then must decline at a
rate comparable to its earlier rate of growth.

If we suppose the figure of 150 billion barrels to be 50 billion
barrels too low — an amount equal to eight East Texas oil fields
— then the ultimate potential reserve would be 200 billion barrels.
The second of the two extrapolations shown in Figure C.8.4 is based
upon this assumption; but it is interesting to note that even then
the date of culmination is retarded only until about 1970.”

Geologists are now trying to predict when world production of oil will peak.
(Hubbert predicted it would occur in 2000.) In 2009 oil was being extracted
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at the rate of 85 million barrels per day. Some say the peak occurred as early
as 2005, but others believe it may not occur until after 2020.To see some of the latest

estimates, do a web search
for Hubbert peak oil

estimate.

What is just as alarming is that the world is burning oil faster than we are
discovering new deposits.

In the CIE on Hubbert’s Peak in Chapter 10 (see page 918) we present
a later work by Hubbert, in which he uses a formula to analyze oil use and
depletion.
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Chapter 7

Applications of the Definite
Integral

This chapter develops four applications of the definite integral. Sections 7.1
and 7.4 describe two geometric applications: finding total area from the length
of each cross section and finding total volume from the area of each cross
section. Section 7.5 gives an alternate way to compute volumes. Sections 7.6
and 7.7 present two applications in physics, the first, on water pressure, the
second on the work accomplished by a force.

Section 7.8 generalizes the definite integral to cases when either the inte-
grand becomes infinite or the interval of integration is infinite. The case where
you “integrate from zero to infinity,” for instance, is surprisingly common in
physics and statistics.

Advice on drawing and setting up definite integrals, two very useful but
often overlooked skills, is found in Sections 7.2 and 7.3.

589
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7.1 Computing Area by Parallel Cross Sec-

tions

In Section 6.1 we computed the area under y = x2 and above the interval [a, b],

and later saw that it equals the definite integral
∫ b

a
x2 dx. Now we generalize

the idea behind this example.

Area as a Definite Integral of Cross Sections

How can we express the area of the region R shown in Figure 7.1.1(a) as a
definite integral?

(a) (b) (c)

Figure 7.1.1

First, we introduce an “x-axis”, as in Figure 7.1.1(b).

Assume that lines perpendicular to the axis for x in [a, b], intersect the
region R in an interval of length c(x). The interval is called the cross section
of R at x.

We approximate R by a collection of rectangles, just as we estimated the
area of the region under y = x2.

Pick an integer n, and divide the interval [a, b] on the x-axis into n con-
gruent sections. The total length of the interval [a, b] is b− a; each section has
width ∆x = b−a

n
.Since we use c for the

“cross-sectional” length, we
cannot use use ci to name

the sampling point. Instead,
xi is used to denote the

sampling point. This does
not cause any confusion

since we are not using xi to
describe the endpoints of a

partition.

Then, in the ith section, i = 1, 2, . . . , n, we pick a “sampling
number” xi. For each of the n sections we form a rectangle of width ∆x and
height c(xi). These are indicated in Figure 7.1.1(c).

Since the ith rectangle has area c(xi)∆x, the total area of the n rectangles
is
∑n

i=1 c(xi)∆x. As n increases, the collection of rectangles provides a better
approximation to the area of R. This suggests that:

lim
n→∞

n∑
i=1

c(xi)∆x = area of region R
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But, by the definition of a definite integral,

lim
n→∞

n∑
i=1

c(xi)∆x =

b∫
a

c(x) dx.

Thus,

area of R =

b∫
a

c(x) dx.

Or, informally,

Area of a region equals the integral of its cross-sectional lengths.

Note that x need not refer to the x-axis of the xy-plane; it may refer to any
conveniently chosen line in the plane. It may even refer to the y-axis; in this
case the cross-sectional length would be denoted by c(y).

To compute an area:

1. Find the endpoints a and b, and the cross-sectional length c(x).

2. Evaluate
∫ b

a
c(x) dx by the Fundamental Theorem of Calculus, if the

antiderivative of c(x) is elementary.

Chapter 6 showed how to accomplish Step 2. FTC I is used when the
antiderivative is an elementary function, and other cases can be approximated
numerically. The present section is concerned primarily with Step 1, how to
find the cross-sectional length c(x) and set up the definite integral.

If the region R happens to be the region under the graph of f(x) and
above the interval [a, b], then the cross-sectional length is simply f(x). We
have already met this special case in Sections 6.2–6.4 with f(x) = x2 and
f(x) = 2x.

EXAMPLE 1 Find the area of a disk of radius r.
SOLUTION Introduce an xy-coordinate system with its origin at the center
of the disk, as in Figure 7.1.2(a).
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592 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

(a) (b)

Figure 7.1.2

The typical cross section perpendicular to the x-axis is shown in Fig-
ure 7.1.2(b). The length of the cross section, AC, is twice BC. By the
Pythagorean Theorem,

x2 + BC
2

= r2.

Then
BC

2
= r2 − x2

and, because BC, a length, is positive

BC =
√

r2 − x2.

Because x is in [−r, r],

area of disk of radius r =

r∫
−r

2
√

r2 − x2 dx. (7.1.1)

Equation (7.1.2) is
preferable because it

reduces the chance of
making an error when

working with the
subtraction of negative

numbers.

By symmetry, we can also say that the total area is four times the area of a
quadrant:

area of disk of radius r = 4

r∫
0

√
r2 − x2 dx. (7.1.2)

This completes the setup of the integral for the area of the region.
The next chapter presents a technique for finding an antiderivative of√

r2 − x2. In the mean time, we use the table of integrals on the inside cover.
According to formula 32,∫ √

r2 − x2 dx =
r2

2

(
arcsin

(x

r

)
+

x

r2

√
r2 − x2

)
.
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By FTC I, See Exercise 43

r∫
0

√
r2 − x2 dx =

r2

2

(
arcsin

(x

r

)
+

x

r2

√
r2 − x2

)∣∣∣∣r
0

=
r2

2

(
arcsin

(r

r

)
+

r

r2

√
r2 − r2

)
− r2

2

(
arcsin

(
0

r

)
+

0

r2

√
r2 − 02

)
=

r2

2

(π

2

)
=

πr2

4
.

Thus one quarter of the disk has area πr2

4
and the whole disk has area πr2. �

Reference: S. Stein:
Archimedes: What did he
do besides cry Eureka?,
MAA, 1999.

Archimedes found the area in the next example, expressing it in terms of
the area of a certain triangle (see Exercise 41). He used geometric properties
of a parabola, since calculus was not invented until some 1900 years later.

EXAMPLE 2 Set up a definite integral for the area of a region above
the parabola y = x2 and below the line through (2, 0) and (0, 1) shown in
Figure 7.1.3.

Figure 7.1.3

SOLUTION Since the x-intercept of the line is 2 and the y-intercept is 1, an
equation for the line is

x

2
+

y

1
= 1.

Hence y = 1 − x/2. The length c(x) of a cross section of the region taken
parallel to the y-axis is, therefore

c(x) =
(
1− x

2

)
− x2 = 1− x

2
− x2.

To find the interval [a, b] of integration, we must find the x-coordinates of the
points P and Q in Figure 7.1.2(b) where the line meets the parabola. For
these values of x,

x2 = 1− x

2
,

so
2x2 + x− 2 = 0. (7.1.3)

The solutions to (7.1.3) are

x =
−1±

√
17

4
.

Hence

area =

(−1+
√

17)/4∫
(−1−

√
17)/4

(
1− x

2
− x2

)
dx.
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The value of this definite integral is found in Exercise 33. �

Figure 7.1.4

EXAMPLE 3 Find the area of the region in Figure 7.1.4, bounded by
y = arctan(x), y = −2x, and x = 1.
SOLUTION We will find the area two ways, first (a) with cross sections
parallel to the y-axis, then (b) with cross sections parallel to the x-axis.

(a) The typical cross section has length arctan(x)− (−2x) = arctan(x) + 2x.
Thus the area is

1∫
0

(arctan(x) + 2x) dx.

It’s easy to find
∫

2x dx; it’s just x2.Formula 72 in the cover of
this book tells us that∫

arctan(x) dx is
x arctan(x)− 1

2 ln(1 + x2).
Use differentiation to check

that this is correct.

By the FTC,

1∫
0

(arctan(x) + 2x) dx =

(
x arctan(x)− 1

2
ln(1 + x2) + x2

)∣∣∣∣1
0

=

(
1 arctan(1)− 1

2
ln(1 + 12) + 12

)
−
(

0 arctan(0)− 1

2
ln(1 + 02) + 02

)
=

(
π

4
− 1

2
ln(2) + 1

)
− 0

=
π

4
+ 1− 1

2
ln(2). ≈ 1.4388 (7.1.4)

(b)

Figure 7.1.5

Now we use cross sections parallel to the x-axis, as indicated in Fig-
ure 7.1.5.

Cross sections above the x-axis involve the curved part of the boundary,
while those below the x-axis involve the slanted line.

We must find the cross-sectional length as a function of y. That means
we should first find the x-coordinates of P and Q, the ends of the typical
cross section above the x-axis. The x-coordinate of Q is 1. Let the
x-coordinate of P be x, then y = arctan(x), so x = tan(y). Hence

c(y) = 1− tan(y), for y ≥ 0.

The length of RS, a typical cross section below the x-axis, is 1−(x-coordinate of R).
Since R is on the line y = −2x, we have x = −y/2. Thus

c(y) = 1− (−y/2) = 1 + y/2, for −2 ≤ y ≤ 0.
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Note that the interval of integration is [−2, π/4]. Hence

area of R =

π/4∫
−2

c(y) dy.

We have to break this integral into two separate ones:

0∫
−2

(
1 +

y

2

)
dy and

π/4∫
0

(1− tan(y)) dy (7.1.5)

It will be shown Example 3 in Section 8.5 that Differentiate ln(sec(y)) to
check this antiderivative.
Because sec(y) is positive
for −π/2 < y < π/2 it is
not necessary to write the
antiderivative as ln | sec(y)|;
see Exercise 31.

∫
tan(y) dy = ln(sec(y)).

First,

0∫
−2

(
1 +

y

2

)
dy =

(
y +

y2

4

)∣∣∣∣0
−2

=

(
0 +

02

4

)
−
(

(−2) +
(−2)2

4

)
= 1 (7.1.6)

Second,

π/4∫
0

(1− tan(y)) dy = (y − ln sec(y))|π/4
0

=
(π

4
− ln(sec(

π

4
))
)
− (0− ln(sec(0)))

=
π

4
− ln(

√
2) (7.1.7)

Adding (7.1.6) and (7.1.7) gives

area of R =
π

4
− ln(

√
2) + 1 (7.1.8)

See Exercise 32.The two answers (7.1.4) and (7.1.8) may look different but they agree, as you
may show in Exercise 32. �

In this example we could have simplified the solution by observing that the
area below the x-axis is a triangle of area 1. But the purpose of Example 3 is
to illustrate a general approach.
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Summary

The key idea in this section, “area of a region equals integral of cross-sectional
length,” was already anticipated in Chapter 6. There we met the special case
where the region is bounded by the graph of a function, the x-axis, and two
lines perpendicular to the axis. In this section the concept was extended to
more general regions.
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EXERCISES for Section 7.1

In each of Exercises 1 to 6 (a) draw the region, (b) compute the lengths of vertical
cross sections (c(x)), and (c) compute the lengths of horizontal cross sections (c(y)).
1. The finite region bounded by y =

√
x and y = x2.

2. The finite region bounded by y = x2 and y = x3.

3. The finite region bounded by y = 2x, y = 3x, and x = 1.

4. The finite region bounded by y = x2, y = 2x, and x = 1.

5. The triangle with vertices (0, 0), (3, 0), and (0, 4).

6. The triangle with vertices (1, 0), (3, 0), and (2, 1).

In Exercises 7 to 12 find the indicated areas. Use the table of integrals provided
inside the cover of this textbook to find antiderivatives, if necessary.
7. Under y =

√
x and above [1, 2]

8. Under y = sin(2x) and above [π/6, π/3]

9. Under y = e2x and above [0, 1]

10. Under y = 1/
√

1− x2 and above [0, 1/2].

11. Under y = ln(x) and above [1, e]

12. Under y = cos(x) and above [−π/2, π/2]

In Exercises 13 to 20 find the indicated areas using cross sections parallel to the
x-axis.
13. Between y = x2 and y = x3.

14. Between y = 2x and y = 2x.

15. Between y = arcsin(x) and y = 2x/π (to the right of the y-axis).

16. Between y = 2x and y = 3x (to the right of the y-axis).

17. Between y = sin(x) and y = cos(x) (above 0, π/2].

18. Between y = x3 and y = −x for x in [1, 2].

19. Between y = x3 and y = 3
√

2x− 1 for x in [1, 2].

20. Between y = 1 + x and y = ln(x) for x in [1, e].

In Exercises 21 to 27 set up a definite integral for the area of the given region. Do
not attempt to evaluate the integral. These integrals will be evaluated in Exercises 36
to 42 in the Chapter 8 Summary.
21. The region under the curve y = arctan(2x) and above the interval [1/2, 1/

√
3].

22. The region in the first quadrant below y = −7x + 29 and above the portion
of y = 8/(x2 − 8) that lies in the first quadrant.
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23. The region below y = 10x and above y = log10(x) for x in [1, 10].

24. The region under the curve y = x/(x2+5x+6) and above the interval [1, 2].

25. The region below y = (2x + 1)/(x2 + x) and above the interval [2, 3].

26. The region bounded by y = tan(x), y = 0, x = 0, and x = π/2 by (a) vertical
cross sections and (b) horizontal cross sections.

27. The region bounded by y = sin(x), y = 0, and x = π/4 (consider only x ≥ 0)
by (a) vertical cross sections and (b) horizontal cross sections.

28.

(a) Draw the region inside the ellipse

x2

a2
+

y2

b2
= 1.

(b) Find a definite integral for the area of the ellipse in (a) with horizontal cross
sections.

(c) Find a definite integral for the area of the ellipse in (a) with vertical cross
sections.

(See Exercise 43 in Chapter 8 Summary.)

29. Cross sections in different directions lead to different definite integrals for the
same area. While both integrals must give the same area, one of the two integrals
can be easier to evaluate.

(a) Identify and evaluate the easier definite integral found in Exercise 26.

(b) Identify and evaluate the easier definite integral found in Exercise 27.

30. Set up the definite integral for the area A(b) of the region in the first quadrant
under the curve y = e−x(cos(x))2 and above the interval [0, b].

31. In Example 3 it is asserted that
∫

tan(y) dy = ln(sec(y)). Verify this result,
by differentiating.

32. In Example 3 the area of the region bounded by y = arctan(x), y = 2x, and
x = 1 is found to be both

π

4
+ 1− 1

2
ln(2) and

π

4
− ln(

√
2) + 1.
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Explain why these two answers are equal.

33. In Example 2 the area of the region above the parabola y = x2 and below the
line through (2, 0) and (0, 1) is found to be

area =

(−1+
√

17)/4∫
(−1−

√
17)/4

(
1− x

2
− x2

)
dx.

Find the value of this definite integral.

34. Let R be the region bounded by y = x3, y = x + 2, and the x-axis.

(a) Find a definite integral for the area of R. (You may have to solve an equation
to find an endpoint of the interval of integration.)

(b) Use a graph or other method to approximate the endpoints.

(c) Use the estimates in (b) to obtain an estimate of the area of R.

35. Let R be the region to the right of the y-axis bounded by y = 3 and y = ex/x.

(a) Graph the region R.

(b) Find a definite integral for the area of R. (You will encounter an equation
that cannot be solved exactly. Identify the endpoints on the graph found in
(a).)

(c) Find approximate values for the endpoints of the definite integral for the area
in (b).

(d) Because the antiderivative of ex/x is not elementary, it is still not easy to
estimate the area of R. What methods do we have for estimating this definite
integral? Use one of these definite integrals to find an approximate value for
the area of R.

36. Let a be a positive number. What fraction of the rectangle whose vertices are
(0, 0), (a, 0), (a, a4), and (0, a4),is occupied by the region under the curve y = x4

and above [0, a]?

37. Let A(t) be the area of the region in the first quadrant between y = x2 and
y = 2x2 and inside the rectangle bounded by x = t, y = t2, and the coordinate axes.
(See the shaded region in Figure 7.1.6.) If R(t) is the area of the rectangle, find
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(a) lim
t→0

A(t)
R(t)

(b) lim
t→∞

A(t)
R(t)

Figure 7.1.6
38. Figure 7.1.7 shows the graph of an increasing function y = f(x) with f(0) = 0.
Assume that f ′(x) is continuous and f ′(0) > 0. Do not assume that f ′′(x) exists.
Our objective is to investigate

area of shaded region under the curve
area of triangle ABC

as t decreases toward 0. (7.1.9)

(a) Experiment with various functions, including some trigonometric functions
and polynomials. (Make sure that f ′(0) > 0.)

(b) Make a conjecture about (7.1.9) and explain why it is true.

Figure 7.1.7
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39. Repeat Exercise 38, but now assume that f ′(0) = 0, f ′′ is continuous, and
f ′′(0) 6= 0.

40. Let f be an increasing function with f(0) = 0, and assume that it has an
elementary antiderivative. Then f−1 is an increasing function, and f−1(0) = 0.
Prove that if f−1 is elementary, then it also has an elementary antiderivative. (See
Figure 7.1.8(a).)

(a) (b)

Figure 7.1.8

41. Show that the area of the shaded region in Figure 7.1.8(b) is two-thirds the
area of the parallelogram ABCD. This is an illustration of a theorem of Archimedes
concerning sectors of parabolas. He showed that the shaded area is 4/3 the area of
triangle BOC. (See also Example 2.)

42. Figure 7.1.9(a) shows a right triangle ABC.

(a) Find equations for the lines parallel to each edge, AC, BC, and AB, that cut
the triangle into two pieces of equal area.

(b) Are the three lines in (a) concurrent; that is, do they meet at a single point?
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(a) (b)

Figure 7.1.9
43. Find the area of a disk of radius r by using concentric rings as suggested in
Figure 7.1.9(b). The advantage of this approach is that it leads to an integral with
a much simpler antiderivative than in Example 1. (Approximate the area of each
ring as the product of a circumference and the width of the ring.)
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7.2 Some Pointers on Drawing

None of us were born knowing how to draw solids. As we grew up, we lived
in flatland: the surface of the Earth. Few high school math classes cover solid
geometry, so calculus is often the first place where you have to think and sketch
in terms of three dimensions. That is why we pause for a few words of advice
on how to draw. Too often you cannot work a problem simply because your
diagrams confuse even yourself. The following guidelines are not based on any
profound artistic principles. Instead, they derive from years attempting to
sketch diagrams that do more good than harm.

A Few Words of Advice

1. Draw large. Many students tend to draw diagrams that are so small that
there is no room to place labels or to sketch cross sections.

2. Draw neatly. A jar lid or soda can works
just fine for drawing circles
and circular arcs. Credit
cards and ID badges make
good straightedges.

Use a straightedge to make straight lines that are actually
straight. Use a compass to make circles that look like circles. Draw each
line or curve slowly.

3. Avoid clutter. If you end up with too many labels or the cross section
doesn’t show up well, add separate diagrams for important parts of the
figure.

4. Practice.

This example is continued
in Example 1 in Section 7.4.EXAMPLE 1 Draw a diagram of a ball of radius a that shows the circular

cross section made by a plane at a distance x from the center of the ball. Use
the diagram to help find the radius of the cross section as a function of x.

Figure 7.2.1

TERRIBLE SOLUTION Is Figure 7.2.1 a potato or a ball? What segment
has length r? What’s x? What does the cross section look like?

REASONABLE SOLUTION First, draw the ball carefully, as in Figure 7.2.2(a).
The equator is drawn to give it perspective. Add a little shading.

Next show a typical cross section at a distance x from the center, as in
Figure 7.2.2(b). Shading the cross section helps, too.

To find r, the radius of the cross section, in terms of x, sketch a com-
panion diagram. The radius we want is part of a right triangle. In order to
avoid clutter, draw only the part of interest in a convenient side view, as in
Figure 7.2.4(c).

Inspection of the right triangle in this figure shows that

r2 + x2 = a2, hence that r =
√

a2 − x2.
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(a) (b) (c)

Figure 7.2.2 NOTE: Add shading to cross section in (b).

�
This example is continued

in Example 2 in Section 7.4. EXAMPLE 2 A pyramid has a square base with a side of length a. The
top of the pyramid is above the center of the base at a height h. Draw the
pyramid and its cross sections by planes parallel to the base. Then find the
area of the cross sections in terms of their distance x from the top.

Figure 7.2.3 Terrible
drawing

TERRIBLE SOLUTION Figure 7.2.3 is too small; there’s no room for the
symbols. While it’s pretty clear which side has length a, to what are the x
and h attached? Also, without the hidden edges of the pyramid the shape of
the base is not clear.

(a) (b) (c) (d)

Figure 7.2.4

REASONABLE SOLUTION First draw a large pyramid with a square base,
as in Figure 7.2.4(a). Note that the opposite edges of the base are drawn as
parallel lines. While artists draw parallel lines as meeting in a point to enhance
the sense of perspective, for our purposes it is more useful to use parallel lines
to depict parallel lines. Then show a typical cross section in perspective and
side views, as in Figures 7.2.4(b) and (c). Note the x-axis, which is drawn
separate from the pyramid.

As x increases, so does s, the width of the square cross section. Thus s
The use of s is

recommended because it
suggests its meaning - side.

is a function of x, which we could call s(x) (or f(x), if you prefer). A glance
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at Figure 7.2.4(b) shows that s(0) = 0 and s(h) = 1. To find s(x) for all x
in [0, h], use the similar triangles ABC and ADE, shown in Figure 7.2.4(c).
These triangles show that

x

s
=

h

a
; hence s =

ax

h
. (7.2.1)

Notice that s = ax
h

expresses s is a linear function of x. As a check on (7.2.1),
replace x by 0 and by h; we get 0 and a for the respective values of s, as
expected. Finally, the area A of the cross sections is given by

A = s2 =
(ax

h

)2

.

�

EXAMPLE 3 This example is continued in
Example 2 and Exercise 18,
both in Section Section 7.4.

A cylindrical drinking glass of height h and radius a is full
of water. It is tilted until the remaining water covers exactly half the base.

A. Draw a diagram of the glass and water.

B. Show a cross section of the water that is a triangle.

C. Find the area of the triangle in terms of the distance x of the cross section
from the axis of the glass.

Figure 7.2.5 ARTIST:
Make this sketch smaller
(it’s supposed to be “too
small”).

TERRIBLE SOLUTION The diagram in Figure 7.2.5 is too small. It is not
clear what has length a. The cross section is unclear. What does x refer to?

(a) (b) (c)

Figure 7.2.6

REASONABLE SOLUTION First, draw a neat, large diagram of a slanted
cylinder, as in Figure 7.2.6. Don’t put in too much detail at first. When
showing the cross section, draw only the water. Figures 7.2.6 and 7.2.7 show
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(a) (b) (c) (d)

Figure 7.2.7

various views. Let u and v be the lengths of the two legs of the cross section,
as shown in Figure 7.2.7(d).

Comparing Figures 7.2.7(a) and (b), we have, by similar triangles, the
relation

u

a
=

v

h
hence v =

h

a
u.

Let A(x) be the area of the cross section at a distance x from the center of
the base, as shown in Figure 7.2.6(b). If we can find u and v as functions of
x, we will be able to write a formula for A(x) = 1

2
uv in terms of x.

Figure 7.2.7(b) suggests how to find u. Copy it and draw in the necessary
radius, as in Figure 7.2.7(d). By the Pythagorean Theorem,

u =
√

a2 − x2.

All told,

A(x) =
1

2
uv =

1

2
u

(
h

a
u

)
=

h

2a
u2 =

h

2a
(a2 − x2). (7.2.2)

As a check, note that

A(a) =
h

2a
(a2 − a2) = 0,

which makes sense. Also the formula (7.2.2) gives

A(0) =
h

2a
(a2 − 02) =

1

2
ah,

again agreeing with the geometry of, say, Figure 7.2.6(b). �

Summary

When you look back at these three examples, you will see that most of the
work is spent on making clear diagrams. If you can’t draw a straight line free
hand, use a straightedge. If you can’t draw a circle, use a compass.
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EXERCISES for Section 7.2

1. Cross sections of the pyramid in Example 2 are made by using planes perpen-
dicular to the base and parallel to the edge of the base. What is the area of the
cross section made by a plane that is a distance x from the top of the pyramid?

(a) Draw a large perspective view of the pyramid.

(b) Copy the diagram in (a) and show the typical cross section shaded.

(c) Draw a side view that shows the shape of the cross section.

2. Cross sections of the water in Example 3 are made by using planes parallel to
the plane that passes through the horizontal diameter of the base and the axis of
the glass. What is the area of the cross section made by a plane that is a distance
x from the center of the base?

(a) Draw a large perspective view of the water and glass.

(b) Copy the diagram in (a) and show the typical cross section shaded.

(c) Draw a side view that clearly shows the shape of the cross section.

(d) Draw a different side view.

(e) Put necessary labels, such as x, a, and h, on the diagrams, where appropriate.
(You will need to introduce more labels.)

(f) Find the area of the cross section, A(x), as a function of x.

3. Cross sections of the water in Example 3 are made by using planes perpendic-
ular to the axis of the glass. Make clear diagrams, including perspective and side
views, that show the typical cross sections. Do not find its area.

4. A lumberjack saws a wedge out of a cylindrical tree of radius a. His first cut
is parallel to the ground and stops at the axis of the tree. His second cut makes an
angle θ with the first cut and meets it along a diameter.

(a) Draw a typical cross section that is a triangle.

(b) Find the area of the triangle as a function of x, the distance of the plane from
the axis of the tree.

(c) Draw a typical cross section that is a rectangle.
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(d) Find the area of the rectangle as a function of x, the distance of the plane
from the axis of the tree.

5. A cylindrical glass is full of water. The glass is tilted until the remaining water
just covers the base of the glass. (Try it.) The radius of the glass is a and its height
is h. Consider parallel planes such that cross sections of the water are rectangles.

(a) Make clear diagrams that show the situation. (Include a top view to show the
cross sections.)

(b) Obtain a formula for the area of the cross sections. Advice: The two planes
at the same distance x from the axis of the glass cut out cross sections of
different areas. So introduce an x-axis with 0 at the center of the base and
extending from −a to a in a convenient direction.

6. Repeat Exercise 5, but this time consider parallel planes such that the cross
sections are trapezoids.

7. A right circular cone has a radius a and height h as shown in Figure 7.2.8(a).
Consider cross sections made by planes parallel to the base of the cone.

(a) Draw perspective and side views of the cone and typical cross sections.

(b) Drawing as many diagrams as necessary, find the area of the cross section
made by a plane at a distance x from the vertex of the cone.

(a) (b)

Figure 7.2.8
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8. Draw the typical cross section made by a plane parallel to the axis of the cone.
Draw perspective and side views, but do not find a formula for the area of the cross
section. (See Exercise 7)

9. Figure 7.2.8(b) indicates an unbounded, solid right circular cone. Draw a
cross section that is bounded by (a) a circle, (b) an ellipse (but not a circle), (c) a
parabola, and (d) a hyperbola.

10. Draw a cross section of a right circular cylinder that is (a) a circle, (b) an
ellipse that is not a circle, and (c) a rectangle.

11. Draw a cross section of a solid cube that is (a) a square, (b) an equilateral
triangle, (c) a five-sided polygon, and (d) a regular hexagon.

12. The plane region between the curves y = x and y = x2 is spun around the
x-axis to produce a solid resembling the bell of a trumpet.

(a) Draw the plane region.

(b) Draw the solid region produced by spinning this region around the x-axis.

(c) Draw the typical cross section made by a plane perpendicular to the x-axis.
Show this in both perspective and side views.

(d) Find the area of the cross section in terms of the distance x of the plane from
the origin to the x-axis.

13. Obtain a circular stick such as a broom handle or a dowel. Saw off a piece,
making one cut perpendicular to the axis and the second cut at an angle to the axis.
Mark on the surface of the piece you cut out the borders of cross sections that are
(a) rectangles and (b) trapezoids.
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7.3 Setting Up a Definite Integral

This section presents an informal shortcut for setting up a definite integral
to evaluate some quantity. First, the formal and informal approaches are
contrasted in the case of setting up the definite integral for area. Then the
informal approach will be illustrated as commonly applied in a variety of fields.

The Complete Approach

Figure 7.3.1

Recall how the formula A =
∫ b

a
f(x) dx was obtained (in Section 7.1). The

interval [a, b] was partitioned by the numbers x0 < x1 < x2 < · · · < xn with
x0 = a and xn = b. A sampling number ci was chosen in each section [xi−1, xi].
For convenience, all the sections were of equal length, ∆x = (b − a)/n. (See
Figure 7.3.1.)

Figure 7.3.2 NOTE: Re-
vise figure so not left-hand
sum.

We then formed the sum

n∑
i=1

f(ci)∆x (7.3.1)

It equaled the total area of the rectangular approximation in Figure 7.3.2.
As ∆x approaches 0, the sum (7.3.1) approaches the area of the region

under consideration. But, by the definition of the definite integral, the sum
(7.3.1) approaches

b∫
a

f(x) dx.

Thus

Area =

b∫
a

f(x) dx. (7.3.2)

That is the complete or “formal” approach to obtain formula (7.3.2). Now
consider the “informal” approach, which is just a shorthand for the complete
approach.

Figure 7.3.3

The Shorthand Approach

The heart of the complete approach is the local estimate f(ci)∆x, the area of
a rectangle of height f(ci) and width ∆x, which is shown in Figure 7.3.4.

In the shorthand approach to setting up a definite integral attention is
focused on the local approximation. No mention is made of the partition or
the sampling numbers. We illustrate this shorthand approach by obtaining
formula (7.3.2) informally. This is not a new method of integration, but just
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a way to save time when setting up an integral - finding out the integrand and
the interval of integration.

For example, consider a small positive number dx. What would be a good
estimate of the area of the region corresponding to the short interval [x, x+dx]
of width dx shown in Figure 7.3.3? The area of the rectangle of width dx and
height f(x) shown in Figure 7.3.4 would seem to be a plausible estimate. The
area of this thin rectangle is

Figure 7.3.4

f(x) dx. (7.3.3)

Without further ado, we then write

Area =

b∫
a

f(x) dx, (7.3.4)

which is formula (7.3.2). The leap from the local approximation (7.3.3) to
the definite integral (7.3.4) omits many steps of the complete approach. This
informal approach is the shorthand commonly used in applications of calculus.
It is the way engineers, physicists, biologists, economists, and mathematicians
set up integrals.

It should be emphasized that it is only an abbreviation of the formal ap-
proach, which deals with approximating sums.

The Volume of a Ball

Figure 7.3.5

EXAMPLE 1 Find the volume of a ball of radius a. First use the complete
approach. Then use the shorthand approach.
SOLUTION Both approaches require good diagrams. In the complete ap-
proach we show an x-axis, a partition into sections of equal lengths, sampling
numbers ci, and the approximating disks. See Figures 7.3.5 and 7.3.6(a). The
thickness of a disk is ∆x, as shown in the side view of Figure 7.3.6(b), while its
radius is labeled ri, as shown in the end view of Figure 7.3.6(c). The volume
of this typical disk is

πr2
i (∆x). (7.3.5)

All that remains is to determine ri. Figure 7.3.6(d) helps us do that. By
the Pythagorean Theorem,

r2
i = a2 − c2

i . (7.3.6)

Combining (7.3.1), (7.3.5), and (7.3.6) gives the typical estimate of the volume
of a sphere of radius a:

n∑
i=1

π(a2 − c2
i )∆x. (7.3.7)
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(a) (b) (c) (d)

Figure 7.3.6

By the definition of the definite integral,

lim
∆x→0

Σn
i=1π(a2 − c2

i )∆x =

a∫
−a

π(a2 − x2) dx.

Hence

Volume of ball of radius a =

a∫
−a

π(a2 − x2) dx.

By the Fundamental Theorem of Calculus, the integral equals 4πa3/3.

(a) (b)

Figure 7.3.7

Now for the shorthand approach. We draw only a short section of an x-
axis and label its length dx. Then we draw an approximating disk, whose
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radius we label r, as in Figure 7.3.7(a). Since the disk has a base of area πr2

and thickness dx, its volume is πr2 dx. Moreover, as Figure 7.3.7(b) shows,
r2 = a2 − x2. Hence the local approximation is

π(a2 − x2) dx. (7.3.8)

Then, without further ado, without choosing any ci or showing any approxi-
mating sum, we have

Volume of ball of radius a =

a∫
−a

π(a2 − x2) dx.

The key to this bookkeeping is the local approximation (7.3.8) in differen-
tial form, which gives the necessary integrand. The limits of integration are
determined separately. �

Volcanic Ash

EXAMPLE 2 After the explosion of a volcano, ash gradually settles from
the atmosphere and falls on the ground. The depth diminishes with distance
from the volcano. Assume that the depth of the ash at a distance x feet from
the volcano is Ae−kx feet, where A and k are positive constants. Set up a
definite integral for the total volume of ash that falls within a distance b of the
volcano.

SOLUTION First estimate the volume of ash that falls on a very narrow ring
of width dx and inner radius x centered at the volcano. (See Figure 7.3.8(a).)
This estimate can be made since the depth of the ash depends only on the
distance from the volcano. On this ring the depth is almost constant.

The area of this ring is approximately that of a rectangle of length 2πx and
width dx. (See Figure 7.3.8(b)) So the area of the ring is approximately

2πx dx.

Exercise 4 shows that its
area is 2πx dx + π(dx)2.

Although the depth of the ash on this narrow ring is not constant, it does
not vary much. A good estimate of the depth throughout the ring is Ae−kx.
Thus the volume of the ash that falls on the typical ring of inner radius x and
outer radius x + dx is approximately

Ae−kx(2πx) dx cubic feet. (7.3.9)

Once we have the key local estimate (7.3.9), we immediately write down
the definite integral for the total volume of ash that falls within a distance b
of the volcano:
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(a) (b)

Figure 7.3.8

Total volume =

b∫
0

Ae−kx2πx dx.

The limits of integration
must be determined just as

in the formal approach.

This completes the shorthand setting up the definite integral. (To evalu-
ate this integral, use a formula from the inside front cover of this book or a
technique in Chapter 8.) �

Kinetic Energy

The next example of the informal approach to setting up definite integrals
concerns kinetic energy. The kinetic energy associated with an object of mass
m kilograms and velocity v meters per second is defined as

Kinetic energy =
mv2

2
joules.

If the various parts of the objects are not all moving at the same speed, an
integral is needed to express the total kinetic energy. We develop this integral
in the next example.

EXAMPLE 3

Figure 7.3.9

A thin rectangular piece of sheet metal is spinning around
one of its longer edges 3 times per second, as shown in Figure 7.3.9. The
length of its shorter edge is 6 meters and the length of its longer edge is 10
meters. The density of the sheet metal is 4 kilograms per square meter. Find
the kinetic energy of the spinning rectangle.

SOLUTION The farther a mass is from the axis, the faster it moves, and
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therefore the larger its kinetic energy. To find the total kinetic energy of the ro-
tating piece of sheet metal, imagine it divided into narrow rectangles of length
10 meters and width dx meters parallel to the edge AB; a typical one is shown
in Figure 7.3.10.

Figure 7.3.10

(Introduce an x-axis parallel to edge AC with the origin
corresponding to A.) Since all points of the typical narrow rectangle move at
roughly the same speed, we will be able to estimate its kinetic energy. That
estimate will provide the key local approximation in the informal approach to
setting up a definite integral.

First of all, the mass of the typical rectangle is

4 · 10 dx kilograms,

since its area is 10 dx square meters and the density is 4 kilograms per square
meter.

Second, we must estimate its velocity. The narrow rectangle is spun 3 times
per second around a circle of radius x. In 1 second each point in it covers a
distance of about

3 · 2πx = 6πx meters.

Consequently, the velocity of the typical rectangle is

6πx meters per second.

The local estimate of the kinetic energy associated with the typical rectangle
is therefore

1

2
40 dx︸ ︷︷ ︸
mass

(6πx)2︸ ︷︷ ︸
velocity squared

joules

The local approximationor simply
720π2x2 dx joules. (7.3.10)

Having obtained the local estimate (7.3.10), we jump directly to the definite
integral and conclude that

Total energy of spinning rectangle =

6∫
0

720π2x2 dx joules.

�

Summary

This section presented a shorthand approach to setting up a definite integral
for a quantity Q. In this method we estimate how much of the quantity Q
corresponds to a very short section [x, x+dx] of the x-axis, say f(x) dx. Then

Q =
∫ b

a
f(x) dx, where a and b are determined by the particular situation.
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EXERCISES for Section 7.3

1. In Section 6.4 we showed that if f(t) is the velocity at time t of an object
moving along the x-axis, then

∫ b
a f(t) dt is the change in position during the time

interval [a, b]. Develop this fact in the informal style of this section. Keep in mind
that f(t) may be positive or negative.

2. The depth of rain at a distance r feet from the center of a storm is g(r) feet.

(a) Estimate the total volume of rain that falls between a distance r feet and a
distance r + dr feet from the center of the storm. (Assume that dr is a small
positive number.)

(b) Using (a), set up a definite integral for the total volume of rain that falls
between 1, 000 and 2, 000 feet from the center of the storm.

3. Consider a disk of radius a with the home base of production at the center.
Let G(r) denote the density of foodstuffs (in calories per square meter) at radius
r meters from the home base. Then the total number of calories produced in the
range is given by what definite integral?
(This analysis of primitive agriculture is taken from Is There an Optimum Level of
Population?, edited by S. Fred Singer, McGraw-Hill, New York, 1971.)

4. In Example 2 the area of the ring with inner radius x and outer radius x + dx
was estimated to be about 2πx dx.

(a) Using the formula for the area of a disk, show that the area of the ring is
2πx dx + π( dx)2.

(b) Show that the ring has the same area as a trapezoid of height dx and bases
of lengths 2πx and 2π(x + dx).

5. Think of a circular disk of radius a as being composed of concentric circular
rings, as in Figure 7.3.11(a).

(a) Using the shorthand approach, set up a definite integral for the area of the
disk. (Draw a good picture of the local approximation.)

(b) Evaluate the integral in (a).
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(a) (b)

Figure 7.3.11
Exercises 6 to 8 concern the volumes of solids. In each case (a) draw a good picture
of the local approximation of width dx, (b) set up the appropriate definite integral,
and (c) evaluate the integral.
6. A right circular cone of radius a and height h.

7. A pyramid with a square base of side a and of height h. Its top vertex is above
one corner of the base. (Use square cross sections.)

8. A pyramid with a triangular base of area A and of height h. (The triangle can
be any shape. See Figure 7.3.11(b).)

9. At the time t hours, 0 ≤ t ≤ 24, a firm uses electricity at the rate of e(t) joules
per hour. The rate schedule indicates that the cost per joule at time t is c(t) dollars.
Assume that both e and c are continuous functions.

(a) Estimate the cost of electricity consumed between times t and t + dt, where
dt is a small positive number.

(b) Using (a), set up a definite integral for the total cost of electricity for the
24-hour period.

10. The present value of a promise to pay one dollar t years from now is g(t)
dollars.

(a) What is g(0)?

(b) Why is it reasonable to assume that g(t) ≤ 1 and that g is a decreasing
function of t?
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(c) What is the present value of a promise to pay q dollars t years from now?

(d) Assume that an investment made now will result in an income flow at the
rate of f(t) dollars per year t years from now. (Assume that f is a continuous
function.) Estimate informally the present value of the income to be earned
between time t and time t + dt, where dt is a small positive number.

(e) On the basis of the local estimate made in (d), set up a definite integral for
the present value of all the income to be earned during the next b years.

11. Let the number of females in a certain population in the age range from
x years to x + dx years, where dx is a small positive number, be approximately
f(x) dx. Assume that, on average, women of age x produce m(x) offspring during
the year before they reach age x + 1. Assume that both f and m are continuous
functions.

(a) What definite integral represents the number of women between ages a and b
years?

(b) What definite integral represents the total number of offspring during the
calendar year produced by women whose ages at the beginning of the calendar
year were between a and b years?

Exercises 12 to 17 concern kinetic energy. They are all based on the concept
that a particle of mass m moving with velocity v has the kinetic energy mv2/2.
(See Example 3.) An object whose density is the same at all its points is called
homogeneous. If the object is planar, such as a square or disk, and has mass
m kilograms and area A square meters, its density is m/A kilograms per square
meter.
12. The piece of sheet metal in Example 3 is rotated around the line midway
between the edges AB and CD at the rate of 5 revolutions per second.

(a) Using the informal approach, obtain a local approximation for the kinetic
energy of a narrow strip of the metal.

(b) Using (a), set up a definite integral for the kinetic energy of the piece of sheet
metal.

(c) Evaluate the integral in (b).

13. A circular piece of metal of radius 7 meters has a density of 3 kilograms per
square meter. It rotates 5 times per second around an axis perpendicular to the
circle and passing through the center of the circle.
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(a) Devise a local approximation for the kinetic energy of a narrow ring in the
circle.

(b) With the aid of (a), set up a definite integral for the kinetic energy of the
rotating metal.

(c) Evaluate the integral in (b).

14. The density of a rod x centimeters from its left end is g(x) grams per
centimeter. The rod has a length of b centimeters. The rod is spun around its left
end 7 times per second.

(a) Estimate the mass of the rod in the section that is between x and x + dx
centimeters from the left end. (Assume that dx is small.)

(b) Estimate the kinetic energy of the mass in (a).

(c) Set up a definite integral for the kinetic energy of the rotating rod.

15. A homogeneous square of mass m kilograms and side a meters rotates around
an edge 5 times per second.

(a) Obtain a local estimate of the kinetic energy. What part of the square would
you use? Why? Draw it.

(b) What is the local estimate?

(c) What definite integral represents the total kinetic energy of the square?

(d) Evaluate it.

16. Repeat Exercise 15 for a square spun around a line through its center and
parallel to an edge.

17. Repeat Exercise 15 for a disk of radius a and mass M spinning around a line
through its center and perpendicular to it. It is spinning at the rate of ω radians
per second. (See Figure 7.3.12.)
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Figure 7.3.12
In Exercises 18 and 19 you will meet definite integrals that cannot be evaluated
by the Fundamental Theorem of Calculus (since the desired antiderivative is not
elementary). Use (a) the trapezoidal and (b) Simpson’s method with six sections to
estimate the definite integrals.

18. A homogeneous object of mass M occupies the region under y = ex2
and above

[0, 1]. It is spun at the rate of ω radians per second around the y-axis. Estimate its
kinetic energy.

19. A homogeneous object of mass M occupies the region under y = sin(x)/x and
above [π/2, π]. It is spun around the line x = 1 at the rate of ω radians per second.
Estimate its kinetic energy.

In each of Exercises 20 to 23, find the kinetic energy of a planar homogeneous object
that occupies the given region, has mass M , and is spun around the y-axis ω radians
per second.

20. The region under y = ex and above the interval [1, 2].

21. The region under y = arctan(x) and above the interval [0, 1].

22. The region under y = 1/(1 + x) and above [2, 4].

23. The region under y =
√

1 + x2 and above [0, 2].

24. A solid homogeneous right circular cylinder of radius a, height h, and mass M
is spun at the rate of ω radians per second around its axis. Find its kinetic energy.
(Include a good picture on which your local approximation is based.)

25. A solid homogeneous ball of radius a and mass M is spun at the rate of
ω radians per second around a diameter. Find its kinetic energy. (Include a good

April 22, 2012 Calculus



§ 7.3 SETTING UP A DEFINITE INTEGRAL 621

picture on which your local approximation is based.)

26. Find the surface area of a sphere of radius a. (Begin by estimating the area
of the narrow band shown in Figure 7.3.13.)

Figure 7.3.13
27. [Actuarial tables] Let F (t) be the fraction of people born in 1900 who are
alive t years later, 0 ≤ F (t) ≤ 1.

(a) What is F (150), probably?

(b) What is F (0)?

(c) Sketch the general shape of the graph of y = F (t).

(d) Let f(t) = F ′(t). (Assume F is differentiable.) Is f(t) positive or negative?

(e) What fraction of the people born in 1900 die during the time interval [t, t+dt]?
(Express your answer in terms of F .)

(f) Answer (e), but express your answer in terms of f .

(g) Evaluate
∫ 150
0 f(t) dt.

(h) What integral would you propose to call “the average life span of the people
born in 1900”? Why?

28. Let F (t) be the fraction of ball bearings that wear out during the first t hours
of use. Thus F (0) = 0 and F (t) ≤ 1.

(a) As t increases, what would you think happens to F (t)?

(b) Show that during the short interval of time [t, t + dt], the fraction of ball
bearings that wear out is approximately F ′(t) dt. (Assume F is differentiable.)

(c) Assume all wear out in at most 1, 000 hours. What is F (1, 000)?

Calculus April 22, 2012



622 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

(d) Using the assumption in (b) and (c) devise a definite integral for the average
life of the ball bearings.

29. The density of the earth at a distance of r miles from its center is g(r) pounds
per cubic mile. Set up a definite integral for the total mass of the earth. (Take the
radius of the earth to be 4, 000 miles.)

April 22, 2012 Calculus



§ 7.4 COMPUTING VOLUMES BY PARALLEL CROSS SECTIONS 623

7.4 Computing Volumes by Parallel Cross Sec-

tions

In Section 6.1 we computed areas by integrating lengths of cross sections made
by parallel lines. In this section we will use a similar approach, finding volumes
by integrating areas of cross sections made by parallel planes. See Problem 3 in

Section 6.1.
We already saw

an example of this method when we represented the volume of a tent as a
definite integral.

Cylinders

(a) (b)

Figure 7.4.1

Let B be a region in the plane (see Figure 7.4.1(a) and h a positive number.
The cylinder with base B and height h consists of all line segments of
length h perpendicular to B, one end of which is in B and the other end
is on a fixed side (above or below) of B. This typical cylinder is shown in
Figure 7.4.1(b). The top of the cylinder is congruent to B. If B is a disk, the

(a) (b)

Figure 7.4.2 ARTIST: Final word in each caption is “Base”

cylinder is the customary circular cylinder of daily life (see Figure 7.4.2(a)).
If B is a rectangle, the cylinder is a rectangular box (see Figure 7.4.2(b)).

We will make use of the formula for the volume of a cylinder:
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The volume of a cylinder with base B and height h is

V = Area of Base× Height = (Area of B)× h.

Volume as the Definite Integral of Cross-Sectional Area

Let’s use the informal approach for setting up a definite integral to see how to
use integration to calculate volumes of solids.

Figure 7.4.3 shows the solid region R that lies between the planes perpen-
dicular to the x-axis at x = a and at x = b. We use a cylinder to estimate
the volume of the part of R that lies between two parallel planes a “small
distance” dx apart, shown in perspective in Figure 7.4.3(b). This thin slab is

(a) (b) (c) (d)

Figure 7.4.3

not usually a cylinder (Figure 7.4.3(c)). However, we can approximate it by a
cylinder. To do this, let x be, say, the left endpoint of an interval of width dx.
The plane perpendicular to the x-axis at x intersects R in a plane cross section
of area A(x). The cylinder whose base is that cross section and whose height is
dx is a good approximation of the part of R between the planes corresponding
to x and x + dx. It is the slab shown in Figure 7.4.3(d).

We therefore have

Local Approximation to Volume = A(x)dx.

Then

Volume of Solid =

b∫
a

A(x) dx.
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In short, “volume equals the integral of cross-sectional area.” To apply this
idea, we compute A(x). That is a where good drawings come in handy.

Given a particular solid, one just has to find a, b and the cross-sectional
area A(x) in order to construct a definite integral for its volume. These are
the steps for finding the volume of a solid:

1. Choose a line to serve as an x-axis. See Figure 7.4.3(a).

2. For each plane perpendicular to that axis, find the area of the cross
section of the solid made by the plane. Call this area A(x). See Figure 7.4.3(b).

3. Determine the limits of integration, a and b, for the region.

4. Evaluate the definite integral
∫ b

a
A(x) dx.

Most of the effort is usually spent in finding the integrand A(x).
Formulas for the area of
familiar plane regions are on
the inside back cover.

In addition to the Pythagorean Theorem and properties of similar triangles,
formulas for the areas of familiar plane figures may be needed. Also keep in
mind that if corresponding dimensions of similar figures have a ratio k, then
their areas have the ratio k2; that is, area is proportional to the square of the
ratios of the lengths of corresponding line segments.

Archimedes was the first
person to find the volume of
a ball. He did not express
the volume as a number.
Rather, in the style of
mathematics of the 3rd

century BC, he expressed
the volume in terms of the
volume of a simpler object:
the volume of a ball is
two-thirds the volume of the
smallest cylinder that
contains it. That he
considered this one of his
greatest accomplishments is
evidenced by his request
that his tomb be topped
with a carving of a ball
within a cylinder.

EXAMPLE 1 Find the volume of a ball of radius a.

(a) (b)

Figure 7.4.4 Cross section (a) viewed in perspective and (b) from the side.

SOLUTION We sketch the typical cross section in perspective and in side
view (see Figure 7.4.4). The cross section is a disk of radius r, which depends
on x. The area of the cross section is πr2. To express this area in terms
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of x, use the Pythagorean Theorem, which tells us that a2 = x2 + r2, hence
r2 = a2 − x2. So we have

Volume =
∫ a

−a
π(a2 − x2) dx = π

(
a2x− x3

3

)∣∣∣a
−a

by FTC I

= π
((

a3 − a3

3

)
−
(
(−a)3 − (−a)3

3

))
= 4π

3
a3.

�

The next example concerns the solid region discussed in Example 3 of
Section 7.2.

EXAMPLE 2 A cylindrical glass of height h and radius a is full of water.
It is tilted until the remaining water covers exactly half the base. Find the
volume of the remaining water.
SOLUTION We use the triangular cross section shown in Figure 7.2.6.

(a) (b)

Figure 7.4.5

Introduce the x-axis as in Figure 7.4.5. It was shown that the area of the
cross section at x is 1

2
h
a
(a2 − x2). Thus,

Volume =

a∫
−a

h

2a
(a2 − x2) dx =

h

2a

(
a2x− x3

3

)∣∣∣∣a
−a

by FTC I

= h
2a

((
a3 − a3

3

)
−
(
−a3 + a3

3

))
= h

2a

(
4
3
a3
)

= 2
3
ha2.

That’s about 21% of the volume of the glass.

This calculation of the integral could be simplified by noting that the in-
tegrand is an even function (the volume to the right of 0 equals the volume to
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the left of 0). In this method we have There is a much less chance
for arithmetical error in this
calculation.

Volume = 2

a∫
0

h

2a

(
a2 − x2

)
dx =

h

a

(
a2x− x3

3

)∣∣∣∣a
0

= h
a

((
a3 − a3

3

)
− (0− 0)

)
= 2

3
ha2

The two solutions yield the same result. The second way avoids a lot of arith-
metic with negative numbers, thus reducing the chance of making a mistake.
�

Solids of Revolution

The solid formed by revolving a region R in the plane about a line in that
plane that does not intersect the interior of R is called a solid of revolution.

(a) (b) (c)

Figure 7.4.6

Figure 7.4.6 shows three examples: (a) a circular cylinder obtained by
revolving a rectangle about one of its edges, (b) a cone obtained by revolving
a right triangle about one of its two legs, and (c) a torus (“doughnut” or
“ring”) formed by revolving a disk about a line outside the disk.

The cross sections by planes perpendicular to the line around which the
figure is revolved is either a disk or a “washer”. The latter is a disk with
a round hole. The cross sections in Figure 7.4.6(a) and (b) are disks. In
Figure 7.4.6(c) the cross sections are washers. Figure 7.4.7 shows that the
typical cross section is a washer.

EXAMPLE 3 The region under y = e−x and above [1, 2] is revolved about
the x-axis. Find the volume of the resulting solid of revolution. (See Fig-
ure 7.4.8(a).)
SOLUTION The typical cross section by a plane perpendicular to the x-axis
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(a) (b)

Figure 7.4.7 (a) perspective (b) side view

(a) (b)

Figure 7.4.8
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is a disk of radius e−x, as shown in Figure 7.4.8(b). The cross-sectional area is

π
(
e−x
)2

= πe−2x.

The volume of the solid is therefore

2∫
1

πe−2x dx.

Recall that d
dx

(eax) = aeax, so that an antiderivative of eax is 1
a
eax. Hence,

2∫
1

πe−2x dx =
π

−2
e−2x

∣∣∣∣2
1

=
π

−2

(
e−4 − e−2

)
=

π

2

(
e−2 − e−4

)
.

�
The final two examples illustrate two themes: draw a good picture of the

cross section and integrate the cross-sectional area.

EXAMPLE 4 The region bounded by y = x2, the lines x = 1 and x =
√

2,
and the x-axis (y = 0). is revolved around the line y = −1. Find the volume
of the resulting region R.
SOLUTION Figure 7.4.9(a) shows the region being revolved and the line
around which it is revolved. Figure 7.4.9(b) shows a perspective view of the
typical cross section.

(a) (b)

Figure 7.4.9

The typical cross section is a washer, with inner radius 1 and outer radius
1 + x2. Its area is therefore π(1 + x2)2 − π(1)2.
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Consequently, since “volume equals integral of cross-sectional area,”

Volume =
∫ √2

1
(π(1 + x2)2 − π(1)2) dx

= π
∫ √2

1
(1 + 2x2 + x4 − 1) dx algebra

= π
∫ √2

1
(2x2 + x4) dx

= π
(

2x3

3
+ x5

5

)∣∣∣√2

1
FTC I

= π
(

32
√

2
15
− 13

15

)
arithmetic.

�

EXAMPLE 5 Find the volume of the solid formed by revolving the region
in Figure 7.4.9(a) around the y-axis (x = 0).
SOLUTION

Figure 7.4.10

The cross sections by planes perpendicular to the y-axis are
again washers (not disks). But something new enters the scene. For 0 ≤ y ≤ 1
the cross sections are between the vertical lines x = 1 and x =

√
2. For

1 ≤ y ≤ 2 they are determined by the curve and the line x =
√

2. (See
Figure 7.4.10.)

The cross sections for 0 ≤ y ≤ 1, when rotated about the y-axis, fill out a
cylinder whose height is 1 and whose base is a washer of area π(

√
2)2−π(1)2 =

π. Thus, its volume (height times area of base) is π(1) = π. We did not need
an integral for this.

Figure 7.4.11

The cross sections for 1 ≤ y ≤
√

2 are washers whose outer radius is
√

2
and inner radius is determined by the curve y = x2, as shown in Figure 7.4.11.
Since y = x2, the inner radius is x =

√
y. The area of these typical cross

sections is
π(
√

2)2 − π(
√

y)2.

Thus the typical local estimate of volume is(
π(
√

2)2 − π(
√

y)2
)

dy = (2π − πy) dy.

Therefore the volume swept out by these cross sections is∫ √2

1
(2π − πy) dy =

(
2πy − π y2

2

)∣∣∣√2

1
FTC I

=
(
2π
√

2− π
)
−
(
2π − π

2

)
= 2π

√
2− 5

2
π.

Adding this to the volume obtained for the cylinder gives

total volume =

(
2π
√

2− 5

2
π

)
+ π

= 2π
√

2− 3

2
π ≈ 4.1734.
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�

EXAMPLE 6 The region bounded by the graphs of y = x + 4 and y =
6x−x2, shown in Figure 7.4.12(a), is revolved about the x-axis to form a solid
of revolution. Express the volume as a definite integral.

(a) (b) (c)

Figure 7.4.12

SOLUTION We first draw a local approximation to a thin slice of the solid
(see Figure 7.4.12(b)). The side view in Figure 7.4.12(c) shows the area of the
typical cross section is

π
(
6x− x2

)2 − π (x + 4)2 .

This is the integrand. Next we find the interval of integration. The ends of
the interval are determined by where the curves cross: when x + 4 = 6x− x2.
Moving all terms to the left-hand side yields: x2−5x+4 = 0, or (x−1)(x−4) =
0. So the endpoints of the interval are x = 1 and x = 4. The volume of the
solid is given by the definite integral

4∫
1

(
π
(
6x− x2

)2 − π (x + 4)2
)

dx.

�

Summary

The key idea in this section is that “volume is the definite integral of cross-
sectional area”. To implement this idea we have to find that varying area and
also the interval of integration. A solid of revolution, where the cross section
may be a disk or a washer, is just a special case.
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EXERCISES for Section 7.4

In Exercises 1 to 8, (a) draw the solid, (b) draw the typical cross section in per-
spective and side view, (c) find the area of the typical cross section, (d) set up the
definite integral for the volume, and (e) evaluate the definite integral (if possible).

1. Find the volume of a cone of radius a and height h.

2. The base of a solid is a disk of radius 3. Each plane perpendicular to a given
diameter meets the solid in a square, one side of which is in the base of the solid.
(See Figure 7.4.13(a).) Find its volume.

(a) (b)

Figure 7.4.13

3. The base of a solid is the region bounded by y = x2, the line x = 1, and
the x- and y-axes. Each cross section perpendicular to the x-axis is a square. (See
Figure 7.4.13(b).) Find the volume of the solid.

4. Repeat Exercise 3 except that the cross sections perpendicular to the base are
equilateral triangles.

5. Find the volume of a pyramid with a square base of side a and height h, using
square cross sections perpendicular to the base. The top of the pyramid is above
the center of the base.

6. Repeat Exercise 5, but using trapezoidal cross sections perpendicular to the
base.

7. Find the volume of the solid whose base is the disk of radius 5 and whose cross
sections perpendicular to a diameter are equilateral triangles. (See Figure 7.4.14(a).)
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(a) (b)

Figure 7.4.14

8. Find the volume of the pyramid shown in Figure 7.4.14(b) by using cross sec-
tions perpendicular to the edge of length c.

In Exercises 9 to 14 set up a definite integral for the volume of the solid formed by
revolving the given region R about the given axis.

9. R is bounded by y =
√

x, x = 1, x = 2, and the x-axis, about the x-axis.

10. R is bounded by y = 1√
1+x2

, x = 0, x = 1, and the x-axis, about the x-axis.

11. R is bounded by y = x−1/2, y = x−1, x = 1, and x = 2, about the x-axis.

12. R is bounded by y = x2 and y = x3, about the y-axis.

13. R is bounded by y = tan(x), y = sin(x), x = 0, and x = π/4, about the
x-axis.

14. R is bounded by y = sec(x), y = cos(x), x = π/6, and x = π/3, about the
x-axis.

15. A cylindrical drinking glass of height h and radius a, full of water, is tilted until
the water just covers the base. Set up a definite integral that represents the amount
of water left in the glass. Use rectangular cross sections. Refer to Figure 7.4.15 and
follow the directions preceding Exercise 1.
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Figure 7.4.15
16. Repeat Exercise 15, but use trapezoidal cross sections.
17. Repeat Exercise 15 using only common sense. Don’t use any calculus.
18. A cylindrical drinking glass of height h and radius a, full of water, is tilted
until the water remaining covers half the base.

(a) Set up a definite integral for the volume of water in the glass, using cross
sections that are parts of disks.

(b) Compare yours answer in (a) with the definite integral found in Example 2.
Which definite integral looks easier to evaluate?

19. Repeat Exercise 18, but use rectangular cross sections.
20. A solid is formed in the following manner. A plane region R and a point P
not in the plane are given. The solid consists of all line segments joining P to points
in R. If R has area A and P is a distance h from the plane R, show that the volume
of the solid is Ah/3. (See Figure 7.4.16.)

Figure 7.4.16
21. A drill of radius 4 inches bores a hole through a wooden sphere of radius
5 inches, passing symmetrically through the center of the sphere.
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(a) Draw the part of the sphere removed by the drill.

(b) Find A(x), the area of a cross section of the region in (a) made by a plane
perpendicular to the axis of the drill and at a distance x from the center of
the sphere.

(c) Set up the definite integral for the volume of wood removed.

22. What fraction of the volume of a sphere is contained between parallel planes
that trisect the diameter to which they are perpendicular? (Leave your answer in
terms of a definite integral.)
23. The disk bounded by the circle (x−b)2 +y2 = a2, where 0 < a < b, is revolved
around the y-axis. Set up a definite integral for the volume of the doughnut (torus)
produced.
In Exercises 24 to 27 set up definite integrals for (a) the area of R, (b) the volume
formed when R is revolved around the x-axis, and (c) the volume formed when R
is revolved around the y-axis.
24. R is the region under y = tan(x) and above the interval [0, π/4].
25. R is the region under y = ex and above the interval [−1, 1].
26. R is the region under y = 1/

√
1− x2 and above the interval [0, 1/2].

27. R is the region under y = sin(x) and above the interval [0, π].

28. Set up a definite integral for the volume of one octant of the region common
to two right circular cylinders of radius 1 whose axes intersect at right angles, as
shown in Figure 7.4.17. (Contributed by Archimedes.)

Figure 7.4.17
29. When a convex region R of area A situated to the right of the y-axis is
revolved around the y-axis, the resulting solid of revolution has volume V . When R
is revolved around the line x = −k, the volume of the resulting solid is V ∗. Express
V ∗ in terms of k, A, and V . (The definition of convex can be found on page 128 in
Section 2.5.)
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30. Archimedes viewed a ball as a cone whose height is the radius of the ball and
whose base is the surface of the ball. On that basis he computed that the volume of
the ball is one third the product of the radius and the surface area. He then gave a
rigorous proof of his conjecture.

Clever Sam, inspired by this, said “I’m going to get the volume of a circular
cylinder in a new way. Say its radius is r and height is h. Then I’ll view it as a
cylinder made up of “r by h” rectangles, all of which have the axis as an edge. Then
I pile them up to make a box whose base is an r by h rectangle and whose height is
2πr (the circumference of the cylinder’s base). So the volume would be 2πr times
rh, or 2πr2h. That’s twice the usual volume, so the standard formula is wrong.” Is
Sam right? (Explain.)
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7.5 Computing Volumes by Shells

Imagine revolving the plane region R about the line L, as in Figure 7.5.1(a).
We may think of R as being formed from narrow strips perpendicular to L,
as in Figure 7.5.1(b). Revolving such a strip around L produces a washer (or
disk). This is the approach used in the preceding section.

(a) (b) (c)

Figure 7.5.1

Figure 7.5.2

However, we can also think ofR as being formed from narrow strips parallel
to L, as in Figure 7.5.1(c). Revolving such a strip around L produces a solid
shaped like a bracelet or part of a drinking straw, as shown, in perspective,
in Figure 7.5.2. We will call such a solid a shell. (Perhaps “tube” or “pipe”
might be a better choice, but “shell” is standard in the world of calculus.)

This section describes how to find the volume of a solid of revolution using
shells (instead of disks). Sometimes this approach provides an easier calcula-
tion.

The Shell Technique

(a) (b) (c)

Figure 7.5.3

To apply the shell technique we first imagine cutting the plane region R in
Figure 7.5.3(a) into a finite number of narrow strips by lines parallel to L. Each
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strip is then approximated by a rectangle of width dx as in Figure 7.5.3(b).
Then we approximate the solid of revolution by a collection of tubes (like the
parts of a collapsible telescope), as in Figure 7.5.3(c).

The key to this method is estimating the volume of each shell. Figure 7.5.4(a)

(a) (b) (c)

Figure 7.5.4

shows the typical local approximation. Its height, c(x), is the length of the
cross section of R corresponding to the value x on a line that we will call the
x-axis. The radius of the shell, shown in Figure 7.5.4(b), is x− k, where k is
the x-coordinate of the equation of the axis of rotation. Imagine cutting the
shell along a direction parallel to L, unrolling it, and then laying it flat like a
carpet. When laid flat, the shell resembles a thin slab of thickness dx, width
c(x), and length 2π(x − k), as shown in Figure 7.5.4(c).The exact volume of the

shell is found in Exercise 23.
The volume of this

shell, therefore, is about

Local Approximation to Volume of a Shell = 2π(x− k)c(x) dx (7.5.1)

With the aid of the local approximation (7.5.1), we conclude that

Figure 7.5.5 ARTIST:
Add k as label on x-axis
(at origin)

Volume of Solid of Revolution =

b∫
a

2π(x− k)c(x) dx. (7.5.2)

If x− k is denoted R(x), the “radius of the shell,” as in Figure 7.5.5, then
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Volume of Solid of Revolution =

b∫
a

2πR(x)c(x) dx.

EXAMPLE 1 The region R below the line y = e, above y = ex, and to the
right of the y-axis is revolved around the y-axis to produce a solid S. Set up
the definite integrals for the volume of S using (a) disks and (b) shells.

(a) (b) (c)

Figure 7.5.6

SOLUTION Figure 7.5.6(a) shows the region R and Figure 7.5.6(b) shows
the solid S.

(a) If we use cross sections perpendicular to the y-axis, as in the preceding
section, we find that

Volume =

e∫
1

π(ln(y))2 dy.

This integrand has an elementary antiderivative, and we will learn how to find
one in Chapter 8. Formula 66 (with a = 1) in the table on the inside cover of
this book has

∫
(ln(x))2 dx = x((ln(x))2 − 2 ln(x) + 2), which you may check

by differentiation. Thus See Exercise 21

Volume = π(e− 2) ≈ 2.2565.

(b) If we use cross sections parallel to the x-axis, we meet a much simpler
integration. The typical shell has radius x, height e− ex, and thickness dx as
shown in Figure 7.5.7(a).

The local approximation to the total volume of the shell is

2πx︸︷︷︸
circumference

(e− ex)︸ ︷︷ ︸
height

dx︸︷︷︸
thickness

,
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(a) (b)

Figure 7.5.7

so the volume of S is

1∫
0

2πx (e− ex) dx. = 2π

1∫
0

ex− xex dx.

Now one needs an antiderivatives of ex and xex. The first part is trivial,∫
ex dx = e

2
x2. In Chapter 8 we will learn how to find an antiderivative of

xex, and we will find it is much easier to find than
∫

(ln(y))2 dy. and then
formula 59 on the inside cover gives

∫
xex dx = xex − ex.See Exercise 22 As expected, once

again the volume is π(e− 2).
�

It is not unusual to find one formulation much easier than the other. In
Example 1 both methods were feasible. In the next, the shell technique is
clearly preferable.

EXAMPLE 2 The region R bounded by the line y = π
2
−1, the y-axis, and

the curve y = x− sin(x) is revolved around the y-axis. Try to set up definite
integrals for the volume of this solid using (a) disks and (b) shells.y = x− sin(x) is Kepler’s

equation, with e = 1. See
Exercise 27 on page 58.

(a) (b)

Figure 7.5.8

SOLUTION The region R is displayed in Figure 7.5.8(a).
For instance, when y = 0,

then x = 0. When
y = π

2 − 1, then x = π
2 . April 22, 2012 Calculus
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(a) To use the method of parallel cross sections you would have to find the
radius of the typical disk shown in Figure 7.5.8(b). The radius for each value
of y is the value of x for which x − sin(x) = y. In other words, we have to
express x as a function of y. This inverse function is not elementary, ending
our hopes of using the FTC.

Figure 7.5.9

(b) On the other hand, the shell technique goes through smoothly. The
typical shell, shown in Figure 7.5.9, has radius x and height π

2
−1−(x−sin(x)).

The volume of the local approximation is

2πx︸︷︷︸
circumference

(π

2
− 1− (x− sin(x))

)
︸ ︷︷ ︸

height

dx︸︷︷︸
thickness

.

The total volume of the bowl is then

π/2∫
0

2πx
(π

2
− 1− (x− sin(x))

)
dx.

The value of this definite integral is found in Exercise 50 on page 775. �

Summary

(a) (b)

Figure 7.5.10

The volume of a solid of revolution may be found by approximating the
solid by concentric thin shells. The volume of such a shell is approximately
2πR(x) c(x) dx. (See Figure 7.5.10.) The shell technique is often useful even
when integration by cross sections is difficult or impossible.
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EXERCISES for Section 7.5

In Exercises 1 to 4 draw a typical approximating cylindrical shell for the solid de-
scribed, and set up a definite integral for the volume of the given solid. (When
evaluating your definite integral, feel free to use the tables of antiderivatives in the
inside covers of the text.)

1. The trapezoid bounded by y = x, x = 1, x = 2, and the x-axis is revolved
around the x-axis.

2. The trapezoid in Exercise 1 is revolved about the line y = −3.

(a) Repeat this problem when the trapezoid is revolved around the y-axis.

(b) Repeat this problem when the trapezoid is revolved around the line x = −3.

3. The triangle with vertices (0, 0), (1, 0), and (0, 2) is revolved around the y-axis.

4. The triangle in Exercise 3 is revolved about the x-axis.

5. Find a definite integral for the volume of the solid produced by revolving about
the y-axis the finite region bounded by y = x2 and y = x3.

6. Repeat Exercise 5, except the region is revolved around the x-axis.

7. Set up a definite integral for the volume of the solid produced by revolving
about the x-axis the finite region bounded by y =

√
x and y = 3

√
x.

8. Repeat Exercise 7, except the region is revolved about the y-axis.

9. Find a definite integral for the volume of the right circular cone of radius a and
height h by the shell method.

10. Let R be the region bounded by y = x + x3, x = 1, x = 2, and the x-axis. Set
up a definite integral for the volume of the solid produced by revolving R about (a)
the x-axis and (b) the line x = 3.

11. Set up a definite integral for the volume of the solid produced by revolving
the region R in Exercise 10 about (a) the x-axis and (b) the line y = −2.

12. Set up a definite integral for the volume of the solid of revolution formed by
revolving the region bounded by y = 2 + cos(x), x = π, x = 10π, and the x-axis
around (a) the y-axis and (b) the x-axis.
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13. The region below y = cos(x), above the x-axis, and between x = 0 and
x = π

2 is revolved around the x-axis. Find a definite integral for the volume of the
resulting solid of revolution by (a) parallel cross sections and (b) concentric shells.

14. Let R be the region below y = 1/
(
1 + x2

)2 and above [0, 1]. Set up a defi-
nite integral for the volume of the solid produced by revolving R about the y-axis.

15. The region between y = ex2
, the x-axis, x = 0, and x = 1 is revolved about

the y-axis.

(a) Set up a definite integral for the area of this region.

(b) Set up a definite integral for the volume of the solid produced.

(The FTC is of no use in evaluating the area of this region, but it easily evaluates
the volume of the solid.)

16. Set up a definite integral for the volume of the doughnut (torus) produced
by revolving the disk of radius a about a line L at a distance b > a from its center.
(See Figure 7.5.11.)

Figure 7.5.11
17. The region R below y = ex (1 + sin(x)) /x and above [0, 10π] is revolved about
the y-axis to produce a solid of revolution. (a) Find a definite integral for the volume
of the solid by parallel cross sections. (b) Find a definite integral for the volume of
the solid by concentric shells. (c) Which definite integral do you think is easier to
evaluate? Why?

18. Let R be the region below y = ln(x) and above [1, e]. Find a definite integral
for the volume of the solid produced by revolving R about (a) the x-axis and (b)
the y-axis.
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19. Let R be the region below y = 1/
(
x2 + 4x + 1

)
and above [0, 1]. Find a

definite integral for the volume of the solid produced by revolving R about the line
x = −2.

20. Let R be the region below y = 1/
√

2 + x2 and above [
√

3,
√

8]. Set up a
definite integral for the volume of the solid produced by revolving R about the (a)
the x-axis and (b) the y-axis.

Exercises 21 and 22 complete Exercise 1. In that Example the region below y = e,
above y = ex, and to the right of the y-axis is revolved around the y-axis to form a
solid S.
21. The volume of S using cross sections perpendicular to the y-axis was found
to be

∫ e
1 π (ln(y))2 dy.

(a) Verify that x
(
(ln(x))2 − 2 ln(x) + 2

)
is an antiderivative of (ln(x))2.

(b) Find the volume of S. (Use FTC I.)

22. The volume of S using cross sections parallel to the y-axis was found to be∫ 1
0 2πx (e− ex) dx.

(a) Verify that xex − ex is an antiderivative of xex.

(b) Find the volume of S. (Use FTC I.)

23. When we unrolled the shell as a carpet we pictured it as a rectangular solid
whose faces meet at right angles. However, since the inner radius is x and the outer
radius is x + dx the circumference of the inside of the shell is less than the outer
circumference.

(a) By viewing the shell as the difference between two circular cylinders, compute
its exact volume.

(b) Show that this volume is 2π
(
x + dx

2

)
c(x).

This means that if we used x+ dx
2 as our sampling number in the interval [x, x+dx]

instead of x, our local approximation to the volume of the shell would be exact.

The kinetic energy of a particle of mass m grams moving at a velocity of v cen-
timeters per second is mv2/2 ergs. Exercises 24 and 25 ask for the kinetic energy of
rotating objects.

24. A solid cylinder of radius r and height h centimeters has a uniform density
of g grams per cubic centimeter. It is rotating at the rate of two revolutions per
second around its axis.
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(a) Find the speed of a particle at a distance x from the axis.

(b) Find a definite integral for the kinetic energy of the rotating cylinder.

25. A solid ball of radius r centimeters has a uniform density of g grams per
cubic centimeter. It is rotating around a diameter at the rate of three revolutions
per second around its axis.

(a) Find the speed of a particle at a distance x from the diameter.

(b) Find a definite integral for the kinetic energy of the rotating ball.

26. When a region R in the first quadrant is revolved around the y-axis, a solid
of volume 24 is produced. When R is revolved around the line x = −3, a solid of
volume 82 is produced. What is the area of R?

27. Let R be a region in the first quadrant. When it is revolved around the
x-axis, a solid of revolution is produced. When it is revolved around the y-axis,
another solid of revolution is produced. Give an example of such a region R with
the property that the volume of the first solid cannot be evaluated by the FTC, but
the volume of the second solid can be evaluated by the FTC.
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7.6 Water Pressure Against a Flat Surface

This section shows how to use integration to compute the force of water against
a submerged flat surface.

Introduction

Imagine the portion of the Earth’s atmosphere directly above one square
inch at sea level. That air forms a column some hundred miles high which
weighs about 14.7 pounds. It exerts a pressure of 14.7 pounds per square inch
(14.7 psi).

This pressure does not crush us because the cells in our body are at the
same pressure. If we were to go into a vacuum, we would explode.This is why astronauts wear

pressurized suits. The pressure inside a flat tire is 14.7 psi. When you pump up a bicycle tire
so that the gauge reads 60 psi, the pressure is actually 60 + 14.7 = 74.7 psi.
The tire must be strong enough to avoid bursting.

One cubic foot of water
weighs 62.6 pounds, so one

cubic inch weighs
62.6
1728 = 0.036227 pounds

and the density is
0.036227 pounds per cubic

inch.

Next imagine diving into a lake and descending 33 feet (10 meters). Extend-
ing that 100-mile-high column 33 feet into the water adds (33)(12)(0.036227) =
14.7 pounds of water. The pressure is now twice 14.7 psi. The pressure is now
twice 14.7, or 29.4 psi. You cannot escape that pressure by turning your body,
since at a given depth the pressure is the same in all directions.

Pressure and force are closely related. If the force is the same throughout
a region, then the pressure is simply “total force divided by area”:

pressure =
force

area
.

Equivalently,
force = pressure× area.

Thus, when the pressure is constant in a plane region it is easy to find the
total force against it: multiply the pressure and the area of the region.

If the pressure varies in the region, we must make use of integration.

Using an Integral to Find the Force of Water

We will see how to find the total force on a flat submerged object due to
the water. We will disregard the pressure due to the atmosphere. (See Fig-
ure 7.6.1(a).)

At a depth of h inches, water exerts a pressure of about 0.036h psi. There-
fore the water exerts a force on a flat horizontal object of area A square inches,
at a depth of h inches equal to 0.036hA pounds.

To deal with, say, a vertical submerged surface takes more calculation, since
the pressure is not constant over that surface. Imagine the surface R, shown
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(a) (b) (c)

Figure 7.6.1

in Figure 7.6.1(b). Introduce a vertical x-axis, pointed down, with its origin
O, a distance k below the water’s surface. R lies between lines corresponding
to x = a and x = b. The depth of the water corresponding to x is not x but
x + k. (If the origin is at the water’s surface, then k = 0.)

As usual, we will find the local approximation of the force by considering a
narrow horizontal strip corresponding to the interval [x, x + dx] of the x-axis,
as in Figure 7.6.1(c). Letting c(x) denote the cross-sectional length, we see
that the force of the water on this strip is approximately

(0.036)︸ ︷︷ ︸
density of H2O

(x + k)︸ ︷︷ ︸
depth

c(x) dx︸ ︷︷ ︸
area of strip

pounds.

Therefore

Force against R is 0.036
∫ b

a
(x + k)c(x) dx pounds.

(a) (b) (c)

Figure 7.6.2

EXAMPLE 1 A circular tank is submerged in water. An end is a disk
10 inches in diameter. The top of the tank is 12 inches below the surface of
the water. Find the force against one end.
SOLUTION This placement of O will

make it easier to compute
the cross section lengths.

The end of the tank is shown in Figure 7.6.2(a). Introduce
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a vertical x-axis with its origin O level with the center of the disk. (See
Figure 7.6.2(b).) To find the cross section c(x) we use Figure 7.6.2(c).

By the Pythagorean Theorem applied to the right triangle in Figure 7.6.2(c)
we haveFor any number x,

|x|2 = x2. (
c(x)

2

)2

+ |x|2 = 52.

Thus (c(x))2 + 4x2 = 100.

So c(x) =
√

100− 4x2.

Having found the cross section as a function of x, we still must find the depth
as a function of x. To do this, inspect Figure 7.6.3.

As a check, let x = 0, when
the depth is clearly 17

inches.

The depth AC equals AB + BC = 12 + (x− (−5)) = 17 + x.
We have

Local Estimate of Force = (0.036)(x + 17)︸ ︷︷ ︸
pressure

√
100− 4x2 dx︸ ︷︷ ︸

area

.

Figure 7.6.3

From this we obtain

Total Force =

5∫
−5

(0.036)(x + 17)
√

100− 4x2 dx pounds

= 0.036

5∫
−5

x
√

100− 4x2 dx + 0.036

5∫
−5

17
√

100− 4x2 dx pounds.

The first integral is 0 because the integrand, x
√

100− 4x2, is an odd function
and the interval of integration is symmetric about x = 0. The integrand in
the second integral is even, so, after factoring out the 17, we have

5∫
−5

√
100− 4x2 dx = 2

5∫
0

√
100− 4x2 dx = 4

5∫
0

√
25− x2 dx

= 4 (Area of one quarter of disk of radius 5) = 4

(
1

4
π52

)
= 52π = 25π.

Thus,

Total Force = (0.036)(17)(25π) pounds ≈ 48 pounds.

�
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(a) (b)

Figure 7.6.4

EXAMPLE 2 Figure 7.6.4(a) shows a submerged equilaterial triangle of
side h. Find the force of water against it.
SOLUTION In this case we place the origin of the vertical axis at the surface
of the water (see Figure 7.6.4(b)). To set up an integral we must compute c(x).

Note
√

3h
2

is marked on the x-axis; it is the length of an altitude in the triangle.

The similar triangles ABC and ADE give us

c(x)

h
=

√
3

2
h− x
√

3
2

h
.

Observe that c(0) = h and

c(
√

3
2 h) = 0 and c is linear,

which agree with
Figure 7.6.4(b).

Thus,

c(x) = h− 2x√
3
.

The local estimate of force is therefore

0.036x︸ ︷︷ ︸
pressure

(
h− 2x√

3

)
dx︸ ︷︷ ︸

area

.

Hence

Total Force =

√
3

2
h∫

0

0.036x

(
h− 2x√

3

)
dx = 0.036

√
3

2
h∫

0

(
hx− 2x2

√
3

)
dx

= 0.036

(
h
x2

2
− 2√

3

x3

3

)∣∣∣∣
√

3
2

h

0

= 0.036
h3

8
pounds.

�
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Summary

We introduced the notion of water pressure defined as “force divided by area”
or “force per unit area.” If the pressure is constant over a flat region of area
A, the force is the product: pressure times area. When p(x) is the pressure
and c(x) is the length of the typical cross section, then p(x)c(x) dx is a local
approximation to the force. The water pressure p(x) is 0.036 times the depth.
The dimensions are in inches and the force is in pounds.
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EXERCISES for Section 7.6

A cubic inch of water weighs about 0.036 pounds. (All dimensions are in inches.)

(a) (b) (c) (d)

Figure 7.6.5
In Exercises 1 to 4 find a definite integral for the force of water on the indicated
surface.

1. The triangular surface in Figure 7.6.5(a).
2. The circular surface in Figure 7.6.5(b).
3. The triangular surface in Figure 7.6.5(c).
4. The trapezoidal surface in Figure 7.6.5(d).

In Exercises 5 and 6 the surfaces are tilted like the bottoms of many swimming
pools. Find the force of the water against them.

5. The surface is an a by b rectangle inclined at an angle of 30◦ (π/6 radians) to
the horizontal. The top of the surface is at a depth k. (See Figure 7.6.6.)

Figure 7.6.6
6. The surface is a disk of radius r tilted at an angle of 45◦ (π/4 radians) to the
horizontal. Its top is at the surface of the water.

7. A vertical disk is totally submerged. Show that the force of the water against
it is the same as the product of its area and the pressure at its center.
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8. If the region in Exercise 7 is not vertical, is the same conclusion true?

9. Let R be a convex plane region. R is called centrally symmetric if it contains
a point P such that P is the midpoint of every chord ofR that passes through P . For
instance, a parallelogram is centrally symmetric. No triangle is. Now, assume that a
centrally symmetric region is placed vertically in water and is completely submerged.
Show that the force against it equals the product of its area and the pressure at P .

10. Why is finding volume by shells essentially the same as finding the force
against a submerged object?
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7.7 Work

In this section we treat the work accomplished by a force operating along a
line, for example the work done when you stretch a spring. If the force has
the constant value F and it operates over a distance s in the direction of the
force, then the work W accomplished is simply

Work = Force ·Distance or W = F · s.

If force is measured in newtons and distance in meters, work is measured
in newton-meters or joules. For example, the force needed to lift a mass of
m kilograms at the surface of the earth is about 9.8m newtons.

Figure 7.7.1

A weightlifter who raises 100 kilograms a distance of 0.5 meter accomplishes
9.8(100)(0.5) = 490 joules of work. On the other hand, the weightlifter who
just carries the barbell from one place to another in the weightlifting room,
without raising or lowering it, accomplishes no work because the barbell was
moved a distance zero in the direction of the force.

The Stretched Spring

Hooke’s law says a spring’s
force is proportional to the
distance it is stretched.

As you stretch a spring (or rubber band) from its rest position, the further
you stretch it the harder you have to pull. According to Hooke’s law, the force
you must exert is proportional to the distance that the spring is stretched, as
shown in Figure 7.7.1. In symbols, F = kx, where F is the force and x is the
distance from the rest position.

Because the force is not constant, we cannot compute the work accom-
plished just by multiplying force times distance. As usual, we need an integral,
as the next example illustrates.

EXAMPLE 1 A spring is stretched 0.5 meter longer than its rest length.
The force required to keep it at that length is 3 newtons. Find the total work
accomplished in stretching the spring 0.5 meter from its rest position.

Figure 7.7.2

SOLUTION Let us estimate the work involved in stretching the spring from
x to x + dx. (See Figure 7.7.2.)

The distance dx is small. As the end of the spring is stretched from x to
x + dx, the force is almost constant. Since the force is proportional to x, it
is of the form kx for some constant k. We know that the force, F , is 3 when
x = 0.5, so

F = kx gives 3 = k(0.5) which implies k = 6.

The work accomplished in stretching the spring from x to x + dx is then
approximately

kx︸︷︷︸
force

· dx︸︷︷︸
distance

joule.
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Hence the total work is

b∫
a

kx dx =

0.5∫
0

6x dx = 3x2
∣∣0.5

0
= 0.75 joule.

�

Work in Launching a Rocket

The force of gravity that the earth exerts on an object diminishes as the object
gets further away from the earth. The work required to lift an object 1 foot
at sea level is greater than the work required to lift the same object the same
distance at the top of Mt. Everest. However, the difference in altitudes is so
small in comparison to the radius of the earth that the difference in work is
negligible.The earth’s surface is about

4, 000 miles from its center.
On the other hand, when an object is rocketed into space, that

the force of gravity diminishes with distance from the center of the earth is
critical.

According to Newton, the force of gravity on a given mass is proportional
to the reciprocal of the square of the distance of that mass from the center of
the earth.

Figure 7.7.3

That is, there is a constant k such that the gravitational force at
distance r from the center of the earth, F (r), is given by

F (r) =
k

r2
.

(See Figure 7.7.3.)

WARNING It is important to remember that r is “distance to
the center of the earth,” not “distance to the surface.”

EXAMPLE 2 How much work is required to lift a 1 pound payload from
the surface of the earth to the moon, which is about 240, 000 miles away?
SOLUTIONThe unit for work is joule.

1 joule = 1 newton meter =
1 watt second =

0.7376 foot pound.

The work necessary to lift an object a distance x against a
constant vertical force F is the product of force times distance:

Work = F · x.

Since the gravitational pull of the earth on the payload changes with distance
from the center of the earth, an integral will be needed to express the total
work.

The payload weighs 1 pound at the surface of the earth. The farther it is
from the center of the earth, the less it weighs, for the force of the earth on the
mass is inversely proportional to the square of the distance of the mass from the
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center of the earth. Thus the force on the payload is given by k/r2 pounds,
where k is a constant, which will be determined in a moment, and r is the
distance in miles form the payload to the center of the earth. When r = 4, 000
(miles), the force is 1 pound; thus

1 pound =
k

(4, 000 miles)2
.

From this it follows that k = 4, 0002, and therefore the gravitational force on a
1-pound mass is, in general, (4, 000/r)2 pounds. As the payload recedes from
the earth, it loses weight (but not mass), as recorded in Figure 7.7.4(a). The

(a) (b)

Figure 7.7.4

work done in lifting the payload from a distance r to a distance r + dr from
the center of the earth is approximately(

4, 000

r

)2

︸ ︷︷ ︸
force

(dr)︸︷︷︸
distance

miles-pounds.

(See Figure 7.7.4(b).)

Hence the work required to move the 1 pound mass from the surface of the
earth to the moon is given by the integral

240,000∫
4,000

(
4, 000

r

)2

dr = −4, 0002

r

∣∣∣∣240,000

4,000

= −4, 0002

(
1

240, 000
− 1

4, 000

)

= −4, 000

60
+ 4, 000 ≈ 3, 933 miles-pounds

= 2.8154× 107 joules.

The work is just a little less than if the payload were lifted 4, 000 miles against
a constant gravitational force equal to that at the surface of the earth. �
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Summary

The work accomplished by a constant force F that moves an object a distance
x in the direction of the force is the product Fx, ”force times distance.” The
work by a variable force, F (x), moving an object over the interval [a, b] is

measured by an integral
∫ b

a
F (x) dx.
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EXERCISES for Section 7.7

1. A spring is stretched 0.20 meters from its rest length. The force required to keep
it at that length is 5 newtons. Assuming that the force of the spring is proportional
to the distance it is stretched, find the work accomplished in stretching the spring

(a) 0.20 meters from its rest length;

(b) 0.30 meters from its rest length.

2. A spring is stretched 3 meters from its rest length. The force required to keep
it at that length is 24 newtons. Assume that the force of the spring is proportional
to the distance it is stretched. Find the work accomplished in stretching the spring

(a) 3 meters from its rest length;

(b) 4 meters from its rest length.

3. Suppose a spring does not obey Hooke’s law. Instead, the force it exerts when
stretched x meters from its rest length is F (x) = 3x2 Newtons. Find the work done
in stretching the spring 0.80 meter from its rest length.

4. Suppose a spring does not obey Hooke’s law. Instead, the force it exerts when
stretched x meters from its rest length is F (x) = 2

√
x Newtons. Find the work done

in stretching the spring 0.50 meter from its rest length.

5. How much work is done in lifting the 1 pound payload the first 4, 000 miles of
its journey to the moon? (See Example 2.)

6. If a mass that weighs 1 pound at the surface of the earth were launched from
a position 20, 000 miles from the center of the earth, how much work would be re-
quired to send it to the moon (240, 000 miles from the center of the earth)?

7. Assume that the force of gravity obeys an inverse cube law, so that the force
on a 1 pound payload a distance r miles from the center of the earth (r ≥ 4, 000)
is (4, 000/r)3 pounds. How much work would be required to lift a 1 pound payload
from the surface of the earth to the moon?

8. Geologists, when considering the origin of mountain ranges, estimate the en-
ergy required to lift a mountain up from sea level. Assume that two mountains are
composed of the same type of matter, which weighs k pounds per cubic foot. Both
are right circular cones in which the height is equal to the radius. One mountain is
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twice as high as the other. The base of each is at sea level. If the work required to lift
the matter in the smaller mountain above sea level is W , what is the corresponding
work for the larger mountain?

9. Assume that Mt. Everest has a shape of a right circular cone of height
30, 000 feet and radius 150, 000 feet, with unifrom density of 200 pounds per cubic
foot.

(a) How much work was required to lift the material in Mt. Everest if it was
initially all at sea level?

(b) How does this work compare with the energy of a 1 megaton hydrogen bomb?
(One megaton is the energy in a million tons of TNT: about 3 × 1014 foot-
pounds.)

10. A town in a flat valley made a conical hill out of its rubbish, as shown in
Figure 7.7.5(a). The work requireed to lift all the rubbish was W . Happy with the
result, the town decided to make another hill with twice the volume, but of the same
shape. How much work will be required to build this hill? Explain.

(a) (b) (c)

Figure 7.7.5
11. A container is full of water which weighs 64.2 pounds per cubic foot. All the
water is pumped out of an opening at the top of the container. Develop a definite
integral for the work accomplished. (The integral involves only a, b, and A(x), the
cross-sectional area shown in Figure 7.7.5(b).)

12. A horizontal tank in the form of a cylinder with base R is full of water. The
cylinder has height h feet. (See Figure 7.7.5(c).) Develop a definite integral for the
total work accomplished when all the water is pumped out an opening at the top.
(Express the integral in terms of a, b, c(x), and h.)
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Skill Drill: Derivatives

In Exercises 13 to 17 a and b are constants. In each case verify that the derivative
of the first function is the second function.
13. ln

(
x +
√

a2 + x2
)
; 1/
√

a2 + x2

14. 1
2ab ln

∣∣∣a+bx
a−bx

∣∣∣; 1/(a2 − b2x2)

15. x4

8 −
(

x3

4 −
3x
8

)
sin(2x); x3 sin2(x)

16. x− ln (1 + ex); 1/(1 + ex)
17. eax

a2+1
(a sin(x)− cos(x)); eax sin(x)
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7.8 Improper Integrals

This section develops the analog of a definite integral when the interval of
integration is infinite or the integrand becomes arbitrarily large in the interval
of integration. The definition of a definite integral does not cover these cases.

Improper Integrals: Interval Unbounded

A question about areas will introduce the notion of an “improper integral.”
Figure 7.8.1 shows the region under y = 1/x and above the interval [1,∞).
Figure 7.8.2 shows the region under y = 1/x2 and above the same interval.

Figure 7.8.1

Let us compute the areas of the two regions. We might be tempted to
say that the area in Figure 7.8.1 is

∫∞
1

1/x dx. Unfortunately, the symbol∫∞
1

f(x) dx has not been given any meaning so far in this book. The definition

of the definite integral
∫ b

a
f(x) dx involves a limit of sums of the form

n∑
i=1

f(ci)(xi − xx−1),

where each xi−xi−1 is the length of an interval [xi−1, xi]. If you cut the interval
[1,∞) into a finite number of intervals, then at least one section has infinite
length, and such a sum is meaningless.

Figure 7.8.2

It does make sense, however, to find the area of that part of the region in
Figure 7.8.1 from x = 1 to x = b, where b > 1, and find what happens to that
area as b→∞. To do this, first calculate

∫ b

1
(1/x) dx:

b∫
1

dx

x
= ln(x)|b1 = ln(b)− ln(1) = ln(b).

Then

lim
b→∞

b∫
1

dx

x
= lim

b→∞
ln(b) =∞.

So the area of the region in Figure 7.8.1 is infinite.
Next, examine the area of the region in Figure 7.8.2. We first find

b∫
1

dx

x2
= −1

x

∣∣∣∣b
1

= −1

b
−
(
−1

1

)
= 1− 1

b

Thus,

lim
b→∞

b∫
1

dx

x2
= lim

b→∞

(
1− 1

b

)
= 1.
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In this case the area is finite. Though the regions in Figures 7.8.1 and 7.8.2
look alike, one has an infinite area, and the other, a finite area. This contrast
suggests the following definitions.

DEFINITION (Convergent improper integral
∫∞

a
f(x) dx.) Let

f be continuous for x ≥ a. If limb→∞
∫ b

a
f(x) dx exists, the function

f is said to have a convergent improper integral from a to ∞.
The value of the limit is denoted by

∫∞
a

f(x) dx:

∞∫
a

f(x) dx = lim
b→∞

b∫
a

f(x) dx.

We saw that
∫∞

1
dx/x2 is a convergent improper integral with value 1.

DEFINITION (Divergent improper integral
∫∞

a
f(x) dx.) Let f

be a continuous function for x ≥ a. If limb→∞
∫ b

a
f(x) dx does

not exist, the function f is said to have a divergent improper
integral from a to ∞.

As we saw,
∫∞

1
dx/x is a divergent improper integral.

The improper integral
∫∞

1
dx/x is divergent because

∫ b

1
dx/x → ∞ as

b→∞. But an improper integral
∫∞

a
f(x) dx can be divergent without being

infinite. Consider, for instance,
∫∞

0
cos(x) dx. We have

b∫
0

cos(x) dx = sin(x)|b0 = sin(b).

As b→∞, sin(b) does not approach a limit, nor does it become arbitrarily
large. As b → ∞, sin(b) just keeps going up and down in the range −1 to 1
infinitely often. Thus

∫∞
0

cos(x) dx is divergent.
The improper integral∫ b
−∞ f(x) dx.

The improper integral
∫ b

−∞ f(x) dx is defined similarly:

b∫
−∞

f(x) dx = lim
a→−∞

b∫
a

f(x) dx.

If the limit exists,
∫ b

−∞ f(x) dx is a convergent improper integral. If the limit
does not exist, it is a divergent improper integral.

To deal with improper integrals over the entire x-axis, define The improper integral∫∞
−∞ f(x) dx∞∫

−∞

f(x) dx
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to be the sum
0∫

−∞

f(x) dx +

∞∫
0

f(x) dx,

which will be called convergent if both

0∫
−∞

f(x) dx and

∞∫
0

f(x) dx

are convergent. If at least one of the two is divergent,
∫∞
−∞ f(x) dx will be

called divergent.

Figure 7.8.3

EXAMPLE 1 Is the area of the region bounded by the curve y = 1/(1+x2)
and the x-axis finite or infinite (see Figure 7.8.3).
SOLUTION The area in question equals

∫∞
−∞ dx/(1 + x2). Now,

∞∫
0

dx

1 + x2
= lim

b→∞

b∫
0

dx

1 + x2
= lim

b→∞
(tan−1(b)− tan−1(0)) =

π

2
− 0 =

π

2
.

Because 1/(1 + x2) is an even function, we deduce immediately that

0∫
−∞

dx

1 + x2
=

π

2
.

Hence,
∞∫

−∞

dx

1 + x2
=

π

2
+

π

2
= π,

the integral is convergent and the area in question is π. �

Shorthand Notation for∫∞
a f(x) dx

OBSERVATION 1 (Shorthand Notation for
∫∞

a
f(x) dx)

If
∫∞

a
f(x) dx is convergent and F (x) is an antiderivative of f(x),

then
∫∞

a
f(x) dx = limb→∞ F (b)−F (a). In these situation we could

write
∞∫

a

f(x) dx = F (x)|∞a

where it is understood that F (∞) is short for limb→∞ F (b).
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Comparison Test for Convergence of
∫∞

a f(x) dx, f(x) ≥ 0

The integral
∫∞

0
e−x2

dx is important in statistics. Is it convergent or diver-

gent? We cannot evaluate
∫ b

0
e−x2

dx by the Fundamental Theorem since e−x2

does not have an elementary antiderivative. Even so, there is a way of showing
that

∫∞
0

e−x2
dx is convergent without finding its exact value. The method is

described in Theorem 1.

Theorem 7.8.1 (Comparison test for convergence of improper integrals). Let
f(x) and g(x) be continuous functions for x ≥ a. Assume that 0 ≤ f(x) ≤ g(x)
and that

∫∞
a

g(x) dx is convergent. Then
∫∞

a
f(x) dx is convergent and

∞∫
a

f(x) dx ≤
∞∫

a

g(x) dx.

Figure 7.8.4

The geometric interpretation of Theorem 7.8.1is that if the area under
y = g(x) is finite, so is the area under y = f(x). (See Figure 7.8.4.) While we
do not provide a proof of Theorem 7.8.1, or Theorem 7.8.2, a proof of the less
intuitive, Theorem 7.8.3.

A similar convergence test holds for g(x) ≤ f(x) ≤ 0. If
∫∞

a
g(x) dx

converges, so does
∫∞

a
f(x) dx.

EXAMPLE 2 Show that
∫∞

0
e−x2

dx is convergent and put a bound on its
value.
SOLUTION Since e−x2

does not have an elementary antiderivative, we com-
pare

∫∞
0

e−x2
dx to an improper integral that we know converges.

Figure 7.8.5

For x ≥ 1, x2 ≥ x; hence e−x2 ≤ e−x. (See Figure 7.8.5.) Now,

b∫
1

e−x dx = −e−x
∣∣b
1

= e−1 − e−b.

Thus

lim
b→∞

b∫
1

e−x dx =
1

e

and the improper integral
∫∞

1
e−x dx is convergent.

The comparison test for convergence tells us that
∫∞

1
e−x2

dx is also con-
vergent. Furthermore,

∞∫
1

e−x2

dx ≤
∞∫

1

e−x dx =
1

e
.
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In Exercise 32 of
Section 17.3 we show that∫∞

0 e−x2
dx equals√

π/2 ≈ 1.25331.

Thus
∞∫

0

e−x2

dx =

1∫
0

e−x2

dx +

∞∫
1

e−x2

dx ≤
1∫

0

e−x2

dx +
1

e
.

Since e−x2 ≤ 1 for 0 < x ≤ 1, we conclude that

∞∫
0

e−x2

dx ≤ 1 +
1

e
.

�

Comparison Test for Divergence of
∫∞

a f(x) dx.

Theorem 7.8.2 (Comparison test for divergence of improper integrals). Let
f(x) and g(x) be continuous functions for x ≥ a. Assume that 0 ≤ g(x) ≤ f(x)
and that

∫∞
a

g(x) dx is divergent. Then
∫∞

a
f(x) dx is also divergent.

Figure 7.8.6

A glance at Figure 7.8.6 suggests why this theorem is true. The area under
f(x) is larger than the area under g(x). When the area under g(x) is infinite,
the area under f must also be infinite.

EXAMPLE 3 Show that
∫∞

1
(x2 + 1)/x3 dx is divergent.

SOLUTION For x > 0,
x2 + 1

x3
>

x2

x3
=

1

x
.

Since
∫∞

1
dx
x

=∞, it follows that
∫∞

1
(x2 + 1)/x3 dx =∞. �

Convergence of
∫∞

a f(x) dx When
∫∞

a |f(x)| dx Converges

Is
∫∞

0
e−x sin(x) dx convergent or divergent? Because sin(x) takes on both

positive and negative values, the integrand is not always positive, nor is it
always negative. So we can’t just compare it with

∫∞
0

e−x dx.
The next theorem provides a way to establish the convergence of

∫∞
a

f(x) dx
when f(x) is a function that takes on both positive and negative values. It
says that if

∫∞
a
|f(x)| dx converges, so does

∫∞
a

f(x) dx. The argument for
this depends on showing that the “negative and positive parts of the function”
both have convergent integrals.

Theorem 7.8.3 (Absolute-convergence test for improper integrals). If f(x)
is continuous for x ≥ a and

∫∞
a
|f(x)| dx converges to the number L, then∫∞

a
f(x) dx is convergent and converges to a number between L and −L.
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Proof

We will introduce two function, g(x) which is non-negative, and h(x) which
is non-positive. That they are both continuous is shown in Exercise 42. That
will enable us to use our comparison tests. Figure 7.8.7 shows the graphs of
y = f(x) and four functions closely related to f(x).

g(x) =

{
f(x) if f(x) is positive

0 otherwise
and h(x) =

{
f(x) if f(x) is negative

0 otherwise

Note that f(x) = g(x) + h(x). We will show that
∫∞

a
g(x) dx and

∫∞
a

h(x) dx
both converge.

Figure 7.8.7

First, since
∫∞

a
|f(x)| dx converges, has value L, and 0 ≤ g(x) ≤ |f(x)|,

we conclude that
∫∞

a
g(x) dx converges, and the value of the integral is a

nonnegative number A between 0 and L:

0 ≤ A ≤
∞∫

a

|f(x)| dx = L.

Second, since
∫∞

a
−|f(x)| dx converges, has value−L, and 0 ≥ h(x) ≥ −|f(x)|,

it follows that
∫∞

a
h(x) dx converges to a nonpositive number B between −L

and 0:

0 ≥ B ≥
∞∫

a

|f(x)| dx = −L.

Thus
∫∞

a
f(x) dx =

∫∞
a

(g(x)+h(x)) dx converges to A+B, which is a number
somewhere in the interval [−L, L]. •

EXAMPLE 4 Show that
∫∞

0
e−x sin(x) dx is convergent.

SOLUTION Since |sin(x)| ≤ 1, we have |e−x sin(x)| ≤ e−x. Now,
∫∞

0
e−x dx

is convergent, as we saw in Example 2. Thus
∫∞

0
e−x sin(x) dx is convergent. See Exercise 29.

�

Figure 7.8.8

Improper Integrals: Integrand Unbounded

The second type of improper integral concerns functions which become infi-
nite in an interval [a, b]. For any partition of [a, b], the approximating sum∑n

i=1 f(ci)(xi − xi−1) can be made arbitrarily large when ci is chosen so that
f(ci) is very large. See Exercise 38.The next example shows how to get around this difficulty.

EXAMPLE 5 Determine the area of the region bounded by y = 1/
√

x,
x = 1, and the coordinate axes shown in Figure 7.8.8.

Calculus April 22, 2012



666 CHAPTER 7 APPLICATIONS OF THE DEFINITE INTEGRAL

SOLUTION Resist for the moment the temptation to write “Area =
∫ 1

0
1/
√

x dx”.

The integral
∫ 1

0
1/
√

x dx is not defined since its integrand is unbounded in [0, 1].

Instead, consider the behavior of
∫ 1

t
1/
√

x dx as t approaches 0 from the right.
Since

1∫
t

1√
x

dx = 2
√

x
∣∣1
t

= 2
√

1− 2
√

t = 2(1−
√

t),

it follows that

lim
t→0+

1∫
t

dx√
x

= 2.

The area in question is 2.

In Exercise 30 the same value for the area is obtained by taking horizontal
cross sections and evaluating an improper integral from 0 to ∞. �

The reasoning in Example 5 motivates the definition of the second type
of improper integral, in which the integrand rather than the interval is un-
bounded.

Convergent and Divergent
Improper Integrals∫ b

a f(x) dx. DEFINITION (Convergent and Divergent Improper Integrals
∫ b

a
f(x) dx.)

Let f be continuous at every number in [a, b] except at a. If

limt→a+

∫ b

t
f(x)dx exists, the function f is said to have a conver-

gent improper integral from a to b. The value of the limit is
denoted

∫ b

a
f(x) dx.

If limt→a+

∫ b

t
f(x)dx does not exist, the function f is said to have

a divergent improper integral from a to b; in brief,
∫ b

a
f(x) dx

does not exist.

In a similar manner, if f is not defined at b, define
∫ b

a
f(x) dx as

limt→b−
∫ t

a
f(x)dx, if this limit exists.

As Example 5 showed, the improper integral
∫ 1

0
1/
√

x dx is convergent and
has the value 2.

More generally, if a function f(x) is not defined at certain isolated numbers,

break the domain of f(x) into intervals [a, b] for which
∫ b

a
f(x) dx is either

improper or “proper”– that is, an ordinary definite integral.

For instance, the improper integral
∫∞
−∞ 1/x2 dx is troublesome for four rea-

sons: limx→0− 1/x2 = ∞, limx→0+ 1/x2 = ∞, and the range extends infinitely
to the left and also to the right. (See Figure 7.8.9.) To treat the integral, write
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it as the sum of four improper integrals of the two basic types:

Figure 7.8.9

∞∫
−∞

1

x2
dx =

−1∫
−∞

1

x2
dx +

0∫
−1

1

x2
dx +

1∫
0

1

x2
dx +

∞∫
1

1

x2
dx.

Each of the four integrals on the right must be convergent in order for
∫∞
−∞ 1/x2 dx

to be convergent. Only the first and last are, so
∫∞
−∞ 1/x2 dx is divergent.

Summary

We introduced two types of integrals that are not definite integrals, but are
defined as limits of definite integrals. The “improper integral”

∫∞
a

f(x) dx is

defined as limb→∞
∫ b

a
f(x) dx. If f(x) is continuous in [a, b] except at a, then∫ b

a
f(x) dx is defined as limt→a+

∫ b

t
f(x) dx. The first type is far more common

in applications. We also developed two comparison tests for convergence or
divergence of

∫∞
a

f(x) dx, where the integrand keeps a constant sign. In the
case where the integrand f(x) may have both positive and negative values, we
showed that if

∫∞
a
|f(x)| dx converges, so does

∫∞
a

f(x) dx.
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EXERCISES for Section 7.8

In Exercises 1 to 9 determine whether the improper integral is convergent or diver-
gent. Evaluate the convergent ones if possible. Some exercises may require using
the integral table in the back of the book.

1.
∫∞
1

dx
x3

2.
∫∞
1

dx
3√x

3.
∫∞
0 e−x dx

4.
∫∞
0

dx
x+100

5.
∫∞
0

x3 dx
x4+1

6.
∫∞
1 x−1.01 dx

7.
∫∞
0

dx
(x+2)3

8.
∫∞
0 sin(2x) dx

9.
∫∞
1 x−0.99 dx

10.
∫∞
0

e−x sin(x2)
x+1 dx

11.
∫∞
0

dx
x2+4

12.
∫∞
0

x2 dx
2x3+5

13.
∫∞
0

dx
(x+1)(x+2)(x+3)

14.
∫∞
0

sin(x)
x2 dx

15.
∫∞
1

ln x dx
x

16.
∫∞
0 e−2x sin(3x) dx

In Exercises 17 to 21 determine whether the improper integral is convergent or
divergent. Evaluate the convergent ones if possible. Some exercises may require
using the integral table in the back of the book.

17.
∫ 1
0

dx
3√x

18.
∫ 1
0

dx
3√x

19.
∫ 1
0

dx
(x−1)2

20.
∫∞
0

e−x
√

x
dx

21.
∫ 1
0

dx√
x
√

1−x
(This integrand is undefined at both endpoints, x = 0 and x = 1.)

22.

(a) For which values of k is
∫ 1
0 xk dx improper.
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(b) For which values of k is
∫ 1
0 xk a convergent improper integral?

(c) For which values of k is
∫ 1
0 xk a divergent improper integral?

23.

(a) For which values of k is
∫∞
1 xk dx convergent?

(b) For which values of k is
∫∞
1 xk dx divergent?

24.

(a) For which positive constants p is
∫ 1
0 dx/xp convergent? divergent?

(b) For which positive constants p is
∫∞
1 dx/xp convergent? divergent?

(c) For which positive constants p is
∫∞
0 dx/xp convergent? divergent?

25. Let R be the region between the curves y = 1/x and y = 1/(x + 1) to the
right of the line x = 1. Is the area of R finite or infinite? If it is finite, evaluate it.

26. Let R be the region between the curves y = 1/x and y = 1/x2 to the right of
x = 1. Is the area of R finite or infinite? If it is finite, evaluate it.

27. Describe how you would go about estimating
∫∞
0 e−x2

dx with an error less
than 0.02. (Do not do the arithmetic.)

28. Describe how you would go about estimating
∫∞
0

dx√
1+x4

with an error less
than 0.01. (Do not do the arithmetic.)

29. Example 4 showed that
∫∞
0 e−x sin(x) dx is convergent. Find its value. (First

find constants A and B such that Ae−x sin(x) + Be−x cos(x) is an antiderivative of
e−x sin(x).)

30. In Example 5 the area of the region bounded by y = 1/
√

x, x = 1, and the
coordinate axes was found to have area 2. Confirm this result by using horizontal
cross sections and evaluating an improper integral from 0 to ∞.
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31. The function f(x) = sin(x)
x for x 6= 0 and f(0) = 1 occurs in communication

theory. Show that the energy E of the signal represented by f is finite, where

E =

∞∫
−∞

(f(x))2 dx.

32. Let f(x) be a positive function and let R be the region under y = f(x) and
above [1,∞]. Assume that the area of R is infinite. Does it follow that the volume
of the solid of revolution formed by revolving R about the x-axis is infinite?

33. Let f(x) be a positive function and let R be the region under y = f(x) and
above [1,∞]. Assume that the area of R is finite. Does it follow that the volume of
the solid of revolution formed by revolving R about the x-axis is infinite?

34.

(a) Sketch the graph of y = 1/x, for x > 0.

(b) Is the part below the graph and above (0, 1] congruent to the part below the
graph and above [1,∞)?

(c) What does this say about the convergence or divergence of
∫ 1
0

dx
x and

∫∞
1

dx
x ?

35.

(a) Sketch the graph of y = 1/x2 for x > 0.

(b) Is the part below the graph and above (0, 1] congruent to the part below the
graph and above [1,∞)?

(c) What does this say about the convergence or divergence of
∫ 1
0

dx
x2 and

∫∞
1

dx
x2 ?

(d) What does this say about the convergence or divergence of
∫ 1
0

dx√
x

and
∫∞
1

dx√
x
?

36. In the study of the harmonic oscillator one meets the integral

∞∫
−∞

dx

(1 + kx2)3
,

where k is a positive constant. Show this improper integral is convergent.
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37. If
∫∞
0 e−x2

dx =
√

π/2, show that
∫∞
0 2−x2

dx =
√

π/ ln(4).

38. Consider the improper integral
∫ 1
0

dx
x2 . Suppose the interval [0, 1] is partitioned

into n equal-width pieces. That is xi = i/n for all i = 0, 1, . . . , n.

(a) Show that the approximating sum Sn =
∑n

i=1
1
c2i

∆xi =
∑n

i=1
n
i2

.

(b) Show that limn→∞ Sn does not exist. (Show that Sn ≥ n for all positive
integers n.)

39. Plankton are small football-shaped organisms. The resistance they meet when
falling through water is proportional to the integral

∞∫
0

dx√
(a2 + x)(b2 + x)(c2 + x)

,

where a, b, and c describe the dimensions of the plankton. Is this improper integral
convergent or divergent? (Explain.)

40. In R. P. Feynman, Lectures on Physics, Addison-Wesley, Reading, MA, 1963,
appears this remark: “. . . the expression becomes

U

V
=

(kT )4

h̄3π2c3

∞∫
0

x3 dx

ex − 1
.

This integral is just some number that we can get, approximately, by drawing a
curve and taking the area by counting squares. It is roughly 6.5. The mathemati-
cians among us can show that the integral is exactly π4/15.” Show at least that the
integral is convergent.

41.

(a) Assume that f(x) is continuous and nonnegative and that
∫∞
1 f(x) dx is con-

vergent. Show by sketching a graph that limx→∞ f(x) may not exist.

(b) Show that if we add the condition that f is a decreasing function, then
limx→∞ f(x) = 0.

42. Here is the standard proof of the absolute convergence test. Assume that∫∞
0 |f(x)| dx converges. Let g(x) = f(x) + |f(x)|. Note that 0 ≤ g(x) ≤ 2|f(x)|.

Thus
∫∞
0 g(x) dx converges, that is,

∫∞
0 (f(x) + |f(x)|) dx converges. It follows,

since f(x) = (f(x) + |f(x)|)− |f(x)|, that
∫∞
0 f(x) dx converges.
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(a) Study this proof.

(b) State the advantages and disadvantages of each proof, the standard one and
the proof in the text.

***43. In the proof of the Absolute Convergence Test for Improper Integrals
(Theorem 7.8.3), we assumed that the functions g and h are continuous. They are,
as the following steps show:

(a) Show that |f(x)| =
√

(f(x))2).

(b) Show that if f(x) is continuous, so is |f(x)|.

(c) Show that g(x) = 1
2(f(x) + |f(x)|).

(d) Deduce that g is continuous.

(e) Deduce that h is continuous.

44. If A is in [0, L] and B is in [−L, 0], why is A + B in [−L,L]?
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7.S Chapter Summary

There are two ideas in this chapter. One is “make a large, clear drawing
when setting up a definite integral.” The other is “make a local estimate of
the total quantity” — whether that quantity is area, volume, force of water,
work, or something altogether different. If the local estimate is f(x) dx, the

total quantity is represented by a definite integral
∫ b

a
f(x) dx (or an improper

integral).
The following table summarizes some of the applications of the definite

integral.

Section Concept Memory Aid

7.1 Area =
∫ b

a
c(x) dx

7.4 Volume =
∫ b

a
A(x) dx

Special Case: Solid of revolution (perpendicular
cross sections)

7.5 Volume =
∫ b

a
2πR(x)c(x) dx

Special Case: Solid of revolution (parallel cross
sections)

7.6 Force of water

7.7 Work
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The final section, on improper integrals, shows how to deal with integrals
over infinite intervals, which are surprisingly common, and integrands that
become infinite (much less common).

EXERCISES for 7.S

1. The two points P = (a, a2) and Q = (b, b2) are on the parabola y = x2.

(a) Show that the tangent to the parabola at the midpoint between P and Q,
R =

(
a+b
2 ,
(

a+b
2

)2)
is parallel to the chord PQ.

(b) Show that the area of the parabola below the chord is (b− a)3/6.

(c) Show that the area of triangle PQR is (b− a)3/4.

Archimedes proved that the area of the parabolic section under PQ is 4/3 the area
of triangle PQR. See S. Stein, Archimedes: What did he do besides cry Eureka?,
MAA, Washington, DC, 1999 (pp. 51–60).

2.

(a) The exponential function is an increasing function for all x. Use this fact to
show that ex > 1 for all x > 0.

(b) Suppose f(t) > g(t) for all t > a. Explain why
∫ x
a f(t) dt >

∫ x
a g(t) dt for all

x > a.

(c) Use (b) to show that ex > 1 + x for all x > 0.

(d) Use (b) and (c) to show that ex > 1 + x + x2

2 for all x > 0.

3. Extend the argument in Exercise 2 to show that ex >
∑n+1

i=0
xi

i! . Use this fact
to show that for any fixed integer n, limx→∞

xn

ex = 0.

4. The average distance of an electron from the nucleus of a hydrogen atom
involves the integral

∞∫
0

e−xx5 dx.

Show that it is convergent. (Its value is 5! = 120).

5. If
∫∞
0 f(x) dx is convergent, does it follow that

(a) limx→∞ f(x) = 0?

(b) limx→∞
∫ x+0.1
x f(t) dt = 0?
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(c) limx→∞
∫ 2x
x f(t) dt = 0?

(d) limx→∞
∫∞
x f(t) dt = 0?

(Compare with Exercise 18 in Chapter 11.)

6. Consider the following argument: “Approximate the surface area of the sphere
of radius a shown in Figure 7.S.1(a) as follows. To approximate the surface area
between x and x + dx, let us try using the area of the narrow curved part of the
cylinder used to approximate the volume between x and x+dx. (This part is shaded
in Figure 7.S.1(b).) This local approximation can be pictured (when unrolled and
laid flat) as a rectangle of width dx and length 2πr. The surface area of a sphere is∫ a
−a 2πr dx = 4π

∫ a
0

√
a2 − x2 dx. But

∫ a
0

√
a2 − x2 dx = πa2/4, since it equals the

area of a quadrant of a disk. Hence the area of the sphere is then π2a2.” This does
not agree with the correct value, 4πa2, which was discovered by Archimedes in the
third century B.C. What is wrong with this argument?

(a) (b)

Figure 7.S.1
7. Determine if the following improper integral converges or diverges:

∫∞
0

x dx√
1+x4

8. The probability that ball bearing A survives at least until time t will be denoted
as F (t). For ball bearing B let G(t) be the probability that it survives at least until
time t.

(a) Show that the probability that A lasts at least as long as B is−
∫∞
0 F (t)G′(t) dt.

(b) Similarly, the probability that B lasts at least as long as A is−
∫∞
0 G(t)F ′(t) dt.

Assume that the probability that A and B last exactly the same time is 0.
Why should −

∫∞
0 F (t)G′(t) dt −

∫∞
0 G(t)F ′(t) dt = 1? Show that it does

equal 1.

In Exercise 9 assume
∫∞
−∞ e−x2

dx =
√

π, which will be established in Section 17.3
(see Exercise 32 on 1487).
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Let µ and σ be constants. The normal distribution, also called the Gaussian distri-
bution and the bell curve, is given by the density function

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

9.

(a) Show that the graph of f is symmetric with respect to the line x = µ.

(b) Show that
∫∞
−∞ f(x) dx = 1.

(c) Show that
∫∞
−∞ xf(x) dx = µ. (µ is the average value of x, and is called the

mean of the distribution.)

(d) Show that
∫∞
−∞(x − µ)2f(x) dx = σ2. (σ2, called the variance, measures

the deviation of x from the mean. The number σ is called the standard
deviation of the distribution. Both measure the tendency of the data to
spread out away from the mean.)

(e) Show that f(x) has two inflection points, which occur when x = µ + σ or
x = µ− σ.

(f) Sketch the graph of a typical f(x).

The normal distribution, first introduced in Exercises 104 to 108 in Section 5.8, is
defined for a variable that can take on both positive and negative values. However,
such variables as incomes, life spans, amounts of rainfall, scores on examinations,
and ages of first marriages, do not assume negative values. In these cases it may
be more appropriate to use a log-normal distribution, which is defined only for
(0,∞). (See, for instance, The Lognormal Distribution, by economists J. Atchison
and J. A. C. Brown, 1957.)
Let f(x) be the density in a normal distribution. The density, g(x), of the log-normal
distribution is defined, for a > 0, by the equation

a∫
0

g(x) dx =

ln(a)∫
−∞

f(x) dx.

This says, “the probability that x is at most a is the probability that ln(x) is at
most ln(a), as given by the normal distribution.”
10. In this problem f(x) is the density of a normal distribution with mean µ and
variance σ2 and g(x) is the density of the corresponding log-normal distribution.

(a) Show that g(x) = 1
xf(ln(x)) for x > 0.

(b) Show that
∫∞
0 g(x) dx = 1.
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(c) Show that the mean value of the log-normal distribution,
∫∞
0 xg(x) dx, equals

eµ+σ2

2 .

(d) Show that limx→∞ g(x) = 0.

(e) Show that limx→0+ g(x) = 0.

(f) Show that the maximum of g(x) occurs when x is eµ−σ2
.

(g) What is the maximum of g(x)?

(h) Show that
∫ eµ

0 g(x) dx =
∫∞
eµ g(x) dx. Thus, half the area under the curve

y = g(x) lies to the left of eµ.

(i) Sketch the general shape of the log-normal distribution. Remember that g(x)
is defined only for x in (0,∞).

11.

(a) Draw the curve y = ex/x for x > 0, showing any asymptotes or critical points.

(b) Find the number t such that the area below y = ex/x and above the interval
[t, t + 1] is a minimum.

(Write A(t) =
∫ t+1
t f(x) dx =

∫ t+1
0 f(x) dx−

∫ t
0 f(x) dx, then use FTC II.)

Skill Drill: Derivatives

In Exercises 12 to 14 a, b, c, m, and p are constants. In each case verify that the
derivative of the first function is the second function.
12. x

a −
1
ap ln (a + bepx); 1

a+bepx .

13. 1√
−c

arcsin
(

−cx−b√
b2−4ac

)
; 1√

a+bx+cx2
, for any negative number c.

14. 1
c ln

(√
z + bx + cx2 + x

√
c + b

2
√

c

)
; 1√

a+bx+cx2
, for any positive number c.
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Calculus is Everywhere # 9

Escape Velocity

In Example 2 in Section 7.7 we saw that the total work required to lift a 1-
pound payload from the surface of the earth to the moon is 3,933 mile-pounds.
Since the radius of the earth is about 4,000 miles, the work required to launch
a payload on an endless journey is given by the improper integral

∞∫
4,000

(
4, 000

r

)2

dr = 4, 000 mile-pounds.

Because the integral is convergent, only a finite amount of energy is needed
to send a payload on an endless journey — as the Voyager spacecraft has
demonstrated. It takes only a little more energy than is required to lift the
payload to the moon.

That the work required for the endless journey is finite raises the question
“With what initial velocity must we launch the payload so that it never falls
back, but continues to rise forever away from the earth?” If the initial velocity
is too small, the payload will rise for a while, then fall back, as anyone who
has thrown a ball straight up knows quite well.

The energy we supply the payload is kinetic energy. The force of gravity
slows the payload and reduces its kinetic energy. We do not want the kinetic
energy to shrink to zero. It it were ever zero, then the velocity of the payload
would be zero. At that point the payload would start to fall back to earth.

As we will show, the kinetic energy of the payload is reduced by exactly the
amount of work done on the payload by gravity. If vesc is the minimal velocity
needed for the payload to “escape” and not fall back, then

1

2
mv2

esc = 4, 000 mile-pounds, (C.9.1)

where m is the mass of the payload. Equation (C.9.1) can be solved for vesc,
the escape velocity.

In order to solve (C.9.1) for vesc, we must calculate the mass of a payload
that weighs 1 pound at the surface of the earth. The weight of 1 pound is the
gravitational force of the earth pulling on the payload. Newton’s equation

Force = Mass× Acceleration, (C.9.2)

known as his “second law of motion,” provides the relationship among force,
mass, and the acceleration of that mass that is needed.
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The acceleration of an object at the surface of the earth is 32 feet per
second per second, or 0.0061 miles per second per second. Then (C.9.2), for
the 1-pound payload, becomes

1 = m(0.0061). (C.9.3)

Combining (C.9.1) and (C.9.3) gives

1

2

1

0.0061
(vesc)

2 = 4, 000

or (vesc)
2 = (8, 000)(0.0061) = 48.8.

Hence vesc ≈ 7 miles per second, which is about 25,000 miles per hour, a
speed first attained by human beings when Apollo 8 traveled to the moon in
December 1968. All that remains is to justify the claim that the change in
kinetic energy equals the work done by the force.

Let v(r) be the velocity of the payload when it is r miles from the center
of the earth. Let F (r) be the force on the payload when it is r miles from
the center of the earth. Since the force is in the opposite direction from the
motion, we will define F (r) to be negative.

Figure C.9.1

Let a and b be numbers, 4, 000 ≤ a < b. (See Figure C.9.1.) We wish to
show that

1

2
m(v(b))2 − 1

2
m(v(a))2︸ ︷︷ ︸

change in kinetic energy

=

b∫
a

F (r)dr

︸ ︷︷ ︸
work done by gravity

. (C.9.4)

In this equation m is the payload mass. Note that both sides of (C.9.4) are
negative.

Equation (C.9.4) resembles the Fundamental Theorem of Calculus. If we
could show that 1

2
m(v(r))2 is an antiderivative of F (r), then (C.9.4) would

follow immediately. Let us find the derivative of 1
2
m(v(r))2 with respect to r

and show that it equals F (r):

d
dr

(
1
2
m(v(r))2

)
= mv(r)dv

dr
= mv(r)dv/dt

dr/dt
(chain rule; t is time)

= mv(r)d2r/dt2

v(r)
= md2r

dt2
(v(r) = dr

dt )
= mass× acceleration
= F (r) (Newton’s 2nd Law of Motion.

Hence (C.9.4) is valid and we have justified our calculation of escape velocity.
Incidentally, the escape velocity is

√
2 times the velocity required for a

satellite to orbit the earth (and not fall into the atmosphere and burn up).

EXERCISES 1. The earth is not a perfect sphere. The“mean radius” of
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the earth is about 3,959 miles. A more accurate value for the force of gravity is
32.174 feet per second per second. Repeat the derivation of the escape velocity us-
ing these values. References: http://en.wikipedia.org/wiki/Earth radius and
http://en.wikipedia.org/wiki/Standard gravity.

2. Repeat the derivation of the escape velocity using CGS units. That is, assume
the radius of the earth is 6,371 kilometers and the force of gravity is 9.80665 meters
per second per second.

3. Determine the escape velocity from the moon. (Find the information you need
to complete this calculation?)

4. Determine the escape velocity from the sun.
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Calculus is Everywhere # 10

Average Speed and Class Size

There are two ways to define your average speed when jogging or driving a car.
You could jot down your speed at regular intervals of time, say, every second.
Then you would just average those speeds. That average is called an average
with respect to time. Or, you could jot down your velocity at regular intervals
of distance, say, every hundred feet. The average of those velocities is called
an average with respect to distance.

How do you think they would compare? If you kept a constant speed, c, the
averages would both be c. Are they always equal, even if your speed varies?
Would one of the averages always tend to be larger? pronounced: ”ko-shee’

shwartz”
Try to answer the question

before we analyze it mathematically, with the aid of the Cauchy-Schwarz
inequality.

There are several versions of the Cauchy-Schwarz inequality. The version
we need here concerns two continuous functions, f and g, defined on an interval
[a, b]. If

∫ b

a
f(x)2 dx and

∫ b

a
g(x)2 dx are small, then the absolute value of∫ b

a
f(x)g(x) dx ought to be small too. It is, as the following Cauchy-Schwarz

inequality implies: b∫
a

f(x)g(x) dx

2

≤
b∫

a

f(x)2 dx

b∫
a

g(x)2 dx. (C.10.1)

After showing some of its applications, we will use the quadratic formula
to show that it is true.

First we use the inequality (C.10.1) to answer the question, “Which average
of speed is larger, the one with respect to time or the one with respect to
distance?”

Let the speed at time t be v(t) and let s(t) be the distance traveled up to
time t. During the time interval from time a to time b the average of velocity
with respect to time is ∫ b

a
v(t) dt

b− a
=

s(b)− s(a)

b− a
.

On the other hand, the average of velocity with respect to distance is defined
as ∫ s(b)

s(a)
v(s) ds

s(b)− s(a)
, (C.10.2)
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where v(s) denotes the velocity when the distance covered is s. Changing the
independent variable in the numerator of (C.10.2) from s to t by the relation
ds = v(t) dt, we obtain ∫ s(b)

s(a)
v(s) ds

s(b)− s(a)
=

∫ b

a
v(t)v(t) dt

s(b)− s(a)
.

Noting that s(b)− s(a) =
∫ b

a
v(t) dt and b− a =

∫ b

a
1 dt, we will show that the

average with respect to time is less than or equal to the average with respect
to distance, that is, ∫ b

a
v(t) dt∫ b

a
1 dt

≤
∫ b

a
v(t)2 dt∫ b

a
v(t) dt

.

Or, equivalently,  b∫
a

v(t) dt

2

≤
b∫

a

1 dt

b∫
a

v(t)2 dt. (C.10.3)

But, (C.10.3) is a special case of (C.10.1), with f(t) = 1 and g(t) = v(t).
This implies that the average with respect to time is always less than or

equal to the average with respect to distance. Exercise 1 shows a bit more: if
the speed is not constant, then the average with respect to time is less than
the average with respect to distance.

The way to show that inequality (C.10.1) holds is indirect but short. In-
troduce a new function, h(t), defined by

h(t) =

b∫
a

(f(x)− tg(x))2 dx =

b∫
a

f(x)2 dx− 2t

b∫
a

f(x)g(x) dx+ t2
b∫

a

g(x)2 dx.

(C.10.4)
Because the first integrand in (C.10.4) is never negative, h(t) ≥ 0. Now,
h(t) = pt2 + qt + r, where

p =

b∫
a

g(x)2 dx, q = −2

b∫
a

f(x)g(x) dx, and r =

b∫
a

f(x)2 dx.

The parabola y = h(t) never drops below the t-axis, and touches the t-axis at
at most one point. Otherwise, if it touches the t-axis at two points, it would
dip below that axis, forcing h(t) to take on some negative values.

Because the equation h(t) = 0 has at most one solution, the discriminant
q2 − 4pr must not be positive. Thus, q2 − 4pr ≤ 0, from which the Cauchy-
Schwarz inequality follows.
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EXERCISES

1. Show that the only case when equality holds in (C.10.1) is when g(x) is a
constant times f(x).

2. The “discrete” form of the Cauchy-Schwarz inequality asserts that if a1, a2, a3,
. . . , an and b1, b2, b3, . . . , bn are real numbers, then(

n∑
i=1

aibi

)2

≤
n∑

i=1

a2
i

n∑
i=1

a2
i .

(a) Prove this inequality.

(b) When does equality hold?

3. Use the inequality in Exercise 2 to show that the average class size at a uni-
versity as viewed by the registrar is usually smaller than the average class size as
viewed by the students.

It is also the case that the average time between buses as viewed by the dispatcher
is usually shorter than the average time between buses as viewed by passengers
arriving randomly at a bus stop.
Reference: S. K. Stein, An Inequality Between Two Average Speeds, Transportation
Research 22B (1988), pp. 469–471.
4. A region R is bounded by the x-axis, the lines x = 2 and x = 5, and the curve
y = f(x), where f is a positive function. The area of R is A. When revolved around
the x-axis it produces a solid of volume V .

(a) How large can V be?

(b) How small can V be?

(In one of these two cases the Cauchy-Schwarz inequality on 681 may help.)

5. If the region R in the preceding exercise is revolved around the y-axis, what can
be said about the maximum and minimum values for the volume of the resulting
solid? Explain.
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Chapter 8

Computing Antiderivatives

In Chapter 7 we saw several uses for definite integrals in geometry and physics.
Similar applications of integration can be found in many other fields, including
economics, engineering, biology, and statistics. Definite integrals are usually
either evaluated using the Fundamental Theorem of Calculus or estimated
numerically, as discussed in Section 6.5.

To evaluate
∫ b

a
f(x) dx by the Fundamental Theorem of Calculus (FTC I)

we need to find an antiderivative F (x) of the integrand f(x); then
∫ b

a
f(x) dx

is simply F (b) − F (a). This chapter describes techniques for finding an an-
tiderivative.

The problem of finding an antiderivative differs from that of finding a
derivative in two important ways. First, the antiderivatives of some elementary
functions, such as ex2

, are not elementary. On the other hand, as we saw in
Chapter 3, the derivatives of all elementary functions are elementary.

Second, a slight change in the form of a function can cause a great change
in the form of its antiderivative. For instance,∫

dx

x2 + 1
= arctan(x) + C while

∫
x dx

x2 + 1
=

1

2
ln(x2 + 1) + C,

as you may check by differentiating arctan(x) and 1
2
ln(x2 + 1). On the other

hand, a slight change in the form of an elementary function produces only a
slight change in the form of its derivative.

There are three ways to find an antiderivative:

• By hand, using techniques described in this chapter

• By an integral table

• By computer, calculator, or other automated integrator.

Section 8.1 illustrates a few shortcuts, describes how to use integral tables,
and discusses the strengths and weaknesses of computer-based evaluation of
integrals.
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686 CHAPTER 8 COMPUTING ANTIDERIVATIVES

Section 8.2 presents “substitution,” the most important technique for find-
ing an antiderivative.

Section 8.3 describes“integration by parts,” a technique that has many
uses, such as in solving differential equations, besides finding antiderivatives.

Section 8.4 discusses the integration of rational functions.
Section 8.5 describes how to integrate some special integrands.
Section 8.6 offers an opportunity to practice the techniques when there is

no clue as to which is the best to use.
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8.1 Shortcuts, Tables, and Technology

In this section we list antiderivatives of some common functions and some
shortcuts. Then we describe integral tables and the computation of antideriva-
tives by computers.

Some Common Integrands

Every formula for a derivative provides a corresponding formula for an an-
tiderivative. For instance, since (x3/3)′ = x2, it follows that∫

x2 dx =
x3

3
+ C.

The following miniature integral table lists a few formulas that should be
memorized. Each can be checked by differentiating the right-hand side of the
equation.

∫
xa dx = xa+1

a+1
+ C for a 6= −1∫

1
x

dx = ln |x|+ C This is
∫

xa dx for a = −1.∫ f ′(x)
f(x)

dx = ln |f(x)|+ C if f(x) > 0, the absolute value can
be omitted.∫

(f(x))n f ′(x) dx = (f(x))n+1

n+1
+ C for n 6= −1∫

eax dx = eax

a
+ C∫

sin(ax) dx = −1
a

cos(ax) + C remember the negative sign∫
cos(ax) dx = 1

a
sin(ax) + C∫

1√
a2−x2 dx = arcsin

(
x
a

)
+ C∫

1
a2+x2 dx = 1

a
arctan

(
x
a

)
+ C∫

1
|x|
√

x2−a2 dx = 1
a
arcsec

(
x
a

)
+ C
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EXAMPLE 1Antiderivative of a
polynomial

Find
∫

(2x4 − 3x + 2) dx.
SOLUTION

One constant of integration
is enough

∫
(2x4 − 3x + 2) dx =

∫
2x4 dx−

∫
3xdx +

∫
2 dx

= 2

∫
x4 dx− 3

∫
x dx + 2

∫
1 dx

= 2
x5

5
− 3

x2

2
+ 2x + C

�

EXAMPLE 2 Find
∫

4x3

x4+1
dx

SOLUTION The numerator is precisely the derivative of the denominator.
HenceAntiderivative of f ′/f ∫

4x3

x4 + 1
dx = ln |x4 + 1|+ C

Since x4 + 1 is always positive, the absolute-value sign is not needed, and∫
4x3

x4+1
dx = ln(x4 + 1) + C. �

EXAMPLE 3 Find
∫ √

x dx.Antiderivative of xa

SOLUTION ∫ √
x dx =

∫
x1/2 dx =

x1/2+1

1
2

+ 1
+ C =

2

3
x3/2 + C

�

EXAMPLE 4 Find
∫

1
x3 dx.

SOLUTION∫
1

x3
dx =

∫
x−3 dx =

x−3+1

−3 + 1
+ C = −1

2
x−2 + C = − 1

2x2
+ C.

�

EXAMPLE 5 Find
∫

(3 cos(x)− 4 sin(2x) + 1
x2 ) dx.

SOLUTION∫
(3 cos(x)− 4 sin(2x) +

1

x2
) dx = 3

∫
cos(x) dx− 4

∫
sin(2x) dx +

∫
1

x2
dx

= 3 sin(x) + 2 cos(2x)− 1

x
+ C.

�
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EXAMPLE 6 Find
∫

x
1+x2 dx.

SOLUTION If the numerator were exactly 2x, it would be the derivative
of the denominator and we would have the case

∫
(f ′(x)/f(x)) dx: the an-

tiderivative would be ln(1 + x2). But the numerator can be multiplied by 2 if
we simultaneously divide by 2: Multiplying the integrand by

a constant∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx.

This step depends on the fact that a constant can be moved past the integral
sign:

1

2

∫
2x

1 + x2
dx =

1

2
· 2
∫

x

1 + x2
dx =

∫
x

1 + x2
dx.

Thus Since 1 + x2 > 0, the
absolute value is not needed
in ln(1 + x2).

∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx =

1

2
ln(1 + x2) + C.

�

Special Shortcuts

We present three shortcuts for evaluating some special but fairly common
definite integrals. These shortcuts can save a lot of work. Shortcut 1 If f is
an odd function, then

a∫
−a

f(x) dx = 0. (8.1.1)

Explanation. Recall that for an odd function f(−x) = −f(x). Figure 8.1.1
suggests why (8.1.1) holds. The shaded area to the left of the y-axis equals
the shaded area to the right. As integrals, however, these two areas represent
quantities of opposite sign:

∫ 0

−a
f(x) dx = −

∫ a

0
f(x) dx.

Figure 8.1.1

Therefore, the definite integral over the entire interval is 0.

EXAMPLE 7 Find
∫ 2

−2
x3
√

4− x2 dx.

SOLUTION The function f(x) = x3
√

4− x2 is odd. (Check it.) By the
shortcut,

2∫
−2

x3
√

4− x2 = 0.

�

Shortcut 2
∫ a

0

√
a2 − x2 dx = 1

4
πa2.
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Note that this shortcut applies to a particular function over a particular
interval.

Figure 8.1.2

Explanation The graph of y =
√

a2 − x2 is part of a circle of radius a.
The definite integral

∫ a

0

√
a2 − x2 dx is a quarter of the area of that circle.

(See Figure 8.1.2.)

EXAMPLE 8 Find
∫ 1

0

√
1− x2 dx

SOLUTION Use Shortcut 2, with a = 1, to get

1∫
0

√
1− x2 dx =

π

4
.

�
Shortcut 3 If f is an even function,

a∫
−a

f(x) dx = 2

a∫
0

f(x) dx.

Figure 8.1.3

Explanation A glance at Figure 8.1.3 suggests why this shortcut is valid.

EXAMPLE 9 Find
∫ 1

−1

√
1− x2 dx.

SOLUTION Since
√

1− x2 is an even function, by Shortcut 3:

1∫
−1

√
1− x2 dx = 2

1∫
0

√
1− x2 dx.

So, by Example 8, with a = 1,

1∫
−1

√
1− x2dx = 2 · π

4
=

π

2
.

�

Using an Integral Table

An integral table lists antiderivatives. You will find a short integral table on
the inside covers of this book. Burington’s Handbook of Mathematical Tables
and Formulas, 5th edition, McGraw-Hill, 1973, lists over 300 integrals in 33
pages. CRC Standard Math Tables, 30th edition, CRC Press, 1996, lists more
than 700 integrals in almost 60 pages. Two Wikipedia topics devoted to tables
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of integration are http://en.wikipedia.org/wiki/List of integrals and
http://en.wikipedia.org/wiki/Table of integrals.

Often integral tables use “log” to denote “ln”; it is understood that e is
the base. Most integral tables omit the constant of integration (+C).

The best way to use an integral table is to browse through one (buy one,
check one out from the library, or navigate to an online table). Notice how the
formulas are grouped. First might come the forms that everyone uses most
frequently. Then may come “forms containing ax+ b,” then “forms containing
a2 ± x2,” then “forms containing ax2 + bx + c,” and so on, running through
many different algebraic forms. There are separate sections with trigonometric
forms, logarithmic, and exponential functions. The integral table on the inside
front cover is similarly grouped.

EXAMPLE 10 Use the integral table inside the cover to integrate∫
dx

x
√

3x + 2
.

SOLUTION Search until you find Formula 23,∫
dx

x
√

ax + b
=

1√
b

ln

∣∣∣∣∣
√

ax + b−
√

b
√

ax + b +
√

b

∣∣∣∣∣ b > 0,

and replace ax + b by 3x + 2 and b by 2. Thus∫
dx

x
√

3x + 2
=

1√
2

ln

∣∣∣∣∣
√

3x + 2−
√

2
√

3x + 2 +
√

2

∣∣∣∣∣+ C.

�

EXAMPLE 11 Use the integral table to integrate∫
dx

x
√

3x− 2
, x > 2/3.

SOLUTION This time we need Formula 24 with b = −2,∫
dx

x
√

ax + b
=

2√
−b

arctan

(√
ax + b

−b

)
b < 0.

Thus, ∫
dx

x
√

3x− 2
=

2√
2

arctan

(√
3x− 2

2

)
+ C

Calculus April 22, 2012

http://en.wikipedia.org/wiki/List_of_integrals
http://en.wikipedia.org/wiki/Table_of_integrals
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�

Though the integrands in Examples 10 and 11 are similar, their antideriva-
tives are not.

There is no need to make a big fuss about integral tables. Be cautious and
keep a cool head. Just match the patterns carefully, including any conditions
on the variables and their coefficients. Note that some formulas are expressed
in terms of an integral of a different integrand. In these cases you will have to
search through the table more than once. (Exercises 35 and 36 illustrate this.)

Computers, Calculators, and Other Automated Integra-
tors

Using an integral table is an exercise in “pattern matching”, where you hunt
for the formula that fits a particular integral. Computers are good at pattern
matching, so it is not surprising that for many years computers have been
used to find antiderivatives. MACSYMA is one of the earliest computer-based
programs that perform the basic operations of calculus: limits, derivatives,
integrals. Today, the most widely used computer algebra systems are Maple
and Mathematica.

This technology is slowly creeping to handheld calculators. With such
wide-ranging aids at our fingertips, calculus users do not need to rely as much
on formal integration techniques or tables of integrals. What is essential is
that they understand what an integral is, what it can represent, and how to
utilize information obtained from an integral.

In addition to matching problems with formulas from large tables of inte-
grals, these programs utilize various substitutions and computations to trans-
form integrals into forms that can be evaluated.

In spite of the availability of integral tables, and computer programs, it is
often simpler to use one of the techniques described later in this chapter.
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EXERCISES for Section 8.1

In Exercises 1 to 14 find the integrals. Use the short list at the beginning of the
section.

1.
∫

5x3 dx

2.
∫

(8 + 11x) dx

3.
∫

x1/3 dx

4.
∫

3
√

x2 dx

5.
∫

6 dx

x2

6.
∫

dx

x3

7.
∫

5e−2x dx

8.
∫

5 dx

1 + x2

9.
∫

6 dx

|x|
√

x2 − 1

10.
∫

5 dx√
1− x2

11.
∫

4x3 dx

1 + x4

12.
∫

ex dx

1 + ex

13.
∫

sin(x) dx

1 + cos(x)

14.
∫

dx

1 + 3x

In Exercises 15 to 20, change the integrand into an easier one by algebra and find
the antiderivative.

15.
∫

1 + 2x

x2
dx (a+b

c = a
c + b

c)

16.
∫

1 + 2x

1 + x2
dx

17.
∫

(x2 + 3)2 dx (First multiply out the integrand.)

18.
∫

(1 + ex)2 dx
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19.
∫

(1 + 3x)x2 dx

20.
∫

1 +
√

x

x
dx

21. A shortcut for

π/2∫
0

sin2(θ) dθ.)

(a) Why would you expect

π/2∫
0

cos2(θ) dθ to equal

π/2∫
0

sin2(θ) dθ?

(b) Why is

π/2∫
0

sin2(θ) dθ +

π/2∫
0

cos2(θ) dθ = π/2.

(c) Conclude that

π/2∫
0

sin2(θ) dθ = π/4.

The integrals in Exercises 22 to 28 can be evaluated using one of the shortcuts. (Is
the integrand even or odd? Can you relate the integral to a known area? Recall the

result of Exercise 21:

π/2∫
0

cos2(x) dx =
π

4
=

π/2∫
0

sin2(x) dx.)

22.

1∫
−1

x5
√

1 + x2 dx

23.

π/2∫
−π/2

sin(3x) cos(5x) dx

24.

1∫
−1

x5 4
√

1− x2 dx

25.

π∫
−π

sin3(x) dx

26.

5∫
0

√
25− x2 dx

27.

3∫
−3

√
9− x2 dx
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28.

3∫
−3

(x3
√

9− x2 + 10
√

9− x2) dx

In Exercises 29 to 34 find the antiderivative with the aid of a table of integrals, such
as the one inside the front cover.
29.

(a)
∫

dx

(3x + 2)2

(b)
∫

dx

x(3x + 2)

30.

(a)
∫

dx

x
√

3x + 4

(b)
∫

dx

x2
√

3x + 4

31.

(a)
∫

dx

x
√

3x− 4

(b)
∫

dx

x2
√

3x− 4

32.

(a)
∫

dx

4x2 + 9

(b)
∫

dx

4x2 − 9

33.

(a)
∫

dx

x2 + 8x + 7

(b)
∫

dx

x2 + 2x + 5

34.

(a)
∫

dx√
11− x2
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(b)
∫

dx√
11 + x2

35. Using the integral table on the inside front cover, find
∫

x dx√
2x2 + x + 5

. (Use

Formula 39 first, followed by Formula 38.)

36. Using the integral table in the inside front cover, find

(a)
∫

dx√
3x2 + x + 2

(b)
∫

dx√
−3x2 + x + 2
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8.2 The Substitution Method

This section describes the substitution method, which changes an integrand,
preferably to one that we can integrate more easily. Several examples will
illustrate the technique, which is the chain rule in disguise. Sometimes we can
use a substitution to transform an integral not listed in an integral table to
one that is listed. After the examples, the basis of the substitution method is
provided.

The Substitution Method

EXAMPLE 1 Find
∫

sin(x2) 2x dx.
SOLUTION Note that 2x is the derivative of x2. Make the substitution
u = x2. The differential of u is du = d

dx
(x2) dx = 2x dx and so∫

(sin(x2))2x dx =

∫
sin(u) du.

It is easy to find
∫

sin(u) du:∫
sin(u) du = − cos(u) + C.

Replacing u by x2 in − cos(u) yields − cos(x2). Thus Check the answer using the
chain rule∫

sin(x2)2x dx = − cos(x2) + C.

�
Contrast Example 1 with

∫
sin(x2) dx, which is not elementary. The pres-

ence of 2x, the derivative of x2, made it easy to find
∫

(sin(x2))2x dx.

Description of the Substitution Method

In Example 1, the integrand f(x) could be written in the form

f(x) = g(h(x))︸ ︷︷ ︸
function of h(x)

× h′(x)︸ ︷︷ ︸
derivative of h(x),

(8.2.1)

for some function h(x). To put it another way, the expression f(x) dx could
be written as
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f(x) dx = g(h(x))︸ ︷︷ ︸
function of h(x)

× h′(x)︸ ︷︷ ︸
derivative of h(x),

dx (8.2.2)

Whenever this is the case, the substitution of u for h(x) and du for h′(x) dx
transforms

∫
f(x) dx to another integral, one involving u instead of x,

∫
g(u) du.

If you can find an antiderivative G(u) of g(u), replace u by h(x). The
resulting function, G(h(x)), is an antiderivative of f(x). (This claim will be
justified at the end of the section.)

The process of using substitution to evaluate an indefinite integral can be
summarized as follows:∫

f(x) dx =

∫
g(h(x)) h′(x) dx =

∫
g(u) du = G(u) + C = G(h(x)) + C.

EXAMPLE 2 Find
∫

(1 + x3)5 x2 dx.
SOLUTION The derivative of 1 + x3 is 3x2, which differs from the x2 in the
integrand only by the constant factor 3. So let u = 1 + x3. Hence

du = 3x2 dx and
du

3
= x2 dx. (8.2.3)

Then∫
(1 + x3)5x2 dx =

∫
u5du

3
=

1

3

∫
u5 du =

1

3

u6

6
+ C =

(1 + x3)6

18
+ C.

�
If the factor x2 were not present in the integrand in Example 2, you could

still compute
∫

(1 + x3)5 dx. In this case you would have to multiply out
(1 + x3)5, which would be a polynomial of degree 15.

As Example 2 shows, you don’t need exactly “derivative of h(x)” as a
factor. Just “a constant times the derivative of h(x)” will do.

Similarly,
∫

x2
√

1+x3 dx is easy (use u = 1+x3), but
∫

dx√
1+x3 is not elementary.

The presence of x2 makes a great difference.

Substitution in a Definite Integral

The substitution technique, or “change of variables,” extends to definite inte-
grals,

∫ b

a
f(x) dx, with one important proviso:

When making the substitution from x to u, be sure to replace the interval
[a, b] by the interval whose endpoints are u(a) and u(b).
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An example will illustrate the necessary change in the limits of integration.
The technique is justified in Theorem 8.2.2.

EXAMPLE 3 Evaluate
∫ 2

1
3(1 + x3)5 x2 dx.

SOLUTION Let u = 1 + x3. Then du = 3x2 dx. Furthermore, as x goes
from 1 to 2, u = 1 + x3 goes from 1 + 13 = 2 to 1 + 23 = 9. Thus This is the last you see of x.

2∫
1

3(1 + x3)5x2 dx =

9∫
2

u5 du =
u6

6

∣∣∣∣9
2

=
96 − 26

6
.

Once you make the substitution in the integrand and the limits of integration,
you work only with expressions involving u. There is no need to bring back x.
�

The remaining examples present integrals needed in Section 8.4. They also
show how some formulas in integral tables are obtained.

EXAMPLE 4 Integral tables include a formula for (a)
∫

dx/(ax + b) and
(b)

∫
dx/(ax + b)n, n 6= 1. Obtain the formulas by using the substitution

u = ax + b.
SOLUTION (a) This is Formula 12 from the

integral table.
Let u = ax + b. Hence du = a dx and therefore dx = du/a.

Thus∫
dx

ax + b
=

∫
du/a

u
=

1

a

∫
du

u
=

1

a
ln |u|+ C =

1

a
ln |ax + b|+ C.

(b) The same substitution u = ax + b gives∫
dx

(ax + b)n
=

∫
du/a

un
=

1

a

∫
u−n du =

1

a

u−n+1

(−n + 1)
+ C

=
(ax + b)−n+1

a(−n + 1)
+ C =

1

a(−n + 1)(ax + b)n−1
+ C.

�

In the next Example we use u instead of x, to simplify Example 6.

EXAMPLE 5 Find

∫
du

4u2 + 9
.

SOLUTION

∫
du

4u2 + 9
resembles

∫
du

u2 + 1
. This suggests rewriting 4u2 as

9t2, so we could then factor the 9 out of 9t2 + 9, getting 9(t2 + 1). Here are
the details.
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Introduce t so 4u2 = 9t2. To do this let 2u = 3t, so u = (3/2) t. Then
du = (3/2) dt. Also, t = (2/3)u. With this substitution we have∫

du

4u2 + 9
=

∫
(3/2) dt

9t2 + 9
=

3

2
· 1
9

∫
dt

t2 + 1

=
1

6
arctan(t) + C =

1

6
arctan

(
2u

3

)
+ C.

�
The next example uses a substitution together with “completing the square.”

To complete the square in the quadratic expression x2 + bx + c means adding
and subtracting (b/2)2 so that we get the simpler form “v2 + k” where k is a
constant:

x2 + bx +

(
b

2

)2

+ c−
(

b

2

)2

=

(
x +

b

2

)2

+ c− b2

4
.

One squares half the coefficient of b: (b/2)2. To complete the square in ax2 +
bx + c, where a is not 1, factor a out first:

ax2 + bx + c = a

(
x2 +

b

a
x +

c

a

)
.

Then complete the square in x2 + (b/a)x + c/a.

EXAMPLE 6 Find
∫

dx
4x2+8x+13

.

SOLUTION First complete the square in the denominator:Note the subtraction of
4(12), not 12.

4x2 + 8x + 13 = 4(x2 + 2x + ) + 13− 4

= 4(x2 + 2x + 12) + 13− 4(12)

= 4(x + 1)2 + 9.

We now can rewrite the integral as∫
dx

4(x + 1)2 + 9

Let u = x + 1, hence du = dx and we have∫
dx

4(x + 1)2 + 9
=

∫
du

4u2 + 9
.

By a piece of good luck, we found in Example 5 that∫
du

4u2 + 9
=

1

6
arctan

(
2u

3

)
+ C
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Check this by
differentiating.

Putting all this together:∫
dx

4x2 + 8x + 9
=

∫
dx

4(x + 1)2 + 9
=

∫
du

4u2 + 9

=
1

6
tan−1

(
2u

3

)
+ C =

1

6
tan−1

(
2(x + 1)

3

)
+ C.

�

The integral ∫
2ax + b

ax2 + bx + c
dx (8.2.4)

is easy since it has the form
∫

f ′

f
dx. The integral is ln |az2 + b + c|+ C. This

observation is the key to treating the integral in the next example.

EXAMPLE 7 Find

∫
x

4x2 + 8x + 13
dx.

SOLUTION No substitution comes to mind. However, if 8x + 8, were in
the numerator, we would have an easy integral, for 8x + 8 is the derivative of
the denominator. So we will do a little algebra on x to get 8x + 8 into the
numerator. We can write x = 1

8
(8x + 8)− 8

8
= 1

8
(8x + 8)− 1. Then we have∫

x dx

4x2 + 8x + 13
=

∫ 1
8
(8x + 8)− 1

4x2 + 8x + 13
dx

=
1

8

∫
8x + 8

4x2 + 8x + 13
−
∫

dx

4x2 + 8x + 13
Exercise 6 is used here.

=
1

8
ln
∣∣4x2 + 8x + 13

∣∣− 1

6
arctan

(
2(x + 1)

3

)
.

�

The techniques of completing the square, substitution, and rewriting x in
the numerator, illustrated in Examples 6 and 7, show how to integrate any

integrand of the form
1

ax2 + bx + c
or

x

ax2 + b + c
.

Why Substitution Works

Theorem 8.2.1. (Substitution in an indefinite integral) Assume that f and
g are continuous functions and u = h(x) is differentiable. Suppose that f(x)
can be written as g(u)du

dx
and that G is an antiderivative of g. Then G(u(x))

is an antiderivative of f(x).

Proof
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We differentiate G(u(x)) and check that the result is f(x):

d

dx
G(u(x)) = dG

du
du
dx

(chain rule)

= g(u)du
dx

(by definition of G)
= f(x). (by assumption)

•

Theorem 8.2.2. (Substitution in a definite integral) In addition to the as-
sumptions in Theorem 8.2.1, assume u(x) is monotonic

b∫
a

f(x) dx =

u(b)∫
u(a)

g(u) du. (8.2.5)

Warning: If x goes from a
to b, u(x) goes from u(a)

to u(b). Be sure to change
the limits of integration Proof

Let F (x) = G(u(x)), where G is defined in the previous proof.∫ b

a
f(x) dx = F (b)− F (a) (FTC I)

= G(u(b))−G(u(a)) (definition of F )

=
∫ u(b)

u(a)
g(u) du (FTC, again)

•

Summary

This section introduced the most commonly used integration technique, “sub-
stitution:” If f(x) dx can be written as g(u(x)) d(u(x)) for a function u(x)

then
∫

f(x)dx =
∫

g(u) du and
∫ b

a
f(x) dx =

∫ u(b)

u(a)
g(u) du.

It is to be hoped that finding
∫

g(u) du is easier than finding
∫

f(x) dx.
If it is not, try another substitution or a method presented in the rest of the
chapter. There is no simple routine method for antidifferentiation of elemen-
tary functions. Practice in integration pays off in spotting which technique is
most promising and also being able to transform an integral into one listed in
an integral table.
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EXERCISES for Section 8.2

In Exercises 1 to 14 use the given substitution to find the antiderivatives or definte
integrals.

1.
∫

(1 + 3x)53 dx; u = 1 + 3x

2.
∫

esin(θ) cos(θ) dθ; u = sin θ

3.

1∫
0

x√
1 + x2

dx; u = 1 + x2

4.

√
15∫

√
8

x
√

1 + x2 dx; u = 1 + x2

5.
∫

sin(2x) dx; u = 2x

6.
∫

e2x

(1 + e2x)2
dx; u = 1 + e2x

7.

2∫
−1

e3x dx; u = 3x

8.

3∫
2

e1/x

x2
dx; u = 1

x

9.
∫

1√
1− 9x2

dx; u = 3x

10.
∫

t dt√
2− 5t2

; u = 2− 5t2

11.

π/4∫
π/6

tan(θ) sec2(θ) dθ; u = tan θ

12.

π2/4∫
π2/16

sin(
√

x)√
x

dx; u =
√

x

13.
∫

(lnx)4

x
dx; u = ln x

14.
∫

sin(ln x)
x

dx; u = ln x

Every antiderivative can be verified by checking that its derivative is the integrand.
That is, if

∫
f(x) dx = F (x), then F ′(x) = f(x). Exercises 15 to 21 ask you to
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verify an antiderivative found in one of the examples in this section.

15.
∫

(sin(x2))2x dx = − cos(x2) + C (Example 1)

16.
∫

(1 + x3)5x2 dx =
(1 + x3)6

18
+ C (Example 2)

17.
∫

dx

ax + b
=

1
a

ln |ax + b|+ C (Example 4(a))

18.
∫

dx

(ax + b)n
=

1
a(−n + 1)(ax + b)n−1

+ C (Example 4(b))

19.
∫

dx

4x2 + 9
=

1
6

arctan
(

2x

3

)
+ C (Example 5)

20.
∫

dx

4x2 + 8x + 9
=

1
6

tan−1

(
2(x + 1)

3

)
+ C (Example 6)

21.
∫

x dx

4x2 + 8x + 13
=

1
8

ln
∣∣4x2 + 8x + 13

∣∣− 1
6

arctan
(

2(x + 1)
3

)
(Example 7)

In Exercises 22 to 47 use appropriate substitutions to find the antiderivatives.

22.
∫

(1− x2)5x dx

23.
∫

x dx

(x2 + 1)3

24.
∫

x
3
√

1 + x2 dx

25.
∫

sin(θ)
cos2(θ)

dθ

26.
∫

e
√

t

√
t

dt

27.
∫

ex sin(ex) dx

28.
∫

sin(3θ) dθ

29.
∫

dx√
2x + 5

30.
∫

(x− 3)5/2 dx

31.
∫

dx

(4x + 3)3

32.
∫

2x + 3
x2 + 3x + 2

dx

33.
∫

2x + 3
(x2 + 3x + 5)4

dx
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34.
∫

x3

√
1− x8

dx

35.
∫

dx√
x(1 +

√
x)3

36.
∫

x4 sin(x5) dx

37.
∫

cos(ln(x)) dx

x

38.
∫

x

1 + x4
dx

39.
∫

x3

1 + x4
dx

40.
∫

x dx

(1 + x)3

41.
∫

x2 dx

(1 + x)3

42.
∫

ln(3x) dx

x

43.
∫

ln(x2) dx

x

44.
∫

(arcsin(x))2√
1− x2

dx

45.
∫

dx

arctan(2x)(1 + 4x2)

46.
∫

dx

9x2 + 1

47.
∫

dx

9x2 + 25

In Exercises 48 and 49 complete the square in each expression.

48.

(a) x2 + 6x + 10

(b) 4x2 + 6x + 11

49.

(a) x2 + 5
3x + 4

(b) 3x2 + 5x + 12

Calculus April 22, 2012



706 CHAPTER 8 COMPUTING ANTIDERIVATIVES

50. Evaluate
∫

dx

x2 + 2x + 5

51. Evaluate
∫

dx

2x2 + 2x + 5

52. Evaluate
∫

x

x2 + 2x + 5
dx

53. Evaluate
∫

x

2x2 + 2x + 5
dx

In Exercises 54 to 59 find the area of the region under the graph of the given function
and above the given interval.

54. f(x) = x2ex3
; [1, 2]

55. f(x) = sin3(θ) cos(θ); [0, π/2]

56. f(x) = x2+3
(x+1)4

; [0, 1] (Let u = x + 1.)

57. f(x) = x2−x
(3x+1)2

; [1, 2]

58. f(x) = (ln(x))3

x ; [1, e]

59. f(x) = tan5(θ) sec2(θ); [0, π
3 ]

In Exercises 60 to 63 use substitution to evaluate the integral.

60.
∫

x2

ax + b
dx; a 6= 0

61.
∫

x

(ax + b)2
dx; a 6= 0

62.
∫

x2

(ax + b)2
dx; a 6= 0

63.
∫

x(ax + b)n dx; for (a) n = −1, (b) n = −2

64. Use a substitution to show that if f is an odd function then
∫ a
−a f(x) dx = 0.

(First show that
∫ 0
−a f(x) dx = −

∫ a
0 f(x) dx by using the substitution u = −x.)

(Do not refer to “areas”.)

65. Use a substitution to show that if f is an even function, then
∫ a
−a f(x) dx =

2
∫ a
0 f(x) dx. (First show that

∫ 0
−a f(x) dx =

∫ a
0 f(x) dx by using the substitution

u = −x.) (Do not refer to “areas”.)

66.
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(a) Graph y = ln(x)/x.

(b) Find the area under the curve in (a) and above the interval [e, e2]

67.

Sam: Jane, what did you find for the antiderivative of
∫

2 cos(θ) sin(θ) dθ?

Jane: I found
∫

2 cos(θ) sin(θ) dθ = sin2(θ) + C.

Sam: That’s too bad.

Jane: Why?

Sam: Because I found
∫

2 cos(θ) sin(θ) dθ = − cos2(θ) + C.

Jane: I’m pretty sure of my answer. I used the substitution u = sin(θ).

Sam: Well, that’s the problem. I used u = cos(θ).

Who is right? Explain.

68.

Jane:
∫ π
0 cos2(θ) dθ is obviously positive.

Sam: No, it’s zero. Just make the substitution u = sin(θ); hence du = cos(θ) dθ.
Then I get

π∫
0

cos2(θ) dθ =

π∫
0

cos(θ) cos(θ) dθ =

0∫
0

√
1− u2 du = 0.

Simple.

(a) Who is right? What is the mistake?

(b) Use the identity cos2(θ) = (1 + cos(2θ))/2 to evaluate the integral without
substitution or the shortcut in Section 8.1.

69.

Jane:
∫ 1
−2 2x2 dx is obviously positive.

Sam: Why are you so sure of this?
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Jane: After all, the integrand is never negative and −2 < 1. It equals the area
under y = 2x2 and above [−2, 1]”.

Sam: You’re wrong again. It’s negative. Here are my computations. Let u = x2;
hence du = 2x dx. Then

1∫
−2

2x2 dx =

1∫
−2

x · 2x dx =

1∫
4

√
u du = −

4∫
1

√
u du,

which is obviously negative.

Who is right? Explain.
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8.3 Integration by Parts

Integration by substitution, described in the previous section, is based on the
chain rule. The technique called “integration by parts,” is based on the product
rule for derivatives.

The Basis for “Integration by Parts”

It is a tradition to use u and
v instead of the expected f
and g.

If u and v are differentiable functions then

(uv)′ = u′ v + u v′.

This tells us that uv is an antiderivative of u′ v + u v′:

uv =

∫
(u′ v + u v′) dx,

Then

uv =

∫
u′ v dx +

∫
u v′ dx,

which can be rearranged as

∫
u v′ dx = u v −

∫
u′ v dx (8.3.1)

This equation tells us, “if you can integrate u′ v, then you can integrate
u v′.” Now, u′ v may look quite different from u v′. Maybe

∫
u′ v dx is easier

to find than
∫

u v′ dx. The technique based on (8.3.1) is called “Integration
by Parts”.

Using the differentials du = u′ dx and dv = v′ dx, we can replace (8.3.1)
by the shorter version

∫
u dv = uv −

∫
v du (8.3.2)
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Typical Examples

EXAMPLE 1 Find
∫

xe3x dx.
SOLUTION Let’s see what happens if we let u = x. Because u dv must equal
xe3x dx, we must choose dv = e3x dx. That is, v′ = e3x. Then, differentiating
u gives du = dx and integrating v′ gives v =

∫
e3x dx = e3x/3. The integration

by parts formula, (8.3.2), tells us that:∫
x︸︷︷︸
u

e3x dx︸ ︷︷ ︸
dv

= x︸︷︷︸
u

e3x

3︸︷︷︸
v

−
∫

e3x

3︸︷︷︸
v

dx︸︷︷︸
du

=
xe3x

3
− e3x

9
= e3x(

x

3
− 1

9
) + C

To check, differentiate e3x(x
3
− 1

9
) + C and see that it’s xe3x. �

Look closely at Example 1 to see why it worked. The key is that the
derivative of u = x is simpler than u and also we could integrate v′ = e3x to
find v.

EXAMPLE 2 Find
∫

x ln(x) dx.
SOLUTION Setting dv = ln(x) dx is not a wise move, since v =

∫
ln(x) dx

is not immediately apparent. But setting u = ln(x) is promising because
du = d(ln(x)) = 1

x
dx is much easier to handle than ln(x). This forces dv to be

x dx. This second approach goes through smoothly:

u = ln(x) dv = x dx

du = dx
x

v = x2

2
.

(Note that we needed to find v =
∫

x dx.) ThusThis antiderivative can be
checked by differentiation. ∫

x ln(x) dx =

∫
ln(x)︸ ︷︷ ︸

u

x dx︸︷︷︸
dv

= ln(x)︸ ︷︷ ︸
u

x2

2︸︷︷︸
v

−
∫

x2

2︸︷︷︸
v

dx

x︸︷︷︸
du

=
x2 ln(x)

2
−
∫

x dx

2
=

x2 ln(x)

2
− x2

4
+ C.

�

General Guidelines for Applying Integration by Parts
General Guidelines for

Applying Integration by
Parts

The key to applying integration by parts is the selection of u and dv. The
following three conditions should be met:

1. v can be found by integrating and should not be too messy.

2. du should not be messier than u.

3.
∫

v du should be easier than the original
∫

u dv
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The next example shows the general approach that can be used to integrate
any inverse trigonometric function.

EXAMPLE 3 Find
∫

arctan(x) dx.
SOLUTION Recall that the derivative of arctan(x) is 1/(1 + x2), a much
simpler function than arctan(x). This suggests the following integration by
parts:

u = arctan(x) dv = dx
du = dx

1+x2 v = x

Integrating an inverse
trigonometric function by
parts

∫
arctan(x)︸ ︷︷ ︸

u

dx︸︷︷︸
dv

= arctan(x)︸ ︷︷ ︸
u

x︸︷︷︸
v

−
∫

x︸︷︷︸
v

dx

1 + x2︸ ︷︷ ︸
du

= x arctan(x)−
∫

x

1 + x2
dx.

It is easy to compute
∫

x dx
1+x2 , since the numerator is a constant times the

derivative of the denominator:∫
x

1 + x2
dx =

1

2

∫
2x

1 + x2
dx =

1

2
ln(1 + x2).

Hence ∫
arctan(x) dx = x arctan(x)− 1

2
ln(1 + x2) + C.

You can check this by differentiation. Compare your answer with
Formula 68 in the integral
table in the front cover of
the book.

�
To check that you understand the idea in Example 3, find

∫
arcsin(x) dx

by the same method.

EXAMPLE 4 Find
∫

x sin(x) dx.
SOLUTION There are two approaches. We could choose u = sin(x) and
dv = x dx or we could choose u = x and dv = sin(x) dx.

Approach 1 : u = sin(x) and dv = x dx∫
x sin(x) dx =

∫
sin(x)︸ ︷︷ ︸

u

(x dx)︸ ︷︷ ︸
dv

.

Then du = cos(x) dx, which is not any worse than u = sin(x). And, since
dv = x dx, v = x2/2. Thus,∫

sin(x)︸ ︷︷ ︸
u

(x dx)︸ ︷︷ ︸
dv

= sin(x)︸ ︷︷ ︸
u

x2

2︸︷︷︸
v

−
∫

x2

2︸︷︷︸
v

cos(x) dx︸ ︷︷ ︸
du

.
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We have replaced the problem of finding
∫

x sin(x) dx
∫

u dv is more difficult than∫
v du; Guideline 3 is not

satisfied.

with the harder
problem of finding 1/2

∫
x2 cos(x) dx. That is not progress: we have raised

the exponent of x in the integrand from 1 to 2.
Approach 2 : u = x and dv = sin(x) dx

With these choices for u and dv,

u = x dv = sin(x) dx
du = dx v = − cos(x).

This time integration by parts goes through smoothly:∫
sin(x)︸ ︷︷ ︸

u

(x dx)︸ ︷︷ ︸
dv

= x︸︷︷︸
u

(− cos(x))︸ ︷︷ ︸
v

−
∫
− cos(x)︸ ︷︷ ︸

v

dx︸︷︷︸
du

= −x cos(x) +

∫
cos(x)dx = −x cos(x) + sin(x) + C.

All 3 Guidelines are satisfied
by this choice of u and dv.

�

EXAMPLE 5 Find
∫

x2e3x dx.
SOLUTION If we let u = x2, then du = 2x dx. This is good, for it lowers
the exponent of x. Hence, try u = x2 and therefore dv = e3x dx:

u = x2 dv = e3x dx
du = 2x dx v = 1

3
e3x.

Thus∫
x2︸︷︷︸
u

e3x dx︸ ︷︷ ︸
dv

= x2︸︷︷︸
u

1

3
e3x︸︷︷︸
v

−
∫

1

3
e3x︸︷︷︸
v

2x dx︸ ︷︷ ︸
du

=
x2

3
e3x − 2

3

∫
xe3x dx

=
x2

3
e3x − 2

3

(
e3x

(
x

3
− 1

9

)
+ C

)
by Example 1

= e3x

(
x2

3
− 2

3

(
x

3
− 1

9

))
− 2

3
C

= e3x

(
x2

3
− 2x

9
+

2

27

)
− 2C

3
.

We may rename −2C
3

, the arbitrary constant, as K, obtaining∫
x2e3x dx = e3x

(
x2

3
− 2x

9
+

2

27

)
+ K.
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�
Example 5 generalizes.The idea behind Example 5 applies to integrals of the form

∫
P (x)g(x) dx,

where P (x) is a polynomial and g(x) is a function – such as sin(x), cos(x), or
ex – that can be repeatedly integrated. Let u = P (x) and dv = g(x) dx. Then
du = P ′(u) dx and

∫
v du =

∫
P ′(x)g(x) dx where P ′(x) has a lower degree

that P (x).

Definite Integrals and Integration by Parts

Integration by parts of a definite integral
∫ b

a
f(x) dx, where f(x) = u(x)v′(x),

takes the form

b∫
a

f(x) dx =

b∫
a

u(x)v′(x) dx = u(x)v(x)|ba −
b∫

a

v(x)u′(x) dx

= u(v)v(b)− u(a)v(a)−
b∫

a

v(x)u′(x) dx.

Figure 8.3.1

EXAMPLE 6 Find the area under the curve y = arctan(x) and above [0,1].
(See Figure 8.3.1.)

SOLUTION The area is
∫ 1

0
arctan(x) dx. By Example 3,∫

arctan(x) dx = x arctan(x)− 1

2
ln(1 + x2) + C.

Since only one antiderivative is needed in order to apply the Fundamental
Theorem of Calculus, we may choose C = 0. Then

1∫
0

arctan x dx = x arctan(x)|10 −
1

2
ln(1 + x2)

∣∣∣∣1
0

= 1 arctan(1)− 0 arctan(0)− 1

2
ln(1 + 12) +

1

2
ln(1 + 02)

=
π

4
− 1

2
ln(2) ≈ 0.438824.

�

Reduction Formulas

Formulas 36, 43, and 46 in the table of integrals on the inside cover of this
book express the integral of a function that involves the nth power of some
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expression in terms of the integral of a function that involves a lower power of
the same expression.See Exercise 25 or

Formula 43 in the table of
integrals.

These are reduction formulas or recursion formulas.
Usually they are obtained by integration by parts.

An example of a reduction formula is∫
sinn(x) dx = −sinn−1(x) cos(x)

n
+

n− 1

n

∫
sinn−2(x) dx for integer values of n ≥ 2

(8.3.3)

EXAMPLE 7 Use the reduction formula (8.3.3) to evaluate
∫

sin5(x) dx.
SOLUTION In this case n = 5. By (8.3.3),∫

sin5(x) dx = −sin4(x) cos(x)

5
+

4

5

∫
sin3(x) dx. (8.3.4)

Use (8.3.3) again to dispose of
∫

sin3(x) dx. In this case n = 3:∫
sin3(x) dx = −sin2(x) cos(x)

3
+

2

3

∫
sin(x) dx

= −sin2(x) cos(x)

3
− 2

3
cos(x) (8.3.5)

Combining (8.3.4) and (8.3.5) gives∫
sin5(x) dx = −sin4(x) cos(x)

5
+

4

5

(
− sin2(x) cos(x)

3
− 2

3
cos(x)

)
+ C.

Every time (8.3.3) is used, the exponent of sin(x) decreases by 2. If you keep
applying (8.3.3), you eventually run into the exponent 1 (as we did, because
n is odd) or, if n is even, into the exponent 0. �

The next example shows how (8.3.3) can be obtained by integration by
parts.

See Formula 43 in the inside
cover of the text. EXAMPLE 8 Obtain the reduction formula (8.3.3).

SOLUTION First write
∫

sinn(x) dx as
∫

sinn−1(x) sin(x) dx. Then let u =
sinn−1(x) and dv = sin(x) dx. Thus

u = sinn−1(x) dv = sin(x) dx
du = (n− 1) sinn−2(x) cos(x) dx v = − cos(x).

Integration by parts yields∫
sinn−1(x)︸ ︷︷ ︸

u

sin(x) dx︸ ︷︷ ︸
dv

= (sinn−1(x))︸ ︷︷ ︸
u

(− cos(x))︸ ︷︷ ︸
v

−
∫

(− cos(x))︸ ︷︷ ︸
v

(n− 1) sinn−2(x) cos(x) dx︸ ︷︷ ︸
du

.
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The integral on the right of this equation is

−
∫

(n− 1) cos2(x) sinn−2(x) dx

= −(n− 1)

∫
(1− sin2(x)) sinn−2(x) dx

= −(n− 1)

∫
sinn−2(x) dx + (n− 1)

∫
sinn(x) dx.

Thus∫
sinn(x) dx

= − sinn−1(x) cos(x)−
(
−(n− 1)

∫
sinn−2(x) dx + (n− 1)

∫
sinn(x) dx

)
= − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx− (n− 1)

∫
sinn(x) dx.

Rather than being dismayed by the reappearance of
∫

sinn(x) dx, move
that term to the left side to obtain:

n

∫
sinn(x) dx = − sinn−1(x) cos(x) + (n− 1)

∫
sinn−2(x) dx,

from which (8.3.3) follows. �
See Formula 46, with a = 1,
in the table on the front
cover.

The reduction formula for
∫

cosn x dx is obtained similarly.

EXAMPLE 9 Obtain the reduction formula for
∫

dx
(x2+c)n where n is a pos-

itive integer.

SOLUTION The only choice that comes to mind for integration by parts is

u = 1
(x2+c)n dv = dx

du = −2nx
(x2+c)n+1 v = x.

Integration by parts gives∫
dx

(x2 + c)n =
x

(x2 + c)n+1 + 2n

∫
x2

(x2 + c)n+1 dx.

It looks as though we have just created a more compicated integrand. However,
in the numerator of the integrand on the right-hand side, write x2 as x2 +c−c.
We then have See Formula 28, with a = 1,

in the table on the front
cover.

∫
dx

(x2 + c)n =
x

(x2 + c)n+1 +2n

∫
x2 + c

(x2 + c)n+1 dx−2nc

∫
dx

(x2 + c)n+1
(8.3.6)

Canceling out x2 + c in the first integrand on the right gives us an equation
which could be rewritten to express

∫
dx

(x2+c)n+1 in terms of
∫

dx
(x2+c)n . See also Exercises 46 and 62

in this section.
�
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An Unusual Example

In the next example one integration by parts appears at first to be useless, but
two in succession lead to the successful evaluation of the integral.

EXAMPLE 10 Find
∫

ex cos(x) dx
SOLUTION There are two reasonable choices for applying integration by
parts: u = ex, dv = cos(x) dx or u = cos(x), dv = ex dx. In neither case is
du “simpler”, but watch what happens when integration by parts is applied
twice.

Following the first choice:

u = ex dv = cos(x) dx
du = ex dx v = sin(x)

The second choice is
explored in Exercise 57.

Then integration by parts proceeds as follows:∫
ex︸︷︷︸
u

cos(x) dx︸ ︷︷ ︸
dv

= ex︸︷︷︸
u

sin(x)︸ ︷︷ ︸
v

−
∫

sin(x)︸ ︷︷ ︸
v

ex dx︸ ︷︷ ︸
du

. (8.3.7)

Repeated integration by
parts

It may seem that nothing useful has been accomplished; cos(x) is replaced by
sin(x). But watch closely as the new integral is also treated by an integration
by parts. Capital letters U and V , instead of u and v, are used to distinguish
this computation from the preceeding one.

U = ex dV = sin(x) dx
dU = ex dx V = − cos(x).

So ∫
ex︸︷︷︸
U

sin(x) dx︸ ︷︷ ︸
dV

= ex︸︷︷︸
U

(− cos(x))︸ ︷︷ ︸
V

−
∫

(− cos(x))︸ ︷︷ ︸
V

ex dx︸ ︷︷ ︸
dU

= −ex cos(x) +

∫
ex cos(x) dx. (8.3.8)

Combining (8.3.7) and (8.3.8) yields∫
ex cos(x) dx = ex sin(x)−

(
−ex cos(x) +

∫
ex cos(x) dx

)
= ex(sin(x) + cos(x))−

∫
ex cos(x) dx.

Bringing −
∫

ex cos x dx to the left side of the equation gives

2

∫
ex cos(x) dx = ex(sin(x) + cos(x)),
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See Formula 63, with a = 1
and b = 1.

and we conclude that∫
ex cos(x) dx =

1

2
ex(sin(x) + cos(x)) + C.

See Exercise 60.�

Summary

Integration by parts is described by the formula∫
u dv = uv −

∫
v du.

When you break up the original integral into the parts u and dv, try to choose
them so that

1. You can find v and it is not too messy.

2. The derivative of u is nicer than u.

3. You can integrate
∫

v du.

Sometimes you have to apply integration by parts more than once, for
instance, in finding

∫
ex cos(x) dx.
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EXERCISES for Section 8.3

Use integration by parts to evaluate each of the integrals in Exercises 1 to 20.

1.
∫

xe2x dx

2.
∫

(x + 3)e−x dx

3.
∫

x sin(2x) dx

4.
∫

(x + 3) cos(2x) dx

5.
∫

x ln(3x) dx

6.
∫

(2x + 1) ln(x) dx

7.

2∫
1

x2e−x dx

8.

1∫
0

x2e2x dx

9.

1∫
0

sin−1(x) dx

10.

1/2∫
0

tan−1(2x) dx

11.
∫

x2 ln(x) dx

12.
∫

x3 ln(x)dx

13.

3∫
2

(ln(x))2 dx

14.

3∫
2

(ln(x))3 dx

15.

e∫
1

ln(x) dx

x2
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16.

e2∫
e

ln(x) dx

x3

17.
∫

e3x cos(2x) dx

18.
∫

e−2x sin(3x) dx

19.
∫

ln(1 + x2) dx

x2

20.
∫

x ln(x2) dx

In Exercises 21 to 24 find the integrals two ways: (a) by substitution, (b) by inte-
gration by parts.

21.
∫

x
√

3x + 7 dx

22.
∫

x dx√
2x + 7

23.
∫

x(ax + b)3 dx

24.
∫

x dx
3
√

ax + b
, a 6= 0

25. Use differentiation to verify (8.3.3).

26. Use the recursion in Example 8 to find

(a)
∫

sin2 x dx

(b)
∫

sin4 x dx

(c)
∫

sin6 x dx

27. Use the recursion in Example 8 to find

(a)
∫

sin3 x dx

(b)
∫

sin5 x dx

28.
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(a) Graph y = ex sinx for x in [0, π], showing extrema and inflection points.

(b) Find the area of the region below the graph and above the interval [0, π].

29.

(a) Graph y = e−x sinx for x in [0, π], showing extrema and inflection points.

(b) Find the area of the region below the graph and above the interval [0, π].

30. Figure 8.3.2(a) shows a shaded region whose cross sections by planes perpen-
dicular to the x-axis are squares. Find its volume.

(a) (b)

Figure 8.3.2
31. Figure 8.3.2(b) shows a solid whose cross sections by planes perpendicular
to the x-axis are disks. The solid meets the x-axis in the interval [y.e]. Find its
volume.

In Exercises 32 to 37 find the integrals. In each case a substitution is required before
integration by parts can be used. In Exercises 36 and 37 the notation exp(u) is used
for eu. This notation is often used for clarity.

32.
∫

sin(
√

x) dx

33. In Exercise 67 in Section 6.4 it is claimed that ex

x does not have an elementary
antiderivative. From this fact we can show other functions also lack elementary
antiderivatives.
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(a) Show that
∫

ex

x dx equals ln(x)ex−
∫

ln(x)ex dx and also equals ex

x +
∫

ex

x2 dx

and
∫

du
ln(u) (where u = ex). (Each expression can be obtained from the first

by an appropriate use of integration by parts or substitution.)

(b) Deduce that
∫

ln(x)ex dx,
∫

(ex/x2) dx, and
∫

1/ ln(x) dx do not have el-

ementary antiderivatives. (If one of these integrals has an elementary an-
tiderivative, then they all do.)

34. Explain how you would go about finding∫
x10(lnx)18 dx

(Don’t just say, “I’d use integral tables or a computer.”) Explain why your approach
would work, but include only enough calculation to convince a reader that it would
succeed.

35. Find
∫

sin( 3
√

x) dx.

36. Find
∫

exp(
√

x) dx. (Recall that exp(x) = ex.)

37. Find
∫

exp( 3
√

x) dx

38. Assume that
∫

sin(x)
x

dx is not elementary. Deduce that
∫

cos(x) ln(x) dx

is not elementary.

39. Assume that
∫

x tan(x) dx is not elementary. Deduce that
∫

(x/ cos(x))2 dx

is not elementary.

40. Let In denote

π/2∫
0

sinn(θ) dθ, where n is a nonnegative integer.

(a) Evaluate I0 and I1.

(b) Using the recursion in Example 8, show that

In =
n− 1

n
In−2, for n ≥ 2.

(c) Use (b) to evaluate I2 and I3.

(d) Use (c) to evaluate I4 and I5.
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(e) Explain why In = 2·4·6···(n−1)
3·5·7···n when n is odd.

(f) Explain why In = 1·3·5···(n−1)
2·4·6···n · π

2 when n is even.

(g) Explain why

π/2∫
0

sinn(θ) dθ =

π/2∫
0

cosn(θ) dθ. (Use the substitution u = π/2−

θ.)

41. Find
∫

ln(x + 1) dx using

(a) u = ln(x + 1) dx, dv = dx, v = x

(b) u = ln(x + 1) dx, dv = dx, v = x + 1

(c) Which is easier?

42. Let n be a positive integer and a is a constants. Obtain a formula that
expresses

∫
xne−ax dx in terms of

∫
xn−1e−ax.

43. Find
∫

x sin(ax) dx

44. Let a be a constant and n a positive integer.

(a) Express
∫

xn sin(ax) dx in terms of
∫

xn−1 cos(ax) dx.

(b) Express
∫

xn cos(ax) dx in terms of
∫

xn−1 sin(ax) dx.

(c) Why do (a) and (b) enable us to find
∫

xn sin(ax) dx?

45.

(a) Express
∫

(ln(x))n dx in terms of
∫

(ln(x))n−1 dx.

(b) Use (a) to find
∫

(ln(x))3 dx

46.

(a) Show how the integral
∫

dx
(ax2+bx+c)n+1 can be reduced to an integral of the

form
∫

du
(u2+p)n+1 .
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(b) Use (a) and the recursion formula obtained in Exercise 62 to find a recursion
formula for

∫
dx

(x2+bx+c)n . (How does your answer compare with Formula 35 in
the integral table on the front cover of the text?)

In Exercises 47 to 50 obtain recursion formulas for the integrals.

47.
∫

xneax dx, n a positive integer, a a non-zero constant

48.
∫

(ln(x))n dx, n a positive integer

49.
∫

xn sin(x) dx, n a positive integer

50.
∫

cosn(ax) dx, n a positive integer.

Laplace Transform Let f(t) be a continuous function defined for t ≥ 0. As-
sume that, for certain fixed positive numbers r,

∫∞
0 e−rtf(t) dt converges and that

e−rtf(t) → 0 as t → ∞. Define P (r) to be
∫∞
0 e−rtf(t) dt. The function P is

called the Laplace transform of the function f . It is an important tool for solving
differential equations, and appears in the CIE on present value of future income (see
page 787). In Exercises 51 to 55 find the Laplace transform of the given functions.

51. f(t) = t

52. f(t) = t2

53. f(t) = et (assume r > 1)

54. f(t) = sin(t)

55. f(t) = cos(t)

56. Let P (x) be a polynomial.

(a) Check by differentiation that (P (x)−P ′(x)+P ′′(x)−· · · )ex is an antiderivative
of P (x)ex. (Note that the signs alternate and that the derivatives are taken
to successively higher orders until they are constant, with value 0.)

(b) Use (a) to find
∫

(3x3 − 2x− 2)ex dx.

(c) Apply integration by parts to
∫

P (x)ex dx to show how the formula in (a)
could be obtained.

57. In Example 10,
∫

ex cos(x) dx was evaluated by applying integration by parts
twice, each time differentiating an exponential and antidifferentiating a trigonomet-
ric function. What happens when integration by parts is applied (twice, if necessary)
when a trigonometric function is differentiated and an exponential is antidifferen-
tiated. That is, to get started, apply integration by parts with u = cos(x) and
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dv = ex dx.

58. Find
∫ 1
−1 x3

√
1 + x20 dx.

59. Find
∫ π/4
−π/4 tan(x)(1 + cos(x))3/2 dx

60. According to the reasoning in Example 10, it appears that
∫

ex cos(x) dx must
equal 1

2ex(sin(x) + cos(x)). This would contradict the fact that for any constant C,
1
2ex(sin(x)+cos(x))+C is also an antiderivative of ex sin(x). Resolve the paradox.

61.

(a) What does the graph of y = cos(ax) look like when a = 1? when a = 2?
when a = 3? when a is a very large constant? Include graphs and a written
description in your answers.

(b) Let f(x) be a function with a continuous derivative. Assume that f(x) is
positive. What does the graph of y = f(x) cos(ax) look like when a is large?
Express your response in terms of the graph of y = f(x). Include a sketch of
y = f(x) cos(ax) to give an idea of its shape.

(c) On the basis of (b), what do you think happens to

1∫
0

f(x) cos(ax) dx

as a→∞? Give an intuitive explanation.

(d) Use integration by parts to justify your answer in (c).

62. Solve (8.3.6) in Example 9 to obtain the reduction formula for
∫

dx
(ax2+c)n . To

check your answer, compare it to Formula 28 in the integral table in the inside cover
of this book with a = 1.

63. If we have a recursion for
∫

dx
(ax2+bx+c)n why don’t we need one for

∫
x dx

(ax2+bx+c)n ?
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8.4 Integrating Rational Functions: The Al-

gebra

Recall that a rational
function is a polynomial or
the quotient of two
polynomials.

Every rational function, no matter how complicated, has an elementary
integral which is the sum of some or all of these types of functions:

• rational functions (including polynomials),

• logarithms of linear or quadratic polynomials:
ln(ax + b) or ln(ax2 + bx + c), and

• arctangents of linear or quadratic polynomials:
arctan(ax + b) or arctan(ax2 + bx + c).

The reason is mainly algebraic. In an advanced algebra course it is proved that
every rational function is the sum of much simpler rational functions, namely
those of the forms:

polynomials,
k

(ax + b)n
,

d

(ax2 + bx + c)n
, and

ex

(ax2 + bx + c)n
(8.4.1)

where a, b, c, d, e, k are constants and n is a positive integer. In Sections 8.2
and 8.3 we saw how to integrate each of these integrands. (See Examples 4 to
7 in Section 8.2 and Formulas 13, 14, 15, 35, 36, and 37.)

As this section is completely algebraic, our objective is to see how to express
a rational function f(x) as a sum of the functions in (8.4.1), that is, to find
the partial fraction decomposition of f(x). For instance, we will see how
to find the decomposition

1

2x2 + 7x + 3
=

2/5

2x + 1
− 1/5

x + 3
.

Reducible and Irreducible Polynomials

A polynomial anx
n +an−1x

n−1 + · · ·+a1x+a0, where an is not 0 is said to have
degree n. The polynomials of degree one are called linear; those of degree two,
quadratic. A polynomial of degree zero is a constant. If all the coefficients ai

are zero, we have the zero polynomial, which is not assigned a degree.
A polynomial of degree at least one is reducible if it is a product of

nonconstant polynomials of lower degree. Otherwise, it is irreducible.
Every polynomial of degree one, ax+b, is clearly irreducible. A polynomial

of degree two, ax2 +bx+c, is irreducible if its discriminant b2−4ac is negative.
(See Exercises 37 and 38.) However, Recall: a 6= 0.

Fact 1: Every polynomial of degree three or higher is reducible.
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This is far from obvious. For instance, x4 + 1 looks like it cannot be factored,
but you can check that

x4 + 1 = (x2 +
√

2x + 1)(x2 −
√

2x + 1).

On the other hand,

x4 − 1 = (x2 + 1)(x2 − 1) = (x2 + 1)(x + 1)(x− 1).

The next non-obvious fact is that

Fact 2: Every polynomial of degree at least one is either irreducible or the
product of irreducible polynomials.

The factoring of x4 + 1 and x4− 1, given above, illustrate both Facts 1 and 2.

Proper and Improper Rational Functions

In arithmetic, the rational
number m/n is called

proper if |m| is less than |n|.

Let A(x) and B(x) be polynomials. The rational function A(x)/B(x) is
proper if the degree of A(x) is less than the degree of B(x). Otherwise, it is
improper.

Every improper rational function is the sum of a polynomial and a proper
rational function. The next example illustrates why this is true. It depends
on long division.

EXAMPLE 1 Express 2x3+1
2x2−x+1

as a polynomial plus a proper rational func-
tion.
SOLUTIONKeep dividing until the

degree of the remainder is
less than the degree of the
divisor, or the remainder is

0.

We carry out long division

x +1/2 ← quotient
2x2 − x + 1

)
2x3 +0x2 +0x +1
2x3 −x2 +x

x2 −x +1
x2 −x/2 +1/2
−x/2 +1/2 ← remainder

Thus

2x3 + 1 =

(
2x2 − x + 1)(x +

1

2

)
+

(
−x

2
+

1

2

)
.

Division by 2x2 − x + 1 gives us the representation

2x3 + 1

2x2 − x + 1︸ ︷︷ ︸
improper

= x +
1

2︸ ︷︷ ︸
polynomial

+

(−x
2

+ 1
2

)
2x2 − x + 1︸ ︷︷ ︸

proper

.
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To check this equation, just rewrite the right-hand side as a single fraction. �

To integrate a rational function we first check that it is proper. If it is
improper, we carry out long division, and represent the function as the sum
of a polynomial and a proper rational function. Since we already know how
to integrate a polynomial we consider in the rest of this section only proper
rational functions.

Partial Fractions

As mentioned in the introduction, every rational function is the sum of par-
ticularly simple rational functions, ones we know how to integrate. Here is a
recipe for finding that representation for a proper rational function A(x)/B(x).

1. Write B(x) as a product of first-degree polynomials and irreducible
second-degree polynomials.

2. If px + q appears exactly n times in the factorizaiton of B(x), form Step 2: List summands of

the form ki

(px+q)i .
k1

px + q
+

k2

(px + q)2
+ · · ·+ kn

(px + q)n
,

where the constants k1, k2, . . . , kn are to be determined later.

3. If ax2 + bx+c appears exactly m times in the factorization of B(x), then
form the sum Step2: List summands of

the form
rjx+sj

(ax2+bx+c)j .
r1x + s1

ax2 + bx + c
+

r2x + s2

(ax2 + bx + c)2
+ · · ·+ rmx + sm

(ax2 + bx + c)m
,

where the constants r1, r2, . . . , rm and s1, s2, . . . , sm are to be determined
later.

4. Find all the constants (ki’s, rj’s, and sj’s) mentioned in Steps 2 and 3 so
that the sum of the rational functions in Steps 2 and 3 equals A(x)/B(x).

The rational functions in Steps 2 and 3 are called the partial fractions of
A(x)/B(x). This process deserves some comments.

Regarding Step 1In practice the denominator B(x) often already appears in factored form.
If it does not, finding the factorization can be quite a challenge. To find first-
degree factors, look for a root of B(x) = 0. If r is a root of B(x), then x−r is a
factor. Divide x−r into B(x), getting a quotient Q(x); so B(x) = (x−r)Q(x).
Repeat the process on Q(x), continuing as long as you can find roots. Already
you can see problems. Suppose you find a root numerically to several decimal
places. Consequently your results of integration will be approximations. If you
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want
∫ b

a
A(x)/B(x) dx it might be simpler just to approximate the definite

integral.
After finding all the linear factors “what’s left” has to be the product of

second-degree polynomials. If the degree of “what’s left” is just two, then you
are happy: you have found the complete factorization. But, if that degree is
4 or 6 or higher, you face a task best to be avoided — or attacked with the
assistance of a computer.

Regarding Steps 2 and 3 These steps refer to the number of times a factor occurs in the denominator.
If you factor 2x2 +4x+2, you may obtain (x+1)(2x+2). Note that 2x+2 is
a constant times x + 1. The factorization may be written as 2(x + 1)2, where
x+1 is a repeated factor. We say that “x+1 appears exactly two times in the
factorization of 2x2 + 4x + 2. Always collect factors that are constants times
each other.

Regarding Step 4 Finding the unknown constants may take a lot of work. If there are only lin-
ear factors without repetition, the method illustrated in Example 3 is quick.
Clearing denominators and comparing the corresponding coefficients of the
polynomials on both sides of the resulting equation always works. The num-
ber of unknown constants always equals the degree of the denominator B(x).
If B(x) has repeated linear or second-degree factors and the degree of B(x) is
“large,” consider using a computing tool to find approximations to the coeffi-
cients.

EXAMPLE 2 What is the form of the partial fraction representation of

x10 + x + 3

(x + 1)2(2x + 2)3(x− 1)2(x2 + x + 3)2
? (8.4.2)

SOLUTION The degree of the denominator is 11 and the degree of the nu-
merator is 10. Thus (8.4.2) is proper. There is no need to divide the numerator
by the denominator.

The factor 2x + 2 is 2(x + 1). So (x + 1)2(2x + 2)3 should be written as
8(x + 1)5. The discriminant of x2 + x + 3 is (1)2 − 4(1)(3) = −11 < 0; thus
x2 +x+3 is irreducible. Therefore the partial fraction representation of (8.4.2)
has the form

k1

x + 1
+

k2

(x + 1)2
+

k3

(x + 1)3
+

k4

(x + 1)4
+

k5

(x + 1)5

+
k6

x− 1
+

k7

(x− 1)2
+

r1x + s1

x2 + x + 3
+

r2x + s2

(x2 + x + 3)2
.

Note that the number of unknown constants equals the degree of the denomi-
nator in (8.4.2). �
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Finding the constants in Example 2 would be a major task if done by
hand. It would involve solving a system of 11 equations for the 11 unknown
constants. Fortunately, this is an ideal problem for a computer to solve.

Denominator Has Only Linear Factors, Each Appearing
Only Once

We illustrate this case, which can be done without a computer, by an example.

EXAMPLE 3 Express 1
(2x+1)(x+3)

in the form k1

2x+1
+ k2

x+3
and then find∫

dx
(2x+1)(x+3)

.
SOLUTION

1

(2x + 1)(x + 3)
=

k1

2x + 1
+

k2

x + 3
. (8.4.3)

To find k1, multiply both sides of (8.4.3) by the denominator of the term that
contains k1, 2x + 1, getting

1

x + 3
= k1 +

k2(2x + 1)

x + 3
. (8.4.4)

Equation (8.4.4) is valid for all values of x except x = −3, in particular for
the value of x that makes 2x + 1 = 0, namely x = −1/2. Evaluating (8.4.3)
when x = −1/2 we get

1(−1
2

)
+ 3

= k1 + 0.

We have found that k1 is 2
5
.

The same idea can be used to solve for k2: multiply both sides of (8.4.3)
by (x + 3), obtaining

1

2x + 1
=

k1(x + 3)

2x + 1
+ k2.

Replace x by −3, the solution to x + 3 = 0, to obtain

1

2(−3) + 1
= 0 + k2.

Thus k2 = −1
5

.
For a quicker, but not
complete, check replace x in
(8.4.3) by a convenient
number and see if the
resulting equation is correct.
Try it, with, say, x = 0.

Since k1 = 2
5

and k2 = −1
5

, (8.4.3) takes the form

1

(2x + 1)(x + 3)
=

2/5

2x + 1
− 1/5

x + 3
.

To verify this identity, check it by multiplying both sides by (2x + 1)(x + 3),
getting

1 =
2

5
(x + 3)− 1

5
(2x + 1) =

2

5
x +

6

5
− 2

5
x− 1

5
=

5

5
. (8.4.5)
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It checks.
Another way to solve for the unknown constants is to clear the denominator

and equate coefficients of like powers of x. For instance, let us find k1 and k2

in (8.4.3). We obtain
1 = k1(x + 3) + k2(x + 3).

Collecting coefficients, we have

1 = (k1 + 2k2)x + (3k1 + k2). (8.4.6)

Comparing coefficients on both sides of (8.4.6) we have

0 = k1 + 2k2 [equating coefficients of x]
1 = 3k1 + k2 [equating constant terms]

There are many ways to solve these simultaneous equations. One way is to
use the first equation to express k1 in terms of k2: k1 = −2k2. Then replace
k1 by −2k2 in the second, getting

1 = 3(−2k2) + k2 = −5k2

from which it is seen that k2 = −1
5

. Then k1 = 2
5
.

In general, in this method the number of equations always equals the num-
ber of unknowns, which is also equal to the degree of the denominator. If that
degree is large, it is not realistic to do the calculations by hand. �

If the denominator is just a repeated linear factor, there are two options:
“clearing the denominator and equate coefficients” or “substitution”. For in-
stance, the partial fraction representation of

7x + 6

(x + 2)2

you could let u = x + 2, hence x = u− 2. Then

7x + 6

(x + 2)2
=

7(u− 2) + 6

u2
=

7u

u2
− 8

u2

=
7u

u2
− 8

u2
=

7

u
− 8

u2
=

7

x + 2
− 8

(x + 2)2
.

This method for representing
A(x)

(ax + b)n

is practical if the degree of A(x) is small. Here u = ax+ b, hence x = 1
a
(u− b).

If the degree of A(x) is not small, expressing a power of x, xm, in terms of u
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would best be done by the Binomial Theorem, Binomial Theorem:
(u + v)n =

n∑
k=0

n!
k!(n− k)!

un−kvk

which is proved in Exercise 32
in Section 5.5.

The next example illustrates one way of dealing with a denominator that
has both first and second degree factors.

EXAMPLE 4 Obtain the partial-fraction representation of x2

x4−1
.

SOLUTION First factor the denominator: x4 − 1 = (x2 + 1)(x + 1)(x− 1).
There are constants c1, c2, c3, and c4 such that As a check, note that there

are 4 constraints to find and
x4 − 1 has degree 4.x2

x4 − 1
=

c1

x + 1
+

c2

x− 1
+

c3x + c4

x2 + 1
.

Clear the denominator, but then do not expand the right-hand side:

x2 = c1(x− 1)(x2 + 1) + c2(x + 1)(x2 + 1) + (c3x + c4)(x− 1)(x + 1). (8.4.7)

Instead, substitute x = 1 and x = −1 into (8.4.7) to obtain, respectively:

1 = 0 + 4c2 + 0 [substitute x = 1 in (8.4.7)]
1 = −4c1 + 0 + 0 [substitute x = −1 in (8.4.7)].

Already we see that c1 = −1
4

and c2 = 1
4
.

Setting x = 0 compares the
constant terms on both
sides of (8.4.7).

Next, substitute 0 for x in (8.4.7), obtaining

0 = −c1 + c2 − c4 [substituting x = 0 in (8.4.7)].

Hence c4 = 1
2
.

We still have to find c3. We could substitute another number, say x = 2, or
compare coefficients in (8.4.7). Let us compare coefficients of just the highest
degree, x3. Without going to the bother of multiplying (8.4.7) out in full, we
can read off the coefficient of x3 on both sides by sight, getting

0 = c1 + c2 + c3.

Since c1 = −1
4

, c2 = 1
4
, if follows that c3 = 0. Hence

x2

x4 − 1
=

−1
4

x + 1
+

1
4

x− 1
+

1
2

x2 + 1
.

�
Example 4 used a combination of two methods: substituting convenient

values of x and equating coefficients. We could have just compared coefficients.
The constant term
corresponds to the power
x0.

There would be an equation corresponding to each power of x up to x3. That
would give 4 equations in 4 unknowns. The Exercises suggest how to solve
such equations, if you must solve them by hand.
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Summary

We described ways to integrate rational functions. The key idea is algebraic:
express the function as the sum of functions that are easier to integrate.

The first step is to check that the integrand is a proper rational function,
that is, the degree of the numerator is less than the degree of the denominator.
If it isn’t, use long division to express the function as the sum of a polynomial
and a proper rational function. A flowchart for this process is presented in
Figure 8.4.1.

Figure 8.4.1
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THE REAL WORLD
Say that you wanted to compute the definite integral

2∫
1

x + 3

x3 + x2 + x + 2
dx.

One way is by partial fractions, but this can be tedious. You would probably
prefer to estimate the definite integral by one of the approximation techniques
in Section 6.5. Alternatively, computers and many scientific calculators, can
be programmed to estimate a definite integral. On many graphing calculators
you would enter the integrand, the variable of integration, and the limits of
integration. In a matter of seconds the TI-89 provides 0.49353 as an approxi-
mation with an error less than 0.00001.

As noted in Chapter 6, in some cases computers and calculators can even give
the exact (symbolic) value of a definite integral by first finding an antideriva-
tive. In practical applications, however, formal antidifferentiation is not that
important. The present example could theoretically be computed by partial
fractions, but modern computational tools can evaluate it accurately to as
many decimal places as we may want. For example, Simpson’s rule with only
8 sections gives 0.514393 as an approximate value for this definite integral.

In other situations some of the coefficients in either the numerator or denomi-
nator of the integrand may be given only as decimal approximations. In these
situations, too, it often is easier and more appropriate to use a computational
method to obtain a numerical answer.
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EXERCISES for Section 8.4

In Exercises 1 to 10 give the form of the partial fraction representation, but do not
find the unknowns. (Each expression is already proper.)

1.
3x3 + 5x + 2

(x− 1)(x− 2)(x− 3)(x− 4)

2.
x2 − 5x + 3

(x + 1)2(2x + 3)

3.
2x2 + x + 1

(x + 1)3

4.
3x

(x + 1)(2x + 2)

5.
x2 − x + 3

(x + 1)(x2 + 1)

6.
2x2 + 3x + 5

(x− 1)(x2 + x + 1)

7.
5x3 + x2 + 1
(x2 + x + 1)2

8.
x3 + x + 1

(x2 + x + 1)3

9.
x2 + x + 2

x3 − x

10.
x2 + x + 2

x4 − 1

11. The rational function 1/(a2 − x2), where a is constant, commonly appears in
applications. Represent this function in partial fractions.

Exercises 12 to 15 concern improper rational functions. In each case express the
given function as the sum of a polynomial and a proper rational function.

12.
x2

x2 + x + 1

13.
x3

(x + 1)(x + 2)

14.
x5 − 2x + 1

(x + 1)(x2 + 1)

15.
x5 + x

(x + 1)2(x− 2)

In Exercises 16 to 19 find the partial fraction representation.
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16.
5

x2 − 1

17.
x + 3

(x + 1)(x + 2)

18.
1

(x− 1)2(x + 2)

19.
6x2 − 2

(x− 1)(x− 2)(2x− 3)

20. Show that
6 + 5e3x + 2e2x + ex

5 + e2x + ex
has an elementary antiderivative, but do not

find it.

21. Solve Example 3 by clearing the denominator in (8.4.3) to get

1 = k1(x + 3) + k2(2x + 1).

Replace x by any number you please. That gives an equation in k1 and k2. Then
replace x by another number of your choice, to obtain a second equation in k1 and
k2. Solve the equations. (Why are x = −3 and x = −1/2 the nicest choices?)

22. Express each of these polynomials as the product of first degree polynomials.

(a) x2 + 2x + 1

(b) x2 + 5x− 3

(c) x2 − 4x− 6

(d) 2x2 + 3x− 4

23. Which of these polynomials is irreducible:

(a) 3x2 + 2x + 1

(b) 2x2 + 4x + 1

In Exercises 24 to 33 express the rational function in terms of partial fractions.

24.
5x2 − x− 1
x2(x− 1)

25.
2x2 + 3

x(x + 1)(x + 2)
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26.
5x2 − 2x− 2

x(x2 − 1)

27.
5x2 + 9x + 6

(x + 1)(x2 + 2x + 2)

28.
5x2 + 2x + 3
x(x2 + x + 1)

29.
x3 − 3x2 + 3x− 3

x2 − 3x + 2

30.
3x3 + 2x2 + 3x + 1

x(x2 + 1)

31.
x5 + 2x4 + 4x3 + 2x2 + x− 2

x4 − 1

32.
5x2 + 6x + 10

(x− 2)(x2 + 3x + 4)

33.
3x2 − x− 2

(x + 1)(2x2 + x + 1)

34.

(a) For which value of b is 3x2 + bx + 2 reducible? irreducible?

(b) For which value of b is 3x2 + bx− 2 reducible? irreducible?

35.

(a) For which value of c is 3x2 + 5x + c reducible? irreducible?

(b) For which value of c is 3x2 − 5x + c reducible? irreducible?

36.

Sam: I found this formula in my integral tables:∫
dx

a2 − b2x2
=

1
2ab

ln
∣∣∣∣a + bx

a− bx

∣∣∣∣ (a, b constants)

Jane: What’s your point?

Sam: My instructor said you won’t get any logs other than logs of linear and
quadratic polynomials.

Jane: Maybe the table is wrong.
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Sam: I took the derivative. It’s correct. Can I sue my instructor for misleading the
young?

Does Sam has a foundation for a case against his instructor? Explain.

We did not discuss the problem of factoring a polynomial B(x) into linear and
irreducible quadratic polynomials. Exercises 37 to 41 concern this problem when
the degree of B(x) is 2, 3, or 4.
37.

(a) Show that if b2− 4ac > 0, then ax2 + bx+ c = a(x− r1)(x− r2), where r1 and
r2 are the distinct roots of ax2 + bx + c.

(b) Show that if b2− 4ac = 0, then ax2 + bx+ c = a(x− r)(x− r), with r the only
root of ax2 + bx + c− 0.

(The two parts show that if b2 − 4ac ≥ 0, then ax2 + bx + c is reducible. Compare
with Exercise 38.)

38.

(a) Show that if ax2 + bx + c is reducible, then it can be written in the form
a(x− s1)(x− s2) for some real numbers s1 and s2.

(b) Deduce that s1 and s2 are the roots of ax2 + bx + c = 0.

(c) Deduce that b2 − 4ac ≥ 0.

(It follows that if ax2 + bx + c is reducible, then b2 − 4ac ≥ 0. Compare with
Exercise 37.)
39. Factor each of these polynomials:

(a) x2 + 6x + 5,

(b) x2 − 5,

(c) 2x2 + 6x + 3.

40.

(a) Show that x2 + 3x− 5 is reducible.

(b) Using (a), find
∫

dx/(x2 + 3x− 5) by partial fractions.

(c) Find
∫

dx/(x2 + 3x− 5) by using an integral table.

41. Compute as easily as possible.
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(a)
∫

x3 dx

x4 + 1

(b)
∫

x dx

x4 + 1

(c)
∫

dx

x4 + 1

42. Show that any rational function of ex has an elementary antiderivative. (That
is, any function of the form P (ex)

Q(ex) where P and Q are polynomials.)

43. If ax2 + bx + c is irreducible must ax2 − bx + c also be irreducible? Must
ax2 + bx− c?

44. Explain why every polynomial of odd degree has at least one linear factor.
(Therefore, every polynomial of odd degree greater than one is reducible.)

45. In arithmetic every fraction can be written as an integer plus a proper fraction.
For instance, 25

3 = 8 + 1
3 . Why?

46. In arithmetic, the analog of the partial fraction representation is this: Every
fraction can be written as the sum of an integer and fractions of the form c/pn,
where p is a prime and |c| is less than p. Check that this is true for 53/18.

47. Let a be a solution of the equation P (x) = 0, where P (x) is a polynomial.
Prove that x−a must be a factor of P (x). (When you use long division to divide P (x)
by x−a, show why the remainder is 0.) (This is the basis for the Factor Theorem.)

48.

(a) Use the quadratic formula to find the roots of x2 + 7x + 9 = 0.

(b) With the aid of the Factor Theorem (Exercise 47), write x2 + 7x + 9 as the
product of two linear polynomials.

(c) Check the factorization by multiplying it out.

49. Assume x − c is a factor of Q(x) and not of P (x). Also assume (x − c)2 is
not a factor of Q(x). The term A/(x − c) therefore appears in the partial fraction
representation of P (x)/Q(x). Show that A = P (c)/Q′(c). (First, multiply both
sides of the partial fraction representation by x− c.)
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8.5 Special Techniques

So far in this chapter you have met three techniques for computing integrals.
The first, substitution, and the second, integration by parts, are used most
often. Partial fractions applies to special rational functions and is used in
solving some differential equations. In this section we compute some special
integrals such as

∫
sin(mx) cos(nx) dx,

∫
sin2(θ) dθ, and

∫
sec(θ) dθ, which

you may meet in applications. Then we describe substitutions that deal with
special classes of integrands.

Computing
∫

sin(mx) sin(nx) dx

m and n are integersThe integrals∫
sin(mx) sin(nx) dx,

∫
cos(mx) sin(nx) dx, and

∫
cos(mx) cos(nx) dx

are needed in the study of Fourier series, Fourier series are discussed
in Section 12.7

an important tool in the study of
heat, sound, and signal processing. They can be computed with the aid of the
identities:

sin(A) sin(B) =
1

2
cos(A−B)− 1

2
cos(A + B);

sin(A) cos(B) =
1

2
sin(A + B) +

1

2
sin(A−B);

cos(A) cos(B) =
1

2
cos(A−B) +

1

2
cos(A + B).

These identities can be checked using the well-known identities for sin(A±B)
and cos(A±B).

EXAMPLE 1 Find

π/4∫
0

sin(3x) sin(2x) dx.

SOLUTION

π/4∫
0

sin(3x) sin(2x) dx =

π/4∫
0

(
1

2
cos(x)− 1

2
cos(5x)

)
dx

=

(
1

2
sin(x)− 1

10
sin(5x)

)∣∣∣∣π/4

0

=

(√
2

4
+

√
2

20

)
−
(

0

2
− 0

10

)
=

3
√

2

10
≈ 0.42426.

�
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Computing
∫

sin2(x) dx and
∫

cos2(x) dx

These integrals can be computed with the aid of the identities

sin2(x) =
1− cos(2x)

2
and cos2(x) =

1 + cos(2x)

2
. (8.5.1)

EXAMPLE 2 Find an antiderivative of sin2(x):
SOLUTION∫

sin2(x) dx =

∫
1− cos(2x)

2
dx =

∫
dx

2
−
∫

cos(2x)

2
dx =

x

2
− sin(2x)

4
+C.

�

Computing
∫

tan(θ) dθ and
∫

tan2(θ) dθ

Antiderivatives of tan(θ) and sec(θ) are found using similar methods.

EXAMPLE 3 Find

∫
tan(θ) dθ.

SOLUTION The approach is to rewrite the integrand in a form where the
trigonometric functions can be eliminated with a substitution. In the present
case, this is accomplished by writing tan(θ) = sin(θ)

cos(θ)
and using the substitution

u = cos(θ) and du = − sin(θ) as follows:∫
tan(θ) dθ =

∫
sin(θ)

cos(θ)
dθ =

∫
−du

u
= − ln(u) + C = − ln | cos(θ)|+ C.

(8.5.2)
�

Most integral tables have the formula∫
tan(θ) dθ = ln |sec(θ)|+ C. (8.5.3)

Exercise 49 shows that this formula agrees with (8.5.2).

Finding
∫

tan2(θ) dθ is easier. Using the trigonometric identity tan2(θ) =
sec2(θ)− 1, we obtain∫

tan2(θ) dθ =

∫
(sec2(θ)− 1) dθ = tan(θ)− θ + C.
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Computing
∫

sec(θ) dθ

EXAMPLE 4 Find

∫
sec(θ) dθ, assuming 0 ≤ θ < π/2. This integral is the key to

Mercator maps, discussed in
the CIE on page 861.

SOLUTION We begin by, once again, rewriting the integrand in a form
where substitution can be used:∫

sec(θ) dθ =

∫
1

cos(θ)
dθ =

∫
cos(θ)

cos2(θ)
dθ =

∫
cos(θ)

1− sin2(θ)
dθ.

The substitution u = sin(θ) and du = cos(θ) dθ transforms this last integral
into the integral of a rational function:∫

du

1− u2
=

1

2

∫ (
1

1 + u
+

1

1− u

)
du

=
1

2
(ln(1 + u)− ln(1− u)) + C

=
1

2
ln

(
1 + u

1− u

)
+ C.

Because 1+u
1−u is positive for

−1 < u < 1, absolute
values are not needed.

Since u = sin(θ),

1

2
ln

(
1 + u

1− u

)
=

1

2
ln

(
1 + sin(θ)

1− sin(θ)

)
.

Thus, ∫
sec(θ) dθ =

1

2
ln

(
1 + sin(θ)

1− sin(θ)

)
+ C. (8.5.4)

�
Most integral tables have the formula Another formula for∫

sec(θ)dθ.∫
sec(θ) dθ = ln |sec(θ) + tan(θ)|+ C. (8.5.5)

Exercise 48 shows that this formula agrees with (8.5.4).
In contrast to Example 4,

∫
sec2(θ) dθ is easy, since it is simply tan(θ)+C.

The Substitution u = n
√

ax + b

The next example illustrates the use of the substitution u = n
√

ax + b. After
the example we describe the integrands for which the substitution is appropri-
ate.

EXAMPLE 5 Find

7∫
4

x2
√

3x + 4 dx.

SOLUTION Let u =
√

3x + 4, hence u2 = 3x + 4. Then x = (u2 − 4)/3 and
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dx = (2u/3) du. Moreover, as x goes from 4 to 7, u goes from
√

16 = 4 to√
25 = 5. Thus

7∫
4

x2
√

3x + 4 dx =

5∫
4

(
u2 − 4

3

)2

︸ ︷︷ ︸
x2

u︸︷︷︸
√

3x+4

2u

3
du︸ ︷︷ ︸

dx

=
2

27

5∫
4

(u2 − 4)2u2 du

=
2

27

5∫
4

(u6 − 8u4 + 16u2) du =
1214614

2835
≈ 428.43527.

�
Exercise 54 uses the substitution u = n

√
ax + b to integrate any rational

function of x and u = n
√

ax + b.

Three Trigonometric Substitutions

For the following substitutions we need the notion of a rational function in
two variables, u and v. First, a polynomial in u and v is a sum of terms of
the form cumvn, where c is a number and m and n are nonnegative integers.
The quotient of two such polynomials is called a rational function in two
variables, and labeled R(u, v). If one replaces u by x and v by

√
a2 − x2 we

obtain a rational function of x and
√

a2 − x2, R(x,
√

a2 − x2).
Any rational function of x and

√
a2 − x2, where a is a constant, is trans-

formed into a rational function of cos(θ) and sin(θ) by the substitution x =
a sin(θ). Similar substitutions are possible for integrands involving

√
a2 + x2 or√

x2 − a2. In each case, one of the trigonometric identities 1−sin2(θ) = cos2(θ),
tan2(θ) + 1, or sec2(θ) − 1 = tan2(θ) converts a sum or difference of squares
into a perfect square.

How to integrate If the integrand is a rational function of x and

Case 1
√

a2 − x2; let x = a sin(θ) ( a > 0, −π
2
≤ θ ≤ π

2
).R(x,

√
a2 − x2)

Case 2
√

a2 + x2; let x = a tan(θ) ( a > 0, −π
2

< θ < π
2

).R(x,
√

a2 + x2)

Case 3
√

x2 − a2; let x = a sec(θ) ( a > 0, 0 ≤ θ ≤ π, θ 6= π
2

).R(x,
√

x2 − a2)

The motivation is simple. Consider Case 1, for instance. If you replace x in√
a2 − x2 by a sin(θ), you obtainHow to make the square

root sign in
√

a2 − x2

disappear
√

a2 − x2 =
√

a2 − (a sin(θ))2 =
√

a2(1− sin2(θ)) =
√

a2 cos2(θ) = a cos(θ).

(Keep in mind that a and cos(θ) are positive.) The important thing is that
the square root sign disappears.
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Case 3 raises a fine point. We have a > 0. However, whenever x is negative,
θ is an angle in the second-quadrant, so tan(θ) is negative. In that case, If c < 0,

√
c2 = −c.

√
x2 − a2 =

√
(a sec(θ))2 − a2 = a

√
sec2(θ)− 1 = a

√
tan2(θ) = a(− tan(θ))

In the Examples and Exercises involving Case 3 it will be assumed that x
varies through nonnegative values, so that θ remains in the first quadrant and√

sec2(θ)− 1 = tan(θ).
Note that for

√
a2 − x2 to be meaningful, |x| must be no larger than a. On

the other hand, for
√

x2 − a2 to be meaningful, |x| must be at least as large
as a. The quantity

√
a2 + x2 is meaningful for all values of x.

EXAMPLE 6 Compute

∫ √
1 + x2 dx

SOLUTION The identity
√

1 + tan2(θ) = sec(θ) suggests the substitution

x = tan(θ)

so that dx = sec2(θ) dθ.

Figure 8.5.1

(Figure 8.5.1 shows the geometry of this substitution.) Thus∫ √
1 + x2 dx =

∫
sec(θ) sec2(θ) dθ =

∫
sec3(θ) dθ.

By Formula 51 from the integral table on the front cover,∫
sec3(θ) dθ =

sec(θ) tan(θ)

2
+

1

2
ln |sec(θ) + tan(θ)|+ C. (8.5.6)

To express the antiderivative just obtained in terms of x rather than θ, it is
necessary to express tan θ and sec θ in terms of x. Starting with the definition
x = tan(θ), find sec(θ) by means of the relation sec(θ) =

√
1 + tan2(θ) =√

1 + x2, as in Figure 8.5.1. Thus∫ √
1 + x2 dx =

x
√

1 + x2

2
+

1

2
ln
(√

1 + x2 + x
)

+ C. (8.5.7)

�

Figure 8.5.2

EXAMPLE 7 Compute

5∫
4

dx√
x2 − 9

.

SOLUTION Let x = 3 sec(θ); hence dx = 3 sec(θ) tan(θ) dθ. (See Fig-
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ure 8.5.2.) Thus, letting α = arcsec(4/3) and β = arcsec(5/3), we obtain

5∫
4

dx√
x2 − 9

=

β∫
α

2 sec(θ) tan(θ) dθ√
9 sec2(θ)− 9

=

β∫
α

sec(θ) tan(θ) dθ

tan(θ)

=

β∫
α

sec(θ) dθ = ln |sec(θ) + tan(θ)||βα

= ln
(

5
3

+ 4
3

)
− ln

(
4
3

+
√

7
3

)
= ln(3)− ln

(
4+
√

7
3

)
= 2 ln(3)− ln(4 +

√
7) = ln

(
9

4+
√

7

)
≈ 0.30325.

(a) (b)

Figure 8.5.3
Figures 8.5.3(a) and (b) were used to find tan(α) =

√
7

3
and tan(β) = 4

3
. �

A Half-Angle Substitution for R(cos θ, sin θ)

Any rational function of cos(θ) and sin(θ) is transformed into a rational func-
tion of u by the substitution u = tan(θ/2). This is sometimes useful after
one of the three basic trigonometric substitutions has been used, leaving the
integrand in terms of cos(θ) and sin(θ). The substitution u = tan(θ/2) then
yields an integral that can be treated by partial fractions. (See Exercises 56
and 57.)

Summary

We discussed some special integrals and integration techniques. First we saw
how to evaluate the following common integrals:∫

sin(mx) sin(nx) dx,

∫
sin(mx) cos(nx) dx,

∫
cos(mx) cos(nx) dx,
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∫
sin2(x) dx,

∫
cos2(x) dx,∫

sec(θ) dθ,

∫
tan(θ) dθ, and

∫
tan2(θ) dθ.

The integration of higher powers of the trigonometric functions is discussed in
the exercises.

We also pointed out that the substitution u = n
√

ax + b transforms a ratio-
nal function in x and n

√
ax + b, R(x, n

√
ax + b), into a rational function of u.

Similarly, R(x, n
√

a2 − x2), R(x, n
√

x2 − a2) and R(x, n
√

a2 + x2) can be trans-
formed into rational functions of cos(θ) and sin(θ) by trigonometric substitu-
tions. R(cos(θ), sin(θ)) can be transformed into a rational function of u by the
substitution u = tan(θ/2), which can then be integrated by partial fractions.
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EXERCISES for Section 8.5

Exercises 1 to 16 are related to Examples 1 to 3. In Exercises 1 to 14 find the
integrals.

1.
∫

sin(5x) sin(3x) dx

2.
∫

sin(5x) cos(2x) dx

3.
∫

cos(3x) sin(2x) dx

4.
∫

cos(2πx) sin(5πx) dx

5.
∫

sin2(3x) dx

6.
∫

cos2(5x) dx

7.
∫

(3 sin(2x) + 4 sin2(5x)) dx

8.
∫

(5 cos(2x) + cos2(7x)) dx

9.
∫

(3 sin2(πx) + 4 cos2(πx)) dx

10.
∫

sec(3θ) dθ

11.
∫

tan(2θ) dθ

12.
∫

sec2(4x) dx

13.
∫

tan2(5x) dx

14.
∫

dx

cos2(3x)

15. Show that sin(A) sin(B) = 1
2 cos(A−B)− 1

2 cos(A + B).

16. Show that sin(A) cos(B) = 1
2 sin(A + B) + 1

2 sin(A−B).

Exercises 17 to 19 develop the formulas that are the foundation for Fourier series,
discussed in more detail in Section 12.7.
17. Let m and k be distinct positive integers. Show that

(a)

L∫
−L

sin
(

kπx

L

)
sin
(

kπx

L

)
dx = L.
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(b)

L∫
−L

sin
(

kπx

L

)
sin
(mπx

L

)
dx = 0.

18. Let m and k be distinct positive integers. Show that

(a)

L∫
−L

cos
(

kπx

L

)
cos
(

kπx

L

)
dx = L.

(b)

L∫
−L

cos
(

kπx

L

)
cos
(mπx

L

)
dx = 0.

19. Let m and k be distinct positive integers. Show that

L∫
−L

sin
(

kπx

L

)
cos
(mπx

L

)
dx =

0.

Exercises 20 to 29 concern the substitution u = n
√

ax + b. In each case evaluate the
integral.

20.
∫

x2
√

2x + 1 dx

21.
∫

x2 dx
3
√

x + 1

22.
∫

dx√
x + 3

23.
∫ √

2x + 1
x

dx

24.
∫

x 3
√

3x + 2 dx

25.
∫ √

x + 3√
x− 2

dx

26.
∫

x dx√
x + 3

27.
∫

x(3x + 2)5/3 dx

28.
∫

dx
3
√

x +
√

x
(Let u = 6

√
x).

29.
∫

(x + 2) 5
√

x− 3 dx

In Exercises 30 to 40 find the integrals using trigonometric substitutions. (a is a
positive constant.)
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30.
∫ √

4− x2 dx

31.
∫

dx√
9+x2

32.
∫

x2 dx√
x2−9

33.
∫

x3
√

1− x2 dx

34.
∫ √

4+x2

x dx

35.
∫ √

a2 − x2 dx

36.
∫

dx√
a2−x2

37.
∫ √

a2 + x2 dx

38.
∫ √

a2 − x2 dx

39.
∫

dx√
25x2−16

40.
∫ 2√

2

√
x2 − 1 dx

Exercises 41 and 42 concern the recursion formulas for
∫

tann(θ) dθ and
∫

secn(θ) dθ.
41. In Example 3 we found

∫
tan(θ) dθ and

∫
tan2(θ) dθ.

(a) Obtain the recursion∫
tann(θ) dθ =

tann−1(θ)
n− 1

−
∫

tann−2(θ) dθ.

Begin by writing

tann(θ) = tann−2(θ) tan2(θ) = tann−2(θ)(sec2(θ)− 1).

(b) Use the recursion formula to find
∫

tan3(θ) dθ.

(c) Find
∫

tan4(θ) dθ.

(See Example 3.)

42. In Example 4 we found
∫

sec(θ) dθ and
∫

sec2(θ) dθ.

(a) Obtain the recursion∫
secn(θ) dθ =

secn−2(θ) tan(θ)
n− 1

+
n− 2
n− 1

∫
secn−2(θ) dθ.

Begin by writing secn(θ) = secn−2(θ) sec2(θ), and integrating by parts. After
the integration, tan2(θ) will appear in the integrand. Write it as sec2(θ)− 1.

(b) Evaluate
∫

sec3(θ) dθ.
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(c) Evaluate
∫

dθ

cos4(θ)
.

(d) Evaluate
∫

sec2(2x) dx.

(See Example 4.)

43. Find

(a)
∫

csc(θ) dθ

(b)
∫

csc2(θ) dθ

44. Find

(a)
∫

cot(θ) dθ

(b)
∫

cot2(θ) dθ

45. Consider
∫

sinn(θ) cosm(θ) dθ, where m and n are nonnegative integers, and

m is odd. To evaluate
∫

sinn(θ) cosm(θ) dθ, write it as
∫

sinn(θ) cosm−1(θ) cos(θ) dθ.
Then, because m− 1 is even, rewrite cosm−1(θ) as (1− sin2(θ))(m−1)/2 and use the
substitution u = sin(θ). Using this technique, find

(a)
∫

sin3(θ) cos3(θ) dθ

(b)
∫

sin4(θ) cos(θ) dθ

(c)

π/2∫
0

sin4(θ) cos3(θ) dθ

(d)
∫

cos5(θ) dθ.

46. How would you integrate
∫

sinn(θ) cosm(θ) dθ, where m and n are nonnegative
integers and n is odd? Illustrate your techniques by three examples. (See Exercise
45.)
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47. The techniques in Exercises 45 and 46 apply to
∫

sinn(θ) cosm(θ) dθ only when
at least one of m and n is odd. If both are even, first use the identities

sin2(θ) =
1− cos(2θ)

2
and cos2(θ) =

1 + cos(2θ)
2

.

You will get a polynomial in cos(2θ). If cos(2θ) appears only to odd powers, the
technique of Exercise 45 suffices. To treat an even power of cos(2θ), use the identity
cos2(2θ) = (1 + cos(4θ))/2 and continue. Using this method find

(a)
∫

cos2(θ) sin4(θ) dθ

(b)
∫ π/4
0 cos2(θ) sin2(θ) dθ

Antiderivatives of sec(θ) and tan(θ) were found in Examples 4 and 3. Exercises 48
to 50 explore some other antiderivatives of these functions.
48. Let 0 ≤ θ < π/2.

(a) Show that
∫

sec(θ) dθ = ln |sec(θ) + tan(θ)|+C, by differentiating ln |sec(θ) + tan(θ)|.

(b) Does (a) contradict the formula given in Example 4?

49. Show that − ln(cos(θ)) and ln(sec(θ)) are both antiderivatives for tan(θ).

50. In 1645, Henry Bond conjectured from experimental data that
∫ θ
0 sec(t) dt =

ln
(
tan

(
θ
2 + π

4

))
While Bond’s conjecture was originally verified well before the ad-

vent of calculus, today we can verify Bond’s conjecture by (i) checking that this
formula holds for θ = 0 and (ii) checking that the right-hand side is an antideriva-
tive of sec(θ). (Bond’s conjecture is related to Mercator’s projection (discussed in the
CIE on page 861. Reference: http://www.math.ubc.ca/∼israel/m103/mercator/
mercator.html. [Does permission need to be requested from Robert Israel?])

51. The region R under y = sin(x) and above [0, π] is revolved about the x-axis
to produce a solid S.

(a) Draw R.

(b) Draw S.

(c) Set up a definite integral for the area of R.

(d) Set up a definite integral for the volume of S.

(e) Evaluate the integrals in (c) and (d).
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52. Transform the following integrals into integrals of rational functions of cos(θ)
and sin(θ). Do not evaluate the integrals.

(a)
∫

x+
√

9−x2

x3 dx

(b)
∫

x3
√

5−x2

1+
√

5x2
dx

53. Transform the following integrals into integrals of rational functions of cos(θ)
and sin(θ). Do not evaluate the integrals.

(a)
∫

x2+
√

x2−9
x dx

(b)
∫

x3
√

5+x2

x+2 ]dx

54. Let R(x, y) be a rational function of x and y. Let n be an integer greater than
or equal to 2. Then R(x, n

√
ax + b) is a “rational function of x and n

√
ax + b.”

Let R(x, y) = x+y2

2x−y .

(a) Evaluate R(x, 3
√

4x + 5).

(b) Use the substitution u = 3
√

4x + 5 to show that∫
x + (4x + 5)2/3

2x− (4x + 5)1/3
dx =

3
8

∫
(u3 + 4u2 − 5)u2

u3 − 2u− 5
du

(Do not attempt to evaluate this integral. The partial fraction decomposition of
this integrand is messy.)

55. Transform the following integrals into integrals of rational functions of u. Do
not evaluate the integrals.

(a)
∫ 3

√
x + 2

x2 + (x + 2)2/3
dx

(b)
∫ √

x + x + x3/2

√
x + 2

dx

Exercises 56 to 58 concern
∫

R(cos(θ), sin(θ)) dθ.
56. Let −π < θ < π and u = tan(θ/2). (See Figure 8.5.4(a).) The following
steps show that this substitution transforms

∫
R(cos θ, sin θ)dθ into the integral of

a rational function of u (which can be integrated by partial fractions).

Calculus April 22, 2012



752 CHAPTER 8 COMPUTING ANTIDERIVATIVES

(a) Show that cos
(

θ
2

)
= 1√

1+u2
and sin

(
θ
2

)
= u√

1+u2
.

(b) Using (a), show that cos(θ) = 1−u2

1+u2 .

(c) Show that sin(θ) = 2u
1+u2 .

(d) Show that dθ = 2 du
1+u2 . (Note that θ = 2arctan(u).)

Combining (b), (c), and (d) shows that the substitution u = tan(θ/2) transforms∫
R(cos(θ), sin(θ)) dθ into

∫
R
(

1−u2

1+u2 , 2u
1+u2

)
2

1+u2 du, an integral of a rational func-
tion of u.

(a) (b)

Figure 8.5.4
57. Using the substitution u = tan(θ/2), transform the following integrals into
integrals of rational functions. (Refer to Figure 8.5.4(b).) (Do not evaluate them.)

(a)
∫

1 + sin(θ)
1 + cos2(θ)

dθ

(b)
∫

5 + cos(θ)
(sin(θ))2 + cos(θ)

dθ

(c)

π/2∫
0

5 dθ

2 cos(θ) + 3 sin(θ)
(Be sure to transform the limits of integraton also.)

58. Compute

π/2∫
0

dθ

4 sin(θ) + 3 cos(θ)
.

59. Explain why any rational function of tan(θ) and sec(θ) has an elementary
antiderivative.

April 22, 2012 Calculus



§ 8.5 SPECIAL TECHNIQUES 753

60. Show that any rational function of x,
√

x + a, and
√

x + b has an elementary
antiderivative. (Use the substitution u =

√
x + a.)

However, it is not the case that every rational function of
√

x + a,
√

x + b, and√
x + c has an elementary antiderivative. For instance,∫

dx
√

x
√

x + 1
√

x− 1
=
∫

dx√
x3 − x

is not an elementary function.

61. Every rational function of x and n
√

(ax + b)/(cx + d) has an elementary an-
tiderivative. Explain why.

Exercise 62 is known as the tractrix problem. While typically discussed in a differ-
ential equations course, only integration is needed to find the solution.
62. A point P is dragged across the xy-plane by a string SP of length a. Let S
start at the origin and move to the right along the positive x axis. Assume, as in
Figure 8.5.5, P starts at (0, a).

Figure 8.5.5

(a) Find an equation involving dy/dx that the function describing the tractrix
satisfies.

(b) Rewrite the equation in the form dx/dy equal to an expression involving y
and a (but not x).

(c) Find x explicitly in terms of y.

The tractrix can also be visualized as the path of the rear wheel of a scooter when
the front wheel follows a straight path. The case when the front wheel follows a
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circular path is analyzed in CIE 20 at the end of Chapter 15. Revolving the tractrix
about the x-axis creates a surface that in non-Euclidean geometry.
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8.6 What to do When Confronted with an In-

tegral

Since the exercises in each section of this chapter focus on the techniques of
that section, it is usually clear what technique to use on a given integral. But
what if an integral is met “in the wild,” where there is no clue how to evaluate
it? This section suggests what to do in this typical situation.

The more integrals you compute, the more quickly you will be able to
choose an appropriate technique. Moreover, such practice will put you at ease
in using integral tables or computer software. Besides, it may be quicker to
find an integral by hand.

This table summarizes the techniques and shortcuts emphasized in this
chapter.

Substitution Section 8.2
General Integration by Parts Section 8.3

Partial Fractions Sections 8.4 and 8.2
if f is odd, then

∫ a

−a
f(x) dx = 0 Section 8.1

if f is even, then
∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx Section 8.1∫ a

0

√
a2 − x2 dx = πa2

4
Section 8.1

Special
∫

sin(mx) sin(nx) dx, etc. Section 8.5∫
sin2(θ) dθ, etc. Section 8.5∫
tan(θ) dθ,

∫
sec(θ) dθ, etc. Section 8.5∫

R(x, n
√

ax + b) dx Section 8.5∫
R(x,

√
a2 − x2) dx, etc. Section 8.5∫

R(cos(θ), sin(θ)) dx, etc. Section 8.5

Table 8.6.1

Exercises in Section 8.5 develop other specialized techniques, but they will
not be required in this section.

A few examples will illustrate how to choose a method for computing an
antiderivative.

EXAMPLE 1 ∫
x dx

1 + x4

See Exercise 57 in Section
7.5SOLUTION DISCUSSION: Since the integrand is a rational function of x,

partial fractions would work. This requires factoring x4 + 1 and then repre-
senting x/(1 + x4) as a sum of partial fractions. With some struggle it can be
found that

x4 + 1 = (x2 +
√

2x + 1)(x2 −
√

2x + 1)
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The constants A, B, C, and D will have to be found such that

x

1 + x4
=

Ax + B

x2 +
√

2x + 1
+

Cx + D

x2 −
√

2x + 1

The method would work but would certainly be tedious.
Try another attack. The numerator x is almost the derivative of x2. The

substitution u = x2 is at least worth testing. With u = x2 we find du = 2x dx
and so ∫

x dx

1 + x4
=

∫
du/2

1 + u2
,

which is easy:Check by differentiating. ∫
x dx

1 + x4
=

1

2
arctan(u) + C =

1

2
arctan(x2) + C.

�

EXAMPLE 2 ∫
1 + x

1 + x2
dx.

SOLUTION DISCUSSION: This is a rational function of x, but partial frac-
tions will not help, since the integrand is already in its partial-fraction form.

The numerator is not the derivative of the denominator, but it comes close
enough to persuade us to break the integrand into two summands:∫

1 + x

1 + x2
dx =

∫
dx

1 + x2
+

∫
x dx

1 + x2
.

Both the latter integrals can be done in your head. The first is arctan(x), and
the second is (1/2) ln(1 + x2). So∫

1 + x

1 + x2
dx = arctan(x) +

1

2
ln(1 + x2) + C.

�

EXAMPLE 3 ∫
e2x

1 + ex
dx.

SOLUTION DISCUSSION: At first glance, this integral looks so peculiar
that it may not even be elementary. However, ex is a fairly simple function,
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with d(ex) = ex dx. This suggests trying the substitution u = ex and seeing
what happens:

u = ex du = ex dx

Thus It is essential to express dx
completely in terms of u
and du.dx =

du

ex
=

du

u
.

But what will be done to e2x? Recalling that e2x = (ex)2 = u2, we anticipate
there will be no difficulty:∫

e2x

1 + ex
dx =

∫
u2

1 + u

du

u
=

∫
u du

1 + u
.

which can be integrated quickly: Long division of u/(u + 1)
also works.∫

u du

1 + u
=

∫
u + 1− 1

1 + u
du =

∫ (
1− 1

1 + u

)
du

= u− ln(|1 + u|) + C = ex − ln(1 + ex) + C.

The same substitution could have been done more elegantly:∫
e2x

1 + ex
dx =

∫
ex(ex dx)

1 + ex
=

∫
u du

1 + u
.

�

EXAMPLE 4 ∫
x3 dx

(1− x2)5
.

SOLUTION DISCUSSION: Partial fractions would work, but the denomi-
nator, when factored, would be (1 + x)5(1− x)5. There would be 10 unknown
constants to find. Look for an easier approach.

Since the denominator is the obstacle, try u = x2 or u = 1 − x2 to see if
the integrand gets simpler. Let us examine what happens in each case. Try
u = x2 first. Assume that we are interested only in getting an antiderivative
for positive x, x =

√
u:

u = x2 du = 2x dx dx =
du

2x
=

du

2
√

u
.

Then ∫
x3 dx

(1− x2)5
=

∫
u3/2

(1− u)5

du

2
√

u
=

1

2

∫
u du

(1− u)5
.
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The same substitution could be carried out as follows:∫
x3 dx

(1− x2)5
=

∫
x2x dx

(1− x2)5
=

∫
u(du/2)

(1− u)5
=

1

2

∫
u du

(1− u)5
.

The substitution v = 1− u then results in an easy integral.Verify this claim for yourself.

Observe that the two substitutions u = x2 and v = 1− u are equivalent to
the single substitution w = 1−x2. So, let us apply the substitution w = 1−x2

to the original integral. Then dw = −2x dx; thus∫
x3 dx

(1− x2)5
=

∫
x2(x dx)

(1− x2)5
=

∫
(1− w)(−dw/2)

w5
=

∫
1

2
(w−4 − w−5) dw,

an integral that can be computed without further substitution. So w = 1− x2

is quicker than u = x2. �

EXAMPLE 5 ∫
x3ex2

dx.

SOLUTION DISCUSSION: Integration by parts may come to mind, since if
u = x3, then du = 3x2 dx is simpler. However, dv must then be ex2

dx and
force v to be non-elementary. This is a dead end.

If we can raise an exponent,
we should be able to lower

it.

So try integration by parts with u = ex2
and dv = x3 dx. What will v du

be? We have v = x4/4 and du = 2xex2
dx, which is worse than the original

u dv. The exponent of x has been raised by 2, from 3 to 5.

This time try u = x2 and dv = xex2
dx; thus du = 2x dx and v = ex2

/2.
Integration by parts yields∫

x3ex2

dx =

∫
x2︸︷︷︸
u

xex2

dx︸ ︷︷ ︸
dv

= x2︸︷︷︸
u

ex2

2︸︷︷︸
v

−
∫

ex2

2︸︷︷︸
v

2x dx︸ ︷︷ ︸
du

=
x2ex2

2
− ex2

2
+ C.

See Exercise 71. Another approach is to use the substitution u = x2 followed by an integra-
tion by parts. �

EXAMPLE 6 ∫
1− sin(θ)

θ + cos(θ)
dθ.
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See Exercise 72.

SOLUTION DISCUSSION: The numerator is the derivative of the denomi-
nator, so the integral is simply ln |θ + cos θ|+ C. �

EXAMPLE 7 ∫
1− sin(θ)

cos(θ)
dθ.

SOLUTION DISCUSSION: Break the integrand into two summands:∫
1− sin(θ)

cos(θ)
dθ =

∫ (
1

cos(θ)
− sin(θ)

cos(θ)

)
dθ

=

∫
(sec(θ)− tan(θ)) dθ

=

∫
sec θ dθ −

∫
tan(θ) dθ

= ln |sec(θ) + tan(θ)|+ ln |cos(θ)|+ C.

Since ln(A) + ln(B) = ln(AB), the answer can be simplified to

ln (|sec(θ) + tan(θ)| |cos(θ)|) + C.

But sec(θ) cos(θ) = 1 and tan(θ) cos(θ) = sin(θ). The result becomes even
simpler: The absolute values are not

needed because
1 + sin(θ) ≥ 0

∫
1− sin(θ)

cos(θ)
dθ = ln (1 + sin(θ)) + C.

�

EXAMPLE 8 ∫
ln x dx

x
.

SOLUTION DISCUSSION: Integration by parts, with u = ln(x) and dv =
dx/x, may come to mind. In that case, du = dx/x and v = ln(x); thus∫

ln(x)︸ ︷︷ ︸
u

dx

x︸︷︷︸
dv

= (ln(x))︸ ︷︷ ︸
u

(ln(x))︸ ︷︷ ︸
v

−
∫

ln(x)︸ ︷︷ ︸
v

dx

x︸︷︷︸
du

.

Bringing
∫

ln(x) dx/x all to one side produces the equation

2

∫
ln(x)

dx

x
= (ln x)2,
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from which it follows that∫
ln(x)

dx

x
=

(ln(x))2

2
+ C.

The integration by parts approach worked, but is not the easiest one to
use. Since 1/x is the derivative of ln(x), we could have used the substitution
u = ln(x), which means du = dx/x. Thus∫

ln(x) dx

x
=

∫
u du =

u2

2
+ C =

(ln(x))2

2
+ C.

�

EXAMPLE 9
3/5∫
0

√
9− 25x2 dx.

SOLUTION DISCUSSION: This integral reminds us of
∫ a

0

√
a2 − x2 dx =

πa2/4, the area of a quadrant of a circle of radius a. This resemblance suggests
a substitution u such that 25x2 = 9u2 or u = 5

3
x, hence dx = 3

5
du. Then

substitution gives

3/5∫
0

√
9− 25x2 dx =

1∫
0

√
9− 9u2

3

5
du =

9

5

1∫
0

√
1− u2 du

=
9

5
· π
4

=
9π

20
≈ 1.41372.

�

EXAMPLE 10 ∫
sin5(2x) cos(2x) dx.

SOLUTION DISCUSSION: We could try integration by parts with u =
sin5(2x) and dv = cos(2x) dx. (See Exercise 73.)

However, cos(2x) is almost the derivative of sin(2x). For this reason make
the substitution

u = sin(2x) du = 2 cos(2x) dx;

This means that

cos(2x) dx =
du

2
.
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and so ∫
sin5(2x) cos(2x) dx =

∫
u5 du

2
=

1

2

u6

6
+ C =

sin6(2x)

12
+ C.

�

EXAMPLE 11
3∫

−3

x3 cos(x) dx.

SOLUTION DISCUSSION: Since the integrand is of the form P (x) cos(x),
where P is a polynomial, repeated integration by parts would work. On the
other hand, x3 is an odd function and cos(x) is an even function. The integrand
is therefore an odd function and the integral over [−3, 3] is 0. �

EXAMPLE 12 ∫
sin2(3x) dx.

SOLUTION DISCUSSION: You could rewrite this integral as
∫

sin(3x) sin(3x) dx
and use integration by parts. However, it is easier to use the trigonometric
identity sin2(θ) = (1− cos 2(θ))/2:∫

sin2(3x) dx =

∫
1− cos(6x)

2
dx =

∫
dx

2
−
∫

cos(6x)

2
dx =

x

2
− sin(6x)

12
+C.

�

EXAMPLE 13
2∫

1

x3 − 1

(x + 2)2
dx.

SOLUTION DISCUSSION: Partial fractions would certainly work. (The
first step would be division of x3−1 by x2 +4x+4.) However, the substitution
u = x + 2 is easier because it makes the denominator simply u2. We have

u = x + 2 du = dx and x = u− 2.
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ThusNote the new limits for u.

2∫
1

x3 − 1

(x + 2)2
dx =

4∫
3

(u− 2)3 − 1

u2
du =

4∫
3

u3 − 6u2 + 12u− 8− 1

u2
du

=

4∫
3

(
u− 6 +

12

u
− 9

u2

)
du =

(
u2

2
− 6u + 12 ln |u|+ 9

u

)∣∣∣∣4
3

=

(
8− 24 + 12 ln(4) +

9

4

)
−
(

9

2
− 18 + 12 ln(3) + 3

)
= −(

13

4
) + 12 ln(4)− 12 ln(3) = 12 ln

(
4

3

)
− 13

4
≈ 0.20218.

�

Summary

One word: PRACTICE.
Reading worked examples is a first step to mastering integration, but

doesn’t offer the challenge of having to decide which approach is promising
and which will only lead to a dead end. The more you practice, the more
comfortable you will be when facing an integral in the wild and using integral
tables or software programs that find antiderivatives.

Many integrals can be evaluated in several different ways, but one method
is usually the easiest.

It is also important to learn to recognize integrals that can be evaluated
without finding an antiderivative or are known to not have an elementary
antiderivative.
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EXERCISES for Section 8.6

All the integrals in Exercises 1 to 59 are elementary. In each case, list the technique
or techniques that could be used to evaluate the integral. If there is a preferred
technique, state what it is (and why). Do not evaluate the integrals.

1.
∫

1 + x

x2
dx

2.
∫

x2

1 + x
dx

3.
∫

dx

x2 + x3

4.
∫

x + 1
x2 + x3

dx

5.
∫

arctan(2x) dx

6.
∫

arcsin(2x) dx

7.
∫

x10ex dx

8.
∫

ln(x)
x2

dx

9.
∫

sec2(θ) dθ

tan(θ)

10.
∫

tan(θ) dθ

sin2(θ)

11.
∫

x3

3
√

x + 2
dx

12.
∫

x2

3
√

x3 + 2
dx

13.
∫

2x + 1
(x2 + x + 1)5

dx

14.
∫ √

cos(θ) sin(θ) dθ

15.
∫

tan2(θ) dθ

16.
∫

dθ

sec2(θ)

17.
∫

e
√

x dx

18.
∫

sin
√

x dx

19.
∫

dx

(x2 − 4x + 3)2
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20.
∫

x + 1
x5

dx

21.
∫

x5

x + 1
dx

22.
∫

ln(x)
x(1 + ln(x))

dx

23.
∫

e3x dx

1 + ex + e2x

24.
∫

cos(x) dx

(3 + sin(x))2

25.
∫

ln(ex) dx

26.
∫

ln( 3
√

x) dx

27.
∫

x4 − 1
x + 2

dx

28.
∫

x + 2
x4 − 1

dx

29.
∫

dx√
x(3 +

√
x)2

30.
∫

dx

(3 +
√

x)3

31.
∫

(1 + tan(θ))3 sec2(θ) dθ

32.
∫

e2x + 1
ex − e−x

dx

33.
∫

ex + e−x

ex − e−x
dx

34.
∫

(x + 3)(
√

x + 2 + 1)√
x + 2− 1

dx

35.
∫

( 3
√

x + 2− 1 dx√
x + 2 + 1

36.
∫

dx

x2 − 9

37.
∫

x + 7
(3x + 2)10

dx

38.
∫

x3 dx

(3x + 2)7

39.
∫

2x + 3x

4x
dx

40.
∫

2x

1 + 2x
dx
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41.
∫

(x + arcsin(x)) dx√
1− x2

42.
∫

x + arctan(x)
1 + x2

dx

43.
∫

x3
√

1 + x2 dx

44.
∫

x(1 + x2)3/2 dx

45.
∫

x dx√
x2 − 1

46.
∫

x3

√
x2 − 1

dx

47.
∫

x dx

(x2 − 9)3/2

48.
∫

arctan(x)
1 + x2

dx

49.
∫

arctan(x)
x2

dx

50.
∫

sin(ln(x))
x

dx

51.
∫

cos(x) ln(sin(x)) dx

52.
∫

x dx√
x2 + 4

53.
∫

dx

x2 + x + 5

54.
∫

x dx

x2 + x + 5

55.
∫

x + 3
(x + 1)5

dx

56.
∫

x5 + x +
√

x

x3
dx

57.
∫

(x2 + 9)10x dx

58.
∫

(x2 + 9)10x3 dx

59.
∫

x4 dx

(x + 1)2(x− 2)3

In Exercises 60 to 62, (a) decide which positive integers n yield integrals you can
evaluate and (b) evaluate them.

60.
∫ √

1 + xn dx
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61.
∫

(1 + x2)1/n dx

62.
∫

(1 + x)1/n
√

1− x dx

63. Find
∫

dx√
x + 2−

√
x− 2

.

64. Find
∫ √

1− cos(x) dx.

In Exercises 65 to 70, evaluate the integrals.

65.
∫

x dx

(
√

9− x25

66.
∫

dx√
9− x2

67.
∫

dx

x
√

x2 + 9

68.
∫

x dx√
x2 + 9

69.
∫

dx

x +
√

x2 + 25

70.
∫

(x3 + x2)
√

x2 − 5 dx

71.

(a) Evaluate
∫

x3ex2
using the substitution u = x2 followed by an application of

integration by parts.

(b) How does this approach compare with the one used in Example 5?

72. In Example 6 it is found that∫
1− sin(θ)
θ + cos(θ)

dθ = ln |θ + cos θ|+ C.

Check this result by differentiation.

73.

(a) Use integration parts to evaluate
∫

sin5(2x) cos(2x) dx.

(b) How does this approach compare with the one used in Example 10?
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8.S Chapter Summary

The previous section reviewed the techniques discussed in the chapter. Here
we will offer some general comments on finding antiderivatives.

First of all, while the derivative of an elementary function is again el-
ementary, that is not necessarily the case with antiderivatives. Moreover, it
isn’t easy to predict whether an antiderivative will be elementary. For instance
ln(x) and ln(x)

x
have elementary antiderivatives but x

ln(x)
does not. Also, x sin(x)

does, but sin(x)
x

does not. Remembering that some elementary functions lack
elementary antiderivatives can save you lots of time and frustration.

The substitution method is the one that will come in handy most often, to
reduce an integral to an easier one or to something listed in an integral table.

When an integrand involves a product or quotient, integration by parts
may be of use.

A common partial fraction decomposition is

1

a2 − x2
=

1

2a

(
1

a− x
+

1

a + x

)
.

While it is comforting to know that every rational function has an elemen-
tary antiderivative, finding it can be a daunting task except for the simplest
denominators. First, factoring the denominator into first and second degree
polynomials may be a major hurdle. Second, finding the unknown coefficients
in the representation could require lots of computation. In such cases, it may be
simpler just to use Simpson’s approximation (Section 6.5) — unless one needs
to know the antiderivative. In such cases it might be best to take advantage
of an automated integrator available through your calculator or computer.

As we will see in Chapter 12, approximating an integrand by a polynomial
offers another way to estimate an integral.

Some definite integrals over intervals of the form [−a, a] can be simplified
before evaluation by using properties of even and odd functions. If f(x) is an
even function, then

∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx; if f is an odd function, then

Calculus April 22, 2012



768 CHAPTER 8 COMPUTING ANTIDERIVATIVES

∫ a

−a
f(x) dx = 0. (For instance,

∫ 1

−1
xex2

dx = 0.)

Method Description
Substitution (Section 8.2) Introduce u = h(x). If f(x) dx = g(u) du, then∫

f(x) dx =
∫

g(u) du.

Substitution in a definite integral
(Section 8.2)

If u = h(x) with f(x) dx = g(u) du, then∫ b

a
f(x) dx =

∫ h(b)

h(a)
g(u) du.

Table of Integrals (Section 8.1) Obtain and become familiar with a table of inte-
grals. Remember to use substitution to put inte-
grands into the proper form.

Integration by Parts (Section 8.3)
∫

u dv = uv −
∫

v du. Choose u and dv so
u dv = f(x) dx and

∫
v du is easier to integrate

than
∫

u dv.

Partial Fractions (applies to any ra-
tional function of x) (Section 8.4
(and Section 8.2))

This is an algebraic method in which the in-
tegrand is written as a sum of a polynomial
(which can be zero)) plus terms of the type

ki

(ax+b)i and
rjx+sj

(ax2+bx+c)j .

Certain Trigonometric Integrands
(Section 8.5)

∫
sin(mx) cos(nx) dx,

∫
sin(mx) sin(nx) dx,∫

cos(mx) cos(nx) dx
∫

sin2(x) dx,
∫

cos2(x) dx∫
tan(x) dx,

∫
tan2(x) dx

∫
sec(x) dx,

Rational Functions of x and one
of
√

a2 − x2,
√

a2 + x2,
√

x2 − a2

(Section 8.5)

For
√

a2 − x2, let x = a sin(θ).
For
√

a2 + x2, let x = a tan(θ).
For
√

x2 − a2, let x = a sec(θ).

Rational Functions of x and
n
√

ax + b (Section 8.5)
Let u = n

√
ax + b.

Rational Functions of cos(θ) and
sin(θ) (Section 8.5)

Let u = tan(θ/2).

Table 8.S.1 Summary of integration techniques
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Integrand Method of Integration
1

(ax+b)n substitute u = ax + b
1

ax2+c
, a, c > 0 substitute cu2 = ax2: u =

√
a
c
x

1
ax2+bx+c

, b2 − 4ac < 0 factor out a, complete the square,
then substitute

x
ax2+bx+c

, b2 − 4ac < 0 first, write x in numerator as
1
2a

(2ax+b)− b
2a

, then break into two
parts. (That is, get 2ax+ b into the
numerator.)

1
(ax2+bx+c)n b2 − 4ac < 0, n ≥ 2 use a recursive formula from the in-

tegral tables
x

(ax2+bx+c)n b2 − 4ac < 0, n ≥ 2 express in terms of the previous
type by the method in Example 7.

Table 8.S.2 Antiderivatives of common forms that appear in partial fraction
representations.

EXERCISES for 8.S

1.

(a) By an appropriate substitution, transform this definite integral into a simpler
definite integral:

π/2∫
0

√
(1 + cos(θ))3 sin(θ) dθ.

(b) Evaluate the new integral found in (a).

2. Two of these antiderivatives are elementary functions; evaluate them.

(a)
∫

ln(x) dx

(b)
∫

ln(x)
x

dx

(c)
∫

dx

ln(x)

3. Evaluate

(a)
∫ 2
1 (1 + x3)2 dx
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(b)
∫ 2
1 (1 + x3)2x2 dx

4. Use a table of integrals to compute

(a)
∫

ex dx

5e2x − 3

(b)
∫

dx√
x2 − 3

5. Compute

(a)
∫

dx

x3

(b)
∫

dx√
x + 1

(c)
∫

ex

1 + 5ex
dx

6. Compute
∫

5x4 − 5x3 + 10x2 − 8x + 4
(x2 − 1)(x− 1)

dx.

7. Transform the definite integral

3∫
0

x3

√
x + 1

dx

into another definite integral in the following ways (and evaluate each transformed
integral).

(a) by the substitution u = x + 1

(b) by the substitution u =
√

x + 1.

(c) Which method was easier to apply?

8.
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(a) Transform the definite integral

4∫
−1

x + 2√
x + 3

dx

into an easier definite integral by a substitution.

(b) Evaluate the integral obtained in (a).

9. Compute
∫

x2 ln(1 + x) dx (a) without an integral table, (b) with an integral
table.

10. Verify that the following factorizations into irreducible polynomials are correct.

(a) x3 − 1 = (x− 1)(x2 + x + 1)

(b) x4 − 1 = (x− 1)(x + 1)(x2 + 1)

(c) x3 + 1 = (x + 1)(x2 − x + 1)

Express each expression in Exercises 11 to 17 as a sum of partial fractions. (Do not
integrate.) Exercise 10 may be helpful.

11.
2x2 + 3x + 1

x3 − 1

12.
x4 + 2x2 − 2x + 2

x3 − 1

13.
2x− 1
x3 + 1

14.
x4 + 3x3 − 2x2 + 3x− 1

x4 − 1

15.
2x + 5

x2 + 3x + 2

16.
5x3 + 11x2 + 6x + 1

x2 + x

17.
5x3 + 6x2 + 8x + 5

(x2 + 1)(x + 1)

18. The Fundamental Theorem of Calculus can be used to evaluate one of these
definite integrals, but not the other. Evaluate that integral using the FTC.
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(a)

1∫
0

3
√

x
√

x dx

(b)

1∫
0

3
√

1− x
√

x dx

19. Compute
∫

x3

(x− 1)2
dx

(a) using partial fractions

(b) using the substitution u = x− 1

(c) which method, (a) or (b), is easier in this case?

20.

(a) Compute
∫

x2/3

x + 1
dx.

(b) What does a table of integrals say about the integral in (a)?

21. Compute
∫

x 3
√

x + 1 dx using

(a) the substitution u = 3
√

x + 1

(b) the substitution u = x + 1

In Exercises 22 to 25 evaluate the integrals.

22.

1∫
0

(ex + 1)3ex dx

23.

1∫
0

(x4 + 1)5x3 dx

24.

e∫
1

√
ln(x)
x

dx
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25.

π/2∫
9

cos(θ)√
1 + sin(θ)

dx

26.

(a) Without an integral table, evaluate∫
sin5(θ) dθ and

∫
tan6(θ) dθ.

(b) Evaluate each integral with an integral table.

(c) Resolve any differences in the appearance of the antiderivatives found in (a)
and (b).

27. Two of these three antiderivatives are elementary. Find them, and explain
why you know they are elementary (without necessarily evaluating the integral).

(a)
∫ √

1− 4 sin2(θ) dθ

(b)
∫ √

4− 4 sin2(θ) dθ

(c)
∫ √

1 + cos(θ) dθ

28. Find
∫

cot(3θ) dθ.

29. Find
∫

csc(5θ) dθ.

30. Compute

(a)
∫

sec5(x) tan(x) dx

(b)
∫

sin(x)
cos3(x)

dx

31. Compute
∫

x3 dx

(1 + x2)4
in two different ways:

(a) by the substitution u = 1 + x2,
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(b) by the substitution x = tan(θ).

32. Find
∫

x dx√
9x4 + 16

(a) without an integral table,

(b) with an integral table.

33. Transform
∫

x2 dx√
1 + x

by each of the substitutions

(a) u =
√

1 + x

(b) y = 1 + x

(c) x = tan2(θ)

(d) Evaluate the easiest of the above three reformulations.

34. Compute
∫

x
√

1 + x dx in three ways:

(a) u =
√

1 + x,

(b) x = tan2(θ),

(c) by parts, with u = x and dv =
√

1 + x dx.

35. Find
∫

x
√

(1− x2)5 dx using the substitutions

(a) u = x2,

(b) u = 1− x2,

(c) x = sin(θ).

In Exercises 36 to 48, evaluate the definite integral appearing in the given exercise.

36. Exercise 21 in Section 7.1.
37. Exercise 22 in Section 7.1.
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38. Exercise 23 in Section 7.1.

39. Exercise 24 in Section 7.1.

40. Exercise 25 in Section 7.1.

41. Exercise 26 in Section 7.1.

42. Exercise 27 in Section 7.1.

43. Exercise 28 in Section 7.1.

44. Exercise 30 in Section 7.1.

45. Exercise 1 in Section 7.5.

46. Exercise 2 in Section 7.5.

47. Exercise 3 in Section 7.5.

48. Exercise 4 in Section 7.5.

49. The region R below the line y = e, above y = ex, and to the right of the
y-axis is revolved around the y-axis to form a solid S. In Example 1 in Section 7.5
it is shown that the definite integral for the volume of S using disks is

e∫
1

π (ln(y))2 dy

and the volume of S using shells is

1∫
0

2πx (e− ex) dx.

Evaluate each integral. Which integral is easier to evaluate?

50. The region R below the line y = π
2−1, to the right of the y-axis, and above the

curve y = x− sin(x) is revolved around the y-axis to form a solid S. In Example 2
in Section 7.5 it is shown that the definite integral for the volume of S using disks
cannot be evaluated in terms of elementary functions, and that the volume of S
using shells is

π/2∫
0

2πx
(π

2
− 1− (x− sin(x))

)
dx.

Evaluate the value of this integral.

51.

(a) Evaluate
∫

x+1
x2 e−x dx.

(b) Evaluate
∫

ax−1
ax2 eax dx, a 6= 0
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52. In Example 1 in Section 7.6 the total force on a submerged circular tank is
found to be

5∫
−5

(0.036)(x+17)
√

100− 4x2 dx = 0.036

5∫
−5

x
√

100− 4x2 dx+0.036

5∫
−5

17
√

100− 4x2 dx pounds.

At that time, the value of this integral was found using the fact that the first integral
has an odd integrand over an interval symmetric about the origin and by relating
the second integral to the area of a quarter circle.

(a) Evaluate the first integral using the substitution u = 100− 4x2.

(b) Evaluate the second integral using the substitution x2 = 25 sin2(θ).

(c) Which approach is easier?

53. Find
∫

dx
sin(2x) by first writing sin(2x) as 2 sin(x) cos(x).

54.

(a) Show that
∫∞
0

sin(kx)
x dx =

∫∞
0

sin(x)
x dx, where k is a positive constant.

(b) Show that
∫∞
0

sin(x) cos(x)
x dx =

∫∞
0

sin(x)
x dx.

(c) If k is negative, what is the relation between
∫∞
0

sin kx
x dx and

∫∞
0

sin x
x dx?

55. Evaluate
∫∞
0 e−x sin2(x) dx.

56. Evaluate
∫∞
0 e−x sin(x) dx. (This integral was first encountered in Example 4

on page 665.)

In statistics a function F (x) defined on [0,∞) is called a probability distribution
if F (0) = 0, limx→∞ F (x) = 1, and F has a nonnegative derivative f . The function f
is called a probability density. The integral

∫∞
0 xf(x) dx is called the expected

value or average value of x. Exercises 57 and 58 show that if one of the integrals∫∞
0 xf(x) dx and

∫∞
0 (1− F (x)) dx is convergent, so is the other one and these two

integrals are equal.
57. Assume

∫∞
0 xf(x) dx is finite.

(a) Show that
∫∞
k xf(x) dx approach zero as k approaches ∞.
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(b) Using the fact that
∫∞
k xf(x) dx ≥

∫∞
k kf(x) dx, show that limk→∞ k(1 −

F (k)) = 0.

(c) Show that
k∫

0

xf(x) dx = k(F (k)− 1) +

k∫
0

(1− F (x)) dx.

(Use integration by parts and d(F (x)− 1) = f(x) dx.)

(d) From (c) show that

∞∫
0

xf(x) dx =

∞∫
0

(1− F (x)) dx.

58. Assume that
∫∞
0 (1− F (x)) dx is finite.

(a) Show that
∫ k
0 f(x) dx = kF (k)−

∫ k
0 F (x) dx. (Use integration by parts with

dF (x) = f(x) dx.)

(b) Show kF (k)−
∫ k
0 F (x) dx ≤

∫ k
0 (1− F (x)) dx.

(c) Show that
∫∞
0 xf(x) dx is finite.

(d) Show that
∫∞
0 xf(x) dx =

∫∞
0 (1− F (x)) dx. (Review Exercise 57.)

Exercises 59 to 62 are related.
59. Show that

∫∞
1 (cos(x))/x2 dx is convergent.

60. Show that
∫∞
1 (sin(x))/x dx is convergent. (Start with integration by parts.)

61. Show that
∫∞
0 (sin(x))/x dx is convergent.

62. Show that
∫∞
0 sin(ex) dx is convergent.

63. In a statistics text it is asserted that for λ > 0 and n a positive integer

∞∫
0

1−
(
1− e−λt

)n
dt =

1
λ

n∑
k=1

1
k
.

(a) Check this assertion for n = 1.

(b) Check this assertion for n = 2.

(c) Show that for all n the integral is convergent.
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(For (c), use the Binomial Theorem (see Exercise 32 in Section 5.5).)

64. Let
∫∞
−∞ f(x) dx be a convergent integral with value A.

(a) Express
∫∞
−∞ f(x + 2) dx in terms of A.

(b) Express
∫∞
−∞ f(2x) dx in terms of A.

65. Find the error in the following computations: The substitution x = y2,
dx = 2y dy, yields

1∫
0

1
x

dx =

1∫
0

2y

y2
dy =

1∫
0

2
y

dy

= 2

1∫
0

1
y

dy = 2

1∫
0

1
x

dx.

Hence
1∫

0

1
x

dx = 2

1∫
0

1
x

dx;

from which it follows that
∫ 1
0 (1/x) dx = 0.

Laplace Transforms were introduced in Exercises 51 to 55 in Section 8.3. Exercises 66
to 68 develop properties of Laplace Transforms.
66. Let f and its derivative f ′ both have Laplace transforms. Let P be the
Laplace transform of f , and let Q be the Laplace transform of f ′. Show that

Q(r) = −f(0) + rP (r).

67. Assume that f(t) = 0 for t < 0 and that f has a Laplace transform. Let a be
a positive constant. Define g(t) to be f(t− a). Show that the Laplace transform of
g is e−ar times the Laplace transform of f . (The graph of g is the graph of f shifted
to the right by a.)
68. Let P be the Laplace transform of f . Let a be a positive constant, and
let g(t) = f(at). Let P be the Laplace transform of f , and let Q be the Laplace
transform of g. Show that Q(r) = (1/a)P (r/a).

69.

(a) Estimate
∫ 1
0

sin(x)
x dx by using the Maclaurin polynomial P6(x; 0) associated

with sin(x) to approximate sin(x).

(b) Use the Lagrange form of the error to put an upper bound on the error in (a).
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70.

(a) Estimate
∫ 1
−1

ex

x+2dx by using the Maclaurin polynomial P3(x;−2) associated
with ex to approximate ex.

(b) Use the Lagrange form of the error to put an upper bound on the error in (a).

71.

(a) Estimate
∫ 1
−1

ex

x−2dx by using the Taylor polynomial P3(x; 2) associated with
ex to approximate ex.

(b) Use the Lagrange form of the error to put an upper bound on the error in (a).

72. Find
∫

ln(x2)
x2

dx.

73. If a is a constant, show that
∫∞
−∞ e−(x−a)2 dx =

∫∞
−∞ e−x2

dx = 2
∫∞
0 e−x2

dx.

74. When studying the normal distribution in statistics one will meet an equation
that amounts to ∫∞

−∞ x exp(−(x− µ)2) dx∫∞
−∞ exp(−(x− µ)2) dx

= µ,

where µ is a constant. Show that the equation is correct. (Make the substitution
t = x− µ.)

75. Show that
∫∞
1 x exp(−x2) dx is less than

∫ 1
0 x exp(−x2) dx. This implies that

the probability of a large disaster, compared to the long tail of the bell curve, is
smaller than what must be planned for in spite of the growth of the coefficient x. As
a result, economic predictions based on the bell curve may downplay the likelihood
of rare events. This bias may have been one of the several factors that combined to
produce the credit crisis and recession that began in 2008.

76. For which values of the positive constant k is

∞∫
e

dx

x(ln(x))k
convergent? diver-

gent?
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Figure 8.S.1
77. The formula for the area of region OAP in Figure 8.S.1 was found, in
Exercise 64 in Section 6.5, to be

1
2

cosh(t) sinh(t)−
cosh(t)∫

1

√
x2 − 1dx

Use the substitution x = cosh(u) to evaluate the definite integral. (See also Exer-
cises 64 in Section 6.5 and 8 in Section 15.4.)

The molecules in a gas move at various speeds. In 1859 James Maxwell developed
a formula for the distribution of the speeds of a gas consisting of N molecules. The
formula is

f(v) = 4πN
( m

2πkT

)3/2
v2e

−1
2

mv2

kT

This means that for small values, dv, the number of molecules with speeds between
v and v + dv is approximately f(v) dv. In the formula k is a physical constant, T is
the absolute temperature, and m is the mass of a molecule. The only variable is v.
Exercises 78 to 80 investigate Maxwell’s model.
78. Show that

∫∞
0 f(v) dv = N .

79. (continuation of Exercise 78) The average speed of the molecules is∫∞
0 vf(v) dv

N
.

Show that this equals
√

8kT/πm ≈ 1.5958
√

kT/m.
80. (continuation of Exercise 79) The “most probable speed” occurs where f(v)
has a maximum. Show that this speed is

√
2kT/m ≈ 1.4142

√
kT/m. So the most

likely speed is a bit less than the average speed.

81. In the study of heat capacity of a crystal one meets
b∫

0

x4ex

(ex − 1)2
dx.
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(a) Show that the integral is convergent.

(b) Is
∫ b
0

xex

(ex−1)2
dx convergent?

82. Show that
∫∞
−∞

dt
(1+t2)3/2 = 2.

83.

(a) Show that
∫∞
0

x2

(x2+1)5/2 is convergent.

(b) Show that the value of this improper integral is 1/3.

84. In the theory of probability one meets the equation
∞∫
0

e−λxR(x) dx =
1
λ

∞∫
0

e−λxR′(x) dx +
1
λ

R(0)

Assuming the integrals are convergent, explain how the equation is obtained.

85. The velocity of a particle at time t seconds is e−t sin(πt) meters per second.
Find how far it travels in the first second, from time t = 0 to t = 1,

(a) using the integral table in the front of the book,

(b) using Simpson’s method with n = 4, expressing your answer to four decimal
places.

(Notice that the particle changes direction at t = 1/2 second.)

86. Assume that f is continuous on [0,∞) and has period one, that is, f(x) =
f(x + 1) for all x in [0,∞]. Assume also that

∫∞
0 e−xf(x) dx is convergent. Show

that
∞∫
0

e−xf(x) dx =
e

e− 1

1∫
0

e−xf(x) dx.

87. Assume that f is continuous on [0,∞) and has period p > 0. Let s be a
positive number and assume

∫∞
0 e−stf(t) dt converges. Show that this improper

integral equals

1
1− e−sp

p∫
0

e−stf(t) dt.
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88. The integral
∫∞
0 x2ne−kx2

dx appears in the kinetic theory of gases. In
Chapter 16, we will show that

∫∞
0 e−x2

dx =
√

π/2. With the aid of this information,
evaluate

(a)
∫∞
0 e−kx2

dx,

(b)
∫∞
0 x2e−kx2

dx.

89. (continuation of Exercise 4 in the Chapter 7 Summary) This exercise presents
an alternate approach to evaluating the integral in Exercise 4 in the Chapter 7
Summary. Express the integral as the Laplace transform of an appropriate func-
tion. Then, use a table of Laplace transforms to find the value of the integral.

90. James Maxwell’s “On the Geometric Mean Distance of Two Figures in a
Plane,” written in 1872, begins “There are several problems of great practical im-
portance in electromagnetic measurements, in which the value of the quantity has
to be calculated by taking the sum of the logarithms of the distances of a system of
parallel wires from a given point.”
This leads him to several problems, of which this is the first.

Figure 8.S.2
A point O is a distance c from the line that contains the line segment AB. Let P be
the point on that line nearest O, as in Figure 8.S.2. Introduce a coordinate system
in which P is the origin, AB lies on the x-axis, and OP lies on the y-axis.
Let f(x) be the distance from O to (x, 0).
Show that the average value of ln(f(x)) for x in [a, b] is

b ln(b)− a ln(a)− (b− a) + cθ

b− a
,

where θ is the angle AOB in radians. (This theme continues in Exercises 58 in
Section 12.5, and 5 to 7 in the Summary for Chapter 12.)
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91. Evaluate
∫

cos(θ)
(b2 + c2 cos2(θ))1/2

dθ. (This integral appears in Exercise 21 in

the Summary of Chapter 18.) (Let u = c cos(θ).)

92. Show that
∫ √

xex dx is not elementary. (Use the fact that
∫

ex2
dx is not

elementary.)

93. We have seen that
∫

ex2
dx is not elementary.

(a) Show that for positive odd integers n,
∫

xnex2
dx is elementary.

(b) Show that for positive even integers n,
∫

xnex2
dx is not elementary.

94. We have seen that
∫

ex2
dx and

∫
ex

x dx are not elementary.

(a) Show that
∫

ex2

x dx is not elementary.

(b) Show that
∫

ex2

x2 dx is not elementary.

(c) Show that for any positive integer n,
∫

ex2

xn dx is not elementary.

95. We have seen that
∫

ex

x dx is not elementary.

(a) Show that for positive integers n,
∫

xnex dx is elementary.

(b) Show that for positive integers n,
∫

ex

xn dx is not elementary

96.

(a) Show that
∫

x2ex2
dx is not elementary.

(b) Show that
∫

x4ex2
dx is not elementary.

(c) Find non-zero values for a and b such that
∫

(ax4+bx2)ex2
dx is an elementary

function.

97. Show that
∫

xnex2
is elementary only when n is an odd positive integer.
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98. Let n be an integer. Show that
∫

xnex is elementary only when n is not
negative.

99.

Sam: I understand what a definite integral is — the limit of certain sums. I accept
on faith that for a continuous function the limit exists. I agree that it is
a handy idea, with many uses, but I don’t see why I have to learn all those
ways to compute it: antiderivatives, trapezoids, Simpson’s method. My trusty
calculator evaluates integrals to eight decimal places and a computer algebra
system can often give me the exact expression.

Jane: What’s your point?

Sam: I would make this text much shorter by omitting this chapter. This would
allow us more time to spend on the stuff at the end.

Does Sam have a valid argument, for a change?

Exercises 100 to 105 all relate to the famous bell curve that arises in statistics.
100. Use the fact that

∫∞
−∞ e−x2

dx =
√

π (see Exercise 32 in Section 17.3) to
show that

∞∫
−∞

x2e−x2
dx =

1
2
√

π.

101. Let σ (lower case Greek sigma corresponds to our letter s) be a positive
constant. The famous bell curve is the graph of the function

f(x) =
exp

(
−x2

2σ2

)
σ
√

2π
.

Show that
∫∞
−∞ f(x) dx = 1.

102. Show that f has inflection points at points where x = σ and at x = −σ.
103. Show that

∫∞
−∞ x2f(x) dx = σ2. Thus σ2 measures the discrepancy from 0.

It is called the variance.
104. The mean value of x is defined as

∫∞
−∞ xf(x) dx. Show that it is 0. (Avoid

labor.)
105. Assume that

∫∞
−∞ g(x) = 1 and

∫∞
−∞ xg(x) dx = k. Let h(x) = g(x−k). Show

that
∫∞
−∞ h(x) dx = 1,

∫∞
−∞ xh(x) dx = k, and

∫∞
−∞(x−k)2h(x) dx =

∫∞
−∞ x2g(x) dx.

106. If f(x) and g(x) have elementary antiderivatives, which of the following
necessarily do also? (a) f(x)g(x), (b) f(g(x)), and (c) f(x) + g(x). Justify each
answer.

107.
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(a) Show that ex1/2
has an elementary antiderivative.

(b) Show that ex1/3
has an elementary antiderivative.

(c) Show that for every positive integer n, ex1/n
has an elementary antiderivative.

108. When a curve situated above the x-axis is revolved around the x-axis, the
area of the resulting surface of revolution is 31. When the curve is revolved around
the line y = −2, the surface area of this solid is 75. How long is the curve?

109. In a letter dated May 24, 1872 Maxwell wrote: “It is strange . . . that W.
Weber could not correctly integrate

π∫
0

cos(θ) sin(φ) dφ where tan(θ) =
A sin(φ)

B + A cos(φ)
,

but that everyone should have copied such a wild result as

B√
A2 + B2

·
B4 + 7

6A2B2 + 2
3A2

B4 + A2B2 + A4
.

Of course there are two forms of the result according as A or B is greater.”
Assuming that A and B are positive, find the correct value of the integral. (Begin
by expressing cos(θ) in terms of the constants φ, A, and B.)

110. The following calculation appears in Electromagnetic Fields, 2nd ed., Roald
K. Wangsness, Wiley, 1986. (See also Exercise 4 in the Chapter 12 Summary.)

(a) The substitution π
2 cos(θ) = 1

2(π − v), turns
∫ π
0

cos2(π
2

cos(θ))
sin(θ) dθ into

1
4

 2π∫
0

1− cos(v)
v

dv +

2π∫
0

1− cos(v)
2π − v

dv

 .

(b) Introducing w = 2π − v shows that the two integrals with respect to v are
equal.

(c) So we must find 1
2

∫ 2π
0

1−cos(v)
v dv. The integrand does not have an ele-

mentary antiderivative. However, its value (2.438) is listed in integral ta-
bles. Reference: Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, 9th ed., Dover, 1964 (online version available at
http://www.math.sfu.ca/∼cbm/aands/.)

Calculus April 22, 2012

http://www.math.sfu.ca/~cbm/aands/


786 CHAPTER 8 COMPUTING ANTIDERIVATIVES

111. Which has the larger absolute value
∫ √π
0 sin

(
x2
)

dx or
∫ √2π√

π sin
(
x2
)

dx?
(Substitute u = x2 and, in the second integral obtained, u = v + π.)

In Exercises 112 and 113 a, b, c, m, and p are constants. In each case verify that
the derivative of the first function is the second function.
112. eax(a sin(px)−p cos(px))

a2+p2 ; eax sin(px).

113. sec(x) + ln
(
tan

(
x
2

))
; 1

sin(x) cos2(x)
.

NEW: Makes no sense to
label as computer graphics;
other CG exercises won’t be

seen until Chapter 14.

114. (Computer Graphics) Let k be a positive consant. Justify the equation

k∫
0

1
k
f
(x

k

)
dx =

1∫
0

f(x) dx.
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Calculus is Everywhere # 11

An Improper Integral in Economics

Both business and government frequently face the question, “How much money
do I need today to have one dollar t years in the future?”

Implicit in this question are such considerations as the present value of
a business being dependent on its future profit and the cost of a toll road
being weighed against its future revenue. We determine the present value of a
business which depends on the future rate of profit.

To begin the analysis, assume that the annual interest rate r remains con-
stant and that 1 dollar deposited today is worth ert dollars t years from now.
This assumption corresponds to continuously compounded interest or to nat-
ural growth. t need not be an integerThus A dollars today will be worth Aert dollars t years from
now. What is the present value of the promise of 1 dollar t years from now?
In other words, what amount A invested today will be worth 1 dollar t years
from now? To find out, solve the equation Aert = 1 for A. The solution is The present value of $1

t years from now is $ e−rt

A = e−rt. (C.11.1)

The present value of the future profit of a business (or future revenue of
a toll road) is represented by an integral. Assume that the profit flow t years
from now is at the rate f(t). This rate may vary within the year; consider f
to be a continuous function of time. The profit in the small interval of time dt,
from time t to time t + dt, would be approximately f(t)dt. The total future
profit, F (T ), from now, when t = 0, to some time T in the future is therefore

F (T ) =

T∫
0

f(t)dt. (C.11.2)

But the present value of the future profit is not given by (C.11.2). It is
necessary to consider the present value of the profit earned in a typical short
interval of time from t to t + dt. According to (C.11.1), its present value is
approximately

e−rtf(t)dt.

Hence the present value of future profit from t = 0 to t = T is given by

T∫
0

e−rtf(t)dt. (C.11.3)
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The present value of all future profit equals the improper integral
∫∞

0
e−rtf(t)dt.

To see what influence the interest rate r has, denote by P (r) the present
value of all future revenue when the interest rate is r; that is,

P (r) =

∞∫
0

e−rtf(t)dt. (C.11.4)

If the interest rate r is raised, then according to (C.11.4) the present value
of a business declines. An investor choosing between investing in a business
or placing the money in a bank account may find the bank account more
attractive when r is raised.

A proponent of a project, such as a toll road, will argue that the interest
rate r will be low in the future. An opponent will predict that it will be high.
Of course, neither knows what the inscrutable future will do to the interest
rate. Even so, the prediction is important in a cost-benefit analysis.

Equation (C.11.4) assigns to a profit function f (which is a function of time
t) a present-value function P , which is a function of r, the interest rate. In
the theory of differential equations, P is called the Laplace transform of f .
This transform can replace a differential equation by a simpler equation that
looks quite different.

The Laplace transform was first encountered in Exercises 51 to 55 in Sec-
tion 8.3 and reappeared in Exercises 66 to 68 in Section 8.6.

EXERCISES

In Exercises 1 to 8 f(t) is defined on [0,∞) and is continuous. Assume that for
r > 0,

∫∞
0 e−rtf(t)dt converges and that e−rtf(t) → 0 as t → ∞. Let P (r) =∫∞

0 e−rtf(t)dt. Find P (r), the Laplace transform of f(t), in Exercises 1 to 5.
1. f(t) = t

2. f(t) = et, assume r > 1
3. f(t) = t2

4. f(t) = sin(t)
5. f(t) = cos(t)

6. Let P be the Laplace transform of f , and let Q be the Laplace transform of f ′.
Show that Q(r) = −f(0) + rP (r).

7. Let P be the Laplace transform of f , a a positive constant, and g(t) = f(at).
Let Q be the Laplace transform of g. Show that Q(t) = 1

aP
(

r
a

)
.

8. Which is worth more today, $100, 8 years from now or $80, five years from
now? (a) Assume r = 4%. (b) Assume r = 8%. (c) For which interest rate are the
two equal?
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Chapter 9

Polar Coordinates and Plane
Curves

This chapter presents further applications of the derivative and integral. Sec-
tion 9.1 describes polar coordinates. Section 9.2 shows how to compute the
area of a region described in polar coordinates. Section 9.3 introduces a method
of describing a curve which is especially useful in the study of motion.

The speed of an object moving along a curved path is developed in Sec-
tion 9.4, where we show how to express the length of a curve as a definite
integral. The area of a surface of revolution is expressed as a definite integral
in Section 9.5.

Section 9.6 shows how the derivative and second derivative determine the
curvature of a curve.
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790 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

9.1 Polar Coordinates

Rectangular coordinates provide one way to describe points in the plane by
pairs of numbers. This section describes another coordinate system, called
polar coordinates.

Polar Coordinates

The rectangular coordinates x and y describe a point P in the plane as the
intersection of two perpendicular lines. Polar coordinates describe P as the
intersection of a circle and a ray from its center.

(a) (b)

Figure 9.1.1

When we say “The storm is
10 miles northeast,” we are

using polar coordinates:
r = 10 and θ = π/4.

Select a point in the plane and a ray emanating from it. The point is called
the pole, and the ray the polar axis. (See Figure 9.1.1(a).) Measure positive
angles θ counterclockwise from the polar axis and negative angles clockwise.
To plot the point P that corresponds to the pair of numbers r and θ:

If r is positive, P is the intersection of the circle of radius r whose center
is at the pole and the ray of angle θ from the pole. (See Figure 9.1.1(b).)

If r is 0, P is the pole, no matter what θ is.

If r is negative, P is at a distance |r| from the pole on the ray directly
opposite the ray of angle θ, that is, on the ray of angle θ + π.

The pair r and θ are called polar coordinates of P . The point (r, θ) is
on the circle of radius |r| whose center is the pole. The point (−r, θ +π) is the
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§ 9.1 POLAR COORDINATES 791

same as the point (r, θ). Changing the angle by 2π does not change the point;
that is, (r, θ) = (r, θ + 2π) = (r, θ + 4π) = · · · = (r, θ + 2kπ) for any integer k.

EXAMPLE 1 Plot the points (3, π/4), (2,−π/6), (−3, π/3) in polar coor-
dinates. See Figure 9.1.2.

Figure 9.1.2

SOLUTION

• To plot (3, π/4), go out a distance 3 on the ray of angle π/4, shown in
Figure 9.1.2.

• To plot (2,−π/6), go out a distance 2 on the ray of angle −π/6.

• To plot (−3, π/3), draw the ray of angle π/3, and then go a distance 3
in the direction opposite from the pole.

�

Figure 9.1.3 The relation
between polar and rectan-
gular coordinates.

It is customary to have the polar axis coincide with the positive x-axis
as in Figure 9.1.3. The diagram shows the relation between the rectangular
coordinates (x, y) and the polar coordinates of P :

x = r cos(θ) y = r sin(θ)

r2 = x2 + y2 tan(θ) =
y

x

They hold even if r is negative. If r is positive, then r =
√

x2 + y2. If
−π/2 < θ < π/2, then θ = arctan(y/x).

Graphing r = f(θ)

Just as we may graph the set of points (x, y), where x and y satisfy an equa-
tion, we may graph the set of points (r, θ), where r and θ satisfy an equation.
Although a point in the plane is specified by a unique ordered pair (x, y) in rect-
angular coordinates, there are many ordered pairs (r, θ) in polar coordinates
that specify each point. For instance, the point whose rectangular coordinates
are (1, 1) has polar coordinates (

√
2, π/4), (

√
2, π/4 + 2π), (

√
2, π/4 + 4π), or

(−
√

2, π/4 + π) and so on.
The simplest equation in polar coordinates is r = k, where k is a positive

constant. Its graph is the circle of radius k, centered at the pole. (See Fig-
ure 9.1.4(a).) The graph of θ = α, where α is a constant, is the line through
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792 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

the pole with inclination α. If we restrict r to be nonnegative, then θ = α de-
scribes the ray (half-line) through the pole with angle α. (See Figure 9.1.4(b).)

(a) (b)

Figure 9.1.4

EXAMPLE 2 Graph r = 1+cos θ. Since cos(θ) has period 2π, we consider
only θ in [0, 2π].

Figure 9.1.5 A cardioid
is not shaped like a real
heart, only like the conven-
tional image of a heart.

SOLUTION Tabulate some values:

θ 0 π
4

π
2

3π
4

π 5π
4

3π
2

7π
4

2π

r 2 1 +
√

2
2

1 1−
√

2
2

0 1−
√

2
2

1 1 +
√

2
2

2
≈ 1.7 ≈ 0.3 ≈ 0.3 ≈ 1.7

As θ goes from 0 to π, r decreases, and as θ goes from π to 2π, r increases.
The point with θ = 0 is the same as the one with θ = 2π. The graph begins
to repeat itself. This heart-shaped curve, shown in Figure 9.1.5, is called a
cardioid. �

Spirals are quite easy to describe in polar coordinates. One is illustrated
by the graph of r = 2θ in the next example.

EXAMPLE 3 Graph r = 2θ for θ ≥ 0.

Figure 9.1.6

SOLUTION Make a table:

θ 0 π
2

π 3π
2

2π 5π
2
· · ·

r 0 π 2π 3π 4π 5π · · ·

Increasing θ by 2π does not produce the same value of r. As θ increases, r
increases. The graph for θ ≥ 0 is a sprial, going infinitely often around the
pole, as indicated in Figure 9.1.6. �

If a is a non-zero constant, the graph of r = aθ is called an Archimedean
spiral because Archimedes was the first person to study it, finding the area
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§ 9.1 POLAR COORDINATES 793

within it up to any angle and also its tangent lines. The spiral with a = 2 is
sketched in Example 3.

Polar coordinates are also convenient for describing loops arranged like the
petals of a flower, as Example 4 shows.

EXAMPLE 4 Graph r = sin(3θ).
SOLUTION The values of sin(3θ) range from −1 to 1. For instance, when
3θ = π/2, sin(3θ) = sin(π/2) = 1. That tells us that when θ = π/6, r =
sin(3θ) = sin(3(π/6)) = sin(π/2) = 1. This suggests that we calculate r at
integer multiples of π/6, as in Table 9.1.1. The variation of r as a function of

θ 0 π
18

π
12

π
9

π
6

π
3

π
2

2π
3

5π
6

π 3π
2

2π
3θ 0 π

6
π
4

π
3

π
2

π 3π
2

2π 5π
2

3π 9π
2

6π

r = sin(3θ) 0 1
2

√
2

2

√
3

2
1 0 −1 0 1 1 0

Table 9.1.1

θ is shown in Figure 9.1.7(a). Because sin(θ) has period 2π, sin(3θ) has period
2π/3.

(a) (b)

Figure 9.1.7

As θ increases from 0 to π/3, 3θ increases from 0 to π. Thus r, which is
sin(3θ), starts at 0 (for θ = 0) increases to 1 (for θ = π/6) and then decreases
to 0 (for θ = π/3). This gives one of the three loops that make up the graph
of r = sin(3θ). For θ in [π/3, 2π/3], r = sin(3θ) is negative (or 0), which is the
lower loop in Figure 9.1.7(b). For θ in [2π/3, π], r is again positive, and we
obtain the upper left loop. Further choices of θ repeat these three loops. �

The graph of r = sin(nθ) or r = cos(nθ)is often described as a rose. It has
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794 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

n loops when n is an odd integer and 2n loops when n is an even integer. The
next example illustrates the graph when n is even.

EXAMPLE 5 Graph the four-leaved rose, r = cos(2θ).

Figure 9.1.8

SOLUTION To isolate one loop, find the two smallest nonnegative values of
θ for which cos(2θ) = 0. They are the θ that satisfy 2θ = π/2 and 2θ = 3π/2;
so θ = π/4 and θ = 3π/4. One leaf is described by letting θ go from π/4 to
3π/4. For θ in [π/4, 3π/4], 2θ is in [π/2, 3π/2]. Since 2θ is then a second-
or third-quadrant angle, r = cos(2θ) is negative or 0. In particular, when
θ = π/2, cos(2θ) reaches its smallest value, −1. This loop is the bottom one
in Figure 9.1.8. The other loops are obtained similarly. We could also sketch
the graph by making a table of values. �

EXAMPLE 6 Transform the equation y = 2, which describes a horizontal
straight line, into polar coordinates.
SOLUTION Since y = r sin θ, r sin θ = 2, or

r =
2

sin(θ)
= 2 csc(θ).

This is more complicated than the rectangular version of this equation, but is
still sometimes useful. �

EXAMPLE 7 Transform the equation r = 2 cos(θ) into rectangular coor-
dinates and graph it.
SOLUTION Since r2 = x2 + y2 and r cos θ = x, multiply the equation
r = 2 cos θ by r, obtaining

r2 = 2r cos(θ).

Hence

x2 + y2 = 2x

Figure 9.1.9

or
x2 − 2x + y2 = 0

and complete the square, obtaining

(x− 1)2 + y2 = 1.

The graph is a circle of radius 1 with center at (1, 0) in rectangular coordinates.
It is graphed in Figure 9.1.9. �

The step in Example 7 where we multiply by r deserves some attention. If
r = 2 cos(θ), then r2 = 2r cos(θ). However, if r2 = 2r cos(θ), it does not follow
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§ 9.1 POLAR COORDINATES 795

that r = 2 cos(θ). We can cancel the r only when r is not 0. If r = 0, it is
true that r2 = 2r cos(θ), but it not necessarily true that r = 2 cos(θ). Since
r = 0 satisfies the equation r2 = 2r cos θ, the pole is on the curve r2 = 2r cos θ.
Luckily, it is also on the original curve r = 2 cos(θ), since θ = π/2 makes r = 0.
Hence the graphs of r2 = 2r cos(θ) and r = 2 cos(θ) are the same.

However, as you may check, the graphs of r = 2 + cos(θ) and r2 = r(2 +
cos(θ)) are not the same. The origin lies on the second curve, but not on the
first.

The Intersection of Two Curves

Finding the intersection of two curves in polar coordinates is complicated be-
cause a point has many descriptions in polar coordinates.

Figure 9.1.10

EXAMPLE 8 Find the intersection of the curve r = 1 − cos(θ) and the
circle r = cos(θ).
SOLUTION Graph the curves. The curve r = cos(θ) is a circle half the size
of the one in Example 7. Both curves are shown in Figure 9.1.10. The curve
r = 1− cos(θ) is a cardioid, being congruent to the graph of r = 1 + cos(θ). It
appears that there are three points of intersection.

A point of intersection is produced when one value of θ yields the same
value of r in both equations, that is, when

1− cos(θ) = cos(θ).

Hence cos(θ) = 1
2
. Thus θ = π/3 or θ = −π/3 or any angle differing from

these by 2nπ, n an integer. This gives two of the three points, but it fails to
give the origin. Why?

How does the origin get to be on the circle r = cos(θ)? Because when
θ = π/2, r = 0. How does it get to be on the cardioid r = 1− cos(θ)? Because
when θ = 0, r = 0. The origin lies on both curves, but we do not learn this by
simply equating 1− cos(θ) and cos(θ). �

When looking for intersections of two curves, r = f(θ) and r = g(θ) in polar
coordinates, examine the origin separately. The curves may also intersect
at other points not obtainable by setting f(θ) = g(θ). This possibility is
due to the fact the point (r, θ) is the same as the points (r, θ + 2nπ) and
(−r, θ + (2n + 1)π) for any integer n. The safest procedure is to graph the
two curves first, identify the intersections in the graph, and then see why the
curves intersect there.

Summary

We introduced polar coordinates and showed how to graph curves given with
equation r = f(θ). Some common polar curves are listed below.
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Equation Curve
r = a, a > 0 circle of radius a, center at pole
r = 1 + cos(θ) cardioid
r = aθ, a > 0 Archimedean spiral (traced clockwise)
r = sin(nθ), n odd n-leafed rose (one loop symmetric about θ = π/n)
r = sin(nθ), n even 2n-leafed rose
r = cos(nθ), n odd n-leafed rose (one loop symmetric about θ = 0)
r = cos(nθ), n even 2n-leafed rose
r = a csc(θ) the line y = a
r = a sec(θ) the line x = a
r = a cos(θ), a > 0 circle of radius a/2 through pole and (a, 0)
r = a sin(θ), a > 0 circle of radius a/2 through pole and (a, π/2)

5

Table 9.1.2

To find the intersection of two curves in polar coordinates, first graph them.

April 22, 2012 Calculus



§ 9.1 POLAR COORDINATES 797

EXERCISES for Section 9.1

1. Plot the points whose polar coordinates are

(a) (1, π/6)

(b) (2, π/3)

(c) (2,−π/3)

(d) (−2, π/3)

(e) (2, 7π/3)

(f) (0, π/4)

2. Find the rectangular coordinates of the points in Exercise 1.

3. Give at least three pairs of polar coordinates (r, θ) for the point whose polar
coordinates are (3, π/4),

(a) with r > 0

(b) with r < 0

4. Find polar coordinates (r, θ) with 0 ≤ θ < 2π and r positive, for the points
whose rectangular coordinates are

(a) (
√

2,
√

2)

(b) (−1,
√

3)

(c) (−5, 0)

(d) (−
√

2,−
√

2)

(e) (0,−3)

(f) (1, 1)

In Exercises 5 to 8 transform the equation into one in rectangular coordinates.

5. r = sin(θ)
6. r = csc(θ)
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7. r = 4 cos(θ) + 5 sin(θ)
8. r = 3/(4 cos(θ) + 5 sin(θ))

In Exercises 9 to 12 transform the equation into one in polar coordinates.
9. x = −2
10. y = x2

11. xy = 1
12. x2 + y2 = 4x

In Exercises 13 to 22 graph the given equations.
13. r = 1 + sin θ

14. r = 3 + 2 cos(θ)
15. r = e−θ/π

16. r = 4θ/π, θ > 0
17. r = cos(3θ)
18. r = sin(2θ)
19. r = 2
20. r = 3
21. r = 3 sin(θ)
22. r = −2 cos(θ)

SHERMAN: Don’t both 0+

and ∞ make sense? I have
added both.

23. Suppose r = 1/θ for θ > 0.

(a) What happens to the y-coordinate of (r, θ) as θ → 0+?

(b) What happens to the x-coordinate of (r, θ) as θ → 0+?

(c) What happens to the y-coordinate of (r, θ) as θ →∞?

(d) What happens to the x-coordinate of (r, θ) as θ →∞?

(e) Sketch the curve.

24. Suppose r = 1/
√

θ for θ > 0.

(a) What happens to the y-coordinate of (r, θ) as θ → 0+?

(b) What happens to the x-coordinate of (r, θ) as θ → 0+?

(c) What happens to the y-coordinate of (r, θ) as θ →∞?

(d) What happens to the x-coordinate of (r, θ) as θ →∞?

(e) Sketch the curve.
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In Exercises 25 to 30, find the intersections of the curves after drawing them.

25. r = 1 + cos(θ) and r = cos(θ)− 1
26. r = sin(2θ) and r = 1
27. r = sin(3θ) and r = cos(3θ)
28. r = 2 sin(2θ) and r = 1
29. r = sin(θ) and r = cos(2θ)
30. r = cos(θ) and r = cos(2θ)

A curve r = 1+a cos(θ) (or r = 1+a sin(θ)) is called a limaçon. Its shape depends
on the choice of a. For a = 1 we have the cardioid of Example 2. Exercises 31 to 33
concern other choices of a.

31. Graph r = 1 + 2 cos(θ). (If |a| > 1, then the graph of r = 1 + a cos θ crosses
itself and forms two loops.)
32. Graph r = 1 + 1

2 cos(θ).
33. Let r = 1 + a cos(θ), where 0 ≤ a ≤ 1.

(a) Relative to the same polar axis, graph the curves corresponding to a = 0, 1/4,
1/2, 3/4, 1

(b) For a = 1/4 the graph in (a) is convex, but not for a = 1. Show that for
1/2 < a ≤ 1 the curve is not convex. (Convex is defined in Section 2.5. Find
the points on the curve farthest to the left and compare them to the point on
the curve corresponding to θ = π.)

34.

(a) Graph r = 3 + cos(θ)

(b) Find the point on the graph in (a) that has the maximum y coordinate.

35. Find the y coordinate of the highest point on the right-hand leaf of the four-
leaved rose r = cos(2θ).

36. Graph r2 = cos(2θ). If cos(2θ) is negative, r is not defined, and if cos(2θ) is
positive, there are two values of r,

√
cos(2θ) and −

√
cos(2θ). The curve is called a

lemniscate.
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The graph of r = 1/(1+e cos(θ)) is a parabola if e = 1, an ellipse if 0 ≤ e < 1, and a
hyperbola if e > 1. (Here e denotes eccentricity, not Euler’s number.) Exercises 37
to 38 concern such graphs.

37.

(a) Graph r = 1
1+cos(θ) .

(b) Find an equation in rectangular coordinates for the curve in (a).

38.

(a) Graph r = 1
1−(1/2) cos(θ) .

(b) Find an equation in rectangular coordinates for the curve in (a).

39. Where do the spirals r = θ and r = 2θ, intersect?
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9.2 Computing Area in Polar Coordinates

Figure 9.2.1

In Section 6.1 we saw how to compute the area of a region if the lengths of
parallel cross sections are known. Sums based on rectangles led to the formula

Area =

b∫
a

c(x) dx,

where c(x) denoted the cross-sectional length. In polar coordinates sectors of
circles, not rectangles, provide an estimate of area.

Let R be a region in the plane and P a point inside it that we take as the
pole of a polar coordinate system. Assume that the distance r from P to a
point on the boundary of R is known as a function r = f(θ). Also, assume
that any ray from P meets the boundary of R just once, as in Figure 9.2.1.

Figure 9.2.2

The cross sections made by the rays from P are not parallel. Like the
spokes in a wheel, they meet at the point P . It would be unnatural to use
rectangles to estimate the area, but it is reasonable to use sectors of circles
that have P as a common vertex.

In a circle of radius r a sector of central angle θ has area θ
2
r2. (See Fig-

ure 9.2.2.) This formula plays the same role now as the formula for the area
of a rectangle did in Section 6.1.

Area in Polar Coordinates

Assume f(θ) ≥ 0.

Figure 9.2.3 How to find
area in polar coordinates.

Let R be the region bounded by the rays θ = α and θ = β and by the curve
r = f(θ), as shown in Figure 9.2.3. To obtain a local estimate for the area
of R, consider the portion of R between the rays corresponding to the angles
θ and θ + dθ, where dθ is a small positive number. (See Figure 9.2.4(a).) The
area of the narrow wedge shaded in Figure 9.2.4(a) is approximately that of
a sector of a circle of radius r = f(θ) and angle dθ, shown in Figure 9.2.4(b),
whose area is

f(θ)2

2
dθ. (9.2.1)

Having found the local estimate of area (9.2.1), we conclude that the area of
R is

β∫
α

f(θ)2

2
dθ or

β∫
α

r2

2
dθ. (9.2.2)

Formula 9.2.2 is applied in Section 15.1 (and in a CIE) to the motion of
satellites and planets.

Area has dimensions of
length squared.

It may seem surprising to find (f(θ))2 in the integrand. But area has
the dimension (length)2. Since θ is dimensionless, because it is the length of a
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(a) (b) (c)

Figure 9.2.4

circular arc divided by the length of the radius, dθ is also dimensionless. Hence
f(θ) dθ has the dimension of length and 1

2
(f(θ))2 dθ has the dimension of area.

For rectangular coordinates, in f(x) dx, both f(x) and dx have the dimension
of length, one along the y-axis, the other along the x-axis, so f(x) dx has
the dimension of area.Memory device To remember the area of the sector in Figure 9.2.4(b),
think of it as a triangle of height r and base r dθ, as shown in Figure 9.2.4(c).
Its area is

1

2
· r︸︷︷︸

height

· rdθ︸︷︷︸
base

=
r2dθ

2
.

(a) (b)

Figure 9.2.5 (a) Graph of r = 3 + 2 cos(θ) for Example 1. (b) Graph of
r = cos(4θ) for Example 2.

EXAMPLE 1 Find the area of the region bounded by the polar curve
r = 3 + 2 cos(θ) shown in Figure 9.2.5(a).
SOLUTION The cardioid is traced once for 0 ≤ θ ≤ 2π. By the formula just
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obtained, its area is

2π∫
0

1

2
(3 + 2 cos(θ))2dθ =

1

2

2π∫
0

(9 + 12 cos(θ) + 4 cos2(θ))dθ

=
1

2

2π∫
0

(9 + 12 cos(θ) + 2(1 + cos(2θ)) dθ

=
1

2
(9θ + 12 sin(θ) + 2θ + sin(2θ))

∣∣∣∣2π

0

= 11π.

�

EXAMPLE 2 Find the area of the region inside one of the eight loops of
the eight-leaved rose r = cos(4θ).
SOLUTION To graph one of the loops, start with θ = 0. For that angle,
r = cos(4·0) = cos 0 = 1. The point (r, θ) = (1, 0) is the outer tip of a loop. As
θ increases from 0 to π/8, cos(4θ) decreases from cos(0) = 1 to cos(π/2) = 0.
One of the eight loops is therefore bounded by the rays θ = π/8 and θ = −π/8,
as shown in Figure 9.2.5(b). The area of this loop, which is bisected by the
polar axis, is

π/8∫
−π/8

r2

2
dθ =

π/8∫
−π/8

cos2(4θ)

2
dθ =

π/8∫
0

cos2(4θ) dθ =
1

2

π/8∫
0

(1 + cos(8θ)) dθ

=
1

2

(
θ +

sin(8θ)

4

)∣∣∣∣π/8

0

=
1

2

(
π

8
+

sin(π)

8

)
− 0 =

π

16
≈ 0.19635.

That the integrand is an even function simplified the calculation. �

Figure 9.2.6

The Area between Two Curves

Assume that r = f(θ) and r = g(θ) describe two curves in polar coordinates
and that f(θ) ≥ g(θ) ≥ 0 for θ in [α, β]. Let R be the region between them
and the rays θ = α and θ = β, as shown in Figure 9.2.6.

The area of R is obtained by subtracting the area within the inner curve,
r = g(θ), from the area within the outer curve, r = f(θ).

EXAMPLE 3 Find the area of the top half of the region inside the cardioid
r = 1 + cos(θ) and outside the circle r = cos(θ).
SOLUTION The region is shown in Figure 9.2.7.
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The top half of the cardioid is swept out by r = 1 + cos(θ) as θ goes from
0 to π so its area is

1

2

π∫
0

(1 + cos(θ))2dθ =
1

2

π∫
0

(
1 + 2 cos(θ) + cos2(θ)

)
dθ

=
1

2

π∫
0

(
1 + 2 cos(θ) +

1 + cos(2θ)

2

)
dθ

=
1

2

π∫
0

(
3

2
+ 2 cos(θ) +

cos(2θ)

2

)
dθ

=
1

2

(
3θ

2
+ 2 sin(θ) +

sin(2θ)

4

)∣∣∣∣π
0

=
3π

4
.

Figure 9.2.7 We must in-
tegrate over two different
intervals to find the area
between the two curves.

The top half of the circle r = cos(θ) is half the area of a circle of radius
1/2:

1

2

π/2∫
0

cos2(θ) dθ =
1

2
π

(
1

2

)2

=
π

8
.

Thus the area is
3π

4
− π

8
=

5π

8
.

�

Summary

In this section we saw how to find the area within a curve r = f(θ) and the
rays θ = α and θ = β. The method uses the local approximation by a narrow
sector of radius r and angle dθ, which has area 1

2
r2 dθ because it resembles a

triangle of height r and base dθ. This approximation leads to the formula,

Area =

β∫
α

1

2
r2 dθ.

It is prudent to remember the triangle rather than the area formula. This
makes it easier to remember the factor 1/2 in the integrand.
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EXERCISES for Section 9.2

In Exercises 1 to 6, draw the region enclosed by the curve and rays and then find
its area.

1. r = 2θ, α = 0, β = π
2

2. r =
√

θ, α = 0, β = π

3. r = 1
1+θ , α = π

4 , β = π
2

4. r =
√

sin(θ), α = 0, β = π
2

5. r = tan(θ), α = 0, β = π
4

6. r = sec(θ), α = π
6 , β = π

4

In each of Exercises 7 to 16 draw the region bounded by the curve(s) and find its
area.

7. r = 2 cos(θ)

8. r = eθ, θ = 0, and θ = 2π

9. inside the cardioid r = 3 + 3 sin(θ) and outside the circle r = 3.

10. r =
√

cos(2θ)

11. one loop of r = sin(3θ)

12. one loop of r = cos(2θ)

13. inside one loop of r = 2 cos(2θ) and outside r = 1

14. inside r = 1 + cos(θ) and outside r = sin(θ)

15. inside r = sin(θ) and outside r = cos(θ)

16. inside r = 4 + sin(θ) and outside r = 3 + sin(θ)

17. Sketch the graph of r = 4 + cos(θ). Is it a circle?

18.

(a) Show that the area of the triangle in Figure 9.2.8(a) is
∫ β
0

1
2 sec2(θ)dθ.

(b) From (a) and the fact that the area of a triangle is 1
2(base)(height), show that

tan(β) =
∫ β
0 sec2(θ)dθ.

(c) Using the equation in (b), obtain another proof that (tan(x))′ = sec2(x).
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(a) (b)

Figure 9.2.8
19. Show that the area of the crescent between the two circular arcs, shaded in
Figure 9.2.8(b), is equal to the area of square ABCD. This type of result encour-
aged mathematicians from the time of the Greeks to try to find a method using only
straightedge and compass for constructing a square whose area equals that of a cir-
cle. This was not proved impossible until the end of the nineteenth century when it
was shown that π is not the root of a non-zero polynomial with integer coefficients.

20.

(a) Graph r = 1/θ for 0 < θ ≤ π/2.

(b) Is the area of the region bounded by the curve drawn in (a) and the rays θ = 0
and θ = π/2 finite or infinite?

21.

(a) Sketch the curve r = 1/(1 + cos(θ)).

(b) What is its equation in rectangular coordinates?

(c) Find the area of the region bounded by the curve in (a) and the rays θ = 0
and θ = 3π/4, using polar coordinates.

(d) Solve (c) using rectangular coordinates and the equation in (b).

22. Use Simpson’s method to estimate the area of the region between r = 3
√

1 + θ2,
θ = 0, and θ = π/2, correct to three decimal places.
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23. Estimate the area of the region in the first quadrant bounded by r = eθ,
r = 2 cos(θ) and θ = 0. (You may need to approximate a limit of integration.)

24. Figure 9.2.9 shows a point P inside a convex region R.

(a) Assume that P cuts each chord through it into two intervals of equal length.
Does each chord through P cut R into two regions of equal area?

(b) Assume that each chord through P cuts R into two regions of equal area.
Must P cut each chord through P into two intervals of equal length?

Figure 9.2.9
25. Let R be a convex region in the plane and P a point on its boundary. Assume
that every chord of R that has an end at P has length not more than 1.

(a) Draw several examples of such an R.

(b) Make a general conjecture about the area R.

(c) Prove it.

26.

(a) Show that a line through the origin intersects the region bounded by the curve
in Example 1 in a segment of length 6.

(b) A line through the center of a disk of radius 3 also intersects the disk in a
segment of length 6. Does it follow that the disk and the region in Example 1
have the same areas?
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27. Let P be a point inside the convex region R. Assume that each chord through
P has length 1. How small can the area of R be? How large?

28. Let R be a convex region in the plane and let P be a point in R. If you know
the length of each chord that passes through P , can you then determine the area of
R

(a) if P is on the border of R?

(b) if P is in the interior of R?

Exercises 29 to 31, contributed by Rick West, are related.
29. The graph of r = cos(nθ) has 2n loops when n is even. Find the total area
within them.

30. The graph of r = cos(nθ) has n loops when n is odd. Find the total area
within them.

31. Find the total area of the petals within the curve r = sin(nθ), where n is a
positive integer. (Take the cases n even or odd separately.)
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9.3 Parametric Equations

Figure 9.3.1

We have considered curves described in three forms: y is a function of x,
x and y are related implicitly, and r is a function of θ. Sometimes a curve is
described by giving x and y as functions of a third variable. We now look at
this description, which arises in the study of motion. It was the basis for the
CIE on the Uniform Sprinkler in Chapter 5.

Two Examples

EXAMPLE 1 A ball is thrown horizontally out of a window with a speed of
32 feet per second falls in a curved path. Air resistance disregarded, its position
after t seconds is given by x = 32t, y = −16t2 relative to the coordinate system
in Figure 9.3.1. para meaning “together,”

meter meaning “measure”.
The curve is completely described, not by expressing y as a

function of x, but by expressing x and y as functions of a third variable t. The
third variable is called a parameter. The equations x = 32t, y = −16t2 are
called parametric equations for the curve.

In this example it is easy to eliminate t and so find a direct relation between
x and y:

t =
x

32
,

so

y = −16
( x

32

)2

= − 16

(32)2
x2 = − 1

64
x2.

The path is part of the parabola y = − 1
64

x2. �
In Example 2 elimination of the parameter would lead to a complicated

equation involving x and y. An advantage of parametric equations is that
they can provide a description of a curve that has no simple representation as
y = f(x).

EXAMPLE 2 As a bicycle wheel of radius a rolls along, a tack stuck in its
circumference traces out a curve called a cycloid, which consists of a sequence
of arches, one arch for each revolution of the wheel. (See Figure 9.3.2.) Find
the position of the tack as a function of the angle θ through which the wheel
turns.
SOLUTION Assume that the tack is initially at the bottom of the wheel.
The x coordinate of the tack, corresponding to θ, is

AF = AB − ED = aθ − a sin(θ)

and the y coordinate is

EF = BC| − CD = a− a cos(θ).
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Figure 9.3.2

Thus the position of the tack as a function of the parameter θ is

x = aθ − a sin(θ), y = a− a cos(θ).

See Exercise 35. Eliminating θ leads to a complicated relation between x and y. �

Any curve given in the form y = f(x) can be described parametrically. For
instance, for y = ex + x we can introduce a parameter t equal to x and write

x = t, y = et + t.

This may seem artificial, but it will be useful in the next section in order to
apply results for curves expressed by means of parametric equations to curves
given in the form y = f(x).

How to Find dy
dx and d2y

dx2

How can we find the slope of a curve described parametrically as

x = g(t), y = h(t)?

An often difficult, perhaps impossible, approach is to solve x = g(t) for t as
a function of x and substitute it into the equation y = h(t), thus expressing
y explicitly in terms of x and then differentiating the result to find dy/dx.
Fortunately, there is an easier way. Assume that y is a differentiable function
of x. Then, by the chain rule,

dy

dt
=

dy

dx

dx

dt
,

from which it follows that
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Slope of a parameterized curve

dy

dx
=

dy
dt
dx
dt

. (9.3.1)

EXAMPLE 3 At what angle does the arch of the cycloid in Example 2
meet the x-axis at the origin?
SOLUTION The parametric equations of the cycloid are

x = aθ − a sin(θ) and y = a− a cos(θ).

Then
dx

dθ
= a− a cos(θ) and

dy

dθ
= a sin(θ).

Consequently,

dy

dx
=

dy/dθ

dx/dθ
=

a sin(θ)

a− a cos(θ)
=

sin(θ)

1− cos(θ)
.

When θ = 0, (x, y) = (0, 0) and dy
dx

is not defined because dx
dθ

= 0. But, when
θ is near 0, (x, y) is near the origin and the slope of the cycloid at (0, 0) can
be found by looking at the limit of the slope, which is sin θ/(1 − cos(θ)), as
θ → 0+. L’Hôpital’s Rule applies, and we have

lim
θ→0+

sin(θ)

1− cos(θ)
= lim

θ→0+

cos(θ)

sin(θ)
=∞.

Thus the cycloid comes in vertically at the origin, as shown in Figure 9.3.2. �
We assume that in (9.3.1) dx/dt is not 0. To obtain d2y/dx2 just replace y

in (9.3.1) by dy/dx, obtaining

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dt

(
dy
dx

)
dx
dt

.

EXAMPLE 4 Find d2y/dx2 for the cycloid of Example 2.
SOLUTION In Example 3 we found

dy

dx
=

sin(θ)

1− cos(θ)
.

As shown in Example 3, dx/dθ = a− a cos(θ). To find d2y
dx2 we first compute

d

dθ

(
dy

dx

)
=

(1− cos(θ)) cos(θ)− sin(θ)(sin(θ))

(1− cos(θ))2
=

cos(θ)− 1

(1− cos(θ))2
=

−1

1− cos(θ)
.

Calculus April 22, 2012



812 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

Thus
d2y

dx2
=

d
dθ

(
dy
dx

)
dx
dθ

=

−1
1−cos(θ)

a− a cos(θ)
=

−1

a(1− cos(θ))2
.

Since the denominator is positive (or 0), the quotient is negative, when it is
defined. This agrees with Figure 9.3.2, which shows each arch of the cycloid
is concave down. �

Summary

This section described parametric equations, where x and y are given as func-
tions of a third variable, often time (t) or angle (θ). We also showed how to
compute dy/dx and d2y/dx2:

dy

dx
=

dy/dt

dx/dt

and, replacing y by dy
dx

,

d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

.
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EXERCISES for Section 9.3

1. For the parametric equations x = 2t + 1, y = t− 1,

(a) fill in the table:
t −2 −1 0 1 2
x

y

(b) plot the points (x, y) obtained in (a).

(c) graph the curve.

(d) eliminate t to find an equation for the curve in terms of x and y.

2. For the parametric equations x = t + 1, y = t2.

(a) fill in the table:
t −2 −1 0 1 2
x

y

(b) plot the five points (x, y) obtained in (a).

(c) graph the curve.

(d) eliminate t to find an equation for the curve in terms of x and y.

3. Consider the parametric equations x = t2, y = t2 + t.

(a) fill in the table:
t −3 −2 −1 0 1 2 3
x

y

(b) plot the seven points (x, y) obtained in (a).

(c) graph the curve.

(d) eliminate t to find an equation for the curve in terms of x and y.

4. Consider the parametric equations x = 2 cos(t), y = 3 sin(t).
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(a) fill in the table, expressing the entries as decimals:

t 0 π
4

π
2

3π
4 π 5π

4
3π
2

7π
4 2π

x

y

(b) plot the eight distinct points in (a).

(c) Graph the curve given by x = 2 cos(t), y = 3 sin(t).

(d) Using the identity cos2(t) + sin2(t) = 1, eliminate t.

In Exercises 5 to 8 express the curves parametrically with parameter t.

5. y =
√

1 + x3

6. y = tan−1(3x)
7. r = cos2(θ)
8. r = 3 + cos(θ)

In Exercises 9 to 14 find dy/dx and d2y/dx2.
9. x = t3 + t, y = t7 + t + 1
10. x = sin(3t), y = cos(4t)
11. x = 1 + ln(t), y = t ln(t)
12. x = et2 , y = tan(t)
13. r = cos(3θ) (Introduce x and y.)
14. r = 2 + 3 sin(θ)

In Exercises 15 to 16 find the equation of the tangent line to the curve at the point.

15. x = t3 + t2, y = t5 + t; (2, 2)

16. x = t2+1
t3+t2+1

, y = sec 3t; (1, 1)

In Exercises 17 and 18 find d2y/dx2.

17. x = t3 + t + 1, y = t2 + t + 2
18. x = e3t + sin(2t), y = e3t + cos(t2)

19. For which values of t is the curve in Exercise 17 concave up? concave down?

20. Let x = t3 + 1 and y = t2 + t + 1. For which values of t is the curve concave
up? concave down?
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21. Find the slope of the three-leaved rose, r = sin(3θ), at the point (r, θ) =
(
√

2/2, π/12).

22.

(a) Find the slope of the cardioid r = 1 + cos(θ) at (r, θ).

(b) What happens to the slope as θ approaches π from the left?

(c) What does (b) tell us about the graph of the cardioid? (Show it on the graph.)

23. Obtain parametric equations for the circle of radius a and center (h, k), using
as parameter the angle θ shown in Figure 9.3.3(a).

(a) (b)

Figure 9.3.3
Exercises 24 to 26 analyze the trajectory of a ball thrown from the origin at an angle
α and initial velocity v0, as sketched in Figure 9.3.3(b). The results are used in the
CIE on the Uniform Sprinkler in Chapter 5.
24. It can be shown that if time is in seconds and distance is in feet, then t seconds
later the ball is at (x, y) with

x = (v0 cos(α))t, y = (v0 sin(α))t− 16t2.

(a) Express y as a function of x. (Eliminate t.)

(b) What type of curve does the ball follow?

(c) Find the coordinates of its highest point on the curve.
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25. Eventually the ball in Exercise 24 falls back to the ground.

(a) Show that the horizontal distance it travels is proportional to sin(2θ).

(b) Use (a) to determine the angle that maximizes the horizontal distance traveled.

(c) Show that the horizontal distance traveled in (a) is the same when the ball is
thrown at an angle θ or at an angle π/2− θ.

26. Is it possible to extend the horizontal distance traveled by throwing the ball
in Exercise 24 from the top of a hill? Assume the hill has height d. (Work with the
horizontal distance traveled, x, not the distance along the hill.)

27. The spiral r = e2θ meets the ray θ = α at an infinite number of points.

(a) Graph the spiral.

(b) Find the slope of the spiral at each intersection with the ray.

(c) Show that at all the intersections the slopes are the same.

(d) Show that the analog of (c) is not true for the spiral r = θ.

28. The spiral r = θ, θ > 0 meets the ray θ = α at an infinite number of points
(α, α), (α + 2π, α), (α + 4π, α), . . . . What happens to the angle between the spiral
and the ray at the point (α + 2πn, α) as n→∞?

29. Let a and b be positive numbers and a curve be given parametrically by the
equations

x = a cos(t) y = b sin(t).

(a) Show that the curve is the ellipse x2

a2 + y2

b2
= 1.

(b) Find the area of the region bounded by the ellipse by making a substitution
that expresses 4

∫ a
0 y dx in terms of an integral in which the variable is t and

the range of integration is [0, π/2].

30. For the curve given parametrically by

x = t2 + et y = t + et

for t in [0, 1].
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(a) Plot the points corresponding to t = 0, 1/2, and 1.

(b) Find the slope of the curve at (1, 1).

(c) Find the area of the region under the curve and above the interval [1, e + 1].
(See Exercise 29(b).)

31. What is the slope of the cycloid in Figure 9.3.2 when it first has height a?
(See Example 1.)

32. The region under the arch of the cycloid

x = aθ − a sin(θ), y = a− a cos(θ) (0 ≤ θ ≤ 2π)

and above the x-axis is revolved around the x-axis. Find the volume of the solid of
revolution produced.

33. Find the volume of the solid of revolution obtained by revolving the region in
Exercise 32 about the y-axis.

34. Let a be a positive constant. For the curve given parametrically by the equa-
tions x = a cos3(t), y = a sin3(t).

(a) sketch the curve.

(b) express the slope of the curve in terms of the parameter t.

35. Solve the parametric equations for the cycloid, x = aθ − a sin(θ), y =
a− a cos(θ), for x as a function of y. (See 2.)

36. For a tangent line to the curve in Exercise 34 at a point P in the first quadrant,
show that the length of the segment of that line intercepted by the coordinate axes
is a.

37. L’Hôpital’s rule asserts that if limt→0 f(t) = 0, limt→0 g(t) = 0, and limt→0(f ′(t)/g′(t))
exists, then limt→0(f(t)/g(t)) = limt→0(f ′(t)/g′(t)). Interpret it in terms of the pa-
rameterized curve x = g(t), y = f(t). (Make a sketch of the curve near (0, 0) and
show on it the geometric meaning of the quotients f(t)/g(t) and f ′(t)/g′(t).)
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Figure 9.3.4
38. The Folium of Descartes, shown in Figure 9.3.4, is the graph of

x3 + y3 = 3xy.

It consists of a loop and two infinite pieces asymptotic to the line x + y + 1 = 0.
Parameterize the curve by the slope t of the line joining the origin with (x, y). Thus
for the point (x, y) on the curve, y = xt.

(a) show that

x =
3t

1 + t3
and y =

3t2

1 + t3
.

(b) find the highest point on the loop.

(c) find the point on the loop furthest to the right.

(d) the loop is parameterized by t in [0,∞). which values of t parameterize the
part in the fourth quadrant?

(e) which values of t parameterize the part in the second quadrant? Show that
the Folium of Descartes is symmetric with respect to the line y = x.

(Search for “Folium Descartes” to see its history which goes back to 1638. See also
Exercise 33.)
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9.4 Arc Length and Speed on a Curve

In Section 4.2 we studied the motion of an object moving on a line. If at time
t its position is x(t) then its velocity is dx

dt
and its speed is

∣∣dx
dt

∣∣. Now we will
examine the velocity and speed of an object moving along a curved path.

Arc Length and Speed in Rectangular Coordinates

Suppose an object is moving on a path given parametrically by

x = g(t)
y = h(t)

where g and h have continuous derivatives. If we think of t as time we can
find a formula for its speed.

Let s(t) be the arc length covered from the initial time to time t. In an
interval of time of length ∆t it travels a distance ∆s along the path. We want
to find

lim
∆t→0

∆s

∆t
.

Figure 9.4.1

During the time interval [t, t+∆t] the object goes from P to Q on the path,
covering a distance ∆s, as shown in Figure 9.4.1. Its x-coordinate changes by
∆x and its y-coordinate by ∆y. The chord PQ has length

√
(∆x)2 + (∆y)2.

We assume then that the curve is well behaved in the sense that lim∆t→0
∆s
PQ

= 1.

Then

lim
∆t→0

∆s

∆t
= lim

∆t→0

(
∆s

PQ

PQ

∆t

)
= lim

∆t→0

∆s

PQ
lim

∆t→0

PQ

∆t

= 1 · lim
∆t→0

PQ

∆t
= lim

∆t→0

√
(∆x)2 + (∆y)2

∆t

= lim
∆t→0

√(
∆x

∆t

)2

+

(
∆y

∆t

)2

=

√(
dx

dt

)2

+

(
dy

dt

)2

.

so

ds

dt
=

√(
dx

dt

)2

+

(
dy

dt

)2

or, in terms of differentials,
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ds =
√

(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

Figure 9.4.2

The rates at which x and y change determine how fast the arc length s changes,
as shown in Figure 9.4.2.

Now that we have a formula for ds/dt, we integrate it to get the distance
along the path covered during a time interval [a, b]:

arc length =

b∫
a

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (9.4.1)

If the curve is given in the form y = f(x), we can use x as the parameter. A
parametric representation of the curve then is

x = x, y = f(x)

and (9.4.1) becomes

arc length =

b∫
a

√
1 + (f ′(x))2 dx.

The arc length function is, by definition, an non-decreasing function. This
means ds/dt is never negative. In most applications ds/dt will never be zero
either.

Three examples will show how these formulas are applied. The first goes
back to the year 1657, when the 20-year old Englishman, William Neil, found
the length of an arc on the graph of y = x3/2. His method was more

Figure 9.4.3

complicated.
Earlier, Thomas Harriot had found the length of an arc of the spiral r = eθ,
but his work was not widely known.

EXAMPLE 1 Find the arc length of the curve y = x3/2 for x in [0, 1]. (See
Figure 9.4.3.)
SOLUTION By (9.4.1),

arc length =

1∫
0

√
1 +

(
dy

dx

)2

dx.
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Since y = x3/2, we differentiate to find dy/dx = 3
2
x1/2. Thus

arc length =
∫ 1

0

√
1 +

(
3
2
x1/2

)2
dx =

∫ 1

0

√
1 + 9

4
x dx

=
∫ 13/4

1

√
u · 4

9
du (u = 1 + 9

4
x, du = 9

4
dx)

= 4
9
· 2

3
u3/2

∣∣13/4

1
= 8

27

((
13
4

)3/2 − 13/2
)

= 8
27

(
133/2

8
− 1
)

= 133/2−8
27

.

�
The arc length of the curve y = xa where a is a non-zero rational number,

usually cannot be computed using the Fundamental Theorem of Calculus. The
only cases in which it can be computed by the FTC are a = 1 (the graph of
y = x) and a = 1 + 1

n
where n is an integer. Exercise 32 treats this question.

Figure 9.4.4

EXAMPLE 2 In Section 9.3 the parametric equations for the motion of
a ball thrown horizontally with a speed of 32 feet per second (≈ 21.8 mph)
were found to be x = 32t, y = −16t2. (See Example 1 and Figure 9.3.1 in
Section 9.3.) How fast is the ball moving at time t? Find the distance s that
the ball travels during the first b seconds.
SOLUTION From x = 32t and y = −16t2 we compute dx

dt
= 32 and dy

dt
=

−32t. Its speed at time t is

Speed =

√(
dx

dt

)2

+

(
dy

dt

)2

=
√

(32)2 + (−32t)2 = 32
√

1 + t2 feet per second.

The distance traveled is the arc length from t = 0 to t = b. By (9.4.1),

arc length =

b∫
0

√
(32)2 + (−32t)2 dt = 32

b∫
0

√
1 + t2 dt.

See Formula 31 in the
integral table.

The integral can be evaluated with an integration table or with the trigono-

metric substitution x = tan(θ). An antiderivative of
√

1 + t2 is

1

2

(
t
√

1 + t2 + ln
(
t +
√

1 + t2
))

and the distance traveled is

16b
√

1 + b2 + 16 ln
(
b +
√

1 + b2
)

.

�

EXAMPLE 3 Find the length of one arch of the cycloid found in Example 2
of Section 9.3.
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822 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

SOLUTION The curve can be parameterized as x = aθ − a sin(θ), and y =
a − a cos(θ) with θ as the parameter. Over one arch of the cycloid, θ varies
from 0 to 2π.

We compute

dx

dθ
= a− a cos(θ) and

dy

dθ
= a sin(θ).

The square of the speed is

(a− a cos(θ))2 + (a sin(θ))2 = a2
(
(1− cos(θ))2 + (sin(θ))2

)
= a2

(
1− 2 cos(θ) + (cos(θ))2 + (sin(θ))2

)
= a2 (2− 2 cos(θ))

= 2a2(1− cos(θ)).

Using formula (9.4.1) and the trigonometric identity 1− cos(θ) = 2 sin2(θ/2),
we have

arc length of one arch =

2π∫
0

√
2a2(1− cos(θ)) dθ = a

√
2

2π∫
0

√
1− cos(θ) dθ

= a
√

2

2π∫
0

√
2 sin

(
θ

2

)
dθ = 2a

2π∫
0

sin

(
θ

2

)
dθ

= 2a

(
−2 cos

(
θ

2

)∣∣∣∣2π

0

)
= 2a (−2(−1)− (−2)(1)) = 8a.

Figure 9.4.5

So, as θ varies from 0 to 2π, a bicycle travels a distance of 2πa ≈ 6.28318a
and a tack in the tread of the tire travels a distance 8a. �

Arc Length and Speed in Polar Coordinates

So far in this section curves have been described in rectangular coordinates.
Now we consider a curve given in polar coordinates by r = f(θ).

We will estimate the length of arc ∆s corresponding to small changes ∆θ
and ∆r in polar coordinates, as shown in Figure 9.4.5. The region bounded
by the circular arc AB, the straight segment BC, and AC, part of the curve,
resembles a right triangle whose legs have lengths r∆θ and ∆r. Because ∆s
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§ 9.4 ARC LENGTH AND SPEED ON A CURVE 823

is well approximated by its hypotenuse,
√

(r∆θ)2 + (∆r)2. We expect

ds

dθ
= lim

∆θ→0

∆s

∆θ
= lim

∆θ→0

√
(r∆θ)2 + (∆r)2

(∆θ)

= lim
∆θ→0

√
r2 +

(
∆r

∆θ

)2

=

√
r2 +

(
dr

dθ

)2

.

That is,

For a curve given in polar coordinates

ds

dθ
=

√
r2 +

(
dr

dθ

)2

or ds =
√

(r dθ)2 + (dr)2 =

√
r2 + (r′)2 dθ.

This formula can also be obtained from the rectangular coordinate formula by
using x = r cos(θ) and y = r sin(θ). (See Exercise 20.) However, we prefer
the geometric approach because it is more direct, more intuitive, and easier to
remember. See Exercise 20.

Arc Length of a Polar Curve r = f(θ)

The length of the curve r = f(θ) for θ in [α, β] is s =
∫ β

α
ds where

ds =

√
r2 + (r′))2 dθ =

√
(f(θ))2 + (f ′(θ))2 dθ.

EXAMPLE 4 Find the length of the spiral r = e−3θ for θ in [0, 2π].
SOLUTION From

r′ =
dr

dθ
= −3e−3θ,
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the formula gives

arc length =

β∫
α

√
r2 + (r′)2 dθ =

2π∫
0

√
(e−3θ)2 + (−3e−3θ)2 dθ

=

2π∫
0

√
e−6θ + 9e−6θ dθ =

√
10

2π∫
0

√
e−6θ dθ

=
√

10

2π∫
0

e−3θ dθ =
√

10
e−3θ

−3

∣∣∣∣2π

0

=
√

10

(
e−3·2π

−3
− e−3·0

−3

)
=
√

10

(
e−6π

−3
+

1

3

)
=

√
10

3

(
1− e−6π

)
.

�

Summary

This section concerned speed along a parametric path and the length of the
path. If the path is described in rectangular coordinates, then Figure 9.4.6(a)
conveys the key ideas. If in polar coordinates, Figure 9.4.6(b) is the key. It
is easier to recall the diagrams than the formulas for speed and arc length.
Everything depends on the Pythagorean Theorem.

(a) (b)

Figure 9.4.6 (a) ds =
√

(dx)2 + (dy)2 (b) ds =
√

(rdθ)2 + (dr)2
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EXERCISES for Section 9.4

In Exercises 1 to 8 find the arc lengths of the curves over the intervals.

1. y = x3/2, x in [1, 2]
2. y = x2/3, x in [0, 1]
3. y = (ex + e−x)/2, x in [0, b]
4. y = x2/2− ln(x)/4, x in [2, 3]
5. x = cos3(t), y = sin3(t), t in [0, π/2]
6. r = eθ, θ in [0, 2π]
7. r = 1 + cos(θ), θ in [0, π]
8. r = cos2(θ/2), θ in [0, π]

In each of Exercises 9 to 12 find the speed of a particle at time t, given the parametric
equations for its path.

9. x = 50t, y = −16t2

10. x = sec(3t), y = sin−1(4t)
11. x = t + cos(t), y = 2t− sin(t)
12. x = csc(θ/2), y = tan−1(

√
t)

13.

(a) Graph x = t2, y = t for 0 ≤ t ≤ 3.

(b) Estimate its arc length from (0, 0) to (9, 3) by an inscribed polygon whose
vertices have x-coordinates 0, 1, 4, and 9.

(c) Set up a definite integral for the arc length of the curve in question.

(d) Estimate the definite integral by using a partition of [0, 3] into three sections,
each of length 1, and the trapezoid method.

(e) Estimate the definite integral by Simpson’s method with six sections.

(f) If your calculator has a program to evaluate definite integrals, use it to evaluate
the definite integral in (c) to four decimal places.

14.

(a) Graph y = 1/x2 for x in [1, 2].

(b) Estimate the length of the arc by using an inscribed polygon whose vertices
are (1, 1), (5

4 ,
(

4
5

)2), (3
2 ,
(

2
3

)2), and (2, 1
4).
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826 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(c) Set up a definite integral for the arc length of the curve.

(d) Estimate the definite integral by the trapezoid method, using four equal length
sections.

(e) Estimate the definite integral by Simpson’s method with four sections.

(f) If your calculator has a program to evaluate definite integrals, use it to evaluate
the definite integral to four decimal places.

15. How long is the spiral r = e−3θ, θ ≥ 0?

16. How long is the spiral r = 1/θ, θ ≥ 2π?

17. Suppose that a curve has equation x = f(y) in rectangular coordinates. Show
that

arc length =

d∫
c

√
1 +

(
dx

dy

)2

dy

where y ranges over the interval [c, d], using a triangle whose sides have length dx,
dy, and ds.

18. Consider the arc length of y = x2/3 for x in the interval [1, 8].

(a) Set up a definite integral for the arc length using x as the parameter.

(b) Set up a definite integral for the arc length using y as the parameter.

(c) Evaluate the easier of the two integrals found in parts (a) and (b).

(See Exercise 17.)

19. At time t ≥ 0 a ball is at the point (24t,−16t2 + 5t + 3).

(a) Where is it at time t = 0?

(b) What is its horizontal speed at that time?

(c) What is its vertical speed at that time?

20. We obtained the formula ds
dθ =

√
r2 +

(
dr
dθ

)2
geometrically.

(a) Obtain it by calculus, starting with
(

ds
dθ

)2
=
(

dx
dθ

)2
+
(

dy
dθ

)2
and using the

relations x = r cos(θ) and y = r sin(θ), where r = f(θ).
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(b) Which derivation do you prefer? Why?

21. Let P = (x, y) depend on θ as shown in Figure 9.4.7.

(a) Sketch the curve that P sweeps out.

(b) Show that P = (2 cos(θ), sin(θ)).

(c) Set up a definite integral for the length of the curve in(a). Do not evaluate
the integral.

(d) Eliminate θ and show that P is on the ellipse

x2

4
+

y2

1
= 1.

Figure 9.4.7
22.

(a) At time t a particle has polar coordinates r = g(t), θ = h(t). How fast is it
moving?

(b) Use (a) to find the speed of a particle which at time t is at the point (r, θ) =
(et, 5t).

23.

(a) How far does a bug travel from time t = 1 to time t = 2 if at time t it is at
the point (x, y) = (cos πt, sinπt)?

(b) How fast is it moving at time t?
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828 CHAPTER 9 POLAR COORDINATES AND PLANE CURVES

(c) Graph its path relative to an xy coordinate system. Where is it at time t = 1?
At t = 2?

(d) Eliminate t to find a relation between x and y.

24. Let a be a positive number. Find the arc length of the Archimedean spiral
r = aθ for θ in [0, 2π].

25. If r = 1 + cos θ for θ in [0, π] we may consider r as a function of θ or as a
function of s, arc length along the curve, measured, say, from (2, 0).

(a) Find the average of r with respect to θ in [0, π].

(b) Find the average of r with respect to s. (Express all quantities appearing in
this average in terms of θ.)

(See also Exercises 13 and 14 in the Chapter 9 Summary.)

26. Let r = f(θ) describe a curve in polar coordinates. Assume that df/dθ is
continuous. Let θ be a function of time t and let s(t) be the length of the curve
corresponding to the time interval [a, t].

(a) What definite integral is equal to s(t)?

(b) What is the speed ds/dt?

27. The function r = f(θ) describes a curve in polar coordinates, for θ in [0, 2π].
Assume r′ is continuous and f(θ) > 0. Prove that the average of r as a function of
arc length is at least as large as 2A/s, where A is the area swept out by the radius
and s is the arc length of the curve. For what curves is the average equal to 2A/s?

28. The equations x = cos(t), y = 2 sin(t), t in [0, π/2] describe a quarter of an
ellipse. Draw the arc. Describe at least two different ways of estimating its length.
Compare the advantages and challenges each method presents. Use the method of
your choice to estimate the length of this arc.

29. When a curve is given in rectangular coordinates, its slope is dy
dx . To find the

slope of the tangent line to the curve given in polar coordinates involves more work.
Assume that r = f(θ). Use the relation

dy

dx
=

dy/dθ

dx/dθ
,

which comes from the chain rule (dy
dθ = dy

dx
dx
dθ ).
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(a) Using y = r sin(θ) and x = r cos(θ) find dy
dθ and dx

dθ .

(b) Show that the slope is

r cos(θ) + dr
dθ sin(θ)

−r sin(θ) + dr
dθ cos(θ)

. (9.4.2)

30. Use (9.4.2) to find the slope of the cardioid r = 1 + sin(θ) at θ = π
3 .

31. Let y = f(x) for x in [0, 1] describe a curve that starts at (0, 0), ends at (1, 1),
and lies in the square with vertices (0, 0),(1, 0),(1, 1), and (0, 1). Assume f has a
continuous derivative.

(a) What can be said about the arc length of the curve? How small and how large
can it be?

(b) Answer (a) if we assumed also that f ′(x) ≥ 0 for x in [0, 1].

32. Consider the length of the curve y = xm, 0 ≤ x ≤ 1, where m is a rational
number. Show that the Fundamental Theorem of Calculus is of aid in computing
this length only if m = 1 or if m = 1 + 1/n for some integer n. (It is known that∫

xp(1 + x)q dx is elementary for rational numbers p and q only when at least one
of p, q, and p + q is an integer.)

33. If one convex polygon P1 lies inside another polygon P2 is the perimeter of P1

necessarily less than the perimeter of P2? What if P1 is not convex?

34. One part of the cardioid r = 1 + sin(θ) is traced as θ increases from −π
2 to π

2 .
Find its highest point and give its polar coordinates.

Exercises 35 and 36 form a unit.
35. Figure 9.4.8(a) shows the angle between the radius and tangent line to the
curve r = f(θ). Using γ = α − θ and tan(A − B) = tan(A)−tan(B)

1+tan(A) tan(B) , show that

tan(γ) =
r

r′
. (See Exercise 36 for an intuitive derivation of tan(γ).)

36. The formula tan(γ) = r/r′ in Exercise 35 is so simple one would expect
a simple geometric explanation. Use the triangle in Figure 9.4.5 that we used to
obtain the formula for ds

dθ to show that tan(γ) should be r/r′. (See Exercise 35.)
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(a) (b)

Figure 9.4.8
37. Four dogs are chasing each other counterclockwise at the same speed as shown
in Figure 9.4.8(b). Initially they are at the vertices of a square of side a. As they
chase each other, each running directly toward the dog in front, they approach the
center of the square in spiral paths. How far does each dog travel?

(a) Find the equation of the spiral path each dog follows and use calculus to
answer this question.

(b) Answer the question without using calculus.

38. We assumed that a chord AB of a smooth curve is a good approximation of the
arc AB when B is near to A. Show that the formula for arc length is consistent with
this assumption. That is, if y = f(x) has a continuous derivative, A = (a, f(a)),
B = (x, f(x)), then ∫ x

a

√
1 + f ′(t)2 dt√

(x− a)2 + (f(x)− f(a))2

approaches 1 as x approaches a. (L’Hôpital’s Rule does not help. For simplicity,
assume a = 0 = f(0).)

39. In some approaches to arc length and speed on a curve the arc length is found
first, then the speed. We outline this method now.
Let x = g(t), y = h(t) where g and h have continuous derivatives. Let a = t0 < t1 <
t2 < · · · < tn = b be a partition of [a, b] into n equal sections of length ∆t = (b−a)/n.
Let Pi = (g(ti), h(ti)), which we write as (xi, yi). Then the polygon P0P1P2 · · ·Pn

is inscribed in the curve. We assume that as n → ∞, the length of the polygon,∑n
i=1 Pi−1Pi approaches the length of the curve from (g(a), h(a)) to (g(b), h(b)).

(a) Show that the length of the polygon is
∑n

i=1

√
(xi − xi−1)2 + (yi − yi−1)2.
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(b) Show that the sum can be written as

n∑
i=1

√
(g′(t∗i ))2 + (h′(t∗∗i ))2 ·∆t (9.4.3)

for some t∗i and t∗∗i in [ti−1, ti].

(c) Why would you expect the limit of (9.4.3) as n→∞ to be
∫ b
a

√
(g′(t))2 + h′(t))2 dt?

(This result is typically proved in advanced courses, and is true even though
t∗i and t∗∗i may be different.)

(d) From (c) deduce that the speed is
√

(g′(t))2 + h′(t))2.
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9.5 The Area of a Surface of Revolution

Figure 9.5.1

In this section we develop a formula for the surface area of a solid of rev-
olution as a definite integral. We will show that the surface area of a sphere
is four times the area of a cross section through its center. (See Figure 9.5.1.)
This was one of the great discoveries of Archimedes in the third century B.C.

The Local Estimate of Surface Area

Let y = f(x) have a continuous derivative for x in some interval. Assume that
f(x) ≥ 0 on it. When the graph fo f is revolved about the x-axis it sweeps
out a surface, as shown in Figures 9.5.2. To develop a definite integral for this

(a) (b)

Figure 9.5.2

surface area, we use an informal approach.

(a) (b) (c) (d) (e)

Figure 9.5.3

A short section of the graph y = f(x) is almost straight. We approximate
it by a short line segment of length ds, a small number. When the segment is

April 22, 2012 Calculus



§ 9.5 THE AREA OF A SURFACE OF REVOLUTION 833

revolved about the x-axis it sweeps out a narrow band. (See Figures 9.5.3(a)
and (b).)

If we can estimate the area of the band, then we will have a local approxi-
mation of the surface area, from which we get a definite integral for the entire
surface area.

Cut the band with scissors and lay it flat, as in Figures 9.5.3(c) and (d).
The area of the flat band in Figure 9.5.3(d) is close to the area of a flat rectangle
of length 2πy and width ds, as in Figure 9.5.3(e). (See Exercises 28 and 29.)

The gives us

local approximation of the surface area of one slice = 2πy ds.

The Key Integral for Surface Area

From the local estimate for surface area we obtain the following integral for
the total area of the curved surface:

surface area =

s1∫
s0

2πy ds. (9.5.1)

In (9.5.1), [s0, s1] describes the appropriate interval on the s-axis. Since s is
a clumsy parameter, for computations we will use one of the forms for ds to
change (9.5.1) into more convenient integrals.

Assume that y ≥ 0 and that
dy/dx is continuous.

Say that the section of the graph y = f(x) that was revolved corresponds
to the interval [a, b] on the x-axis, as in Figure 9.5.4. Then

ds =

√
1 +

(
dy

dx

)2

dx

Figure 9.5.4

and the surface area integral
∫ s1

s0
2πy ds becomes

surface area =

b∫
a

2πy

√
1 +

(
dy

dx

)2

dx. (9.5.2)
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EXAMPLE 1 Find the surface area of a sphere of radius a.
SOLUTION The circle of radius a has the equation x2 + y2 = a2. The top
half has the equation y =

√
a2 − x2. The sphere of radius a is formed by

revolving it about the x-axis.

Figure 9.5.5

(See Figure 9.5.5.) We have

surface area of sphere =

a∫
−a

2πy ds.

Because dy/dx = −x/
√

a2 − x2 we find that

ds =

√
1 +

(
dy

dx

)2

dx =

√
1 +

(
−x√

a2 − x2

)2

dx

=

√
1 +

x2

a2 − x2
dx =

√
a2

a2 − x2
dx =

a√
a2 − x2

dx.

Thus,

surface area of sphere =

a∫
−a

2πy ds =

a∫
−a

2π
√

a2 − x2
a√

a2 − x2
dx

=

a∫
−a

2πa dx = 2πax|a−a = 4πa2.

The surface area of a sphere is 4 times the area of its equatorial cross section.
�

If the graph is given parametrically, x = g(t), y = h(t), where g and h
have continuous derivatives and h(t) ≥ 0, then it is natural to express the
integral

∫ s1

s0
2πy ds as an integral over an interval on the t-axis. If t varies in

the interval [a, b], then

ds =
√

(dx)2 + (dy)2 =

√(
dx

dt

)2

+

(
dy

dt

)2

dt

which leads to

Surface area for
a parametric curve

=

b∫
a

2πy

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (9.5.3)
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9.5.2 is the special case of (9.5.3) when the parameter is x.

The formulas may seem to refer only to surfaces obtained by revolving
a curve about the x-axis. In fact, they can apply to revolution about any
line. The factor y in the integrand, 2πy ds, is the distance from a point on
the curve to the axis of revolution. We replace y by R (for radius) to free
ourselves from coordinate systems. (We use capital R to avoid confusion with
polar coordinates.) The simplest way to write the formula for surface area of
revolution is then

surface area =

d∫
c

2πR ds,

Figure 9.5.6 The key to
this section.

where the interval [c, d] refers to the parameter s. However, in practice arc
length, s, is seldom a convenient parameter. Instead, x, y, t or θ is used
and the interval of integration describes the interval over which the parameter
varies.

To remember the formula, think of a narrow circular band of width ds
and radius R as having an area close to the area of the rectangle shown in
Figure 9.5.6.

EXAMPLE 2 Find the area of the surface obtained by revolving around
the y-axis the part of the parabola y = x2 that lies between x = 1 and x = 2.
(See Figure 9.5.7.)

R is found by inspection of
a diagram.SOLUTION The surface area is

∫ b

a
2πR ds. Since the curve is described as a

function of x, choose x as the parameter. From Figure 9.5.7, R = x. Because

Figure 9.5.7

ds =

√
1 +

(
dy

dx

)2

dx =
√

1 + 4x2 dx

the surface area is
2∫

1

2πx
√

1 + 4x2 dx.

To evaluate the integral, use the substitution

u = 1 + 4x2 du = 8x dx.
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Hence x dx = du/8. The new limits of integration are u = 5 and u = 17. Thus

surface area =

17∫
5

2π
√

u
du

8
=

π

4

17∫
5

√
u du

=
π

4
· 2
3
u3/2

∣∣∣∣17
5

=
π

6
(173/2 − 53/2).

�

Figure 9.5.8

EXAMPLE 3 Find the surface area when the curve r = cos(θ), θ in [0, π/2]
is revolved around (a) the x-axis and (b) the y-axis.
SOLUTION The curve shown in Figure 9.5.8 is a semicircle with radius 1/2
and center (1/2, 0).

(a) We need to find both R and ds/dθ. R = r sin(θ) = cos(θ) sin(θ) and
using the formula for ds

dθ
for a polar curve from Section 9.4

ds

dθ
=

√
r(θ)2 + r′(θ)2 =

√
(cos(θ))2 + (− sin(θ))2 = 1.

Figure 9.5.9

Then

surface area =

π/2∫
0

2πR
ds

dθ
dθ =

π/2∫
0

2π cos(θ) sin(θ)(1) dθ

=

π/2∫
0

2π sin(θ) cos(θ) dθ = 2π
sin2(θ)

2

∣∣∣∣π/2

0

= π.

This is expected since the surface is a sphere of radius 1/2. See Figure 9.5.9.
(b) In this case R = r cos(θ) = cos2(θ). Thus∫ π/2

0 cos2(θ) dθ was
evaluated in Section 8.5.

surface area =

π/2∫
0

2πR
ds

dθ
dθ =

π/2∫
0

2π cos2(θ)(1) dθ

Figure 9.5.10

= 2π

π/2∫
0

cos2(θ) dθ = 2π(
π

4
) =

π2

2
.

This surface is the top half of a doughnut whose hole has vanished, more like
the top half of a modern bagel. See Figure 9.5.10. �
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Summary

This section developed a definite integral for the area of a surface of revolution.

Figure 9.5.11

It rests on the use of 2πR ds as a local estimate of the area swept out by a short
segment of length ds revolved around a line L at a distance R from the segment.
(See Figure 9.5.11.) We gave an informal argument for it. Exercises 28 and 29
offer a more formal treatment.
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EXERCISES for Section 9.5

In Exercises 1 to 4 set up a definite integral for the area of the surface using the
suggested parameter. Show the radius R on a diagram. Do not evaluate the definite
integrals.

1. The graph of y = x3, x in the interval [1, 2], revolved about the x-axis with
parameter x.

2. The graph of y = x3, x in the interval [1, 2], revolved about the line y = −1
with parameter x.

3. The graph of y = x3, x in the interval [1, 2], revolved about the y-axis with
parameter y.

4. The graph of y = x3, x in the interval [1, 2], revolved about the y-axis with
parameter x.

5. Find the area of the surface obtained by rotating about the x-axis that part of
the curve y = ex that lies above [0, 1].

6. Find the area of the surface formed by rotating one arch of the curve y = sin(x)
about the x-axis.

7. One arch of the cycloid given parametrically by x = θ − sin(θ), y = 1− cos(θ)
is revolved around the x-axis. Find the area of the surface produced.

8. The curve given parametrically by x = et cos(t), y = et sin(t) (0 ≤ t ≤ π/2) is
revolved around the x-axis. Find the area of the surface produced.

In Exercises 9 to 16 find the area of the surface formed by revolving the curve
about an axis. Leave the answer as a definite integral, but indicate how it could be
evaluated by the Fundamental Theorem of Calculus.

9. y = 2x3 for x in [0, 1], about the x-axis.

10. y = 1/x for x in [1, 2], about the x-axis.

11. y = x2 for x in [1, 2], about the x-axis.

12. y = x4/3 for x in [1, 8], about the y-axis.

13. y = x2/3 for x in [1, 8], about the line y = 1.

14. y = x3/6 + 1/(2x) for x in [1, 3], about the y-axis.

15. y = x3/3 + 1/(4x) for x in [1, 2], about the line y = −1.

16. y =
√

1− x2 for x in [−1, 1], about the line y = −1.
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Exercise 17 was solved by Archimedes more than 2300 years ago. He considered it
his greatest accomplishment. About two centuries after Archimedes’ death, Cicero
wrote

I shall call up from the dust [the ancient equivalent of a blackboard] and
his measuring-rod an obscure, insignificant person belonging to the same
city [Syracuse], who lived many years after, Archimedes. When I was
quaestor I tracked out his grave, which was unknown to the Syracusans
(as they totally denied its existence), and found it enclosed all round and
covered with brambles and thickets; for I remembered certain doggerel
lines inscribed, as I had heard, upon his tomb, which stated that a
sphere along with a cylinder had been set up on the top of his grave.
Accordingly, after taking a good look around (for there are a great
quantity of graves at the Agrigentine Gate), I noticed a small column
rising a little above the bushes, on which there was the figure of a sphere
and a cylinder. And so I at once said to the Syracusans (I had their
leading men with me) that I believed it was the very thing of which I
was in search. Slaves were sent in with sickles who cleared the ground of
obstacles, and when a passage to the place was opened we approached
the pedestal fronting us; the epigram was traceable with about half the
lines legible, as the latter portion was worn away. [Cicero, Tusculan
Disputations, vol. 23, translated by J. E. King, Loef Classical Library,
Harvard Univeristy, Cambridge, 1950.]

Archimedes was killed by a Roman soldier in 212 B.C. Cicero was quaestor in 75 B.C.

17. Consider the smallest tin can that contains a given sphere. (The height and
diameter of the tin can equal the diameter of the sphere.)

(a) Compare the volume of the sphere with the volume of the tin can.

(b) Compare the surface area of the sphere with the total surface area of the can.

(See also Exercise 32.)

18.

(a) Compute the area of the portion of a sphere of radius a that lies between
two parallel planes at distances c and c + h from the center of the sphere
(0 ≤ c ≤ c + h ≤ a).

(b) The result in (a) depends only on h, not on c. What does this mean geomet-
rically? (See Figure 9.5.12.)
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Figure 9.5.12

In Exercises 19 and 20 estimate the surface area obtained by revolving the arc
about the given line. Find a definite integral for the surface area and then use either
Simpson’s method with six sections or a programmable calculator or computer to
approximate the value of the integral.

19. y = x1/4, x in [1, 3], about the x-axis.

20. y = x1/5, x in [1, 3], about the line y = −1.

Exercises 21 to 24 are concerned with the area of a surface obtained by revolving a
curve given in polar coordinates.
21. Show that the area of the surface obtained by revolving the curve r = f(θ),
α ≤ θ ≤ β, around the polar axis is

β∫
α

2πr sin θ
√

r2 + (r′)2 dθ.

(Use a local approximation informally.)

22. Use Exercise 21 to find the surface area of a sphere of radius a.

23. Find the area of the surface formed by revolving the portion of the curve
r = 1 + cos(θ) in the first quadrant about (a) the x-axis, (b) the y-axis. (The iden-
tity 1 + cos(θ) = 2 cos2(θ/2) may help in (b).)

24. The curve r = sin(2θ), θ in [0, π/2], is revolved around the polar axis. Set up
an integral for the surface area.
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25. The portion of the curve x2/3 + y2/3 = 1 in the first quadrant is revolved
around the x-axis. Find the area of the surface produced.

26. Although the Fundamental Theorem of Calculus is of no use in computing
the perimeter of the ellipse x2/a2 + y2/b2 = 1, it is useful in computing the surface
area of the football-shaped surface formed when the ellipse is rotated about one of
its axes.

(a) Assuming that a > b and that the ellipse is revolved around the x-axis, find
the area.

(b) Does your answer give the correct formula for the surface area of a sphere of
radius a, 4πa2? (Let b approach a from the left.)

27. The unbounded region bounded by y = 1/x and the x-axis and situated to
the right of x = 1 is revolved around the x-axis to produce a solid region S.

(a) Show that the volume of S is finite but its surface area is infinite.

(b) Does this mean that an infinite surface area can be painted by pouring a finite
amount of paint into the solid region it bounds?

Exercises 28 and 29 obtain the formula for the area of the surface obtained by
revolving a line segment about a line that does not meet it. (The area was estimated
in the text.)

(a) (b) (c) (d)

Figure 9.5.13

28. A right circular cone has slant height L and radius r, as shown in Fig-
ure 9.5.13(a). If it is cut along a line through its vertex and laid flat, it becomes
a sector of a circle of radius L, as shown in Figure 9.5.13(b). By comparing Fig-
ure 9.5.13(b) to a complete disk of radius L find the area of the sector and thus the
area of the cone.
29. Consider a line segment of length L in the plane that does not meet a line
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in the plane, called the axis. (See Figure 9.5.13(c).) When the segment is revolved
around the axis, it sweeps out a curved surface. Show that its area equals 2πrL
where r is the distance from the midpoint of the line segment to the axis. The
surface in Figure 9.5.3 is called a frustum of a cone. Follow these steps:

(a) Complete the cone by extending the frustum as shown in Figure 9.5.13(d).
Label the radii and lengths as in the figure. Show that r1

r2
= L1

L2
, so r1L2 =

r2L1.

(b) Show that the surface area of the frustum is πr1L1 − πr2L2.

(c) Express L1 as L2 + L and, using the result of (a), show that

πr1L1 − πr2L2 = πr2(L1 − L2) + πr1L = πr2L + πr1L.

(d) Show that the surface area of the frustum is 2πrL, where r = (r1 + r2)/2.
(This justifies our approximation 2πR ds.)

30. The derivative with respect to r of the volume of a sphere is its surface area:
d
dr

(
4πr3/3

)
= 4πr2. Is this a coincidence?

31. For some continuous functions f(x) the definite integral
∫ b
a f(x) dx depends

only on the width of the interval [a, b]. That is, there is a function g(x) such that,
for all a and b, a < b, in some interval,

b∫
a

f(x) dx = g(b− a). (9.5.4)

(a) Show that a constant function f(x) satisfies (9.5.4).

(b) Prove that if f(x) satisfies (9.5.4), then it must be constant.

(See Exercise 18.)

32. The Mercator map discussed in the CIE of this chapter preserves angles. A
Lambert azimuthal equal-area projection preserves areas, but not angles. It
is made by projecting a sphere on a cylinder tangent at the equator by rays parallel
to the equatorial plane and having one end on the diameter that joins the north and
south poles, as shown in Figure 9.5.14.
Explain why a Lambert map preserves areas. (See Exercise 17.)
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Figure 9.5.14
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9.6 Curvature

In this section we use calculus to obtain a measure of the curviness or curvature
of a curve. This concept will be generalized in Section 15.2 in the study of
motion along a curved path in space.

Introduction

Imagine a bug crawling around a circle of radius one centimeter, as in Fig-
ure 9.6.1(a). As it walks a small distance, say 0.5 cm, it notices that its
direction, measured by angle θ, changes. Another bug walks around a larger
circle, as in Figure 9.6.1(b). Whenever it goes 0.5 cm, its direction, measured
by φ, changes less. The first bug feels that his circle is curvier than the circle
of the second bug. We will provide a measure of curvature. A straight line
will have zero curvature everywhere. A circle of radius a will turn out to have
curvature 1/a everywhere. For other curves, the curvature varies from point
to point.

(a) (b)

Figure 9.6.1 The circle in (b) has twice the radius as the circle in (a). But
the change in ∆φ in (b) is half that in (a).

Definition of Curvature

Curvature measures how rapidly the direction changes as we move a small
distance along a curve. We have a way of assigning a numerical value to
direction, namely, the angle of the tangent line. The rate of change of this
angle with respect to arc length will be our measure of curvature.
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DEFINITION (Curvature) κ is the Greek letter
“kappa”.

Assume that a curve is given para-
metrically, with the parameter of P being s, the distance along the
curve from a fixed P0 to P . Let φ be the angle between the tan-
gent line at P and the positive part of the x-axis. The curvature
κ at P is the absolute value of the derivative, dφ

ds
, whenever the

derivative exists. (See Figure 9.6.2.)

curvature = κ =

∣∣∣∣dφ

ds

∣∣∣∣

Figure 9.6.2

A straight line has zero curvature everywhere, since φ is constant.

The next theorem shows that curvature of a small circle is large and the
curvature of a large circle is small, in agreement with the bugs’ experience.

Theorem 9.6.1 (Curvature of Circles). For a circle of radius a, the curvature∣∣dφ
ds

∣∣ is constant and equals 1/a, the reciprocal of the radius.

Proof

Figure 9.6.3

We needy to express φ as a function of arc length s on a circle of radius a.
In Figure 9.6.3 measure arc length s counterclockwise from the point P0 on
the x-axis. Then φ = π

2
+ θ, as Figure 9.6.3 shows. By definition of radian

measure, s = aθ, so that θ = s/a. So φ = π
2

+ s
a
. Differentiating with respect

to arc length yields:
dφ

ds
=

1

a
,

as claimed. •

Computing Curvature

When a curve is given in the form y = f(x), its curvature can be expressed in

terms of the first and second derivatives, dy
dx

and d2y
dx2 .

Theorem 9.6.2 (Curvature of y = f(x)). Let arc length s be measured along
the curve y = f(x) from a point P0. Assume that x increases as s increases
and that y′ and y′′ are continuous. Then
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curvature = κ =

∣∣∣ d2y
dx2

∣∣∣(
1 +

(
dy
dx

)2)3/2
.

Proof

The chain rule, dφ
dx

= dφ
ds

ds
dx

, implies

dφ

ds
=

dφ
dx
ds
dx

.

As was shown in Section 9.3,

ds

dx
=

(
1 +

(
dy

dx

)2
)1/2

.

Figure 9.6.4

All that remains is to express dφ
dx

in terms of dy
dx

and d2y
dx2 . In Figure 9.6.4,

dy

dx
= slope of tangent line to the curve = tan(φ).

We find dφ
dx

by differentiating both sides of dy
dx

= tan(φ) with respect to x. Thus

d2y

dx2
=

d

dx
(tan(φ)) = sec2(φ) · dφ

dx
=
(
1 + tan2(φ)

) dφ

dx
=

(
1 +

(
dy

dx

)2
)

dφ

dx
.

Solving for dφ/dx, we get

dφ

dx
=

d2y
dx2

1 +
(

dy
dx

)2 .

Consequently,

dφ

ds
=

dφ
dx
ds
dx

=
d2y
dx2(

1 +
(

dy
dx

)2)√
1 +

(
dy
dx

)2 =
d2y
dx2(

1 +
(

dy
dx

)2)3/2
,

and the theorem is proved. •

Geometry of curvature One might have expected the curvature to depend only on the second
derivative, d2y

dx2 , since it measures the rate at which the slope changes. This is
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correct only when dy
dx

= 0, that is, at critical points in the graph of y = f(x).
(See also Exercise 28.)

EXAMPLE 1 Find the curvature of y = x2.
SOLUTION

Figure 9.6.5

We have dy
dx

= 2x and d2y
dx2 = 2 so

κ =

∣∣∣ d2y
dx2

∣∣∣(
1 +

(
dy
dx

)2)3/2
=

2

(1 + (2x)2)3/2
.

The maximum curvature occurs when x = 0. The curvatures at (x, x2) and
at (−x, x2) are equal. As |x| increases, the curve becomes straighter and the
curvature approaches 0. (See Figure 9.6.5.) �

Curvature of a Parameterized Curve

Theorem 9.6.2 applies also
to curves given
parametrically.

Theorem 9.6.2 tells how to find the curvature if y is given as a function of
x. It holds also when the curve is described parametrically, where x and y are
functions of a parameter. Use

dy

dx
=

dy
dt
dx
dt

and
d2y

dx2
=

d
dt

(
dy
dx

)
dx
dt

. (9.6.1)

As mentioned in Section 9.3, both equations in (9.6.1) are consequences of the
chain rule.

EXAMPLE 2 The cycloid determined by a wheel of radius 1 has the para-
metric equations

x = θ − sin(θ) and y = 1− cos(θ),

as shown in Figure 9.6.6. Find its curvature.

Figure 9.6.6
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SOLUTION We find dy
dx

in terms of θ:

dx

dθ
= 1− cos(θ) and

dy

dθ
= sin(θ).

So
dy

dx
=

sin(θ)

1− cos(θ)
.

Similar calculations show that

d2y

dx2
=

d

dx

(
dy

dx

)
=

d
dθ

(
dy
dx

)
dx
dθ

=

d
dθ

(
sin(θ)

1−cos(θ)

)
1− cos(θ)

=
−1

(1− cos(θ))2
.

Thus the curvature is

κ =

∣∣∣ d2y
dx2

∣∣∣(
1 +

(
dy
dx

)2)3/2
=

∣∣∣ −1
(1−cos(θ))2

∣∣∣(
2

1−cos(θ)

)3/2
=

1

23/2
√

1− cos(θ)
.

Since y = 1− cos(θ) and 23/2 =
√

8, the curvature equals 1/
√

8y. �

Radius of Curvature

As Theorem 9.6.1 shows, a circle with curvature κ has radius 1/κ. This sug-
gests the definition

A large radius of curvature
implies a small curvature.

DEFINITION (Radius of Curvature) The radius of curvature
of a curve at a point is the reciprocal of the curvature there:

radius of curvature =
1

curvature
=

1

κ
.

As can be checked, the radius of curvature of a circle of radius a is a.
The cycloid in Example 2 has radius of curvature at the point (x, y) equal

to
√

8y. The higher the point on the curve, the straighter the curve. And the
cycloid is nearly vertical at points near the x-axis. See Exercise 29.

The Osculating Circle

The line through a point P on a curve that looks most like the curve near P
is the tangent line. The circle through P that looks most like the curve near
P has the same slope at P as the curve and a radius equal to the radius of
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curvature at P . It is called the osculating circle, from the Latin osculum,
meaning kiss.

At a given point P on a curve, the osculating circle at P is defined to be
that circle that passes through P , has the same slope at P as the curve does,
and has the same curvature there.

For the parabola y = x2 of Example 1, when x = 1, the curvature is 2/53/2

and the radius of curvature is 53/2/2 ≈ 5.5902. The osculating circle at (1, 1)
is shown in Figure 9.6.7. It crosses the parabola as it passes through the point
(1, 1). Although this may seem surprising, a little reflection will show why it
is to be expected.

Figure 9.6.7

SHERMAN: Some
rewording here, mostly to
eliminate a ”so”.

Think of driving along the parabola y = x2. If you start at (1, 1) and drive
up along the parabola, the curvature decreases. Because it is smaller than
the curvature of the osculating circle at (1, 1), the curve would be staighter
than the osculating circle at (1, 1) and you would be outside that circle. If you
start at (1, 1) and move toward the origin (to the left) on the parabola, the
curvature increases and is greater than that of the osculating circle at (1, 1).
You would be driving inside the osculating circle at (1, 1). This shows why the
osculating circle crosses the curve. The only osculating circle that does not
cross the curve y = x2 at its point of tangency is the one that is tangent at
(0, 0), where the curvature is a maximum.

Summary

The curvature κ of a curve was defined as the absolute value of the rate at
which the angle between the tangent line and the x-axis changes as a function
of arc length: curvature equals

∣∣dφ
ds

∣∣. If the curve is the graph of y = f(x),
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then

κ =

∣∣∣ d2y
dx2

∣∣∣(
1 +

(
dy
dx

)2)3/2
.

If the curve is given in terms of a parameter t then compute dy
dx

and d2y
dx2 with

the aid of this version of the chain rule,

d( )

dx
=

d( )
dt
dx
dt

, (9.6.2)

the empty parentheses enclosing first y, then dy
dx

.
Radius of curvature is the reciprocal of curvature.
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EXERCISES for Section 9.6

In Exercises 1 to 6 find the curvature and radius of curvature of the curve at the
point.
1. y = x2 at (1, 1)

2. y = cos(x) at (0, 1)

3. y = e−x at (1, 1/e)

4. y = ln(x) at (e, 1)

5. y = tan(x) at (π
4 , 1)

6. y = sec(2x) at (π
6 , 2)

In Exercises 7 to 10 find the curvature of the curve for the value of the parameter.
7. x = 2 cos(3t), y = 2 sin(3t) at t = 0

8. x = 1 + t2, y = t3 + t4 at t = 2

9. x = e−t cos(t), y = e−t sin(t) at t = π
6

10. x = cos3(θ), y = sin3(θ) at θ = π
3

11.

(a) Compute the curvature and radius of curvature for the curve y = (ex+e−x)/2.

(b) Show that the radius of curvature at (x, y) is y2.

12. Find the radius of curvature along the curve y =
√

a2 − x2, where a is a
constant. (Since the curve is part of a circle of radius a, the answer should be a.)

13. For what value of x is the radius of curvature of y = ex smallest?
Hint: How does one find the minimum of a function?

14. For what value of x is the radius of curvature of y = x2 smallest?

15.

(a) Show that at a point where a curve has its tangent parallel to the x-axis its
curvature is the absolute value of the second derivative d2y/dx2.

(b) Show that the curvature is never larger than the absolute value of d2y/dx2.
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16. An engineer lays out a railroad track as indicated in Figure 9.6.8(a). BC is
part of a circle and AB and CD are straight and tangent to the circle. After a train
runs over the track, the engineer is fired because the curvature is not a continuous
function. Why should the curvature be continuous?

(a) (b)

Figure 9.6.8
17. Railroad curves are banked to reduce wear on the rails and flanges. The
greater the radius of curvature, the less the curve must be banked. The best bank
angle A satisfies tan(A) = v2/(32R), where v is speed in feet per second and R is
radius of curvature in feet. A train travels in the elliptical track

x2

10002
+

y2

5002
= 1

at 60 miles per hour. Find the best angle A at (1000, 0) and (0, 500). (x and y are
measured in feet and 60 mph = 88 fps.)

18. The flexure formula in the theory of beams asserts that the bending moment
M required to bend a beam is proportional to the curvature, M = c/R, where c is a
constant depending on the beam and R is the radius of curvature. A beam is bent
to form the parabola y = x2. What is the ratio between the moments required at
(a) (0, 0) and (b) (2, 4)? (See Figure 9.6.8(b).)

Exercises 19 to 21 are related.
19. Find the radius of curvature at a point on the curve whose parametric equations
are

x = a cos θ, y = b sin θ.

20.

(a) Show, by eliminating θ, that the curve in Exercise 19 is the ellipse
x2

a2
+

y2

b2
= 1.

(b) What is the radius of curvature of the ellipse at (a, 0)? at (0, b)?
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21. An ellipse has major axis of length 6 and minor axis of length 4. Draw the
circles that most closely approximate the ellipse at the four points that lie at the
extremities of its axes. (See Exercises 19 and 20.)

In each of Exercises 22 to 24 a curve is given in polar coordinates. To find its cur-
vature write it in rectangular coordinates with parameter θ, using x = r cos(θ) and
y = r sin(θ).
22. Find the curvature of r = a cos(θ).
23. Show that at (r, θ) the cardioid r = 1 + cos(θ) has curvature 3

√
2/(4
√

r).
24. Find the curvature of r = cos(2θ).

25. If dy/dx = y3, express the curvature in terms of y.

26. As is shown in physics, the larger the radius of curvature of a turn, the faster
a car can travel around it. The required radius of curvature is proportional to the
square of the maximum speed. That says that the maximum speed around a turn
is proportional to the square root of the radius of curvature. If a car moving on the
path y = x3 (x and y measured in miles) can go 30 miles per hour at (1, 1) without
sliding off, how fast can it go at (2, 8)?

27. Find the local extrema of the curvature of (a) y = x + ex, (b) y = ex, (c)
y = sin(x), and (d) y = x3.

28. Sam says, “I don’t like the definition of curvature. It should be the rate at
which the slope changes as a function of x. That is d

dx

(
dy
dx

)
, which is the second

derivative, d2y
dx2 .” Give an example of a curve that would have constant curvature

according to Sam’s definition but whose changing curvature is obvious to the eye.

29. In Example 2 some of the steps were omitted in finding that the cycloid given
by x = θ − sin(θ), y = 1− cos(θ) has curvature κ = 1/(23/2

√
1− cos(θ)) = 1/

√
8y.

In this exercise you are asked to fill in the details.

(a) Verify that
dy

dx
=

sin(θ)
1− cos(θ)

.

(b) Verify that
d

dθ

(
dy

dx

)
=

−1
1− cos(θ)

.

(c) Verify that
d2y

dx2
=

−1
(1− cos(θ))2

.

(d) Verify that 1 +
(

dy

dx

)2

=
2

1− cos(θ)
.
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(e) Compute the curvature, κ, in terms of θ.

(f) Express it in terms of x and y.

(g) At what points on the cycloid is the curvature largest?

(h) At what points on the cycloid is the curvature smallest?

30. Assume that g and h are functions with continuous second derivatives. and
that as we move along the curve x = g(t), y = h(t), the arc length s from a point
P0 increases as t increases. Show that

κ =
|ẋÿ − ẏẍ|

(ẋ2 + ẏ2)3/2
.

(Newton’s dot notation for derivatives shortens the formula: ẋ = dx
dt , ẍ = d2x

dt2
,

ẏ = dy
dt , and ÿ = d2y

dt2
.)

31. Use the result of Exercise 30 to find the curvature of the cycloid of Example 2,
which has parametric equations x = θ − sin(θ), y = 1− cos(θ)

32. (Contributed by G.D. Chakerian) Parts (a), (b), and (c) refer to curves in
general, where R may not be constant. Part (d) treats the special case, where R is
constant.
If a planar curve has a constant radius of curvature must it be part of a circle?
That the answer is “yes” is important in experiments conducted with a cyclotron.
Physical assumptions imply that the path of an electron entering a uniform magnetic
field at right angles to the field has constant curvature. Show that it follows that
the path is part of a circle. View the curve as parameterized by the angle φ of the
tangent. Here s denotes arc length.

(a) Show that ds
dφ = R, the radius of curvature.

(b) Show that dx
dφ = R cos(φ).

(c) Show that dy
dφ = R sin(φ).

(d) Now assume the curvature is constant. Use (b) and (c) to find an equation
that involves x, y, and κ.

(For (b) and (c) draw the little triangle whose hypotenuse is like a short piece of
arc length ds on the curve and whose legs are parallel to the axes. For (d), think
about antiderivatives.)
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33. At the top of the cycloid in Example 2 the radius of curvature is twice the
diameter of the rolling circle. What would you have guessed the radius of curvature
to be at this point? Why is it not the diameter of the wheel, since the wheel at each
moment is rotating about its point of contact with the ground?

34. A smooth convex curve with no straight edges bounds a region. Assume it
has length L and continuous curvature.

(a) Show that the average of its curvature, as a function of arc length, is 2π/L.

(b) Check that this is correct for a circle of radius a.

(c) Must there be a point on the curve where the curvature is 2π/L?
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9.S Chapter Summary

This chapter dealt mostly with curves described in polar coordinates and
curves given parametrically. The following table summarizes the main ideas
in the chapter.
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Concept Memory Aid Comment

Area =
∫ β

α
r2

2
dθ The narrow sector resembles a trian-

gle of base r dθ and height r, so dA =
1
2
(r dθ)(r) = 1

2
r2 dθ.

Arc length =
∫ b

a

√(
dx
dt

)2
+
(

dy
dt

)2
dt

=
∫ b

a

√
1 +

(
dy
dx

)2
dx

A short part of the curve is almost
straight, suggesting (ds)2 = (dx)2 +
(dy)2.

Arc length =
∫ β

α

√
r2 + (r′)2 dθ

=
∫ β

α

√
r2 +

(
dr
dθ

)2
dθ

Speed =

√(
dx
dt

)2
+
(

dy
dt

)2
=

√(
r dθ

dt

)2
+
(

dr
dt

)2
The shaded area with two curved sides
looks like a right triangle, suggesting
(ds)2 = (rdθ)2 + (dr)2.

Area of surface of revolution

=
∫ b

a
2πR ds

Curvature = κ =
∣∣dφ

ds

∣∣ Using the chain rule to write
∣∣dφ

ds

∣∣ as∣∣∣ (dφ/dx
(ds/dx)

∣∣∣ one gets the formula κ =
|y′′|

(1+(y′)2)3/2

For a curve given parametrically, its curvature can be found by replacing
dy
dx

by dy/dt
dx/dt

, and, similarly, d2y
dx2 = d

dx

(
dy
dx

)
by

d
dt(

dy
dx)

dx/dt
.

EXERCISES for 9.S

1. When driving along a curved road, which is more important in avoiding car
sickness, dφ/ds or dφ/dt, where t is time.

2. The solution to Example 3 (Section 9.2) requires the evaluation of the definite
integrals

∫ π/2
0 cos2(θ) dθ and

∫ π
0 (1 + cos(θ))2 dθ. Evaluate them as simply as possi-

ble.

3. A triangle ABC is inscribed in a circle, with AB a diameter of the circle.
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(a) Using geometry, show that angle ACB is a right angle.

(b) Instead, using the equation of a circle in rectangular coordinates, show that
AC and BC are perpendicular.

(c) Use (a) or (b) to show that the graph in the plane of r = b cos(θ) is a circle
of diameter b passing through the pole.

4. A physics midterm includes the following information:

When r =
√

x2 + y2, and y is a constant, recall that

(a)
∫

dx

r
= ln(x + r), (b)

∫
x

r
dx = r, (c)

∫
dx

r3
=

x

y2r
.

Show by differentiating that the equations are correct.

The inequality

2π∫
0

f(θ)g(θ) dθ ≤

 2π∫
0

f(θ)2 dθ

1/2 2π∫
0

g(θ)2 dθ

1/2

is a special case of the Cauchy-Schwarz inequality used in a CIE at the end of
Chapter 7 (see page 681) and proved in Exercise 29 in Section 16.7. It will be of use
in Exercises 5 and 6.
5. Let P be a point inside a region in the plane bounded by a smooth convex
curve. (“Smooth” means it has a continuously defined tangent line.) Place the pole
of a polar coordinate system at P . Let c(θ) be the length of the chord of angle θ
through P . Show that

∫ 2π
0 c(θ)2 dθ ≤ 8A, where A is the area of the region.

6. (This continues Exercise 5.) Show that if
∫ 2π
0 c(θ)2 dθ = 8A then P is the

midpoint of each chord through P .

7. Let L be the line 3x + 4y = 1. Consider the function that assigns to the point
with polar coordinates (r, θ), r not equal to 0, the point (1/r, θ).

(a) Plot L and at least four images of points on L.

(b) Sketch what you suspect is the image of L.

(c) Find the equation, in rectangular coordinates, of the image of L. (Using polar
coordinates may help.)

(d) What kind of curve is the image of L?
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8. Let r = f(θ) describe a convex curve surrounding the origin.

(a) Show that
∫ 2π
0 r dθ ≤ arc length of the boundary.

(b) Show that if the equality holds in (a), the curve is a circle with center at the
origin.

9.

Sam: I’ve discovered an easy formula for the length of a closed curve that encloses
the origin.

Jane: Well?

Sam: First of all,
∫ 2π
0

√
r2 + (r′)2 dθ is obviously greater than or equal to

∫ 2π
0 r dθ.

Jane: I’ll grant you that much, because (r′)2 is never negative.

Sam: Now, if a and b are not negative,
√

a + b ≤
√

a +
√

b.

Jane: Why?

Sam: Just square both sides. So
√

r2 + (r′)2 ≤
√

r2 +
√

(r′)2 = r + r′.

Jane: Looks all right.

Sam: Thus
2π∫
0

√
r2 + (r′)2 dθ ≤

2π∫
0

(r + r′) dθ =

2π∫
0

r dθ +

2π∫
0

r′ dθ.

But
∫ 2π
0 r′ dθ equals r(2π)− r(0), which is 0. So, putting it all together, I get

2π∫
0

r dθ ≤
2π∫
0

√
r2 + (r′)2 dθ ≤

2π∫
0

r dθ.

So the arc length is
∫ 2π
0 r dθ.

Jane: That can’t be right. If it were, it would be an Exercise.

Sam: They like to keep a few things secret to surprise us on a mid-term.

Who is right, Sam or Jane? Explain.

10.
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(a) Let the radius of Earth be r miles. Let f(h) be the fraction of Earth’s surface
can be seen from an object h miles above it?

(b) What is limh→∞ f(h)?

(c) What is f(h) when h is 100 miles? Earth’s radius is 3963 miles.

(d) What is f(h) when h is 22,236 miles, the altitude of a geosynchronous satellite?

In Exercises 11 and 12, a, b, c, m, and p are constants. Verify that the derivative of
the first function is the second function.
11. 1√

c
arcsin

(
cx−b√
b2+ac

)
,
√

c
a+2bx−cx2 .

12. 1
c

√
a + 2bx + cx2− b√

c
ln
(
b + cx +

√
c
√

a + 2bx + cx2
)
, x

a+bx+cx2 (assume c is
positive).

In Exercises 13 and 14, L is the length of a smooth, closed curve C and P is a point
in the region R bounded by C.
13.

(a) Let the area of R be A. Show that the average distance from P to points
on the curve, averaged with respect to arc length, is greater than or equal to
2A/L.

(b) Give an example when equality holds.

14.

(a) Show that the average distance from P to points on the curve, averaged with
respect to the polar angle, is less than or equal to L/(2π).

(b) Give an example when equality holds.

(See Exercise 25 in Section 9.4.)
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Calculus is Everywhere # 12

The Mercator Map

One way to make a map of a sphere is to wrap a paper cylinder around the
sphere and project points on the sphere onto the cylinder by rays from the
center of the sphere. This central cylindrical projection is illustrated in
Figure C.12.1(a).

(a) (b)

Figure C.12.1

Points at latitude L project onto points at height tan(L) from the equatorial
plane.

A meridian is a great circle passing through the north and south poles. It
corresponds to a fixed longitude. A short segment on a meridian at latitude L
of length dL projects onto the cylinder in a segment of length approximately
d(tan(L)) = sec(L)2 dL. This tells us that the map magnifies short vertical
segments at latitude L by the factor sec2(L).

Points on the sphere at latitude L form a circle of radius cos(L). Its image
on the cylinder is a circle of radius 1, so the projection magnifies horizontal
distances at latitude L by 1/ cos(L) = sec(L).

Consider the effect on a small “almost rectangular” patch bordered by two
meridians and two latitude lines, shaded in Figure C.12.1(b). The vertical
edges are magnified by sec2(L), but the horizontal edges by only sec(L). The
image on the cylinder will not resemble the patch, for it is stretched more
vertically than horizontally.

The path a ship sailing from P to Q makes an angle with the latitude
line through P . The map distorts it. The ship’s captain would prefer a map
without distortion, one that preserves direction. That way, to chart a voyage
from A to B on the sphere corresponding to Earth’s surface at a fixed compass
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heading, simply draw a straight line from A to B on the map to determine the
compass setting.

In 1569, Gerhardus Mercator designed a map that preserves direction by
making the vertical magnification the same as the horizontal distortion, sec(L).

Let y be the height on the map that represents latitude L0. Then ∆y should
be approximately sec(L)∆L. Taking the limit of ∆y/∆L as ∆L approaches 0,
we see that dy/dL = sec(L). Thus

y =

L0∫
0

sec(L) dL. (C.12.1)

Mercator, working a century before the invention of calculus, did not have
the integral or the Fundamental Theorem of Calculus. Instead, he broke the
interval [0, L0] into several short sections of length ∆L, computed (sec(L))∆L
for each, and summed to estimate y in (C.12.1).

Using calculus, we see

y =

L0∫
0

sec(L) dL = ln |sec(L) + tan(L)| |L0

0 = ln(sec(L0)+tan(L0)) for 0 ≤ L0 ≤ π/2.

In 1645, Henry Bond conjectured from numerical evidence that
∫ α

0
sec(θ) dθ =

ln(tan(α/2 + π/4)) but offered no proof. In 1666, Nicolaus Mercator (no rela-
tion to Gerhardus) offered the royalties on one of his inventions to the math-
ematician who could prove Bond’s conjecture was right. Within two years
James Gregory provided the proof.

Figure C.12.2

Figure C.12.2 shows a Mercator map. Though it preserves angles, it greatly
distorts areas: Greenland looks bigger than South America even though it is
only one eighth its size. The first map we described distorts areas even more
than does a Mercator map.
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Additional Reading

1. Daners, D., The Mercator and stereographic projections, and many in
between. American Mathematics Monthly, MAA, March 2012, 199–210.

EXERCISES

1. Draw a clear diagram showing why segments at latitude L are magnified verti-
cally by the factor sec(L).

2. Explain why a short arc of length dL in Figure C.12.1(a) projects onto a short
interval of length approximately sec2(L) dL.

3. On a Mercator map, what is the ratio of the distance between the lines repre-
senting latitudes 60◦ and 50◦ to the distance between the lines representing latitudes
40◦ and 30◦?

4. What magnifying effect does a Mercator map have on areas?

5. If the distance on a Mercator map is 3 inches from latitude 0◦ to latitude 20◦

how far is it on the map from (a) 60◦ to 80◦, (b) 75◦ to 85◦.

6. Bond’s conjecture was first encountered in Exercise 50 in Section 8.5. Show
that it is correct. That is, that

∫ α
0 sec(θ) dθ = ln(tan(α/2 + π/4))
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Chapter 10

Sequences and Their
Applications

When trying to write 1/3 as a decimal, we meet the following sequence of
numbers:

0.3, 0.33, 0.333, 0.3333, . . .

The more 3s we write, the closer the numbers are to 1/3.

When estimating a definite integral
∫ b

a
f(x) dx, we pick a positive integer

n, divide the interval [a, b] into n equal pieces of length ∆x = (b− a)/n, pick
a number ci in the ith interval and form the sum En =

∑n
i=1 f(ci)∆x. In this

way we obtain a sequence of estimates,

E1, E2, E3, . . . , En, . . . .

As n increases the estimates approach
∫ b

a
f(x) dx, if f(x) is continuous.

In the analysis of APY (annual percentage yield on an account at a bank),
in CIE #3 in Chapter 2 (page 155) we encounter the sequence

(1 + 1/1)1, (1 + 1/2)2, (1 + 1/3)3, . . . , (1 + 1/n)n, . . . .

As n increases, these numbers approach e.
What happens to the numbers

S1 = 1, S2 = 1 +
1

2
, S3 = 1 +

1

2
+

1

3
, S4 = 1 +

1

2
+

1

3
+

1

4
, . . . , Sn =

n∑
k=1

1

k
, . . .

as we add more and more reciprocals of integers? Do the Sn get arbitrarily
large or do they approach some finite number? When students, neither author
guessed right.

Chapters 10, 11, and 12 concern the behavior of endless sequences of num-
bers. Such sequences arise in estimating a solution of an equation. They also
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provide a way to estimate such important functions as ex, sin(x), and ln(x),

and therefore a way to estimate such integrals as
∫ 1

0
ex2

dx, for which the Fun-
damental Theorem of Calculus is of no help. They also offer another way to
evaluate indeterminate limits.
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10.1 Introduction to Sequences

A sequence of numbers,

a1, a2, a3, . . . , an, . . .

n an

1 2.0000
2 2.2500
3 2.3704
4 2.4414
5 2.4883

10 2.5937
100 2.7048

1000 2.7169
10000 2.7181

is a function that assigns to each positive integer n a number an. The number
an is called the nth term of the sequence. For example, the sequence(

1 +
1

1

)1

,

(
1 +

1

2

)2

,

(
1 +

1

3

)3

, . . . ,

(
1 +

1

n

)n

, . . .

was first seen in Section 2.2 and was later shown to be related to the number
e. In this case, the nth term of the sequence is

an =

(
1 +

1

n

)n

.

For example, a1 = (1 + 1)1 = 2, a2 =
(
1 + 1

2

)2
= 9

4
= 2.25, a10 =

(
1 + 1

10

)10 ≈
2.5937, and a100 =

(
1 + 1

100

)10 ≈ 2.7048.
The notation {an} is an abbreviation for the sequence a1, a2, . . . , an, . . . .

The “sub” stands for
“subscript.”

Read a1 as “a sub 1” and an as “a sub n.”
If, as n gets larger, an approaches a number L, then L is called the limit

of the sequence {an}. When the sequence a1, a2, . . . , an, . . . has a limit L we
say it is convergent and write

lim
n→∞

an = L.

For instance, we write

lim
n→∞

(
1 +

1

n

)n

= e.

A sequence need not begin with the term a1. Later, sequences of the form
a0, a1, a2, . . . will be considered. In such a case, a0 is called the zeroth term.
In other instances we consider sequences ak, ak+1, ak+2, . . . that begin with
ak for k > 1. These sequences are called a “tail” of the sequence a1, a2, a3,
. . . . Two important features of any sequence are i) the terms of a sequence
are defined only for integers and ii) the sequence never ends.

The Sequence {rn}
The next example introduces a simple but important type of sequence called
a geometric sequence.

EXAMPLE 1 A certain (small) piece of equipment depreciates in value
over the years. In fact, at the end of any year it has only 80% of the value it
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had at the beginning of the year. What happens to its value in the long run if
its value when new is $1?
SOLUTION Let an be the value of the equipment at the end of the nth year.
Call the initial value a0 = 1. At the end of year 1 the value is a1 = 0.8(1).
Similarly, a2 = 0.8(0.8) = 0.82 = 0.64 and a3 = 0.8(0.82) = 0.83. After n years
the value is an = 0.8n. This question is asking about the limit of the sequence
{0.8n}.

n 0.8n

0 0.80 = 1
1 0.81 = 0.8
2 0.82 = 0.64
3 0.83 = 0.512
4 0.84 = 0.4096
5 0.85 = 0.3277

10 0.810 = 0.1074
20 0.820 = 0.0115

After 5 years, the value is just under $0.33. In another five years the
value is reduced to about $0.11, and at the end of year 20, the value is roughly
$0.01. This is strong evidence that

lim
n→∞

0.8n = 0.

�
Even if the piece of equipment in Example 1 retained 99% of its value each

year, in the long run it would still be worth less than a dime, then less than
a penny, etc. The data in Table 10.1.1 indicates that 0.99n approaches 0 as
n→∞, but much more slowly than 0.8n does.

n 0 1 2 3 4 5 10 20 100 200
0.99n 1 0.99 0.9801 0.9703 0.9606 0.9510 0.9044 0.8179 0.3660 0.1340

Table 10.1.1

On the basis of Example 1, it is plausible that if 0 ≤ r < 1, then limn→∞ rn =
0. To show that this is the case, we introduce a property of the real numbers
which we will use often. It concerns monotone sequences. A sequence is
monotone either if it is nondecreasing (a1 ≤ a2 ≤ a3 ≤ · · · ≤ an ≤ . . . ) or
nonincreasing (a1 ≥ a2 ≥ a3 ≥ · · · ≥ an ≥ . . . ).

Theorem 10.1.1. Let {an} be a nondecreasing sequence with the property that
there is a number B such that an ≤ B for all n.Every bounded and

monotone sequence
converges.

That is, a1 ≤ a2 ≤ a3 ≤
a4 ≤ · · · ≤ an ≤ an+1 ≤ . . . and an ≤ B for all n. Then the sequence {an} is
convergent and an approaches a number L less than or equal to B.

Similarly, if {an} is a nonincreasing sequence and there is a number B such
that an ≥ B for all n, then the sequence {an} is convergent and its limit is
greater than or equal to B.

Figure 10.1.1 suggests the first part of Theorem 10.1.1 is plausible. The
monotonicity prevents the terms from backtracking or entering a cycle. With-
out the bound on the terms, the sequence could continue to approach∞. Any
sequence that is both bounded and monotone has to converge to a limit.

Theorem 10.1.1 is proved in advanced calculus.
The next theorem shows the power of Theorem 10.1.1.
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Figure 10.1.1

Theorem 10.1.2. If 0 < r < 1 then {rn} converges to 0.

Proof

Let r be a number between 0 and 1. The sequence r1, r2, r3, . . . rn, . . . is
decreasing and each term is greater than 0. By Theorem 10.1.1, the sequence
has a limit, L, and L ≥ 0.

The sequence r2, r3, . . . , rn+1, . . . also approaches L. We then have

L = lim
n→∞

rn+1 = lim
n→∞

rrn = r lim
n→∞

rn = rL.

In short,

L = rL.

Thus (1− r)L = 0. So either 1− r = 0 or L = 0. Because 0 < r < 1, 1− r is
not zero, L has to be 0, which shows that limn→∞ rn = 0. •

The behavior of {rn} for other values of r is much more easily obtained:

1. If r = 1, then rn = 1 for all n. So limn→∞ rn = 1.

2. If r > 1, then rn gets arbitrarily large as n→∞. Hence is divergent.

3. If r < −1, then |r|n gets arbitrarily large. Thus limn→∞ rn does not
exist.

4. If r = −1, then the sequence is −1, 1, −1, 1, . . . . which is divergent.

5. If −1 < r < 0, then limn→∞ rn = 0.

6. If r = 0, then rn = 0 for all n. So limn→∞ rn = 0.

Calculus April 22, 2012



870 CHAPTER 10 SEQUENCES AND THEIR APPLICATIONS

Figure 10.1.2

Figure 10.1.2 records this information.

We prove (2) and (5). First, (2). If r > 1, the sequence r, r2, r3, r4, . . . ,
rn, . . . is monotone increasing. The terms either approach a limit, L, or they
get arbitrarily large. In the first case we would have, as before, (1− r)L = 0,
which implies L = 0 (because 1− r is not zero). That’s impossible since every
term is greater than or equal to r.

To prove (5), let −1 < r < 0 and note that |rn| = |r|n approaches zero as
n→∞ (by Theorem 10.1.2). Since the absolute value of rn approaches 0, so
must rn.

The terms of a convergent sequence usually never equal their limit, L, but
merely get closer to it as the index, n, increases.

Informal definition of
limn→∞ an =∞.

If an becomes and remains arbitrarily large and positive as n gets larger, the
sequence diverges and we write limn→∞ an = ∞. For instance, limn→∞ 2n =
∞. Similarly, limn→∞(−2n) = −∞. But, for limn→∞(−2)n all we can say is
that the sequence diverges because the values alternate between positive and
negative values and limn→∞ |2n| = limn→∞ 2n =∞.

The Sequence {kn/n!}

Example 2 introduces a type of sequence that occurs in the study of sin(x),
cos(x), and ex in Chapter 12.

EXAMPLE 2 Does the sequence defined by an = 3n/n! converge or di-
verge?
SOLUTION The first terms of this sequence are recorded (to four decimal
places) in Table 10.1.2. Although a2 is larger than a1 and a3 is equal to a2,
from a4 through a8, as Table 10.1.2 shows, the terms decrease.

The numerator 3n becomes large as n → ∞, influencing an to grow large.
But the denominator n! also becomes large as n→∞, influencing the quotient
an to shrink toward 0. For n = 1 and n = 2 the first influence dominates, but
then, as the table shows, the denominator n! grows faster than the numerator
3n, forcing an toward 0.
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n 1 2 3 4 5 6 7 8
3n 3 9 27 81 243 729 2, 187 6, 561
n! 1 2 6 24 120 720 5, 040 40, 320

an = 3n/n! 3.0000 4.5000 4.500 3.3750 2.0250 1.0125 0.4339 0.1627

Table 10.1.2

To see why the denominator grows so fast that the quotient 3n/n! ap-
proaches 0, consider a10. This term can be expressed as the product of 10
fractions:

a10 =
310

10!
=

3

1

3

2

3

3

3

4

3

5

3

6

3

7

3

8

3

9

3

10
.

The first three fractions are greater than or equal to 1, but the seven remaining
fractions are all less than or equal to 3

4
. Thus

a10 <
3

1

3

2

3

3

(
3

4

)7

.

Similarly,

a100 <
3

1

3

2

3

3

(
3

4

)97

.

More generally, for n > 4,

an <
3

1

3

2

3

3

(
3

4

)n−3

.

By Theorem 10.1.2,

lim
n→∞

(
3

4

)n

= 0,

from which it follows that limn→∞ an = 0. �

Reasoning like that in Example 2 shows that for any fixed number k,

This limit will be used often.

lim
n→∞

kn

n!
= 0.

This means that the factorial grows faster than any exponential kn.
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Properties of Limits of Sequences

The limits of sequences {an} behave like the limits of functions f(x), as dis-
cussed in Section 2.4. The most important properties are summarized in The-
orem 10.1.3 without proof.

Remember that A and B
are numbers (not ±∞).

Theorem 10.1.3. If limn→∞ an = A and limn→∞ bn = B, then

• limn→∞(an + bn) = A + B.

• limn→∞(an − bn) = A−B.

• limn→∞(anbn) = AB.

• limn→∞(an

bn
) = A

B
(B 6= 0).

• If k is a constant, limn→∞ kan = kA. In particular, limn→∞(−an) =
− limn→∞ an.

• If f is continuous on an open interval that contains A, then limn→∞ f(an) =
f(A).

For instance,

lim
n→∞

(
3

n
+

(
1

2

)n)
= 3 lim

n→∞

1

n
+ lim

n→∞

(
1

2

)n

= 3 · 0 + 0

= 0.

Techniques for dealing with limx→∞ f(x) can often help to determine the
limit of a sequence. The essential point is

if lim
x→∞

f(x) = L then lim
n→∞

f(n) = L.

EXAMPLE 3 Find limn→∞
n
2n .

SOLUTION Consider the function f(x) = x
2x . By l’Hôpital’s Rule (∞-over-

∞ case),

lim
x→∞

x

2x
= lim

x→∞

1

2x ln(2)
= 0.

Thus lim
n→∞

n

2n
= 0.

�

WARNING (On Limits of Sequences and Limits of Functions)
The converse of the statement “if limx→∞ f(x) = L, then limn→∞ f(n) =
L” is not true. For example, take f(x) = sin(πx). Then limn→∞ f(n) =
0, but limx→∞ f(x) does not exist.
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The Precise Definition of limn→∞ an = L

In Sections 3.8 and 3.9 limit concepts were given precise (as opposed to infor-
mal) definitions. The following definition is in the same spirit.

Precise definition of limit of
a sequence.

DEFINITION (Limit of a sequence.) The number L is the limit
of the sequence {an} if for each ε > 0 there is an integer N such
that

|an − L| < ε for all integers n > N .

EXAMPLE 4 Use the precise definition of the limit of a sequence to show
that limn→∞

1
n

= 0.
SOLUTION Given ε > 0 we want to show that there is an integer N such
that ∣∣∣∣ 1n − 0

∣∣∣∣ < ε for all integers n > N .

For instance, if ε = 0.01, we want∣∣∣∣ 1n − 0

∣∣∣∣ < 0.01

or simply
1

n
< 0.01 =

1

100
.

This inequality holds for n > 100. Hence N = 100 suffices. (So does any
integer greater than 100.)

The general case is similar. We wish to have∣∣∣∣ 1n − 0

∣∣∣∣ < ε

or
1

n
< ε

Hence, 1 < nε

and finally n >
1

ε
.

Any integer N > 1/ε suffices. �
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kn and Energy from the Atom
In a particular nuclear chain reaction, when a neutron strikes the nucleus of an
atom of uranium or plutonium, on the average a certain number of neutrons
split off. Call this number k. These k neutrons then strike further atoms. Since
each splits off k neutrons, in this second generation there are k2 neutrons. In
the third generation there are k3 neutrons, and so on. Each generation is born
in a fraction of a second and produces energy.
If k is less than 1, then the chain reaction dies out, since kn → 0 as n→∞. A
successful chain reaction — whether in a nuclear reactor or an atomic bomb
— requires that k be greater than 1, since then kn →∞ as n→∞.
In September 1941, Enrico Fermi and Leo Szilard achieved k = 0.87 with a
uranium pile at Columbia University. In 1942, they obtained an encouraging
k = 0.918. in the meantime, Samuel Allison at the Univeristy of Chicago,
Fermi and Szilard attained k = 1.0006. With this k the neutron intensity
doubled every 2 minutes. They had achieved the first controlled, sustained,
chain reaction, producing energy from the atom. Fermi let the pile run for
4.5 minutes. Had he let it go on much longer, the atomic pile, the squash
court, the university, and part of Chicago might have disappeared.
Eugene Wigner, one of the scientists present, wrote, “We felt as, I presume, ev-
eryone feels who has done something that he knows will have very far-reaching
consequences which he cannot foresee.”
Szilard had a different reaction: “There was a crowd there and then Fermi and
I stayed there alone. I shook hands with Fermi and I said I thought this day
would go down as a black day in the history of mankind.”
However it may be regarded, December 2, 1942, is a historic date. Before that
date k was less than 1, and limn→∞ kn = 0. After that date, k was larger than
1, and limn→∞ kn = 0.
Based on Richard Rhodes, The Making of the Atomic Bomb, Simon and Schus-
ter, New York, 1986.

Summary

We defined convergent sequences and their limits and divergent sequences,
which have no limit. The sequences {rn} and {kn/n!} will be used often in
Chapters 10, 11, and 12. We have

lim
n→∞

rn = 0 (|r| < 1) lim
n→∞

kn

n!
= 0 (k any constant).

Also, a bounded monotone sequence converges, even though we may not be
able to find its limit exactly.
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EXERCISES for Section 10.1

In Exercises 1 to 18 write out the first three terms of the given sequence and state
whether it converges or diverges. If it converges, give its limit.
1. {0.999n}
2. {1.001n}
3. {1n}
4. {(−0.8)n}
5. {(−1)n}
6. {(−1.1)n}
7. {n!}
8.

{
10n

n!

}
9.

{
3n+5
5n−3

}
10.

{
(−1)n

n

}
11.

{
cos(n)

n

}
12. {n sin(1/n)} (A limit in Section 2.2 will help.)
13.

{
n(a1/n − 1)

}
(A limit in Section 2.2 will help.)

14.
{

n
2n + 3n+1

4n+2

}
15.

{(
1 + 2

n

)n}
16.

{(
n−1

n

)n}
17.

{(
1 + 1

n2

)n} (Write f(n)g(n) as eg(n) ln(f(n)).)

18.
{(

1 + 1
n

)n2
}

19. Assume that each year inflation eats away 2 percent of the value of a dollar.
Let an be the value of one dollar after n years.

(a) Find a4.

(b) Find limn→∞ an.

20. Let an = 6n/n!.

(a) Fill in this table:
n 1 2 3 4 5 6 7 8
an

(b) Plot the points (n, an) corresponding to each column in the table above. (Let
the n-axis be the horizontal axis.)
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(c) What is the largest value of an? What is the corresponding n?

(d) What is limn→∞ an?

21. What is the largest value of (11.8)n/n!? Explain.

22. Find an index n such that 0.999n is less than 0.0001

(a) by experimenting with the aid of your calculator

(b) by solving the equation 0.999x = 0.0001

23. Find the first index n such that 1.0006n is larger than 2

(a) by experimenting with the aid of your calculator

(b) by solving the equation 1.0006x = 2.

In Exercises 24 and 27 determine the limits of the given sequences by first identifying
each limit as a definite integral,

∫ b
a f(x) dx, for a suitable interval [a, b] and function

f(x). (Review Section 6.2)
24.

an =
n∑

k=1

(
k

n

)2 1
n

25.

an =
n∑

k=1

3
n

+
k

n2

26.

an =
n∑

k=1

1
n

cos
(

kπ

n

)

27.

an =
n∑

k=1

n

n2 + k2
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28. For each integer n ≥ 1, let

an =
1
n

+
1

n + 1
+ · · ·+ 1

2n
=

2n∑
k=n

1
k
.

For example, a3 = 1/3 + 1/4 + 1/5 + 1/6 = 0.95.

(a) Compute decimal approximations to an for n = 1, 2, 3, 4, and 5.

(b) Show that {an} is a monotone and bounded sequence.

(c) Show that it has a limit and that the limit is at least 1/2.

29. We showed that for −1 < r < 0, limn→∞ rn = 0 by considering |rn|. Here is
a more direct argument.

(a) Let r = −s, 0 < s < 1. Show that for even n, rn = sn and for odd n,
rn = −(sn).

(b) Show that the sequence {r2n} converges to 0.

(c) Show that the sequence {r2n−1} converges to 0.

(d) Conclude that limn→∞ rn = 0.

30. The binomial theorem asserts that if n is a positive integer, then (1 + x)n is
equal to 1 + nx plus other terms that are positive if x > 0. Use this to show that if
r > 1, then limn→∞ rn =∞.

31. Exercise 30 makes use of the binomial theorem. It was not necessary to use
the binomial theorem, as this exercise shows. Assume that x > 0.

(a) Show that (1 + x)n ≥ 1 + nx for n = 1.

(b) Assume that you know that (1 + x)n ≥ 1 + nx when n is 100. Show that it
follows that (1 + x)n ≥ 1 + nx when n is 101.

(c) Explain why (1 + x)n ≥ 1 + nx for all positive integers n.

32. The sequence {an} with an =
∑2n

k=n
1
k was shown to be convergent in Exer-

cise 28. Show that the limit of this sequences is ln(2) by expressing it as a certain
definite integral and evaluating that integral.
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33. Let an =
∑3n

k=2n
1
k . Does {an} converge or diverge? If it converges, find its

limit.

34. Using the precise definition of limn→∞ an = L, prove that if limn→∞ |an| = 0,
then limn→∞ an = 0.

35. Use the precise definition of limn→∞ an = L to prove limn→∞
sin(n)

n = 0.

36. Use the precise definition of limn→∞ an = L to prove limn→∞
3
n2 = 0.

37. Use the precise definition of limn→∞ an = L to prove that the statement
limn→∞(−1)n = 0 is false.

38.

(a) What would be the precise definition of limn→∞ an =∞?

(b) Use the precise definition in (a) and the precise definition of limn→∞ an = L
to show that:

if lim
n→∞

an =∞, then lim
n→∞

1/an = 0.

39. Using the same approach as in the proof of Theorem 10.1.2, show that if r is
greater than 1, then rn gets arbitrarily large as n increases.

40.

Sam: I have a better proof of Theorem 10.1.2.

Jane: You always do.

Sam: Say that r is positive and less than 1, and r, r2, r3, r4, . . . approaches L.
Then the sequence r2, r4, r6, r8, . . .must approach L2. Right?

Jane: Absolutely.

Sam: So L must equal L2.

Jane: Yes, I see it.

Sam: If L = L2, then L is either 0 or 1, but it can’t be 1. So it’s 0.

Jane: Brilliant.

Sam: I think so too.

Is Sam’s argument correct? Explain.
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10.2 Recursively-Defined Sequences and Fixed

Points

The terms in each sequence considered in Section 10.1 were given by an explicit
formulaan = f(n). Often a sequence is not given explicitly. Instead, each term
(after the first) may be expressed in terms of earlier terms. For instance, the
sequence of powers a0 = r0 = 1, a1 = r1 = r, a2 = r2, . . . , an = rn, . . . can be
described this way:

The first term, a0, is 1.
For n ≥ 1, an = ran−1.

That is, each term after a0 is r times the preceding term. We will describe a
technique for finding the limit of such sequences, defined indirectly, if they are
convergent.

Sequences Defined Recursively

A sequence given by a formula that describes the nth term in terms of previous
terms is said to be given recursively. If an depends only on its immediate
predessor, we would have an = f(an−1), for some function f . If an depends
on both an−1 and an−2, then there would be a function f such that an =
f(an−1, an−2).

EXAMPLE 1 Let a0 = 1 and an = nan−1 for n ≥ 1. Give an explicit
definition of {an}.
SOLUTION a1 = 1a0 = 1; a2 = 2a1 = 2 · 1; a3 = 3a2 = 3 · 2 · 1; a4 = 4a3 =
4 · 3 · 2 · 1. Evidently, an is n!, “n factorial,” the product of all integers from 1
to n. �

EXAMPLE 2 Let b0 = 1 and b1 = 1 and bn = bn−1 + bn−2 for n ≥ 2.
Compute b2, b3, b4, and b5.
SOLUTION b2 = b1 + b0 = 1+1 = 2; b3 = b2 + b1 = 2+1 = 3; b4 = b3 + b2 =
3 + 2 = 5; b5 = b4 + b3 = 5 + 3 = 8. This sequence, which appears often in
both pure and applied mathematics, is called the Fibonacci sequence.

The terms in the Fibonacci sequence are positive and become arbitrarily
large as n gets larger. The Fibonacci sequence diverges (to ∞). �
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The Fibonacci sequence appears in the following problem from Chapter XII
of the Liber abaci of Leonard Fibonacci. This book appeared in 1202 (hand
copied) and was revised in 1228.

A man put a pair of rabbits in a place surrounded by a wall. How
many pairs of rabbits can be produced from that pair in a year if
every month each pair produces a new pair which from the second
month on can produce another pair?

For a discussion of the Fibonacci sequence and the Golden Ratio and the myths
that surround it, see S. Stein, “Strength in Numbers,” John Wiley and Sons,
New York, 1996 (p. 39).

Finding the Limit of a Recursive Sequence

Assume that a sequence satisfies the relation an = f(an−1) and has a limit L.
Since an → L as n → ∞, we also have an−1 → L and n → ∞. Now assume
also that f is continuous. Then we have, because f is continuous,

lim
n→∞

an = lim
n→∞

f(an−1) = f
(

lim
n→∞

an−1

)
.

Hence,

L = f(L) (10.2.1)

There could be other
solutions.

According to (10.2.1), L is a solution to the equation x = f(x). A number
L such that f(L) = L is called a fixed point of f .

EXAMPLE 3 Let f(n) = rf(n − 1) where 0 < r < 1. Let a1 = 1. Use
(10.2.1) to find limn→∞ an.
SOLUTIONThis is the same argument

as in Section 10.1, but
obtained now directly from

(10.2.1).

We recognize this recursion as giving the sequence 1, r, r2, . . . .
Since this is a monotonic sequence bounded below by 0, it has a limit L. Thus

L = f(L) = rL.

Since r is not 1, L = 0. �

Exercises 42 to 45 provide a
proof that the sequence of

ratios of the Fibonacci
sequence converges.

EXAMPLE 4 Define cn to be the ratio of successive terms in the Fibonacci
sequence {bn}: cn = bn

bn−1
for all n ≥ 2. Assuming this sequence converges,
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find its limit.
SOLUTION

n cn

2 1.000000
3 2.000000
4 1.500000
5 1.666667
6 1.600000
7 1.625000
8 1.615385
9 1.619048

10 1.617647
15 1.618037
25 1.618034

c2 = b2
b1

= 1
1

= 1. For n ≥ 3 the definition of the Fibonacci
sequence can be used to obtain a formula relating cn to cn−1:

cn =
bn

bn−1

=
bn−1 + bn−2

bn−1

= 1 +
bn−2

bn−1

= 1 +
1

cn−1

.

So

cn = 1 +
1

cn−1

for all n ≥ 3. (10.2.2)

Thus, cn = f(cn−1) where f(x) = 1 + 1
x
.

The table showing the first few terms of this sequence suggests that this se-
quence converges. Note that the sequence is neither increasing nor decreasing,
so Theorem 10.1.1 does not apply.

Assume that limn→∞ cn exists and call that limit L. Then, by (10.2.2),

lim
n→∞

cn = lim
n→∞

(
1 +

1

cn−1

)
= 1 +

1

limn→∞ cn−1

So, L = 1 +
1

L
.

Therefore, L2 − L− 1 = 0.

The two solutions to L2 − L− 1 = 0 are

L =
1

2

(
1 +
√

5
)

L =
1

2

(
1−
√

5
)

.

1
2

(
1 +
√

5
)
≈ 1.618034 is

known as the Golden
Ratio.

Since every term in this sequence is positive, the limit cannot be negative.
The only possible limit is

L =
1

2

(
1 +
√

5
)
≈ 1.61803.

�

A Famous Recursion

The recursion pn+1 = kpn, where k is a constant greater than 1, describes a
population growing at a rate proportional to the amount present. If the initial
population is p1, then p2 = kp1, p3 = k2p1, p4 = k3p1, . . . and the population
would increase without bound. But a population cannot do that. Instead, let
us assume it approaches a limiting population, which we will say is 1. As it
approaches this size, the struggle to find food slows its growth. Taking this
into consideration, we assume that {pn} satisfies the logistic equation:

pn+1 = kpn(1− pn).
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The behavior of this equation, considered on its own is surprising. For
instance, if k is near 3.5699456 the behavior of the sequence changes a great
deal even when k is changed only a little.

EXAMPLE 5 Examine the sequence given by pn+1 = kpn(1− pn) for 0 ≤
k ≤ 1.
SOLUTION For p0 = 0 or 1, pn = 0 for all n ≥ 1. For 0 < p0 < 1,
p1 = kp0(1 − p0) is at most p0(1 − p0), which is less than p0. Similarly, p2 is
less than p1, and, in general we have pn+1 < pn. The sequence {pn} decreases
but stays above 0. Therefore it has a limit L, and L ≥ 0. Taking limits on
both sides of (10.2) shows that L = kL(1−L). Either L = 0 or 1 = k(1−L),
hence L = 0 or L = 1− 1/k. But 1− 1/k is either negative (if 0 < k < 1) or
0 (if k = 1). So L = 0. �

Summary

A recursive sequence is one whose nth term is given in terms of previous terms.
If an depends only on its immediate predecessor, then an = f(an−1). If a1,
a2, . . . , an−1, an, . . . converges to L, then f(L) = L. Thus L is a root of the
equation f(x) = x. It is called a fixed point of F .
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EXERCISES for Section 10.2

In Exercises 1 to 6 give an explicit formula for an as a function of n.
1. a0 = 1, an = −an−1 for n ≥ 1
2. a0 = 3, an = an−1/n for n ≥ 1
3. a0 = 2, an = 3 + an−1 for n ≥ 1
4. a0 = 5, an = −an−1/2 for n ≥ 1
5. a1 = 1, an = an−1 + 1/n for n ≥ 2
6. a1 = 1, an = −an−1 + (−1)n/n for n ≥ 2

In Exercises 7 to 12 describe an in terms of an−1 and an initial term a0.
7. an = 3n, n = 0, 1, 2, . . .
8. an = 5n/n!, n = 0, 1, 2, . . .
9. an = 3 (n!), n = 0, 1, 2, . . .
10. an = 2n + 5, n = 0, 1, 2, . . .
11. an = 1 + 1/22 + 1/32 + · · ·+ 1/n2, n = 1, 2, 3, . . .
12. an = 1/2 + 1/4 + 1/8 + · · ·+ 1/2n−1, n = 0, 1, 2, . . .

13. Define {bn} by b0 = 2 and b1 = 1/bn−1 for n ≥ 1.

(a) Find b1, b2, . . . , b5.

(b) Show that if {bn} converges, its limit is 1 or −1.

(c) Does {bn} converge?

(d) For which choices of b0 does {bn} converge to 1?

(e) For which choices of b0 does {bn} converge to −1?

(f) For which choices of b0 does {bn} diverge?

14. Consider the logistic recursion (10.2) with k = 2, that is pn+1 = 2pn(1− pn).

(a) Choose p0 between 0 and 1/2. Find enough pn to be able to conjecture if the
sequence converges.

(b) Repeat (a) for another value of p0 between 0 and 1/2.

(c) Repeat (a) with p0 between 1/2 and 1.

(d) Repeat (a) for another value of p0 between 1/2 and 1.

(e) What happens to the sequence {pn} if p0 is 0 or 1?
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(f) What happens to the sequence {pn} if p0 is 1/2?

(g) For which values of p0 does {pn} converge? And, in those cases, to what limit?

15. For which values of x does
{

xn

n!

}
converge?

16. For which values of x does
{

xn

2n

}
converge?

17. For which values of x does
{

xn

n2

}
converge?

18. For which values of x does
{

xn
√

n

}
converge?

19. Let an+2 = an + 2an+1 with a0 = 1 = a1 and cn = an/an−1. Examine {cn}
numerically, deciding whether it converges and, if so, what its limit might be.

20. Consider the logistic recursion (10.2) with 0 < k ≤ 4. Show that if p0 is in
the interval [0, 1], then pn is also in [0, 1] for all n ≥ 0.

21. Let an+2 = (an + 3an+1)/4, with a0 = 0 and a1 = 1.

(a) Compute enough terms of {an} to guess the limit, L.

(b) When you take limits of both sides of the recursion equation, what equation
do you get for L?

22. Consider the recursion an+2 = (1 + an+1)/an.

(a) Starting with a1 = 1 and a2 = 2, compute a3, a4, a5, a6, a7, and a8.

(b) Repeat (a) with a1 = 3 and a2 = 3.

(c) Repeat (a) with a1 and a2 of your choice.

(d) Explain what is going on.

23. Let k and p be positive numbers and define the sequence {fn} as follows:
given f1, define fn+1 = k(fn)p for n ≥ 1.

(a) Assuming this sequence converges, find its limit.

(b) Explain how to choose k so that the sequence converges to 2.
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24. Show that if 0 ≤ k ≤ 4, 0 ≤ p0 ≤ 1, and pn+1 = kpn(1− pn), then 0 ≤ pn ≤ 1.

25. Explore the sequence {an} where an+1 = an − an−1 for n ≥ 2 if

(a) a0 = 3 and a1 = 4,

(b) a0 = 1 and a1 = 0,

(c) the general case, a0 = a, a1 = b.

In each case, try to find the shortest interval containing all an. Does the sequence
have a limit? Explain.

26.

(a) Investigate the logistic sequence {pn} for k = 2.

(b) Make a conjecture based on (a).

(c) Let pn = 1
2 + qn. Show that qn+1 = −2q2

n.

(d) Use (c) to discuss your conjecture in (b).

27. A path that is 1′ by n′ is to be tiled with 1′ by 1′ tiles and 1′ by 2′ tiles. Let
an be the number of ways this can be done.

(a) Obtain a recursive formula for an.

(b) Use your formula found in (a) to find a10.

28. Repeat Exercise 27 with 1′ by 1′ and 1′ by 3′ tiles.

29. Repeat Exercise 27 with 1′ by 2′ and 1′ by 3′ tiles.

30. Let u(n) be the number of ways of tiling a 2 by n rectangle with 1 by 2
dominoes.

(a) Find u(1), u(2), and u(3).

(b) Find a recursive definition of the function u.
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Exercises 31 to 34 illustrate some of the characteristics that make the logistic re-
cursion pn+1 = kpn(1 − pn) so interesting. In each case, create two sequences
corresponding to two values of k in the indicated range and with different values for
the initial value, p0.
31. 1 < k < 3
32. 3 < k < 3.4
33. 3.4 < k < 3.5
34. 3.6 < k < 4

35. Figure 10.2.1(a) shows the graph of a decreasing continuous function f such
that f(0) = 1 and f(1) = 0.

(a) (b)

Figure 10.2.1

(a) Show that f has exactly one fixed point in the interval [0, 1]. That is, show
that there is one number a with 0 ≤ a ≤ 1 that satisfies f(a) = a. (Draw the
line y = x on the graph of y = f(x).)

(b) If 0 < x < a, in what interval does f(x) lie?

(c) If a < x < 1, in what interval does f(x) lie?

(d) Use the graphs of y = f(x) and y = x to find all values of x for which
f(f(x)) > x and all values of x for which f(f(x)) < x.

36. Let f be a decreasing function such that f(0) = 1 and f(1) = 0 and the
graph of f is symmetric with respect to the line y = x. Examine the sequence x,
f(x), f(f(x)), . . . for x in [0, 1]. What can you say about the convergence of this
sequence?
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37. Let k, c1, and c2 be positive numbers. Define the sequence {cn} as follows:
given c1, c2, define cn = (1 + kcn−1)/cn−2 for n ≥ 3. Assuming this sequence con-
verges, find the possible limits.

38. Examine the sequence {xn} determined by xn+1 = f(xn) with f(x) = 1− x2

for various inputs in [0, 1]. Does f have a fixed point?

39. Let f(x) = 1−x, g(x) = 1−1.1x, and h(x) = 1−0.9x. Let x0 = 0.4. Examine
what happens to the sequences determined by each function.

40. Assume that f is a decreasing function for x in [0, 1], f(1) = 0, and −1 <
f ′(x) < 0.

(a) What can be said about f(0)?

(b) Show that f has a unique fixed point.

(c) Assume a is the fixed point of f , that is f(a) = a. Show that if 1 ≥ x > a,
then f(x) < a and if 0 ≤ x < a, then f(x) > a.

(d) Let g(x) = f(f(x)). Examine the sequence x, g(x), g(g(x)), . . . for x in [0, 1].
Show that this sequence is monotone.

(e) Show that for all x in [0, 1] the sequence x, f(x), f(f(x)), . . . , approaches a.

41. Figure 10.2.1(b) is the graph of a function for which f(0) = 0, f(1) = 0,
f ′′(x) ≤ 0, and 0 ≤ f(x) ≤ 1.

(a) Show that f has at least one fixed point.

(b) Show that if f ′(0) ≥ 1, then f has only one fixed point.

(c) Show that if f ′(0) < 1, it has exactly two fixed points.

Exercises 42 to 45 show all of the steps in the proof that the sequence introduced in
Example 4 converges. Recall that c2 = 1 and cn = 1 + 1

cn−1
for all n ≥ 3.

42. Let {dn} be the sequence formed from the terms of {cn} with an odd index.
That is, dn = c2n−1 for all n ≥ 2.

(a) Show that dn ≤ 2 for all n ≥ 2.

(b) Show that {dn} is a decreasing sequence.

(c) Explain why you know {dn} converges.
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(d) What is limn→∞ dn?

43. Let {en} be the sequence formed from the terms of {cn} with an even index.
That is, en = c2n for all n ≥ 1.

(a) Show that en ≥ 1 for all n ≥ 1.

(b) Show that {en} is an increasing sequence.

(c) Explain why you know {en} converges.

(d) What is limn→∞ en?

44. Let {xn} be a sequence with the property that the (sub)sequence of odd terms
converges to L, limn→∞ x2n−1 = L, and the (sub)sequence of even terms converges
to M , limx→∞ x2n = M . Show:

(a) if L 6= M then {xn} diverges

(b) if L = M then {xn} converges and limn→∞ xn = L.

45. Use Exercises 42 to 44 to prove that {cn} converges. Hence its limit is the
Golden Ratio.

46. Let k be a number and define the sequence {dn} as follows: given d0, define
dn = kd2

n−1 for n ≥ 1.

(a) Assuming the sequence converges, find its limit.

(b) Explain how to choose k so that this sequence converges to 3/2.
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10.3 Bisection Method for Solving f (x) = 0

One way to estimate the solution of an equation f(x) = 0 is to zoom in on
it with a graphing calculator. However, precision is limited by the resolution
of the display. This section and the next describe techniques for estimating a
root to as many decimal places as you may need. The technique in this section
is based on the fact that a continuous function that is positive at one input
and negative at another has a root between them.

Bisection Method for Solving f(x) = 0

A root of f is a solution to
f(x) = 0.

Let f(x) be a function. A solution or root of the equation f(x) = 0 is a
number r such that f(r) = 0. The graph of y = f(x) passes through the point
(r, 0), as shown in Figure 10.3.1.

r

y=f(x)

x

y

Figure 10.3.1

Let f(x) be a continuous function defined at least on an interval [a0, b0],
with a0 < b0. Assume that f(a0) and f(b0) have opposite signs, one negative,
the other positive. By the Intermediate Value Theorem, f(x) has at least one
root in [a0, b0].

Not knowing where in [a0, b0] a root lies, evaluate f at the midpoint, m0 =
(a0 + b0)/2. If, by chance, f(m0) = 0, one has found a root and the search is
over. Otherwise, the sign of f(m0) is opposite the sign of one (and only one)
of f(a0) and f(b0).

If f(a0) and f(m0) have opposite signs, then a root must be in the interval
[a0, m0], which is half the width of [a0, b0]. On the other hand, if f(m0) and
f(b0) have opposite signs, a root lies in [m0, b0], again half the width of [a0, b0].

In either case we have trapped a root in an interval half the width of [a0, b0].
Call this shorter interval [a1, b1]. Figure 10.3.2 shows the two possibilities for
[a1, b1] in the case when f(a0) > 0 and f(b0) < 0.

Figure 10.3.2

The Bisection Method is a
recursive algorithm.
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Then repeat the process, starting at [a1, b1]. In this way you obtain a
sequence of shorter and shorter intervals [a0, b0], [a1, b1], [a2, b2], . . . , each half
as long as its predecessor. Thus the length of [an, bn] is (b0 − a0)/2

n.

An Illustration of the Bisection Method

When x is large and positive f(x) = x+sin(x)−2 is positive.The bisection method is so
named because at each step

an interval is bisected.

When x is large
and negative, f(x) is negative. Therefore f(x) = 0 has at least one solution.
The derivative of f(x) is 1+cos(x), which is positive except at odd multiples of
π, when it is zero. Thus, f(x) is an increasing function, which implies that it
cannot have more than one root. Let r be the unique root of x+sin(x)−2 = 0.

Begin the search for the root by finding an interval on which we can be
certain the root will lie.The larger [ao, b0] is the

longer this process will take. Since f(0) = −2, the root must be positive. Using sin(x) ≥ −1 we know
f(x) = x + sin(x)− 2 ≥ x− 1− 2 = x− 3 and so f(4) must be positive. Let
a0 = 0 and b0 = 4. The root will be found in the interval [a, b] = [0, 4].

The middle of this interval is m0 = (a0 + b0)/2 = 2. Evaluate y0 =
f(m0) = f(2) ≈ 0.909297. Because y0 > 0 we now know the root is in the
interval [a1, b1] = [0, 2].

The middle of the new interval is m1 = (a1 + b1)/2 = 1. Then y1 =
f(m1) = f(1) ≈ −0.15829. Now y1 < 0 so the root is trapped in the interval
[a2, b2] = [1, 2].

The third iteration of this process yields m2 = 1.5 and y2 = f(1.5) ≈
0.497495. Then, [a3, b3] = [1, 1.5].

Ren more are shown in Table 10.3.1.Rounding to three decimal
digits, every number in

[1.105957, 1.106445] rounds
to 1.106.

After 13 iterations the root is known
to exist on the interval [a13, b13] = [1.105957, 1.106445]. The midpoint of this
interval, m13 = 1.106201, differs from r by at most half the width of [a13, b13],
that is, by at most 0.000244.

If the iterations were continued without end, this process defines sequences
{an} and {bn}. Of course, one stops when the length of the interval containing
r is short enough.

EXAMPLE 1 Use the bisection method to estimate the square root of 3
to three decimal places.
SOLUTION The square root of 3 is the positive number whose square is 3:
x2 = 3 or x2 − 3 = 0. We are looking for the positive root of f(x) = x2 − 3.

The function f is continuous. We know
√

3 is between 1 and 2. This
suggests using the bisection method with initial interval [1, 2].

The first 11 iterations of the bisection method are displayed in Table 10.3.2.
After 7 iterations the approximation

√
3 ≈ m7 = 1.730469 is accurate to two

decimal places:
√

3 ≈ 1.73. After another 4 iterations the approximation is
accurate to three decimal places:

√
3 ≈ 1.732. �
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n an bn mn yn bn − an

0 0.000000 4.000000 2.000000 0.909297 4.000000
1 0.000000 2.000000 1.000000 −0.158529 2.000000
2 1.000000 2.000000 1.500000 0.497495 1.000000
3 1.000000 1.500000 1.250000 0.198985 0.500000
4 1.000000 1.250000 1.125000 0.027268 0.250000
5 1.000000 1.125000 1.062500 −0.063925 0.125000
6 1.062500 1.125000 1.093750 −0.017895 0.062500
7 1.093750 1.125000 1.109375 0.004796 0.031250
8 1.093750 1.109375 1.101562 −0.006522 0.015625
9 1.101562 1.109375 1.105469 −0.000857 0.007812

10 1.105469 1.109375 1.107422 0.001971 0.003906
11 1.105469 1.107422 1.106445 0.000558 0.001953
12 1.105469 1.106445 1.105957 −0.000149 0.000977
13 1.105957 1.106445 1.106201 0.000204 0.000488

Table 10.3.1

n an bn mn yn bn − an

0 1.000000 2.000000 1.500000 −0.750000 1.000000
1 1.500000 2.000000 1.750000 0.062500 0.500000
2 1.500000 1.750000 1.625000 −0.359375 0.250000
3 1.625000 1.750000 1.687500 −0.152344 0.125000
4 1.687500 1.750000 1.718750 −0.045898 0.062500
5 1.718750 1.750000 1.734375 0.008057 0.031250
6 1.718750 1.734375 1.726562 −0.018982 0.015625
7 1.726562 1.734375 1.730469 −0.005478 0.007812
8 1.730469 1.734375 1.732422 0.001286 0.003906
9 1.730469 1.732422 1.731445 −0.002097 0.001953

10 1.731445 1.732422 1.731934 −0.000406 0.000977
11 1.731934 1.732422 1.732178 0.000440 0.000488

Table 10.3.2
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The bisection method is known as a “bracketing method” because the two
sequences bracket the solution.

Why the Bisection Method Works

The bisection method applied to f(x) produces two sequences, a0 ≤ a1 ≤ a2 ≤
· · · and b0 ≥ b1 ≥ b2 ≥ · · · . If no an or bn is a root of f , the sequences do
not end. The sequence of left endpoints, {an}, is monotone increasing and the
sequence of right endpoints is monotone decreasing. Moreover, since every an

is less than or equal to b0, {an} is bounded. Thus {an}, being bounded and
monotone, has a limit, A ≤ b0. Similarly, {bn} also has a limit, B ≥ a0.

Recall that the length of the interval [an, bn] is bn−an = (b0−a))/2
n. This

means that {bn−an} is a geometric sequence with ratio 1/2, which is less than
1. Thus, limn→∞(bn − an) = 0, and we have

0 = lim
n→∞

(bn − an) = lim
n→∞

bn − lim
n→∞

an = B − A.

Consequently, A = B.
But, why is A a root of f?
Consider the sequence

f(a0), f(b0), f(a1), f(b1), f(a2), f(b2), · · · f(an), f(bn), · · · . (10.3.1)

Since f is continuous, (10.3.1) has a limit, f(A). Moreover, the fact that
one of f(an) and f(bn) is positive means the limit, f(A), cannot be negative.
Similarly, because one of each pair of entries in (10.3.1) is negative, f(A)
cannot be positive. Thus, f(A) = 0 and A is a root of f .

Summary

In the bisection method for finding a root of a function f , one first finds two
inputs a0 and b0 for which f(a0) and f(b0) have opposite signs. Then one
evaluates f at the midpoint m0. The function f will have opposite signs at
the endpoints of exactly one of the intervals: [a0, m0] or [m0, b0]. Call this new
interval [a1, b1], then repeat the process on this new interval. Continue the
process until the interval is short enough to assure an estimate of the root that
meets the desired accuracy.

April 22, 2012 Calculus



§ 10.3 BISECTION METHOD FOR SOLVING f(x) = 0 893

EXERCISES for Section 10.3

In Exercises 1 and 2, use the bisection method to find a1 and b1.
1. a0 = 2, b0 = 6, f(2) = 0.3, f(4) = 1.5, f(6) = −1.2
2. a0 = 1, b0 = 3, f(1) = −4, f(2) = −1.5, f(3) = 1

3. In this exercise use the bisection method to approximate
√

2. Let a0 = 1, b0 = 2,
and f(x) = x2 − 2. Fill in the following table as you carry out the first five steps of
the bisection method.

n an bn

0 0 2
1
2
3
4
5

4. Use the bisection method to estimate
√

5 with the bisection method.

(a) Use f(x) = x2 − 5 and start with a0 = 2, and b0 = 3. Continue until the
interval [an, bn] is shorter than 0.01, that is, bn − an < 0.01.

(b) How many more steps of the bisection method are needed to reduce the interval
by another factor of 10, that is, bn−an < 0.001? (This can be answered without
computing every an and bn.)

5. Estimate 3
√

2 by the bisection method.

(a) Use f(x) = x3 − 2 and start with a0 = 1, and b0 = 2. Continue until the
interval [an, bn] is shorter than 0.01, that is, bn − an < 0.01.

(b) How many more steps of the bisection method are needed to reduce the interval
by another factor of 10, that is, bn − an < 0.001?

In Exercises 6 to 9 estimate the given numbers to the indicated number of decimal
places.
6.

√
15 to 3 decimal places (Use f(x) = x2 − 15 with a0 = 3 and b0 = 4.)

7.
√

19 to 2 decimal places
8. 3

√
7 to 4 decimal places

9. 3
√

25 to 3 decimal places

10. Let f(x) = x5 + x− 1.
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(a) Show that there is a root of the function f(x) in the interval [0, 1].

(b) Apply five steps of the bisection method with a0 = 0 and b0 = 1.

(c) Why is the root unique?

11. Let f(x) = x4 + x− 19.

(a) Show that f(2) < 0 < f(3) and that there is only one root of f(x) between 2
and 3? What property of f assures that there is exactly one root between 2
and 3?

(b) Using the bisection method with [a0, b0] = [2, 3], find an interval of length no
more than 0.01 where this root must be found.

(c) The second real root of f(x) is negative. Find an interval of length one in
which this root must exist.

(d) Repeat (b) using the interval found in (c) as the initial interval.

12. In estimating
√

3 with the bisection method, Sam imprudently chooses the
initial interval to be [0, 10].

(a) How many steps of the bisection method will Sam have to execute before he
has an interval shorter than 0.005?

(b) Jane started with [1, 2]. How many steps of the bisection method will she
need to execute before she has an interval shorter than 0.0005?

13. Let f(x) = 2x3 − x2 − 2.

(a) Show that there is exactly one root of the equation f(x) = 0 in the interval
[1, 2].

(b) Using [a0, b0] = [1, 2] as a first interval, apply two steps of the bisection
method.
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14.

(a) Graph y = x and y = cos(x) relative to the same axes.

(b) Using the graph in (a), find an interval of length no more than 0.25 that
contains the positive solution of the equation x = cos(x). Is there a negative
solution?

(c) Using your estimate in (b) as [a0, b0], apply the bisection method until the
interval is shorter than 0.001.

15.

(a) Graph y = cos(x) and y = 2 sin(x) relative to the same axes.

(b) Without using the graph in (a), explain how you know the graphs intersect
exactly once in [0, π/2].

(c) Using [a0, b0] = [0, π/2], apply the bisection method until the length of the
interval is no more than 0.001.

In Exercises 16 to 18 (Figure 10.3.3) use the bisection method to estimate θ (to two
decimal places). Angles are in radians. Also show that there is only one answer if
0 < θ < π/2.

(a) (b) (c)

Figure 10.3.3

16. Figure 10.3.3(a)
17. Figure 10.3.3(b)
18. Figure 10.3.3(c)

19.

(a) Graph y = x sin(x) for x in [0, π].

(b) Using the first and second derivatives, show that the function has a unique
relative maximum in the interval [0, π].
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(c) Show that the maximum value of x sin(x) occurs when x cos(x) + sin(x) = 0.

(d) Use the bisection method, with [a0, b0] = [0, π/2], to find an estimate for a
root of x cos(x) + sin(x) = 0 that is accurate to at least two decimal digits.

20.

(a) Graph y = x cos x for x in [0, π].

(b) Using the first and second derivatives, show that there is a unique relative
maximum in the interval [0, π/2].

(c) Show that the maximum value of x cos x occurs when cos x− x sinx = 0.

(d) Use the bisection method, with [0, π/2], to find an interval [an, bn] with length
no more than 0.01 that contains a solution of cos x− x sinx = 0.

21. Use the bisection method to estimate the maximum value of y = 2 sin(x)−x2

over the interval [0, π/2].

22. Use the bisection method to estimate the maximum value of y = x3 + cos(x)
over the interval [0, π/2].

23. We can show that the error in the bisection method diminishes rather slowly.
Let [a0, b0] be the initial interval containing the root r and let [a1, b1] be the next
estimate, obtained by the bisection method.

(a) Show that b1 − a1 = 1
2(b0 − a0).

(b) Let [a2, b2] be the next interval obtained by the bisection method. Show that
b2 − a2 = 1

2(b1 − a1) = 1
4(b0 − a0).

(c) Explain why, in general, bn − an = 1
2(bn−1 − an−1) = 1

2n (b0 − a0).

(d) How many steps of the bisection method are needed to obtain an interval no
longer than L (L > 0) containing the given root.

24. The equation x tan(x) = 1 occurs in the theory of vibrations.

(a) How many roots does it have in [0, π/2]?

(b) Use the bisection method to estimate each root to two decimal places.

April 22, 2012 Calculus



§ 10.3 BISECTION METHOD FOR SOLVING f(x) = 0 897

25. Use the bisection method to approximate all local extrema of g(x) =
2x − (x + 1)e−x to three decimal places. How do you know you have found all
extrema? (See also Example 3 in Section 10.4.)

26.

(a) Show that a critical number of the function f(x) = (sinx)/x for x 6= 0 and
f(0) = 1 satisfies the equation tanx = x.

(b) Show that (sin(x))/x is an even function. Thus we will consider only positive
x.

(c) Graph the function tan(x) and x relative to the same axes. How often do they
cross for x in [π/2, 3π/2]? for x in [3π/2, 5π/2]? Base your answer on your
graphs.

(d) Show that tan(x)−x is an increasing function for x in [π/2, 3π/2]. What does
that tell us about the number of solutions of the equation tan(x) = x for x in
[π/2, 3π/2]?

(e) How many critical numbers does the function f(x) have?

(f) Use the bisection method with [a0, b0] = [π/2, 3π/2] to estimate the critical
number in [π/2, 3π/2] to at least two decimal places.

(See also Exercise 20 in Section 10.4.)

27. Examine the solutions of the equation 2x + sin(x) = 2. How many are there?
Use the bisection method with appropriate initial intervals to evaluate each solution
to two decimal places. Explain the steps in your solution in complete sentences.

28. How many solutions does the equation sin(x) = x have? Explain how you
could use the bisection method to estimate each solution.

29. Explain how you could use the bisection method to estimate 5
√

a.

30.

Sam: I have a better way than the bisection method.

Jane: What do you propose?

Sam: I trisect the interval into three equal intervals using two points.

Jane: What’s so good about that?
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Sam: I cut the error by a factor of 3 each step.

Jane: But you have to compute two points and evaluate the function there. That’s
four calculations instead of two.

Sam: But my method cuts the error so fast, it’s still better, so the gain outweighs
the cost.

Is Sam right?
Assume the initial interval is [0, 1] and estimate the “cost” to reduce the length of
the interval containing the root go the small number E.

31.

Sam: I have a better way than the bisection method.

Jane: What is it?

Sam: I break the interval into four equal intervals by three points.

Jane: Then?

Sam: I find on which of the four intervals the root must lie. I do two of the bisection
steps in one step. So it must be more efficient.

Jane: That all depends. I’ll think about it.

Think about it and offer your opinion.
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10.4 Newton’s Method for Solving f (x) = 0

This section presents another way to find a sequence of approximations to a
solution of f(x) = 0. Newton’s Method uses information about f and its
derivative to produce estimates that usually converge much faster than the
sequences obtained by the bisection method.

The Idea Behind Newton’s Method

Figure 10.4.1 ARTIST:
Please add labels for x0

and f(x0).

Figure 10.4.1 shows the graph of a function f which has a root r and
initial estimate x0. (You may make the initial estimate by looking at a graph,
or doing some calculations on your calculator.)

To get a (hopefully) better estimate of r, find where the tangent at P =
(x0, f(x0)) crosses the x-axis. Call the new estimate x1, as shown in Fig-
ure 10.4.1.

Then repeat the process using x1, instead of x0, as the estimate of the root
r. This produces an estimate x2. Repeating the process produces a sequence
x0, x1, x2, . . . , xn, . . . . However, in practice, you stop Newton’s Method when
two successive estimates are sufficiently close together.

The Key Formula

What difficulties arise if
f ′(x0) = 0?

To obtain a formula for x1 in terms of x0, observe that the slope of the
tangent at P in Figure 10.4.1 is f ′(x0) and also (f(x0) − 0)/(x0 − x1). We
assume f ′(x0) is not zero, that is, the tangent at P is not parallel to the
x-axis. Thus

f ′(x0) =
f(x0)− 0

x0 − x1
or

x0 − x1 =
f(x0)

f ′(x0)
.

Consequently, we have the key formula for applying Newton’s Method:

Newton’s Recursion

x1 = x0 −
f(x0)

f ′(x0)
(10.4.1)

The same idea gives x2 = x1 − f(x1)
f ′(x1)

and so on for x3, x4, . . . . In general, we
have the recursive definition,

xn+1 = xn −
f(xn)

f ′(xn)
. (10.4.2)
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Before we examine whether the sequence converges, we illustrate the technique
with some examples.

EXAMPLE 1 In the previous section, 13 iterations of the bisection method
were needed to estimate the unique solution to f(x) = x + sin(x)− 2 = 0 to 3
decimal places. Let’s see how Newton’s Method deals with the same problem.
SOLUTION A reasonable initial estimate is x0 = 2, because it cancels the
−2 in x+sin(x)−2. The derivative of x+sin(x)−2 is 1+cos(x). The Newton
recursion formula, (10.4.1), reads

xn+1 = xn −
xn + sin(xn)− 2

1 + cos(xn)
.

The first six iterations of Newton’s Method are shown in Table 10.4.1.

Note that f(x5) = 0. As a result, all subsequent estimates will be identical
to x5. We conclude that r ≈ x5 = 1.106060 and that this estimate is accurate
to six decimal places.

n xn f(xn) f ′(xn)
0 2.000000 0.909297 0.583853
1 0.442592 −1.129124 1.903644
2 1.035731 −0.104034 1.509898
3 1.104632 −0.002069 1.449463
4 1.106060 −0.000001 1.448188
5 1.106060 0.000000 1.448187
6 1.106060 0.000000 1.448187

Table 10.4.1

Each iteration of the bisection method is much easier to implement than
Newton’s method. However, Newton’s Method needs only 5 steps to obtain
an approximation of the root to f accurate to (at least) six decimal places
while after 13 iterations the bisection method yields an approximation, p13 ≈
1.106201, accurate to only three decimal places. �

EXAMPLE 2 Use Newton’s method to estimate the square root of 3, that
is, the positive root of the equation x2 − 3 = 0.
SOLUTION Here f(x) = x2 − 3 and f ′(x) = 2x. According to (10.4.1), if
the initial estimate is x0, then the next estimate x1 is

x1 = x0 −
f(x0)

f ′(x0)
= x0 −

x2
0 − 3

2x0

=
1

2

(
x0 +

3

x0

)
.
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For our initial estimate, let us use x0 = 2. Its square is 4, which isn’t far from
3. Then

x1 =
1

2

(
x0 +

3

x0

)
=

1

2

(
2 +

3

2

)
= 1.75.

Repeat, using x1 = 1.75 to obtain the next estimate:

x2 =
1

2

(
x1 +

3

x1

)
=

1

2

(
1.75 +

3

1.75

)
≈ 1.73214.

One more step of the process yields (to five decimals) x3 ≈ 1.73205, which is
close to

√
3. The decimal expansion of

√
3 begins 1.7320508. In fact, x3 agrees with

√
3

to seven decimals.
See Figure 10.4.2,

which shows x0, x1 and the graph of f(x) = x2 − 3, and Table 10.4.2, the
numerical values used in these computations.

Figure 10.4.2 NOTE:
Renumber indices.

n xn f(xn) f ′(xn)
0 2.000000 1.000000 4.000000
1 1.750000 0.062500 3.500000
2 1.732143 0.000319 3.464286
3 1.732051 0.000000 3.464102
4 1.732051 0.000000 3.464102

Table 10.4.2

When the same problem was solved using the bisection method in Exam-
ple 1, Compare with Table 10.3.2.after 11 iterations the best approximation to r is p11 = 1.732178. This

approximation to
√

3 is accurate to only three decimal places. �
In practice, stop the process when either |f(xn)| or the difference between

successive estimates, |xn − xn−1|, become sufficiently small.
Compare with Exercise 25.

EXAMPLE 3 Use Newton’s method to approximate the location of the
local extrema of g(x) = 2x− (x + 1)e−x.
SOLUTION This problem, which was first solved in Exercise 25 in Sec-
tion 10.3 is equivalent to asking for all roots of f(x) = g′(x) = 2 + xe−x.

x
K2 K1 0 1 2 3 4 5 6

y

K20

K10

10

Figure 10.4.3 ARTIST:
Label functions in graph.

To find an initial guess to start Newton’s method, notice that f(0) = 2 and
f(x) > 0 for all positive numbers x. Looking for a negative value of x that
makes f(x) negative, we see that f(−2) = 2 + (−2)e2 = 2 − 2e2 < 0 because
e > 1.

The first few iterations of Newton’s method with x0 = −1 are shown in
Table 10.4.3. After four steps the process is stopped because f(x3) = 0. The
critical number of g is approximately x∗ ≈ x3 = −0.852606. This is correct to
all six decimal places shown.

Because g′(x) is negative to the immediate left of x∗ and is positive to
the immediate right of x∗ we conclude that x∗ is a local minimum of g(x) =
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n xn f(xn) f ′(xn) |xn − xn−1|
0 −1.000000 −0.718282 5.436564
1 −0.867879 −0.067163 4.449017 0.132121
2 −0.852783 −0.000773 4.346941 0.015096
3 −0.852606 0.000000 4.345751 0.000177
4 −0.852606 0.000000 4.345751 0.000000

Table 10.4.3

2x − (x + 1)e−x. The graphs of g and g′ = f are shown in Figure 10.4.3.
Observe the only local extremum is the local minimum near x = −0.85. �

Remarks on Newton’s Method

The assumption that f ′′

exists implies f ′ (and f) are
continuous.

In an interval where f ′′(x) is positive, the graph of y = f(x) is concave up,
and lies above its tangents, as shown in Figure 10.4.4. If x1 is to the right of
r, the sequence x1, x2, x3, . . . is monotone and is bounded below by r. Thus,
the sequence converges to a limit L ≥ r. To show that L is r, take limits of
both sides of the Newton recursion formula, (10.4.2):

Figure 10.4.4

lim
n→∞

xn+1 = lim
n→∞

(
xn −

f(xn)

f ′(xn)

)
(10.4.3)

obtaining (10.4.4)

L = L− f(L)

f ′(L)
(10.4.5)

Thus, 0 = −f(L)/f ′(L), so f(L) = 0, and L is a root of f .

The reasoning that obtained (10.4.5) from (10.4.3) shows, more generally,
if the sequence produced by Newton’s Method converges, its limit is a root.

The equation f(x) = 0 may not have a solution. In that case the sequence of
estimates produced by Newton’s method does not approach a specific number
but may wander all over the place, as in Figure 10.4.5(a).

It is also possible that there is a root r, but your initial guess x0 is so
far from r that the sequence of estimates does not approach r. See Fig-
ure 10.4.5(b).

The tangent at (xn, f(xn))
is horizontal and does not

intersect the x-axis.

Of course, if xn is a number where f ′(xn) = 0, then the Newton recursion,
which has f ′(xn) in the denominator, makes no sense.
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(a) (b)

Figure 10.4.5

How Good is Newton’s Method
Newton’s method for
solving x2 − 3 = 0 revisited
from a different point of
view.

When you use Newton’s method, you produce a sequence of estimates x0, x1,
x2, . . . of a root r. How quickly does the sequence approach r? In other words,
how rapidly does the difference between the estimate xn and the root r, |xn−r|,
approach 0?
To get a feel for the rate at which |xn − r| shrinks as we keep using Newton’s
method, take the case in Example 2, where we were estimating

√
3 using the

recursion xn+1 = 1
2

(
x1 + 3

xn

)
.

In the following table, we list, x1, x2, x3, x4 to seven decimal places and
compare to

√
3 ≈ 1.7320508:

Estimate Value Agreement with
√

3
x1 2.000000000 Initial guess
x2 1.750000000 First two digits
x3 1.732142857 First four digits
x4 1.732050810 First eight digits

At each stage the number of correct digits tends to double. This means the
error at one step is roughly the square of the error of the previous guess,

|xn − r| ≤M |xn−1 − r|2

for an appropriate constant M . This constant depends on the maximum of the
absolute values of the first and second derivatives. By contrast, the iterates
for the bisection method tend to cut the error |xn − r| in half at each step.
Because 23 < 10 < 24, it generally takes 3 or 4 steps to gain one more decimal
place accuracy.
This difference is evident in the number of iterations needed in each algorithm
to achieve the same accuracy.
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Summary

This section developed Newton’s method for estimating a root of an equation,
f(x) = 0. You start with an estimate x0 of the root, then compute

x1 = x0 −
f(x0)

f ′(x0)
.

Then repeat the process, obtaining the sequence

xn+1 = xn −
f(xn)

f ′(xn)
for all n = 1, 2, 3, . . . .

When f ′(r) 6= 0 and f ′ is continuous, the iterates in Newton’s Method
converge to r provided the initial guess is sufficiently close to r.

The Newton iterates converge quickly to the root: there is a constant M
such that

|xn − r| ≤M |xn−1 − r|2

while the iterates computed by the bisection method converge slowly:

|xn − r| ≤ 1

2
|xn−1 − r| .

While, in general, Newton’s method converges faster than the bisection method
the actual performance depends on f and the initial estimates.

Iterative methods for finding a root generally stop when either |f(xn)| or
|xn+1 − xn| becomes small enough.
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EXERCISES for Section 10.4

In Exercises1 and 2, use Newton’s method to find x1.
1. x0 = 2, f(2) = 0.3, f ′(2) = 1.5

2. x0 = 3, f(3) = 0.06, f ′(3) = 0.3

3. Let a be a positive number. Show that the Newton recursion formula for
estimating

√
a is given by

xi+1 =
1
2

(
xi +

a

xi

)
.

(The sequence defined in Exercise 3 was the Babylonian method for estimating
√

a.
If the guess x0 is smaller than

√
a, then a/x0 is larger than

√
a. So x1 is the average

of two numbers between which
√

a lies.)

4. Use the formula of Exercise 3 to estimate
√

15. Choose x0 = 4 and compute x1

and x2 to three decimals.

5. Use the formula of Exercise 3 to estimate
√

19. Choose x0 = 4 and compute x1

and x2 to three decimals.

6. Use Newton’s Method to estimate 3
√

7. Choose x0 = 2 and compute x1 and x2

to three decimals.

7. Use Newton’s Method to estimate 3
√

25. Choose x0 = 3 and compute x1 and
x2 to three decimals.

8. In this exercise the ideas in Exercise 3 are used to estimate
√

5 with Newton’s
method.

(a) Use f(x) = x2 − 5 and start with x0 = 2. Continue until the consecutive
estimates differ by at most 0.01, that is, xn+1 − xn < 0.01.

(b) How many more steps of Newton’s method are needed to reduce the interval
by another factor of 10, that is, xn+1 − xn < 0.001?

9. Estimate 3
√

2 with Newton’s method.

(a) Use f(x) = x3 − 2 and start with x0 = 1. Continue until the consecutive
estimates differ by at most 0.01, that is, xn+1 − xn < 0.01.

(b) How many more steps of Newton’s method are needed to reduce the interval
by another factor of 10, that is, xn+1 − xn < 0.001?
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10. Let f(x) = x5 + x− 1.

(a) Using x0 = 1
2 as a first estimate, apply Newton’s method to find a second

estimate x1.

(b) Show that there is a root of the function f(x) in the interval [0, 1].

(c) Why is the root unique?

11. Let f(x) = x4 + x− 19.

(a) Apply Newton’s method, starting with x0 = 2. Compute x1 and x2.

(b) Show that f(2) < 0 < f(3). What additional property of f assures that there
is exactly one root r between 2 and 3?

(c) The second real root of f(x) is negative. Find an interval of length one in
which this root must exist.

(d) Use the left endpoint of the interval in (c) as the initial guess for Newton’s
method. Compute x1 and x2.

12. In estimating
√

3 with Newton’s method, Sam imprudently chooses x0 = 10.
What does Newton’s method give for x1, x2, and x3?

13. Let f(x) = 2x3 − x2 − 2.

(a) Show that there is exactly one root of the equation f(x) = 0 in the interval
[1, 2].

(b) Using x0 = 3
2 as a first estimate, apply Newton’s method to find x2 and x3.

14.

(a) Graph y = x and y = cos(x) relative to the same axes.

(b) Using the graph in (a), estimate the positive solution of the equation x =
cos(x). Is there a negative solution?

(c) Using your estimate in (b) as x0, apply Newton’s method until consecutive
estimates agree to four decimal places.
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15.

(a) Graph y = cos(x) and y = 2 sin(x) relative to the same axes.

(b) Using the graph in (a), estimate the solution that lies in [0, π/2].

(c) Using your estimate in (b) as x0, apply Newton’s method until consecutive
estimates agree to four decimal places.

In Exercises 16 to 18 (Figure 10.4.6) use Newton’s method to estimate θ (to two
decimal places). Angles are in radians. Also show that there is only one answer if
0 < θ < π/2.

(a) (b) (c)

Figure 10.4.6

16. Figure 10.4.6(a)

17. Figure 10.4.6(b)

18. Figure 10.4.6(c)

19. The equation x tan(x) = 1 occurs in the theory of vibrations.

(a) How many roots does it have in [0, π/2]?

(b) Use Newton’s method to estimate each root to two decimal places.

20. Repeat parts (a)–(e) of Exercise 26 in Section 10.3. For part (f), use Newton’s
method instead of the bisection method.

21. Examine the solutions of the equation 2x + sin(x) = 2. How many are there?
Use Newton’s method to evaluate each solution to two decimal places. Explain the
steps in your solution in complete sentences.
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22. How many solutions does the equation sin(x) = x have? Explain how you
could use Newton’s method to estimate each solution.

23. Explain how you could use Newton’s method to obtain a formula for estimat-
ing 5
√

a.

Exercises 24 and 25 show that care should be taken in applying Newton’s method.
24. Let f(x) = 2x3 − 4x + 1.

(a) Show that there must be a root r of f(x) = 0 in [0, 1].

(b) Take x0 = 1, and apply Newton’s method to obtain x1 and x2.

(c) Graph f , and show what is happening in the sequence of estimates.

25. Apply Newton’s method to the function f(x) = x3−x, starting with x0 = 1/
√

5.

(a) Compute x1 and x2 exactly (not as decimal approximations).

(b) Graph x3 − x and explain why Newton’s method fails in this case.

26. Let f(x) = x2 + 1

(a) Using Newton’s method with x0 = 2, compute x1, x2, x3, and x4 to two
decimal places.

(b) Using the graph of f , show geometrically what is happening in (a).

(c) Using Newton’s method with x1 =
√

3/3, compute x2 and x3. What happens
to xn as n→∞?

(d) What happens when you use Newton’s method, startng with x1 = 1?

27. Assume that f ′(x) > 0, f”(x) < 0 for all x, and f(r) = 0.

(a) Sketch a possible graph of y = f(x).

(b) Describe the behavior of the sequence of Newton’s estimates x0, x1,. . . , xn,
. . . when you choose x0 > r. Include a sketch.

(c) Describe the behavior of the sequence if you choose x0 < r. Include a sketch.

28. Let f(x) = 1/x + 5
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(a) Graph f(x) showing its x-intercepts.

(b) For which x0 does Newton’s Method sequence converge to a solution to f(x) =
0?

(c) For which x does Newton Method sequence not converge?

29. Let f(x) = 1
x2 −5 and assume the same questions as in the preceding exercise.

30.

(a) Graph y = x sin(x) for x in [0, π].

(b) Using the first and second derivatives, show that it has a unique relative
maximum in the interval [0, π].

(c) Show that the maximum value of x sin(x) occurs when x cos(x) + sin(x) = 0.

(d) Use Newton’s method, with x0 = π/2, to find an estimate x1 for a root of
x cos(x) + sin(x) = 0.

(e) Use Newton’s method again to find x2.

31.

(a) Graph y = x cos x for x in [0, π].

(b) Using the first and second derivatives, show that it has a unique relative
maximum in the interval [0, π/2].

(c) Show that the maximum value of x cos x occurs when cos x− x sinx = 0.

(d) Use Newton’s method, with x0 = π/4, to find an estimate x1 for a root of
cos x− x sinx = 0.

(e) Use Newton’s method again to find x2.

32. Use Newton’s method to estimate the maximum value of y = 2 sin(x) − x2

over the interval [0, π/2].

33. Use Newton’s method to estimate the maximum value of y = x3 +cos(x) over
the interval [0, π/2].
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34. We can show that the error in Newton’s method diminishes rapidly (compared
to the bisection method). Let x0 be an estimate of the root r and let x1 be the second
estimate, obtained by Newton’s method. Assume f ′(x0) 6= 0.
Using the first-order Taylor polynomial with remainder, centered at a = x0, we may
write

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(c)

2
(x− x1)2 (10.4.6)

where c is a number between x and x1. (See page 396 in Section 5.5.)

(a) In (10.4.6), replace x by r and use the definition of x1 to show that

x1 − r =
f (2)(c)
2f ′(x0)

(r − x0)2,

where c is between x1 and r.

(b) Assume that x0 > r and that f ′(x) and f ′′(x) are positive for x in [r, x0].
Indicate on a diagram where the numbers x1, x2 . . . are situated. Then use
(a) to discuss how the error, r − xn, behaves as n increases.

35. Let p be a positive number.

(a) Graph f(x) = 1/x− p.

(b) For which choices of the initial estimate of a root of f will Newton’s Method
converge to r?

36. Throughout this section we have assumed we knew the derivative f ′(x). How-
ever, the derivative may be too complicated, or perhaps you just know the values of
f(x) at certain points. When you make an initial guess of a root of f , how would
you calculate a plausible “better approximation”? (What could you use instead of
the tangent line?)
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10.S Chapter Summary

Infinite sequences of numbers ak, ak+1, . . . arise in many contexts. (The initial
index, k, can be any non-negative integer.) For instance, they arise when
estimating a root of an equation of the form f(x) = 0. Any equation, g(x) =
h(x) can be transformed to that form, for it is equivalent to g(x)− h(x) = 0.

One way to estimate a root of f(x) = x is to pick an estimate, a, of a root
and compute f(a), f(f(a)), f(f(f(a))), . . . . If this sequence has a limit, r,
then f(r) = r.

The bisection method provides estimates of the roots of f(x) = 0. One
looks for numbers a and b at which f(x) has opposite signs. If f is continuous,
it has a root in the interval (a, b). Let m be the midpoint of that interval.
Then either m is a root or its sign is opposite the sign of one of f(a) and f(b).
Repeat, using either (a, m) or (m, b).

Newton’s method for solving f(x) = 0 depends on using a tangent to
approximate the graph of f(x). It yields the recursion x2 = x1− f(x1)/f

′(x1).
Repeat the process until one has the desired accuracy.

EXERCISES for 10.S 1. Let a0 = 0 and an = an−1 + 2n− 1 for n ≥ 1.

(a) Compute a few values of an (at least through a5) and conjecture an explicit
formula for an.

(b) Show that if your formula is correct for n = k, then it is correct for n = k +1.

2.

(a) Graph f(x) = cos
(

πx
2

)
for x in [0, 1].

(b) Let a be the unique fixed point of f on [0, 1]. Estimate a by looking at your
graph in (a).

(c) Use Newton’s Method to estimate a to 2 decimal places.

(d) Use the bisection method to estimate a to 2 decimal places.

(e) Does the sequence cos
(

πx
2

)
, cos

(
π
2 cos

(
πx
2

))
, . . . converge for every x in [0, 1]?

3. In Example 1 in Section 4.1 it was shown that f(t) = (t2 − 1) ln
(

t
π

)
has one

critical number on [1, π]. Use Newton’s Method to estimate this critical number to
three decimal digits.
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4. In Example 2 in Section 4.1 it was shown that f(x) = x3 − 6x2 + 15x + 3
has exactly one real root. Use Newton’s method to approximate this root to three
decimal places.

5.

(a) Graph y = xe−x2
.

(b) Estimate the area of the region bounded by y = xe−x2
, the line x + y = 1,

and the x-axis.

(You will need Newton’s method of estimating a solution of an equation.)

6. The spiral r = θ meets the circle r = 2 sin(θ) at a point other than the origin.
Use Newton’s method to estimate the coordinates of that point. (Give both the
polar and rectangular coordinates of the point of intersection.)

7. The equation M = E − e sin(E), known as Kepler’s equation, occurs in the
study of planetary motion. (M involves E, position, and e, the eccentricity of the
orbit, a number between 0 and 1.)

(a) Sketch the graph of M(E) = E − e sin(E) looks like as a function of E when
e = 0.2.

(b) Show that M(E) = E − e sin(E) is an increasing function of E for any 0 <
e < 1.

(c) In view of (b), E is a function of M , E = g(M). Use Newton’s method to
find g(0.25), g(0.5), and g(1.5) if e = 0.2. Find all answers to at least three
decimal digits.

(d) Repeat (c) with e = 0.8.

(A graphing calculator or computer can be used to simplify the calculations.)

Consider the problem of finding a solution to g(x) = 0. There are usually several
ways to rewrite this equation in the form f(x) = x. The challenge is to choose the
function f so that the sequence with an = f(an−1) converges. Then L = limn→∞ an

is a solution to g(x) = 0. In Exercises 8 to 11 we develop and apply a general result
known as the Fixed Point Theorem.
8. In this exercise we develop a version of the Fixed Point Theorem that will
explain what is happening in Exercises 9 and 11. Basically, if r is a fixed point
of f , that is, a number such that f(r) = r, then the errors en = r − an satisfy
r − en = f(r − en−1).

(a) Fill in the details to show why r − en = f(r − en−1).

(b) Replace f(r − en−1) with the linear approximation to f at r and derive the
(approximate) result: en ≈ f ′(r)en−1 for all n ≥ 0.
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(c) Show that if en ≈ f ′(r)en−1 for all n ≥ 0, then en ≈ (f ′(r))ne0.

(d) Explain why en → 0 if |f ′(r)| < 1 and {en} diverges if |f ′(r)| > 1. That is, an

converges to r if |f ′(r)| < 1, and {an} does not converge to r if |f ′(r)| > 1.

Consider the question of finding a solution to g(x) = x + ln(x) = 0. There are
several ways to reformulate this problem as a fixed point problem, that is, to solve
an equation of the form f(x) = x. Exercises 9 and 10 show that the Fixed Point
Theorem can be used to explain why some reformulations are more useful than
others for finding a root of g(x) = 0.
9.

(a) Let f1(x) = − ln(x). Verify that g(x) = 0 and f1(x) = x have the same
solution.

(b) Compute |f ′1(r)| where r is close to the solution to g(x) = 0. What does this
tell you about the sequence with an = f1(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f1(xn−1). Why can’t
you compute x5?

10.

(a) Let f2(x) = e−x. Verify that g(x) = 0 and f2(x) = x have the same solution.

(b) Compute |f ′2(r)| where r is close to the solution to g(x) = 0. What does this
tell you about the sequence with an = f2(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f2(xn−1). What
happens as n→∞?

The function g(x) = x2 − 2x− 3 has two roots: x = 3 and x = −1. In Exercises 11
to 13 we will explore three different ways to use fixed-point iterations to find these
roots.
11.

(a) Show that solving g(x) = 0 is equivalent to finding a fixed point of f1(x) =√
2x + 3.

(b) Compute |f ′1(r)|, where r is close to either root of g(x) = 0. What does this
tell you about the sequence an = f1(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f1(xn−1). What
happens limn→∞ xn?
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12.

(a) Show that solving g(x) = 0 is equivalent to finding a fixed point of f2(x) =
3/(x− 2).

(b) Compute |f ′2(r)|, where r is close to either root of g(x). What does this tell
you about the sequence an = f2(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f2(xn−1). What
happens limn→∞ xn?

13.

(a) Show that solving g(x) = 0 is equivalent to finding a fixed point of f3(x) =
1
2(x2 − 3).

(b) Compute |f ′3(r)|, where r is close to the solutions to g(x) = 0. What does this
tell you about the sequence an = f3(an−1)?

(c) Let x0 = 0.5 and compute x1, x2, x3, and x4 using xn = f3(xn−1). What
happens limn→∞ xn?

(d) Which of the methods in the these last three exercises is the best way to find
the solutions to g(x) = 0?

14. (Contributed by Frank Saminiego.) Assume that ai and bi, 0 ≤ i ≤ n,
are positive and the ratios ai/bi increase as a function of the index i. (That is,
a0/b0 < a1/b1 < · · · < an/bn.) Then it is known that

f(x) =
∑n

i=0 aix
i∑n

i=0 bixi

is an increasing function for x > 0. This fact is used in the statistical theory of
reliability.
Verify the assertion for (a) n = 1 and (b) n = 2. (Show that f ′(x) > 0.)

15. Let u(n) be the number of ways of tiling a 3 by n rectangle with 1 by 3
dominoes.

(a) Find u(1), u(2), and u(3).

(b) Find a recursive definition of the function u.

(c) Use (b) to find u(10).
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16. A tile consists of three 1 by 1 squares arranged to form the letter L. Let u(n)
be the number of ways a 2 by n rectangle can be tiled by such tiles.

(a) Find u(n) for n = 1, 2, 3, 4, 5, and 6.

(b) Find a recursion for u(n).

(c) Find u(n) for n = 22, 23, and 24.

17. Repeat Exercise 16 with u(n) the number of ways a 3 by n rectangle can be
tiled by the L-shaped tiles.

18. In the study of the hydrogen atom, one meets the integral

∞∫
0

rne−kr dr

Here n is a non-negative integer and k a positive constant. Show that it equals
n!/kn+1. (First find the value for n = 0. Then use integration by parts.) (n! is the
factorial of n, n! = 1 · 2 · · · · · (n− 1) · n)

An experiment either succeeds, with probability p, or fails, with probability q (p+q =
1). For instance, the probability of getting a five when rolling a six on one die is
p = 1/6. If the experiment is repeated n times one would expect near pn successes.
For k = 0, 1, . . . , n, the probability of having k successes in n experiments is

n!
k!(n− k)!

pkqn−k, (10.S.1)

(called the binomial distribution). Exercise 19 concerns the case when k is small
in comparison to n, showing that (10.S.1) is approximately kne−k/n!, called the
Poisson distribution. Exercise 20 obtains an approximation of (10.S.1) when k is
“near” pn. This approximation is

1√
2πnpq

e
− (k−np)2

2npq ,

which is related to the normal distribution (the famous bell curve).
19. The following limit occurs in the elementary theory of probability:

lim
N→∞

N !
n!(N − n)!

(
k

N

)n(
1− k

N

)N−n

,
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where n is a fixed positive integer and k is a positive constant. Show that the limit
is

kne−k

n!
.

20. This exercise obtains an approximation of (10.S.1) when k is “near” pn.
“Near” means limn→∞

k−pn
n = 0. We may write k = pn + zk, where zk/n → 0 as

n→∞. Note that k →∞ as n→∞.
We will use Stirling’s approximation to m!, namely

√
2πm(m/e)m, developed in

Exercise 28 in Section 11.6 on page 991.

(a) Show that (10.S.1) is approximated by(
n

2πk(n− k)

)1/2 (pn

k

)k
(

nq

n− k

)n−k

. (10.S.2)

(b) Show that (
n

2πk(n− k)

)1/2

≈ 1√
2πpqn

.

(c) Show that the other two factors in (10.S.1) equal

1(
1 + zk

nq

)np+zk
(
1− zk

nq

)nq+zk
. (10.S.3)

(d) Using the approximation ln(1 + x) = x− x2/2, show that the natural log (ln)
of the denominator in (10.S.3) is approximately z2

k/(2npq). (Disregard higher
powers of zk.)

(e) Using (b) and (d), show that (10.S.1) is approximately

1√
2πnpq

e
− (k−np)2

2npq ,

Note that in part (e) we meet the function e−x2
, which appears in the formula for

the normal distribution. Contrast this with Exercise 19, where e−x appears.

21. Let the mass of a bacteria culture at the end of n intervals of time be Cn. If
there is an adequate supply of nutrients, the mass doubles during each interval, that
is, Cn+1 = 2Cn. When the population is large it does not reproduce as quickly. In
that case, according to the Verhulst model (1848) there is a constant K such that

Cn+1 =
2

1 + Cn
K

Cn.

Show that limn→∞ Cn = K. (Set Rn = 1/Cn.)
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22. The recursion Pn+1 = re
−Pn

K Pn was introduced by W. E. Ricker in 1954 in the
study of fish populations. Pn denotes the fish population at the nth time interval,
while r and K are constants, with r being the maximum reproduction rate.
Examine the recursion when K = 10, 000, P0 = 5, 000 and (a) r = 20 and (b) r = 10.
As you will see, the highly unpredictable sequence {Pn} depends dramatically on r.
Such sensitivity to r is an early example of “chaos.”
References: F. C. Hoppensteadt and C. S. Peskin, Mathematics in Medicine and the
Life Sciences, Springer, NY 1991 (p. 21)
W. E. Ricker, Stock and Prerecruitment, J. Fish Res. Bd., Canada, 11 (1954), pp.
559–623.

23.

Sam: I’m going to prove, using the precise definition, that if 0 < r < 1, then
limn→∞ rn = 0.

Jane: I’ll listen.

Sam: I want to show that there is an integer N such that |rn − 0| < ε if n > N , in
other words, rn < ε, if n is big enough. To get hold of n, I take logarithms,
obtaining n ln(r) < ln(ε). Then I’ll divide by ln(r).

Jane: How do you know r has a log?

Sam: Well, r = eln(r).

Jane: You mean the equation r = ex has a solution?

Sam: Sure, that’s what a log is all about.

Jane: Since r is less than 1, x would be negative. May I write it as −p where p is
positive?

Sam: If you want to, why not?

Jane: So you’re saying that r can be written as (1/e)p for some positive number p.
You’re assuming that no matter how small r is, there is a positive number p
so that (1/e)p will equal it. Right?

Sam: Right. But why all this fuss?

Jane: To say that (1/e)p gets as small as you please is just a special case of what
you’re trying to prove. You’re wandering in circles.

Who’s right, Jane or Sam? If Sam is right, finish his proof.
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Calculus is Everywhere # 13

Hubbert’s Peak

In the CIE for Chapter 6, Hubbert combined calculus concepts with counting
squares. Later he developed specific functions and used more techniques of
calculus in “Oil and Gas Supply Modeling”, NBS Special Publication 631, U.S.
Department of Commerce, National Bureau of Standards, May, 1982. (NOTE:
NBS is now the National Institute of Standards and Technology (NIST).)

In his approach, Q∞ denotes the total amount of oil reserves a the time oil
is first extracted and t, time. The derivative dQ/dt is the rate at which oil is
extracted. Q(t) denotes the amount extracted up to time t. Hubbert assumes
Q(0) = 0 and (dQ/dt)(0) = 0. He wants to obtain a formula for Q(t).

“The curve of dQ/dt versus Q between 0 and Q∞ can be represented by
the Maclaurin series

dQ

dt
= c0 + c1Q + c2Q

2 + c3Q
3 + · · · .

Since, when Q = 0, dQ/dt = 0, it follows that c0 = 0.
“Since the curve must return to 0 when Q = Q∞, the minimum number

of terms that permit this, and the simplest form of the equation, becomes the
second degree equation

dQ

dt
= c1Q + c2Q

2.

By letting a = c1 and b = −c2, this can be rewritten as

dQ

dt
= aQ− bQ2.

“Since when Q = Q∞, dQ/dt = 0,

aQ∞ − bQ2
∞ = 0

or
b =

a

Q∞

and
dQ

dt
= a

(
Q− Q2

Q∞

)
. (C.13.1)

“This is the equation of a parabola . . . . The maximum value occurs when
the slope is 0, or when

a− 2a

Q∞
Q = 0,
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or

Q =
Q∞

2
.

“It is to be emphasized that the curve of dQ/dt versus Q does not have to
be a parabola, but that a parabola is the simplest mathematical form that this
curve can assume. We may regard the parabolic form as a sort of idealization
for all such actual data curves.”

He then points out that

dQ/dt

Q
= a− a

Q∞
.

“This is the equation of a straight line. The plotting of this straight line gives
the values for its constraints Q∞ and a.”

Because the rate of production, dQ/dt, and the total amount produced up
to time t, namely, Q(t) and observable, the line can be drawn and its intercepts
read off the graph. (The two intercepts are (0, a) and (Q∞, 0).)

Hubbert then compares this with actual data, which it approximates fairly
well.

Equation (C.13.1) can be written as

dQ

dt
=

a

Q∞
Q (Q∞ −Q) ,

which says, “The rate of production is proportional both to the amount already
produced and to the reserves Q∞−Q.” This is related to the logistic equation
describing bounded growth. (See Exercises 36 to 38 in Section 5.7.)

This approach, which is more formal than the one in CIE 8 at the end of
Chapter 6, concludes that as Q approaches Q∞, the rate of production will
decline, approaching 0. This means the Age of Oil will end.
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Chapter 11

Series

Figure 11.0.1

How is sin(θ) computed? One approach might be to draw a right triangle
with one angle θ, as in Figure 11.0.1. Then measure the lengths of the opposite
side b and the length of the hypotenuse c and calculate b/c (“opposite over
hypotenuse”). (Try it,) You are lucky if you get even two decimal places
correct. Clearly this method cannot give the many decimal places a calculator
displays for sin(θ), even if you draw a gigantic triangle.

One way to obtain this accuracy will be described in Chapter 12. The idea
is to use polynomials to evaluate important functions like sin(x), arctan(x), ex,
and ln(x) to as many decimal places as we please. For instance, when |x| ≤ 1,
the polynomial

x− x3

6
+

x5

120

approximates 1 radian = 180◦

π ≈
57.29578◦

sin(x) with an error less than 0.0002 (provided angle x is given
in radians). This means the estimate will be correct to at least three decimal
places for angles less than about 57◦.

Such an estimate has other uses than simply evaluating a function. Con-
sider the definite integral

1∫
0

sin(x)

x
dx.

The Fundamental Theorem of Calculus is useless here since sin(x)/x does not
have an elementary antiderivative. But, we can evaluate

1∫
0

x− x3

6
+ x5

120

x
dx =

1∫
0

(
1− x2

6
+

x4

120

)
dx.

Since the integrand is now a polynomial, the Fundamental Theorem of Calculus
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922 CHAPTER 11 SERIES

can be used to obtain the estimate(
x− x3

18
+

x5

600

)∣∣∣∣1
0

= 1− 1

18
+

1

600
≈ 0.94611

which gives
∫ 1

0
sin(x)/x dx to three decimal places.

Such approximations and their errors are a central theme in this and the
next chapter. Section 11.1 contains an overview of both chapters.
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11.1 Informal Introduction to Series

The main goal of this chapter and the next is to show how polynomials can be
used to approximate functions that are not polynomials. Table 11.1.1 shows
some of the formulas we will obtain.

The larger n is, the better
the approximation, as long
as we keep x in the
appropriate interval.

Function Approximating Polynomial Interval
1

1−x
1 + x + x2 + x3 + · · ·+ xn |x| < 1

ex 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
all x

ln(1 + x) x− x2

2
+

x3

3
− · · ·+ (−1)n−1xn

n
1 < x ≤ 1

sin(x) x− x3

3!
+

x5

5!
− · · ·+ (−1)n x2n+1

(2n + 1)!
all x

Table 11.1.1

Example 1 illustrates the use of such polynomials.

EXAMPLE 1
√

e = e1/2Use the approximations in Table 11.1.1 to estimate
√

e.
SOLUTION By the first row of the table, for each positive integer n,

1 +
1

2
+

(
1
2

)2
2!

+

(
1
2

)3
3!

+ · · ·+
(

1
2

)n
n!

is an estimate of e1/2. Let us compute some of these estimates, keeping in
mind that as n increases we expect the estimates to improve. The sums in the

n 1 + 1
2

+
( 1

2)
2

2!
+

( 1
2)

3

3!
+ · · ·+ ( 1

2)
n

n!
Decimal Form Sum

1 1 + 1
2

1 + 0.5 1.5

1 1 + 1
2

+
( 1

2)
2

2!
1 + 0.5 + 0.125 1.625

1 1 + 1
2

+
( 1

2)
2

2!
+

( 1
2)

3

3!
1 + 0.5 + 0.125 + 0.02083 . . . 1.64583 . . .

4 1 + 1
2

+
( 1

2)
2

2!
+

( 1
2)

3

3!
+

( 1
2)

4

4!
1 + 0.5 + 0.125 + 0.02083 + 0.00260 . . . 1.6484375 . . .

Table 11.1.2

rightmost column form a sequence that converges to e1/2. In fact, the estimate
with n = 4 is correct to three decimal places. �

There is little point in making an estimate if we have no idea about the
size of its error — the difference between an estimate and the number we are
estimating. We will focus on two closely related questions.
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1. How can we estimate the error?

2. How can we choose n to achieve a prescribed accuracy, say, to 10 decimal
places?

Calculus delights in
resolving such battles.

Example 1 depicts a battle between two forces. On the one hand, the
individual summands are getting very small — shrinking toward 0; so their
sums may not get very large. On the other hand, there are more and more
summands in each estimate; so their sums might become arbitrarily large.

In Example 1 the first force is stronger, and the sums — no matter how
many summands we take — stay less than

√
e ≈ 1.64872. But, in Example 2

the sums behave quite differently.

EXAMPLE 2 What happens to sums of the form

1√
1

+
1√
2

+ · · ·+ 1√
n

(11.1.1)

as the integer n gets larger and larger? Will they stay less than some fixed
number or will they get arbitrarily large, eventually passing 100, then 1,000,
and so on?
SOLUTION Table 11.1.3 lists values of (11.1.1) for n up through 5.

n 1√
1

+ 1√
2

+ · · ·+ 1√
n

Decimal Form (7 places)

1 1√
1

1.0000000

2 1√
1

+ 1√
2

1.7071068

3 1√
1

+ 1√
2

+ 1√
3

2.2844571

4 1√
1

+ 1√
2

+ 1√
3

+ 1√
4

2.7844571

5 1√
1

+ 1√
2

+ 1√
3

+ 1√
4

+ 1√
5

3.2316706

Table 11.1.3

These computations do not answer the question: What will happen to the
sums as n becomesAs of November 2010, the

fastest computer could
perform 2.57× 1015

floating-point computations
per second. Source:

http://Top500.org/.

arbitrarily large? In fact, even if we calculated the values

of 1/
√

1+1/
√

2+ · · ·+1/
√

n all the way to n = 1, 000, 000, we still would not
know the answer. Why? Because we can’t be sure what happens to the sums
when n is a billion or a quadrillion or larger. Do the sums get arbitrarily large
or do they stay below some fixed number? No computer, even the world’s
fastest supercomputer, can answer that question.

However, an algebraic insight helps us answer the question. Observe that

1√
1

+
1√
2

+ · · ·+ 1√
n
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has n summands and that the smallest of them is 1/
√

n. Therefore (11.1.1) is
at least as large as

1√
n

+
1√
n

+ · · ·+ 1√
n︸ ︷︷ ︸

n summands

= n

(
1√
n

)
=
√

n.

Thus 1/
√

1 + 1/
√

2 + · · · + 1/
√

n is at least as large as
√

n. (In fact, when
n ≥ 2, the sum is larger than

√
n.)

As n gets larger and larger,
√

n grows arbitrarily large. For n = 1, 000, 000,
for instance, we have

1√
1

+
1√
2

+ · · ·+ 1√
1, 000, 000

>
√

1, 000, 000 = 1, 000.

So the sums of the form 1√
1
+ 1√

2
+ · · ·+ 1√

n
also become arbitrarily large. They

do not stay less than some fixed number. �

WARNING (Traveler’s Advisory) In both Examples 1 and 2, the
individual summands form sequences that converge to 0:

lim
n→∞

(
1
2

)n
n!

= 0 and lim
n→∞

1√
n

= 0.

Yet in the first case, the sums stay less than
√

e, while in the second
the sums grow arbitrarily large. This contrast shows that we must
be careful when dealing with such sums, especially since they may
play a role in approximating important functions.
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Summary

THINGS TO COME
In most of this chapter the summands are constants. In Chapter 12 the sum-
mands involve a variable.

§11.2 introduces the notion of a “series” as a sequence formed by adding up
more and more terms from a sequence of numbers.

§§11.3–11.6 develop methods for determining when these sums converge to
a number and, if they do, how big the error is when you use a particular
finite sum to estimate that number.

§§12.1 and 12.2 build on Section 5.5 and apply series in various ways. Re-
view Taylor polynomials (5.5) before reading this section.

§§12.3–12.4 shows how a series approximating one function can be used to
find a series approximating a related function

§§12.5-12.6 develops complex numbers and uses thems to show that the func-
tions sin(x) and cos(x) are intimately related to the exponential function
ex. This relation is used in physics, engineering, and mathematics.

§12.7 introduces series that are the sum of terms of the form an sin(nx) and
bn cos(nx) for n = 1, 2, 3, . . . .

As you work through Chapters 11 and 12, check back to this outline from
time to time. It will help you keep track of what you are doing, and why.

April 22, 2012 Calculus



§ 11.1 INFORMAL INTRODUCTION TO SERIES 927

EXERCISES for Section 11.1

1. Estimate 3
√

e = e1/3 by using the following approximations with x = 1
3 .

(a) 1 + x +
x2

2!
+

x3

3!

(b) 1 + x +
x2

2!
+

x3

3!
+

x4

4!

2. Estimate 1/e = e−1 using the following approximations with x = −1.

(a) 1 + x +
x2

2!
+

x3

3!
+

x4

4!

(b) 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!

3. As shown in Section 5.5 the polynomial x− x3/6 is an excellent approximation
to sin(x) (angle measured in radians) for |x| ≤ 1

2 . Using a calculator or computer,
fill in Table 11.1.4 to seven decimal places.

x sin(x) x− x3

6 sin(x)−
(
x− x3

6

)
0.1
0.2
0.3
0.4
0.5

Table 11.1.4
(The results illustrate that for these values of x the estimates are accurate to at
least three decimal places.)

4. The polynomial x−x3/3!+x5/5! is an excellent approximation to sin(x) (angle
in radians) for |x| ≤ 1. Using a calculator or computer, in (a) and (b) evaluate the
expression to at least seven decimal places.

(a) sin(1),

(b) x− x3/3! + x5/5! when x = 1.

(c) To how many decimal places do these results agree?
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5. Estimate
∫ 1
1/2(e

x − 1)/x dx by approximating ex by the polynomial

(a) 1 + x + x2

2! ,

(b) 1 + x + x2

2! + x3

3! .

(c) The exact value of this definite integral, to seven decimal places, is 0.7477507.
To how many decimal places do each of these results agree with the exact
value?

6. Estimate
∫ 1/2
1/4 sin(x)/x dx by approximating sin(x) by the polynomial

(a) x.

(b) x− x3

3! .

(c) x− x3

3! + x5

5! .

(d) The exact value of this definite integral, to seven decimal places, is 0.2439738.
To how many decimal places do each of these results agree with the exact
value?

7.

(a) The polynomial x−x2/2+x3/3−· · ·+(−1)n−1xn/n, |x| ≤ 1, is a good estimate
of ln(1 + x) when n is large. So, to estimate ln(1.5), which is ln(1 + 0.5), we
use the polynomial with x replaced by 1

2 . Use a calculator or computer to fill
in Table 11.1.5.

n 1
2 −

(
1
2

)2
/2 +

(
1
2

)3
/3− · · ·+ (−1)n−1

(
1
2

)n
/n Decimal Form

1
2
3
4
5

Table 11.1.5

(b) Use your calculator or a computer to compute ln(1.5).

(c) What is the error between this approximation and the result for n = 5 in
Table 11.1.5?
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8. (See Exercise 7.)

(a) To estimate ln(0.5), write it as ln(1 + (−1
2 )). Fill in Table 11.1.6.

n
(−1

2

)
−
(−1

2

)2
/2 +

(−1
2

)3
/3− · · ·+ (−1)n−1

(−1
2

)n
/n Decimal Form

1
2
3
4
5

Table 11.1.6

(b) Use your calculator or a computer to compute ln(0.5).

(c) What is the error between this approximation and the result for n = 5 in
Table 11.1.6?

9. One way to approximate ln(2) is to write it as ln(1 + 1) and use a polynomial
in Exercise 7 that approximates ln(1 + x) with x = 1. Another way is to note that
ln(2) = − ln(0.5) and use the approach of Exercise 8. Using the polynomial approx-
imation of degree 5 (n = 5) in both cases, decide which gives the better estimate.

10. What happens to sums of the form

1
3
√

1
+

1
3
√

2
+

1
3
√

3
+ · · ·+ 1

3
√

n

as n gets larger? Explore and explain.

11.

(a) Using results from Section 1.4, show that, for x 6= 1,

1 + x + x2 + · · ·+ xn−1 =
1

1− x
− xn

1− x
. (11.1.2)

(b) Now assume that |x| < 1. Then xn approaches 0 as n increases (as was shown
in Section 10.1). Thus, for |x| < 1 and large n, 1 + x + x2 + · · · + xn−1 is a
polynomial approximation for the function 1/(1− x).

(c) Compute 1 + x + x2 + · · ·+ xn−1 for n = 6 and x = 0.3. How much does this
differ from 1/(1− 0.3)?
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(d) The same as (c), with x = −0.9.

Exercises 12 and 13 use (11.1.2) to derive polynomial approximations to ln(1 + x)
and arctan(x). These two problems both start from the same idea. We begin by
expressing (11.1.2) in the form

1
1− t

= 1 + t + t2 + t3 + · · ·+ tn−1 +
tn

1− t
(t 6= 1).

Replace t with −t, getting

1
1 + t

= 1− t + t2 − t3 + · · ·+ (−1)n−1tn−1 +
(−1)ntn

1 + t
(t 6= −1). (11.1.3)

12. This exercise derives the sequence of polynomial approximations to ln(1 + x)
listed in Table 11.1.1 on page 923.

(a) Integrate both sides of (11.1.3) over the interval from 0 to x, x > 0, to show
that

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+ · · ·+ (−1)n−1xn

n
+ (−1)n

x∫
0

tn

1 + t
dt.

(b) Show that for 0 ≤ x ≤ 1,
∫ x
0 (tn/(1 + t)) dt approaches 0 as n increases.

(1/(1 + t) ≤ 1 for t ≥ 0.)

13. This exercise obtains a sequence of polynomials that approximate arctan(x)
for |x| ≤ 1 and shows one way of computing π. The key is that d

dx arctan(x) = 1
1+x2 .

To begin, replace t by −t2 in (11.1.2) to obtain

1
1 + t2

= 1− t2 + t4 − t6 + · · ·+ (−1)n−1t2n−2 +
(−1)nt2n

1 + t2
(for all t). (11.1.4)

(a) Consider only 0 ≤ x ≤ 1. Integrate both sides of (11.1.4) over [0, x] to show
that

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ · · ·+ (−1)n−1 x2n−1

2n− 1
+ (−1)n

x∫
0

t2n

1 + t2
dt.

(11.1.5)

(b) Show that for fixed x, 0 < x < 1, the integral in (11.1.3) approaches 0 as
n→∞.
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(c) Use the polynomial in (a), with n = 5 (so its degree is 9) to estimate arctan(1).

(d) Use the result in (c) to estimate π. (arctan(1) = π
4 )

14. In this exercise we will see what happens to sums of the form

1
1 · 2

+
1

2 · 3
+

1
3 · 4

+ · · ·+ 1
n(n + 1)

as n increases. Do these sums get arbitrarily large or do they approach some number?

n 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

n(n+1) Sum, as
fraction

Sum, as
decimal

1
2
3
4
5

Table 11.1.7

(a) Fill in at least 5 rows of Table 11.1.7. Add more rows if you wish.

(b) On the basis of your computations, what do you think happens to the sums
as n increases. (If you don’t see a pattern, go up to n = 10.)

(c) Justify your opinion in (b).

15.

(a) Use the polynomial in (11.1.5), with n = 5, to estimate arctan
(

1
2

)
in radians.

Then translate the answer into degrees.

(b) Use the result in (a) to estimate arctan(2) in radians. (For positive x, what
is the relation between arctan(1/x) and arctan(x)?)

(c) Draw a right triangle with one leg 20 cm long and the other 10 cm; use it and
a protractor to estimate arctan(2).

(d) What does your calculator or computer give as an estimate of arctan(2)?

(e) To how many decimal places does the estimate in (b) agree with the value
found in (d)? To how many decimal places does the measurement in (c) agree
with the value found in (d)?
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11.2 Series

The goal of this section is to introduce sequences formed by adding up more
and more terms of a given sequence.

Series

Figure 11.2.1

Consider a tennis ball that is dropped from a height of 1 meter. It rebounds
0.6 meter. It continues to bounce, and each fall is 60% as high as the previous
fall. (See Figure 11.2.1.) What is the total distance the ball falls?

The third fall is (0.6)2 meter, the next is (0.6)3 meter, and so on. In
general, the nth time the ball falls, it falls a distance (0.6)n−1 meter. While it
is clear this geometric sequence converges to zero, we are more interested in
the question:

“What happens to the sum 1+0.6+(0.6)2 + · · ·+(0.6)n as n→∞?”

Similar sums arise in many
applications. Exercise 30 is
an application to medicine

and Exercise 31 presents an
example from economics.

Example 1 explores this question.

EXAMPLE 1 Given the geometric progression 1, 0.6, (0.6)2, (0.6)3, . . . ,
form a new sequence {Sn} as follows:

S1 = 1,

S2 = 1 + 0.6,

S3 = 1 + 0.6 + (0.6)2,

and, in general,

Sn = 1 + 0.6 + (0.6)2 + · · ·+ (0.6)n−1.

Each Sn is the sum of n terms of the sequence {an} with an = 0.6n for n = 0,
1, 2, . . . . Does the sequence {Sn} converge or diverge? If it converges, what
is the limit?
SOLUTION Because Sn is the sum of the first n terms in a geometric se-
quence whose first term is 1 and whose ratio is 0.6 we have

Sn =
1− (0.6)n

1− 0.6
.

Thus

lim
n→∞

Sn = lim
n→∞

1− (0.6)n

1− 0.6
=

1

1− 0.6
= 2.5.

�

The rest of this section expands upon the ideas introduced in Example 1.
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Let a1, a2, a3, . . . , an, . . . be a sequence. From this sequence a new sequence
S1, S2, S3, . . . , Sn, . . . can be formed:

S1 = a1 =
1∑

k=1

ak,

S2 = a1 + a2 =
2∑

k=1

ak,

S3 = a1 + a2 + a3 =
3∑

k=1

ak,

...

Sn = a1 + a2 + a3 + · · ·+ an =
∞∑

k=1

ak.

The sequence of sums, S1, S2, S3, . . . , Sn, . . . , is called the series obtained
from the sequence a1, a2, a3, . . . , an, . . . . It can also be defined by the
recursion, Sn+1 = Sn + an+1.

Traditionally, {Sn} is referred to as “the series whose nth term is an.”
Common notations for the sequence {Sn} are

∑∞
k=1 ak and a1 +a2 +a3 + · · ·+

ak + · · · . The sum

Sn = a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak

is called a partial sum or the nth partial sum. If the sequence of partial
sums of a series converges to L, then L is called the sum of the series and the
series is said to be convergent. We write

lim
n→∞

Sn = L.

Only finitely many
summands are ever added
up.

Frequently one writes L = a1 + a2 + · · ·+ an + · · · . Remember, however, that
we do not add an infinite number of terms; we take the limit of finite sums. A
series that is not convergent is called divergent.

A Note on Notation Starting with the sequence a1, a2, . . . , an, . . . , we
form a new sequence, S1, S2, . . . , Sn, . . . , whose terms are the partial sums
S1 = a1, S2 = a1 + a2, . . . , Sn = a1 + a2 + · · ·+ an. The symbol

∞∑
k=1

ak

is short for this sequence S1, S2, . . . , Sn, . . . . If the sequence of partial sums
converges to a number L, we also write

∞∑
k=1

ak = L.
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The symbol
∑∞

k=1 ak has
two meanings.

So the symbol
∑∞

k=1 ak stands for two different concepts: a sequence of partial
sums and also, if that sequence converges, for its limit. This limit is called the
“sum” of the series.

So, in Example 1, we investigated the series

∞∑
k=1

0.6k−1,

namely, the sequence of partial sums 1, 1 + 0.6, 1 + 0.6 + 0.62, . . . , 1 + 0.6 +
0.62+ · · ·+(0.6)n−1. This sequences converges to 2.5. That permits us to write

∞∑
k=1

(0.6)k−1 = 2.5,

which says, “The series
∑∞

k=1(0.6)k−1 converges to the number 2.5.” We also
say, for the sake of brevity, “Its sum is 2.5.”

Just as a sequence need not start with a1, a series can start with any term,
such as a0 or ak, and we would write

∑∞
k=0 ak or

∑∞
i=1 ai or

∑∞
j=k aj. Notice

that there is nothing special about the index for a series. The most common
indices are n, k, j, and i.

Geometric Series

Example 1 concerns the series whose nth term is (0.6)n−1:

Sn = 1 + 0.6 + 0.62 + · · ·+ 0.6n−1.

It is a special case of a geometric series, which will now be defined.Geometric sums with a
finite number of terms are

discussed in Section 5.5. DEFINITION (Geometric Series) Let a and r be real numbers.
The series

a + ar + ar2 + · · ·+ arn−1 + · · ·

is called the ‘geometric series with initial term a and ratio r.

The series in Example 1 is a geometric series with initial term 1 and ratio 0.6.

Theorem 11.2.1. If −1 < r < 1, the geometric series

a + ar + ar2 + · · ·+ arn−1 + · · · converges to
a

(1− r)
.

Proof

Let Sn be the sum of the first n terms: Sn = a+ar + · · ·+arn−1.See Exercise 11 in
Section 11.1.

The formula
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for the finite geometric sum is Sn = a(1−rn)
1−r

. See also Exercise 28.Since −1 < r < 1, limn→∞ rn = 0.
Thus

lim
n→∞

Sn =
a

1− r
,

proving the theorem, obtained in Section 1.4. •
The series in Example 1 is a geometric series with first term 1 and ratio

r = 0.6. It converges and has the sum

1

1− 0.6
=

1

0.4
= 2.5.

The nth Term Test for Divergence

Theorem 11.2.1 says nothing about geometric series in which r ≥ 1 or r ≤ −1.
The next theorem, which concerns series in general, not just geometric series,
will be useful in settling these cases.

Theorem 11.2.2 (nth-Term Test for Divergence.). If limn→∞ an 6= 0, then the
series a1 + a2 + · · · + an + · · · diverges. (The same conclusion holds if {an}
has no limit.)

We take an indirect
approach.Proof

Assume that the series a1 + a2 + · · ·+ an + · · · converges. Since Sn is the sum
a1 +a2 + · · ·+an, while Sn−1 is the sum of the first n− 1 terms, it follows that
Sn = Sn−1 + an, or

an = Sn − Sn−1.

Because we have assumed the series converges, let S = limn→∞ Sn. Then we
also have S = limn→∞ Sn−1, since Sn−1 runs through the same numbers as Sn.
Thus

lim
n→∞

an = lim
n→∞

(Sn − Sn−1)

= lim
n→∞

Sn − lim
n→∞

Sn−1

= S − S

= 0.

If a series converges, its

nth-term must approach 0.

This proves the theorem. •
The nth-Term Test for Divergence implies that if a 6= 0 and r ≥ 1, the

geometric series
a + ar + · · ·+ arn−1 + · · ·

diverges. For instance, if r = 1,

lim
n→∞

arn = lim
n→∞

a1n = a,
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which is not 0. If r > 1, then rn gets arbitrarily large as n increases; hence
limn→∞ arn does not exist. Similarly, if r ≤ −1, limn→∞ arn does not exist.
The above results and Theorem 11.2.1 can be summarized by this statement:
The geometric series

∞∑
i=1

ari−1 = a + ar + ar2 + · · ·+ arn−1 + · · · .

for a 6= 0, converges if and only if |r| < 1.
Warning: Even if the nth

term approaches 0, the
series still can diverge.

The nth-Term Test for Divergence tells us that if the series a1+a2+a3+· · ·
converges, then an approaches 0 as n → ∞. The converse of this statement
is not true. If an approaches 0 as n → ∞, it does not follow that the series
a1 + a2 + a3 + · · · converges. Be careful to make this distinction.

Recall the series
1√
1

+
1√
1

+ · · ·+ 1√
n

+ · · ·

discussed in Example 2 in Section 11.1. Even though its nth term approaches
0 as n → ∞, the sums get arbitrarily large. The nth term approaches 0 so
“slowly” that the sums Sn get arbitrarily large.

The harmonic series was so
named by the Greeks

because of the role of 1/n
in musical harmony.

In the next example, the nth term approaches 0 much faster than 1/
√

n
does. Still, the series diverges. The series in this example is called the har-
monic series. The argument that it diverges is due to the French mathemati-
cian Nicolas of Oresme, who presented it about the year 1360.

Nicole Oresme, 1323–1382,
one of the most influential
philosophers of the Middle

Ages,
http://en.wikipedia.

org/wiki/Nicole Oresme

EXAMPLE 2 Show that the harmonic series 1/1 + 1/2 + · · · + 1/n + · · ·
diverges.
SOLUTION Collect the summands in longer and longer groups. Except for
the first two terms, each group contains twice the number of summands as it
predecessor:

1 +
1

2︸︷︷︸
1 term

+
1

3
+

1

4︸ ︷︷ ︸
2 terms

+
1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸
4 terms

+
1

9
+

1

10
+ · · ·+ 1

16︸ ︷︷ ︸
8 terms

+ · · · .

The sum of the terms in each group is at least 1
2
. For instance,

1

5
+

1

6
+

1

7
+

1

8
>

1

8
+

1

8
+

1

8
+

1

8
=

4

8
=

1

2

and
1

9
+

1

10
+ · · ·+ 1

16
>

1

16
+

1

16
+ · · ·+ 1

16
=

8

16
=

1

2

Since the repeated addition of 1
2
’s produces sums as large as we please, the

series diverges. �
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An important moral: The

nth-term test is only a test
for divergence.

If the series a1 + a2 + · · · + an + · · · converges, it follows that an →
0. However, if an → 0, it does not follow that a1 + a2 + · · · + an + · · ·
converges. Indeed, there is no general, practical rule for determining whether
a series converges or diverges. Fortunately, a few rules suffice to decide on the
convergence or divergence of the most common series. They will be presented
in this chapter.

Because convergence or divergence of a series is decided by looking at the
convergence or divergence of the sequence of partial sums, the basic properties
for sequences are also true for series.

Exercise 36 asks for the
proof.

Theorem 11.2.3. A. If
∑∞

i=1 ai is a convergent series with sum L and if c
is a number, then

∑∞
i=1 cai is convergent and has the sum cL.

B. If
∑∞

k=1 bi is a convergent series with sum M , then
∑∞

k=1(an + bn) is a
convergent series with sum L + M .

Front ends do not affect
convergence.

Keep in mind that you can disregard any finite number of terms when
deciding whether a series is convergent or divergent. If you delete a finite
number of terms from a series and what is left converges, then the series you
started with converges. Another way to look at this is to note that a “front
end,” a1 + a2 + · · · + an. does not influence convergence or divergence. It is
rather a “tail end,” an+1 + an+2 + · · · that matters. The sum of the series is
the sum of any tail end plus the sum of the corresponding front end; that is,
for any positive integer m,

∞∑
k=1

ak =
m∑

k=1

ak︸ ︷︷ ︸
front end

+
∞∑

k=m+1

ak︸ ︷︷ ︸
tail end

.

Figure 11.2.2

Suppose that
∑∞

i=1 pi is a series with positive terms and you can show
that there is a number B such that every partial sum S1 = p1, S2 = p1 + p2,
. . . , Sn = p1 + p2 + · · · + pn, is less than or equal to B. By Theorem 10.1.1
of Section 10.1, they have a limit L, which is less than or equal to B. (See
Figure 11.2.2.) This means that

∑∞
k=1 pi is convergent (and its sum is less than

or equal to B). This observation will be useful in establishing the convergence
of a series of non-negative terms, even though it does not tell us the exact sum
of the series.

A similar statement holds for the series
∑∞

k=1 ai in which ai ≤ 0 for all n.
If there is a number A such that each partial sum is greater than or equal to
A, then the series converges and its sum is greater than or equal to A.

Example 3 introduces a series that is representative of many series that
arise in the study of sin(x), cos(x), and ex.

EXAMPLE 3 Does the series defined by
∑∞

k=0
2k

k!
converge or diverge?
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SOLUTION First, note that the first index is k = 0, not k = 1. This has no
bearing on the convergence or divergence of this series (it’s part of the front
end), but it does affect the value of the series (assuming it converges).

Define ak = 2k/k! for k = 0, 1, 2, . . . . The partial sums of the series are
Sn =

∑n
k=0 ak for n = 0, 1, 2, . . . . From the relation Sn+1 = Sn + an+1 and

the fact that an+1 is positive, we see that {Sn} is an increasing sequence.
By the same reasoning used in Section 5.5, we can conclude that for k > 2,

ak <
2

1

2

2

(
2

3

)k−2

This observation that the terms of the series are bounded by the terms of
a convergent geometric series is the key to concluding that the partial sums of
this series are bounded. For n ≥ 2:

Sn =
n∑

k=0

ak = a0 + a1 +
n∑

k=2

ak < 1 + 2 +
n∑

k=2

2

(
2

3

)k−2

.

Adding the rest of the terms of the geometric series with first term 2 and ratio
2/3, we conclude that

Sn < 1 + 2 +
∞∑

k=2

2

(
2

3

)k−2

= 1 + 2 +
2

1− 2
3

= 1 + 2 + 6 = 9.

Thus, the series
∑∞

k=0
2k

k!
converges because the sequence of partial sums for

the series is monotone and bounded above (by 9). The actual value of this
limit will be found later. It is e2 ≈ 7.38906. �

The same ideas can be used to prove that
∑∞

K+!
kn

k!
, for any positive number

k, converges.

Summary

Let {ak} be a sequence. Form the new sequence {Sn} where Sn is the sum of
the first n terms of {ak}, Sn = a1 + a2 + · · ·+ an. The new sequence is called
the “series” derived from the original sequence {ak}. If the series converges,
then ak must approach 0 as k →∞. (The converse is not true.) It follows that
if ak does not approach 0 as k → ∞, then the series a1 + a2 + · · · + an + · · ·
diverges.

If ak = ark−1, where |r| < 1, we obtain the geometric series
∑∞

k=0 ark,
which converges to a/(1− r).

If, for each index, ak is non-negative and a1 + a2 + · · · + ak ≤ B for some
fixed number B for all k, then

∑∞
k=1 ak is convergent and approaches a number

no larger than B. This principle was used in this section to show that
∑∞

k=0
2k

k!

converges.
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EXERCISES for Section 11.2

Exercises 1 to 4 each concern a series
∞∑

k=1

ak and the sequence of its partial sums

{Sn}. (Based on suggestions by James T. Vance Jr.)
1. Suppose you know that an → 0 as n→∞. Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The series definitely diverges.

(c) There is not enough information to decide whether the series diverges or con-
verges.

(d) More information is needed to determine the sum of the series.

(e) Sn → 0 as n→∞.

(f)
∑∞

k=1 ak = 0.

2. Suppose you know that an → 6 as n→∞. Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The series definitely diverges.

(c) There is not enough information to decide whether the series diverges or con-
verges.

(d) More information is needed to determine the sum of the series.

(e) Sn → 0 as n→∞.

(f)
∞∑

k=1

ak = 6.

3. Suppose you know that Sn → 3 as n→∞. Which of the following statements
are true. (More than one may be true.)

(a) The series definitely converges.

(b) The series definitely diverges.

(c) There is not enough information to decide whether the series diverges or con-
verges.

(d) More information is needed to determine the sum of the series.
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(e) The sum of the series is 3.

(f)
∞∑

k=1

ak = 3.

(g) lim
k→∞

ak = 0.

4. Suppose you know that Sn = n/(n + 1). Which of the following statements are
true. (More than one may be true.)

(a) The series definitely converges.

(b) The kth term of the series diverges.

(c) The kth term of the series converges.

(d) The kth term of the series is 1/(k(k + 1)).

(e) The series is a geometric series.

5. This exercise concerns the series
∞∑

k=1

5(−1/2)k.

(a) Express the fourth term of this series as a decimal.

(b) Express the fourth partial sum of this series as a decimal.

(c) Find the limit as k →∞ of the kth term of the series.

(d) Find the limit as n→∞ of the nth partial sum of the series.

(e) Does the series converge? If so, what is its sum?

6. This exercise concerns the series
∞∑

k=1

3(1/10)k.

(a) Express the third term of this series as a decimal.

(b) Express the third partial sum of this series as a decimal.

(c) Find the limit as k →∞ of the kth term of the series.

(d) Find the limit as n→∞ of the nth partial sum of the series.

(e) Does the series converge? If so, what is its sum?
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In Exercises 7 to 14 determine whether the given geometric series converges. If it
does, find its sum.
7. 1 + 1

2 + 1
4 + 1

8 + · · ·+
(

1
2

)k−1 + · · ·

8. 1− 1
3 + 1

9 −
1
27 + · · ·+

(−1
3

)k−1 + · · ·

9.
∞∑

k=1

10−k

10.
∞∑

k=1

10k

11.
∞∑

k=1

5(0.99)k

12.
∞∑

k=1

7(−1.01)k

13.
∞∑

k=1

4
(

2
3

)k

14. −3
2 + 3

4 −
3
8 + · · ·+ 3

(−2)k + · · ·

In Exercises 15 to 22 determine whether the given series converge or diverge. Find
the sums of the convergent series.
15. −5 + 5− 5 + 5− · · ·+ (−1)k5 + · · ·
16.

∑∞
k=1

1
(1+(1/k))k

17.
∞∑

k=1

2
k

18.
∞∑

k=1

k

2k + 1

19.
∞∑

k=1

6
(

4
5

)k

20.
∞∑

k=1

100
(
−8
9

)k

21.
∞∑

k=1

(
2−k + 3−k

)
22.

∞∑
k=1

(
4−k + k−1

)
23. What is the total distance traveled — both up and down — by the ball
described in the opening paragraph of this section?
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24. A rubber ball, when dropped on concrete, rebounds 90 percent of the distance
it falls. If it is dropped from a height of 6 feet, how far does it travel — both up
and down — before coming to rest?

25. The repeating decimal
3.171717 . . . ,

where the 17’s continue forever, can be viewed as 3 plus a geometric series:

3 +
17
100

+
17

1002
+

17
1003

+ · · · .

Using the formula for the sum of a geometric series, write the decimal as a fraction.

26. (See Exercise 25.) Evaluate the repeating decimal 0.3333 · · · .

27. (See Exercise 25.) Evaluate the repeating decimal 4.1256256256 . . . (with 256
repeating).

28. Show that if |r| < 1, the sum of the geometric series a + ar + ar2 + · · · differs
from Sn by arn/(1− r).

29. This is a quote from an economics text: “The present value of the land, if a
new crop is planted at time t, 2t, 3t, etc., is

P = g(t)e−rt + g(t)e−2rt + g(t)e−3rt + · · · .

By the formula for the sum of a geometric series,

P =
g(t)e−rt

1− e−rt
.′′

Check that the missing step, which simplified the formula for P , was correct.

30. A patient takes A grams of a certain medicine every 6 hours. The amount
of each dose active in the body t hours later is Ae−kt grams, where k is a positive
constant and time is measured in hours.

(a) Show how immediately after taking the medicine for the nth time, the amount
active in the body is

Sn = A + Ae−6k + Ae−12k + · · ·+ Ae−6(n−1)k.

(b) If, as n → ∞, Sn → ∞, the patient would be in danger. Does Sn → ∞? If
not, what is limn→∞ Sn?
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(See also Exercise 117 in the Chapter 5 Summary.)

31. Deficit spending by the federal government inflates the nation’s money sup-
ply. However, much of the money paid out by the government is spent in turn by
those who receive it, thereby producing additional spending. This produces a chain
reaction, called by economists the multiplier effect. It results in much greater total
spending than the government’s original expenditure. To be specific, suppose the
government spends 1 billion dollars and that the recipients of that expenditure in
turn spend 80 percent while retaining 20 percent. Let Sn be the total spending
generated after n transactions in the chain, 80 percent of receipts being expended
at each step.

(a) Show that Sn = 1 + 0.8 + 0.82 + · · ·+ 0.8n−1 billion dollars.

(b) Show that as n increases, the total spending approaches 5 billion dollars. (In
this case the multiplier is 5.)

(c) What would the total spending be if 90 percent of receipts is spent at each
step instead of 80 percent?

(The subprime mortgage foreclosures in 2008 caused a similar ripple effect, threat-
ening a recession.)

32. Assume a ball falls 16t2 feet in t seconds and bounces upward when it hits
the ground. Assume the upward part of a bounce takes as long as the subsequent
fall. How long does the ball in Exercise 24 bounce?

Exercises 33 to 35 are related to the following question: A gambler tosses a coin
until a head appears. On the average, how many times does she toss it to get a
head?
33.

(a) Repeat this experiment 10 times. Each run consists of tossing a coin until a
head appears. Average the lengths of the 10 trials.

(b) The probability of a run of length one is 1
2 , since a head must appear on the

first toss. The probability of a run of length two is
(

1
2

)2. The probability

of having a head appear for the first time on toss k is
(

1
2

)k. It is shown in

probability theory that the average number of tosses to get a head is
∞∑

k=1

k

2k
.

(This is a theoretical average approached as the experiment is repeated many

times.) Compute
8∑

k=1

k

2k
.
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34. Oresme, around the year 1360, summed the series
∑∞

k=1
k
2k by drawing the

endless staircase shown in Figure 11.2.3, in which each stair after the first has width
1 and is half as high as the stair immediately to its left.

(a) By looking at the staircase in two ways, show that

1 +
1
2

+
1
4

+
1
8

+ · · · = 1
2

+
2
4

+
3
8

+ · · · .

(b) Use (a) to sum
∞∑

k=1

k

2k
.

(c) Use the same idea to find
∞∑

k=1

kpk, when 0 < p < 1.

Figure 11.2.3
35.

(a) Using your calculator compute enough partial sums of the series
∞∑

k=1

k3−k to

offer an opinion as to whether it converges or diverges.

(b) Show that it converges. (The coefficient k is less than 2k.)

(c) On the basis of (a), what do you think its sum is?

36. Use the precise definition of convergence from Section 10.2 to prove each of
the following statements:

(a) If c is a number and
∑∞

k=1 ak is a convergent series with sum L, then
∑∞

k=1 cak

is a convergent series with sum cL.
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(b) If
∑∞

k=1 ak and
∑∞

k=1 bk are convergent series with sums L and M , respec-
tively, then

∑∞
k=1(ak + bk) is a convergent series with sum L + M .

Calculus April 22, 2012



946 CHAPTER 11 SERIES

11.3 The Integral Test

In this section we use integrals of the form
∫∞

a
f(x) dx to establish convergence

or divergence of series whose terms are positive and decreasing. Furthermore,
we obtain a way of analyzing the error when we use a partial sum to estimate
the sum of the series.

The Integral Test

Let f(x) be a decreasing positive function. We obtain a sequence from f(x) by
defining an to be f(n). For instance, the sequence 1/1, 1/2, 1/3, . . . , 1/n, . . . is
obtained from the function f(x) = 1/x. It turns out that the convergence (or
divergence) of the series

∑∞
k=1 ak is closely connected with the convergence (or

divergence) of the improper integral
∫∞

1
f(x) dx. This connection is expressed

in the following theorem:

Theorem 11.3.1 (Integral Test). Let f(x) be a continuous decreasing function
such that f(x) > 0 for x ≥ 1. Let an = f(n) for each positive integer n. Then

A. If
∫∞

1
f(x) dx is convergent, then so is the series

∑∞
k=1 ak.

B. If
∫∞

1
f(x) dx is divergent, then so is the series

∑∞
k=1 ak.

Figure 11.3.1

Proof

Figures 11.3.1 and 11.3.2 are the key to the proof. Note how the rectangles
are constructed in each case.

In Figure 11.3.1 the rectangles lie below the curve y = f(x). Each rectangle
has width 1. Comparing the staircase area with the area under the curve gives
the inequality

a2 + a3 + · · ·+ an <

n∫
1

f(x) dx,

and therefore

a1 + a2 + a3 + · · ·+ an < a1 +

n∫
1

f(x) dx. (11.3.1)

Figure 11.3.2

If
∫∞

1
f(x) dx is convergent, with value I, then

a1 + a2 + · · ·+ an < a1 + I.

Since the partial sums of the series
∑∞

k=1 ak are all bounded by the number
a1 + I, the series

∑∞
k=1 ak converges and its sum is less than or equal to a1 + I.
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Now, Figure 11.3.2 shows that

a1 + a2 + · · ·+ an >

n+1∫
1

f(x) dx. (11.3.2)

If follows that if
∫∞

1
f(x) dx diverges, then so must the series

∑∞
k=1 ak. •

EXAMPLE 1 Use the integral test to determine the convergence or diver-
gence of

(a) 1
1

+ 1
2

+ · · ·+ 1
k

+ · · · =
∑∞

k=1
1
k

(b) 1
11.01 + 1

21.01 + · · ·+ 1
k1.01 + · · · =

∑∞
k=1

1
k1.01

SOLUTION

(a) Observe that this is the harmonic series, which was shown in Example 2
in Section 11.2 to diverge. To apply the Integral Test to this series, let
f(x) = 1/x. This is a decreasing positive function for x > 0. Then
ak = f(k) = 1/k. We have

∞∫
1

dx

x
= lim

b→∞

b∫
1

dx

x
= lim

b→∞
(ln(b)− ln(1)) =∞

Since
∫∞

1
dx
x

is divergent, so is the series
∑∞

i=1
1
n
.

Even though the graphs of

y = 1
x and y = 1

x1.01 are
near each other, the

integrals

∫
dx

x
and

∫
dx

x1.01

behave very differently.

(b) Let f(x) = 1/x1.01, which is a decreasing positive function. Then ak =
f(k) = 1/k1.01. We have

∞∫
1

dx

x1.01
= lim

b→∞

b∫
1

dx

x1.01
= lim

b→∞

x−1.01+1

−1.01 + 1

∣∣∣∣b
1

= lim
b→∞

x−0.01

−0.01

∣∣∣∣b
1

= lim
b→∞

(
b−0.01

−0.01
− 1−0.01

−0.01

)
= 0− (−100) = 100.

Since
∫∞

1
dx/x1.01 is convergent, so is

∑∞
k=1 1/k0.01. By (11.3.1), its sum

is less than a1 + 100 = 101.

�

The argument in Example 1 extends to a family of series known as p-series.
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DEFINITION ([p-series]) For a positive number p, the series

∞∑
k=1

1

kp

is called a p-series.

For example, when p = 1 we obtain the harmonic series
∑∞

k=1 1/k and for
p = 1.01, the series

∑∞
k=1 1/k1.01.

An argument similar to those in Example 1 establishes the following theo-
rem.

Theorem 11.3.2. If 0 < p ≤ 1, the p-series
∑∞

k=1 1/kp diverges. If p > 1,
the p-series

∑∞
k=1 1/kp converges.

Note that there is a p-series for each positive number p. A negative ex-
ponent p would not give a series of interest. For instance, when p = −1, we
obtain

∑∞
k=1 1/k−1 =

∑∞
k=1 k, which is clearly divergent since its kth term does

not approach 0 as k →∞. (For any negative p, limk→∞ 1/kp =∞.)

Controlling the Error

When we use a front end of a series (a partial sum) to estimate the sum of the
wholePartial sum = front end;

Error = tail end.
series, there will be an error, namely, the sum of the corresponding tail

end. For the sum of a front end to be a good estimate of the sum of the whole
series, we must be sure that the sum of the corresponding tail end is small.
Otherwise, we would be like the carpenter who measures a board as “5 feet
long with an error of perhaps as much as 5 feet.” That is why we wish to be
sure that the sum of the tail end is small.

Let Sn be the sum of the first n terms of a convergent series
∑∞

k=1 ak whose
sum is S. The difference

Rn =
∑∞

k=n+1 ak
Rn = S − Sn = an+1 + an+2 + an+3 + · · ·

is called the remainder or error in using the sum of the first n terms to
approximate the sum of the series. That is,

a1 + a2 + · · ·+ an︸ ︷︷ ︸
partial sum Sn

+ an+1 + an+2 + · · ·︸ ︷︷ ︸
tail end Rn

= a1 + a2 + · · ·+ an + an+1 + an+2 + · · ·︸ ︷︷ ︸
sum of series S

so
Sn + Rn = S.

For a series whose terms are positive and decreasing, we can use an im-
proper integral to estimate the error. The reasoning depends again on com-
paring a staircase of rectangles with the area under a curve.
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Recall that f(x) is a continuous decreasing positive function. The error in
using Sn = f(1) + f(2) + · · ·+ f(n) =

∑n
i=1 f(i) to approximate

∑∞
i=1 f(i) is

the sum
∑∞

i=n+1 f(i). This sum is the area of the endless staircase of rectangles
shown in Figure 11.3.3(a). Comparing the rectangles with the region under
the curve y = f(x), we conclude that

Rn = an+1 + an+2 + · · · = f(n + 1) + f(n + 2) + · · · >
∞∫

n+1

f(x) dx. (11.3.3)

Inequality (11.3.3) gives a lower estimate of the error.

(a) (b)

Figure 11.3.3

The staircase in Figure 11.3.3(b), which lies below the curve, gives an upper
estimate of the error. Inspection of Figure 11.3.3(b) shows that

Rn = an+1 + an+2 + · · · = f(n + 1) + f(n + 2) + · · · <
∞∫

n

f(x) dx.

Putting these observations together yields the following estimate of the
error. Estimating the error

Theorem 11.3.3 (A bound on the error). Let f(x) be a continuous decreasing
positive function such that

∫∞
1

f(x) dx is convergent. Then the error Rn in
using f(1) + f(2) + · · ·+ f(n) to estimate

∑∞
i=1 f(i) satisfies the inequality

∞∫
n+1

f(x) dx ≤ Rn ≤
∞∫

n

f(x) dx. (11.3.4)

EXAMPLE 2 The first five terms of the series 1/12+1/22+ · · ·+1/n2+ · · ·
are used to estimate the sum of the series.
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(a) Put upper and lower bounds on the error in using just those terms.

(b) Use the bounds in (a) to estimate
∑∞

k=1 1/k2.

SOLUTION First, observe that the series with terms ak = 1/k2 is the p-series
with p = 2. Since p > 1, this series converges. Also, the function f(x) = 1/x2

is continuous, decreasing, and positive for x ≥ 1.

(a) By inequality (11.3.4) of Theorem 11.3.3, the error R5 satisfies the in-
equalities

∞∫
6

dx

x2
< R5 <

∞∫
5

dx

x2
.

Now,

∞∫
5

dx

x2
=
−1

x

∣∣∣∣∞
5

= 0−
(
−1

5

)
=

1

5
.

Similarly,

∞∫
6

dx

x2
=

1

6
.

Thus
1

6
< R5 <

1

5
.

(b) The sum of the first five terms of the series is

S5 =
1

12
+

1

22
+

1

32
+

1

42
+

1

52
≈ 1.463611.

Keep more digits than you
need until all calculations

have been done. Then,
“round down“ lower bounds

and “round up” upper
bounds.

Since the sum of the remaining terms (the “tail end”) is between 1
6

and
1
5
, the sum of the series is between 1.463611+0.166666 and 1.463611+0.2,

hence between 1.6302 and 1.6636. (In the 17th century Euler proved that
this sum is π2/6 ≈ 1.644934068.

�

Estimating a Partial Sum Sn

We still restrict our attention to series that satisfy the hypotheses of the in-
tegral test in Theorem 11.3.1. That is, there is a continuous, positive, and
decreasing function f(x) such that f(n) = an.

Just as we can use an (improper) integral to estimate the sum of a tail end
of such a series, we can also use a (definite) integral to estimate a partial sum
Sn = a1 + a2 + · · ·+ an.

In the course of proving Theorem 11.3.1, we obtained equations (11.3.1)
and (11.3.2). Taken together, they give us the inequalities
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n+1∫
1

f(x) dx < a1 + a2 + · · ·+ an < a1 +

n∫
1

f(x) dx. (11.3.5)

If we can evaluate
∫ n+1

1
f(x) dx and

∫ n

1
f(x) dx by the Fundamental Theorem

of Calculus, we may use (11.3.5) to put upper and lower bounds on Sn =∑n
k=1 ak. These estimates are valid whether the series

∑∞
k=1 ak converges or

diverges.

EXAMPLE 3 Use (11.3.5) to estimate the sum of the first million terms
of the harmonic series.
SOLUTION By (11.3.5)

1,000,001∫
1

dx

x
<

1,000,000∑
k=1

1

k
< 1 +

1,000,000∫
1

dx

x
.

hence ln(1, 000, 001) <

1,000,000∑
k=1

1

k
< 1 + ln(1, 000, 000).

Evaluating the logarithm with a calculator, we conclude that

13.8155 <

1,000,000∑
i=1

1

i
< 14.8156.

�

Summary

We developed a test for convergence or divergence for series whose terms ak

are of the form f(k) for a continuous, positive, decreasing function f(x). The
series converges if

∫∞
1

f(x) dx converges, and diverges if
∫∞

1
f(x) dx diverges.

We also used integrals to analyze the error in using a partial sum Sn of
such a series as an estimate of the sum of the series. (Rather than memorizing
the formulas, just draw the appropriate staircase diagrams.)

We assumed f(x) is decreasing for x ≥ 1. Actually, Theorem 11.3.1 holds
if we assume that f(x) is decreasing from some point on, that is, there is some
number a such that f(x) is decreasing for x ≥ a. (The argument for this type
of integral involves similar staircase diagrams.)
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EXERCISES for Section 11.3

Use the integral test in Exercises 1 to 8 to determine whether each series diverges
or converges.

1.
∞∑

k=1

1
k1.1

2.
∞∑

k=1

1
k0.9

3.
∞∑

k=1

k

k2 + 1

4.
∞∑

k=1

1
k2 + 1

5.
∞∑

k=1

1
k ln(k)

6.
∞∑

k=1

1
k + 1, 000

7.
∞∑

k=1

ln(k)
k

8.
∞∑

k=1

k3

ek

Use Theorem 11.3.2 in Exercises 9 to 12 to determine whether each series diverges
or converges.

9.
∞∑

k=1

1
3
√

k

10.
∞∑

k=1

1
k3

11.
∞∑

k=1

1√
k

12.
∞∑

k=1

1
k0.999

13.

(a) Prove that if p > 1, the p-series converges.

(b) Give two numbers between which its sum lies.
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14.

(a) If you used S100 to estimate
∑∞

k=1 1/k2, what could you say about the error
R100?

(b) How large should you choose k to be sure that the error Rk is less than 0.0001?

15.

(a) If you used S1000 to estimate
∑∞

k=1 1/k3, what could you say about the error
R1000?

(b) How large should you choose k to be sure that the error Rk is less than 0.0001?

16.

(a) How many terms of the series
∑∞

k=1 1/k4 should you use to be sure that the
remainder is less than 0.0001?

(b) Estimate
∑∞

k=1 1/k4 to three decimal places.

17. Repeat Exercise 16 for the series
∑∞

k=1 1/k5.

In each of Exercises 18 to 21 (a) compute the sum of the first four terms of the series
to four decimal places, (b) give upper and lower bound on the error R4, (c) combine
(a) and (b) to estimate the sum of the series.

18.
∞∑

k=1

1
k3

19.
∞∑

k=1

1
k4

20.
∞∑

k=1

1
k2 + 1

21.
∞∑

k=1

1
k2 + k

22. Prove that if p ≤ 1, the p-series diverges.

23. What does the integral test say about the geometric series
∑∞

k=1 pk, when
0 < p < 1?
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24. Let f(x) be a positive continuous function that is decreasing for x ≥ a.
Let ak = f(k). Show in detail (with appropriate diagrams and exposition) why∫∞
a f(x) dx and

∑∞
k=1 ak both converge or both diverge. Use your own words.

Don’t just mimic the book’s treatment of the case a = 1.

25. (See Exercise 24.) Show that
∑∞

k=1 k10e−k converges.

26. Show that for n ≥ 2,

2
√

n + 1− 2 <

n∑
k=1

1√
k

< 2
√

n− 1.

27.

(a) By comparing the sum with integrals, show that

ln
(

201
100

)
<

1
100

+
1

101
+

1
102

+ · · ·+ 1
200

< ln
(

200
99

)
.

(b) Find limn→∞

(
1
n + 1

n+1 + · · ·+ 1
2n

)
.

28. In Example 1 we showed that the p-series for p = 1 diverges but the p-series for
p = 1.01 converges. This contrast occurs even though the corresponding terms of the
two series seem to resembe each other so closely. (For instance, 1/71.01 ≈ 0.140104,
1/71 ≈ 0.142857.) What happens to the ratio (1/k1.01)/(1/k) as k →∞?

In Exercises 29 and 30 concern products, rather than sums, of numbers.
29. Let {an} be a sequence of positive numbers. Denote the product (1 + a1)(1 +
a2) · · · (1 + an) by

∏n
k=1(1 + ak).

(a) Show that
∑∞

k=1 ak ≤
∏n

k=1(1 + ak).

(b) Show that if limk→∞
∏n

k=1(1 + ak) exists, then
∑∞

k=1 ak is convergent.

30. (This continues Exercise 29.)

(a) Show that 1 + ak ≤ eak . (Show that 1 + x ≤ ex for x > 0.)

(b) Show that if the series
∑∞

k=1 ak is convergent, then limn→∞
∏n

k=1(1 + ak)
exists.
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31. Here is an argument that there is an infinite number of primes. Assume that
there is only a finite number of primes, p1, p2, . . . , pm.

(a) Show that
1

1− 1/pk
= 1 +

1
pk

+
1
p2

k

+
1
p3

k

+ · · · .

(b) Show then that

1
1− 1/p1

1
1− 1/p2

· · · 1
1− 1/pm

=
∞∑

k=1

1
k
.

(Assume the series can be multiplied term-by-term.)

(c) From (b) obtain a contradiction.
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11.4 The Comparison Tests

So far in this chapter three tests for the convergence (or divergence) of a series
have been presented. The first concerned a special type of series, a geometric
series. The second, the nth-term test for divergence, asserts that if the nth term
of a series does not approach 0, the series diverges. The third, the integral
test, applies to certain series of positive terms. In this section two further tests
are developed; the comparison and limit-comparison tests. We still consider
only tests for series with positive terms.

Comparison Tests

The first test is similar to the comparison test for improper integrals in Sec-
tion 7.8.

Comparison Tests

Theorem 11.4.1 (Comparison Tests for Convergence and Divergence).

(a) If 0 ≤ pk ≤ ck for each k and
∑∞

k=1 ck converges, so does
∑∞

k=1 pk.

(b) If 0 ≤ dk ≤ pk for each k and
∑∞

k=1 dk diverges, so does
∑∞

k=1 pk.

Proof

(a) Let the sum of the series c1 + c2 + · · · be C. Let Sn denote the partial
sum p1 + p2 + · · ·+ pn. Then, for each n,

Sn = p1 + p2 + · · ·+ pn ≤ c1 + c2 + · · ·+ cn ≤ C.

Since the pn’s are non-negative,

S1 ≤ S2 ≤ · · · ≤ Sn ≤ · · · .

S1 ≤ S2 ≤ · · · ≤ Sn ≤
· · · ≤ C

Since each Sn is less than or equal to C, Theorem 10.1.1 of Section 10.1
assures us that the sequence {Sn} converges to a number L (less than or
equal to C). In other words, the series p1 + p2 + · · · converges (and its
sum is less than or equal to the sum c1 + c2 + · · · ).

(b) The divergence test follows immediately from the convergence test. If
the series p1 +p2 + · · · converged, so would the series d1 +d2 + · · · , which
is assumed to diverge.
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•

Figure 11.4.1

Figure 11.4.1 presents the two comparison tests in Theorem 11.4.1 in terms
of endless staircases.

In order to apply the comparison test to a series of positive terms you have
to compare it to a series whose convergence or divergence you already know.
What series can you use for comparison? You know the p-series converges for
p > 1 and diverges for p ≤ 1. Also a geometric series

∑∞
k=1 rk with positive

terms converges for 0 ≤ r < 1 but diverges for r ≥ 1. Moreover, when
we multiply one of theses series by a non-zero constant, we don’t affect its
convergence or divergence.

EXAMPLE 1 Does the series

∞∑
k=1

k + 1

k + 2

1

k2
=

2

3
· 1

12
+

3

4
· 1

22
+

4

5
· 1

32
+ · · ·

converge or diverge?
SOLUTION The coefficients 2

3
, 3

4
, and 4

5
, . . . approach 1 as k →∞, so they

are a minor influence. The series resembles the series

1

12
+

1

22
+ · · ·+ 1

k2
+ · · · ,

which was shown by the integral test to be convergent. Since the fraction
(k + 1)/(k + 2) is less than 1,

k + 1

k + 2

1

k2
<

1

k2
.

Thus, by the comparison test for convergence, the series

2

3
· 1

12
+

3

4
· 1

22
+

4

5
· 1

32
+ · · ·

also converges. However, the test does not tell us the sum of the series. �

EXAMPLE 2 Does the series

∞∑
k=1

k + 1

k + 2
· 1
k

=
2

3
· 1
1

+
3

4
· 1
2

+ · · ·+ k + 1

k + 2
· 1
k

+ · · ·

converge or diverge?
SOLUTION Again the coefficient (k + 1)/(k + 2) is a minor influence. We
suspect that 1/k is the main influence and that the series diverges.
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Unfortunately, the terms in this series are less than the terms of the har-
monic series

∑∞
k=1

1
k
. So the divergence test does not directly apply. However,

(k + 1)/(k + 2) is greater than 1/2. Now, the series

1

2
· 1
1

+
1

2
· 1
2

+ · · ·+ 1

2
· 1
k

+ · · ·

is also divergent, since it’s just a multiple of a divergent series. The divergence
part of the comparison test applies: the series

∞∑
k=1

k + 1

k + 2

1

k

is, term by term, larger than the terms of the divergent series

∞∑
k=1

1

2

1

k
.

Hence,
∑∞

k=1
k+1
k+2

1
k

is divergent. �

Limit-Comparison Tests

There is a variation of the comparison test that produces a much quicker
solution of Example 2. It is the limit-comparison test.

Theorem 11.4.2 (Limit-Comparison Tests for Convergence and Divergence).
Limit-Comparison Tests Let

∑∞
k=1 pk be a series of positive terms to be tested for convergence or diver-

gence.

A. Let
∑∞

k=1 ck be a convergent series of positive terms. If limk→∞
pk

ck
exists,

then
∑∞

k=1 ck also converges.

B. Let
∑∞

k=1 dk be a divergent series of positive terms. If limk→∞
pk

dk
exists

and is not 0 or if the limit is infinite, then
∑∞

k=1 pk also diverges.

Proof

We shall prove part (a). Let a = limk→∞
pk

ck
. Since as k → ∞, pk/ck → a,

there must be an integer N such that, for all n ≥ N , pk/ck remains less than,
say, a + 1. Thus

pk < (a + 1)ck for all n ≥ N .

Now the series

(a + 1)cN + (a + 1)cN+1 + · · ·+ (a + 1)ck + · · · ,
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being a + 1 times the tail end of a convergent series, is itself convergent. By
the comparison test,

pN + pN+1 + · · ·+ pk + · · ·
is convergent. Hence p1 + p2 + · · ·+ pk + · · · is convergent.

Part (B) can be proved in a similar manner. •
Note that in part B of the Limit-Comparison Test nothing is said about

the case limk→∞ pk/dk = 0. In this circumstance the series
∑∞

k=1 pk can either
converge or diverge. For instance, take

∑∞
k=1 dk to be the divergent series∑∞

k=1
1√
n
. The series

∑∞
k=1

1
k2 is convergent and limk→∞

1/k2

1/
√

k
= 0. Contrarily,

the harmonic series
∑∞

k=1
1
k

is divergent and again limk→∞
1/k

1/
√

k
= 0.

The next example shows how convenient the limit-comparison test is. Con-
trast the solution in Example 3 with that in Example 2.

EXAMPLE 3 Does the series

∞∑
k=1

k + 1

k + 2
· 1
k

=
2

3
· 1
1

+
3

4
· 1
2

+ · · ·+ k + 1

k + 2
· 1
k

+ · · ·

converge or diverge?
SOLUTION As with Example 2, we expect this series to behave like the
harmonic series. For this reason we examine the ratio between corresponding
terms:

lim
k→∞

k+1
k+2
· 1

k
1
k

= lim
k→∞

k + 1

k + 2
= 1.

Since the limit is not 0, and the harmonic series diverges, the Limit-Comparison

Test tells us that
∞∑

k=1

k + 1

k + 2
· 1
k

diverges. �

EXAMPLE 4 Does

∞∑
k=1

(1 + 1/k)k
(
1 + (−1/2)k

)
2k

converge or diverge?
SOLUTION See Section 2.2.Note that as k →∞, (1+1/k)k → e and 1+(−1/2)k → 1. The
major influence is the 2k in the denominator. So use the Limit-Comparison
Test. The given series resembles the convergent geometric series with first
term 1

2
and ratio also 1

2
: 1

2
+ 1

4
+ · · ·+ 1

2k + · · · . Then

lim
k→∞

(1+ 1
k)

k
“
1+(−1

2 )
k

”
2k

1
2k

= lim
k→∞

(
1 +

1

k

)k
(

1 +

(
−1

2

)k
)

= e · 1 = e.
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Since
∑

k→∞ 2−k is convergent, so is the given series. �

EXAMPLE 5 Does
∑∞

k=1 k33−k converge or diverge?
SOLUTION The typical term k33−k is dominated by the exponential fac-
tor, 1/3k. For this reason we suspect that the series

∑∞
k=1 k33−k might also

converge. We try the Limit-Comparison Test, obtaining

lim
k→∞

k3

3k

1
3k

= lim
k→∞

k3 =∞.

Since the limit is not finite, the test gives no information. So we start over
and look at k3/3k a little closer.

See also Section 5.6. The numerator k3 approaches ∞ much more slowly than 3k, so we still
suspect that

∑∞
k=1 k3/3k converges. Now, k3 approaches ∞ more slowly than

any exponential bk with b > 1. For example, for large k, k3 is less than (1.5)k.
This means that for large k

k3

3k
<

(1.5)k

3k
= (0.5)k.

The geometric series
∑∞

k=1(0.5)k converges. Since k3/3k < (0.5)k for all but
a finite number of values of k, the Comparison Test tells us that

∑∞
k=1 k3/3k

converges. �

Summary

We developed two tests for convergence or divergence of a series with positive
terms,

∑∞
k=1 pk. If, for each k, pk is less than the corresponding term of a

convergent series, then
∑∞

k=1 pk converges. If pk is larger than the correspond-
ing term of a divergent series of positive terms, then

∑∞
k=1 pk diverges. This

Comparison Test is the basis for the Limit-Comparison Test, which is often
easier to apply. This test depends only on the limit of the ratio of pk to the
corresponding term of a series of positive terms known to converge or diverge.
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EXERCISES for Section 11.4

Use the comparison test in Exercises 1 to 4 to determine whether each series con-
verges or diverges.

1.
∞∑

k=1

1
k2 + 3

2.
∞∑

k=1

k + 2
(k + 1)

√
k

3.
∞∑

k=1

sin2(k)
k2

4.
∞∑

k=1

1
k2k

Use the limit-comparison test in Exercises 5 to 8 to determine whether each series
converges or diverges.

5.
∞∑

k=1

5k + 1
(k + 2)k2

6.
∞∑

k=1

2k + k

3k

7.
∞∑

k=1

k + 1
(5k + 2)

√
k

8.
∞∑

k=1

(1 + 1/k)k

k2

In Exercises 9 to 28 use any test discussed so far in this chapter to determine whether
each series converges or diverges.

9.
∞∑

k=1

k2k

3k

10.
∞∑

k=1

2k

k2

11.
∞∑

k=1

1
kk

12.
∞∑

k=1

1
k!

13.
∞∑

k=1

4k + 1
(2k + 3)k2

14.
∞∑

k=1

k2(2k + 1)
3k + 1
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15.
∞∑

k=1

1 + cos(k)
k2

16.
∞∑

k=1

ln(k)
k

17.
∞∑

k=1

ln(k)
k2

18.
∞∑

k=1

5k

kk

19.
∞∑

k=1

2k

k!

20.
∞∑

k=1

1√
k ln(k)

21.
∞∑

k=1

e2k

πk

22.
∞∑

k=1

k2ek

πk

23.
∞∑

k=1

3k + 1
2k + 10

24.
∞∑

k=1

4
2k2 − k

25.
∞∑

k=1

1
ln(k)

26.
∞∑

k=1

1
sin(1/k)

27.
∞∑

k=1

(
k + 1
k + 3

)k

28.
∞∑

k=1

(
k

2k − 1

)k

In Exercises 29 to 34, assume that
∑∞

k=1 ak and
∑∞

k=1 bk are series with positive
terms. What, if anything, can we conclude about the convergence or divergence of∑∞

k=1 ak if:
29. If

∑∞
k=1 bk is divergent and limk→∞

ak
bk

= 0?

30. If
∑∞

k=1 bk is convergent and limk→∞
ak
bk

=∞?

31. If
∑∞

k=1 bk is convergent and 3bk ≤ ak ≤ 5bk?
32. If

∑∞
k=1 bk is divergent and 3bk ≤ ak ≤ 5bk?
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33. If
∑∞

k=1 bk is convergent and ak < b2
k?

34. If
∑∞

k=1 bk is divergent and bk → 0 as k →∞, and ak < b2
k?

35. For which values of the positive number x does the series
∞∑

k=1

xk

k2k
converge?

diverge?

36. For which values of the positive exponent m does the series
∑∞

k=1
1

km ln(k)
converge? diverge?

37. Prove part B of the Limit-Comparison Test for Convergence and Divergence.

38. For which constants p does
∑∞

k=1 kpe−k converge?

39.

(a) Show that
∑∞

k=1 1/(1 + 2k) converges.

(b) Show that the sum of the series in (a) is between 0.64 and 0.77. (Use the first
three terms and control the sum of the rest of the series by comparing it to
the sum of a geometric series.)

40.

(a) Show that
∑∞

k=n+1 1/k! is less than the sum of the geometric series whose first
term is 1/(n + 1)! and whose ratio is 1/(n + 2).

(b) Use (a) with n = 4 to show that

1 + 1 +
1
2!

+
1
3!

+
1
4!

<

∞∑
k=0

1
k!

< 1 + 1 +
1
2!

+
1
3!

+
1
4!

+
1
5!
· 1
1− 1

6

.

(c) From (b) deduce that

2.71 <

∞∑
k=0

1
k!

< 2.72.

(d) Find a value of n such that
∑∞

k=n+1 1/k! < 0.0005.

(e) Use (d) to estimate
∑∞

k=0 1/k! to three decimal places.

41. Prove the following result, which is used in the statistical theory of stochastic
processes: Let {an} and {cn} be two sequences of non-negative numbers such that
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∑∞
k=1 akck converges and limn→∞ cn = 0. Then

∑∞
k=1 akc

2
k converges.

42. Find a specific number B, expressed as a decimal, such that

∞∑
k=1

ln(k)
k2

< B.

43. Find a specific number B, expressed as a decimal, such that

∞∑
k=1

k + 2
k + 1

· 1
n3

< B.

44. Estimate
∑∞

k=1
1

k2k to three decimal places.

45. Let
∑∞

k=1 ak be a convergent series with only positive terms. Must
∑∞

k=1(ak)2

also converge?

46. Let
∑∞

k=1 ak and
∑∞

k=1 bk be convergent series with only positive terms. Must∑∞
k=1 akbk converge?
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11.5 Ratio Tests

The next test is suggested by the test for the convergence of a geometric
series. In a geometric series the ratio between consecutive terms is constant.
The “Ratio Test” concerns series when this ratio is “almost constant”.

The Ratio Test

Theorem 11.5.1 (Ratio Test). Ratio TestLet p1 + p2 + · · · + pn + · · · be a series of
positive terms. Assume limk→∞ pk+1/pk exists and call it r.

(a) If r is less than 1, the series converges.

(b) If r is greater than 1 or r is infinite, the series diverges.

(c) If r is equal to 1 or r does not exist, no conclusion can be drawn (the
series may converge or may diverge).

Proof

The idea behind the Ratio Test is to compare the original series to a geometric
series. Here is how that works.

(a) Assume r = limk→∞
pk+1

pk
< 1. Select a number s such that r < s < 1.

Then there is an integer N such that for all k ≥ N ,

pk+1

pk

< s

and, therefore, pk+1 < spk.

Using this inequality, we deduce that

pN+1 < spN

pN+2 < spN+1 < s(spN) = s2pN

pN+3 < spN+2 < s(s2pN) = s3pN ,

and so on.

Thus the terms of the series

pN + pN+1 + pN+2 + · · ·

are less than the corresponding terms of the geometric series

pN + spN + s2pN + · · ·
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(except for the first term, pN , which equals the first term of the geometric
series). Since s < 1, the latter series converges. By the comparison test,
pN + pN+1 + pN+2 + · · · converges. Adding in the front end,

p1 + p2 + · · ·+ pN−1,

still results in a convergent series.

(b) If r > 1 or is infinite, then for all k from some point on pk+1 is larger
than pk. Thus the nth term of the series p1 + p2 + · · · cannot approach
0. By the nth-term test for divergence the series diverges.

•

No information if r is 1 or
does not exist.

When r = 1 or r does not exist, anything can happen; the series may
diverge or it may converge. (Exercise 21 illustrates these possibilities.) In these
cases, one must look to other tests to determine whether the series diverges or
converges.

The Ratio Test is a natural test to try if the kth term of a series involves
powers of a fixed number, or factorials, as the next two examples show.

EXAMPLE 1 Show that the series p+2p2 +3p3 + · · ·+kpk + · · · converges
for any fixed number p for which 0 < p < 1.
SOLUTION Let ak denote the kth term of the series. Then

ak = kpk and ak+1 = (k + 1)pk+1.

The ratio between consecutive terms is

ak+1

ak

=
(k + 1)pk+1

kpk
=

k + 1

k
p.

The sum of this series is
found in Exercise 34.

Thus

r = lim
k→∞

ak+1

ak

= p < 1,

and the series converges. �

EXAMPLE 2 Determine the positive values of x for which the series

1

0!
+

x

1!
+

x2

2!
+

x3

3!
+ · · ·+ xk

k!
· · ·

converges and for which values of x it diverges. (Each choice of x determines
a specific series with constant terms.)
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SOLUTION If we start the series with k = 0, then the nth term, ak is xk/k!.
Thus

ak+1 =
xk+1

(k + 1)!
,

and therefore

ak+1

ak

=

xk+1

(k+1)!

xk

k!

= x
k!

(k + 1)!
=

x

k + 1
.

In the next section, it will
be shown that this series
converges for all negative
values of x, too.

Since x is fixed,

r = lim
k→∞

ak+1

ak

= lim
k→∞

x

k + 1
= 0.

By the Ratio Test, the series converges for all positive x. �

The next example uses the Ratio Test to establish divergence.

EXAMPLE 3 Show that the series 2/1+22/2+ · · ·+2k/k + · · · diverges.
SOLUTION In this case, ak = 2k/k and

ak+1

ak

=
2k+1

k+1

2k

k

=
2k+1

k + 1

k

2k
= 2

k

k + 1
.

The series is like a
geometric series with ratio
2.

Thus

r = lim
k→∞

ak+1

ak

= 2,

which is larger than 1. By the Ratio Test, this series diverges. �

It is not really necessary to call on the powerful Ratio Test to establish the
divergence of the series in Example 3. Since limk→∞ 2k/k = ∞, its kth term
gets arbitrarily large; by the kth-term test, the series diverges. (Comparison
with the harmonic series also demonstrates divergence.)

The Root Test

The next test, closely related to the Ratio Test, is of use when the kth term
contains only kth powers, such as kk or 3k. It is not useful if factorials such as
k! are present.

Root Test

Theorem 11.5.2 (Root Test). Let
∑∞

k=1 pk be a series of positive terms. As-
sume limk→∞ k

√
pk exists and call it r. Then

A. If r is less than 1, the series converges.

B. If r is greater than 1 or r is infinite, the series diverges.
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C. If r is equal to 1 or r does not exist, no conclusion can be drawn (the
series may converge or may diverge).

The proof of the Root Test is outlined in Exercises 22 and 23.

EXAMPLE 4 Use the Root Test to determine whether
∑∞

k=1 3k/kk/2 con-
verges or diverges.
SOLUTION We have

r = lim
k→∞

k

√
3k

kk/2
= lim

k→∞

3√
k

= 0.

By the Root Test, the series converges. �

Summary

We developed two tests for convergence or divergence of a series
∑∞

k=1 pk with
positive terms, both motivated by geometric series. In the Ratio Test, we
examine limk→∞ pk+1/pk and in the Root Test, limk→∞ k

√
pk. The Ratio Test

is convenient to use when the terms involve powers and factorials. The Root
Test is convenient when only powers appear.
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EXERCISES for Section 11.5

In Exercises 1 to 6 apply the Ratio Test to decide whether the series converges or
diverges. If that test gives no information, use another test to decide.

1.
∞∑

k=1

k2

3k

2.
∞∑

k=1

(k + 1)2

k2k

3.
∞∑

k=1

k ln(k)
3k

4.
∞∑

k=1

k!
3k

5.
∞∑

k=1

(2k + 1)(2k + 1)
3k + 1

6.
∞∑

k=1

k!
kk

In Exercises 7 and 8 use the Root Test to determine whether the series converge or
diverge.

7.
∞∑

k=1

kk

3k2

8.
∞∑

k=1

(1 + 1/k)k(2k + 1)k

(3k + 1)k

Each series found in Exercises 9 to 14 converges. Use any legal means to find a
number B in decimal form that is larger than the sum of the series.

9.
∞∑

k=1

k2

2k

10.
∞∑

k=1

k

3k

11.
∞∑

k=1

1
k3

12.
∞∑

k=1

sin2(k)
k2

13.
∞∑

k=1

ln(k)
k2

14.
∞∑

k=1

(
1 + 2

k

)k
1.1k
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Each series in Exercises 15 to 18 diverges. Use any legal means to find a number m
such that the mth partial sum of the series exceeds 1,000.

15.
∞∑

k=1

ln(k)
k

16.
∞∑

k=1

k

k2 + 1

17.
∞∑

k=1

(1.01)k

18.
∞∑

k=1

(k + 2)2

k + 1
· 1√

k

19. Use the result of Example 2 to show that, for x > 0, limk→∞ xk/k! = 0. (This
was established directly in Section 11.2.)

20. Solve Example 3 using the Root Test.

21. This exercise shows that the Ratio Test gives no information if lim
k→∞

pk+1

pk
= 1.

(a) Show that for pk = 1/k,
∑∞

k=1 pk diverges and limk→∞
pk+1

pk
= 1.

(b) Show that for pk = 1/k2,
∑∞

k=1 pk converges and limk→∞
pk+1

pk
= 1.

22. This exercise shows that the Root Test gives no information if lim
k→∞

k
√

pk = 1.

(a) Show that for pk = 1/k,
∑∞

k=1 pk diverges and limk→∞ k
√

pk = 1.

(b) Show that for pk = 1/k2,
∑∞

k=1 pk converges and limk→∞ k
√

pk = 1.

23. (Proof of the Root Test, Theorem 11.5.2.)

(a) Assume that r = limk→∞ k
√

pk < 1. Pick any s with r < s < 1, and then pick
N such that k

√
pk < s for all k > N . Show that pk < sk for all k > N and

compare a tail end of
∑∞

k=1 pk to a geometric series.

(b) Assume that r = limk→∞ k
√

pk > 1. Pick any s with 1 < s < r, and then pick
N such that k

√
pk > s for all k > N . Show that pk > sk for all k > N . From

this conclude that
∑∞

k=1 pk diverges.
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Skill Drill

In Exercises 24 to 26 a, b, and c are constants. In each case verify the following
derivative formulas.
24.

d

dx
(x sin(ax)) = sin(ax) + ax cos(ax)

25.
d

dx

(
ln
∣∣ax2 + bx + c

∣∣) =
2ax + b

ax2 + bx + c

26.
d

dx

(
x arctan(ax)− 1

2a
ln
(
1 + a2x2

))
= arctan(ax)

In Exercises 27 to 32 a, b, c, and n are constants and n is positive. Use integration
techniques to obtain each of the following reduction formulas.

27.
∫

xn sin(ax) dx = −1
a

cos(ax) +
n

a

∫
xn−1 cos(ax) dx

28.
∫

xn cos(ax) dx =
1
a

cos(ax)− n

a

∫
xn−1 sin(ax) dx

29.
∫

dx

x2
√

ax + b
=
−
√

ax + b

bx
− a

2b

∫
dx

x
√

ax + b

30.
∫

dx

(ax2 + c)n+1
=

1
2nc

x

(ax2 + c)n
+

2n− 3
2nc

∫
dx

(ax2 + c)n

31.
∫

dx

(ax2 + bx + c)n+1
=

2ax + b

n(4ac− b2)(ax2 + bx + c)n
+

2(2n− 1)a
n(4ac− b2)

∫
dx

(ax2 + bx + c)n

32.
∫

(ln(ax))2 dx = x2
(
(ln(ax))2 − 2 ln(ax) + 2

)
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11.6 Tests for Series with Both Positive and

Negative Terms

The tests for convergence or divergence in Sections 11.3 to 11.5 concern series
whose terms are positive. This section examines series that have both posi-
tive and negative terms. Two tests for the convergence of such a series are
presented. The alternating-series test applies to series whose terms alternate
in sign (+, -, +, -, . . . ) and decrease in absolute value. In the absolute-
convergence test, the signs may vary in any way.

Alternating Series

DEFINITION (Alternating Series) If p1, p2, . . . , pn, . . . is a se-
quence of positive numbers, then the series

∞∑
k=1

(−1)k+1pk = p1 − p2 + p3 − p4 + · · ·+ (−1)k+1pk + · · ·

and the series

∞∑
k=1

(−1)kpk = −p1 + p2 − p3 + p4 − · · ·+ (−1)kpk + · · ·

are called alternating series.

For instance,

1− 1

3
+

1

5
− 1

7
+ · · ·+ (−1)k+1 1

2k − 1
+ · · ·

and
1− 1 + 1− 1 + · · ·+ (−1)k + · · ·

are alternating series.
By the nth-term test, the second series diverges. The following theorem

implies that the first series converges.

Theorem 11.6.1 (Alternating-Series Test).Alternating-Series Test If p1, p2, . . . , pk, . . . is a decreas-
ing sequence of positive numbers such that limk→∞ pk = 0, then the series
whose kth term is (−1)k+1pk,

∞∑
k=1

(−1)k+1pk = p1 − p2 + p3 − · · ·+ (−1)k+1pk + · · · ,

converges.
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Proof

We will prove the theorem in the special case when pk = 1/k, that is, the
alternating harmonic series

∞∑
k=1

(−1)k+1 1

k
= 1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)k+1 1

k
+ · · · .

The argument easily generalizes to prove the general theorem. (See Exer-
cise 33.)

Consider first the partial sums of an even number of terms, S2, S4, S6, . . . .
For clarity, group the summands in pairs:

S2 = (1− 1
2
)

S4 = (1− 1
2
) + (1

3
− 1

4
) = S2 + (1

3
− 1

4
)

S6 = (1− 1
2
) + (1

3
− 1

4
) + (1

5
− 1

6
) = S4 + (1

5
− 1

6
)

...

Since 1
3

is larger than 1
4
, the difference 1

3
− 1

4
is positive. Therefore, S4, which

equals S2 + (1
3
− 1

4
), is larger than S2. Similarly, S6 > S4. More generally:

S2 < S4 < S6 < S8 < · · · .

Figure 11.6.1

The sequence of even partial sums, {S2n} is increasing. (See Figure 11.6.1.)
Next, it will be shown that S2n is less than 1, the first term of the sequence.

First of all,

S2 = 1− 1

2
< 1.

Next, consider S4:

S4 = 1− 1
2

+ 1
3
− 1

4

= 1− (1
2
− 1

3
)− 1

4

< 1− (1
2
− 1

3
) because 1

4 is positive
< 1 because 1

2 −
1
3 is positive.

Similarly,

S6 = 1− (1
2
− 1

3
)− (1

4
− 1

5
)− 1

6

< 1− (1
2
− 1

3
)− (1

4
− 1

5
) because 1

6 is positive
< 1− (1

2
− 1

3
) because 1

4 −
1
5 is positive

< 1 because 1
2 −

1
3 is positive.

In general then,
S2n < 1 for all n.
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The sequence

S2, S4, S6, . . .

is therefore increasing and yet bounded by the number 1, as indicated in Fig-
ure 11.6.2. By Theorem 10.1.1 of Section 10.1, limn→∞ S2n exists. Call this
limit S, which is less than or equal to 1. (See Figure 11.6.2.)

Figure 11.6.2

All that remains is to show that the odd partial sums

S1, S3, S5, . . .

also converge to S.

Note that

S3 = 1− 1
2

+ 1
3

= S2 + 1
3

S5 = 1− 1
3

+ 1
3
− 1

4
+ 1

5
= S4 + 1

5
.

In general,

S2k+1 = S2k +
1

2k + 1
.

Thus

lim
k→∞

S2k+1 = lim
k→∞

(
S2k +

1

2k + 1

)
= lim

k→∞
S2k + lim

k→∞

1

2k + 1
= S + 0 = S.

Since the sequence of even partial sums, S2, S4, S6, . . . , S2k, . . . , and the
sequence of odd partial sums, S1, S3, S5, . . . , S2k+1, . . . , both have the same
limit, S, it follows that

lim
k→∞

Sk = S.

Thus the alternating harmonic series

∞∑
k=1

(−1)k 1

k
= 1− 1

2
+

1

3
− 1

4
+

1

5
− · · ·

See Exercise 29. converges. In Chapter 12 it will be shown that this sum is ln(2).

A similar argument applies to any alternating series whose kth term ap-
proaches 0 and whose terms decrease in absolute value. •

Decreasing alternating series An alternating series, such as the alternating harmonic series, whose terms
decrease in absolute value as k increases will be called a decreasing alternat-
ing series. Theorem 11.6.1 shows that a decreasing alternating series whose
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kth term approaches zero as k →∞ converges.

EXAMPLE 1 Estimate the sum S of the alternating harmonic series.
SOLUTION

Figure 11.6.3

These are the first five partial sums:

S1 = 1 = 1.00000
S2 = 1− 1

2
= 0.50000

S3 = 1− 1
2

+ 1
3
≈ 0.5 + 0.33333 = 0.83333

S4 = S3 − 1
4
≈ 0.83333− 0.25 = 0.58333

S5 = S4 + 1
5
≈ 0.58333 + 0.2 = 0.78333

Figure 11.6.3 is a graph of Sn as a function of n. The odd partial sums S1,
S3, . . . approach S from above. The even partial sums S2, S4, . . . approach S
from below.

Figure 11.6.4

For instance,
S4 < S < S5

gives the information that 0.58333 < S < 0.8334. (See Figure 11.6.4.) �

As Figure 11.6.3 suggests, any partial sum of a series satisfying the hy-
pothesis of the alternating-series test differs from the sum of the series by less
than the absolute value of the first omitted term. That is, if Sn is the sum of
the first n terms of the series and S is the sum of the series, then the error

Rn = S − Sn

The error in estimating the
sum of a decreasing
alternating series.

has absolute value at most pn+1, which is the absolute value of the first omitted
term. Moreover, S is between Sn and Sn+1 for every n.

EXAMPLE 2 Does the series

3

1!
− 32

2!
+

33

3!
− 34

4!
+

35

5!
− · · ·+ (−1)k+1 3k

k!
+ · · ·

converge or diverge?
SOLUTION This is an alternating series. By Example 2 of Section 11.2, its
kth term approaches 0. Let us see whether the absolute values of the terms
decrease in size, term-by-term. The first few absolute values are

3

1!
= 3

32

2!
=

9

2
= 4.5

33

3!
=

27

6
= 4.5

34

4!
=

81

24
= 3.375.
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At first, they increase. However, the fourth term is less than the third. Let us
show that the rest of the terms decrease in size. For instance,At first the terms increase,

but then they decrease.

35

5!
=

3

4

34

4!
<

34

4!
,

and, for n ≥ 3,
3k+1

(k + 1)!
=

3

k + 1

3k

k!
<

3k

k!
.

By the alternating-series test, the tail end that begins

33

3!
− 34

4!
+

35

5!
− 36

6!
− · · ·

converges. Call its sum S. If the front end

3

1!
− 32

2!

is added on, we obtain the original series, which therefore converges and has
the sum

3

1!
− 32

2!
+ S.

�

As Example 2 illustrates, the alternating-series test works as long as the
kth term approaches 0 and the terms decrease in size from some point on.

It may seem that any alternating series whose kth term approaches 0 con-
verges. This is not the case, as shown by this series:

2

1
− 1

1
+

2

2
− 1

2
+

2

3
− 1

4
+ · · · , (11.6.1)

whose terms alternate 2/k and −1/k.

Let Sn be the sum of the first n terms of (11.6.1). Then

S2 = 2
1
− 1

1
= 1

1
,

S4 =
(

2
1
− 1

1

)
+
(

2
2
− 1

2

)
= 1

1
+ 1

2
,

S6 =
(

2
1
− 1

1

)
+
(

2
2
− 1

2

)
+
(

2
3
− 1

3

)
= 1

1
+ 1

2
+ 1

3
,

and, more generally,

S2n =
1

1
+

1

2
+

1

3
+ · · ·+ 1

n
.

Recall that the harmonic
series diverges.

Since S2n gets arbitrarily large as n→∞, the series (11.6.1) diverges.

April 22, 2012 Calculus



§ 11.6 TESTS FOR SERIES WITH BOTH POSITIVE AND NEGATIVE TERMS 977

Absolute Convergence

Consider the series
a1 + a2 + · · ·+ an · · · ,

whose terms may be positive, negative, or zero. It is reasonable to expect it
to behave at least as “nicely” as the corresponding series with non-negative
terms

|a1|+ |a2|+ · · ·+ |an|+ · · · ,
since by making all the terms positive we give the series more chance to diverge.
This is similar to the case with improper integrals in Section 7.8, where it
was shown that if

∫∞
a
|f(x)| dx converges, then so does

∫∞
a

f(x) dx. The
next theorem (and its proof) is similar to the Absolute-Convergence Test for
Improper Integrals in Section 7.8. (Re-read it. It’s on page 664.)

Theorem 11.6.2 (Absolute-Convergence Test). Absolute-Convergence TestIf the series
∑∞

k=1 |ak| con-
verges, then so does the series

∑∞
k=1 ak. Furthermore, if

∑∞
k=1 |ak| = S, then∑∞

k=1 ak is between −S and S.

Proof

We introduce two series in order to record the behavior of the positive and
negative terms in

∑∞
k=1 ak separately. Let

bk =

{
ak if ak is positive
0 otherwise

and ck =

{
ak if ak is negative
0 otherwise

.

Note that ak = bk + ck. To establish the convergence of
∑∞

k=1 ak we show
that both

∑∞
k=1 bk and

∑∞
k=1 ck converge. First of all, since bk is non-negative

and bk ≤ |ak|, the series of positive terms,
∑∞

k=1 bk, converges by the compar-
ison test. In fact, it converges to a number P ≤ S.

Since ck is non-positive, and ck ≥ −|ak|, the series of negative terms,∑∞
k=1 ck, converges to a number N ≥ −S. Thus

∑∞
k=1 ak =

∑∞
k=1(bk + ck)

converges to P + N , which is between −S and S. •

EXAMPLE 3 Examine the series

cos(x)

12
+

cos(2x)

22
+

cos(3x)

32
+ · · ·+ cos(kx)

k2
+ · · · (11.6.2)

for convergence or divergence.
SOLUTION The number x is fixed. The numbers cos(kx) may be positive,
negative, or zero, in an irregular manner. However, for all k, | cos(kx)| ≤ 1.

The series
1

12
+

1

22
+

1

32
+ · · ·+ 1

k2
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is the p-series with p = 2, which converges (by the integral test).In Section 12.7 it is shown
that for 0 ≤ x ≤ 2π, series

(11.6.2) sums to
1
12(3x2 − 6πx + 2π2).

Since∣∣∣ cos(kx)
k2

∣∣∣ ≤ 1
k2 , the series

| cos(x)|
12

+
| cos(2x)|

22
+
| cos(3x)|

32
+ · · ·+ | cos(kx)|

k2
+ · · · (11.6.3)

converges by the comparison test. Theorem 11.6.2 then tells us that (11.6.2)
converges. �

WARNING (Converse of Theorem 11.6.2 is false) If
∑

k→∞ ak

converges, then
∑

k→∞ |ak| may converge or diverge. The standard
counterexample to the converse of Theorem 11.6.2 is the alternating
harmonic series, 1

1
− 1

2
+ 1

3
−· · · . This series converges, as was shown

by the alternating-series test (Theorem 11.6.1). But, when all of
the terms are replaced by their absolute values, the resulting series
is the harmonic series, 1

1
+ 1

2
+ 1

3
+· · · , which diverges (it is a p-series

with p = 1).

The following definitions are frequently used in describing these various
cases of convergence or divergence.

DEFINITION (Absolute Convergence) A series a1 + a2 + · · · is
said to converge absolutely if the series |a1|+|a2|+· · · converges.

Theorem 11.6.2 can then be stated simply: “If a series converges absolutely,
then it converges.”

DEFINITION (Conditional Convergence) A series a1 + a2 + · · ·
is said to converge conditionally if it converges but does not
converge absolutely.

1− 1
2 + 1

3 −
1
4 + · · ·

converges conditionally.
For instance, the alternating harmonic series 1− 1

2
+ 1

3
− 1

4
+ · · · is condi-

tionally convergent.

Absolute-Limit-Comparison Test

When you combine the limit-comparison test for positive series with the absolute-
convergence test, you obtain a single test, described in Theorem 11.6.3.

Theorem 11.6.3 (Absolute-Limit-Comparison Test).Absolute-Limit-Comparison
Test

Let
∑∞

k=1 ak be a series
whose terms may be negative or positive. Let

∑∞
k=1 ck be a convergent series

of positive terms. If

lim
k→∞

∣∣∣∣ak

ck

∣∣∣∣
exists, then

∑∞
k=1 ak is absolutely convergent, hence convergent.
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Proof

Note that |ak/ck| = |ak|/ck, since ck is positive. The limit-comparison test
tells us that

∑∞
k=1 |ak| converges. Then the absolute-convergence test assures

us that
∑∞

k=1 ak converges. •

One advantage of the absolute-convergence test over the limit-comparison
test is that we don’t have to follow it by the absolute-convergence test. Another
is that we don’t have to worry about the arithmetic of negative numbers.

EXAMPLE 4 Show that

3

2

(
1

2

)
− 5

2

(
1

2

)2

+
7

3

(
1

2

)3

− · · ·+ (−1)k+1 2k + 1

k

(
1

2

)k

+ · · · (11.6.4)

converges.
SOLUTION Consider the series with positive terms

3

2

(
1

2

)
+

5

2

(
1

2

)2

+
7

3

(
1

2

)3

+ · · ·+ 2k + 1

k

(
1

2

)k

+ · · · .

The fact that (2k + 1)/k → 2 as k →∞ suggests use of the limit-comparison
test, comparing the second series to the convergent geometric series

∑∞
k=1(1/2)k.

We have

lim
k→∞

2k+1
k

(
1
2

)k(
1
2

)k = 2.

Thus
∑∞

k=1((2k+1)/k)(1/2)k converges. Consequently, the first series (11.6.4),
with both positive and negative terms, converges absolutely. Thus it converges.
�

Absolute-Ratio Test

The ratio test of Section 11.5 also has an analog that applies to series with
both negative and positive terms.

Theorem 11.6.4 (Absolute-Ratio Test). Absolute-Ratio TestLet
∑∞

k=1 ak be a series such that

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = r < 1.

Then
∑∞

k=1 ak converges. If r > 1 or if limk→∞ |ak+1/ak| = ∞, then
∑∞

k=1 ak

diverges. If r = 1, then the Absolute-Ratio Test gives no information.
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Proof

Take the case r < 1. By the Ratio Test,
∑∞

k=1 |ak| converges. Since
∑∞

k=1 |ak|
converges, it follows that

∑∞
k=1 ak converges also.

The case r > 1 is treated in Exercise 34.
The case r = ∞ can be treated as follows. If limk→∞ |ak=1/ak| = ∞, the

ratio |ak+1|/|ak| gets arbitrarily large as k → ∞. So from some point on the
positive numbers |ak| increase. By the kth-Term Test for Divergence,

∑∞
k=1 ak

is divergent. •
The Absolute-Ratio Test
avoids work with minus

signs.

Theorem 11.6.4 establishes the convergence of the series in Example 4 as
follows. Let ak = (−1)k+1 (2k+1)

k2k . Then∣∣∣∣ak+1

ak

∣∣∣∣ =

∣∣∣∣∣(−1)k+2 (2k+3)
(k+1)2k+1

(−1)k+1 (2k+1)
k2k

∣∣∣∣∣ =
2k + 3

2k + 1
· k

k + 1
· 1
2
,

which approaches r = 1
2

as k → ∞. Thus
∑∞

k=1 ak converges (in fact, abso-
lutely).

Rearrangements

1 + 13 + 15 + 27 =
13 + 27 + 15 + 1

The sum of a finite collection of numbers does not depend on the order
in which they are added. A series that converges absolutely is similar: no
matter how the terms of an absolutely convergent series are rearranged, the
new series converges and has the same sum as the original series. It might be
expected that any convergent series has this property, but this is not the case.
For instance, the alternating harmonic series

1

1
− 1

2
+

1

3
− 1

4
+

1

5
− · · · (11.6.5)

does not. To show this, rearrange the terms so that two positive terms alternate
with one negative term, as follows:

1

1
+

1

3
− 1

2
+

1

5
+

1

7
− 1

4
+ · · · . (11.6.6)

Rearranging the terms in a
conditionally convergent

series is dangerous.

The positive summands in (11.6.6) have much more influence than the negative
summands. In the battle between the positives and the negatives, the positives
will win by a bigger margin in (11.6.6) than in (11.6.5). In fact, the sum of
(11.6.6) is 3

2
ln(2), while Exercise 28 shows that the sum of (11.6.5) is ln(2).

Conditionally convergent series are so sensitive that they can be made
to sum to any number that you choose. To be precise, Riemann proved: if∑∞

k=1 ak is a conditionally convergent series and s is any real number, then
there is a rearrangement of the aks whose sum is s. This is proved in Exer-
cise 40.
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Summary

Earlier in this chapter we described ways to test for the convergence or di-
vergence of series whose terms are all positive. This section describes several
tests for series that may be a mix of positive and negative terms.

• If the signs alternate and the absolute value of the terms decreases and
approach 0, the series converges. [Alternating-Series Test]

• If the series converges when “all the terms are made positive,” then it
converges. [Absolute-Convergence Test]

• This Absolute-Convergence Test in combination with the Limit-Comparison
Test gives us a single test, called the Absolute-Limit-Comparison Test.

• The Absolute-Convergence Test in combination with the Ratio Test gives
us the Absolute-Ratio Test. (This will be the most important test in
Chapter 12.)
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EXERCISES for Section 11.6

Exercises 1 to 8 concern alternating series. Determine which series converge and
which diverge. Explain your reasoning.

1.
1
2
− 2

3
+

3
4
− 4

5
+ · · ·+ (−1)k+1 k

k + 1
+ · · ·

2. − 1
1 + 1

2

+
1

1 + 1
4

− 1
1 + 1

8

+ · · ·+ (−1)k 1
1 + 2−k

+ · · ·

3.
1√
1
− 1√

2
+

1√
3
− 1√

4
+ · · ·+ (−1)k+1 1√

k
+ · · ·

4.
5
1!
− 52

2!
+

53

3!
− 54

4!
+ · · ·+ (−1)k+1 5k

k!
+ · · ·

5.
3√
1
− 2√

1
+

3√
2
− 2√

2
+

3√
3
− 2√

3
+ · · ·

6.
√

1−
√

2 +
√

3−
√

4 + · · ·+ (−1)k+1
√

k + · · ·

7.
1
3
− 2

5
+

3
7
− 4

9
+

5
11
− · · ·+ (−1)k+1 k

2k + 1
+ · · ·

8.
1
12
− 1

22
+

1
32
− 1

42
+ · · ·+ (−1)k+1 1

k2
+ · · ·

9. Consider the alternating harmonic series

∞∑
k=1

(−1)k+1

k
.

(a) Compute S5 and S6 to five decimal places.

(b) Is the estimate S5 smaller or larger than the sum of the series?

(c) Use (a) and (b) to find two numbers between which the sum of the series must
lie.

10. Consider the series
∞∑

k=1

(−1)k+1 2−k

k
.

(a) Estimate the sum of the series using S6.

(b) Estimate the error R6.

11. Does the series

2
1
− 3

2
+

4
3
− 5

4
+ · · ·+ (−1)k+1

(
n + 1

n

)
+ · · · .
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converge or diverge?

In Exercises 12 to 26 determine which series diverge, converge absolutely, or con-
verge conditionally. Explain your answers.

12.
∞∑

k=1

(−1)k

3
√

k2

13.
∞∑

k=1

ln
(

1
k

)

14.
∞∑

k=1

(−1)k

k ln(k)

15.
∞∑

k=1

sin(k)
k1.01

16.
∞∑

k=1

(
1− cos

(π

k

))
17.

∞∑
k=1

(−1)k cos
( π

k2

)
18.

∞∑
k=1

(−2)k

k!

19.
1
12

+
1
22
− 1

32
− 1

42
+

1
52

+
1
62
− · · · (There are two +’s alternating with two

−’s.)

20.
∞∑

k=1

(−3)k(1 + k2)
k!

21.
∞∑

k=1

cos(kπ)
2k + 1

22.
∞∑

k=1

(−1)k(k + 5)
k2

23.
∞∑

k=1

(−9)k

10k + k

24.
∞∑

k=1

(−1)k

3
√

k

25.
∞∑

k=1

(−1.01)k

k!

26.
∞∑

k=1

(−π)2k+1

(2k + 1)!
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27. For which values of x does
∞∑

k=1

xk

k!
converge?

28. The series
∞∑

k=1

(−1)k+12−k is both a geometric series and a decreasing alter-

nating series whose kth term approaches 0.

(a) Compute S6 to three decimal places.

(b) Using the fact that the series is a decreasing alternating series, put a bound
on R6.

(c) Using the fact that the series is a geometric series, compute R6 exactly.

29.

(a) How many terms of the series
∞∑

k=1

sin(k)
k2

must you take to be sure the error

is less than 0.005? Explain.

(b) Estimate
∞∑

k=1

sin(k)
k2

to two decimal places.

30. Estimate
∞∑

k=0

(−1)k

k!
= 1 − 1 +

1
2!
− 1

3!
+ · · · to two decimal places. Explain

your reasoning.

31.

(a) Show
∞∑

k=1

2k

k!
converges.

(b) Estimate the sum of the series in (a) to two decimal places.

32. Let P (x) and Q(x) be two polynomials of degree at least one. Assume that
for n ≥ 1, Q(n) 6= 0. What relation must there be between the degrees of P (x) and
Q(x) if

(a) P (k)
Q(k) → 0 as k →∞?

(b)
∞∑

k=1

P (k)
Q(k)

converges absolutely?
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(c)
∞∑

k=1

(−1)k P (k)
Q(k)

converges absolutely?

33. The Alternating-Series Test was proved only for the alternating harmonic
series. Prove it in general. (The only difference is that the kth term is (−1)k+1pk

instead of (−1)k+1/k.)

34. This exercise treats the second half of the absolute-ratio test.

(a) Show that if

r = lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ > 1,

then |ak| → ∞ as k → ∞. (First show that there is a number s, s > 1, such
that for some integer N , |ak+1| > s|ak| for all k ≥ N .)

(b) From (a) deduce that ak does not approach 0 as k →∞.

35. For which values of x does the series
∞∑

k=1

kxk

2k + 1
diverge? converge condition-

ally? converge absolutely? Record your conclusions in a diagram on the x-axis.

36. Repeat Exercise 35 for the series (a)
∞∑

k=1

xk

k!
and (b)

∞∑
k=1

xk

k2
.

37. Is this argument okay? Add the alternating harmonic series to half of itself:

1 −1
2 +1

3 −1
4 +1

5 −1
6 +1

7 −1
8 +1

9 − 1
10 − 1

11 + 1
12 + · · · = S

1
2 −1

4 +1
6 −1

8 + 1
10 − 1

12 + · · · = 1
2S

1 +1
3 −1

2 +1
5 +1

7 −1
4 +1

9 − 1
11 + · · · = 3

2S

Rearranging the last line produces the alternating harmonic series, whose sum is S.
Thus S = 3

2S, from which it follows that S = 0.

38.

Sam: I have a neat proof that absolute convergence implies convergence. First of
all,

an = an + |an| − |an|.

Jane: True, but why do that?

Sam: Don’t interrupt me. Just wait. Now an + |an| is 0 if an is negative and it’s
2|an| if an is positive. Right?
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Jane: If you say so.

Sam: Just think.

Jane: Yes, I agree.

Sam: So 0 ≤ an + |an| ≤ 2|an|. Right? So
∑

(an + |an|) converges.

Jane: Yes.

Sam: You can fill in the rest, yes?

Jane: Oh, neat.

Sam: Yeh, mathematicians really like this proof.

Is the proof correct? (Explain your answer.) Which proof do you prefer, this one or
the one on page 977?

39. If
∞∑

k=1

ak converges and ak > 0 for all k, what, if anything, can we say about

the convergence or divergence of (a)
∞∑

k=1

sin(ak) and (b)
∞∑

k=1

cos(ak)?

40. Prove that if
∑∞

k=1 ak is a conditionally convergent series and s is any real
number, then there is a rearrangement of

∑∞
k=1 ak whose sum is s. (A condition-

ally convergent series must have an endless supply of both positive and negative
numbers. Moreover, the series of positive terms and the series of negative terms,
separately, diverge. Use these facts to explain how to construct a rearrangement
that converges to s.)

41. In the proof of the Absolute-Convergence Theorem, why does
∑∞

k=1 ck con-
verge and have a sum greater than or equal to −S?

42. The Absolute-Convergence Test asserts that
∑∞

k=1 ak is between −S and S.
Why is that?
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11.S Chapter Summary

This chapter concerns sequences formed by adding a finite number of terms
from another sequence: Sn = a1 + a2 + · · · + an. Two questions motivate the
sections:

• Does limn→∞ Sn exist?

• If the limit exists, how do we estimate it?

If the limit exists, it is denoted
∞∑

k=1

ak, though we never add an infinite

number of summands.
Some of the tests for convergence or divergence apply only to series whose

terms are positive (or all are negative): the Integral Test, the Comparison
Tests, and the Ratio Tests.

For series whose terms ak may be both positive and negative, the key is
that if

∑∞
k=1 |ak| converges so must

∑∞
k=1 ak. Moreover, if

∑∞
k=1 |ak| = L, then

−L ≤
∑∞

k=1 ak ≤ L.
If the series alternates, a1 − a2 + a3 − a4 + · · · and ak → 0 monotonically,

then
∑∞

k=1 ak converges.
The Integral Test, the Comparison Tests, and the formula for the sum of a

geometric series also provide ways to estimate the error in using a particular
Sn to approximate the sum of the series.

EXERCISES for 11.S

1. Explain in your own words.

(a) Why the Comparison Test for convergence works.

(b) Why the Ratio Test for convergence works.

(c) Why the Alternating-Series Test works.

(d) Why the Absolute-Convergence Test works.

2. How many terms of the series
∑∞

k=1(−1)n+1(1/n2) should be used to estimate
its sum to three-decimal place accuracy?

3. For which type of series does each of these tests imply convergence:

(a) Alternating-Series Test

(b) Integral Test
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(c) Comparison Test

(d) Absolute-Convergence Test

(e) Absolute-Ratio Test.

4. Assume that |ak| ≤ 1/2n for n ≥ 1.

(a) Must
∑∞

k=1 |ak| converge? If so, what can you say about its sum?

(b) Must
∑∞

k=1 ak converge? If so, what can you say about its sum?

Sometimes convergence or divergence of a series can be established by more than
one of the tests developed in this chapter. In Exercises 5 to 10 determine the con-
vergence or divergence of the given series by as many tests that can be applied in
each case.

5.
∞∑

n=1

(−1)n

n2

6.
∞∑
i=1

(−1)i

3i

7.
∞∑

k=1

√
k

k2 + 1

8.
∞∑

k=1

√
k

k2 − 2

9.
∞∑
i=1

(
3 + 1/n

2 + 1/n

)n

10.
∞∑

n=1

(
2

3 + 1/n

)n

11. What is the Comparison Test and how can it be used to estimate the error
when using part of a series to approximate the sum of the series?
12. What do the three expressions “convergent,” “conditionally convergent,” and
“absolutely convergent” mean?
13. What tests could be used to to test a series for convergence if you know that
limk→∞ ak+1/ak = −1/3? Explain.

14. Assume that limk→∞ ak = 2. For what values of s does
∑∞

k=1 aks
k converge?
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15. For what values of p does
∑∞

k=1 1/kp converge?

16. If limk→∞ ak+1/ak = 1, what can we conclude about the series
∑

k→∞ ak?

17. For what values of q does
∑∞

k=1(−1)kkq (a) converge? (b) converge abso-
lutely?

18. If
∑∞

k=0 ak is convergent, does it follow that

(a) limn→∞ ak = 0?

(b) limn→∞(ak + ak+1) = 0?

(c) limn→∞
∑2n

k=n ak = 0?

(d) limn→∞
∑∞

k=n ak = 0?

(Compare with Exercise 5 in Chapter 7.)

19. Let
∑∞

k=0 ak be a conditionally convergent series. It is made up of a subse-
quence of non-negative terms and a subsequence of negative terms.

(a) Could both of these subsequences be convergent?

(b) Could exactly one of theme be convergent?

(c) Could neither be convergent?

20. In an energy problem one meets the integral

π/2∫
0

sinx

ex − 1
dx.

Note that the integrand is not defined at x = 0. Is that a big obstacle? Is this
integral convergent or divergent? (Do not try to evaluate the integral.)

21. Give an example of a convergent series of positive terms {ak} such that
limn→∞

an+1

an
does not exist but limn→∞

an+1

an
is not ∞.

22. Assume that f is continuous on [0,∞) and has period one, that is, f(x) =
f(x + 1) for all x in [0,∞). Assume also that

∫∞
0 e−xf(x) dx is convergent. Show

that
∞∫
0

e−xf(x) dx =
e

e− 1

1∫
0

e−xf(x) dx.
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In Exercises 23 to 28 a short formula for estimating n! is obtained.
23. Let f have the properties that for x ≥ 1, f(x) ≥ 0, f ′(x) > 0, and f ′′(x) < 0.
Let an be the area of the region below the graph of y = f(x) and above the line
segment that joins (n, f(n)) with (n + 1, f(n + 1)).

(a) Draw a large-scale version of Figure 11.S.1. The individual regions of area a1,
a2, a3, and a4 should be clear and not too narrow.

(b) Using geometry, show that the series a1 + a2 + a3 + · · · converges and has a
sum no larger than the area of the triangle with vertices (1, f(1)), (2, f(2)),
(1, f(2)).

Figure 11.S.1
24. Let y = ln(x).

(a) Using Exercise 23, show that as n→∞,

n∫
1

ln(x) dx−
(

ln(1) + ln(2)
2

+
ln(2) + ln(3)

2
+ · · ·+ ln(n− 1) + ln(n)

2

)

has a limit; denote this limit by C.

(b) Show that (a) is equivalent to the assertion

lim
n→∞

(
n ln(n)− n + 1− ln(n!) + ln(

√
n)
)

= C.

25. From Exercise 24(b), deduce that there is a constant k such that

lim
n→∞

n!
k(n/e)n

√
(n)

= 1.
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Exercises 26 and 27 are related. Review Example 8 of Section 8.3 first.
26. Let In =

∫ π/2
0 sinn(θ) dθ, where n is is a nonnegative integer.

(a) Evaluate I0 and Ip.

(b) Show that

I2n =
2n− 1

2n

2n− 3
2n− 2

· · · 3
4

1
2

π

2
and I2n+1 =

2n

2n + 1
2n− 2
2n− 1

· · · 4
5

2
3
.

(c) Show that
I7

I6
=

6
7

6
5

4
5

4
3

2
3

2
1

2
π

.

(d) Show that
I2n+1

I2n
=

2n

2n + 1
2n

2n− 1
2n− 2
2n− 1

· · · 2
3

2
1

2
π

.

(e) Show that
2n

2n + 1
I2n <

2n

2n + 1
I2n−1 = I2n+1 < I2n,

and thus limn→∞
I2n+1

I2n
= 1.

(f) From (d) and (e), deduce that

lim
n→∞

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7
· · · (2n)(2n)

(2n− 1)(2n + 1)
=

π

2
.

This is Wallis’s formula, usually written in shorthand as

2 · 2
1 · 3

4 · 4
3 · 5

6 · 6
5 · 7
· · · = π

2

27.

(a) Show that 2 · 4 · 6 · 8 · · · 2n = 2nn!.

(b) Show that 1 · 3 · 5 · 7 · · · (2n− 1) = (2n)!
2nn! .

(c) From Exercise 26 deduce that

lim
n→∞

(n!)24n

(2n)!
√

2n + 1
=
√

π

2
.

28.
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(a) Using Exercise 27(c), show that k in Exercise 25 equals
√

2π. Thus a good
estimate of n! is provided by the formula

n! ≈
√

2πn
(n

e

)n
.

This is known as Stirling’s formula.

(b) Using the factorial key on a calculator, compute (20)!. Then compute the
ratio

√
2πn(n/e)n/n! for n = 20.

29. Let {ak} and {bk} be sequences of positive terms. Assume that for all k

ak+1

ak
≤ bk+1

bk
.

(a) Prove that if
∑∞

k=1 bk converges, so does
∑∞

k=1 ak. (Rewrite the inequality as
ak+1/bk+1 ≤ ak/bk,)

(b) Use the result in (a) to prove that if limk→∞ ak+1/ak = r < 1, then
∑∞

k=1 ak

converges.
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Calculus is Everywhere # 14

E = mc2

The equation E = mc2 relates the energy associated with an object to its mass
and the speed of light. Where does it come from?

Newton’s second law of motion reads: “Force is the rate at which the
momentum of an object changes.” The momentum of an object of mass m
and velocity v is the product mv. Denoting the force by F , we have

F =
d

dt
(mv).

If the mass is constant, this reduces to the familiar “force equals mass times
acceleration.” But what if the mass m is not constant? What if the mass of
an object changes as its velocity changes?

According to Einstein’s Special Theory of Relativity, announced in 1905,
the mass does change, in a manner described by the equation:

m =
m0√
1− v2

c2

. (C.14.1)

For a satellite circling the
Earth at 17,000 miles per
hour, v/c is less than
1/2500.

Here m0 is the mass at rest, v is the velocity, and c is the velocity of light. If
v is not zero, m is larger than m0. When v is small (compared to the velocity
of light) then m is only slightly larger than m0. However, as v approaches the
velocity of light, the mass becomes arbitrarily large.

An object, initially at rest, moves in a straight line. If the velocity at time
t is v(t), then the displacement is x(t) =

∫ t

0
v(s) ds. Assuming the object is

initially at rest v(0) = 0, the work done by a varying force F in moving the
object during the time interval [0, T ] is
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T∫
0

F (t)v(t) dt =

T∫
0

(mv)′v dt

= (mv)v|T0 −
T∫

0

mv(v′) dt

= m(v(T ))2 −
T∫

0

m0vv′√
1− v2

c2

dt

= m(v(T ))2 −

(
−c2m0

√
1− v2

c2

)∣∣∣∣∣
T

0

= m(v(T ))2 −

(
−c2m0

√
1− (v(T ))2

c2
+ c2m0

√
1− 02

c2

)

= m(v(T ))2 + c2m0

√
1− (v(T ))2

c2
−m0c

2

= m(v(T ))2 + mc2

(
1− (v(T ))2

c2

)
−m0c

2

= m(v(T ))2 + mc2 −m(v(T ))2 −m0c
2

= mc2 −m0c
2. (C.14.2)

We can interpret this as saying that the “total energy associated with the
object” increases from m0c

2 to mc2. The energy of the object at rest is then
m0c

2, called its rest energy.
That is the mathematics behind the equation E = mc2. It suggests that

mass may be turned into energy, as Einstein predicted. For instance, in a
nuclear reactor some of the mass of the uranium is indeed turned into energy
in the fission process. Also, the mass of the sun decreases as it emits radiant
energy.

What about the equation that states kinetic energy is half the product of
the mass and the square of the velocity? Exercise 2 uses (C.14.2) when v is
small (compared to c), to show the total increase in energy is approximated
by the familiar kinetic energy

mc2 −m0c
2 ≈ 1

2
m0v

2. (C.14.3)

EXERCISES

April 22, 2012 Calculus



C.14– E = mc2 995

1. Provide a brief explanation for each step in the derivation of (C.14.2).

2. (This exercise requires the use of the Binomial Theorem, which is not pre-
sented until Section 12.1. See also, Exercise 29 in Section 12.1.) Assume v is small,
compared to c. Use the first two terms of the binomial series for

(
1− x2

)−1/2, with
x = v2/c2, to derive (C.14.3). That is, show that

mc2 −m0c
2 ≈ 1

2
m0v

2.
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Chapter 12

Applications of Series

The preceding chapter developed several tests for determining the convergence
or divergence of an infinite series. This chapter uses infinite series to approx-
imate functions, such as ex, evaluate integrals, and find limits in the indeter-
minate form ‘zero-over-zero.” After a section devoted to complex numbers, we
will use them to expose the close link between trigonometric and exponential
functions.

997
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12.1 Taylor Series

Section 5.5 introduced the nth-order Taylor polynomial of a function f centered
at a as the polynomial Pn that agrees with f and its first n derivatives at x = a:

Pn(x; a) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 · · ·+ f (n)(a)

n!
(x− a)n

=
n∑

k=0

f (k)(a)

k!
(x− a)k

The sequence of Taylor polynomials P0(x; a), P1(x; a), . . . , Pn(x; a), . . . can
now be viewed as the sequence of partial sums of the infinite series

∞∑
k=0

f (k)(a)

k!
(x− a)k.

This series is called the Taylor series at a associated with the function f .
When a = 0, the series is also called the Maclaurin series associated with
f .

A partial sum of a Taylor series is a Taylor polynomial; a partial sum of a
Maclaurin series is a Maclaurin polynomial.

EXAMPLE 1 Show that the limit of the Maclaurin series associated with
ex is ex,
SOLUTION By Section 5.5 the series is

∑∞
k=0

xn

n!
. We want to show that the

series converges to ex. The absolute ratio test shows that the series converges,
but it does not tell us that its limit is ex.

Also by Section 5.5, the difference between f(x) and its Maclaurin polyno-
mial up through the power xn has the form

f (n+1)(cn)

(n + 1)!
xn+1 (12.1.1)

for some number cn between 0 and x. In the case f(x) = ex, we have
f (n+1)(x) = ex, hence f (n+1)(cn) = ecn . Thus the error (12.1.1) equals

ecnxn+1

(n + 1)!
.

For x > 0, we know cn < x so ccn < ex; for x < 0, cn < 0, so ecn < 1. In either
case ecn is less than a fixed number, which we call M . Thus ecn < M for all
n. Keeping in mind that x is fixed, we see that

lim
n→∞

|ecnxn+1|
(n + 1)!

≤M
|x|n+1

(n + 1)!
. (12.1.2)
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It was shown in Section 11.2 that limn→∞ kn/n! is 0 for any fixed number k.
Thus (12.1.2) approaches 0 as n→∞, which means that the sum of the series
is ex. We have:

For all x

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · · =

∞∑
k=0

xk

k!
.

This provides a way to estimate ex using only addition, multiplication, and
division. In particular, when x = 1, it gives a series representation of e:

e = 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!
+ · · · .

Euler used this formula to evaluate e to 23 decimal places (without the aid of
a calculator). �

EXAMPLE 2 Use the Maclaurin series in Example 1 to estimate
√

e = e1/2

with an error of at most 0.001.
SOLUTION The error in using the front end

∑n
k=0(1/2)k/k! has the form

ecn

(
1
2

)n+1

(n + 1)!

where cn is between 0 and 1/2. Then ecn < e1/2, which is less than 2, because
22 > 3. So we want to find n large enough so that

2
(

1
2

)n+1

(n + 1)!
< 0.001.

To find such a number n, we experiment, making a little table, with 4-decimal
place accuracy We stop at n = 4 with an error less than 0.001. Rounded to

n 1 2 3 4

2
(

1
2

)n+1
/(n + 1)! 0.2500 0.0417 0.0026 0.0005

Table 12.1.1

five decimal places, the estimate for
√

e is

1 +
1

2
+

(
1
2

)2
2!

+

(
1
2

)3
3!

+

(
1
2

)4
4!
≈ 1.64843,
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which is close to what a calculator shows: 1.6487. �
In Section 5.5 the Maclaurin polynomial associated with sin(x) was com-

puted. Using that result, we conclude that the Maclaurin series associated
with sin(x) is

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+(−1)n x2n+1

(2n + 1)!
+ · · · . (12.1.3)

The next Example shows that its sum is sin(x).

EXAMPLE 3 Show that
∑∞

k=0(−1)k x2k+1

(2k+1)!
= sin(x).

SOLUTION To show that the series converges to sin(x) we must show that
the difference between sin(x) and

∑n
k=0(−1)kx2k+1/(2k + 1)! approaches 0 as

n→∞.
To do this we again make use of Lagrange’s formula, which involves the

higher derivatves of sin(x), which are ± sin(x) and ± cos(x). In any case, if
f(x) = sin(x),

∣∣f (n)(x)
∣∣ ≤ 1. Thus we have∣∣∣∣f (n+1)(cn)xn+1

(n + 1)!

∣∣∣∣ ≤ |x|n+1

(n + 1)!
.

Because the expression |x|n+1/(n + 1)! approaches 0 as n → ∞, no matter
how large x is, the difference between the Maclaurin polynomials and sin(x)
approaches 0 as their degree is chosen larger. We conclude that the Taylor
series (12.1.3) converges to sin(x) for all x. �

Therefore, we may write

For all x

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·+ (−1)n x2n+1

(2n + 1)!
+ · · · =

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
.

In a similar manner, we have

For all x

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·+ (−1)n x2n

(2n)!
+ · · · =

∞∑
k=0

(−1)kx2k

(2k)!
.
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Taylor Series in Powers of x− a

Just as there are Taylor polynomials “around 0,” there are such polynomi-
als around any number, a. The Taylor series around a associated with f(x)
involves powers of x− a instead of powers of x (= x− 0):

∞∑
k=0

f (k)(a)

n!
(x− a)k.

This series may or may not converge; if it converges, it may not converge to
f(x).

EXAMPLE 4 Find the Taylor series associated with 1/x in powers of x−1.
SOLUTION Here f(x) = 1/x. This table shows a few of the higher deriva-
tives evaluated at 1. In general,

n 1 2 3 4 5

f (n)(x) −1/x2 2/x3 −3·2
x4

4·3·2
x5

−5·4·3·2
x6

f (n)(1) −1 2 −3! 4! −5!

Table 12.1.2

f (n)(1) = (−1)nn!.

Thus the typical term in the Taylor series around 1 is

(−1)nn!(x− 1)n

n!
= (−1)n(x− 1)n.

The series begins

1− (1− x) + (1− x)2 − (1− x)3 + · · · .

By the nth term test, the series does not converge if |x− 1| > 1, that is, x > 2
or x < 0.

If x = 0, the series becomes
∑∞

k=0(−1)n(−1)n =
∑∞

k=0 1, which, by the nth

term test, does not converge. Similarly, it does not converge when x = 2. To
deal with x in (0, 2) we use the absolute-ratio test,examining

lim
n→∞

∣∣∣∣(−1)n+1(x− 1)n+1

(−1)n(x− 1)n

∣∣∣∣ = lim
n→∞

|x− 1| = |x− 1|.

So, if |x− 1| < 1, the series converges. But, does it converge to 1/x?
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The Lagrange formula for the remainder is

f (n+1)(cn)(x− 1)n+1

(n + 1)!
=

(n + 1)!

(cn)n+1

(x− 1)n+1

(n + 1)!
=

(x− 1)n+1

(cn)n+1
(12.1.4)

where cn is between 1 and x. So we need to show that |(x− 1)/cn|n+1 → 0 as
n→∞. There is trouble.

For instance, if x is near 0, |x− 1| is near 1 and cn may be near 0, for we
know only that cn is between x and 1. Perhaps the ratio |(x− 1)/cn| is a large
number.

However, if x is in (1, 2) then we have cn > 1 while |x− 1| < 1, so

0 <
|x− 1|

cn

< |x− 1|.

Thus the remainder approaches 0 as n → ∞. So we see that for x in (1, 2),
1− (x− 1) + (x− 1)2 − (1− x)3 − · · · = 1/x. The Lagrange formula justifies
the same conclusion for x in (−1/2, 1), but doesn’t help for x in (0, 1/2], as
Exercise 32 shows.

However, 1− (x− 1) + (x− 1)2 − (1− x)3 − · · · is a geometric series with
first term 1 and ratio r = −(x− 1). It converges to

1

1− r
=

1

1− (1− (−(x− 1)))
=

1

1− x− 1
=

1

x
.

This argument covers all x in (0, 2) at once. �

The General Binomial Theorem

The binomial theorem will
be reviewed in an appendix.

If r is 0 or a positive integer, (1+x)r, when multiplied out, is a polynomial
of degree r. Its Maclaurin series has only a finite number of non-zero terms,
the one of highest degree being xr. The formula

(
r
k

)
= r!

k!(r−k)!

(1 + x)r =
r∑

k=0

r!

k!(r − k)!
xk

is known as the binomial theorem.To remember it, recall that

the coefficient of xk has k
factors in both the

numerator and
denominator. The factors in
the numerator start from r
and decrease by one. The
factors in the denominator

start from 1 and increase by
1.

It can also be written as

(1 + x)r =
r∑

k=0

r(r − 1) · · · (r − (k − 1))

1 · 2 · · · k
xk.

Example 5 generalizes the binomial theorem to arbitrary exponents r.
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EXAMPLE 5 Find the Maclaurin series associated with f(x) = (1 + x)r,
when r is not 0 or a positive integer and determine its radius of convergence.
SOLUTION The following table will help in computing f (k)(0):

k f (k)(x) f (k)(0)
0 (1 + x)r 1
1 r(1 + x)r−1 r
2 r(r − 1)(1 + x)r−2 r(r − 1)
3 r(r − 1)(r − 2)(1 + x)r−3 r(r − 1)(r − 2)
...

...
...

k r(r − 1) · · · (r − k + 1)(1 + x)r−k r(r − 1)(r − 2) · · · (r − k + 1)

Table 12.1.3
Consequently, the Maclaurin series associated with (1 + x)r is

1 + rx +
r(r − 1)

1 · 2
x2 +

r(r − 1)(r − 2)

1 · 2 · 3
x3 + · · · . (12.1.5)

Note that the series has an infinite number of non-zero terms (it does not stop)
if r is not a positive integer or 0.

For x = 0, the series clearly converges. So consider x 6= 0. The presence
of xk, which can be positive or negative, and of k! in the denominator of the
general term suggests using the absolute-ratio test. Let ak be the term in the
Maclaurin series for (1 + x)r that contains the power xk. Then

ak =
r(r − 1)(r − 2) · · · (r − k + 1)

1 · 2 · 3 · · · k
xk,

and ak+1 =
r(r − 1)(r − 2) · · · (r − k + 1)(r − k)

1 · 2 · 3 · · · k(k + 1)
xk+1.

Thus ∣∣∣∣ak+1

ak

∣∣∣∣ =

∣∣∣∣∣
r(r−1)(r−2)···(r−k+1)(r−k)

1·2·3···k(k+1)
xk

r(r−1)(r−2)···(r−k+1)
1·2·3···k xk+1

∣∣∣∣∣ =

∣∣∣∣r − k

k + 1
x

∣∣∣∣ .
Since r is fixed,

lim
k→∞

∣∣∣∣ak+1

ak

∣∣∣∣ = |x|.

By the absolute-ratio test, series (12.1.5) converges when |x| < 1 and diverges
when |x| > 1. �

In Example 5 it was shown that for |x| < 1 the Maclaurin series associated
with (1 + x)r converges to something, but does it converge to (1 + x)r?
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Let us check the case r = −1. When r = −1, series (12.1.5) becomes

1 + (−1)x +
(−1)(−2)

1 · 2
x2 +

(−1)(−2)(−3)

1 · 2 · 3
x3 + · · · ,

or
1− x + x2 − x3 + · · · .

This series is a geometric series with first term 1 and ratio −x. It therefore
converges for |x| < 1. Moreover, it does represent the function (1 + x)r =
(1 + x)−1. (See Exercises 34 to 37 in Section 12.4.)

It is true that for |x| < 1 series (12.1.5) does converge to (1 + x)r. The
fact that (1+x)r is represented by the series (12.1.5) is known as the general
binomial theorem or, simply, the binomial theorem. Series (12.1.5) is
called the binomial expansion of (1 + x)r.

Summary

The Taylor series associated with a function is the series whose partial sums are
its nth-order Taylor polynomials. This series represents the original function
only for inputs such that the remainder of the nth-order Taylor polynomial
approaches zero as n → ∞: limn→∞ Rn(x, a) = 0. The Lagrange form of the
remainder, Theorem 5.5.1 from Section 5.5, helps to show that the remainder
converges to zero, though, as Example 3 illustrates, in some cases it may not
be strong enough to do that.

Function Series Interval of Convergence

ex
∑∞

k=0
xk

k!
all x: (−∞,∞)

sin(x)
∑∞

k=0
(−1)kx2k+1

(2k+1)!
all x: (−∞,∞)

cos(x)
∑∞

k=0
(−1)kx2k

(2k)!
all x: (−∞,∞)

(1 + x)r
∑∞

k=0
r(r−1)(r−2)···(r−k+1)

1·2·3···k xk |x| < 1

Table 12.1.4
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EXERCISES for Section 12.1

1. State without using any mathematical symbols the formula for the terms of a
Taylor series of a function around a number that may not be zero and Lagrange’s
formula for the remainder.

2. State without using any mathematical symbols the formula for the terms of a
Maclaurin series of a function and Lagrange’s formula for the remainder.

In Exercises 3 to 9 compute the Maclaurin series associated with the given function
3. 1/(1 + x)
4. 1/(1− x)
5. ln(1 + x)
6. ln(1− x)
7. sin(x)
8. e−x

9.
√

1 + x

10. Let f(x) = ex. Show that limn→∞ Rn(x; 0) = 0 for any negative number x.
This completes the proof that the exponential function is represented by its Maclau-
rin series for all numbers x (see Example 2).

11. Show that the Maclaurin series associated with sin(x) represents sin(x) for all
x.

12. Show that the Maclaurin series associated with e−x represents e−x for all x.

13.

(a) Why will there be no terms of even degree in the Maclaurin series for arctan(x)?
(That is, all terms of the form x2k have coefficient zero.)

(b) Obtain the first two non-zero terms of the Maclaurin series for arctan(x).

In Section 12.4 we use a shortcut to find the entire series.

14.

(a) Use the Lagrange formula to show that the Maclaurin series associated with
1/(1 + x) represents 1/(1 + x) for all −1/2 < x < 1. (Examine Rn(x; 0).)

(b) Use the fact that it is a geometric series to show that the representation holds
for −1 < x < 1.
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15. Show that the Taylor series in powers of x−a for ex represents ex for all x.

16. Show that the Taylor series in powers of x− a for cos(x) represents cos(x) for
all x.

17.

(a) Write out the first four terms of the binomial expansion of

(1 + x)−2 = 1/(1 + x)2.

(b) What is the coefficient of the general term xn?

18. Write out the first four terms of the binomial expansion of (1+x)1/2 =
√

1 + x.

19. What is the typical term in the Maclaurin series associated with (1 − x)r?
(Exploit the binomial expansion of (1 + x)r; don’t start from scratch.)

20. Suppose one uses the Maclaurin series for ex to find e100.

(a) What are the first four terms?

(b) Does the series converge to e100?

(c) If your answer to (b) is “yes” how many terms would you use to estimate e100

with an error less than 0.005?

(d) Which terms in the series are largest?

21.

(a) Use the Maclaurin series for ex to estimate 3
√

e to three decimal places.

(b) Compare your answer in (a) to the value of 3
√

e returned by your calculator.

22. Find the Maclaurin series associated with 1/(1− x)2.

23. This problem examines three ways to estimate the error in using a front-end
of
∑∞

k=0
(−1)k

k! to estimate e−1.
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(a) Use the Lagrange formula to obtain an estimate of the error in using the
front-end up through (−1)m/m! to estimate e−1

(b) Estimate the error by noticing the series is alternating and the terms decrease
in absolute value

(c) Estimate the error by comparing
∑∞

k=m+1

∣∣∣ (−1)k

k!

∣∣∣ to a geometric series, which
is easy to sum.

(d) Which of the three methods provides the smallest (best) estimate of the error?

24.

(a) Use the Taylor series around π/4 to estimate cos(50◦) to two decimal places.
(That is, with an error less than 0.005.) Approximate π by 3.1416 and

√
2 by

1.4142.

(b) Check your calculation by calculating cos(50◦) with your calculator.

25. Do there exist any polynomials p(x) such that sin(x) = p(x) for all x in the
interval [1, 1.0001]? Explain.

26. Do there exist any polynomials p(x) such that ln(x) = p(x) for all x in the
interval [1, 1.0001]? Explain.

27. Let f be a function that has derivatives of all orders for all x. Assume that∣∣f (n)(x)
∣∣ ≤ n for all 100n. Show why f(x) is represented by its Maclaurin series for

all x.

28.

(a) From the Maclaurin series for cos(x) obtain the Maclaurin series for sin2(x).
(Use a trigonometric identity.)

(b) From (a), and another trigonometric identity, obtain the Maclaurin series for
cos2(x).

29. In the CIE on Einstein’s theory of relativity at the end of Chapter 11 (see
pages 993—994) it is shown that the total increase in energy is mc2 −m0c

2. Use
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the first two terms of the binomial series for
(
1− x2

)−1/2, with x = v2/c2, to derive
(C.14.3). That is, show that

mc2 −m0c
2 ≈ 1

2
m0v

2.

Exercises 30 and 31 present a non-zero function whose Maclaurin series has the value
0 for all x, and therefore does not represent the function. This function is so “flat”
at the origin that all its derivatives are zero there.

30. The following steps show that lim
x→0

e1/x2

xn
= 0 for all positive numbers n:

(a) Why does it suffice to consider only x > 0?

(b) Let v = 1/x2 and translate the limit to

lim
v→∞

vn/2e−v.

(c) This limit is similar to a limit treated in Section 5.6. Show that it equals 0.

(d) Show that lim
n→∞

p(x)e−1/x2

xn
= 0 for any polynomial p(x).

31. Let f(x) = e−1/x2
if x 6= 0 and f(0) = 0.

(a) Show f is continuous at 0.

(b) Show f is differentiable at 0.

(c) Show that f ′(0) = 0.

(d) Show that f ′′(0) = 0.

(e) Explain why f (n)(0) = 0 for all integers n ≥ 0.

(f) What is the Maclaurin series associated with f?

(g) Why does the example use e−1/x2
instead of the simpler e−1/x?

32. Explain why it is not possible to use the Lagrange formula to show that the
Taylor series in powers of (x − 1) associated with 1/x converges to 1/x for x in
(0, 1/2).
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12.2 Two Applications of Taylor Series

If a Taylor series associated with a function f(x) represents the function, then
any front end (or Taylor polynomial) approximates f(x). This can be used to
evaluate some indeterminate limits and to estimate some definite integrals.

Using a Taylor Series to Find a Limit

The next example shows how series can be used to evaluate the limit of a
quotient that is an indeterminate form.

EXAMPLE 1 Find lim
x→0

sin(x2)√
1 + 3x2 − 1

.

SOLUTION The Maclaurin series for sin(x2) and
√

1 + 3x2, we have

lim
x→0

sin(x2)√
1 + 3x2 − 1

= lim
x→0

x2 − x6

6
+ · · ·

1 + 1
2
(3x2)− 1

8
(3x2)2 + · · · − 1

=
x2 − 1

6
x6 + · · ·

3
2
x2 − 9

8
x6 + · · ·

=
1
3
2

=
2

3
.

�

In Example 1 we needed only enough terms of each series to know the
smallest power of x that appears in the numerator and in the denominator.
The next example illustrates this.
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EXAMPLE 2 Find lim
x→0

√
1 + x−

√
1 + 2x√

1 + 2x−
√

1 + 4x
.

SOLUTION This limit could be bound by l’Hôpital’s method. However, it
is faster to use Taylor series.

For a number r, and |x| < 1, the binomial theorem asserts that

(1 + x)r = 1 + rx + · · · .

Thus the limit is

lim
x→0

(
1 + 1

2
x + · · ·

)
−
(
1 + 1

2
(2x) + · · ·

)(
1 + 1

2
(2x) + · · ·

)
−
(
1 + 1

2
(4x) + · · ·

)
= lim

x→0

(
x
(

1
2

+ · · ·
))
−
(
x
(

1
2
(2) + · · ·

))(
x
(

1
2
(2) + · · ·

))
−
(
x
(

1
2
(4) + · · ·

))
= lim

x→0

(
1
2

+ · · ·
)
−
(

2
2

+ · · ·
)(

1
2

+ · · ·
)
−
(

2
4

+ · · ·
)

=
1
2
− 2

2
2
2
− 4

2

=
1

2

�

Using a Taylor Series to Estimate an Integral

The integral describes the
“bell curve.”

In statistics, the integral
∫ b

−∞(1/
√

2π)e−x2/2 dx is of major importance.

Since e−x2/2 does not have an elementary antiderivative, the integral must be
estimated by other means. Tables of values of this function can be found in
almost any mathematical handbook.

The next example shows how to estimate
∫ b

a
f(x) dx when f(x) is repre-

sented by a Taylor series.

EXAMPLE 3 Use the Maclaurin series for ex to estimate
∫ 1

0
e−x2

dx.
SOLUTION The first step is to obtain the Maclaurin series for the integrand:
e−x2

. Because

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

we can replace x with −x2 to obtain

e−x2

= 1− x2 +
x4

2!
− x6

3!
+ · · · . (12.2.1)

For 0 ≤ |x| ≤ 1, (12.2.1) is a convergent alternating series. Every partial sum
that ends with a negative term is smaller than e−x2

; every partial sum that
ends with a positive term is larger than e−x2

. For example,

1− x2 +
x4

2!
− x6

3!
< e−x2

< 1− x2 +
x4

2!
− x6

3!
+

x8

4!
.
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Hence∫ 1

0

(
1− x2 + x4

2!
− x6

3!

)
dx <

∫ 1

0
e−x2

dx <
∫ 1

0

(
1− x2 + x4

2!
− x6

3!
+ x8

4!

)
dx,

or 1− 1
3

+ 1
5·2! −

1
7·3! <

∫ 1

0
e−x2

dx < 1− 1
3

+ 1
5·2! −

1
7·3! + 1

9·4! .

From this it follows that 0.742 <

1∫
0

e−x2

dx < 0.748. �

Summary

The Taylor series associated with a function can be used to evaluate some
indeterminate limits and to estimate definite integrals. In many cases there is
no need to write the formula for all the terms, for usually only a few at the
front end are needed.
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EXERCISES for Section 12.2

In Exercises 1 to 4 use Taylor series to find the limits.
1. limx→0

√
1+x−1√
1+3x−1

.

2. limx→0
sin(4x)√
1+3x−1

.

3. limx→0
ex2−1
sin(x2)

.

4. limx→0
cos(x)−1+x2

2
sin(x4)

.

In Exercises 5 to 11 find the limits two ways. First use a Taylor series and then
again using l’Hôpital’s rule.

5. limx→0
cos(x)e2x2−1

x sin(x) .

6. limx→0

√
1+3x(ex−1)x
1−cos(2x) .

7. limx→0
cos(x)−

√
1+x

cos(2x)− 3√1+2x
.

8. limx→0
ln(1+3x)
sin(2x) .

9. limx→0
ex2−1

e3x2−1
.

10. limx→0

“
sin(x2)+ex3−1

”
3√5+x

√
1+5x2−1

.

11. limx→4
(8−2x)ex2

3√4−x
. (First write 4− x as 4(1− x/4) and factor 4 out of the radi-

cal. See Exercises Exercise 34 to 37 for more on the binomial theorem for (a+b)r.)

12.

(a) Write out the first four terms of the binomial series for (1 + x)−2

(b) What is the general form?

13.

(a) Find the limit in Example 2 by l’Hôpital’s rule.

(b) Find the limit in Example 1 by l’Hôpital’s rule.
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14.

(a) Show

1∫
0

(ex − 1)/x dx is finite, even though the integrand is not defined at 0.

(b) Show that 1 +
1

2 · 2!
+

1
3 · 3!

+
1

4 · 4!
+

1
5 · 5!

is an estimate of the integral in

(a).

(c) The error in using the sum in (b) is 1
6·6! + 1

7·7! + 1
8·8! + 1

9·9! + · · · . Show that

this is less than 1
6·6!

(
1 + 1

7

(
1
7

)
+ 1

7

(
1
7

)2 + 1
7

(
1
7

)3 + · · ·
)
.

(d) From (c) deduce that the error is less than 0.000237.

15.

(a) Show that for x in [0, 2]

x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
≤ ex − 1 ≤ x +

x2

2!
+

x3

3!
+ · · ·+ xn

n!
+

e2xn+1

(n + 1)!
.

(b) Use (a) to find
∫ 2
0

ex−1
x dx to three decimal places.

16. Find
∫ 1
0

1−cos(x)
x dx to three decimal places, using an approach like that in

Exercise 15.

17. Estimate
∫∞
0 e−5x2

dx following these steps:

(a) Find a number b such that

∞∫
b

e−5x2
dx < 0.0005.

(Use the fact that e−5x2
< e−5x for x > 1.)

(b) Let b be the number you found in (a). Estimate
∫ b
0 e−5x2

dx with an error of
less than 0.0005. (Use the Maclaurin series for e−5x2

.)

(c) Combine (a) and (b) to get a two decimal place estimate of
∫∞
0 e−5x2

dx.
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18. Estimate
∫∞
0

cos(x6/100)−1
x6 dx, following these steps:

(a) Find a number b such that∣∣∣∣∣∣
∞∫
b

cos(x6/100)− 1
x6

dx

∣∣∣∣∣∣ < 0.001.

(Use the fact that | cos(x)| ≤ 1.)

(b) Let b be the number you found in (a). Estimate

b∫
0

cos(x6/100)− 1
x6

dx,

with an error less that 0.001. (Use the Maclaurin series for cos(x).)

(c) Combine (a) and (b) to get a two decimal place estimate for

∞∫
0

cos(x6/100)− 1
x6

dx.

19. Evaluate
∫ 1
0

dx
1+x2 by

(a) the Fundamental Theorem of Calculus (approximate π to 3 decimal places),

(b) Simpson’s method (six sections),

(c) trapezoid method (six sections),

(d) using the first six non-zero terms of the series 1−x2 +x4− · · · for 1/(1+x2).

20. If |a/b| < 1, use the binomial theorem to expand (a + b)r as the sum of terms
of the form capbq.

21. If |b/a| < 1, use the Fundamental Theorem to expand (a + b)r as the sum of
terms of the form capbq. (As a check, the series starts with br.)

22. Write out the first four (4) terms of the series for (8 + x)1/3 if (a) x > 8, and
(b) x < 8. (See Exercises 20 and 21.))
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23.

Sam: I was playing with the binomial theorem.

Jane: Is that possible?

Sam: I looked at (3+5)1/3, which I know is two. But I can write it as 51/3
(
1 + 3

5

)1/3

and get

51/3

(
1 +

1
3

3
5

+
1
2!

1
3
−2
3

(
3
5

)2

+ · · ·

)
so

2 = 51/3 +
1
3
5−2/3(3)− 1

9
5−5/332 + · · · .

Jane: That’s a fancy way to estimate 2.

Sam: But I can write (3 + 5)1/3 as 31/3
(
1 + 5

3

)1/3 and get

2 = 31/3 +
1
3
3−2/3(5)− 1

9
3−5/352 + · · ·

Jane: Another nutty way to estimate 2.

Sam: My point is that they can’t both be right.

Can they both be right?

24. Repeat Exercise 19 for
∫ 1
0

dx
1+x3 .

25. In R. P. Feynman, Lectures on Physics, Addison-Wesley, Reading, MA 1963,
this statement appears in Section 15.8 of Volume 1:

An approximate formula to express the increase of mass, for the case
when the velocity is small, can be found by expanding m0/

√
1− v2/c2 =

m0(1 − v2/c2)−1/2 in a power series, using the binomial theorem. We
get

m0

(
1− v2

c2

)−1/2

= m0

(
1 +

1
2

v2

c2
+

3
8

v4

c4
+ · · ·

)
.

We see clearly from the formula that the series converges rapidly when
v is small and the terms after the first two or three are negligible.

Check the expansion and justify the equation.

26. A fluid mechanics text has the following argument in a discussion of flow
through a nozzle:
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The pressure p equals(
1 +

γ − 1
2

M2

)γ/(1−γ)

.

By the binomial theorem and the fact that v2 = M2γRT :

p = 1− 1
2

v2

RT
+

γ(2γ − 1)
8

M4 + · · · .

Fill in the steps. (γ is the specific heat, which is about 1.4, and M is a Mach number,
which is in the range 1 to 2.)

27.

(a) The ellipse x2/a2 + y2/b2 = 1 for a ≤ b has the parameterization

x = a cos(t), y = b sin(t).

Show that the arc length of one quadrant of an ellipse is

b

π/2∫
0

√
1−

(
1−

(a

b

)2
)

sin(t)2 dt.

(The integrand does not have an elementary antiderivative.)

(b) If a < b, the integral in (a) has the form b
∫ π/2
0

√
1− k2 sin(t)2 dt, where

0 < k < 1. The “elliptic integral”

E = b

π/2∫
0

√
1− k2 sin(t)2 dt

is tabulated in mathematical handbooks for many values of k in [0, 1]. Using
the binomial theorem and the formula for

∫ π/2
0 sinn(θ) dθ (Formula 74 in the

table of integrals), obtain the first four non-zero terms of E as a series in
powers of k2.

April 22, 2012 Calculus



§ 12.3 POWER SERIES AND THEIR INTERVAL OF CONVERGENCE 1017

12.3 Power Series and Their Interval of Con-

vergence

Our use of Taylor polynomials to approximate a function led us to consider
series of the form

∞∑
k=0

bk(x− a)k = b0 + b1(x− a) + b2(x− a)2 + · · ·+ bk(x− a)k + · · · .

Such a series is called a power series in x− a. If a = 0, we obtain a series in
powers of x:

∞∑
k=0

bkx
k = b0 + b1x + b2x

2 + · · ·+ bkx
k + · · · .

We will now look at some properties of power series and see that they behave
very much like polynomials.

The Radius of Convergence of a Power Series

For each fixed choice of x, a
power series becomes a
series with constant terms.

The power series b0 + b1x + b2x
2 + · · · certainly converges when x = 0. It

may or may not converge for other choices of x. However, as Theorem 12.1.3
will show, if the series converges at a certain value c, it converges at any
number x whose absolute value is less than |c|, that is, throughout the interval
(−|c|, |c|). Since the proof of Theorem 12.3.1 uses the comparison test and the
absolute-convergence test, it offers a nice review of important concepts from
Chapter 11.

Theorem 12.3.1. Let c be a non-zero number such that
∑∞

k=0 bkc
k converges.

Then, if |x| < |c|,
∑∞

k=0 bkx
k converges. In fact, it converges absolutely.

The proof is at the end of this section.
The x’s for which the series
converges form an interval
with 0 at its midpoint.

By Theorem 12.3.1, the set of numbers x such that
∑∞

k=0 bkx
k converges

has no holes. In other words, it is one unbroken piece, which includes the
number 0. Moreover, if r is in the set, so is the entire open interval (−|r|, |r|).

There are two possibilities. In the first case, there are arbitrarily large
r’s such that the series converges for x in (−r, r). This means that the series
converges for all x. In the second case, there is an upper bound on the numbers
r such that the series converges for x in (−r, r). It is shown in advanced calculus
that there is then a smallest upper bound on the r’s; call it R. See Figure 12.3.1.
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Consequently, eitherNote that convergence or
divergence at R and −R is

not mentioned. 1. b0 + b1x + b2x
2 + · · · converges for all x

or

2. there is a positive number R such that b0 + b1x + b2x
2 + · · · converges

for all x such that |x| < R but diverges for |x| > R.

Figure 12.3.1

In the second case, R is called the radius of convergence of the series. In
the first case, the radius of convergence is said to be infinite, R =∞. For the
geometric series 1+x+x2+· · ·+xk+· · · , R = 1, since the series converges when
|x| < 1 and diverges when |x| > 1. (It also diverges when x = 1 and x = −1.)
A power series with radius of convergence R may or may not converge at R
and at −R. These observations are summarized as Theorem 12.3.2.

Theorem 12.3.2 (Radius of Convergence). Let R be the radius of convergence
for the power series

∑∞
k=0 bkx

k. If R = 0, the series converges only for x = 0.
If R is a positive number, the series converges for |x| < R and diverges for
|x| > R. If R is ∞, the series converges for all x.

EXAMPLE 1 Find the radius of convergence, R, for x − x2

2
+ x3

3
− x4

4
+

· · ·+ (−1)k+1xk

k
+ · · · .

SOLUTION Because of the presence of xk and the fact that x may be nega-
tive, use the absolute-ratio test. The absolute value of the ratio of successive
terms is ∣∣∣∣∣

(−1)k+2xk+1

k+1

(−1)k+1xk

k

∣∣∣∣∣ =
k

k + 1
|x|.
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As k →∞, k/(k + 1)→ 1. Thus,

lim
k→∞

k

k + 1
|x| = |x|.

Consequently, by the absolute-ratio test, if |x| < 1 the series converges. If
|x| > 1, it diverges.

The absolute-ratio test
takes care of |x| < 1 and
|x| > 1.

The radius of convergence is R = 1. It remains to see what happens at the
endpoints, 1 and −1.

For x = 1, we obtain the alternating harmonic series: Checking convergence at
x = 1

1− 1

2
+

1

3
− 1

4
+ · · · .

This series converges, by the alternating-series test.
What about x = −1? The series becomes Checking convergence at

x = −1

(−1)− (−1)2

2
+

(−1)3

3
− (−1)4

4
+ · · ·+ (−1)k+1(−1)k

k
+ · · ·

or

−1− 1

2
− 1

3
− 1

4
− · · · − 1

k
+ · · · ,

which, being the negative of the harmonic series, diverges.
All told, this series converges only for −1 < x ≤ 1. Figure 12.3.2 records

what we found.

Figure 12.3.2

�
Earlier we saw that

∑∞
k=0 xn/n! has radius of convergence R = ∞. The

next example represents the opposite extreme, R = 0.

EXAMPLE 2 Find the radius of convergence of the series

∞∑
k=1

kkxk = 1x + 22x2 + 33x3 + · · ·+ kkxk + · · · .
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Every power series
converges for at least one

value of x.
SOLUTION The series converges for x = 0.

If x 6= 0, consider the kth term kkxk, which can be written as (kx)k. As
k → ∞, |kx| → ∞. By the nth term test, this series diverges. In short, the
series converges only when x = 0. The radius of convergence is R = 0. �

The Radius of Convergence of
∑∞

k=0 bk(x− a)k

Just as a power series in x has an associated radius of convergence, so does a
power series in x− a. To see this, consider any such power series,

∞∑
k=0

bk(x− a)k = b0 + b1(x− a) + b2(x− a)2 + · · · . (12.3.1)

Let u = x− a. Then series (12.3.1) becomes

∞∑
k=0

bku
k = b0 + b1u + b2u

2 + · · · . (12.3.2)

Series (12.3.2) has a certain radius of convergence R. That is, (12.3.2) con-
verges for |u| < R and diverges for |u| > R. Consequently (12.3.1) converges
for |x−a| < R and diverges for |x−a| > R.R may be zero, positive, or

infinite.
The number R is called the radius

of convergence of the series (12.3.1).

Figure 12.3.3

As Figure 12.3.3 suggests, the series
∑∞

k=0 bk(x−a)k converges in an interval
(a − R, a + R), whose midpoint is a. The question marks in Figure 12.3.3
indicate that the series may converge or may diverge at the ends of the interval,
a−R and a + R. These cases must be decided separately.

These observations are summarized in the following theorem.
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Theorem 12.3.3. Let R be the radius of convergence for the power series∑∞
k=0 bk(x − a)k. If R = 0, the series converges only for x = a. If R is a

positive real number, the series converges for |x − a| < R and diverges for
|x− a| > R. If R =∞, the series converges for all numbers x.

EXAMPLE 3 Find all values of x for which

∞∑
k=1

(−1)k−1 (x− 1)k

k
= (x−1)− (x− 1)2

2
+

(x− 1)3

3
− (x− 1)4

4
+ · · · (12.3.3)

converges.
SOLUTION Note that this is Example 1 with x replaced by x − 1. Thus
x− 1 plays the role that x played in Example 1. Consequently, series (12.3.3)
converges for −1 < x− 1 ≤ 1, that is, for 0 < x ≤ 2, and diverges for all other
values of x. Its radius of convergence is R = 1. The set of values where the
series converges is an interval (0, 2].

Figure 12.3.4

The convergence of (12.3.3) is recorded in Figure 12.3.4. �

Proof of Theorem 12.3.1

Proof (of Theorem 12.3.1)

Since
∑∞

k=0 bkc
k converges, the kth term akc

k approaches 0 as k → ∞. Thus
there is an integer N such that for k ≥ N , |bkc

k| ≤ 1, say. From here on,
consider only k ≥ N . Now,

bkx
k = bkc

k
(x

c

)k

.

Since
∣∣bkx

k
∣∣ =

∣∣bkc
k
∣∣ ∣∣∣x

c

∣∣∣k ,
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it follows that for k ≥ N ,∣∣bkx
k
∣∣ ≤ ∣∣∣x

c

∣∣∣k (since |bkc
k| ≤ 1 for k ≥ N).

The series
∑∞

k=0

∣∣x
c

∣∣k is a geometric series with the ratio |x/c| < 1. Hence it
converges.

Since |bkx
k| ≤

∣∣x
c

∣∣k for k ≥ N , the series
∑∞

k=0

∣∣bkx
k
∣∣ converges (by the

comparison test). Thus
∑∞

k=N bkx
k converges (in fact, absolutely). Putting

in the front end,
∑N−1

k=0 bkx
k, we conclude that the series

∑∞
k=0 bkx

k converges
absolutely if |x| < |c|. •

You may wonder why it’s called “radius of convergence,” when no circles seem
to be involved. Sections 12.5 and 12.6, which use complex numbers, explain
why.

Summary

Motivated by Taylor series, we investigated series of the form
∑∞

k=0 bkx
k and,

more generally,
∑∞

k=0 bk(x− a)k. Associated with each such series is a radius
of convergence R. (If the series converges for all x, we take R to be infinite.) If∑∞

k=0 bkx
k has radius of convergence R, then it converges (absolutely) for all x

in (−R,R), but diverges for all x such that |x| > R. Similarly, if
∑∞

k=0 bk(x−
a)k has radius of convergence R, it converges for all x such that x is in (a −
R, a + R) but diverges for |x − a| > R. Convergence or divergence at the
endpoints of the interval of convergence must be checked separately.
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EXERCISES for Section 12.3

In Exercises 1 to 12 draw the appropriate diagrams (like Figure 12.3.4) showing
where the series converge or diverge. Explain your work.
1.

∑∞
k=1

xk

k2

2.
∑∞

k=1
xk
√

k

3.
∑∞

k=0
xk

3k

4.
∑∞

k=1 k2e−kxk

5.
∑∞

k=0
2k2+1
k2−5

xk

6.
∑∞

k=1
xk

k

7.
∑∞

k=0
xk

(2k)!

8.
∑∞

k=0
2kxk

k!

9.
∑∞

k=0
xk

(2k+1)!

10.
∑∞

k=0 k!xk

11.
∑∞

k=1
(−1)k+1xk

k

12.
∑∞

k=1
2kxk

n

13. Assume that
∑∞

k=0 bkx
k converges for x = 9 and diverges when x = −12.

What, if anything, can be said about

(a) convergence when x = 7?

(b) absolute convergence when x = −7?

(c) absolute convergence when x = 9?

(d) convergence when x = −9?

(e) divergence when x = 10?

(f) divergence when x = −15?

(g) divergence when x = 15?

14. Assume that
∑∞

k=0 bkx
k converges for x = −5 and diverges when x = 8.

What, if anything, can be said about

(a) convergence when x = 4?

(b) absolute convergence when x = 4?

(c) convergence when x = 7?
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(d) absolute convergence when x = −5?

(e) convergence when x = −9?

(f) convergence when x = −9?

15. If
∑∞

k=0 bkx
k converges whenever x is positive, must it converge whenever x

is negative?

16. If
∑∞

k=0 bk6k converges, what can be said abou the convergence of

(a)
∑∞

k=0 bk(−6)k?

(b)
∑∞

k=0 bk5k?

(c)
∑∞

k=0 bk(−5)k?

In Exercises 17 to 28 draw the appropriate diagrams showing where the series con-
verge and diverge.
17.

∑∞
k=0

(x−2)k

k!

18.
∑∞

k=0
(x−1)k

k3k

19.
∑∞

k=0
(x−1)k

k+3

20.
∑∞

k=0
(x−4)k

2k+1

21.
∑∞

k=0
k(x−2)k

2k+3

22.
∑∞

k=0
(x−5)k

k ln(k)

23.
∑∞

k=0
(x+3)k

5k

24.
∑∞

k=0 k(x + 1)k

25.
∑∞

k=0
(x−5)k

k2

26.
∑∞

k=0(−1)k (x+4)k

k+2

27.
∑∞

k=0 k!(x− 1)k

28.
∑∞

k=0
k2+1
k3+1

(x + 2)k

In Exercises 29 to 34 write out the first five (non-zero) terms of the binomial expan-
sion of the given functions.
29. (1 + x)1/2

30. (1 + x)1/3

31. (1 + x)3/2
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32. (1 + x)−2

33. (1 + x)−3

34. (1 + x)−4

35.

(a) If a power series
∑∞

k=0 bkx
k diverges when x = 3, at which x must it diverge?

(b) If a power series
∑∞

k=0 bk(x + 5)k diverges when x = −3, at which x must it
diverge?

36. If
∑∞

k=0 bk(x − 3)k converges for x = 7, at what other values of x must the
series necessarily converge?

37. Find the radius of convergence of
∑∞

k=0
x2k+1

(2k+1)! .

38. If
∑∞

k=0 bkx
k has a radius of convergence 3 and

∑∞
k=0 ckx

k has a radius of con-
vergence 5, what can be said about the radius of convergence of

∑∞
k=0(bk +ck)xk?

39.

(a) Use the first four non-zero terms of the Maclaurin series for
√

1 + x3 to esti-
mate

∫ 1
0

√
1 + x3 dx. (This integral cannot be evaluated by the Fundamental

Theorem of Calculus.)

(b) Evaluate the integral in (a) to three decimal places by Simpson’s method.

40.

(a) Write the first four terms of the Maclaurin series associated with f(x) =
(1 + x)−3.

(b) Find a formula for the general term in the Maclaurin series associated with
f(x).

(c) Replace x by −x in your answer to (b) to obtain the first four non-zero terms
in the Maclaurin series for (1− x)−3.

41. Find the radius of convergence for the Maclaurin series associated with

(a) ex
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(b) sin(x)

(c) cos(x)

(d) ln(1 + x)

(e) arctan(x)

(f) (1 + x)1/3

(g) (1 + 2x)3/5
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12.4 Manipulating Power Series

Where they converge, power series behave like polynomials. We can differen-
tiate or integrate them term-by-term. We can add, subtract, multiply, and
divide them. While most of the discussion will be on power series in x, the
same ideas apply to power series in (x − a). Proofs can be found in any
advanced calculus text.

Differentiating a Power Series

See the Sum and Difference
Rules in Section 3.3

In Section 3.3 we showed that you can differentiate the sum of a finite
number of functions by adding their derivatives. Theorem 12.4.1 generalizes
this to power series in x.

Theorem 12.4.1 (Differentiating a power series). Assume R > 0 and that∑∞
k=0 bkx

k converges to f(x) for |x| < R. Then for |x| < R, f is differentiable,∑∞
k=1 kbkx

k−1 converges to f ′(x), and

f ′(x) = b1 + 2b2x
2 + 3b3x

3 + · · · .

This theorem is not covered by the fact that the derivative of the sum of a
finite number of functions is the sum of their derivatives.

Because f is differentiable it is continuous. Thus the limit as x approaches

0 of
∞∑

k=0

bkx
k is b0, the value of the series when x = 0. This property was used

without justification in Example 2 in Section 12.2.

x
K2 K1 0 1 2

K5

5

10

Figure 12.4.1

EXAMPLE 1 Obtain a power series for the function 1/(1 − x)2 from the
power series for 1/(1− x).
SOLUTION From the formula for the sum of a geometric series, we know
that

1

1− x
= 1 + x + x2 + x3 + · · · for |x| < 1.

According to Theorem 12.4.1, differentiating both sides of this equation pro-
duces a valid equation, namely

1

(1− x)2
= 0 + 1 + 2x + 3x2 + · · · for |x| < 1.

This can be expressed in summation notation. The geometric series is
1

1−x
=
∑∞

k=0 xk. Note that the Maclaurin
series for 1/(1− x)2 can
also be written as∑∞

k=0(k + 1)xk.

When we differentiate both sides of this equation, we obtain
1

(1−x)2
=
∑∞

k=1 kxk−1. (See Figure 12.4.1.)
Theorem 12.4.1 does not say anything about convergence of the Maclaurin

series for 1/(1 − x)2 at the endpoints of the interval of convergence. When
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x = 1 the series is
∑∞

k=1 k, which diverges (because the terms of this series do
not approach 0). This is not surprising, because the derivative (and, in fact,
the original function) are not defined when x = 1. When x = −1, 1

(1−x)2
= 1

4
,

so the derivative of the function is well-defined. But, when the series for the
derivative is evaluated at x = −1 we get the series

∑∞
k=0(−1)k−1k. As when

x = 1, the terms of this series do not converge to zero and the series diverges.
�

Suppose that f(x) has a power-series representation b0 + b1x + b2x
2 + · · · ;

Theorem 12.4.2 enables us to find the coefficients b0, b1, b2, . . . .

Theorem 12.4.2 (Formula for bk). Let R be a positive number and suppose
that f(x) is represented by the power series

∑∞
k=0 bkx

k for |x| < R; that is,

f(x) = b0 + b1x + b2x
2 + · · ·+ bkx

k + · · · for |x| < R.

Then

bk =
f (k)(0)

k!
. (12.4.1)

The proof is practically the same as the derivation of the formulas for
the coefficients of Taylor polynomials in Section 5.5. It consists of repeated
differentiation and evaluation of the higher derivatives at 0.

Theorem 12.4.2 also tells us that there can be at most one series of the
form

∑∞
k=0 bkx

k that represents f(x), for the coefficients bk are completely
determined by f(x) and its derivatives. That series must be the Maclaurin
series we obtained in Section 12.1. For instance, the series 1+x+x2 +x3 + · · · ,
which sums to 1/(1−x) for |x| < 1 must be the Maclaurin series for 1/(1−x).

Integrating a Power Series

Just as we may differentiate a power series term by term, we can integrate it
term by term.

Theorem 12.4.3 (Integrating a power series). Assume that R > 0 and

f(x) = b0 + b1x + b2x
2 + · · ·+ bkx

k + · · · for |x| < R.

Then

b0x + b1
x2

2
+ b2

x3

3
+ · · ·+ bk

xk+1

k + 1
+ · · ·

converges for |x| < R, and

x∫
0

f(t) dt = b0x + b1
x2

2
+ b2

x3

3
+ · · ·+ bk

xk+1

k + 1
+ · · · .
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WARNING (Choosing Variables of Integration) Note that t is
used as the variable of integration. This is done to avoid writing∫ x

0
f(x) dx, an expression in which x describes both the interval

[0, x] and the independent variable of the integrand.

The next example shows the power of Theorem 12.4.3.

x
K2 K1 0 1 2

K10

K8

K6

K4

K2

2

Figure 12.4.2

EXAMPLE 2 Integrate the power series for 1/(1 + x) to obtain the power
series in x for ln(1 + x).
SOLUTION Start with the geometric series 1/(1− x) = 1 + x + x2 + · · · for
|x| < 1. Replace x by −x and obtain

1

1 + x
= 1− x + x2 − x3 + x4 − · · · for |x| < 1.

By Theorem 12.4.3,
∫ x

0
dt

1+t
= x− x2

2
+ x3

3
− x4

4
+ x5

5
− · · · for |x| < 1.

Now,
x∫

0

dt

1 + t
= ln(1 + t)|x0

= ln(1 + x)− ln(1 + 0)

= ln(1 + x).

Power series for ln(1 + x)Thus

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
+

x5

5
− · · · for |x| < 1.

�
The power series for ln(1 + x) can also be found using Theorem 12.4.2

on page 1028 but this requires calculating the derivatives of ln(1 + x) and
evaluating them at x = 0.

The derivation in Example 2 is more straightforward, and it gives the radius
of convergence without additional work.

The Algebra of Power Series

In addition to differentiating and integrating power series, we may also add,
subtract, multiply, and divide them just like polynomials, as Theorem 12.4.4
asserts.

Theorem 12.4.4 (The algebra of power series). Assume that

f(x) =
∞∑

k=0

bkx
k = b0 + b1x + b2x

2 + · · · for |x| < R1

and g(x) =
∞∑

k=0

ckx
k = c0 + c1x + c2x

2 + · · · for |x| < R2.
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Let R be the smaller of R1 and R2. Then, for |x| < R,

f(x) + g(x) =
∞∑

k=0

(bk + ck)x
k = (b0 + c0) + (b1 + c1)x + (b2 + c2)x

2 + · · ·

f(x)− g(x) =
∞∑

k=0

(bk − ck)x
k = (b0 − c0) + (b1 − c1)x + (b2 − c2)x

2 + · · ·

f(x)g(x) = (b0c0) + (b0c1 + b1c0)x + (b0c2 + b1c1 + b2c0)x
2 + · · ·

This says “multiply two
power series the way you
multiply polynomials —

term by term: start with the
constant terms and work

up.”

f(x)/g(x) is obtainable by long division, provided g(x) 6= 0 for all |x| < R.

EXAMPLE 3 Find the first four terms of the Maclaurin series for ex/(1−
x).
SOLUTION There are at least three ways to approach this problem. The
direct approach is to use Theorem 12.4.2; this requires finding the first three
derivatives of ex/(1 − x) evaluated at x = 0. A second idea is to divide the
power series for ex by 1− x. The third idea is to multiply the power series for
ex and the power series for 1/(1− x).

See Exercise 6 As multiplication is generally easier to carry out than division, that is the
option we choose. The power series for ex is 1 + x + x2

2!
+ x3

3!
+ · · · (radius of

convergence is ∞) and the power series for 1/(1− x) is 1 + x + x2 + x3 + · · ·
(radius of convergence is 1):

ex 1

1− x
=

(
1 + x +

x2

2!
+

x3

3
+ · · ·

)(
1 + x + x2 + x3 + · · ·

)
= (1 · 1) + (1 · 1 + 1 · 1)x +

(
1 · 1 + 1 · 1 +

1

2!
· · ·
)

x2

+

(
1 · 1 + 1 · 1 +

1

2!
· · ·+ 1

3!
· 1
)

x3 + · · ·

= 1 + 2x +
5

2
x2 +

8

3
x3 + · · · .

According to Theorem 12.4.2, the power series for ex/(1− x), whose first four
terms we just found, has radius of convergence R = 1. �

EXAMPLE 4 Find the first four non-zero terms of the Maclaurin series
associated with ex/ cos(x).
SOLUTION We attack this problem with Theorem 12.4.4. The Maclaurin
series associated with ex/ cos(x) is the quotient of the Maclaurin series associ-
ated with ex and cos(x). Long division shows us that

ex

cos(x)
= 1 + x + x2 +

2x3

3
+ · · ·
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What happens when
|x| = π/2?

Even though the power series for ex and cos(x) both have infinite radius of
convergence, the fact that cos(π/2) = 0 reduces the radius of convergence to
π/2.

We could have found the front-end of the Maclaurin series using Theo-
rem 12.4.2, but this approach does not give any information about the radius
of convergence of this power series. �

Power Series Around a

Power series in x− aThe various theorems and methods of this section were stated for power
series in x = x− 0. Analogous theorems hold for power series in x− a. Such
series may be differentiated and integrated term by term inside the interval in
which they converge. For instance, Theorem 12.4.2 generalizes:

Theorem 12.4.5 (Formula for bk). Let R be a positive number and suppose
that f(x) is represented by the power series

∑∞
k=0 bk(x − a)k for |x − a| < R;

that is,

f(x) = b0 + b1(x− a) + b2(x− a)2 + · · ·+ bk(x− a)k + · · · for |x− a| < R.

Then

bk =
f (k)(a)

k!
.

The proof of Theorem 12.4.5 is similar to that of Theorem 12.4.2.

Endpoints

Each theorem in this section includes information on the radius of convergence
of a power series obtained from another power series. Convergence at the
endpoints is never mentioned; it must be checked separately in every case.

In Example 1 we found the power series in x for 1/(1− x)2 is

1 + 2x + 3x2 + · · · =
∞∑

k=1

kxk−1 (12.4.2)

for |x| < 1. When x = 1 this series becomes
∑∞

k=1 k, and, when x = −1
it is

∑∞
k=1 k(−1)k−1. Each of these series diverges because its terms do not

approach 0 as k → ∞. Thus, (12.4.2) converges only on the open interval
(−1, 1).

In Example 2 the power series for ln(1 + x) was found to be

x− x2

2
+

x3

3
− x4

4
+ · · · =

∞∑
k=1

(−1)k+1xk

k
(12.4.3)
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again for |x| < 1.

When x = 1 the series becomes
∑∞

k=1
(−1)k+1

k
. This is the alternating

harmonic series, which converges to ln(2), as Exercise 29 shows. When x = −1
the series becomes

∑∞
k=1

−1
k

which diverges because it is the negative of the
harmonic series. This means the interval of convergence for (12.4.3) is (−1, 1].

Some series converge at both endpoints. You can never tell what will
happen until you check each endpoint.

How Some Calculators Find ex

The power series in x for ex is

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xk

k!
+ · · · .

For x = 10, this would give

e10 = 1 + 10 +
102

2!
+

103

3!
+ · · ·+ 10k

k!
+ · · · .

Although the terms eventually become very small, the first few terms are quite
large. (For instance, the fifth term, 104/4!, is about 417.) So when x is large,
the series for ex provides a time-consuming procedure for calculating ex.
Some calculators use the following method instead.
The values of ex at certain inputs are built into the memory:

e1 ≈ 2.718281828459

e10 ≈ 22, 026.46579

e100 ≈ 2.6881171× 1043

e0.1 ≈ 1.1051709181

e0.01 ≈ 1.0100501671

e0.001 ≈ 1.0010005002.

To find e315.425, say, the calculator makes use of the identities ex+y = exey and
(ex)y = exy and computes(

e100
)3 (

e10
)1 (

e1
)5 (

e0.1
)4 (

e0.01
)2 (

e0.001
)5 ≈ 9.71263198× 10136.

This result is accurate to six decimal places.

Summary

We showed how to operate with power series to obtain new power series — by
differentiation, integration, or an algebraic operation, such as multiplying or
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dividing two series. For instance, from the geometric series for 1/(1 + x), you
can obtain the series for ln(1 + x) by integration, or the series for −1/(1 + x)2

by differentiation.
In many cases the radius of convergence for a derived power series can

be determined directly from the radius of convergence of the original series
and the operation performed. However, convergence at the endpoints must be
checked for each series.
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EXERCISES for Section 12.4

1. Differentiate the Maclaurin series for sin(x) to obtain the Maclaurin series for
cos(x).

2. Differentiate the Maclaurin series for ex to show that D(ex) = ex.

3. Prove Theorem 12.4.2 by carrying out the necessary differentiations.

4.

(a) Show that, for |t| < 1, 1/(1 + t2) = 1− t2 + t4 − t6 + · · · .

(b) Use Theorem 12.4.3 to show that, for |x| < 1, arctan(x) = x−x3

3 +x5

5 −
x7

7 +· · · .

(c) Give the formula for the kth term of the series in (b).

(d) How many terms of the series in (b) are needed to approximate arctan(1/2)
to three decimal places?

(e) Use the formula in (b) to estimate arctan(1/2) to three decimal places.

(Exercise 22 shows that the series in (b) converges to arctan(x) also when x = −1
and x = 1.)

5.

(a) Using Theorem 12.4.3, show that for |x| < 1,

x∫
0

dt

1 + t3
= x− x4

4
+

x7

7
− x10

10
+ · · · .

(b) Use (a) to express
∫ 0.7
0 dt/(1 + t3) as a series whose terms are numbers.

(c) How many terms of the series in (a) are needed to estimate
∫ 0.7
0 dt/(1 + t3) to

three decimal places?

(d) Use (b) to evaluate
∫ 0.7
0 dt/(1 + t3) to three decimal places.

(e) Describe how you would evaluate
∫ 0.7
0 dt/(1+ t3) using the Fundamental The-

orem of Calculus. (Do not carry out the details.)

(f) Use a computer algebra system to find the exact value of
∫ 0.7
0 dt/(1 + t3).
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6.

(a) Find the first four non-zero terms of the Maclaurin series for ex/(1 − x2) by
division of series. (Keep the first five terms of ex.)

(b) Find the first four non-zero terms of the Maclaurin series for ex/(1 − x2) by
using the formula for them in terms of derivatives.

7.

(a) Find the first three non-zero terms of the Maclaurin series for tan(x) by di-
viding the series for sin(x) by the series for cos(x).

(b) Find the first two non-zero terms of the Maclaurin series for tan(x) by using
the formula for the kth term, bk = f (k)(0)/k!.

8.

(a) Find the first four non-zero terms of the Maclaurin series for (1−cos(x))/(1−
x2) by division of series.

(b) Find the first four non-zero terms of the Maclaurin series for (1−cos(x))/(1−
x2) by multiplication of series.

In Exercises 9 and 10, obtain the first three non-zero terms in the Maclaruin series
for the indicated functions by algebraic operations with known series. Also, state
the radius of convergence.
9. ex sin(x)

10. x
cos(x)

In Exercises 11 to 16 use power series to determine the limits.
11. limx→0

(1−cos(x))3

x6

12. limx→0
sin(3x)
sin(2x)

13. limx→0
sin2(x3)ex

(1−cos(x2))3

14. limx→0

(
1

sin(x) −
1

ln(1+x)

)
15. limx→0

(ex−1)2(cos(3x))2

sin(x2)
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16. limx→0
sin(x)(1−cos(x))

ex3−1

17. Estimate
∫ 1/2
0

√
xe−x dx to four decimal places.

18. Let f(x) =
∑∞

k=0 k2xk.

(a) What is the domain of f?

(b) Find f (100)(0).

19. Let f(x) = arctan(x). Making use of the Maclaurin series for arctan(x), find

(a) f (100)(0)

(b) f (101)(0).

20. Since exey = ex+y, the product of the Maclaurin series for ex and ey should
be the Maclaurin series for ex+y. Check that for terms up to degree 3 in the series
for ex+y this is the case.

21.

(a) Give a numerical series whose sum is
∫ 1
0

√
x sin(x) dx.

(b) How many terms of the series in (a) are needed to approximate this integral
to four decimal places?

(c) Use (a) to evaluate the integral to four decimal places.

22. The Taylor series for arctan(x) is
∞∑

k=0

(−1)k

2k + 1
x2k+1. While the interval of

convergence of this power series is easily found to be [−1, 1], Theorem 12.4.3 tells
us only that this series converges to arctan(x) on the open interval (−1, 1).

(a) Show that, when x = 1, the series sums to arctan(1). (Look at the Lagrange
Form for the Remainder.)

(b) Repeat (a), using x = −1.

(c) Because arctan(1) = π/4, the Maclaurin series for arctan(1) provides one way
to obtain approximations to π. Approximate π using the first 5 non-zero terms
in the Maclaurin series for arctan(1).
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(d) Estimate the error in the approximation to π found in (c).

(e) How many terms in the Maclaurin series are needed to obtain an approximate
value of π accurate to 2 decimal places? 4 decimal places? 12 decimal places?

23.

(a) From the Maclaurin series for cos(x), obtain the Maclaurin series for cos(2x).

(b) Exploiting the identity sin2(x) = 1
2(1− cos(2x)), obtain the Maclaurin series

for sin2(x)/x2.

(c) Estimate
∫ 1
0 (sin(x)/x)2 dx using the first three non-zero terms of the series

in (b).

(d) Find a bound on the error in the estimate in (c).

24. Let
∑∞

k=0 bkx
k and

∑∞
k=0 ckx

k converge for |x| < 1. If they converge to the
same limit for each x in (−1, 1) must bk = ck for every k = 0, 1, 2, . . . ?

25. This exercise outlines a way to compute logarithms of numbers larger than 1.

(a) Show that every number y > 1 can be written in the form (1 + x)/(1− x) for
some x in (0, 1).

(b) When y = 3, find x.

(c) Show that if y = (1 + x)/(1−x), then ln(y) = 2(x + x3/3 + · · ·+ x2n+1/(2n +
1) + . . . ).

(d) Use (b) and (c) to estimate ln(3) to two decimal places. (To control the error,
compare a tail end of the series to an appropriate geometric series.)

(e) Is the error in (d) less than the first omitted term?

26. Sam has an idea: “I have a more direct way of estimating ln(y) for y > 1. I just
use the identity ln(y) = − ln(1/y). Because 1/y is in (0, 1) I can write it as 1−x, and
x is still in (0,1). In short, ln(y) = − ln(1/y) = − ln(1− x) = x + x2/2 + x3/3 + . . . .
It’s even an easier formula. And it’s better because it doesn’t have that coefficient
2 in front.”

(a) Is Sam’s formula correct?
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(b) Use his method to estimate ln(3) to two decimal places.

(c) Which is better, Sam’s method or the one in Exercise 25?

27. Use the method of Exercise 25 to estimate ln(5) to two decimal places. Include
a description of your procedure.

28. Here are five ways to compute ln(2). Which seems to be the most efficient?
least efficient? Explain.

(a) The series for ln(1 + x) when x = 1.

(b) The series for ln(1 + x) when x = −1
2 . (This gives ln

(
1
2

)
= − ln(2).)

(c) The series for ln((1 + x)/(1− x)) when x = 1
3 .

(d) Simpson’s method applied to the integral
∫ 2
1 dx/x.

(e) The root of ex = 2. (Use Newton’s method.)

(f) The sum 1
n + 1

n+1 + 1
n+2 + · · ·+ 1

2n

29. In the discussion of endpoints for the Maclaurin series for ln(1+x), we showed
that the series converges for x = 1, but we did not show that its sum is ln(2). To
show that it does equal ln(2), integrate both sides of the following equation over
[0, 1]:

1 + (−x)n+1

1 + x
= 1− x + x2 − x3 + · · ·+ (−1)nxn.

(Separate the left-hand side into two separate integrals. Then, take the limit as
n→∞.)

30.

(a) Compute the product of the Maclaurin series of degree 5 for ex and ey.

(b) How does the result compare with the first few terms of teh Maclaurin series
for ex+y?

31.

(a) For which x does
∑∞

k=0 k2xk converge?

(b) Starting with the Maclaurin series for x2/(1− x), sum the series in (a).
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(c) Does your formula seem to give the correct answer when x = 1
3?

32. This exercise uses power series to give a new perspective on l’Hôpital’s rule.
Assume that f and g can be represented by power series in some open interval
containing 0:

f(x) =
∞∑

k=0

bkx
k and g(x) =

∞∑
k=0

ckx
k.

Assume that f(0) = 0, g(0) = 0, and g′(0) 6= 0. Under these assumptions explain
why

lim
x→0

f(x)
g(x)

= lim
x→0

f ′(x)
g′(x)

.

33. If R. P. Feynman, Lectures on Physics, Addison-Wesley, Reading, MA, 1963,
appears this remark:

Thus the average velocity is

〈E〉 =
h̄ω(0 + x + 2x2 + 3x3 + · · · )

1 + x + x2 + · · ·
.

Now the two sums which appear here we shall leave for the reader to
play with and have some fun with. When we are all finished summing
and substituting for x in the sum, we should get — if we make no
mistakes in the sum —

〈E〉 =
h̄ω

eh̄ω/kT − 1
.

This, then, was the first quantum-mechanical formula ever known, or
ever discussed, and it was the beautiful culmination of decades of puz-
zlement.

Have the aforementioned fun, given that x = e−h̄ω/kT .

Exercises 34 to 37 outline a proof that the Maclaurin series associated with (1+x)r

converges to (1 + x)r for |x| < 1. This justifies the assertion that (1 + x)r =
∞∑

k=0

(
n
k

)
xk for |x| < 1. The notation

(
n
k

)
stands for

n!
k!(n− k)!

.

34. Show that

k

(
r
k

)
+ (k + 1)

(
r

k + 1

)
= r

(
r
k

)
.

(This is needed in Exercise 35.) (First, rewrite the equation as (k + 1)
(

r
k + 1

)
=

(r − k)
(

r
k

)
.)

Calculus April 22, 2012



1040 CHAPTER 12 APPLICATIONS OF SERIES

35. Let f(x) =
∑∞

k=0

(
r
k

)
xk.

(a) Find the interval of convergence for f(x).

(b) Show that (1 + x)f ′(x) = rf(x). (First, write out the first four terms to see
the pattern.)

36. Using the result from Exercise 35, show that the derivative of f(x)/(1 + x)r

is 0.

37. Show that f(x)/(1 + x)r = 1, which implies that
∞∑

k=0

(
r
k

)
xk = (1 + x)r.

What is the interval of convergence

38. Newton obtained the Maclaurin series for arcsin(x) with the aid of the binomial
series for

√
1− x2, as follows.

Consider the circle x2 + y2 = 1 and the point Q = (x, y) on it, as shown in Fig-
ure 12.4.3. Then θ = arcsin(x) = 6 QOR.

Figure 12.4.3

(a) Then

θ

2
= areaOQR = areaOPQR− areaOPQ

=

x∫
0

√
1− t2 dt− 1

2
x
√

1− x2.
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Use this equation to obtain Newton’s result:

θ = x +
1
6
x3 +

3
40

x5 +
5

112
x7 + · · · (12.4.4)

(b) Use the fact that θ = arcsin(x) =
∫ x
0

dt√
1−t2

to derive (12.4.4).
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12.5 Complex Numbers

The number line of real numbers coincides with the x-axis of the xy coordinate
system. With its addition, subtraction, multiplication, and division, it is a
small part of a number system that occupies the plane, and which obeys the
usual rules of arithmetic. This section describes that system, known as the
complex numbers. One of the important properties of the complex numbers
is that any nonconstant polynomial has a root; in particular, the equation
x2 = −1 has two solutions.

Figure 12.5.1

The Complex Numbers

By a complex number z we mean an expression of the form x + iy or x + yi,
where x and y are real numbers and i is a symbol with the property that
i2 = −1. This expression will be identified with the point (x, y) in the xy
plane, as in Figure 12.5.1. Every point in the xy plane may therefore be
thought of as a complex number.

To add or multiply two complex numbers, follow the usual rules of arith-
metic of real numbers, with one new proviso:

Whenever you see i2, replace it by −1.

For instance, to add the complex numbers 3 + 2i and −4 + 5i, just collect
like terms:

(3 + 2i) + (−4 + 5i) = (3− 4) + (2i + 5i) = −1 + 7i.

(See Figure 12.5.2(a).) Addition does not make use of the fact that i2 = −1.
However, multiplication does, as Example 1 shows.

EXAMPLE 1 Compute the product (2 + i)(3 + 2i).
SOLUTION We can multiply the complex numbers just as we would multiply
binomials: we have

(2+i)(3+2i) = 2·3+2·2i+i·3+i·2i = 6+4i+3i+2i2 = 6+4i+3i−2 = 4+7i.

Figure 12.5.2(b) shows the complex numbers 2 + i, 3 + 2i, and their product
4 + 7i. �

Note that (−i)(−i) = i2 = −1. Both i and −i are square roots of −1. The
symbol

√
−1 traditionally denotes i rather than −i.
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(a) (b)

Figure 12.5.2

A complex number that lies on the y-axis is called imaginary. Real numbers are on the
x-axis, imaginary on the
y-axis.

Every
complex number z is the sum of a real number and an imaginary number,
z = x + iy. The number x is called the real part of z, and y is called the
imaginary part. One often writes “Re z = x” and “Im z = y.”

We have seen how to add and multiply complex numbers. Subtraction is
straightforward. For instance,

(3 + 2i)− (4− i) = (3− 4) + (2i− (−i)) = −1 + 3i.

Division of complex numbers requires rationalizing the denominator. conjugate of zThis
involves the conjugate of a complex number. The conjugate of the complex
number z = x + yi is the complex number x − yi, which is denoted z̄. Note
that

Figure 12.5.3

zz̄ = (x + yi)(x− yi) = x2 + y2

z + z̄ = (x + yi) + (x− yi) = 2x

and z − z̄ = (x + yi)− (x− yi) = 2yi.

Thus, zz̄ and z + z̄ are real, and z− z̄ is imaginary. Figure 12.5.3 shows that z̄
is the mirror image of z reflected across the x-axis. To “rationalize the denom-
inator” means to find an equivalent fraction with a real-valued denominator.
If the fraction is w/z, the denominator can be rationalized by multiplying by
z̄/z̄. rationalizing the

denominator
EXAMPLE 2 Compute the quotient 1+5i

3+2i
.

SOLUTION To rationalize the denominator, we multiply by 3−2i
3−2i

:

1 + 5i

3 + 2i
=

1 + 5i

3 + 2i
· 3− 2i

3− 2i
=

3− 2i + 15i + 10

9− 6i + 6i + 4i2
=

13 + 13i

13
= 1 + i.

�
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Now All Polynomials Have Roots

Every polynomial has a root
in the complex numbers.

The complex numbers provide the equation x2 + 1 = 0 with two solutions,
i and −i. This illustrates an important property of complex numbers: If
f(x) = anx

n +an−1x
n−1 + · · ·+a0 is any polynomial of degree n ≥ 1, with real

or complex coefficients, then there is a complex number z such that f(z) = 0.
This fact, known as the Fundamental Theorem of Algebra, is illustrated
in Example 3. Its proof requires advanced mathematics.

EXAMPLE 3 Solve the quadratic equation z2 − 4z + 5 = 0.
SOLUTION By the quadratic formula, the solutions are

z =
−(−4)±

√
(−4)2 − 4 · 1 · 5
2 · 1

=
4±
√
−4

2
=

4± 2i

2
= 2± i.

The two solutions are 2 + i and 2− i.
These solutions can be checked by substitution in the original equation.

For instance,

(2 + i)2 − 4(2 + i) + 5 = (4 + 4i + i2)− 8− 4i + 5

= 4 + 4i− 1− 8− 4i + 5 = 0 + 0i = 0.

Yes, it checks. The solution 2− i can be checked similarly. �

Figure 12.5.4

The sum of the complex numbers z1 and z2 is the fourth vertex (opposite
O) in the parallelogram determined by the origin O and the points z1 and z2,
as shown in Figure 12.5.4.

The Geometry of the Product

The geometric relation between z1, z2 and their product z1z2 is easily described
in terms of the magnitude and argument of a complex number. Each complex
number z other than the origin is at a (positive) distance r from the origin
and has a polar angle θ relative to the positive x-axis. The distance rAmplitude is a synonym for

magnitude.
is called

the magnitude of z, and θ is called the argument of z. A complex number
has an infinity of arguments differing from each other by an integer multiple of
2π. The complex number 0, which lies at the origin, has magnitude 0 and any
polar angle as argument. In short, we may think of magnitude and argument
as polar coordinates r and θ of z, with the restriction that r is nonnegative.

The symbols |z| and arg(z) The magnitude of z is denoted |z|. The symbol arg(z) denotes any of the
arguments of z, it being understood that if θ is an argument of z, then so is
θ + 2nπ for any integer n.
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EXAMPLE 4

(a) Draw all complex numbers with magnitude 3.

(b) Draw the complex number z of magnitude 3 and argument π/6.

SOLUTION

Figure 12.5.5

(a) The complex numbers of magnitude 3 form a circle of radius 3 with
center at 0. (See Figure 12.5.5.)

(b) The complex number of magnitude 3 and argument π/6 is shown (in red)
in Figure 12.5.5.

�
Note that |x+iy| =

√
x2 + y2, by the Pythagorean theorem. Each complex

number z = x+ iy other than 0 can be written as the product of a positive real
number and a complex number of magnitude 1. To show this, let z = x + iy
have magnitude r and argument θ. Recalling the relation between polar and
rectangular coordinates, we conclude that

Figure 12.5.6 ARTIST:
Draw the point for (b) in
red.

z = r cos(θ) + r sin(θ)i = r(cos(θ) + i sin(θ)).

The number r is a positive real number. The magnitude of the number cos(θ)+
i sin(θ) is

√
cos(θ)2 + sin(θ)2 = 1. Figure 12.5.6 shows the numbers r and

cos(θ) + i sin(θ), whose product is z. (The expression cos(θ) + i sin(θ) appears
so frequently when working with complex numbers that the shorthand notation
cis(θ) is used, that is, cis(θ) = cos(θ) + i sin(θ). While this is convenient, you
have to be careful not to confuse “cis” with “cos.”)

The next theorem describes how to multiply two complex numbers if they
are given in polar form, that is, in terms of their magnitudes and arguments.

Theorem 12.5.1. Assume that z1 has magnitude r1 and argument θ1 and that
z2 has magnitude r2 and argument θ2. Then the product z1z2 has magnitude
r1r2 and argument θ1 + θ2.

Proof

The last step uses the
identities for cos(u + v) and
sin(u + v).z1z2 = r1(cos(θ1) + i sin(θ1))r2(cos(θ2) + i sin(θ2))

= r1r2(cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2))

= r1r2(cos(θ1) cos(θ2)− sin(θ1) sin(θ2) + i(sin(θ1) cos(θ2) + cos(θ1) sin(θ2))

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2))
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Thus, the magnitude of z1z2 is r1r2 and the argument of z1z2 is θ1 + θ2. This
proves the theorem. •

In practical terms, this theorem says:

“To multiply two complex numbers, add their arguments and multiply their
magnitudes.”

EXAMPLE 5 Find z1z2 for z1 and z2 in Figure 12.5.7(a).
SOLUTION z1 has magnitude 2 and argument π/6; z2 has magnitude 3 and
argument π/4. Thus, z1z2 has magnitude 2 · 3 = 6 and argument π/6 + π/4 =
5π/12. (See Figure 12.5.7 �

(a) (b)

Figure 12.5.7

EXAMPLE 6 Using the geometric description of multiplication, find the
product of the real numbers −2 and −3.
SOLUTION The number −2 has magnitude 2 and argument π. The number
−3 has magnitude 3 and argument π. Therefore (−2) · (−3) has magnitude
2·3 = 6 and argument π+π = 2π. The complex number with magnitude 6 and
argument 2π is just our old friend, the real number 6. Thus (−2) · (−3) = 6,
in agreement with the statement “the product of two negative numbers is
positive.” (See Figure 12.5.7(b).) �
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Division of Complex Numbers

See Exercise 29.Division of complex numbers given in polar form is similar, except that the
magnitudes are divided and the arguments are subtracted:

r1(cos(θ1) + i sin(θ1))

r2(cos(θ2) + i sin(θ2))
=

r1

r2

(cos(θ1 − θ2) + i sin(θ1 − θ2)) .

EXAMPLE 7 Let z1 = 6(cos(π/2) + i sin(π/2)) and z2 = 3(cos(π/6) +
i sin(π/6)). Find (a) z1z2 and (b) z1/z2.
SOLUTION

Figure 12.5.8

See Figure 12.5.8

(a)

z1z2 = 6 · 3
(
cos
(π

2
+

π

6

)
+ i sin

(π

2
+

π

6

))
= 18

(
cos

(
2π

3

)
+ i sin

(
2π

3

))
= 18

(
−1

2
+

√
3

2
i

)
= −9 + 9

√
3i.

Figure 12.5.9

(b)

z1

z2

=
6

3

(
cos
(π

2
− π

6

)
+ i sin

(π

2
− π

6

))
= 2

(
cos
(π

3

)
+ i sin

(π

3

))
= 2

(
1

2
+

√
3

2
i

)
= 1 +

√
3i

�

EXAMPLE 8 Compute the product (1+i)(3+2i) arithmetically and check
the answer in terms of magnitudes and arguments.
SOLUTION

(1 + i)(3 + 2i) = 3 + 2i + 3i + 2i2 = 3 + 2i + 3i− 2 = 1 + 5i.

To check this calculation, we first verify that |1+5i| = |1+ i||3+2i|. We have

|1 + 5i| =
√

12 + 52 =
√

26,

|1 + i| =
√

12 + 12 =
√

2,

|3 + 2i| =
√

32 + 22 =
√

13.
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Since
√

26 =
√

2
√

13, the magnitude of 1+5i is the product of the magnitudes
of 1 + i and 3 + 2i.

arg(x + iy) = arctan(y/x)
for x + iy in the first or

fourth quadrants.

Next, consider the arguments. First, arg(1 + 5i) = arctan(5) ≈ 1.3734.
Similarly, arg(1 + i) = arctan(1) ≈ 0.7854 and arg(3 + 2i) = arctan(2/3) ≈
0.5880. Since 0.7854+0.5880 = 1.3734, it indeed appears that the argument of
1+5i is the sum of the arguments of 1+ i and 3+2i. (See also Figure 12.5.9.)
�

Powers of z

When the polar coordinates of z are known, it is easy to compute the powers
z2, z3, z4, . . . . Let z have magnitude r and argument θ. Then z2 = z · z
has magnitude r · r = r2 and argument θ + θ = 2θ. So, to square a complex
number, just square its magnitude and double its argument (angle).

How to compute zn More generally, to compute zn for any positive integer n, find |z|n and
multiply the argument of z by n. In short, we have DeMoivre’s Law:

(r(cos(θ) + i sin(θ)))n . = rn (cos(nθ) + i sin(nθ))

Example 9 illustrates the geometric view of computing powers.

EXAMPLE 9 Let z have magnitude 1 and argument 2π/5. Compute and
sketch z, z2, z3, z4, z5, and z6.
SOLUTION Since |z| = 1, it follows that |z2| = |z|2 = 12 = 1. Similarly, for
all positive integers n, |zn| = 1; that is, zn is a point on the unit circle with
center at the origin, O. All that remains is to examine the arguments of z2,
z3, etc..

The argument of z2 is twice the argument of z: 2(2π/5) = 4π/5. Similarly,
arg(z3) = 6π/5, arg(z4) = 8π/5, arg(z5) = 10π/5 = 2π, and arg(z6) = 12π/5.
Observe that z5 = 1, since it has magnitude 1 and argument 2π.

Figure 12.5.10

Similarly,
z6 = z, since both z and z6 have magnitude 1 and their arguments differ by
an integer multiple of 2π. (Or, algebraically, z6 = z5+1 = z5 · z = 1 · z =
z.) Figure 12.5.10 shows that the powers of z form the vertices of a regular
pentagon. �

The equation x5 = 1 has only one real root, namely, x = 1. However, it
has five complex roots. For instance, the number z shown in Figure 12.5.10
is a solution of x5 = 1 since z5 = 1. Another root is z2, since (z2)

5
= z10 =

(z5)
2

= 12 = 1. Similarly, z3 and z4 are roots of x5 = 1. There is a total of
five roots: 1, z, z2, z3, and z4.
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The powers of i will be needed in the next section. They The powers of i.are i2 = −1,
i3 = i2 · i = (−1)i = −i, i4 = i3 · i = (−i)i = −i2 = 1, i5 = i4 · i = i, and so
on. They repeat in blocks of four: for any integer n, in+4 = in.

It is often useful to express a complex number z = x + iy in polar form.
Recall that |z| =

√
x2 + y2. To find θ, it is best to sketch z in order to

see in which quadrant it lies. Although arctan(θ) = y/x we cannot say that
θ = arctan(y/x), since arctan(u) lies between −π/2 and π/2 for any real
number u. However, the angle of z may lie in the second- or third-quadrant

For instance, to put z = −2 − 2i in polar form, first sketch z,

Figure 12.5.11

as in Fig-

ure 12.5.11. We have |z| =
√

(−2)2 + (−2)2 =
√

8 and arg(z) = 5π/4. Thus

z =
√

8

(
cos

(
5π

4

)
+ i sin

(
5π

4

))
.

Note that arctan(−2/(−2)) is π/4 which is not an argument of z.

Roots of z

Figure 12.5.12

Each complex number z, other than 0, has exactly n nth roots for each
positive integer n. These can be found by expressing z in polar coordinates.
If z = r (cos(θ) + i sin(θ)), that is, has magnitude r and argument θ, then one
nth root of z is

r1/n

(
cos

(
θ

n

)
+ i sin

(
θ

n

))
.

To check that this is an nth root of z, just raise it to the nth power.
To find the other nth roots of z, change the argument z from θ to θ + 2kπ,

where k = 1, 2, . . . , n− 1. Then

r1/n

(
cos

(
θ + 2kπ

n

)
+ i sin

(
θ + 2kπ

n

))
is also an nth root of z. (Why?)

The n roots of the equation
zn = a are the vertices of a
regular polygon with n
sides.

For instance, let z = 8 (cos(π/4) + i sin(π/4)). Then the three cube roots
of z all have magnitude 81/3 = 2. Their arguments are

π/4

3
=

π

12
,

π/4 + 2π

3
=

π

12
+

2π

3
,

π/4 + 4π

3
=

π

12
+

4π

3
.

These three roots are shown in Figure 12.5.12, along with z.

Summary

The real numbers, with which we all grew up, are just a small part of the
complex numbers, which fill up the xy plane. We add complex numbers by
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a “parallelogram law.” To multiply them “we multiply their magnitudes and
add their angles.” Using the complex numbers we can see that “negative real
time negative real is positive,” since 180◦ + 180◦ = 360◦, which describes the
positive x-axis. We also saw how to raise a complex number to a power and
how to take its roots. We can now view points in the xy plane as “numbers.”
However, mathematicians have shown that we cannot treat points in three-
dimensional space as “numbers” that satisfy the usual rules of addition and
multiplication.

April 22, 2012 Calculus



§ 12.5 COMPLEX NUMBERS 1051

EXERCISES for Section 12.5

In Execises 1 to 4 express the given complex numbers in the form x + iy.
1.

(a) (2 + 3i) + (5− 2i)

(b) (2 + 3i)(2− 3i)

(c) 1
2−i

(d) 3+2i
4−i

2.

(a) (2 + 3i)2

(b) 4
3−i

(c) (1 + i)(3− i)

(d) 1+5i
2−3i

3.

(a) (1 + 3i)2

(b) (1 + i)(1− i)

(c) i−3

(d) 4+
√

2i
2+i

4.

(a) (1 + i)3

(b) i
1−i

(c) (3 + i)−1

(d) (5 + 2i)(5− 2i)
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In Exercises 5 to 8 express the number in polar form r(cos(θ) + i sin(θ)) with θ in
[0, 2π).
5.

√
3 + i

6.
√

3− i

7.
√

2 +
√

2i

8. −4 + 4i

In Exercises 9 to 12 express the number in both polar and rectangular forms.
9. (−1 + i)10

10. (
√

3 + i)4

11. (2 + 2i)8

12. 1−
√

3i)7

13. Rationalize the denominator in each fraction. That is, express the fraction as
an equivalent fraction whose denominator does not have a square root or i.

(a) 1
1+
√

2

(b) 1
2−i

(c) 2−
√

3√
3+2

(d) 3+2i
i−3

14. For each equation, (i) find all solutions, (ii) plot all solutions in the complex
plane, and (iii) check that the solutions satisfy the equations.

(a) x2 + x + 1 = 0

(b) x2 − 3x + 5 = 0

(c) 2x2 + x + 1 = 0

(d) 3x2 + 4x + 5 = 0

15.

(a) Use the quadratic formula to find all solutions of the equation x2 + x + 1 = 0.

(b) Plot the solutions in (a).
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(c) Check that the solutions in (a) satisfy x2 + x + 1 = 0.

16. Let z1 have magnitude 2 and argument π/6, and let z2 have magnitude 3 and
argument π/3.

(a) Plot z1 and z2.

(b) Find z1z2 using the polar form.

(c) Write z1 and z2 in the rectangular form x + yi.

(d) With the aid of (c) compute z1z2.

(e) Check that (b) and (d) give the same point.

17. Let z1 have magnitude 2 and argument π/4, and let z2 have magnitude 3 and
argument 3π/4.

(a) Plot z1 and z2.

(b) Find z1z2 using the polar form.

(c) Write z1 and z2 in the form x + yi.

(d) With the aid of (c) compute z1z2.

(e) Check that (b) and (d) give the same point.

18. The complex number z has argument π/3 and magnitude 1. Find and plot
(a) z2, (b) z3, (c) z4, and (d) 1/z.

19. Find and plot (a) i3, (b) i4, (c) i5, and (d) i73.

20. Let z have magnitude 2 and argument π/6.

(a) What are the magnitude and argument of z2, z3, and z4?

(b) Sketch z, z2, z3, and z4.

(c) What are the magnitude and argument of zn?

21. Let z have magnitude 0.9 and argument π/4.
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(a) Find and plot z2, z3, z4, z5, and z6.

(b) What happens to zn as n→∞?

22. Find and plot all solutions of the equation z5 = 32 (cos(π/4) + i sin(π/4)).

23. Find and plot all solutions of the equation z4 = 8 + 8
√

3i. (First draw
8 + 8

√
3i.)

24. Let z have magnitude r and argument θ. Let w have magnitude 1/r and
argument −θ. Show that zw = 1. (w is called the reciprocal of z, and denoted
z−1 or 1/z.)

25. Find z−1 if z = 4 + 4i. (See Exercise 24.)

26.

(a) By substitution, verify that 2+3i is a solution of the equation x2−4x+13 = 0.

(b) Use the quadratic formula to find all solutions of the equation x2−4x+13 = 0.

27. Write in polar form

(a) 5 + 5i,

(b) −1
2 −

√
3

2 i,

(c) −
√

2
2 +

√
2

2 i,

(d) 3 + 4i, and

(e) 1/(3 + 4i).

28. Write in rectangular form as simply as possible:

(a) 3
(
cos
(

3π
4

)
+ i sin

(
3π
4

))
,

(b) 2
(
cos
(

π
6

)
+ i sin

(
π
6

))
,

(c) 10 (cos (π) + i sin (π)),

(d) 1
5 (cos (22◦) + i sin (22◦)) (Express the answer to at least three decimal places.)
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29. Let z1 have magnitude r1 and argument θ1, and let z2 have magnitude r2 and
argument θ2.

(a) Explain why the magnitude of z1/z2 is r1/r2.

(b) Explain why the argument of z1/z2 is θ1 − θ2.

30. Compute
cos
(

5π
4

)
+ i sin

(
5π
4

)
cos
(

3π
4

)
+ i sin

(
3π
4

)
by two ways: (a) by the result of Exercise 29, (b) by rationalizing the denominator.

31. Compute

(a) (2 + 3i)(1 + i)

(b) 2+3i
1+i

(c) (7− 3i)(7− 3i)

(d) 3(cos(42◦) + i sin(42◦)) · 5(cos(168◦) + i sin(168◦))

(e)
√

8(cos(147◦)+i sin(147◦)√
2(cos(57◦)+i sin(57◦))

(f) 1/(3− i)

(g) ((cos(52◦) + i sin(52◦))−1

(h)
(
cos
(

π
6

)
+ i sin

(
π
6

))12

32. Compute

(a) (4 + 3i)(4− 3i)

(b) 3+5i
−2+i

(c) 1
2+i

(d)
(
cos(

(
π
12

)
+ i sin(

(
π
12

))20
(e) (r(cos(θ) + i sin(θ))−1

(f) Re
(
(r(cos(θ) + i sin(θ)))10

)
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(g)
3(cos(π

6 )+i sin(π
6 ))

5−12i

33. Find and plot all solutions of z3 = i.

34. Sketch all complex numbers z such that (a) z6 = 1, (b) z6 = 64, (c) z6 = −1.

35.

(a) Why is the symbol
√
−4 ambiguous?

(b) Draw all solutions of z2 = −4.

36. If zk has argument θk and magnitude rk, k = 1, 2, write each of the following
in the form r(cos(θ) + i sin(θ)).

(a) z2
1

(b) 1/z1

(c) z1

(d) z1z2

(e) z1/z2

(f) 1/z1

37. Draw the six sixth roots of

(a) 1

(b) 64

(c) i

(d) −1

(e) −1
2 +

√
3

2 i

38. Using the fact that

(cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)
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find formulas for cos(3θ) and sin(3θ) in terms of cos(θ) and sin(θ).

39.

(a) If |z1| = 1 and |z2| = 1, how large can |z1 + z2| be? (Draw some pictures.)

(b) If |z1| = 1 and |z2| = 1, what can be said about |z1z2|?

40. Show that (a) z1z2 = z1z2, (b) z1 + z2 = z1 + z2.

41. Let z = 1√
2

+ i√
2
.

(a) Compute z2 algebraically.

(b) Compute z2 by putting z into polar form.

(c) Sketch the numbers z, z2, z3, z4, and z5.

42. Let a, b, and c be complex numbers such that a 6= 0 and b2 − 4ac 6= 0. Show
that ax2 + bx + c = 0 has two distinct roots.

43. Find and plot the roots of x2 + ix + 3− i = 0.

44. Compute the roots of the following equations and plot them relative to the
same axes:

(a) x2 − 3x + 2 = 0

(b) x2 − 3x + 2.25 = 0

(c) x2 − 3x + 2.5 = 0

(d) x2 − 3x + 1.5 = 0

45. The complex number z = t + i (t a real number) lies on the line y = 1.

(a) Plot z2 for t = 0, 1, −1, and for at least two other values of t.

(b) Find the equation of the curve on which z2 lies.

46. The complex number z = t+i/t (t a positive real number) lies on the parabola
y = 1/x.
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(a) Sketch the curve on which z2 lies.

(b) Find the equation in rectangular coordinates, u and v, for the curve in (b).

47. Let z be the typical complex number on the curve C whose polar equation is
r = cos(θ).

(a) Sketch z2 for at least four choices of z on C.

(b) Find the equation in polar coordinates for the curve swept out by z2 for z on
C.

(c) With the aid of the equation in (b), sketch the curve.

48. Let C be the same curve as in the preceding exercise.

(a) Sketch 1/z for at least four choices of z on C.

(b) Find the equation in polar and in rectangular coordinates for the curve swept
out by 1/z for points on C.

49.

(a) Draw the curve on which z = t + ti lies.

(b) Draw the curve on which z2 lies.

(c) Give the equations in rectangular coordinates for both curves.

50. In parts (a) through (d) plot z, z, and 1/z on the same set of axes.

(a) Let z = 1 +
√

3i.

(b) Let z = (1 + i)/
√

2.

(c) Let z = 3.

(d) Let z = 2i.

(e) For an arbitrary complex number z, give a verbal explanation (no equations
and no graphs) of the relationships among z, z, and 1/z.
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51. For which complex numbers z is z = 1/z?

52. Let z be a point on the line x + y = 1.

(a) Plot z2 for at least 5 points on the line.

(b) Find the equation for the curve in rectangular coordinates u and v.

(c) What type of curve is the curve in (b)?

(See Exercise 50.)

53. Let z = 1
2 + i

2 .

(a) Sketch the numbers zn for n = 1, 2, 3, 4, and 5.

(b) What happens to zn as n→∞?

54. Let z = 1 + i.

(a) Sketch the numbers zn/n! for n = 1, 2, 3, 4, and 5.

(b) What happens to zn/n! as n→∞?

55.

(a) Graph r = cos(θ) in polar coordinates.

(b) Pick five points on the curve in (a). Viewing each as a complex number z,
plot z2.

(c) As z runs through the curve in (a), what curve does z2 sweep out? (Give its
polar equation.)

56. The partial-fraction representation of a rational function is much simpler when
we have complex numbers available. No second-degree polynomial ax2 + bx + c is
needed. This exercise indicates why this is the case.
Let z1 and z2 be the roots of ax2 + bx + c = 0, a 6= 0.

(a) Using the quadratic formula (or by other means), show that z1 + z2 = −b/a
and z1z2 = c/a.
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(b) From (a) deduce that

ax2 + bx + c = a(x− z1)(x− z2).

(c) With the aid of (b) show that

1
ax2 + bx + c

=
1

a(z1 − z2)

(
1

x− z1
− 1

x− z2

)
.

Part (c) shows that the theory of partial fractions, described in Section 8.4, be-
comes much simpler when complex numbers are allowed as the coefficients of the
polynomials. Only partial fractions of the form k/(ax + b)n are needed.

57. Let f(x) = a0 + a1x + a2x
2 + a3x

3 + a4x
4, where each coefficient is real.

(a) Show that if c is a root of f(x) = 0, then so is c.

(b) Show that if c is a root of f and is not real, then (x− c)(x− c) divides f(x).

(c) Using the fundamental theorem of algebra, show that any fourth-degree poly-
nomial with real coefficients can be expressed as the product of polynomials
of degree at most 2 with real coefficients.

Exercise 58 is related to Exercise 90 on page 782. (See also Exercises 6 and 7 on
page 1088.)
58. Let a point O be a distance a 6= 1 from the center of a unit circle.

(a) Show that the average value of the (natural) logarithm of the distance from
O to points on the circumference is

1
2π

2π∫
0

1
2

ln(1 + a2 − 2a cos(θ)) dθ.

(b) Spend at least three minutes, but at most five minutes, trying to evaluate the
integral in (a).
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12.6 The Relation Between Exponential and

Trigonometric Functions

With the aid of complex numbers Leonard Euler discovered in 1743 that the
trigonometric functions can be expressed in terms of the exponential function
ez, where z is complex. This section retraces his discovery. In particular, it
will be shown that Expressing sin(x) and

cos(x) in terms of the
exponential function.

eiθ = cos(θ) + i sin(θ), cos(θ) =
eiθ + e−iθ

2
, and sin(θ) =

eiθ − e−iθ

2i
.

Complex Series

In order to relate the exponential function to the trigonometric functions, we
will use infinite series such as

∑∞
k=0 zk, where the zk’s are complex numbers.

Such a series is said to converge to S if its nth partial sum Sn approaches Here, | · | refers to the
magnitude of a complex
number.

S
in the sense that |S − Sn| → 0 as n → ∞. It is shown in Exercise 37 that if∑∞

k=0 |zk| (a series with real-valued terms) converges, so does
∑∞

k=0 zk, and the
series

∑∞
k=0 zk is said to converge absolutely. If a series converges absolutely,

we may rearrange the terms in any order without changing the sum.
Let zk = xk + iyk, where xk and yk are real. If

∑∞
k=0 zk converges, so

do
∑∞

k=0 xk and
∑∞

k=0 yk. If
∑∞

k=0 zk = S = a + bi, then
∑∞

k=0 xk = a and∑∞
k=0 yk = b. Re (

∑∞
k=0 zk) =

∑∞
k=0 xk

∑∞
k=0 xk is called the real part of

∑∞
k=0 zk and

∑∞
k=0 yk is the

Im (
∑∞

k=0 zk) =
∑∞

k=0 ykimaginary part of
∑∞

k=0 zk.

EXAMPLE 1 Determine for which complex numbers z,
∑∞

k=0 zk/k! con-
verges.
SOLUTION We will examine absolute convergence, that is, the convergence
of
∑∞

k=0 |zk|/k!. This series has real terms. |z| is a real numberIn fact, it is the Maclaurin series

for e|z|, which converges for all real numbers. Since
∑∞

k=0 zn/n! converges ab-
solutely for all z, it converges for all z. �

Defining ez

In some treatments of
exponentials ez is defined as
a power series and e is
defined as the value of the
series when z = 1.

The Maclaurin series for ex when x is real suggests the following definition:

DEFINITION (ez for complex z.) Let z be a complex number.
Define ez to be the sum of the convergent series

∑∞
k=0 zk/k!.

Observe that when z happens to be real, z = x, ez is our familiar real-
valued exponential function, ex. It can be shown by multiplying the series for
ez1 and ez2 that ez1+z2 = ez1ez2 in accordance with the basic law of exponents.
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When the expression for z is complicated, we sometimes write ez as exp(z).
For example, in exp notation the law of exponents becomes exp(z1 + z2) =
(exp(z1))(exp(z2)).

Euler’s Formula: The Link between eiθ, cos(θ), and sin(θ)

The following theorem of Euler provides the key link between the exponential
function ez and the trigonometric functions cos(θ) and sin(θ).

Euler’s Formula

Theorem 12.6.1 (Euler’s Formula). Let θ be a real number. Then

eiθ = cos(θ) + i sin(θ).

Proof

By definition of ez for any complex number,Recall that i2 = −1,
i3 = −i, i4 = 1, i5 = i, . . . .

Figure 12.6.1

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+ · · · .

= 1 + iθ +
i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+ · · · .

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ · · · .

=

(
1− θ2

2!
+

θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+ · · ·

)
(rearranging)

= cos(θ) + i sin(θ).

Figure 12.6.1 shows eiθ, which lies on the standard unit circle. •
Theorem 12.6.1 asserts, for instance, that

eiπ = cos(π) + i sin(π) = −1 + i · 0 = −1.

The equation eiπ = −1 is remarkable in that it links e (the fundamental number
in calculus), π (the fundamental number in trigonometry), i (the fundamental
complex number), and the negative number −1. The history of that short
equation would recall the struggles of hundreds of mathematicians to create the
number system that we now take for granted. It is as important in mathematics
as F = ma or E = mc2 in physics.There is an old saying:

“God created the complex
numbers; anything less is

the work of man.”

With the aid of Theorem 12.6.1, both cos(θ) and sin(θ) may be expressed
in terms of the exponential function.
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Theorem 12.6.2.

Figure 12.6.2 The license
plate of mathematician
Martin Davis, whose e-mail
signature is “eipye, add
one, get zero.”

Let θ be a real number. Then

cos(θ) =
eiθ + e−iθ

2
and sin(θ) =

eiθ − e−iθ

2i

Proof

We begin with Euler’s formula (Theorem 12.6.1),

eiθ = cos(θ) + i sin(θ). (12.6.1)

Replacing θ by −θ in (12.6.1), we obtain

e−iθ = cos(θ)− i sin(θ). (12.6.2)

The sum of (12.6.1) and (12.6.2) yields

eiθ + e−iθ = 2 cos(θ),

hence

cos(θ) =
eiθ + e−iθ

2
.

Subtraction of (12.6.2) from (12.6.1) yields

eiθ − e−iθ = 2i sin(θ),

hence

sin(θ) =
eiθ − e−iθ

2i
.

This establishes the two equations in this theorem. •
sinh and cosh were defined
in Section 4.1, see
Exercises 70 to 73 on
page 333.

The hyperbolic functions cosh(x) and sinh(x) were defined in terms of the
exponential function by

cosh(x) =
ex + e−x

2
and sinh(x) =

ex − e−x

2
.

Just as Maxwell discovered
the connection between
light and electricity, Euler
discovered the connection
between the exponential
and trigonometric functions.

Theorem 12.6.2 shows the trigonometric functions could be similarly defined
in terms of the exponential function — if complex numbers were available.
This means one could bypass right triangles and unit circles when defining
sin(θ) and cos(θ).

Indeed, from the complex numbers and ez we could even obtain the deriva-
tive formulas for sin(θ) and cos(θ). For instance,

d

dθ
sin(θ) =

(
eiθ − e−iθ

2i

)′
=

ieiθ + ie−iθ

2i
=

eiθ + e−iθ

2
= cos(θ).

(That the familiar rules for differentiation extend to complex-valued functions
is justified in a course in complex variables.)
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Sketching ez

Magnitude and argument of

ex+iy

If z = x + iy, the evaluation of ez can be carried out as follows:

ez = ex+iy = exeiy = ex(cos(y) + i sin(y)).

The magnitude of ex+iy is ex and the argument of ex+iy is y.

EXAMPLE 2

Figure 12.6.3

Compute and sketch (a) e2+(π/6)i, (b) e2+πi, and (c) e2+3πi.

SOLUTION (a) e2+(π/6)i has magnitude e2 and argument π/6. (b) e2+πi has
magnitude e2 and argument π; it equals −e2. (c) e2+3πi has magnitude e2 and
argument 3π, so is the same number as the number in (b). The results are
sketched in Figure 12.6.3. �

The next example illustrates a typical computation in alternating currents.
Electrical engineers frequently use j as the symbol for i (so they can use i to
represent current).

EXAMPLE 3 Find the real part of 100ej(π/6)ejωt. Here t refers to time, ω
is a real constant related to frequency, and j is the mathematician’s i.
SOLUTION

100ej(π/6)ejωt = 100ej(π/6)+jωt

= 100ej(π/6+ωt)

= 100
(
cos
(π

6
+ ωt

)
+ i sin

(π

6
+ ωt

))
.

Thus

Re
(
100ej(π/6)ejωt

)
= 100 cos

(π

6
+ ωt

)
.

�

It is sometimes convenient to think of cos(θ) as Re
(
eiθ
)
. The next example

exploits this point of view.

EXAMPLE 4 Evaluate
∑∞

k=0
cos(kθ)

2k .
SOLUTION Recall that eikθ = cos(kθ)+i sin(kθ). Hence cos(kθ) = Re

(
eikθ
)
,

and we haveRecall the definition of ez.

∞∑
k=0

cos(kθ)

2k
=

∞∑
k=0

Re

(
eikθ

2k

)
= Re

(
∞∑

k=0

eikθ

2k

)
(12.6.3)
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To simplify the complex-valued expression inside the parentheses, notice that

eikθ

2k
=

(
eiθ

2

)k

.

Now, because
∣∣eiθ/2

∣∣ = 1/2 < 1, this “geometric” series converges with sum

1

1−
(

eiθ

2

) =
2

2− cos(θ)− i sin(θ)
=

2(2− cos(θ) + i sin(θ))

(2− cos(θ))2 + (sin(θ))2
. (12.6.4)

Inserting (12.6.4) as the sum of the series in (12.6.3) gives

∞∑
k=0

cos(kθ)

2k
= Re

(
∞∑

k=0

eikθ

2k

)
= Re

(
2(2− cos(θ) + i sin(θ))

5− 4 cos(θ)

)
=

2(2− cos(θ))

5− 4 cos(θ)
.

�

Summary

Using power series, we obtained the fundamental relation eiθ = cos(θ)+i sin(θ)
and showed that cos(θ) and sin(θ) can be expressed in terms of the exponential
function. Since ln(x) is the inverse of ex, it too is obtained from the exponential
function. We may define even xn, x > 0, in terms of the exponential function
as en ln(x). Similarly, ax, a > 0, can be defined as ex ln(a). These observations
suggest that the most fundamental function in calculus is ex, where x is real
or complex.
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EXERCISES for Section 12.6

In Exercises 1 to 6 sketch the numbers given and state their real and imaginary
parts.
1. e5πi/4

2. 5eπi/4

3. 2eπi/4 + 3eπi/6

4. e2+3i

5. eπi/6e3πi/4

6. 2eπi · 3e−πi/3

In Exercises 7 to 10 express the given numbers in the form reiθ for a positive real
number r and argument θ, where −π < θ ≤ π.
7. e2

√
2
− e2

√
2
i

8. 3
(
cos
(

π
4

)
+ i sin

(
π
4

))
9. 5

(
cos
(

π
6

)
+ i sin

(
π
6

))
· 3
(
cos
(

π
2

)
+ i sin

(
π
2

))
10. 7

(
cos
(

7π
3

)
+ i sin

(
7π
3

))
In Exercises 11 to 14 plot exp(z) for the given values of z:
11. z = 2
12. πi/2
13. 2− πi/3
14. −1 + 17πi/6

In Exercises 15 to 18 plot the given complex numbers:
15. exp(πi/4 + 3πi)
16. exp(1 + 9πi/4
17. exp(2− πi/3)
18. exp(−1 + 17πi/6)

19. Let z = ea+bi. Find (a) |z|, (b) z̄, (c) z−1, (d) Re(z), (e) Im(z), and (f) arg(z).
(In (f), assume a and b are positive.)

20. How far is exp(x + iy) from the origin?

21. How far is exp(x + iy) from the x-axis? From the y-axis?

22. For which values of a and b is limn→∞
(
ea+ib

)n = 0?

23. Find all complex numbers z such that ez = 1.
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24. Find all complex numbers z such that ez = −1. (Because there is no real
number r such that er = −1, the number −1 has no real logarithm. However, it has
an infinite number of complex logarithms, all situated on the y-axis.)

25.

(a) Find
∣∣e3+4i

∣∣.
(b) Plot the complex number e3+4i.

26.

(a) Plot all complex numbers of the form ex+4i, x real.

(b) Plot all complex numbers of the form e3+yi, y real.

27. If z lies on the line y = 1, where does exp(z) lie?

28. If z lies on the line x = 1, where does exp(z) lie?

29. In Claude Garrod’s Twentieth Century Physics, Faculty Publishing, Davis,
Calif., p. 107, there is the remark: “Using the fact that(

e−iω0t
)∗ (

e−iω0t
)

= 1,

we can easily evaluate the probability density for these standard waves.” Justify
this equation. ( In this text, z∗ denotes the conjugate of z and ω0 is real.)

30. Use the fact that 1 + cos(θ) + cos(2θ) + · · ·+ cos((n− 1)θ) is the real part of
1 + eθi + e2θi + · · ·+ e(n−1)θi to find a short formula for that trigonometric sum.

31. Find all z such that ez = 3 + 4i.

32. Assuming that ez1+z2 = ez1ez2 for complex numbers z1 and z2, obtain the
trigonometric identities for cos(A + B) and sin(A + B).

33. Evaluate
∞∑

k=0

cos(kθ)
k!

.

(First, show that the series converges (absolutely).)
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34. Evaluate
∞∑

k=0

sin(kθ)
k!

.

(First, show that the series converges.)

35. Evaluate
∞∑

k=1

sin(kθ)
k

.

(First, show that the series converges.)

36. Evaluate
∞∑

k=1

cos(kθ)
k

.

(First, show that the series converges (absolutely).)

37. This problem shows that if
∑∞

k=0 |zk| converges, so does
∑∞

k=0 zk.
Let zk = xk + iyk and assume that

∑∞
k=0 |zk| converges.

(a) Show that
∑∞

k=0 |xk| and
∑∞

k=0 |xk+1| both converge. (|a| ≤
√

a2 + b2)

(b) Show that
∑∞

k=0 xk and
∑∞

k=0 yk both converge.

(c) Show that
∑∞

k=0(xk + iyk) converges.

38. Let f(z) be a polynomial with real coefficients.

(a) Show that if f(a) = 0, then f(a) = 0. (This shows that roots of f occur in
conjugate pairs.)

(b) Show that ez = ez.

(c) Show that sin(z) = sin(z).

39. When z is real, | sin(z)| ≤ 1 and | cos(z)| ≤ 1. Do these inequalities hold for
all complex z?

40. Does the equation cos2(z) + sin2(z) = 1 hold for complex z?

41. Let
z =

1 + i√
2

.
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(a) Plot z, z2/2!, z3/3!, and z4/4!.

(b) Plot 1 + z + z2/2! + z3/3! + z4/4!, which is an estimate for exp
(
(1 + i)/

√
2
)
.

(c) Plot exp
(
(1 + i)/

√
2
)

on the xy plane.

42. An integral table lists
∫

xeax dx = eax (ax− 1) /a2. At first glance, finding∫
xeax cos(bx) dx may appear to be a much harder problem. However, by noticing

that cos(bx) = Re
(
eibx
)
, we can reduce it to a simpler problem. Following this ap-

proach, find
∫

xeax cos(bx) dx. (The formula for
∫

xeax dx holds when a is complex.)

43. In Section 4.1 we define cosh(x) = (ex + e−x) /2 and sinh(x) = (ex − e−x) /2.
We can use the same definitions when x is complex. In view of Theorem 12.6.2,
let us define sine and cosine for complex z by sin(z) =

(
eiz − e−iz

)
/(2i) and

cos(z) =
(
eiz + e−iz

)
/2. Establish the following links between the hyperbolic and

trigonometric functions:

(a) cosh(z) = cos(iz)

(b) sinh(z) = −i sin(iz)

44. Show that

(a) sin(z) = i sinh(iz).

(b) cos(z) = cosh(iz).

(c) cosh(z)2 − sinh(z)2 = 1

45. Sam is at it again: “I don’t need power series to define ez. I just write z as
x + iy and define ex+iy to be ex(cos(y) + i sin(y)). That’s all there is to it. If I call
this function E(z), then it’s easy to check that E(z1 + z2) = E(z1)E(z2). Moreover,
if z is real, then y = 0 and E(z) = ex, agreeing with our familiar exp(x).”

(a) Is Sam right?

(b) Does his E(z) obey the basic law of exponents, as he claims?

(c) Jane asks him, “But where did you get the idea for that definition? It seems
to float in out of thin air.” What is Sam’s answer?
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46.

Sam: I can show that eiθ = cos(θ) + i sin(θ) without using Taylor series.

Jane: That would be nice.

Sam: I differentiate the quotient eiθ/(cos(θ)+i sin(θ)) and get 0. So it’s a constant.
Then it’s easy to show the constant is 1. That does it.

Jane: But you used that the derivative of ez is ez.

Sam: I did, but that follows from the definition of ez as
∑∞

k=0 zk/k!, the only power
series needed.

Jane: You may be right, but once again why did you think of cos(θ) + i sin(θ)?

Check Sam’s calculations. Is his reasoning correct?

47. For which z is

(a) ez = e−z,

(b) eiz = e−ix

(c) sin(z) = 0.

48. Let z be a complex number and θ a real number. What is the geometric
relationship between z and eiθz? Experiment, conjecture, and explain.
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12.7 Fourier Series

In Section 12.1 we used sums of terms of the form axn, where n is a non-
negative integer and a is a number, to represent a function. This required a
function to have derivatives of all orders. Now, instead, we will use sums of
terms of the form a cos(kx) and b sin(kx), where a, b, and k are numbers. This
method applies to a much broader class of functions, even, for instance, the
absolute value function, f(x) = |x|, which is not differentiable at 0, and some
functions that are not even continuous. The technique, called Fourier Series,
is used in such varied fields as heat conduction, electric circuits, the theory of
sound and mechanical vibrations.

To listen to several tuning
forks, go to http://www.
onlinetuningfork.com/.

At first glance, the use of sine and cosine, which are periodic functions, may
seem a surprising choice. However, if you think in terms of sound, it is quite
plausible. Every tuning fork produces a pure pitch at a specific frequency.
With a collection of such devices, each at a different pitch, struck simultane-
ously, you can approximate the sound made by a band or an orchestra. Each
tuning fork corresponds to sin(kt) or cos(kt), where t is time. The one set
at concert A vibrates at the rate of 440 cycles per second, that is, 440 Hertz
(440 Hz). In this case the acoustic wave is expressed as sin (400 (2πt)), for, as
t increases by 1/400 second, the argument 400 (2πt) increases by 2π, enabling
the function to complete one cycle.

Periodic Functions

The function cos(x) (and sin(x)) has period 2π, that is, cos(x + 2π) = cos(x).
Changing the input by 2π does not change the output. It follows that cos(x−
2π) = cos(x), cos(x + 4π) = cos(x). Moreover, for any integer n, cos(x) has
n(2π) as a period. A function’s natural period, also called the period is its
shortest period. When we say “cos(x) has period 2π” we are stating that the
natural period of cos(x) is 2π.

EXAMPLE 1 Find the period of (a) cos(3πx), (b) cos(kπx/L), where k is
a positive integer and L is a positive number.
SOLUTION In each case we ask, “How much must x change in order for the
argument (the input) to change by 2π?”

(a) For 3πx to change by 2π, we solve the equation 3πx = 2π, obtaining
x = 2/3. Thus cos(3πx) has period 2/3.

(b) For cos(kπx/L) the reasoning used in (a) leads us to conclude the period
is 2L/k.

Note that in (b) the larger L is, the longer the period. Also, the larger k is,
the shorter the period. For each k, 2L is among its periods. �
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Fourier Series for Functions with Period 2π

We first treat the familiar case of functions that have period 2π. Then we
consider the general case, where the period is 2L, for any positive number L.

The formulas for ak and bk

are known as “Euler’s
formulas.” Euler published
them in 1777, but Fourier

was unaware of them.

Let f(x) have period 2π. Its values are determined by its values on any
interval of length 2π. We choose the interval (−π, π] rather than [0, 2π) to
simplify some computations that we will encounter momentarily.

Let f(x) be a function of period 2π. The Fourier Series associated with
this function is

a0

2
+

∞∑
k=1

(ak cos (kx) + bk sin (kx)) (12.7.1)

whereNote that the formula for
ak includes the case for a0.

ak =
1

π

π∫
−π

f(x) cos (kx) dx k = 0, 1, 2, . . . (12.7.2)

bk =
1

π

π∫
−π

f(x) sin (kx) dx k = 1, 2, . . . . (12.7.3)

(This assumes the integrals in (12.7.2) and (12.7.3) exist.)

After we compute two Fourier series, we will show why the coefficients are
given by the integrals in (12.7.2) and (12.7.3).

The numbers ak and bk are called the FourierConstant term is a0/2 coefficients for f(x). The
formula for a0 reduces to a0 = 1

π

∫ π

−π
f(x) dx. This means that the constant

term a0/2 is the average value of the function f(x) over one period. Note that
the formula for ak in (12.7.2) also holds for k = 0 because the constant term in
(12.7.1) is a0/2. (The 2 was included in (12.7.1) so (12.7.2) would hold when
k = 0.)

EXAMPLE 2 Find the Fourier series associated with the function defined
by

f(x) =

{
−1 −π < x ≤ 0

1 0 < x ≤ π.

Because f(x) is (almost) an
odd function, we expect

only sines to appear in its
Fourier series.

To make f(x) have period 2π, just repeat the graph on every interval of the
form [−π +2nπ, π +2nπ). The graph of f(x) is shown in Figure 12.7.1(a) and
the extension of f(x) is shown in Figure 12.7.1(b).
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x
K5 p K4 p K3 p K2 p Kp p 2 p 3 p 4 p 5 p

K1

1

(a)

x
K5 p K4 p K3 p K2 p Kp p 2 p 3 p 4 p 5 p

K1

1

(b)

Figure 12.7.1

SOLUTION

a0 = 1
π

∫ π

−π
f(x) dx

= 1
π

∫ 0

−π
f(x) dx + 1

π

∫ π

0
f(x) dx

= 1
π

∫ 0

−π
−1 dx + 1

π

∫ π

0
1 dx

= 1
π
(−π) + 1

π
(π) = 0.

Similarly, for k ≥ 1,
ak = 1

π

∫ π

−π
f(x) cos(kx) dx

= 1
π

∫ 0

−π
f(x) cos(kx) dx + 1

π

∫ π

0
f(x) cos(kx) dx

= 1
π

∫ 0

−π
(− cos(kx)) dx + 1

π

∫ π

0
cos(kx) dx

= 1
π
− sin(kx)

k

∣∣∣0
−π

+ 1
π

sin(kx)
k

∣∣∣π
0

= 0 + 0 = 0

and
bk = 1

π

∫ π

−π
f(x) sin(kx) dx

= 1
π

∫ 0

−π
f(x) sin(kx) dx + 1

π

∫ π

0
f(x) sin(kx) dx

= 1
π

∫ 0

−π
(− sin(kx)) dx + 1

π

∫ π

0
sin(kx) dx

= 1
π

cos(kx)
k

∣∣∣0
−π

+ 1
π
− cos(kx)

k

∣∣∣π
0

= 1
π

(
1−cos(−kπ)

k

)
+ 1

π

(
− cos(kπ)+1

k

)
Because cos(−kπ) = cos(kπ), we have

bk = 1
kπ

((1− cos(kπ)) + (1− cos(kπ))) = 2(1−cos(kπ))
kπ

.

When k is even, 1− cos(kπ) = 1− 1 = 0. And, when k is odd, 1− cos(kπ) =
1− (−1) = 2. Thus

bk =

{
0 when k is even
4

kπ
when k is odd.

The Fourier Series (12.7.1) in this case has only terms involving sin(kx)
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with k odd. It is

4

π
sin(x) +

4

3π
sin(3x) +

4

5π
sin(5x) + . . . .

In particular, when x = π/2, f(x) = 1 and we have

1 = 4
π

sin
(

(π
2

)
+ 4

3π
sin
(

3π
2

)
+ 4

5π
sin
(

5π
2

)
+ . . .

1 = 4
π
− 4

3π
+ 4

5π
− . . .

Thus π
4

= 1− 1
3

+ 1
5
− . . . .

This result was obtained previously in Exercise 22 in Section 12.4 with the aid
of the Maclaurin series for arctan(x). �

The fact that the function f(x) in Example 2 is defined on a full period is
quite convenient. In many applications the function is given only on one half
of the period. For example, f(x) = x for 0 ≤ x < π (see Figure 12.7.2(a)).
Because f(x) is not periodic, the first step is to replace f(x) with a function
g(x) that has period 2π and coincides with f(x) on its domain, that is, on
[0, π). Two possible periodic extensions of f(x) are shown in Figure 12.7.2(b)
and (c). Both have period 2π; one is odd, the other even.

(a) (b) (c)

Figure 12.7.2

EXAMPLE 3 Find the Fourier series of the triangular wave with period
2π shown in Figure 12.7.2(c).
SOLUTION Let T (x) denote the triangular wave. To compute the Fourier
series of T (x) we need to know the definition of T (x) on an interval with length
2π.T (x) = |x| for x in [−π, π)

T (x) =

{
x for 0 ≤ x ≤ π
−x for −πL [x] < 0

.

Because T (x) is an even function, bk = 0 for k = 1, 2, . . . .If T (x) = T (−x), then∫ π
−π T (x) dx =
2
∫ π
0 T (x) dx.

Then

a0 = 1
π

∫ π

−π
T (x) dx = 2

π

∫ ππ

0
x dx = 1

π
x2|π0 = π.
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The coefficients of the cosine terms are

ak =
1

π

π∫
−π

T (x) cos(kx) dx =
2

π

π∫
0

x cos(kx) dx because T (x) cos(kx) is even

=
2

π

 x

k
sin(kx)

∣∣∣π
0
− 1

k

π∫
0

sin(kx) dx

 integrate by parts

=
2

π

(
0 +

1

k2
cos(kx)

∣∣∣∣π
0

)
sin(kπ) = 0 for all integers k

=
2

k2π
(cos(kπ)− 1) =

2((−1)k − 1)

k2

When k is an even integer, ak = 2((−1)k − 1)/(k2π) = 0. And, when k is an
odd integer, ak = 2((−1)k − 1)/(kπ)2 = −4/(k2π).

Then, the Fourier series for the triangular wave is

T (x) =
π

2
− 4

π

(
cos(x) +

1

9
cos(3x) +

1

25
cos(5x) + . . .

)
. (12.7.4)

(a) (b) (c)

Figure 12.7.3

�
Figure 12.7.3 shows the partial Fourier sums for the triangular wave with

1, 2, and 5 terms. In an advanced calculus course it is proved that the partial
sums converge to the function for every real number. As is easy to check,
replacing x by 0 in (12.7.4) shows the sum of the reciprocals of the squares of
all the positive odd integers is π2/8.

The Origins of the Formulas for ak and bk

We will derive the formulas for the Fourier coefficients in the special case
when the period is 2π. Exercises 12 and 13 outline the similar argument for
the general case when the period is 2L.
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The keys are the following three integrals:
π∫

−π

sin(kx) sin(mx) dx =

{
π if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

π∫
−π

cos(kx) cos(mx) dx =

{
π if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

π∫
−π

sin(kx) cos(mx) dx = 0 for any m = 1, 2, . . . and any k = 1, 2, . . . .

The third one is immediate, for the integrand, being the product of an odd
function and an even function, is an odd function. The other two depend on
trigonometric identities, and were developed in Exercises 17 to 19 inSection 8.5.

The formula for am, m = 1, 2, . . . , is found by multiplying f(x) by cos(mx)
and integrating term-by-term over one period of length 2π:We are assuming it’s legal

to switch the order,
integrate term-by-term,

then sum:
“
∫ π
−π

∑∞
k=1 =

∑∞
k=1

∫ π
−π”.

π∫
−π

f(x) cos(mx) dx

=

π∫
−π

(
a0

2
+

∞∑
k=1

(ak cos(kx) + bk sin(kx))

)
cos(mx) dx

=
a0

2

π∫
−π

cos(mx) dx

+
∞∑

k=1

ak

π∫
−π

cos(kx) cos(mx) dx + bk

π∫
−π

sin(kx) cos(mx) dx

 .

Each integral in this last expression is zero — except the coefficient of am.
This gives the equation

π∫
−π

f(x) cos(mx) dx = am

π∫
−π

(cos(kx))2 dx = amπ.

Solving for am, we find that

am =
1

π

π∫
−π

f(x) cos(mx) dx.

The derivation of the formulas for a0 and for bk are similar. (See Exercises 12
and 13.)
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Remarks on the Underlying Theory

Just as a Taylor series associated with a function may not represent the func-
tion, the Fourier series associated with a function may not represent it, even
if the function is continuous. However, there are several theorems that assure
us that for many functions met in applications the series does converge to the
function. First, a couple of definitions.

Recall that the right-hand limit of f(x) at a is defined as the limit of f(x)
as x approaches a through values larger than a, and is denoted limx→a+ f(x).
Similarly, the left-hand limit, denoted limx→a− f(x), is defined as the limit of
f(x) as x approaches a through values smaller than a. If both these limits
exist at a and are different, we say that the function has a “jump discontinuity
at a.”

Theorem 12.7.1. Let f(x) have period 2L. Assume that in the interval
[−L, L) (a) f(x) is differentiable exept at a finite number of points, where
there are jump discontinuities, and (b) at L the right-hand limit of f(x) exists
and at −L the left-hand limit of f(x) exists. Then,

I. if the function is continuous at a, its associated Fourier series converges
to f(a).

II. if f(x) has a jump discontinuity at a, then the series converges to the
average of the left- and right-hand limits at a.

III. at the endpoints, L and −L, the Fourier series converges to the average
of limx→−L+ f(x) and limx→L− f(x).

Note that there is no mention of the existence of any second-order, or
higher-order derivatives.

The name Joseph Fourier (1768—1830) is attached to trigonometric series be-
cause he explored and applied them in his classic Analytic Theory of Heat,
published in 1822. He came upon the formulas for the coefficients by an in-
direct route, starting with the Maclaurin series for sin(x) and cos(x). For
the details, see Morris Kline’s Mathematical Thought from Ancient to Modern
Times, Oxford University Press, New York, 1972 (especially pages 671– 675),
but see further references in its index. In the nineteenth and twentieth cen-
turies mathematicians developed a variety of conditions that implied the series
converges to the function. The most recent is due to Lennart Carleson (1928–
) in 1966, which settled a famous conjecture.
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Summary

While Taylor Series are useful for dealing with a function that is very smooth
(having derivatives of all orders), Fourier series can represent a function that
is not even continuous. While the coefficients in Taylor series are expressed in
terms of derivatives, those in Fourier series are expressed in terms of integrals.
Even non-periodic functions can be represented by Fourier series. For instance,
to deal with x2 on, say, [0, 100) just extend its domain to the whole x-axis by
defining a function of period 100 that agrees with x2 on [0, 100).
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EXERCISES for Section 12.7

The following table of integrals will be helpful in evaluating some of the integrals in
these exercises.∫

x sin(ax) dx = 1
a2 sin(ax)− x

a cos(ax) + C∫
x cos(ax) dx = 1

a2 cos(ax) + x
a sin(ax) + C∫

x2 sin(ax) dx = 2
a3 cos(ax) + 2x

a2 sin(ax)− x2

a cos(ax) + C∫
x2 cos(ax) dx = −2

a3 sin(ax) + 2x
a2 cos(ax) + x2

a sin(ax) + C∫
sin(x) sin(ax) dx = 1

2(a−1) sin((a− 1)x)− 1
2(a+1) sin((a + 1)x) + C∫

sin(x) cos(ax) dx = 1
2(a−1) cos((a− 1)x)− 1

2(a+1) cos((a + 1)x) + C∫
cos(x) sin(ax) dx = −1

2(a−1) cos((a− 1)x)− 1
2(a+1) cos((a + 1)x) + C∫

cos(x) cos(ax) dx = 1
2(a−1) sin((a− 1)x) + 1

2(a+1) sin((a + 1)x) + C∫
ex sin(ax) dx = 1

1+a2 ex sin(ax)− a
1+a2 ex cos(ax) + C∫

ex cos(ax) dx = a
1+a2 ex sin(ax) + 1

1+a2 ex cos(ax) + C

In Exercises 1 to 8 give the period of the function
1. tan(x)

2. 2/ cos2(x)

3. sin(3x)

4. sin(2πx)

5. sin(x/5)

6. cos(2πx/5)

7. sin(πx/3)

8. sin(x/3)

9. Let f(x) = x2 for x in [−π, π) and have period 2π.

(a) Find f(π), f(2π), f(3π), f(−π), f(−2π), and f(−3π).

(b) Graph f(x) for x in [−4π, 4π].

(c) Why will the Fourier series for f(x) have no sine terms?

(d) Find the Fourier series for f(x).

10. Let f(x) = −x2 for x in [−π, 0) and x2 for x in [0, π) and have period 2π.

(a) Find f(π), f(2π), f(−π), and f(−2π).

(b) Graph f(x) for x in [−4π, 4π].

(c) Show that f is “almost” an odd function. For what x is f(x) 6= −f(x)?
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(d) Show that the Fourier series of f(x) is

2
π2 − 4

π
sin(x)−π sin(2x)+2

9π2 − 4
27π

sin(3x)−π

2
sin(4x)+2

25π2 − 4
125π

sin(5x)−π

3
sin(6x)+· · · .

(e) Why are there no cosine terms in the series?

11. Let f(x) = x for x in [−π, π) and have period 2π. (This function is known as
a sawtooth function.)

(a) Find f(π), f(2π), f(−π), and f(−2π).

(b) Graph f(x) for x in [−4π, 4π].

(c) Show that the Fourier series of f(x) is

2 sin(x)− sin(2x) +
2
3

sin(3x)− 1
2

sin(4x) + · · · .

(d) What does the series converge to at the discontinuities of f(x)?

Exercises 12 and 13 complete the derivation of the Fourier series associated with a
function with period 2π. That is, of (12.7.1) with coefficients given by (12.7.2) and
(12.7.3).
12. Derive (12.7.2).

13. Derive (12.7.3).

Exercises 14 to 16 develop the formulas for the Fourier Series for a function with
period 2L (instead of 2π).
14. Show that

L∫
−L

sin
(

kπx

L

)
sin
(mπx

L

)
dx =

{
L if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

.

(Use the trigonometric identity sin(u) sin(v) = 1
2 (cos(u− v)− cos(u + v)).)

15. Show that

L∫
−L

cos
(

kπx

L

)
cos
(mπx

L

)
dx =

{
L if m = k, k = 1, 2, . . .
0 if m 6= k, k = 1, 2, . . .

.
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(Use the trigonometric identity cos(u) cos(v) = 1
2 (cos(u− v) + cos(u + v)).)

16. Show that
L∫

−L

sin
(

kπx

L

)
cos
(mπx

L

)
dx = 0.

(While you could use a trigonometric identity, this exercise can be completed at a
glance.)

Exercises 17 to 20 explore the fact that any integer multiple of the natural period
of a function is also a period of the function.
17. Find the Fourier series of f(x) = sin(x), viewed as a function of period 2π.

18. Find the Fourier series of f(x) = sin(x), viewed as a function of period 4π.

19. Find the Fourier series of f(x) = cos(2x), viewed as a function of period π.

20. Find the Fourier series of f(x) = cos(2x), viewed as a function of period 4π.

In Exercises 21 to 30, (a) sketch at least two periods of the function, (b) compute
the Fourier series of the indicated function, and (c) indicate any points where the
function and its Fourier series do not agree. (In each case assume the function is
periodic.)
21. f(x) = x2, −1 ≤ x < 1 (period 2)

22. f(x) = x2, −2 ≤ x < 2 (period 4)

23. f(x) =
{

0 for −1 ≤ x < 0
1 for 0 ≤ x < 1

(period 2)

24. f(x) =
{

1 for −1 ≤ x < 0
0 for 0 ≤ x < 1

(period 2)

25. f(x) =
{

0 for −1 ≤ x < 0
x for 0 ≤ x < 1

(period 2)

26. f(x) =
{

1 for −1 ≤ x < 0
x for 0 ≤ x < 1

(period 2)

27. f(x) =
{

0 for −π ≤ x < 0
sin(x) for 0 ≤ x < π

(period 2π)

28. f(x) =
{

1 for −π ≤ x < 0
cos(x) for 0 ≤ x < π

(period 2π)

29. f(x) =
{

0 for −2π ≤ x < 0
sin(x) for 0 ≤ x < 2π

(period 4)

30. f(x) =
{

1 for −2π ≤ x < 0
cos(x) for 0 ≤ x < 2π

(period 4)

In Exercises 31 to 36, (a) extend the given function to be an odd periodic function
with period 2L, (b) compute the Fourier series of the function found in (a), (c) graph
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at least two periods of the first three non-zero terms of the Fourier series found in
(b).
31. f(x) = 1, 0 ≤ x < 1 (L = 1)
32. f(x) = x, 0 ≤ x < 1 (L = 1)
33. f()x) = x2, 0 ≤ x < 1 (L = 1)
34. f(x) = |x− 1|, 0 ≤ x < 2 (L = 2)
35. f(x) = sin(x), 0 ≤ x < π (L = π)
36. f(x) = cos(x), 0 ≤ x < π (L = π)

In Exercises 37 to 42, (a) extend the given function to be an even periodic function
with period 2L, (b) compute the Fourier series of the function found in (a), (c)
graph at least two periods of the function corresponding to the Fourier series found
in (b).
37. f(x) from Exercise 31
38. f(x) from Exercise 32
39. f(x) from Exercise 33
40. f(x) from Exercise 34
41. f(x) from Exercise 35
42. f(x) from Exercise 36

43. Show that any function, f(x), can be written as the sum of an even function
(feven) and an odd function (fodd). (Write f(x) = feven(x) + fodd(x). Use the prop-
erties of feven and fodd to express f(−x) in terms of feven(x) and fodd(x).)

44. Write each of the following functions as the sum of an even function and an
odd function.

(a) f(x) = x2 + 2x

(b) f(x) = x3 − 2x

(c) f(x) = x3 + 3x2 − 2x + 1

(d) f(x) = sin(4x)− 3x3

(e) f(x) = |x| sin(x)

(f) f(x) = |x| cos(x)

(g) f(x) = (sin(x) + 1)3

(h) f(x) = (cos(x) + 1)3

45. Let f(x) = x for x in [−1, 1) and have period 2. (This function is known as a
sawtooth function.)

April 22, 2012 Calculus



§ 12.7 FOURIER SERIES 1083

(a) Find f(1), f(2), f(−1), and f(−2).

(b) Graph f(x) for x in [−4, 4].

(c) Find the Fourier series of f(x).

(d) Why are there no sine terms in the Fourier series?

(e) What is the average value of f(x) over any interval of length 2π?

(f) What does the series converge to at the jump discontinuities?

(g) How does this Fourier series compare with the one in Exercise 11?

46. In Section 11.6, Example 3, it is claimed that the series

cos(x)
12

+
cos(2x)

22
+

cos(3x)
32

+ · · ·+ cos(kx)
k2

+ · · ·

converges to 1
12(3x2 − 6πx + 2π2) for 0 ≤ x ≤ 2π. Use Fourier series to verify this

claim. (Note that this is a closed interval. What happens at the endpoints?)

47. Let f(x) be a periodic function with period 2L.

(a) Show that
∫ 2L
0 f(x) dx =

∫ L
−L f(x) dx.

(b) Show that
∫ 0
−2L f(x) dx =

∫ L
−L f(x) dx.

(c) Show that
∫ a+2L
a f(x) dx =

∫ L
−L f(x) dx for any number a.

Just as the complex numbers helped expose a close tie between the exponential and
trigonometric functions, they also reveal a relation between power series and Fourier
series. Exercise 48 helps to make this connection.

48. A Taylor series
∑∞

k=0 akz
k does not look like a Fourier series. However, when

ak is written as bk +ick and z is expressed as r(cos(θ)+i sin(θ)), where r is constant,
the connection becomes clear. To check that this is so, write the series in the form
A + Bi where A and B are real. What two Fourier series appear as the real and
imaginary parts arise from these manipulations?

Calculus April 22, 2012



1084 CHAPTER 12 APPLICATIONS OF SERIES

12.S Chapter Summary

The Taylor polynomials first encountered in Section 5.5 suggested the power
series associated with a function that has derivatives of all orders at a, namely

∞∑
k=0

f (k)(a)

k!
(x− a)k (12.S.1)

which certainly converges when x is a. It may even converge for other values
of x, but not necessarily to f(x). For the common functions ex, sin(x), and
cos(x) the corresponding power series does converge to the function for all
values of x.

The error in using a front end up through the power (x − a)n to estimate
f(x) is given by Lagrange’s formula,

f(x)−
n∑

k=0

f (k)(a)

k!
(x−a)k =

f (n+1)(c)

(n + 1)!
(x−a)n+1 for some c between x and a.

(12.S.2)
For some functions, such as tan(x), it is not easy to find the kth derivative.

So, we should be glad that ex, sin(x), and cos(x) have such convenient higher
derivatives.

Replace x by −x2. One can obtain a few terms of the Maclaurin series for tan(x) by dividing
the series for sin(x) by the series for cos(x). The series for 1/(1 + x2) is easily
found by massaging the sum of the geometric series 1/(1−x) = 1+x+x2+. . . .
Integration of that series yields painlessly the Maclaurin series for arctan(x).

Each power series
∑∞

k=0 ak(x − a)k has a radius of convergence, R. For
|x− a| < R, the series converges absolutely and for |x− a| > R the series does
not converge. If it converges for all x, then R =∞. For |x− a| < R, one may
safely differentiate and integrate a series, producing new series.

Estimating an integrand f(x) by the front end of a power series, we can

then estimate
∫ b

a
f(x) dx. Also, power series are of use in finding indeterminate

limits of the type zero-over-zero. that is, limx→0
f(x)
g(x)

, where both limx→0 f(x) =

0 and limx→0 g(x) = 0.
Maclaurin series, combined with complex numbers, exposed a fundamental

relation between exponential and trigonometric functions:

eiθ = cos(θ) + i sin(θ).

Other important truths, not covered in this chapter, are revealed with the
aid of complex numbers. For instance, if we allow complex coefficients, every
polynomial can be written as the product of first-degree polynomials, thus
simplifying the partial fractions of Section 8.4. Complex numbers can also
help us find the radius of convergence. For instance, what is the radius of
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Function Maclaurin Series R How Found?
ex

∑∞
k=0

xk

k! ∞ Taylor’s Theorem
sin(x)

∑∞
k=0

(−1)kx2k+1

(2k+1)! ∞ Taylor’s Theorem

cos(x)
∑∞

k=0
(−1)kx2k

(2k)! ∞ Taylor’s Theorem
1

1−x

∑∞
k=0 xk 1 Geometric Series

ln(1 + x)
∑∞

k=1(−1)k+1 xk

k 1 Integrate Geometric Series
arctan(x)

∑∞
k=0(−1)k x2k+1

2k+1 1 Integrate Geometric Series
arcsin(x) x + 1

2
x3

3 + 1·3
2·4

x5

5

+1·3·5
2·4·6

x7

7 + · · · 1 Integrate Geometric Series
(1 + x)r 1 + rx + r(r−1)

2! x2

+ r(r−1)(r−2)
3! x3 + · · · 1 Taylor’s Theorem

1
(1−x)2

∑∞
k=0 kxk−1 1 Differentiate Geometric Series

Table 12.S.1

convergence of the Taylor series in powers of x− 3 associated with 1/(1+x2)?
Answer: it is the distance from the point (3, 0) to the nearest complex number
at which 1/(1 + x2) “blows up,” that is, when 1 + x2 = 0. This occurs when
x is i or −i, both of which, by the Pythagorean Theorem, are at a distance√

12 + 32 =
√

10 from (3, 0). So, R =
√

10.

The final section introduced Fourier series. In contrast to Taylor series, its
coefficients are given by integrals, rather than by derivatives. Consequently,
Fourier series apply to a larger class of functions. However, this method applies
directly only to periodic functions. In the case of a non-periodic function, one
restricts the domain to an interval (−L, L) and extends the function to have
period 2L

SHERMAN: Moved from
Chapter 1 Summary - find
optimal location in Chapter
12.
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Isaac Newton, Area, Logarithms, and Geometric Series
The area under the curve y = 1/(1 + x) above the interval [0, c], when c is
positive, is approximated by c−c2/2+ · · ·±cn/n. When c is negative, the area
above the interval [c, 0] is approximated by −(c + c2/2 + c3/3 + · · ·+ cn/n).

When he was a student, Isaac Newton calculated the area under the curve
y = 1/(1+x) and above the intervals [−0.1, 0] (c = −0.1) and [0, 0.1] (c = 0.1)
to 53 decimal places. See Figure 12.S.1. In Chapter 12 we will see that the

first area equals (0.1)− (0.1)2

2
+ (0.1)3

3
− (0.1)4

4
+ (0.1)5

5
− · · · . The · · · at the end

mean that the more terms you include in the sum, the closer you get to the

exact area. The area above [0.9, 1] is (0.1) + (0.1)2

2
+ (0.1)3

3
+ (0.1)4

4
+ (0.1)5

5
+ · · · .

When you examine the manuscript you can follow Isaac’s orderly calcula-
tions, done with a quill pen, not with a calculator or any other computational
aid. (Notice the evidence in the manuscript that he found — and corrected —
an error in the value of (0.1)23/23.)

In Chapter 6 you will learn that the two areas are ln(1+ c) and − ln(1− c),
respectively. (See Exercises 29 and 30 in Section 6.5.) The connection between
the geometric series and logarithms will become clear in Chapter 12. (See
Exercise 2 in Section 12.7.)

EXERCISES for 12.S

1. What are the polar coordinates of ex+iy?

Exercise 2 provides additional detail for the historical discussion (see page 1086)
about Newton’s calculation of the area under a hyperbola to more than 50 decimal
places. (See also Exercises 29 and 30 in Section 6.5.)
2. Let c be a positive constant.

(a) Show that the area under the curve y = 1/(1 + x) above the interval [0, c] is

−
∞∑

k=1

(−c)k

k
.

(b) Show that the area under the curve y = 1/(1 + x) above the interval [−c, 0] is
∞∑

k=1

ck

k
.

3. As pointed out by Frank Samaniego, the following problem arises in statistics.
Let a1, a2, a3, . . . approach a. Show that limn→∞ (1 + an/n)n is ea. (Show that its
natural natural logarithm approaches a.)

4. The integral
∫ 2π
0

1−cos(x))
x dx occurs in the theory of antennas.

(a) Show that it is not an improper integral.
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Figure 12.S.1 Excerpt from Isaac Newton’s student notebook showing his calculation of
the areas under the graph of y = 1/(1 + x) above the intervals [−0.1, 0.0] and [0.0, 0.1].
This manuscript is provided courtesy of the Cambridge University Library.
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(b) Show that there is a continuous function whose domain is [0, 2π] that coincides
with the integrand when x is not 0.

(c) The integrand does not have an elementary antiderivative. How many terms
are needed in the Maclaurin series for the integrand to obtain an approxima-
tion to the integral that is accurate to 3 decimal places?

Exercises 5 to 7 use complex numbers to find the average value of the logarithm of a
certain function. Exercise 5 is related to Exercise 90 on page 782 and to Exercise 58
on page 1060.
5. Let a point O be a distance a 6= 1 from the center of a unit circle.

(a) Show that the average value of the (natural) logarithm of the distance from 0̧
to points on the circumference is

1
2π

2π∫
0

1
2

ln(1 + a2 − 2a cos(θ)) dθ.

(b) Spend at least three minutes, but at most 5 minutes, trying to evaluate the
integral in (a).

6. This algebraic exercise is needed in Exercise 7. Let z0, z1, . . . , zn−1 be the n
nth roots of 1. Then it is shown in an algebra course that

(z − z0)(z − z1)(z − z2) · · · (z − zn−1) = zn − 1.

Check that this equation holds when n is (a) 2, (b) 3, (c) 4.
7. Let z0, z1, . . . , zn−1 be the n nth roots of 1.

(a) Why is
1
n

n−1∑
i=0

ln |a− zi| an estimate of the average distance?

(b) Show that the average in (a) equals

1
n

ln |an − 1|. (12.S.3)

(c) If 0 < a < 1, show that the limit of (12.S.3) as n→∞ is 0.

(d) The case when a = 1 is not covered by parts (c) and (d). In this case, choose
Q to be a point on the unit circle whose polar angle is not a rational multiple
of π. (So no zi coincides with Q.) Then argue as in parts (c) or (e).

(e) If a > 1, show that the limit of (12.S.3) as n→∞ is ln(a).
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(f) Use the results in (c) and (d) to evaluate the integral in Exercise 5(a).

8. Find

(a) limx→∞
xex

ex2

(b) limx→0
x(e

√
x−1)

ex2−1

9. Does
∑∞

n=1

(
1− cos

(
1
n

))
converge or diverge? Explain.

10. Assume that f(x) has a continuous fourth derivative. Let M4 be the maximum
of
∣∣f (4)(x)

∣∣ for x in [−1, 1]. Show that∣∣∣∣∣∣
1∫

−1

f(x) dx− f

(
1√
3

)
− f

(
−1√

3

)∣∣∣∣∣∣ ≤ 7M4

270
.

(Use the representation f(x) = f(0)+f ′(0)x+f ′′(0)x2/2+f (3)(0)x3/6+f (4)(c)x4/24,
where c depends on x.)

11. Justify this statement, found in a biological monograph:

Expanding the equation

a · ln(x + p) + b · ln(y + q) = M,

we obtain

a

(
ln(p) +

x

p
− x2

2p2
+

x3

3p3
− · · ·

)
+b

(
ln(q) +

y

q
− y2

2q2
+

y3

3q3
− · · ·

)
= M.

12. Estimate
∫ 3
1 e−x2

dx using a Taylor series at x = 2 associated with e−x2
.

13. Explain why both cos(x) and sin(x) can be expressed in terms of the expo-
nential function ez.

14. State some of the advantages of complex numbers over real numbers.

15. Why is the “radius of convergence” called “the radius of convergence” rather
than the “interval of convergence.”

16. Starting with 1 + x + x2 + · · · + xn + · · · = 1
1−x obtain the Maclaurin series

for
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(a) 1/(1− x)2

(b) 1/(1 + x)

(c) 1
1+x2

(d) ln(1 + x)

(e) arctan(x)

17. Find the radius of convergence for each series in Exercise 16

18. Show that each series in Exercise 16 converges to the given function.

19. Sam says, “According to their book, if I multiply the Maclaurin series for ex

by the one for e−x I should get the Maclaurin series for exe−x, which is just 1. I
don’t believe that the product could be that simple.” Multiply enough terms of the
two series to calm Sam down.

20.

(a) Graph the circle r =
√

2 cos(θ).

(b) Show that the function f(z) = z2 maps the circle in (a) into the cardioid
r = 1 + cos(θ).

21. Suppose f is a function with the property that f (n)(x) is “small” in the sense
that |f (n)(x)| ≤ |(x + 100)n| for all x. Show that the Maclaurin series represents
f(x) for all x.

Exercises 22 and 23 treat the complex logarithms of a complex number. They show
that z = ln(w) is not single-valued.
22. Let w be a non-zero complex number. Show that there are an infinite number
of complex numbers z such that ez = w. (Use Euler’s formula.)
23. (See Exercise 22.) When ez = w, we write z = ln(w) although ln(w) is not
a uniquely defined number. If b is a non-zero complex number and q is a complex
number, define bq to be eq ln(b). Since ln(b) is not unique, bq is usually not unique.
List all possible values of (a) (−1)i, (b) 101/2, (c) 103,
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Calculus is Everywhere # 15

Sparse Traffic

Customers arriving at a checkout counter, cars traveling on a one-way road,
raindrops falling on a street and cosmic rays entering the atmosphere all illus-
trate one mathematical idea — the theory of sparse traffic involving indepen-
dent events. We will develop the mathematics, which is the basis of the study
of waiting time – whether customers at the checkout counter or telephone calls
at a switchboard.

First we sketch a bit of probability theory.

Some Probability Theory

The probability that an event occurs is measured by a number p, which can
be anywhere from 0 up to 1; p = 1 implies the event will certainly occur
with negligible exceptions and p = 0 that it will not occur with negligible
exceptions. The probability that a penny turns up heads is p = 1/2 and that
a die turns up 2 is p = 1/6. (The phrase “certainly occurs with negligible
exceptions” means, roughly, that the times the event does not occur are so
rare that we may disregard them. Similarly, the phrase “certainly will not
occur with negligible exceptions” means, roughly, that the times the event
does not occur are so rare that we may disregard them.)

The probability that two events that are independent of each other both
occur is the product of their probabilities. For instance, the probability of
getting heads when tossing a penny and a 2 when tossing the die is p =(

1
2

) (
1
6

)
= 1

12
.

The probability that exactly one of several mutually exclusive events occurs
is the sum of their probabilities. For instance, the probability of getting a 2
or a 3 with a die is 1

6
+ 1

6
= 1

3
.

With that thumbnail introduction, we will analyze sparse traffic on a one-
way road. We will assume that the cars enter the traffic independently of each
other and travel at the same speed. Finally, to simplify matters, we assume
each car is a point.

The Model

To construct our model we introduce the functions P0, P1, P2, . . . , Pn, . . . where
Pn(x) shall be the probability that any interval of length x contains exactly n
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cars (independently of the location of the interval). Thus P0(x) is the proba-
bility that an interval of length x is empty. We shall assume that

P0(x) + P1(x) + · · ·+ Pn(x) + · · · = 1 for any x.

We also shall assume that P0(0) = 1 (“the probability is 1 that a given point
contains no cars”).

For our model we make the following two major assumptions:

(a) The probability that exactly one car is in any fixed short section of the
road is approximately proportional to the length of the section. That is,
there is some positive number k such that∆, pronounced del-t e, is the

Greek letter corresponding
to the Latin “D”.

lim
∆x→0

P1(∆x)

∆x
= k.

(b) The probability that there is more than one car in any fixed short section
of the road is neglible, even when compared to the length of the section.
That is,

lim
∆x→0

P2(∆x) + P3(∆x) + P4(∆x) + · · ·
∆x

= 0. (C.15.1)

We shall now put assumptions (a) and (b) into more useful forms. If we
let

ε =
P1(∆x)

∆x
− k (C.15.2)

The Greek letter ε,
pronounced ep-s e-l en,

corresponds to the Latin
letter “e”

. where ε depends on ∆x, assumption (a) tells us that lim∆x→0 ε = 0. Thus,
solving (C.15.2) for P1(∆x), we see that assumption (a) can be phrased as

P1(∆x) = k∆x + ε∆x (C.15.3)

where ε→ 0 as ∆x→ 0.
Since P0(∆x) + P1(∆x) + · · ·+ Pn(∆x) + · · · = 1, assumption (b) may be

expressed as

lim
∆x→0

1− P0(∆x)− P1(∆x)

∆x
= 0. (C.15.4)

In light of assumption (a), equation (C.15.4) is equivalent to

lim
∆x→0

1− P0(∆x)

∆x
= k. (C.15.5)

In the manner in which we obtained (C.15.3), we may deduce that

1− P0(∆x) = k∆x + δ∆x,
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where δ → 0 as ∆x→ 0. Thus

P0(∆x) = 1− k∆x− δ∆x, (C.15.6)

where δ → 0 as ∆x → 0. On the basis of (a) and (b), expressed in (C.15.3)
and (C.15.6), we shall obtain an explicit formula for each Pn.

Figure C.15.1 No cars in
a section of length x+∆x.

Let us determine P0 first. Observe that a section of length x+∆x is vacant
if its left-hand part of length x is vacant and its right-hand part of length ∆x is
also vacant. Since the cars move independently of each other, the probability
that the whole interval of length x + ∆x being empty is the product of the
probabilities that the two smaller intervals of lengths x and ∆x are both empty.
(See Figure C.15.1.) Thus we have

P0(x + ∆x) = P0(x)P0(∆x). (C.15.7)

Recalling (C.15.6), we write (C.15.7) as

P0(x + ∆x) = P0(x)(1− k∆x− δ∆x)

which a little algebra transforms to

P0(x + ∆x)− P0(x)

∆x
= −(k + δ)P0(x). (C.15.8)

Taking limits on both sides of (C.15.8) as ∆x→ 0, we obtain

P ′
0(x) = −kP0(x). (C.15.9)

(Recall that δ → 0 as ∆x → 0.) From (C.15.9) it follows that there is a
constant A such that P0(x) = Ae−kx. Since 1 = P0(0) = Ae−k0 = A, we
conclude that A = 1, hence

P0(t) = e−kx.

This explicit formula for P0 is reasonable; e−kx is a decreasing function of x,
so that the larger an interval, the less likely that it is empty.

Now let us determine P1. To do so, we examine P1(x + ∆x) and relate
it to P0(x), P0(∆x), P1(x), and P1(∆x), with the goal of finding an equation
involving the derivative of P1.

Again, imagine an interval of length x + ∆x cut into two intervals, the
left-hand subinterval of length x and the right-hand subinterval of length ∆x.
Then there is precisely one car in the whole interval if either there is exactly
one car in the left-hand interval and none in the right-hand subinterval or
there is none in the left-hand subinterval and exactly one in the right-hand
subinterval. (See Figure C.15.2.) Thus we have

P1(x + ∆x) = P1(x)P0(∆x) + P0(x)P1(∆x). (C.15.10)
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(a) (b)

Figure C.15.2 The two ways to have exactly one car in an interval of length
x + ∆x.

In view of (C.15.3) and (C.15.6), we may write (C.15.10) as

P1(x + ∆x) = P1(x)(1− k∆x− δ∆x) + P0(x)(k∆x + ε∆x)

which a little algebra changes to

P1(x + ∆x)− P1(x)

∆x
= −(k + δ)P1(x) + (k + ε)P0(x). (C.15.11)

Letting ∆x → 0 in (C.15.11) and remembering that δ → 0 and ε → 0 as
∆x → 0, we obtain P ′

1(x) = −kP1(x) + kP0(x); recalling that P0(x) = e−kx,
we deduce that

P ′
1(x) = −kP1(x) + ke−kx. (C.15.12)

From (C.15.12) we shall obtain an explicit formula for P1(x). Since P0(x)
involves e−kx and so does (C.15.12), it is reasonable to guess that P1(x) involves
e−kx. Therefore let us express P1(x) as g(x)e−kx and determine the form of
g(x). (Since we have the identity P1(x) =

(
P1(x)ekx

)
e−kx, we know that g(x)

exists.)
According to (C.15.12) we have

(
g(x)e−kx

)′
= −kg(x)e−kx + ke−kx; hence

g′(x)e−kx + g(x)(ke−kx) = −kg(x)e−kx + ke−kx

from which it follows that g′(x) = k. Hence g(x) = kx + c1, where c1 is
some constant: P1(x) = (kx + c1)e

−kx. Since P1(0) = 0, we have P1(0) =
(k · 0 + c1)e

−k·0 = c1 and hence c1 = 0. Thus we have shown that

P1(x) = kxe−kx (C.15.13)
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(a) (b) (c)

Figure C.15.3 The three ways to have exactly two cars in an interval of length
x + ∆x.

and P1 is completely determined.
To obtain P2 we argue as we did in obtaining P1. Instead of (C.15.10) we

have

P2(x + ∆x) = P2(x)P0(∆x) + P1(x)P1(∆x) + P0(x)P2(∆x) (C.15.14)

an equation that records the three ways in which two cars in a section of length
x + ∆x can be situated in a section of length x and a section of length ∆x.
(See Figure C.15.3.)

Similar reasoning shows that See Exercise 8.

P2(x) =
k2x2

2
. (C.15.15)

Then, applying the same reasoning inductively leads to

Pn(x) =
(kx)n

n!
e−kx. (C.15.16)

We have obtained in (C.15.16) the formulas on which the rest of our anal-
ysis will be based. Note that these formulas refer to a road section of any
length, though the assumptions (a) and (b) refer only to short sections. What
has enabled us to go from the “microscopic” to the “macroscopic” is the ad-
ditional assumption that the traffic in any one section is independent of the
traffic in any other section. The formulas (C.15.16) are known as the Poisson
formulas.

The Meaning of k

The constant k was defined in terms of arbitrarily short intervals, at the “mi-
croscopic level”. How would we compute k in terms of observable data, at
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the “macroscopic level”? It turns out that k records the traffic density: the
average number of cars in an interval of length x is kx.

The average number of cars in a section of length x is defined as
∑∞

n=0 nPn(x).
This weights each possible number of events (n) with it’s likelihood of occur-
ring (Pn(x)). This average is

∞∑
n=0

nPn(x) =
∞∑

n=1

n
(kx)ne−kx

n!
= kxe−kx

∞∑
n=1

(kx)n−1

(n− 1)!
= kxe−kxekx = kx.

Thus the expected number of cars in a section is proportional to the length of
the section. This shows that the k appearing in assumption (a) is the measure
of traffic density, the number of cars per unit length of road.

To estimate k, in the case of traffic for instance, divide the number of cars
in a long section of the road by the length of that section.

EXAMPLE 1 (Traffic at a checkout counter.) Customers arrive at a check-
out counter at the rate of 15 per hour. What is the probability that exactly
five customers will arrive in any given 20-minute period?
SOLUTION We may assume that the probability of exactly one customer
coming in a short interval of time is roughly proportional to the duration of
that interval. Also, there is only a negligible probability that more than one
customer may arrive in a brief interval of time. Therefore conditions (a) and
(b) hold, if we replace “length of section” by “length of time”. Without fur-
ther ado, we conclude that the probability of exactly n customers arriving in
a period of x minutes is given by (C.15.16). Moreover, the “customer density”
is one per 4 minutes; hence k = 1/4, and thus the probability that exactly five
customers arrive during a 20-minute period, P5(20), is(

1

4
· 20

)5
e−(1/4)·20

5!
=

55e−5

120
≈ 0.17547.

�

Modeling of the type within this section is of use in predicting the length
of waiting lines (or times) or the waiting time to cross. This is part of the
theory of queues. See, for instance, Exercises 2 and 3. (See also Exercise 66
in the Summary Exercises in Chapter 4.)
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EXERCISES

1.

(a) Why would you expect that P0(a + b) = P0(a) · P0(b) for any a and b?

(b) Verify that P0(x) = e−kx satisfies the equation in (a).

2. A cloud chamber registers an average of four cosmic rays per second.

(a) What is the probability that no cosmic rays are registered for 6 seconds?

(b) What is the probability that exactly two are registered in the next 4 seconds?

3. Telephone calls during the busy hour arrive at a rate of three calls per minute.
What is the probability that none arrives in a period of (a) 30 seconds, (b) 1 minute,
(c) 3 minutes?

4. In a large continually operating factory there are, on the average, two accidents
per hour. Let Pn(x) denote the probability that there are exactly n accidents in an
interval of time of length x hours.

(a) Why is it reasonable to assume that there is a constant k such that P0(x),
P1(x), . . . satisfy 1 and 2 on page 1092?

(b) Assuming that these conditions are satisfied, show that Pn(x) = (kx)ne−kx/n!.

(c) Why must k = 2?

(d) Compute P0(1), P1(1), P2(1), P3(1), and P4(1).

5. A typesetter makes an average of one mistake per page. Let Pn(x) be the
probability that a section of x pages (x need not be an integer) has exactly n errors.

(a) Why would you expect Pn(x) = xne−x/n!?

(b) Approximately how many pages would be error-free in a 300-page book?

6. In a light rainfall you notice that on one square foot of pavement there are an
average of 3 raindrops. Let Pn(x) be the probability that there are n raindrops on
an area of x square feet.
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(a) Check that assumptions 1 and 2 are likely to hold.

(b) Find the probability that an area of 5 square feet has exactly two raindrops.

(c) What is the most likely number of raindrops to find on an area of one square
foot?

7. Write x2 in the form g(x)e−kx.

8. Show that P2(x) =
k2x2

2
e−kx.

9.

(a) Why would you expect P3(a + b) = P0(a)P3(b) + P1(a)P2(b) + P2(a)P1(b) +
P3(a)P0(b)?

(b) Do functions defined in (C.15.16) satisfy the equation in (a)?

10.

(a) Why would you expect limn→∞ Pn(x) = 0?

(b) Show that the functions defined in (C.15.16) have the limit in (a).

11. We obtained P0(x) = e−kx and P1(x) = kxe−kx. Verify that lim∆x→0 P1(∆x)/∆x =
k, and lim∆x→0 P0(∆x)/∆x = 1−k. Hence show that lim∆x→0(P2(∆x)+P3(∆x)+
· · ·+)/∆x = 0, and that assumptions 1 and 2 on page 1092 are indeed satisfied.

12.

(a) Obtain assumption 1 from equation (C.15.3).

(b) Obtain equation (C.15.3) from assumption 2.

(c) Obtain assumption 2 from equation (C.15.6).

13.

(a) What length of road is most likely to contain exactly one car? That is, what
x maximizes P1(x)?
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(b) What length of road is most likely to contain three cars?

14. For any x ≥ 0,
∑∞

n=0 Pn(x) should equal 1 because it is certain that
some number of cars is in a given section of length x (maybe 0 cars). Check that∑∞

n=0 Pn(x) = 1. (This provides a probabilistic argument that eu =
∑∞

n=0 un/n! for
n ≥ 0.)
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Chapter 13

Introduction to Differential
Equations

This chapter is a brief introduction to one of the major applications of calculus,
differential equations. A differential equation is an equation that involves
derivatives of an unknown function. The goal is usually to find the unknown
function or, at least, to determine some of its properties.

As Section 13.1 reminds us, we have already met such equations, for in-
stance the equation describing natural growth and decay, dP

dt
= kP . Sec-

tion 13.2 shows how to solve differential equations that involve only the func-
tion and its first derivative. The next two sections are concerned with solving
certain equations that involve a function and its first and second derivatives.
For most differential equations it is not possible to find explicit solutions. One
method for finding approximate solutions is described in Section 13.5.
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13.1 Introduction and Review: Separable Equa-

tions and Direction Fields

A differential equation is an equation that involves the derivatives of a function.
We have already met three such equations.

Section 5.7 treated the differential equation that describes natural growth
or decay,

dP

dt
= kP (t). (13.1.1)

Section 3.6 had the equation for an antiderivative F (x) of a function f(x),

dF

dx
= f(x). (13.1.2)

The study of motion with constant acceleration in Section 3.7 was based
on solving the equation

d2y

dt2
= a, where a is a constant. (13.1.3)

In this section we present a way to visualize solutions to differential equa-
tions (DEs) and a method for solving DEs of a special form.

Terminology

A solution of a differential equation is a function that satisfies it. Solving a
differential equation means finding all its solutions. For instance, all solutions
of (13.1.1) are P (t) = Cekt for any constant C. The solutions of (13.1.3) are
y(t) = a

2
t2 + vt + s, where v is the velocity and s is the position when t = 0.

In algebra the solutions of equations are numbers, and usually there are
only a finite number of solutions. For example, the equation x2−3x+2 = 0 has
two solutions, x = 1 and x = 2. A differential equation behaves differently. Its
solutions are functions (not numbers) and there is usually an infinite number
of solutions. This is the case for (13.1.1), (13.1.2), and (13.1.3).

The order of a differential equation is the order of the highest-order deriva-
tive that appears in it. Both (13.1.1) and (13.1.2) have order one; (13.1.3) has
order two. Most differential equations met in applications have orders one or
two. However, higher-order derivatives can appear, as in the equation used in
modeling the bending of a beam, such as a diving board,

d4y

dx4
− d2y

dx2
= −W. (13.1.4)

The unknown function y = y(x) is the deflection of the beam at a distance x
along the beam and W is the weight on the beam, assumed to be uniformly
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distributed. In Exercises 28 and 29 in Section 13.4 we will see that the general
solution is

y(x) = aex + be−x + c + dx +
W

2
x2,

where a, b, c, and d are constants determined by properties of the beam. (See
also Exercise 38.)

The number of constants that appear in the solution usually equals the
order of the differential equation. For a second-order DE the initial condi-
tions would be y(t0) = y0 (initial position) and y′(t0) = v0 (initial velocity).
This is like determining the orbit of a comet from its position and velocity at
a given time. For instance, in Example 4 of Section 3.7, the initial conditions
are y(0) = 96 and y′(0) = 64. A differential equation together with a set of
initial conditions is called an initial value problem.

In some problems the constraints are given at two (or more) different times.
For example, in a second-order DE the position at two times might be known,
y(t1) and y(t2). These are called boundary conditions. (This is like de-
termining an orbit of a comet from its positions at two different times.) A
boundary value problem is a differential equation together with a set of
boundary conditions. Most of the problems we will encounter will be initial
value problems.

Slope Fields and Differential Equations

In Section 3.6 slope fields were introduced by the example dy
dt

=
√

1 + t3 to

picture the antiderivatives of
√

1 + t3. While that discussion was restricted to
differential equations of the form dy

dt
= f(t), slope fields can be drawn when dy

dt

is given in terms of t and y. At (t, y) we draw a segment whose slope is the
derivative evaluated at (t, y).

EXAMPLE 1 Sketch the slope field for dy
dt

= y − t.
SOLUTION At (t, y) sketch a segment whose slope is y − t. For instance,
at (3, 3) the slope is 0. Figure 13.1.1(a) shows a few segments. After drawing
more one sees that the segments seem to form curves, as in Figure 13.1.1(b).
Each curve is the graph of a solution to the differential equation dy

dt
= y− t. �

Slope fields can be drawn only for a differential equation of order one and
only when it can be written as dy

dt
= f(t, y). The function f(t, y) can involve

both t and y or just one of them.

There are automatic slope field plotters on almost any type of device with a
graphical display: on calculators, on the web, even as an app for a smartphone.
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(a) (b)

Figure 13.1.1 (a) Direction field and (b) solution curves for y′ = y − t.

Separable Equations

In Section 5.7 we solved the differential equation

dP

dt
= kP (P > 0). (13.1.5)

The first step was to divide (13.1.5) by P :

dP
dt

P
= k. (13.1.6)

Both sides of (13.1.5) can be rewritten as derivatives:

d

dt
ln(P (t)) =

d

dt
(kt) ,

and therefore there is a constant C such that

ln(P (t)) = kt + C.

Thus

P (t) = ekt+C

so

P (t) = eCekt.

Renaming the constant eC by A, we conclude that

P (t) = Aekt.
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When a first-order differential equation has the form y′ = f(x)g(y) we can
separate the variables by dividing by g(y) to get

y′

g(y)
= f(x).

All the y’s appear on one side of the equation and all the x’s on the other, so
the variables have been separated.

Then, find an antiderivative (with respect to x) of both sides:∫
y′(x)

g(y)
dx =

∫
f(x) dx.

Notice, that y′(x) dx in the left-hand side is the differential dy:∫
dy

g(y)
=

∫
f(x) dx. (13.1.7)

To go further, we compute both indefinite integrals in (13.1.7).

EXAMPLE 2 (a) Solve y′ = −x3y3. (b) Solve the initial value problem
with y(0) = −1

4
.

SOLUTION (a) Here f(x) = x3 and g(y) = −y3. We rewrite y′ = −x3y3 as
dy
dx

= −x3y3 and then have ∫
−dy

y3
=

∫
x3 dx.

Evaluating,
1

2
y−2 =

1

4
x4 + C

or
1

y2
=

1

2
x4 + 2C =

x4 + 4C

2
. (13.1.8)

To solve (13.1.8) for y we take the reciprocal of each side:

y2 =
2

x4 + 4C
.

We have two solutions,

y = +

√
2

x4 + 4C
and y = −

√
2

x4 + 4C
.

(b) We are asked to find the solution that satisfies the initial condition
y(0) = −1

4
. Because y(0) is negative, we use y = −

√
2/(x4 + 4C). Then, since

y(0) is −1/4:

−1

4
= −

√
2

04 + 4C
or

1

16
=

2

4C
,
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so C = 8.
The solution to the initial value problem for y′ = −x3y3 with y(0) = −1

4
is

y = −
√

2

x4 + 32
.

�

In general, to solve dy
dx

= f(x)g(y), multiply by the differential dx, divide

by g(y), and then integrate:
∫

dy
g(y)

=
∫

f(x) dx.
For example

1. y′ = x3y2 becomes dy
y2 = x3 dx; solutions are −1

y
= 1

4
x4 + C.

2. y′ = (1+y2)/x3 becomes dy
1+y2 = dx

x3 ; solutions are arctan(y) = −1
2

x−2+C.

3. y′ = x3/y2 becomes y2dy = x3 dx; solutions are y3

3
= 1

4
x4 + C.

Summary

Earlier we dealt with several differential equations, namely P ′ = kP , F ′(t) =
f(t), and y′′ = a, a a constant. In this section we introduced some terminology
of differential equations, in particular, the order and solution of a differential
equation.

Usually there is an infinite number of solutions to a differential equation.
By imposing initial or boundary conditions we may determine one solution.
We showed how to solve a special type of first-order equation, namely y′ =
f(t)g(y), where we can separate the variables.

April 22, 2012 Calculus



§ 13.1 INTRODUCTION AND REVIEW: SEPARABLE EQUATIONS AND DIRECTION FIELDS 1107

EXERCISES for Section 13.1

SHERMAN: It bothers me
that Woody suggests stems
that are not complete
sentences. Does this bother
you?

In Exercises 1 to 4 state the order of
1. (y′′)3 + (y′)2 = y

2. t5(y′′′)4 + cos(y2)y + 3 = 0
3.

√
1 + t3y′ + (cos(y))4y + 3t2 = 0

4. (y′′)3
√

1 + (y′)2 = y6

In Exercises 5 to 8 sketch the slope field for
5. y′ = −y

6. y′ = 1− y

7. y′ = 2t− y

8. y′ = t− y

SHERMAN: Exercise 12 is
new, to have an even
number of exercises in this
group.

In Exercises 9 to 14 determine if the differential equation is separable.
9. 3t2y′ + 6t = t3 + sin t

10. y′ = sin(t)/y3

11. y′ = sin
(

t
y3

)
12. y′ = exy2

y

13. y′ = t + y

14. t3 + t2y′ = ln(t)

In Exercises 15 to 36 solve the separable equations
15. dy

dt = t

16. dy
dt = t2

17. dy
dt = y

18. dy
dt = y2

19. dy
dx = sin(x)

cos(y)

20. dy
dt = sec2(y)

21. dy
dt = t

y

22. dy
dt = y

t

23. dy
dt = ty

t2+1

24. dy
dx = cos(y)

ex

25. dy
dt =

√
1−y2

t , t > 0

26. dy
dx = −ey2

2xy

27. dy
dx = (x ln(x))

(
4 + y2

)
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28. dy
dt = ex sin(3x)√

9−4y2

29. dy
dx = sin(3t) sec(2y)

30. dy
dt = y2 ln(t)

31. dy
dt = tan(2t)

e2y

32. dy
dt = y

√
1 + 3t

33. sec(θ)dθ
dt − t2 = 3t

34. y2 cos(θ)dy
dθ − sin(θ) = cos(θ)

35. dθ
dt = sin2(2t)

cos2(3θ)

36. dy
dt = ey sec2(2t)

y

37.

(a) What is the general solution of d2y
dt2

= −16?

(b) Find the solution for which y(0) = 10 and y′(0) = 5.

38. Show that for constants a, b, c, and d, y = aex + be−x + c+ dx+ W
2 x2 satisfies

the fourth-order equation for a weight-bearing beam

d4y

dx4
− d2y

dx2
= −W.

39. Assume that f(x) and g(x) are solutions of 2y′′ + 3y′ + y = 0. Which of the
following are also solutions?

(a) 3f(x)

(b) g(3x)

(c) f(x) + g(x)

(d) 3f(x)− 2g(x)

40.

(a) Check that y = et − 1 is a solution of y′ = 1 + y.

(b) Find all solutions.
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41.

(a) Check that y = tan(x) is a solution of y′ = 1 + y2.

(b) Find all solutions.

42. For which of (a) to (d) is y = sin(3x) a solution?

(a) d2y
dx2 = 9y

(b) d2y
dx2 = −9y

(c) dy
dx =

√
1− y2

(d) dy
dx = 3

√
1− y2

SHERMAN: These problems
have been moved around
and added to. Please check
carefully.

The equation y′(t) = 1
1000y(t)7

(
1− y(t)10

)
can be solved by separation of variables

but the calculations would be long and tedious. Exercises 43 to 48 illustrate other
ways of treating the solutions to a differential equation that do not require an explicit
formula for the solution.
43.

(a) What solutions to y′(t) = 1
1000y(t)7

(
1− y(t)10

)
are constant functions?

(b) Sketch the slope field for 0 ≤ t ≤ 2 and −2 ≤ y ≤ 2.

(c) With the aid of (b), sketch the solutions for which y(0) = 2 and y(0) = 1/2.

(d) When y(0) = 2, does limt→∞ y(x) seem to exist?

(e) When y(0) = 1/2, does limt→∞ y(x) seem to exist?

44. This approach to examining solutions to y′ = 1
1000y7

(
1− y10

)
does not use a

slope field. To analyze the solution for which y(0) = 2:

(a) Show why y(t) is never less than 1.

(b) Is y(t) ever increasing?

(c) Show that limt→∞ y(t) exists.

(d) Find the limit.
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45. The approach used in Exercise 44 is easily adapted to analyze the solution to
y′ = 1

1000y7
(
1− y10

)
for which y(0) = 1/2:

(a) Show why y(t) is never greater than 1.

(b) Is y(t) ever decreasing?

(c) Show that limt→∞ y(t) exists.

(d) Find the limit.

46. Assume the sign of y′(t) is always opposite the sign of y(t).

(a) Must the sign of y′′(t) always be the opposite the sign of y′(t)?

(b) What is the relationship between y′′(t) and y(t)?

(c) Give two examples of functions with this property and y(0) = 1.

47. Assume that the sign of y′′(t) is always opposite the sign of y(t).

(a) What might the graph of y(t) look like?

(b) Give a specific example of such a function.

48. The differential equation dP
dt = kP (t)(M − P (t)) where k and M are positive

constants occurs in the theory of limited growth. It can be analyzed without solving
it. Assume that t ≥ 0 and P (0) = M/4. Exercise 49 asks for its explicit solution.

(a) Show that P (t) = 0 and P (t) = M are constant solutions to this equation.

(b) Show that P is increasing if and only if 0 < P (t) < M .

(c) To determine the concavity of solutions it is necessary to know the sign of P ′′.
Find an expression for P ′′ that involves P and P ′ (and k and M). (Differenti-
ate the differential equation with respect to t and remember that P = P (t).)

(d) Use the original differential equation to obtain an expression for P ′′ that does
not involve P ′.

(e) Explain why solutions have inflection points when P = M/2.

(f) Show that P (t) is never greater than M .
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49. Find the explicit solution to the problem analyzed in Exercise 48, that is,
dP
dt = kP (t)(M − P (t)) with P (0) = M/4.

50.

(a) Give an example of a solution to(
dy

dx

)2

= −y2

(b) Find all solutions of the equation in (a).

51. Find a first-order differential equation that has y = ex2
as a solution.

52.

(a) Show directly that if dy
dx =

√
1− y2 then d2y

dx2 = −y.

(b) Show that for every constant k, y = sin(x + k) satisfies both equations in (a).
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13.2 First-Order Linear Differential Equations

In this section we will solve first-order linear differential equations:

a1(t)
dy

dt
+ a0(t)y = f(t). (13.2.1)

In Sections 13.3 and 13.4 we will solve second-order linear differential
equations:

a2
d2y

dt2
+ a1

dy

dt
+ a0y = f(t). (13.2.2)

These are special cases of nth-order linear differential equations:

an(t)
dny

dtn
+ an−1(t)

dn−1y

dtn−1
+ · · ·+ a1(t)

dy

dt
+ a0(t)y = f(t). (13.2.3)

Linear differential equations appear in many applications. See the Calculus is
Everywhere section at the end of this chapter for an example.

The word “linear” reminds
us of the equation of a line,
Ax + By = C, where each
variable appears to only the

first power.

In (13.2.3) the coefficients ai(t) are functions of t. The coefficient, an(t), of
the highest-order term is assumed not to be the zero function.

When the function f(t) is the zero function the equation is called homo-
geneous, otherwise it is called nonhomogeneous.

Solving a1(t)
dy
dt + a0(t)y = f(t)

To solve a first-order linear differential equation we divide by a1(t), obtaining
the standard form

dy

dt
+ p(t)y = q(t), (13.2.4)

where p(t) and q(t) are functions that do not depend on y(t).
Examples 1 and 2 illustrate how to solve (13.2.4).

EXAMPLE 1 Find all solutions to

dy

dt
+ 4t3y = 0, where y > 0. (13.2.5)

SOLUTION This homogeneous first-order differential equation is separable.
Separating the terms with t from those with y yields

dy

y
= −4t3 dt.

Finding antiderivatives,

ln(y) = −t4 + K for a constant K.
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Taking the exponential of each side leads to

eln(y) = e−t4+K .

Thus
y = e−t4 eK .

Replacing eK by A, we obtain

y(t) = Ae−t4 A > 0.

�
The solution depends only on finding an antiderivative of the coefficient

of y, namely an antiderivative of 4t3. So a homogeneous first-order linear
differential equation is as easy to solve as a separable differential equation.

In Example 1 A is called a parameter. For each choice of A there is a
solution. This is similar to parameterizing a curve, where for each choice of
the parameter there is a corresponding point on the curve.

The next example shows how the solution to the homogeneous differen-
tial equation (13.2.5) can be used to find a solution to the nonhomogeneous
differential equation (13.2.6).

EXAMPLE 2 Find all solutions to

dy

dt
+ 4t3y = cos(t)e−t4 . (13.2.6)

SOLUTION In Example 1 we found that the solution to the homogeneous
equation is

yh(t) = Ae−t4 for any value of the parameter A. (13.2.7)

We look for solutions to the nonhomogeneous equation in the form

y(t) = A(t)e−t4 for an as yet unknown function A(t). (13.2.8)

That is, we replace the constant A by a function A(t), hoping that we will be
able to find a solution. As we show after this example, this always works if we
can find an antiderivative of a function that will appear.

Letting y(t) be A(t)e−t4 in (13.2.6) we obtain

d

dt

(
A(t)e−t4

)
+ 4t3A(t)e−t4 = cos(t)e−t4 .

Using the product rule we find that

dA(t)

dt
e−t4 − 4t3A(t)e−t4 + 4t3A(t)e−t4 = cos(t)e−t4
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or
dA(t)

dt
e−t4 = cos(t)e−t4 .

Because e−t4 is never zero, this is equivalent to

dA(t)

dt
= cos(t).

Consequently
A(t) = sin(t) + C.

Substitution in (13.2.8) produces the general solution to the first-order
linear differential equation (13.2.6), namely

y(t) = (sin(t) + C) e−t4 = sin(t)e−t4 + Ce−t4 for any constant C.

�
In Example 1 we had to integrate −4t3 and in Example 2 we had to in-

tegrate cos(t). In general, for a first-order linear differential equation, if the
antiderivatives encountered are elementary we can give explicit formulas for
the general solution.

The approach in Example 2 is called variation of parameters because
the solutions to the nonhomogeneous case are found by replacing the constant
parameter in the solutions of the homogeneous case by a function.

Why Variation of Parameters Works

To solve the nonhomogeneous equation

dy

dt
+ p(t)y = q(t) (13.2.9)

we first solve the homogeneous equation

dy

dt
+ p(t)y = 0. (13.2.10)

Observe that (13.2.10) is separable, and therefore solvable. Let u(t) be a
solution. We then seek a solution of the form A(t)u(t) to the nonhomogeneous
equation (13.2.9). Substituting y(t) = A(t)u(t) into (13.2.9) gives

d

dt
(A(t)u(t)) + p(t)A(t)u(t) = q(t).

Hence
dA(t)

dt
u(t) + A(t)

du

dt
+ p(t)A(t)u(t) = q(t).
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Collecting the terms with A(t), we reach the equation

dA

dt
u(t) + A(t)

(
du(t)

dt
+ p(t)u(t)

)
= q(t). (13.2.11)

Because u(t) is a solution of (13.2.10), (13.2.11) reduces to

dA(t)

dt
u(t) = q(t),

or
dA(t)

dt
=

q(t)

u(t)
.

Finding A(t) depends on being able to integrate q(t)/u(t).
We illustrate variation of parameters by another example.

EXAMPLE 3 Find all solutions to (t2 + 1)dy
dt
− ty = t, with y > 0.

SOLUTION To put this equation in standard form, divide by t2+1, obtaining

dy

dt
− t

t2 + 1
y =

t

t2 + 1
. (13.2.12)

The first step is to solve the homogeneous equation

dy

dt
− t

t2 + 1
y = 0. (13.2.13)

As expected, (13.2.13) is separable:

dy

y
=

t

t2 + 1
dt. (13.2.14)

Taking the antiderivatives of both sides of (13.2.14) leads to

ln y(t) =
1

2
ln(t2 + 1) + K for any value of the constant K. (13.2.15)

Solving for y(t), by exponentiating both sides of (13.2.15) and introducing
A = eK , produces

y(t) = A(t2 + 1)1/2 where the constant A is any positive number.

Using variation of parameters, we look for a solution to the nonhomoge-
neous equation in the form

y = A(t)(t2 + 1)1/2

To simplify the algebra, denote (t2 + 1)1/2 by u(t).
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Substituting y(t) = A(t)u(t) into (13.2.12) leads to

d

dt
(A(t)u(t))− t

t2 + 1
A(t)u(t) =

t

t2 + 1
,

hence

A′(t)u(t) + A(t)u′(t)− t

t2 + 1
A(t)u(t) =

t

t2 + 1
or

A′(t)u(t) + A(t)

(
u′(t)− t

t2 + 1
u(t)

)
=

t

t2 + 1
.

From the fact that u(t) solves the homogeneous equation (13.2.13), it follows
that

A′(t)u(t) =
t

t2 + 1
.

Because u(t) = (t2 + 1)
1/2

, we have

A′(t)
(
t2 + 1

)1/2
=

t

t2 + 1
,

hence

A′(t) =
t

(t2 + 1)3/2
. (13.2.16)

One antidifferentiation yields

A(t) =

∫
t

(t2 + 1)3/2
dt = −

(
t2 + 1

)−1/2
+ C.

The general solution to the nonhomogeneous equation (13.2.12) is therefore

y(t) = A(t)u(t)

=
(
−(t2 + 1)−1/2 + C

)√
t2 + 1

= −1 + C
√

t2 + 1. for any value of the constant C.

�

Summary

Any first-order linear differential equation can be put in the form

y′ + p(t)y = q(t). (13.2.17)

The associated homogeneous equation, obtained by replacing q(t) by 0, is
separable. Its general solution has the form Au(t), where A is a constant.

Replacing the parameter A by a function A(t) provides a candidate A(t)u(t)
as a solution for the nonhomogeneous equation (13.2.17). This leads to a
differential equation for A(t) that can be solved by evaluating an antiderivative.
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EXERCISES for Section 13.2

1. Using as few mathematical symbols as possible, describe what is meant by a
linear differential equation.

2. What is the difference between a homogeneous and a nonhomogeneous linear
differential equation?

In Exercises 3 to 9 decide which differential equations are linear. Rewrite the linear
equations in standard form.
3. cos(3t)y′ + et2y + (t3 − 1) = 0

4. 3(y′)2 + 4y = t7

5. y′ + sin(y) = t3

6. y′′ − 3y′ + t2y = t2

7. y′ + yy′ = t

8. ety′ − y cos(t) = t4

9. y + 5y′ + t3y′′ = et

10. Check that y(t) = Ae−t4 is a solution to (13.2.5) in Example 1.

11. Check that y(t) = (sin(t) + C) e−t4 is a solution to (13.2.6) in Example 2.

12. Check that y(t) = −1+C
(
t2 + 1

)1/2 is a solution to (13.2.12) in Example 3.

13. In Example 3 we denoted
(
t2 + 1

)1/2 by u(t). If we didn’t do that, we would

substitute y(t) = A(t)
(
t2 + 1

)1/2 into (13.2.12) instead. Carry out the substitution
and note how much more work is involved in arriving at (13.2.16).

In Exercises 14 to 28 find the general solution to the linear differential equation. If
an initial condition is provided, find the corresponding particular solution.
14. y′ + 2y = 1, y(0) = 0

15. y′ − y = 3e2t

16. y′ = y − t, y(0) = 1/2

17. ty′ + 7y = 5t2

18. ty′ + 2y = 5t, y(2) = 4

19. 2ty′ + y = 10
√

t

20. ty′ − y = t3, y(1) = 7

21. 2ty′ − 5y = 12t2

22. (1 + t)y′ + y = sin(t)
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23. ty′ − 2y = t3 sec(t) tan(t)

24. y′ = 1 + t + y + ty

25. y′ = 2ty + 9t2et2 , y(0) = 0

26. ty′ + (2t− 3)y = 6t6

27. ty′ + 2y = ln(t)

28. ty′ + 4y = t−2et
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13.3 Second-Order Linear Differential Equa-

tions: The Homogeneous Case

In the next section we deal with

a
d2y

dt2
+ b

dy

dt
+ cy = g(t) (13.3.1)

where a, b, and c are constants and g(t) is a function. The restriction to
constant coefficients may seem narrow, but (13.3.1) is broad enough to be of
use in many applications. In this section we treat the homogeneous equation
obtained by replacing g(t) by 0:

a
d2y

dt2
+ b

dy

dt
+ cy = 0. (13.3.2)

New Solutions from Old

If y(t) is a solution to (13.3.2), then so is ky(t) for any constant k. To see this,
check that ky satisfies (13.3.2) whenever y does:

a(ky)′′ + b(ky)′ + c(ky) = aky′′ + bky′ + cky

= k · (ay′′ + by′ + cy)

= k · 0 = 0.

That the right-hand side of (13.3.2) is 0 is critical in the final step. If the
right-hand side were any other function the reasoning would not go through.

If y1 and y2 are solutions of (13.3.2), then so is y1 + y2. We show this by
substitution:

a(y1 + y2)
′′ + b(y1 + y2)

′ + c(y1 + y2) = ay′′1 + ay′′2 + by′1 + by′2 + cy1 + cy2

= (ay′′1 + by′1 + cy1) + (ay′′2 + by′2 + cy2)

= 0 + 0 = 0.

So y1 + y2 is a solution. Again, this result depends critically on the fact that
y1 and y2 are solutions to a homogeneous equation.

Because y1 − y2 = y1 + (−1)y2, the difference y1 − y2 of solutions is also a
solution to the homogeneous equation.

We now have

Theorem 13.3.1. If y1 and y2 are solutions to the homogeneous equation
(13.3.2), then so is k1y1 + k2y2 for any values of the constants k1 and k2.

Proof

The calculations just made show that k1y1 and k2y2 are solutions to (13.3.2)
and that their sum k1y1 + k2y2 is also. •
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The Main Idea: Try y = ert

Because the derivatives of ert are multiples of ert, we look for solutions of the
form ert where r is some constant.

If y = ert, we have

y = ert, y′ = rert, and y′′ = r2ert.

Substituting in (13.3.2) we get an algebraic equation for r:

0 = a
d2y

dt2
+ b

dy

dt
+ cy = ar2ert + brert + cert = (ar2 + br + c)ert.

Since ert is never zero we conclude that y = ert is a solution to (13.3.2) when
r is a root of the characteristic polynomial, ar2 + br + c, that is, when

ar2 + br + c = 0. (13.3.3)

The roots are

r1 =
−b +

√
b2 − 4ac

2a
and r2 =

−b−
√

b2 − 4ac

2a
.

The sign of b2 − 4ac determines whether there are two distinct real roots
(b2 − 4ac > 0), a single repeated real root (b2 − 4ac = 0), or a pair of complex
conjugate roots (b2 − 4ac < 0). Each case will be treated separately.

Case 1: Two distinct real roots (b2 − 4ac > 0)

The functions y1(t) = er1t and y2 = er2t are both solutions to (13.3.2). By
Theorem 13.3.1, y = k1y1 + k2y2 = k1e

r1t + k2e
r2t is a solution of (13.3.2) for

any constants k1 and k2.
It is proved in a more advanced course that there are no other solutions.

EXAMPLE 1 Find the general solution to

d2y

dt2
− dy

dt
− 2y = 0.

SOLUTION The characteristic equation is r2 − r − 2 = 0. Since b2 − 4ac =
(−1)2 − 4(1)(−2) = 9 > 0 there are two real roots. Instead of using the
quadratic formula, factor: r2 − r − 2 = (r − 2)(r + 1). Thus the roots are
r1 = 2 and r2 = −1 and the general solution is

y = c1e
2t + c2e

−t.

�
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Case 2: One real repeated root (b2 − 4ac = 0)

When b2 − 4ac = 0, then r1 = −b
2a

and r2 = −b
2a

. There is only one exponential

solution: y1 = e
−b
2a

t.
To obtain another solution, try y2(t) = A(t)e−bt/(2a), a technique similar to

the variation of parameters used in Section 13.2. A straightforward calculation
shows that A(t) = t provides another solution, te−bt/(2a). Exercise 23 invites
you to check that it is by substituting it into (13.3.2) and using the fact that
b2− 4ac = 0 (and a 6= 0). Exercise 24 contains the complete derivation of this
second solution.

EXAMPLE 2 Find the general solution to d2y
dt2

+ 6dy
dt

+ 9y = 0.
SOLUTION The characteristic equation is r2 + 6r + 9 = 0. Since b2 −
4ac = (6)2 − 4(1)(9) = 0 there is only a single repeated real root. Because
r2 + 6r + 9 = (r + 3)2 we see that r1 = r2 = −3. Two solutions are y1 = e−3t

and y2 = te−3t and the general solution is

y = c1e
−3t + c2te

−3t.

�

Case 3: Complex conjugate roots (b2 − 4ac < 0)

The roots r1 and r2 involve
√

b2 − 4ac, which is the square root of a negative
number. But we are interested in finding real-valued solutions of (13.3.2). At
the moment we have solutions er1t and er2t, which are not real-valued functions.

Theorem 13.3.2 provides a way to extract real-valued solutions from a
complex-valued solution.

Theorem 13.3.2. If y = u(t) + iv(t) is a complex-valued solution to (13.3.2),
then the real-valued functions u(t) and v(t) are also solutions.

The proof is a straightforward calculation and depends on the fact that if
x and y are real and x + iy = 0, then both x and y must be 0.

If b2 − 4ac < 0, one root is

r1 =
−b +

√
b2 − 4ac

2a
=
−b

2a
+

√
4ac− b2

2a
i = p + qi

where p = −b
2a

and q =
√

4ac−b2

2a
are the real and imaginary parts of r1, respec-

tively.
The solution corresponding to the root r1 = p + qi is

er1t = ept+iqt = epteiqt.
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We use Euler’s formula: eiθ = cos(θ) + i sin(θ) to write

er1t = ept (cos(qt) + i sin(qt)) = ept cos(qt) + iept sin(qt).

By Theorem 13.3.2, two real-valued solutions to (13.3.2) are

y1 = ept cos(qt) and y2 = ept sin(qt).

The second root is r2 = p − qi, the complex conjugate of r1. The corre-
sponding complex-valued solution is, because cos(−q) = cos(q),

er2t = epte−iqt = ept cos(qt)− iept sin(qt). (13.3.4)

This does not provide new solutions, for the real part of (13.3.4) is the solution
y1 and the imaginary part of (13.3.4) is the negative of y2. So the second root
may be disregarded.

As a result, the general solution to (13.3.2) when the characteristic equation
has complex conjugate roots r1 = p + qi and r2 = p− qi is

y = c1e
pt cos(qt) + c2e

pt sin(qt)

for constants c1 and c2.

EXAMPLE 3 Find the general solution of

d2y

dt2
+ 2

dy

dt
+ 10y = 0. (13.3.5)

SOLUTION The characteristic equation is r2 +2r+10 = 0. Since b2−4ac =
(2)2 − 4(1)(10) = −36 < 0 there are complex conjugate roots r1 = −2+

√
−36

2
=

−1 + 3i and r2 = −2−
√

36
2

= −1− 3i. The general solution of (13.3.5) is

y = c1e
−t cos(3t) + c2e

−t sin(3t).

�
The three cases cover all possibilities for homogeneous second-order linear

differential equations with constant coefficients. Solutions to nonhomogeneous
linear differential equations with constant coefficients will be addressed in the
next section.

Summary

The homogeneous second-order linear differential equation with constant co-
efficients has the form

ay′′ + by′ + cy = 0
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where a, b, and c are constants (and a is not zero). Its general solution is

y(t) = c1y1(t) + c2y2(t)

where the functions y1 and y2 are shown in the following table.

Condition Classification Roots Fundamental Solutions
b2 − 4ac > 0 distinct real roots r1, r2 er1t, er2t

b2 − 4ac = 0 repeated real root r1 = − b
2a

er1t, ter1t

b2 − 4ac < 0 complex conjugate roots r1 = p± qi ept cos(qt), ept sin(qt)

Four linear homogeneous DEs occur so often in applications that it is worth
memorizing their solutions, listed in the following table.

Special Case Roots Solutions
y′′ + k2y = 0 ki, −ki sin(kt) cos(kt)
y′′ − k2y = 0 k, −k ekt e−kt

y′′ = 0 0 (multiplicity 2) 1 t
y′′ + ky′ = 0 0, −k 1 e−kt
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EXERCISES for Section 13.3

1. Let y1 and y2 be solutions of ay′′ + by′ + cy = t2.

(a) Is y = y1 + y2 a solution?

(b) Is y = 2y1 − y2 a solution?

(c) Is y = 3y2 a solution?

2. Let y1 and y2 be solutions of ay′′ + by′ + cy = 0.

(a) Is y = y1 + y2 a solution?

(b) Is y = 2y1 − y2 a solution?

(c) Is y = 3y2 a solution?

3. Let y1 and y2 be solutions of a(y′′)2 + by′ + cy = 0.

(a) Is y = y1 + y2 a solution?

(b) Is y = 2y1 − y2 a solution?

(c) Is y = 3y2 a solution?

4. Which second-order linear equations ay′′+by′+cy = f(t) have the zero function
y = 0 as a solution?

5. Suppose ay′′ + by′ + cy = 0 with b2 − 4ac = 0.

(a) Verify that y = e−bt/(2a) is a solution.

(b) Verify that y = te−bt/(2a) is a solution.

6. The differential equation y′′ = 0 was first encountered in Section 3.7 where
it was shown that the general solution has the form a + bt for constants a and b.
Explain how this is consistent with Case 2 (see page 1121).

7. Let k be a positive constant.
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(a) Using Case 3 (page 1121), find the general solution to y′′ + k2y = 0.

(b) Check that your answer in (a) satisfies y′′ + k2y = 0.

8. Let k be a positive constant.

(a) Using Case 1 (page 1120), find two solutions to y′′ − k2y = 0.

(b) Check that your answer in (a) satisfies y′′ − k2y = 0.

9. Let k be a positive constant.

(a) Using Case 1 (page 1120), find two solutions to y′′ + ky′ = 0.

(b) Check that your answer in (a) satisfies y′′ + ky′ = 0.

In Exercises 10 to 15 find the general solution.
10. y′′ + 5y′ + 6y = 0
11. y′′ − y′ − 6y = 0
12. y′′ + 9y = 0
13. y′′ − 4y′ + 4y = 0
14. y′′ − 2y′ + 5y = 0
15. y′′ + 10y′ + 25y = 0

In Exercises 16 to 21 solve the initial value problem. That is, find the solution of
the differential equation that satisfies the given initial conditions. The equations are
the same as in Exercises 10 to 15.
16. y′′ + 5y′ + 6y = 0, y(0) = 0, y′(0) = 2
17. y′′ − y′ − 6y = 0, y(0) = 1, y′(0) = 2
18. y′′ + 9y = 0, y(0) = 1, y′(0) = 3
19. y′′ − 4y′ + 4y = 0, y(0) = 0, y′(0) = −1
20. y′′ − 2y′ + 5y = 0, y(0) = 0, y′(0) = 0
21. y′′ + 10y′ + 25y = 0, y(0) = 4, y′(0) = 0

22. Verify by substitution that y1 = e−t cos(3t) and y2 = e−t sin(3t) are solutions
to the differential equation in Example 3.

23. Show that y = te−bt/(2a) is a solution to ay′′ + by′ + cy = 0 when b2 − 4ac = 0
(and a 6= 0).
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24. When b2−4ac = 0 (and a 6= 0) we found that one solution to ay′′+by′+cy = 0
is y1(t) = Ae−bt/(2a) and claimed that a second solution is y2(t) = te−bt/(2a). We
show how this second solution was obtained.

(a) Verify that y1(t) = Ae−bt/(2a) is a solution to ay′′ + by′ + cy = 0 for any
constant A.

(b) The variation of parameters idea suggests looking for a second solution in the
form y(t) = A(t)e−bt/(2a). Find the second-order differential equation for A(t)
that makes y2(t) = A(t)e−bt/(2a) a solution to ay′′ + by′ + cy = 0.

(c) Solve it.

(d) What is the resulting solution y2?

25.

Sam: In Example 2 the authors say that the general solution is c1e
−3t + c2te

−3t.

Jane: What’s your point?

Sam: They missed the obvious solution y = 0. I am going to send them an e-mail.

Write the authors’ response.

26. Prove Theorem 13.3.2. That is, suppose y = u(t) + iv(t) is a complex-valued
solution to (13.3.2) and show that u(t) and v(t) are also solutions.
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13.4 Second-Order Linear Differential Equa-

tions: The Nonhomogeneous Case

In this section we consider the nonhomogeneous second-order linear differential
equation with constant coefficients

ay′′ + by′ + cy = f(t), (13.4.1)

giving a method to find all solutions for the many common functions f(t). We
first show that if we can find one solution of (13.4.1) and all solutions of the
associated homogeneous equation

ay′′ + by′ + cy = 0, (13.4.2)

then we can construct all solutions of (13.4.1). Then we describe a way to find
one solution of (13.4.1). The key step in that way, the method of undeter-
mined coefficients, is making an intelligent guess.

The Key Theorem

The idea behind the method is

Theorem 13.4.1. Let u be a particular solution of ay′′ + by′ + cy = f(t) and
let v be a particular solution of ay′′ + by′ + cy = g(t). Then

(a) u + v is a solution of ay′′ + by′ + cy = f(t) + g(t),

(b) ku is a solution of ay′′ + by′ + cy = kf(t) where k is a constant, and

(c) u− v is a solution of ay′′ + by′ + cy = f(t)− g(t).

Proof

We prove (a). The assumptions on u and v tell us that

au′′ + bu′ + cu = f(t)

av′′ + bv′ + cv = g(t).

Then

a(u + v)′′ + b(u + v)′ + c(u + v) = a(u′′ + v′′) + b(u′ + v′) + c(u + v)

= (au′′ + bu′ + cu) + (av′′ + bv′ + cv)

= f(t) + g(t).

The proofs of (b) and (c) are similar. •
We will use (a) to prove part 1 and (c) to prove part 2 of the following

theorem.
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Theorem 13.4.2. Let yp be a particular solution of (13.4.1).

(a) If yh is a solution of the associated homogeneous equation (13.4.2), then
yp + yh is also a solution of (13.4.1).

(b) Every solution of (13.4.1) is of the form yp + yh for some solution yh of
the associated homogeneous equation (13.4.2).

Proof

We first prove (1). Since yp solves ay′′+by′+cy = f(t) and yh solves ay′′+by′+
cy = 0, part(a) of Theorem 13.4.1 tells us that yp + yh solves ay′′ + by′ + cy =
f(t) + 0 = f(t).

For (2), let both yp and yq be solutions of (13.4.1). That is,

ay′′p + by′p + cyp = f(t)

and

ay′′q + by′q + cyq = f(t).

By part (c) of Theorem 13.4.1, yq − yp is a solution of

ay′′ + by′ + cy = f(t)− f(t) = 0.

Therefore, yq−yp = yh, a solution of the homogeneous equation (13.4.2). Thus,
yq = yh + yp. •

Theorem 13.4.2 tells us that if we know one solution of (13.4.1) and all
solutions of the associated homogeneous equation (13.4.2), we can construct
all solutions of (13.4.1). In this section we describe a way to find one solution of
(13.4.1). Section 13.3 described ways to find all solutions of the homogeneous
equation (13.4.2).

Intelligent Guessing: The Method of Undetermined Co-
efficients

A few examples illustrate the method of undetermined coefficients.

EXAMPLE 1 Find a solution of

y′′ − 3y′ + 2y = 5e3t. (13.4.3)

SOLUTION Because the derivatives of e3t have the form “constant times
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e3t” we try y = Ae3t, hoping that some value of the constant A will provide a
solution. Substituting y′ = 3Ae3t and y′′ = 9Ae3t gives

y′′ − 3y′ + 2y = 9Ae3t − 3
(
3Ae3t

)
+ 2

(
Ae3t

)
= (9− 3(3) + 2)Ae3t = 2Ae3t.

Inspection of (13.4.3) shows that we want to find A such that 2Ae3t = 5e3t.
Because e3t is never 0,

2A = 5

or

A =
5

2
.

Because the steps are reversible, yp = 5
2
e3t is a solution of (13.4.3). �

EXAMPLE 2 Find a solution of

y′′ − 3y′ + 2y = 40 cos(2t). (13.4.4)

SOLUTION It is reasonable to expect a solution to have the form

y = A sin(2t) + B cos(2t) (13.4.5)

where A and B are constants. We substitute (13.4.5) in (13.4.4) to see if our
guess is right:

(A sin(2t) + B cos(2t))′′ − 3(A sin(2t) + B cos(2t))′ + 2(A sin(2t) + B cos(2t))
= 40 cos(2t).

Carrying out the differentiation gives

(−4A sin(2t)− 4B cos(2t))− 3(2A cos(2t)− 2B sin(2t)) + 2(A sin(2t) + B cos(2t))
= 40 cos(2t).

Collecting terms gives

(−4A + 6B + 2A) sin(2t) + (−4B − 6A + 2B) cos(2t) = 40 cos(2t) (13.4.6)

Because −4A + 6B + 2A = −2A + 6B and −4B − 6A + 2B = −2A − 6B,
(13.4.6) is satified for all values of t when

−2A + 6B = 0 and − 6A− 2B = 40.

Algebra shows that the solution is A = −6 and B = −2. Thus a solution to
(13.4.4) is

yp = −6 sin(2t)− 2 cos(2t).
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�
In Example 2 it would not have sufficed to guess either A sin(2t) or B cos(2t)

separately. We need to expect contributions from both terms.

EXAMPLE 3 Find a solution of

y′′ − 3y′ + 2y = 7e−2t. (13.4.7)

SOLUTION A reasonable guess is

y = Ae−2t.

Substitution leads to(
Ae−2t

)′′ − 3
(
Ae−2t

)′
+ 2

(
Ae−2t

)
= 7e−2t

or
4Ae−2t + 6Ae−2t + 2Ae−2t = 7e−2t.

Thus 12A = 7 or A = 7
12

, and

yp =
7

12
e−2t

is a solution of (13.4.3), as is easily checked. �

EXAMPLE 4 Find a solution of

y′′ − 3y′ + 2y = 5e3t + 40 cos(2t) + 7e−2t. (13.4.8)

SOLUTION Since the right-hand side of (13.4.8) is the sum of the right-
hand sides of (13.4.3), (13.4.4), and (13.4.7), we can add the solutions found
in Examples 1, 2, and 3:

yp =
5

2
e3t − 6 sin(2t)− 2 cos(2t) +

7

12
e−2t.

�

EXAMPLE 5 Find a solution of

y′′ + 3y′ + 2y = 7e−2t. (13.4.9)

SOLUTION As in Example 3 we try y = Ae−2t, getting(
Ae−2t

)′′
+ 3

(
Ae−2t

)′
+ 2

(
Ae−2t

)
= 7e−2t
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or
4Ae−2t − 6Ae−2t + 2Ae−2t = 7e−2t

Since e−2t is never zero,
4A− 6A + 2A = 7

or
0 = 7.

Our guess was wrong.
Let us try y = Ate−2t where A is a constant. Substituting this guess into

(13.4.9) gives (
Ate−2t

)′′
+ 3

(
Ate−2t

)′
+ 2

(
Ate−2t

)
= 7e−2t.

Differentiation, including the product rule, leads to

A(−4 + 4t)e−2t + 3A(1− 2t)e−2t + 2Ate−2t = 7e−2t.

Dividing by e−2t, which is never zero, leads to

A(−4 + 4t + 3− 6t + 2t) = 7,

or
A(−1 + 0t) = 7. (13.4.10)

Consequently
−A = 7.

As may be checked, yp = −7te−2t is a solution of (13.4.9). �
If the coefficient of t in (13.4.10) had not been 0, this guess would not have

worked either.
In Example 5 our first attempt failed because substituting Ae−2t into the

left-hand side of (13.4.9) gave the value 0. In other words, e−2t is a solution of
the homogeneous equation y′′ + 3y′ + 2y = 0. Had we solved the homogeneous
equation first, we would have noticed this and not tried Ae−2t. It is prudent
to solve the homogeneous equation first and the non-homogeneous equation
second.

SHERMAN: I modified
Example 2 so that it applies
to this example. Better?

EXAMPLE 6 Find a solution of

y′′ + 6y′ + 9y = 11e−3t. (13.4.11)

SOLUTION From Example 2, the solutions of the associated homogeneous
equation, y′′ + 6y′ + 9y = 0, are y1 = e−3t and y2 = te−3t. The right-hand
side of (13.4.11) suggests the guess yp = Ae−3t. Because it is a solution of the
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associated homogeneous equation, it cannot be a solution of the nonhomoge-
neous equation. For the same reason, neither can Ate−3t. This leads us to try
yp = At2e−3t. Substitution in (13.4.11) yields(

At2e−3t
)′′

+ 6
(
At2e−3t

)′
+ 9

(
At2e−3t

)
= 11e−3t.

Computing the derivatives gives

A(2− 12t + 9t2)e−3t + 6A(2t− 3t2)e−3t + 9At2e−3t = 11e−3t,

which simplifies to
A(2 + 0t + 0t2)e−3t = 11e−3t.

Thus A = 11
2

and we have the particular solution yp = 11
2
t2e−3t. �

EXAMPLE 7 Find a solution of

y′′ + 6y′ + 9y = 6t2 − 4. (13.4.12)

SOLUTION As in Example 6, the associated homogeneous equation has
solutions y1 = e−3t and y2 = te−3t.

It is judicious to expect a particular solution of (13.4.12) to be a polynomial.
There is no point in trying a polynomial of degree greater than 2 since the
summand 9y would have a term of degree greater than 2 and there would be
no term in y′′ or 6y′ that could cancel it. As there are no polynomial terms in
the solution of the associated homogeneous equation, we try y = At2 +Bt+C.

Substituting it in (13.4.12) and collecting like powers of t leads to

9At2 + (12A + 9B)t + (2A + 6B + 9C) = 6t2 − 4.

These two quadratics are equal for all values of t if and only if corresponding
coefficients are equal. That is,

9A = 6

12A + 9B = 0

2A + 6B + 9C = −4.

The solution of this linear system is

A =
2

3
, B =

−8

9
, and C = 0.

Therefore a solution of (13.4.12) is

yp =
2

3
t2 − 8

9
t.

April 22, 2012 Calculus



§ 13.4 SECOND-ORDER LINEAR DIFFERENTIAL EQUATIONS: THE NONHOMOGENEOUS CASE 1133

�

Though the right-hand side in (13.4.12) has only quadratic and constant
terms, the particular solution contains only quadratic and linear terms. The
best guess is the most general polynomial of the same degree as the degree of
the right-hand side of the equation.

The final example combines the methods of Section 13.3 and this section.

EXAMPLE 8 Find all solutions of

y′′ + 2y′ + 10y = e2t − 3e−t. (13.4.13)

SOLUTION All solutions of the homogeneous equation y′′ + 2y′ + 10y = 0
were found in Example 3 of Section 13.3. They are

yh = c1e
−t cos(3t) + c2e

−t sin(3t)

for any c1 and c2. All that remains is to find a single solution of the nonho-
mogeneous equation (13.4.13).

We find it in two steps. First we find a solution yp1 of

y′′ + 2y′ + 10y = e2t (13.4.14)

and then we find a solution yp2 of

y′′ + 2y′ + 10y = −3e−t. (13.4.15)

Then, by part (a) of Theorem 13.4.1, a solution of (13.4.13) is yp1 + yp2 and,
by Theorem 13.4.2, the general solution of (13.4.13) is

y = c1e
−t cos(3t) + c2e

−t sin(3t) + (yp1 + yp2).

To find a solution of (13.4.14) we try y = Ae2t. This yields(
Ae2t

)′′
+ 2

(
Ae2t

)′
+ 10

(
Ae2t

)
= e2t,

which reduces to
4A + 4A + 10A = 1.

Consequently, A = 1
18

. Thus yp1 = 1
18

e2t.
Because e−t is not a solution of the associated homogeneous equation, a

solution of (13.4.15) may be found in the form y = Be−t. Substituting into
(13.4.15) yields (

Be−t
)′′

+ 2
(
Be−t

)′
+ 10

(
Be−t

)
= −3e−t.
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This becomes
B − 2B + 10B = −3.

so B = −1
3

and yp2 = −1
3

e−t.
Adding the particular solutions of (13.4.14) and (13.4.15) we obtain a par-

ticular solution of (13.4.13):

yp = yp1 + yp2 =
1

18
e2t − 1

3
e−t.

The general solution of (13.4.13) is therefore

y = yh + yp = c1e
−t cos(3t) + c2e

−t sin(3t) +
1

18
e2t − 1

3
e−t.

�

Summary

To solve a second-order linear differential equation with constant coefficients,

ay′′ + by′ + cy = f(t), (13.4.16)

solve the associated homogeneous equation by the methods of Section 13.3.
Then find a particular solution yp of (13.4.16) by intelligent guessing,

guided by the form of f(t).
When solving the nonhomogeneous equation do not use a guess that hap-

pens to be a solution of the associated homogeneous equation.
The general solution of (13.4.16) has the form y = c1y1 + c2y2 + yp, where

yp solves the nonhomogeneous equation and y1 and y2 solve the associated
homogeneous equation, and c1 and c2 are arbitrary constants.

SHERMAN: Slight change
to text. OK? Here or after

table?

The initial guesses for the form of the particular solution are given in
the following table. Each guess needs to be multiplied by a power of t until
it does not contain terms that also appear in the solution of the associated
homogeneous equation.
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description right-hand side: f(t) initial guess for yp

exponential Aekt Bekt

trigonometric A1 cos(kt) + A2 sin(kt) B1 cos(kt) + B2 sin(kt)
constant A B
nth degree polynomial A0 + A1t + A2t

2 + · · ·+ Ant
n B0 + B1t + B2t

2 + · · ·+ Bnt
n

exponential × trigonometric ekt(A1 cos(kt) + A2 sin(kt)) ekt(B1 cos(kt) + B2 sin(kt))
exponential × polynomial ekt(A0 + A1t + A2t

2 + · · ·+ Ant
n) ekt(B0 + B1t + B2t

2 + · · ·+ Bnt
n)
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EXERCISES for Section 13.4

In Exercises 1 to 8, what form would be the initial guess for yp if ay′′+by′+cy = f(t)?
Assume that f(t) is not a solution of the homogeneous equation and that there are
no repeated roots.
1. f(t) = 3 sin(2t)

2. f(t) = 4 cos(5t)

3. f(t) = 2e−2t

4. f(t) = 3e5t sin(4t)

5. f(t) = 3 sin(2t) + 5 cos(3t)

6. f(t) = t2 + 5

7. f(t) = 7t + cos(t)

8. f(t) = e7t + sin(3t)

9. Guess a particular solution of y′′ − 8y′ + 15y = f(t) if

(a) f(t) = e2t

(b) f(t) = 5 sin(3t)

(c) f(t) = e3t

(d) f(t) = e5t

(e) f(t) = 2 sin(3t) + 4 cos(3t)

(f) f(t) = e2t + 6 sin(3t) + 3e3t − 2e5t

10. Guess a particular solution of y′′ + 10y′ + 25y = f(t) if

(a) f(t) = e2t

(b) f(t) = 5 sin(3t)

(c) f(t) = e−5t

(d) f(t) = t2e5t

(e) f(t) = e−5t sin(3t)

(f) f(t) = e2t + 6 sin(3t)− 4e−5t + t2e5t + e−5t sin(3t)

11. Guess a particular solution of y′′ + 25y = f(t) if
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(a) f(t) = sin(4t)

(b) f(t) = t cos(4t)

(c) f(t) = sin(5t)

(d) f(t) = t cos(5t)

(e) f(t) = e5t

(f) f(t) = t cos(4t) + 2t cos(5t) + e5t

12. Guess a particular solution of y′′ + y′ − 2y = f(t) if

(a) f(t) = 3t + 1

(b) f(t) = e3t

(c) f(t) = e−2t

(d) f(t) = et + e2t

(e) f(t) = et sin(t)

In Exercises 13 to 20 find a particular solution
13. y′′ + y′ − 6y = et

14. y′′ + y′ − 6y = e2t

15. y′′ + 25y = 3 cos(4t)
16. y′′ + 25y = 20 cos(5t)
17. y′′ + y′ − 12y = e3t

18. y′′ − 2y′ + y = et

19. y′′ − 2y′ + 3y = 2t2 + 12
20. 3y′′ + 2y′ + y = e2t (56 cos(t)− 28 sin(t))

21. Find all solutions of y′′ − 2y′ − 3 = f(t) when

(a) f(t) = e2t

(b) f(t) = et

(c) f(t) = e−3t

22. Find all solutions of y′′ + 6y′ + 9y = f(t) when
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(a) f(t) = et

(b) f(t) = e3t

(c) f(t) = e−3t

23. Find all solutions of y′′ + 9y = f(t) when

(a) f(t) = cos(4t)

(b) f(t) = sin(4t)

(c) f(t) = et sin(4t)

24. Find all solutions of y′′ − 4y′ + 4y = f(t) when

(a) f(t) = 8

(b) f(t) = 4t + 4

(c) f(t) = −4t2 + 16t− 6

25. Prove part (b) of Theorem 13.4.1
26. Prove part (c) of Theorem 13.4.1

27. Which equations of the form ay′′ + by′ + cy = f(t) have distinct solutions u
and v such that u− v is also a solution?

In Exercise 13.1.4 in Section 13.1 we asked the reader to verify a solution to the
fourth-order beam equation y(4) − y′′ = −W (W a constant). Exercises 28 and 29
present two ways to find this solution.
28. The first approach takes advantage of the fact that the beam equation involves
only even derivatives of y.

(a) Show that the substitution u = y′′ reduces the fourth-order equation to the
second-order equation u′′ − u = −W .

(b) Find its general solution.

(c) Solve the second-order equation y′′ = u, where u is a solution found in (b).

29. The second approach to solving the beam equation extends the ideas of
Section 13.3 to higher-order homogeneous equations and then uses the ideas of this
section to find a particular solution.
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(a) Find all r that make y = ert a solution to y(4) − y′′ = 0.

(b) Use the information in (a) and the ideas in Section 13.3 to find all solutions
to y(4) − y′′ = 0. (This involves four independent constants.)

(c) Use the method of intelligent guessing to find a particular solution to y(4) −
y′′ = −W .

30. If y′′ − 4y′ + qy = 4e3t where q is a constant,

(a) for which values of q is Ae3t an intelligent guess for a nonhomogeneous solu-
tion?

(b) for the value of q found in (a), what is a valid guess for a nonhomogeneous
solution?

31. If y′′ + py′ + qy = 7e3t where p and q are constants,

(a) for which values of p and q do neither Ae3t nor Ate3t provide a solution?

(b) for which values of p and q does At2e3t provide a solution?

(c) for the values of p and q found in (b), why would it not make sense to guess
(At2 + Bt + C)e3t as the form of a particular solution of this equation?
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13.5 Euler’s Method

We have looked only at differential equations of special forms: separable (Sec-
tion 13.1), first-order linear (Section 13.2), and second-order linear with con-
stant coefficients (Sections 13.3 and 13.4). More types are examined in a
differential equations course.

Many differential equations do not have solutions that can be expressed in
terms of elementary functions, even seemingly simple equations such as

dy

dt
= e−t2 or

dy

dt
=
√

1 + y3.

Some equations can be solved exactly, but only after much work, for instance,

dy

dt
= sin y and

dy

dt
= 1 + ey.

Euler’s method is a technique for obtaining approximate solutions. It
involves calculations easily implemented on a calculator or computer.

Figure 13.5.1

Euler’s method applies to the general first-order differential equation

dy

dt
= h(t, y) (13.5.1)

with an initial condition
y(t0) = y0. (13.5.2)

The solution to (13.5.1) and (13.5.2) is a function y = f(t), whose graph is a
curve that we will denote by C. (See Figure 13.5.1.)

The point P0 = (t0, y0) is on C, and there the slope of the solution is
m0 = y′(t0) = h(t0, y0). We use the tangent line to C at P0 to construct an
estimate of the solution at a nearby value of the independent variable, say at
t = t1. That is, define y1 by the condition that (t1, y1) lies on that tangent
line.

Figure 13.5.2

Because the point P1 = (t1, y1) is on the tangent line to C at (t0, y0),
y1 = y0+(t1−t0)m0. This is the linear approximation described in Section 5.5.
While P1 will not generally be on C it will be close to C when t1 is near t0.

Then we repeat the process, using P1 instead of P0. With m1 = h(t1, y1)
as an estimate of the slope of C at P1, we choose t2 near t1 and compute
y2 = y1 + (t2 − t1)m1. This process can be repeated to construct points P1,
P2, . . . that approximate the curve C. (See Figure 13.5.2.)

With each step the estimate generally moves further from the curve C.
This tendency can be controlled by choosing ti closer to ti−1. However, even
if the process is automated, using too many steps may result in too great an
error due to the accumulation of arithmetical rounding errors.

EXAMPLE 1 Approximate the solution to y′ = y − t, y(0) = 1
2

on the
interval 0 ≤ t ≤ 1 using four equal steps.
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SOLUTION Here h(t, y) = y− t and y0 = 1
2
. Since the length of the interval

is 1− 0 = 1, we have ∆t = 1
4
.

The Table 13.5.1 organizes the work involved in Euler’s method. The first
row has been filled in using the initial condition.

i ti yi = yi−1 + mi−1∆t mi = yi − ti Pi = (ti, yi)
0 t0 = 0 y0 = 1

2
m0 = 1

2
− 0 = 1

2
P0 = (0, 0.5)

1 t1 = 1
4

2 t2 = 1
2

3 t3 = 3
4

4 t4 = 1

Table 13.5.1 Initial table for Euler’s method for y′ = y − t, y(0) = 1
2
, on the

interval [0, 1] with four steps of size ∆t = 1
4
.

Table 13.5.2 shows the calculations for the four steps of Euler’s method.

i ti yi = yi−1 + mi−1∆x mi = yi − ti Pi = (ti, yi)
0 t0 = 0 y0 = 1

2
m0 = 1

2
− 0 = 1

2
P0 = (0.00, 0.500)

1 t1 = 1
4

y1 = 1
2

+ 1
2

1
4

= 5
8

m1 = 5
8
− 1

4
= 3

8
P1 = (0.25, 0.625)

2 t2 = 1
2

y2 = 5
8

+ 3
8

1
4

= 23
32

m2 = 23
32
− 1

2
= 7

32
P2 = (0.50, 0.719)

3 t3 = 3
4

y3 = 23
32

+ 7
32

1
4

= 99
128

m3 = 99
128
− 3

4
= 3

128
P3 = (0.75, 0.773)

4 t4 = 1 y4 = 99
128

+ 3
32

1
4

= 399
512

m4 = 399
512
− 4

4
= −113

512
P4 = (1.00, 0.779)

Table 13.5.2 Completed table for Euler’s method for y′ = y− t, y(0) = 1
2
, on

the interval [0, 1] with four steps of size ∆t = 1
4
.

Euler’s method, with four steps of size ∆t = 1
4
, provides the approximate

value 0.779 for y(1). �

Figure 13.5.3

Increasing the number of steps reduces ∆t, which should improve the ac-
curacy of Euler’s method. Doubling the number of steps in Example 1 reduces
∆t to 1/8 and yields Table 13.5.3.

With n = 8 steps, the approximate value for y(1) is 0.717. Doubling the
number of steps again further refines the estimate to y(1) = 0.681.

The solution to the first-order linear initial value problem in Example 1 is
y = 1 + x − 1

2
ex. The curve C is the graph of y = 1 + x − 1

2
ex. Thus y(1) is

2 − e
2
≈ 0.641. Table 13.5.4 shows how the estimates of y(1) approach 0.641

and Figure 13.5.3 shows the convergence visually.
As Table 13.5.4 suggests, doubling the number of steps in Euler’s method

tends to cut the error in half. That is, the error tends to be proportional to
∆t.

Calculus April 22, 2012



1142 CHAPTER 13 INTRODUCTION TO DIFFERENTIAL EQUATIONS

i ti yi = yi−1 + ∆xmi−1 mi = h(ti, yi) Pi = (ti, yi)
0 t0 = 0 y0 = 1

2
m0 = 1

2
P0 = (0.00, 0.500)

1 t1 = 1
8

y1 = 0.5625 m1 = 0.4375 P1 = (0.125, 0.563)
2 t2 = 1

4
y2 = 0.617 m2 = 0.367 P2 = (0.250, 0.617)

3 t3 = 3
8

y3 = 0.663 m3 = 0.288 P3 = (0.375, 0.663)
4 t4 = 1

2
y4 = 0.699 m4 = 0.199 P4 = (0.500, 0.699)

5 t5 = 5
8

y5 = 0.724 m5 = 0.990 P5 = (0.625, 0.724)
6 t6 = 3

4
y6 = 0.736 m6 = −0.014 P6 = (0.750, 0.736)

7 t7 = 7
8

y7 = 0.735 m7 = −0.140 P7 = (0.875, 0.735)
8 t8 = 1 y8 = 0.717 m8 = −0.283 P8 = (1.000, 0.717)

Table 13.5.3 Completed table for Euler’s method for y′ = y− t, y(0) = 1
2
, on

the interval [0, 1] with eight steps of size ∆t = 1
8
.

n ∆t Estimate of y(1) Error
4 1

4
0.779 0.779− 0.641 = 0.138

8 1
8

0.717 0.717− 0.641 = 0.076
16 1

16
0.681 0.681− 0.641 = 0.040

Table 13.5.4 Convergence of approximations of y(1) for y′ = y − t, y(0) = 1
2
,

by Euler’s method with 4, 8, and 16 steps. The exact value is 2− e
2
≈ 0.641.
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Though we have focused on the approximate values of the solution at the
right-hand endpoint of the interval, Euler’s method provides estimates of the
solution at equally spaced points with spacing ∆t. Thus, Euler’s method can
also be used to graph an approximate solution to an initial value problem.
This is how the piecewise linear curves in Figure 13.5.3 were created.

Courses on differential equations or numerical analysis give more methods
for estimating the solution to y′ = h(t, y), y(t0) = y0. Many are elaborations
of Euler’s method.

Summary

Euler’s method for approximating the solution to the first-order initial value
problem

y′ = h(t, y), y(a) = y0

on the interval a ≤ t ≤ b can be summarized in the following algorithm:

Given h(t, y), t0, y0,
a, b, n

Compute ∆t = b−a
n

Compute for i = 1, 2, 3, ..., n do

m = h(ti−1, yi−1)
ti = ti−1 + ∆t
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EXERCISES for Section 13.5

In Exercises 1 to 3 estimate y(1) for the problem considered in Example 1 using
Euler’s method with the indicated number of steps. Also, estimate the error. No
calculator or computer is needed.
1. n = 1 (∆t = 1)
2. n = 2 (∆t = 1/2)
3. n = 3 (∆t = 1/3)

In Exercises 4 to 9 estimate y(1) for y′ = y
4 (8 − y) with y(0) = 1 using Euler’s

method with the indicated number of steps. Use the fact that y(1) = 7.09088 to
five decimal digits to estimate the error in each case. Exercises 4 to 7 can be done
without a calculator.
4. n = 1 (∆t = 1)
5. n = 2 (∆t = 1/2)
6. n = 3 (∆t = 1/3)
7. n = 4 (∆t = 1/4)
8. n = 8 (∆t = 1/8)
9. n = 16 (∆t = 1/16)

In Exercises 10 to 17, use Euler’s method to estimate y at the right-hand endpoint.
Present your estimates both as a table and in a graph.
10. y′ = 2t− 3y, y(0) = 1, ∆t = 0.2, 0 ≤ t ≤ 1
11. y′ = t + 4y, y(0) = 1

2 , ∆t = 0.2, 0 ≤ t ≤ 1
12. y′ = 3ty, y(1) = 1, ∆t = 0.1, 1 ≤ t ≤ 2
13. y′ = 2t2y, y(0) = 2, ∆t = 0.1, 0 ≤ t ≤ 1
14. y′ = cos t− sin y, y(0) = 0, ∆t = 0.1, 0 ≤ t ≤ 1
15. y′ = tan t sec y, y(0) = 0, ∆t = 0.2, 0 ≤ t ≤ 1
16. y′ = y ln t, y(2) = 1, ∆t = 0.2, 2 ≤ t ≤ 4
17. y′ = et − y, y(0) = 1, ∆t = 0.1, 0 ≤ t ≤ 1

18. In Example 1, Euler’s method with n = 4 and ∆t = 1
4 was used to estimate

y(1) for the initial value problem y′ = y − t, y(0) = 1
2 . The estimates with n = 8

(∆t = 1
8) and n = 16 (∆t = 1

4) were also given.

(a) Verify the estimate of y(1) for n = 8.

(b) Verify the estimate of y(1) for n = 16.

(c) Obtain estimates of y(1) for n = 32, n = 64, and n = 128.

(d) Create a table showing each estimate’s error, that is, the difference between
it and the exact solution.
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(e) What pattern emerges in this table?

19.

Sam: I have a neat trick to save labor when using Euler’s method.

Jane: Yes?

Sam: Say that with n = 4 I get an estimate E4 and with n = 8 I get an estimate
E8. Then I predict that 2E8 − E4 will be a much better estimate.

Jane: Please give me an example.

Sam: In this section, E4 = 0.779 and E8 = 0.717. So, my estimate 2E8 − E4 =
2(0.717) − 0.779 is 0.655. That’s pretty close to the correct value. It’s even
better than E16 = 0.681.

Jane: How did you ever get such a smart idea?

Sam: There’s a clue in the book.

Sam has hit on a well-known method for improving Euler’s estimates. In this method
the error is smaller, being proportional to (∆t)2 (which is smaller than ∆t when
∆t < 1).
Explain Sam’s reasoning.

SHERMAN: What’s your
idea on this one? I would
convert to first-order
system. You could also use
quadratic approximation,
but would need a way to
approximate y′(ti) - unless
you used t1 = 1. Your
thoughts?

20. Assume y′′ = h(t, y, y′) with y(0) = y0, and y′(0) = v0. Describe how to
modify Euler’s method to estimate y(1).
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13.S Chapter Summary and Commentary

A differential equation for a function of one variable is called an ordinary dif-
ferential equation, abbreviated ODE. This is in contrast to similar equations
for functions of more than one variable, for example f(t, x), which are called
partial differential equations, abbreviated PDE. There are a few examples
of PDEs in the Calculus is Everywhere projects at the end of Chapters 16
and 17.

A solution to an ODE is not always an elementary function. If it is not,
we can approximate it by various methods, of which Euler’s method is an
example.

The chapter focused on three types of linear differential equations:

1. The separable equations of the form

dy

dt
= f(t)g(y),

2. The first-order linear equations

a1(t)
dy

dt
+ a0(t)y = f(t)

which we rewrite as
dy

dt
+ p(t)y = q(t), (13.S.1)

and solve if we can evaluate two antiderivatives.

3. The second-order linear equations with constant coefficients

a2y
′′ + a1y

′ + a0y = f(t). (13.S.2)

Solving (13.S.2) begins by solving the related homogeneous equation
a2y

′′ + a1y
′ + a0y = 0. Solutions are found in the form ert. The general

solution involves two parameters. Then we use the method of undeter-
mined coefficients to find a solution of (13.S.2), yp. By adding yp to
the general solution of the homogeneous equation we find all solutions of
(13.S.2).

For any DE of the form y′ = f(t, y) we can compute an approximate
numerical solution with Euler’s method, whose error is proportional to the
width ∆t we choose.

EXERCISES for 13.S

In Exercises 1 to 8 solve the equation.
1. y3 dy

dt = (y4 + 1) sin(t)
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2. dy
dt = 2t sec(y)

3. (t2 + 1)(tan(y))y′ = x

4. t2y′ = 1− x2 + y2 − x2y2 (Factor the right-hand side.)

5. y′ + 2y = 3te−2t

6. y′ − 2ty = et2

7. y′′ + 2y′ + 5y = et sin(t)

8. y′′ − 9y = 2t2e3t + 5

In Exercises 9 to 14 find the solution that satisfies the initial value condition.
9. 2y dy

dt = t√
t2−16

, y(5) = 2

10. tan(t)dy
dt = y, y

(
π
2

)
= π

2

11. y′ + 2ty = t, y(0) = 2

12. (1 + t)y′ + y = cos(t), y(0) = 1

13. y′′ − 2y′ + 2y = t + 1, y(0) = 3, y′(0) = 0

14. y′′ + 3y′ + 2y = et, y(0) = 0, y′(0) = 3

15. In this exercise we explore some of the differences between initial conditions
and boundary conditions.

(a) Find the general solution to y′′ + y = 0.

(b) Show that there is exactly one solution that satisfies the initial conditions
y(t0) = a, y′(t0) = b for any values of t0, a and b.

(c) Show that there is exactly one solution that satisfies the boundary conditions
y(0) = a, y(T ) = b (for any values of a and b) only when T is not an integer
multiple of π.

(d) Show that there is no solution that satisfies the boundary conditions y(0) = a,
y(T ) = b when T is an integer multiple of π and b 6= 0.

(e) Show that there is an infinite number of solutions that satisfies the boundary
conditions y(0) = a, y(T ) = b when T is an integer multiple of π and b = 0.

16. Assume that the outdoor temperature increases linearly as a function of t,
h(t) = t + 1. The temperature of a house is c, c < 0, at time t = 0. Then it warms
up by Newton’s law. That is, if the temperature in the house at time t is T (t), then
T ′(t) = k(t + 1− T (t)), where k is a positive constant.

(a) Find T (t).

(b) Is the graph of T (t) asymptotic to the graph of the outdoor temperature?
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17. Let M and k be positive constants. Assume that a population P (t) changes
at a rate proportional to M −P (t). That is, there is a positive constant k such that

dP

dt
= k(M − P (t)).

(a) Show that Q(t) = M − P (t) grows or shrinks exponentially.

(b) Find limt→∞ P (t).

(c) Interpret the constant M in terms of population.

18. (This model has been seen before, in Exercises 36 to 38 in Section 5.7 and in
the Hubbert’s Peak CIE at the end of Chapter 10.) Some species have a maximum
sustainable population, which we call M . Assume the population changes at a rate
proportional to itself, P (t), and to the amount left to grow, M − P (t). Then P is
governed by a logistic growth model.

dP

dt
= kP (t)(M − P (t)).

Let M and k be positive constants.

(a) Show that 1
P (M−P ) can be written as 1

M

(
1
P + 1

M−P

)
.

(b) Use separation of variables to find all solutions to

dP

dt
= kP (M − P ).

(c) Use the result in (b) to find the solution to the logistic growth model that
satisfies the initial condition P (0) = P0.

19. The differential equation y′ = 1− y10 for t > 0 with y(0) = 0 is not linear.

(a) Show that |y(t)| ≤ 1 for all values of t.

(b) Show that limt→∞ y(t) exists and that it is 1.

(c) When is the graph of y concave up? concave down?

(d) What might the graph of y look like?
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The method of undetermined coefficients is effective when the right-hand side is
one of the special forms we have discussed. This method is useless if the right-
hand side contains functions such as tan(t) or ln(t + 1) or 1

t2+1
. Then the method

of variation of parameters is more effective. Exercise 20 outlines the general
process for variation of parameters and Exercise 21 works through it for a specific
example. Additional problems for which variation of parameters is appropriate are
in Exercises 22 to 29.

20. The method of variation of parameters for y′′ + by′ + cy = f(t) is similar to
procedures we have already used. When y1 and y2 are solutions to the associated
homogeneous equation, the general solution of the homogeneous equation is yh(t) =
c1y1(t) + c2y2(t) for any constants c1 and c2. We seek a particular solution of the
form yp(t) = u1(t)y1(t)+u2(t)y2(t) where the unknown coefficients, u1(t) and u2(t),
are found as follows:

(a) Compute y′p, which has four terms. To prepare for the computation of y′′p ,
assume u′1y1 + u′2y2 = 0. This leaves y′p = u1y

′
1 + u2y

′
2.

(b) Compute y′′p by differentiating the y′p found in (a).

(c) Show that when yp, y′p, and y′′p are substituted into the nonhomogeneous
equation the resulting equation is u′1(t)y

′
1(t) + u′2(t)y

′
2(t) = f(t).

We now have two linear equations for u′1(t) and u′2(t). After solving them, all that
remains is to integrate u′1(t)and u′2(t) to find u1(t) and u2(t).

21. Apply the method of variation of parameters to y′′ + y = tan(t), as follows.

(a) Show that the general solution to the associated homogeneous equation is
yh = c1 sin(t) + c2 cos(t).

(b) Show that yp = u1(t) sin(t) + u2(t) cos(t) is a particular solution to the non-
homogeneous equation when

u′1(t) sin(t) + u′2(t) cos(t) = 0 and u′1(t) cos(t)− u′2(t) sin(t) = tan(t).

(c) Solve the equations in (b) to find

u′1(t) = sin(t) and u′2(t) = − tan(t) sin(t).

(d) Integrate u′1(t) and u′2(t) to find

u1(t) = − cos(t) + K1 and u2(t) = sin(t)− ln |sec(t) + tan(t)| .

(e) Conclude that yp = − cos(t) ln |sec(t) + tan(t)|.
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In Exercises 22 to 29, use the method of variation of parameters to find a particular
solution of
22. y′′ + 3y′ + 2y = 4et

23. y′′ − 2y′ + y = t−1et

24. y′′ + 4y′ + 4y = e−2t ln(t) (t > 0)
25. y′′ + 5y′ + 6y = 108t2

26. y′′ + 2y′ + y = e−t

27. y′′ + 4y = sec2(2t)
28. y′′ + 9y = tan2(3t)
29. y′′ − 5y′ + 24y = 1331t2e8t
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Calculus is Everywhere # 16

Flow Through a Narrow Pipe: Poiseuille’s Law

Poiseuille is pronounced
pwa-záy

In the 1830’s the physician Jean Poiseuille (1797–1869) investigated the
flow of liquids in pipes whose diameters were as small as 0.015 mm to as large
as 0.6 mm. He was motivated by the desire to understand the flow of blood in
arteries. His experiments were not easy to carry out. For instance, calibrating
a single pipe could take as long as twelve hours. In 1839 he deposited a
sealed packet with the French Academy of Sciences describing his results, the
standard way to establish priority at that time.

Poiseuille concluded that the flow is proportional to the fourth power of the
inner radius (R4), to the difference in pressures at the ends of the pipe (P ), and
inversely proportional to the length of the pipe (L), and thus proportional to
R4P/L. At the time it was thought that the flow would be proportional to R3,
not R4. In 1860 Eduard Hagenbach confirmed Poiseuille’s conjecture, deriving
his formula mathematically from physical principles. The next Calculus is
Everywhere obtains the equation from Newton’s laws, starting with a form of
the Navier-Stokes equation, a fundamental equation in fluid dynamics.

Let R be the inner radius of the pipe. One might expect the flow to be
proportional to the cross-sectional area πR2, hence to the square of the radius.
That assumes all the fluid flows at the same speed. But that is not so because
fluid along the surface does not move at all and moves fastest along the axis.

On the interval [−R,R] let v(r) be the velocity of the fluid at a distance
|r| from the axis. Thus v(−r) = v(r) and v(R) = 0. Because the maximum
velocity occurs along the axis, v′(0) = 0.

Let µ denote the viscosity of the fluid (large for oil, small for water, in
between for blood), and A be the pressure gradient, defined as P/L. We will
find how v(r) depends on r. Once we know that, we can measure the flow.

Our starting point is Newton’s Third Law of Motion. Equating the forces
of pressure and viscosity results in the differential equation:

µ
d2v

dr2
+

µ

r

dv

dr
= −A. (C.16.1)

It is linear but not all of its coefficients are constants. The methods of Sec-
tions 13.3 and 13.4 do not apply.

Only the first and second derivatives of v appear, not v itself. Letting
w = dv

dr
and dividing by µ, we can rewrite (C.16.1) as:

dw

dr
+

w

r
= −A

µ
, (C.16.2)
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a first-order equation that could be solved by the methods of Section 13.2.
(See Exercise 5.) However, here we will use a different technique.

The terms on the left-hand side of (C.16.1) appear often in problems that
involve viscosity. If we use

dw

dr
+

w

r
=

1

r

d

dr
(rw(r)) ,

(C.16.2) becomes
1

r

d

dr
(rw(r)) =

−A

µ
.

Multiplying this equation by r results in

d

dr
(rw(r)) =

−A

µ
r,

which is easily integrated. There is a constant K such that

rw(r) =
−A

2µ
r2 + K for all r between 0 and R.

Note that w(0) = 0 because the maximum velocity occurs at the axis. To
find K replace r by 0, obtaining 0w(0) = K, which shows that K = 0. Thus,
replacing w(r) with dv

dr
brings us to

dv

dr
=
−A

2µ
r.

Another integration produces

v(r) =
−Ar2

4µ
+ Q for some constant Q. (C.16.3)

When r = R, v is 0, so (C.16.3) implies that

0 =
−AR2

4µ
+ Q

and we have Q = AR2

4µ
. Thus (C.16.3) becomes

v(r) =
−A

4µ
r2 +

A

4µ
R2.

Therefore the velocity of the fluid in the pipe is

v(r) =
A

4µ

(
R2 − r2

)
. (C.16.4)
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Now that we know how the velocity varies with distance from the axis, we
can calculate the total flow of the liquid.

Figure C.16.1

A cross section of the liquid perpendicular to the axis of the pipe is a disk
composed of narrow rings of width dr. as shown in Figure C.16.1. The area
of the ring is approximately 2πr dr. Combining this with (C.16.4) shows that
the rate at which fluid crosses the ring is approximately

(velocity)(area of ring) =
A

4µ

(
R2 − r2

)
(2πr dr) =

πA

2µ

(
R2r − r3

)
=

πA

2µ

(
R2r − r3

)
dr.

This fluid moves past the entire disk at the rate

R∫
0

πA

2µ

(
R2r − r3

)
dr =

πA

2µ

R∫
0

(
R2r − r3

)
dr =

πA

2µ

(
R2r2

2
− r4

4

)∣∣∣∣R
0

=
πA

2µ

(
R4

2
− R4

4

)
=

πAR4

8µ
=

πR4P

8µL
.

This tells us that the flow is proportional to R4P/L and Poiseuille’s conjecture
is a consequence of physical principles.

The flow depends strongly on the radius R. Reducing the radius from R to
R/2 reduces the flow by a factor of 24 = 16. Even reducing R by 20% cuts the
flow by almost 60%. That is why narrowing of the arteries is a serious medical
condition.

Poiseuille’s Law also explains how the muscles that circle the arteries can
control blood flow by a slight tightening or relaxing.

For a detailed and fascinating description of Poiseuille’s experiments, see
“The History of Poiseuille’s Law,” by Salvatore P. Sutera and Rickard Skalak
in The Annual Review of Fluid Mechanics 25 (1993), 1–19.

EXERCISES

To solve a first-order linear differential equation of the form

dy

dt
+

k

t
y = q(t) with k a constant

multiply it by tk. The left-hand side is then the derivative of tky(t). Thus the
equation can be written as

d

dt

(
tky(t)

)
= tkq(t).

The solution is found by integrating both sides and by dividing by tk.
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Use this method to find the general solution of
1. y′ + 3

t y = 3t

2. y′ − 1
2ty = 1

3. y′ + 1
t y = et

4. y′ − 4
t y = t4 + 2t3 + 1

5. In this exercise we present a different method for solving (C.16.1) with v(R) = 0.

(a) Find the general solution of (C.16.2) by the methods described in Section 13.2.

(b) Find the general solution of (C.16.1) by integrating the solution found in (a).

(c) Find all solutions of (C.16.1) that also satisfy v(R) = 0.

(d) The solution in (c) should still involve one constant. Find a value that makes
the solution well-defined (that is, is finite) for r = 0.

(e) Does the solution found in (d) agree with (C.16.4)? Be sure to explain any
differences.

6.

(a) Why is the area of the ring in Figure C.16.1 approximately 2πr dr?

(b) What is the exact area of that ring?

7. We showed that the velocity is proportional to R2− r2. If, instead, the velocity
is proportional to R−r what power of R would appear in the formula for the flow?

8. Let v(r, R) be the velocity of the fluid at a distance r from the axis of a pipe
of inner radius R. Assume that there is a differentiable function f(r) such that
v(r, R) = f(R)− f(r). Assume that there are constants k and m 6= 2 such that for
all R

R∫
0

(f(R)− f(r)) r dr = kRm.

(a) Show that v(R,R) = 0.

(b) Show that v(r, R) = 2km
m−2

(
Rm−2 − rm−2

)
.
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Calculus is Everywhere # 17

Origin of the Equation for Flow in a Narrow

Pipe

The preceding section, Flow Through a Narrow Pipe: Poiseuille’s Law, ob-
tained the fourth-order law for the rate at which fluid flows through a narrow
pipe. It depends on finding the solutions to the differential equation

µ
d2v

dr2
+

µ

r

dv

dr
+ A = 0. (C.17.1)

In this section we obtain (C.17.1) from basic physical assumptions.

The Physics

In his monumental Mathematical Principles of Natural Philosophy and the
System of the World, usually referred to as “The Principia,” Newton stated
three laws of motion. The second and third laws of motion will be used in the
present discussion.

Newton’s second law implies that if a moving object undergoes no acceler-
ation, then the total force operating on that object is zero.

The third law reads, “To every action there is always opposed an equal
reaction; or, the mutual actions of two bodies upon each other are always
equal, and directed to contrary parts.”

He follows this law by a commentary that begins, “Whatever draws or
presses another is as much drawn or pressed by that other. If you press a
stone with your finger, the finger is also pressed by the stone. If a horse draws
a stone tied to a rope, the horse (if I may so say) will be equally drawn back
towards the stone.”

We apply the third law immediately in the case of fluid flow.

Figure C.17.1

Imagine two thin planar layers of fluid moving from left to right, as in
Figure C.17.1. Fluid in the lower one is moving faster than the fluid in the
upper one. The area of contact we call C. The velocity v of the fluid depends
on r, shown in Figure C.17.1. We are assuming that v is a decreasing function
of r.

The faster fluid exerts a force F1 on the slower fluid, tending to speed it up.
The slower fluid exerts a force F2 on the faster fluid, tending to slow it down.
By Newton’s third law these two forces are equal but in opposite directions:
F2 = −F1.
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The magnitude of F1 and F2 is proportional to the area C. It also is
proportional to the difference in their velocities, which we will measure by the

derivative
dv

dr
, viewing v as a function of r, as shown in Figure C.17.1. Thus

F1 and F2 are proportional to C times
dv

dr
.

The constant of proportionality depends on the particular fluid. Call this
positive constant µ. Because v is a decreasing function of r, dv

dr
is negative,

and we have

F1 = −µC
dv

dr
. (C.17.2)

By Newton’s third law,

F2 = µC
dv

dr
. (C.17.3)

Formulas (C.17.2) and (C.17.3) hold also when the layers are curved, for in-
stance, when they are two concentric thin pipes, the case we will be using.

The constant µ is called the viscosity of the fluid. The larger it is the
more drag or pull one layer exerts on the other.

Viscosity is a measure of the internal friction of the fluid. The higher the
viscosity, the harder it is to make the fluid flow. In one system of units, water
has a low viscosity, 0.894, while olive oil has viscosity 81, and blood about 3.5.
Temperature affects viscosity. For instance, honey has a very high viscosity at
room temperature but flows easily at high temperature.

The Mathematics

Now that we have the necessary physical principles, we are ready to consider
a fluid moving from left to right through a narrow cylindrical pipe of inner
radius R and length L, as in Figure C.17.2. Fluid at a distance r from the
axis has the velocity v = v(r) for 0 ≤ r ≤ R, a decreasing function of r.

Imagine breaking up the cylinder of radius R and length L into thin con-
centric pipes or straws, as we did with the shell technique in Section 7.5.
Figure C.17.3 shows one such pipe. Its inner radius is r and its outer radius
is r + ∆r.

The flow in this pipe is affected by the flow in the two pipes adjacent to it,
shown in Figure C.17.4.

Four forces act on the middle pipe: the force at the left end, the force at
the right end, the drag to the left due to slower fluid in the outer pipe, and
the pull to the right of the faster fluid in the inner pipe. We calculate each of
these forces.
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(a) (b)

Figure C.17.2 (a) End view and (b) side view of a cylindrical pipe with
radius R and length L.

(a) (b)

Figure C.17.3 (a) End view and (b) side view of a thin shell with thickness
∆r cut from the cylindrical pipe with radius R and length L.
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(a) (b)

Figure C.17.4 (a) End view and (b) side view of a cylindrical pipe with
radius R and length L.

Let P1 be the pressure at the left end. The force against this end is the
product of the pressure P1 there and the area of the base of the middle pipe,
which is 2π

(
r + ∆r

2

)
∆r, as Exercise 1 shows. Thus this force is

P1

(
2π

(
r +

∆r

2

)
∆r

)
.

Let the lower pressure at the right end be P2. The force against the right end
of the middle pipe is, similarly,

−P2

(
2π

(
r +

∆r

2

)
∆r

)
.

Denoting the difference of the two pressures, P1 − P2, by P , we see that the
net force against the two ends of the middle pipe is

P

(
2π

(
r +

∆r

2

)
∆r

)
.

The force of the inner pipe on the middle pipe is

−µ (Area Shaded)
dv

dr
= −µ (2πrL)

dv

dr
(r),

where dv
dr

is evaluated at r. The minus sign is inserted because dv
dr

is negative.
The force of the outer pipe on the middle pipe is

µ (2π (r + ∆r) L)
dv

dr
(r + ∆r) (C.17.4)
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where dv
dr

is evaluated at r + ∆r.
Because the fluid is moving at a steady rate, not being accelerated, the

sum of these forces is, by Newton’s Law, zero:

0 = P (2π)

(
r +

∆r

2

)
∆r − µ(2πrL)

dv

dr
(r) + µ (2π(r + ∆r)L)

dv

dr
(r + ∆r).

(C.17.5)
Division by 2πL yields this simpler equation:

0 =
P

L

(
r +

∆r

2

)
∆r − µr

dv

dr
(r) + µ(r + ∆r)

dv

dr
(r + ∆r) (C.17.6)

Using the Taylor polynomial of degree one, the linear approximation, we have
the estimate:

dv

dr
(r + ∆r) ≈ dv

dr
+

d2v

dr2
∆r, (C.17.7)

where both dv
dr

and d2v
dr2 are evaluated at r. So we replace (C.17.6) by

0 =
P

L

(
r +

∆r

2

)
∆r − µr

dv

dr
+ µ(r + ∆r)

(
dv

dr
+

d2v

dr2
∆r

)
. (C.17.8)

Expanding the product on the right-hand sde of (C.17.8) gives

0 =
P

L

(
r +

∆r

2

)
∆r − µr

dv

dr
+ µr

dv

dr
+ µr

d2v

dr2
∆r + µ

dv

dr
∆r + µ

d2v

dr2
(∆r)2.

(C.17.9)
When ∆r is small, (∆r)2 is much smaller than ∆r. Therefore we may omit
(∆r)2, and, after a cancellation, reach:

0 =
P

L
r ∆r + µr

d2v

dr2
∆r + µ

dv

dr
∆r. (C.17.10)

Dividing (C.17.10) by r∆r gives us essentially (C.17.1), for A = P/L. This
was our goal.

EXERCISES

1. Show that the area of a ring of inner radius r and outer radius r+∆r is exactly
2π
(
r + ∆r

2

)
∆r.

2. Often 2πr∆r is used as an approximation of the area of the ring in Example 1.
Would the argument that derives (C.17.1) still go through with this approximation?
Explain.

3. Why is there no minus sign in (C.17.2)?
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4. Deduce (C.17.10) from (C.17.9).

5. Check the claim in the final sentence.

6. Show that (C.17.1) can be written as µ
r

d
dx

(
r dv

dr

)
+ A = 0.

7. In a Taylor expansion the coefficient of the second derivative is 1
2 . However, in

(C.17.7) the coefficient of the second derivative is not 1
2 . Why not?
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Chapter 14

Vectors

This chapter is part of algebra, not calculus, because it involves no limits,
derivatives, or integrals.

Section 14.1 introduces vectors, which are usually pictured as arrows. Sec-
tion 14.2 examines the dot product, a number associated with a pair of vectors.
Section 14.3 defines the cross product, a vector perpendicular to two vectors.
Applications of vectors and the dot product in Section 14.4 include finding the
distance from a point to a line or plane, and giving a parametric description
of a line.
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14.1 The Algebra of Vectors

When you hang a picture on wire you deal with three vectors: one describing
the downward force of gravity and two describing the force of the wires pulling
up, as in Figure 14.1.1(a)

(a) (b)

Figure 14.1.1

When you pull a wagon the force you use is represented by a vector, as in
Figure 14.1.1(b). The harder you pull, the larger the vector.

Figure 14.1.2

A vector has a direction and a magnitude. It can be thought of as an
arrow, whose length and direction carry information. Vectors are of use in
describing the flow of a fluid, as in Figure 14.1.2, or the wind, or the strength
and direction of a magnetic field.

Vectors in the Plane

A vector in the xy-plane is an ordered pair of numbers x and y, denoted 〈x, y〉.
Its magnitude, or length, is

√
x2 + y2. Though the notation resembles that for

April 22, 2012 Calculus



§ 14.1 THE ALGEBRA OF VECTORS 1163

a point, (x, y), we treat vectors differently. We can add them, subtract them
and multiply them by a number.

We can represent a vector 〈x, y〉 by an arrow whose tail is at (0, 0) and
whose head (or tip) is at (x, y), as in Figure 14.1.3(a).

(a) (b)

Figure 14.1.3 (a) The arrow represents the vector 〈x, y〉.

More generally, we can represent 〈x, y〉 using points P = (a1, a2) and Q =
(b1, b2) if b1 − a1 = x and b2 − a2 = y, as in Figure 14.1.3(b).

We speak then of the vector from P to Q and denote it
−→
PQ. A vector 〈x, y〉

will be written with bold-face letters, such as A, B, r, v, and a. In writing

they are denoted by putting an arrow on top of the letters, for instance
−→
AB.

A vector of length 1 is called a unit vector and is topped with a little hat, as
in r̂, which is read as “r hat”.

Table 14.1.1 summarizes the basic operations on vectors. Let A = 〈a1, a2〉
and B = 〈b1, b2〉 be vectors and let c be a number.

(a) (b) (c) (d)

Figure 14.1.4

The operation of addition obeys the usual rules of addition of numbers,
A + B = B + A and A + (B + C) = (A + B) + C. Figure 14.1.6(a) shows
both A + B and B + A; they are equal. In terms of arrows it makes sense.
See Figure 14.1.6(a).

Also, A−B = A + (−B) follows from the definitions. This property can
also be seen in Figure 14.1.6(b) since A−B and A+(−B) appear as opposite
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(a) (b) (c) (d)

Figure 14.1.5

Operation Definition Geometry Comment
A + B 〈a1 + b1, a2 + b2〉 Figure 14.1.4 The tail of B is placed at the

head of A
−A 〈−a1,−a2〉 Figure 14.1.5(a) −A points in opposite direc-

tion of A
A−B 〈a1 − b1, a2 − b2〉 Figure 14.1.5(b) What is added to B to get

A
cA 〈ca1, ca2〉 Figure 14.1.5(c) Parallel to A, opposite di-

rection if c < 0, and |c| times
as long as A,

A
c

〈
a1

c
, a2

c

〉
Figure 14.1.5(d) Parallel to A, opposite di-

rection if c < 0, and 1
|c| times

as long as A (c 6= 0)

Table 14.1.1

(a) (b) (c)

Figure 14.1.6
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sides of a parallelogram.
When A = 〈x, y〉 is a vector and c is a positive constant, cA is a multiple

of A that points in the same direction as A. If c > 1, then cA is longer than
A and if 0 < c < 1, then cA is shorter than A. If c < 0, then cA = −|c|A is
the opposite of |c|A. See Figure 14.1.6(c).

When referring to numbers, such as c, x, and y, in the context of vectors,
we call them scalars. Thus in cA the scalar c is multiplying the vector A.
Two vectors A and B are parallel if and only if there is a non-zero scalar c
such that A = cB.

The vector 〈0, 0〉 is denoted 0 and is called the zero vector.

EXAMPLE 1 Let A = 〈1, 2〉, B = 〈3,−1〉 and c = −2. Compute A + B,
A−B, and cA. Draw the corresponding arrows.
SOLUTION

A + B = 〈1, 2〉+ 〈3,−1〉 = 〈1 + 3, 2 + (−1)〉 = 〈4, 1〉
A−B = 〈1, 2〉 − 〈3,−1〉 = 〈1− 3, 2− (−1)〉 = 〈−2, 3〉

cA = −2〈1, 2〉 = 〈−2(1),−2(2)〉 = 〈−2,−4〉

The vectors A − B and A + B lie on the diagonals of a parallelogram. See

(a) (b) (c)

Figure 14.1.7

Figure 14.1.7. �
Before we can define vectors in space, we must introduce an appropriate

coordinate system.

Coordinates in Space

Pick a pair of perpendicular intersecting lines to serve as the x- and y-axes.
The positive parts of these axes are indicated by arrows. These two lines
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determine the xy-plane. The line perpendicular to the xy-plane and meeting
the x- and y-axes at (0, 0) will be called the z-axis. The point where the three
axes meet is called the origin. The 0 of the z-axis is at the origin. But which
half of the z-axis will have the positive numbers and which half will have the
negative numbers? It is customary to determine this by the right-hand rule.
Moving in the xy-plane through a right angle from the positive x-axis to the
positive y-axis determines a sense of rotation around the z-axis. If the fingers
of the right hand curl in that sense, the thumb points in the direction of the
positive z-axis, as shown in Figure 14.1.8(a).

(a) (b)

Figure 14.1.8

A point Q in space is now described by three numbers. Two specify the
x- and y-coordinates of the point P in the xy-plane directly below (or above)
Q and then the height of Q above (or below) the xy-plane is recorded by
the z-coordinate of the point R where the plane through Q and parallel to
the xy-plane meets the z-axis. The point Q is then denoted (x, y, z). See
Figure 14.1.8(b).

Points (x, y, z) for which z = 0 lie in the xy-plane. The points (x, y, z) for
which x = 0 lie in the plane determined by the y- and z-axes, which is called
the yz-plane. Similarly, the equation y = 0 describes the xz-plane. The xy-,
xz-, and yz-planes are called the coordinate planes.

EXAMPLE 2 Plot the point (1, 2, 3).

SOLUTION One way is to first plot (1, 2) in the xy-plane. Then, on a line
perpendicular to the xy-plane at that point, show the point (1, 2, 3) as in
Figure 14.1.9(a).

Another way is to draw a box whose edges are parallel to the axes and has
the origin (0, 0, 0) and (1, 2, 3) as corners as in Figure 14.1.9(b). �
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(a) (b)

Figure 14.1.9

The axes in the xy-plane divide the plane into four quadrants, and the
coordinate planes divide space into eight octants. The octant in which all
three coordinates are positive is called the first octant.

Vectors in Space

The only difference between a vector in space and a vector in the xy-plane is
that it has three components, x, y, and z, and is written 〈x, y, z〉. Its length
or magnitude is defined as

√
x2 + y2 + z2.

The definitions of the sum and difference are so similar to the definitions for
planar vectors that we will not list them. For instance, 〈a1, a2, a3〉+ 〈b1, b2, b3〉
is 〈a1 + b1, a2 + b2, a3 + b3〉. They are harder to draw, even though they can
be suggested by an arrow. It may help to visualize a three-dimensional vector
by drawing a box in which it is a main diagonal. For instance, to draw the
vector 〈2, 3,−1〉 draw the box shown in Figure 14.1.10

Figure 14.1.10

The Standard Unit Vectors

Three unit vectors indicate the directions of the positive x-, y-, and z-axes.
They will be denoted i, j and k, respectively. For instance, i = 〈1, 0, 0〉. The
vector 〈x, y, z〉 can thus be written as xi + yj + zk.

EXAMPLE 3 Draw i, j, k, and i + 2j + 3k.
SOLUTION Figure 14.1.11(a) shows i, j, k and Figure 14.1.11(b) shows
i + 2j + 3k. �

The magnitude of A is indicated by |A|, a scalar.
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(a) (b)

Figure 14.1.11

Let A be a non-zero vector. Then A
|A| is a unit vector in the direction of A

because A/|A| is the same as the vector 1
|A|A, which has length 1

|A| |A| = 1.

Example 4 shows how vectors can be used to establish geometric properties.

EXAMPLE 4 Prove that the line that joins the midpoints of two sides of
a triangle is parallel to the third side and half as long.
SOLUTION Let the triangle have vertices P , Q, and R. Let the midpoint
of side PQ be M and the midpoint of side PR be N as in Figure 14.1.12(a).

(a) (b)

Figure 14.1.12

Introduce an xy-coordinate system in the plane of the triangle. Its origin
could be anywhere in the plane, but we put it at P to simplify the calculations.
(See Figure 14.1.12(b).)

We wish to show that the vector
−−→
MN is 1

2

−→
QR. We compute

−−→
MN and

−→
QR

in terms of vectors involving P , Q, and R.
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Because
−−→
PM = 1

2

−→
PQ and

−−→
PN = 1

2

−→
PR we have

−−→
MN =

1

2

−→
PR− 1

2

−→
PQ =

1

2
(
−→
PR−

−→
PQ) =

1

2
(
−→
QR).

�
The next example shows the importance of thinking vectorally. Not think-

ing that way, one of us had a picture frame fall and break a vase.

EXAMPLE 5 A picture weighing 10 pounds has a wire on the back, which
rests on a picture hook, as shown in Figure 14.1.13(a). Find the force (tension)
on the wire.
SOLUTION There are three vectors involved. One is straight down, with
magnitude 10 pounds and two, v1 and v2, are along the wire, with unknown
magnitude F : |v1| = F = |v2|.

(a) (b)

Figure 14.1.13

To balance the downward force of gravity, each end of the wire must have
a vertical component of 5 pounds. Since the angle with the horizontal is 10◦

we must have F sin(10◦) = 5 or F = 5/ sin(10◦) ≈ 29 pounds. That is greater
than the weight of the painting and can pull the screws out of the frame. �

Summary

We introduced the notion of vectors 〈x, y〉 in the xy-plane or 〈x, y, z〉 in space
and we defined their addition, subtraction, and the operation of a scalar c on
a vector 〈x, y, z〉, as 〈cx, cy, cz〉.

We visualized vectors with the aid of arrows, which could be drawn any-
where in the xy-plane or in space.

Each vector in the xy-plane can be written as xi+ yj. Vectors in space can
be written as xi + yj + zk.
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EXERCISES for Section 14.1

1. Draw the vector 2i + 3j, placing its tail at (a) (0, 0), (b) (−1, 2), (c) (1, 1).

2. Draw the vector −i + 2j, placing its tail at (a) (0, 0), (b) (3, 0), (c) (−2, 2).

In Exercises 3 to 6 draw the vector A and enough extra lines to show how it is
situated in space.
3. A = 2i + j + 3k,

(a) tail at (0, 0, 0)

(b) tail at (1, 1, 1)

4. A = i + j + k

(a) tail at (0, 0, 0)

(b) tail at (2, 3, 4)

5. A = −i− 2j + 2k

(a) tail at (0, 0, 0)

(b) tail at (1, 1,−1)

6. A = j + k

(a) tail at (0, 0, 0)

(b) tail at (−1,−1,−1)

In Exercises 7 to 10 plot the points P and Q, draw the vector
−−→
PQ, express it in the

form xi + yj + zk, and find its length.
7. P = (0, 0, 0), Q = (1, 3, 4)

8. P = (1, 2, 3), Q = (2, 5, 4)

9. P = (2, 5, 4), Q = (1, 2, 2)
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10. P = (1, 1, 1), Q = (−1, 3,−2)

In Exercises 11 and 12 express the vector A in the form xi + yj. North is along the
positive y-axis and east is along the positive x-axis.
11.

(a) |A| = 10 and A points northwest

(b) |A| = 6 and A points south

(c) |A| = 9 and A points southeast

(d) |A| = 5 and A points east

12.

(a) |A| = 1 and A points southwest

(b) |A| = 2 and A points west

(c) |A| =
√

8 and A points northeast

(d) |A| = 1/2 and A points south

13. The wind is 30 miles per hour to the northeast. An airplane is traveling 100
miles per hour relative to the air, and the vector from the tail of the plane to its
front tip points to the south. (See Figure 14.1.14.)

Figure 14.1.14

(a) What is the speed of the plane relative to the ground?

(b) What is the direction of the flight relative to the ground?

Calculus April 22, 2012



1172 CHAPTER 14 VECTORS

14. (See Exercise 13.) The jet stream is moving 200 miles per hour to the
southeast. A plane with a speed of 550 miles per hour relative to the air is aimed
to the northwest.

(a) Draw the vectors representing the wind and the plane relative to the air.
(Choose a scale and make an accurate drawing.)

(b) Using your drawing, estimate the speed of the plane relative to the ground.

(c) Compute the speed exactly.

15. Compute A + B and A−B if

(a) A = 〈−1, 2, 3〉 and B = 〈7, 0, 2〉

(b) A = 3j + 4k and B = 6i + 7j

16. Compute A + B and A−B if

(a) A = 〈1/2, 1/3, 1/6〉 and B = 〈2, 3,−1/3〉

(b) A = 2i + 3j + 4k and B = −i + 5j + 6k

17. Compute and sketch cA if A = 2i + 3j + k and c is

(a) 2

(b) −2

(c) 1
2

(d) −1
2

18. Express the vectors in the form c(2i + 3j + 4k).

(a) 〈4, 6, 8〉

(b) −2i− 3j− 4k

(c) 0
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(d) 2
11 i + 3

11 j + 4
11k

19. If |A| = 6, find the length of

(a) −2A

(b) A/3

(c) A/|A|

(d) −A

(e) A + 2A.

20. If |A| = 3, find the length of

(a) −4A

(b) 13A− 7A

(c) A/|A|

(d) A/0.05

(e) A−A.

21.

(a) Find a unit vector u that has the same direction as A = i + 2j + 3k.

(b) Draw A and u, with their tails at the origin.

22.

(a) Find a unit vector u that has the same direction as A = 2i− 2j + 3k.

(b) Draw A and u, with their tails at the origin.

23. Using the definition of addition of vectors A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉,
show the A + B = B + A and A−B = A + (−B).
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24. Using the definition of addition of vectors show that A+(B+C) = (A+B)+C.

25. Sketch a unit vector pointing in the same direction as 3i + 4j.

26. (Midpoint formula) Let A and B be two points in space. Let M be their
midpoint and O the origin. Let A =

−→
OA, B =

−−→
OB, and M =

−−→
OM .

(a) Show that M = A + 1
2(B−A).

(b) Deduce that M = (A + B)/2. (Draw a picture.)

27. Let A and B be two distinct points in space. Let C be the point on the line
segment AB that is twice as far from A as it is from B. Let A =

−→
OA, B =

−−→
OB,

and C =
−−→
OC. Show that C = 1

3A + 2
3B. (Draw a picture.)

28. Show that 2i + 3j + 4k and 6i + 9j + 12k are parallel.

29. Show that i− 3j + 6k and −2i + 6j− 12k are parallel.

30. This exercise outlines a proof of the distributive rule, c(A + B) = cA + cB.
Write A and B in components, and obtain the rule by expressing both c(A + B)
and cA + cB in components.

31.

(a) Show that the vectors u1 = 1
2 i +

√
3

2 j and u2 =
√

3
2 i − 1

2 j are perpendicular
unit vectors. (What angles do they make with the x-axis?)

(b) Find scalars x and y such that i = xu1 + yu2.

32.

(a) Show that the vectors u1 = (
√

2/2)i+ (
√

2/2)j and u2 = (−
√

2/2)i+ (
√

2/2)j
are perpendicular unit vectors. (Draw them.)

(b) Express i in the form of xu1 + yu2. (Draw i, u1, and u2.)

(c) Express j in the form xu1 + yu2.

(d) Express −2i + 3j in the form xu1 + yu2.
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33.

(a) Draw a unit vector u tangent to the curve y = sinx at (π/4,
√

2/2).

(b) Express u in the form xi + yj.

34.

(a) Draw a unit vector u tangent to the curve y = x3 at (1, 1).

(b) Express u in the form xi + yj.

35.

(a) What is the sum of the five vectors shown in Figure 14.1.15?

(b) Sketch the polygon whose sides, in order, are A, C, D, E, B.

(c) What is A + C + D + E + B?

Figure 14.1.15
36. A rectangular box has sides of length x, y, and z. Show that the length of its
longest diagonal is

√
x2 + y2 + z2. (Use the Pythogorean Theorem twice.)

37. See Example 5 about hanging a picture. What would be the tension in the
wire if it were at an angle of

(a) 60◦ instead of 10◦ to the horizontal?

(b) 5◦ instead of 10◦ to the horizontal?
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38.

(a) Draw the vectors A = 2i + j, B = 4i− j, and C = 5i + 2j.

(b) Using the drawing in (a), show that there are scalars x and y such that
C = xA + yB.

(c) Estimate x and y from the drawing.

(d) Find x and y exactly.

39. (See Exercise 13.) Let A and B be two non-zero and nonparallel vectors in
the xy-plane. Let C be a vector in the xy-plane. Show with a sketch that there are
scalars x and y such that C = xA + yB.

40. Let A, B, and C be three vectors that do not all lie in one plane. Let D be
a vector in space. Show with a sketch that there are scalars x, y, and z such that
D = xA + yB + zC.

41. Let A, B, and C be the vertices of a triangle. Let A =
−→
OA, B =

−−→
OB, and

C =
−−→
OC.

(a) Let P be the point that is on the line segment joining A to the midpoint of
the edge BC that is twice as far from A as from the midpoint. Show that−−→
OP = (A + B + C)/3.

(b) Use (a) to show that the medians of a triangle are concurrent.

42. The midpoints of a quadrilateral in space are joined to form another quadri-
lateral. Prove that the second quadrilateral is a parallelogram.

Exercises 43 and 44 discuss a special case of the Cauchy-Schwarz inequality. This
was introduced in the CIE at the end of Chapter 7 (see page 681) and will be proved
in Section 16.7 (Exercise 29). It also appears in Exercises 5 and 6 of the Chapter 9
Summary.
43.

(a) Using a diagram, explain why |A+B| ≤ |A|+|B|. (This is called the triangle
inequality.

(b) For what pairs of vectors A and B is |A + B| = |A|+ |B|?
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44. From Exercise 43 deduce that for real numbers x1, y1, x2, and y2,

x1x2 + y1y2 ≤
√

x2
1 + y2

1

√
x2

2 + y2
2.

When does equality hold?
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14.2 The Dot Product of Two Vectors

This section introduces the dot product or scalar product, a number defined for
pairs of vectors. It begins with the definition, describes a major application,
and develops its properties.

Before we can introduce the dot product we need to define the angle be-
tween two vectors.

DEFINITION (Angle between two non-zero vectors.) Let A and
B be two nonparallel and non-zero vectors. They determine a
triangle and an angle θ, shown in Figure 14.2.1(a). The angle
between A and B is θ, 0 < θ < π.

(a) (b)

Figure 14.2.1

If A and B are parallel, the angle between them is 0, if they have
the same direction, or π if the have opposite directions.

The angle between the zero vector, 0, and any other vector is not
defined.

The cosine of the angle between A and B is denoted cos(A,B).

The Dot Product

We are now ready to define the dot product.

DEFINITION (Dot product) Let A and B be two non-zero vec-
tors. Their dot product is the number

|A||B| cos(A,B).

If A or B is 0, their dot product is 0. The dot product is denoted
A · B. It is a scalar and is also called the scalar product of A
and B.
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One of the major applications of the dot product is in the calculation of
the work accomplished by a force.

Suppose a rock is pulled along level ground by a constant force F at an angle
θ to the ground, shown in Figure 14.2.2. How much work does it accomplish
in moving the rock from the tail to the head of R?

(a) (b)

Figure 14.2.2

The force can be written as F1 + F2, where F1 is in the direction of mo-
tion. The work accomplished by F is the amount accomplished by F1. The
perpendicular force F2 accomplishes no work.

The work accomplished by F1 is its magnitude |F1| times the distance it
moves the rock, |R|.

Because |F1| = |F| cos(θ), the work accomplished by F is |F1||R| cos(θ),
the dot product of F and R,

Work = |F| cos(θ)︸ ︷︷ ︸
Force in Direction of R

· |R|︸︷︷︸
Distance traveled

= F ·R.

The dot product satisfies several useful identities that follow from the def-
inition:

A ·B = B ·A (the dot product is commutative)
A ·A = |A|2

(cA) ·B = c(A ·B) = A · (cB) (c is a scalar)
0 ·A = 0.

To establish that A ·A = |A|2, note that cos(A,A) = 1, hence

A ·A = |A||A| cos(A,A) = |A|2.
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The fact that A ·A = |A|2 will be used several times.

EXAMPLE 1 Find the dot product A ·B if A = 3i + 3j and B = −5i.
SOLUTION

Figure 14.2.3

Figure 14.2.3 shows that θ, the angle between A and B, is 3π/4.
Also,

|A| =
√

32 + 32 =
√

18 and |B| =
√

(−5)2 + 02 = 5.

Thus

A ·B = |A||B| cos θ =
√

18(5)

(
−
√

2

2

)
= −15.

�

EXAMPLE 2 Find (a) i · j, (b) i · i, and (c) 2k · (−3k).
SOLUTION

(a) The angle between i and j is π/2. Thus

i · j = |i||j| cos
(π

2

)
= 1 · 1 · 0 = 0.

(b) The angle between i and i is 0. ThusThis is a special case of
A ·A = |A|2.

i · i = |i||i| cos(0) = 1 · 1 · 1 = 1.

(c) The angle between 2k and −3k is π. Thus

2k · (−3k) = |2k| |−3k| cos(π) = 2 · 3 · (−1) = −6.

�
Computations like those in Example 2 show that ai · bi = ab, aj · bj = ab,

and ak · bk = ab, while ai · bj = 0, ai · bk = 0, and aj · bk = 0.
In particular, i · i = j · j = k · k = 1, while i · j = i · k = j · k = 0.

By definition, the zero
vector is perpendicular to

every vector in the xy-plane.
The Geometry of the Dot Product

Let A and B be non-zero vectors and θ the angle between them. Their dot
product is

Figure 14.2.4

A ·B = |A||B| cos(θ).

The quantities |A| and |B|, being the lengths of vectors, are positive. How-
ever, cos(θ) can be positive, zero, or negative. When cos(θ) = 0, it follows that
θ = π/2, so A and B are perpendicular. The dot product thus provides a way
of telling whether A and B are perpendicular:

April 22, 2012 Calculus



§ 14.2 THE DOT PRODUCT OF TWO VECTORS 1181

A Test for Perpendicular Vectors
Let A and B be non-zero vectors. If A·B = 0, then A and B are perpendicular.
Conversely, if A and B are perpendicular, then A ·B = 0.

As Figure 14.2.4 shows, A can be expressed as the sum of a vector parallel
to B and a vector perpendicular to B. The one parallel to B is |A| cos(θ)
times the unit vector B/|B|, that is

|A| cos(θ)
B

|B|

which can be rewritten as (
A · B

|B|

)(
B

|B|

)
.

DEFINITION (Projection of A onto B) Given vectors A and
B, as shown in Figure 14.2.4, the component of A parallel to B is
called the projection of A on B

projB A =
A ·B
|B|

B

|B|
=

(A ·B)B

|B|2
.

The component of A perpendicular to B is then A− projB A.

The length of projB A is |A|| cos(θ)|, which equals |A·B|
|B| .

If θ is less than π/2, projB A points in the same direction as B. If π/2 <
θ ≤ π, then projB A points in the direction opposite to that of B. In either
case, since B/|B| is the unit vector in the direction of B, we have

Geometric Interpretation of the Dot Product
Let A and B be vectors.
If A · B is positive, then the angle between the vectors is less than π/2 and
projB A points in the same direction as B.

Figure 14.2.5

If A · B is negative, then the angle between the vectors is greater than π/2
and projB A points in the direction opposite that of B.

If A · B is negative, then the angle between A and B is obtuse (greater
than π/2). Figure 14.2.5 shows this and that projB A points in the direction
opposite that of B.
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Computing A ·B in Terms of Their Components

We defined A·B, using the geometric interpretation of A and B. But what if A
and B are given in terms of their components along i, j, and k, A = 〈a1, a2, a3〉
and B = 〈b1, b2, b3〉? How would we find A ·B in that case?

The answer turns out to be simple: in both cases the dot product is the
sum of products of corresponding components.

Component Form of the Dot Product
If A = 〈a1, a2〉 and B = 〈b1, b2〉, then A ·B = a1b1 + a2b2.
If A = 〈a1, a2, a3〉 and B = 〈b1, b2, b3〉, then A ·B = a1b1 + a2b2 + a3b3.

The dot product is the sum of three numbers, the products of corresponding
components.

(a) (b)

Figure 14.2.6

These formulas depend on the law of cosines, which asserts that in a triangle
whose sides have lengths a, b, and c, and angle θ opposite the side with length
c, as in Figure 14.2.6(b), c2 = a2 + b2 − 2ab cos(θ).

For simplicity we obtain the formula for vectors in the xy-plane. In terms
of the triangle in Figure 14.2.6(a),

|A−B|2 = |A|2 + |B|2 − 2|A||B| cos(θ),

which tells us that

|A−B|2 = |A|2 + |B|2 − 2A ·B. (14.2.1)

Translating (14.2.1) into components, we have

(a1 − b1)
2 + (a2 − b2)

2 =
(
a2

1 + a2
2

)
+
(
b2
1 + b2

2

)
− 2A ·B

or
a2

1 − 2a1b1 + b2
1 + a2

2 − 2a2b2 + b2
2 = a2

1 + a2
2 + b2

1 + b2
2 − 2A ·B.
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Hence
−2(a1b1 + a2b2) = −2A ·B.

And, finally,
A ·B = a1b1 + a2b2.

The argument for space vectors is essentially the same, as doing Exercise 40
will show.

With the aid of the formula for the dot product in terms of components it
is a straightforward matter to prove the distributive property,

A · (B + C) = A ·B + A ·C.

See Exercises 38 to 41

EXAMPLE 3 Find cos(A,B) when A = 〈6, 3〉 and B = 〈−1, 1〉.
SOLUTION We know that A ·B = |A||B| cos(A,B). Thus

6 · (−1) + 3 · (1) =
√

62 + 32
√

(−1)2 + 12 cos(A,B)

or
−3 = 3

√
10 cos(A,B),

from which we conclude that

cos(A,B) = −1/
√

10.

Figure 14.2.7

As Figure 14.2.7 shows, the angle between A and B is obtuse. A calculator
would give a numerical estimate of its value. �

As Example 3 illustrates, the dot product can be used to find the cosine of
the angle between two vectors and therefore the angle itself:

Cosine of the angle between two vectors

cos(θ) = cos(A,B) =
A ·B
|A||B|

.

EXAMPLE 4

(a) Find the projection of A = 2i + j on B = −3i + 2j.

(b) Express A as the sum of a vector parallel to B and a vector perpendicular
to B.
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SOLUTION

(a) From the definition of the projection of A onto B:

projB A =
A ·B
|B|

B

|B|

=
(2i + j) · (−3i + 2j)

| − 3i + 2j|
−3i + 2j

| − 3i + 2j|

=
(−6 + 2)√

13

(−3i + 2j)√
13

=
−4

13
(−3i + 2j) =

12

13
i− 8

13
j.

Figure 14.2.8

Figure 14.2.8 shows A, B, and projB A.

In this case A · B is negative, the angle between A and B is obtuse,
and projB A points in the direction opposite the direction of B, in fact,
projB A = −4

13
B.

(b) The vector projB A found in (a) is parallel to B. Subtracting this from
A produces a vector perpendicular to B:

A− projB A =

(
2i + j−

(
12

13
i− 8

13
j

))
=

(
14

13
i +

21

13
j

)
.

(A quick computation verifies that (A − projB A) ·B = 0.) Therefore,
the vector A− projB A is perpendicular to B and we have

A = projB A + (A− projB A)

=

(
12

13
i− 8

13
j

)
︸ ︷︷ ︸

parallel to B

+

(
14

13
i +

21

13
j

)
︸ ︷︷ ︸
perpendicular to B

.

�
The scalar A · (B/|B|) is the scalar component of A in the direction

of B, denoted compB(A). It can be positive, negative, or zero. Its absolute
value is the length of projB(A).

EXAMPLE 5 Find projB(A) and compB(A) when A = i + 3j and B =
i− j.
SOLUTION Since |B| =

√
12 + (−1)2 =

√
2 and A ·B = 1− 3 = −2,

projB(A) =
A ·B
|B|

B

|B|
=
−2√

2

(i− j)√
2

= −i + j
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and compB(A) = (A · B)/|B| = −2/
√

2 = −
√

2. This agrees with Fig-
ure 14.2.9.

Figure 14.2.9

�

EXAMPLE 6 Show that the vectors 〈1, 2, 1〉 and 〈2,−3, 4〉 are perpendic-
ular.

SOLUTION All we need to do is compute the dot product of A and B and
see if it is 0. We have

A ·B = (1)(2) + (2)(−3) + (1)(4) = 2− 6 + 4 = 0,

Consequently, the vectors A and B are perpendicular. �

Summary

We defined the dot (scalar) product of two vectors A and B geometrically as
|A||B| cos(θ), where θ is the angle between A and B. We then obtained a
formula for A ·B in terms of their components: 〈a1, a2〉 · 〈b1, b2〉 = a1b1 + a2b2

and a similar formula for the dot product of two space vectors.

The dot product enabled us to express a vector A as the sum of a vector
parallel to B, projB A, and one perpendicular to B, A− projB A.

When the dot product of two vectors is ) they are perpendicular.

The zero-vector, 0, is considered to be perpendicular to every vector.

The dot product can be used to find the angle θ between two vectors:

cos(θ) = cos(A,B) =
A ·B
|A||B|

.
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The Dot Product in Business and Statistics
Imagine that a fast food restaurant sells 30 hamburgers, 20 salads, 15 soft
drinks, and 13 orders of french fries. This is recorded by the four-dimensional
“vector” 〈30, 20, 15, 13〉. A hamburger sells for $1.99, a salad for $1.50, a soft
drink for $1.00, and an order of french fries for $1.10. The “price vector” is
〈1.99, 1.50, 1.00, 1.10〉. The dot product of these two vectors,

30(1.99) + 20(1.50) + 15(1.00) + 13(1.10),

would be the total amount paid for all items.
Descriptions of the economy use “production vectors,” “cost vectors,” “price
vectors,” and “profit vectors” with many more than the four componenets of
our restaurant example.
In statistics the coefficient of correlation is defined in terms of a dot
product. For instance, say you have the heights and weights of n persons.
Let the height of the ith person be hi and the weight be wi. Let h be
the average of the n heights and w be the average of the n weights. Let
H = 〈h1 − h, h2 − h, · · · , hn − h〉 and W = 〈w1 − w,w2 − w, · · · , wn − w〉.
The coefficient of correlation between the heights and weights is defined to be

H ·W
|H||W|

.

In analogy with vectors in the plane or space,

H ·W =
n∑

i=1

(hi − h)(wi − w),

|H| =

√√√√ n∑
i=1

(hi − h)2,

|W| =

√√√√ n∑
i=1

(wi − w)2.

It turns out that the coefficient of correlation is simply the cosine of the angle
between the vectors H and W in n-dimensional space. The closer it is to 1,
the closer the angle between the vectors is to 0, and the better the weights
and heights “correlate.”
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EXERCISES for Section 14.2

In Exercises 1 to 4 compute A ·B.
1. A has length 3, B has length 4, and the angle between them is π/4.

2. A has length 2, B has length 3, and the angle between them is 3π/4.

3. A has length 5, B has length 1
2 , and the angle between them is π/2.

4. A is the zero vector 0, and B has length 5.

In Exercises 5 to 8 compute A ·B.

5. A = −2i + 3j, B = 4i + 4j

6. A = 0.3i + 0.5j, B = 2i− 1.5j

7. A = 2i− 3j− k, B = 3i + 4j− k

8. A = i + j + k,B = 2i + +3j− 5k

9.

(a) Draw the vectors 7i + 12j and 9i− 5j.

(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by examining their dot product.

10.

(a) Draw the vectors i + 2j + 3k and i + j− k.

(b) Do they seem to be perpendicular?

(c) Determine whether they are perpendicular by examining their dot product.

11.

(a) Estimate the angle between A = 3i + 4j and B = 5i + 12j by drawing them.

(b) Find the angle between A and B.
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12. Let P = (6, 1), Q = (3, 2), R = (1, 3), and S = (4, 5).

(a) Draw the vectors
−−→
PQ and

−→
RS.

(b) Using the diagram estimate the angle between
−−→
PQ and

−→
RS.

(c) Using the dot product, find cos(
−−→
PQ,

−→
RS).

(d) Using a calculator, find the angle.

13. Find the angle between 2i− 4j + 6k and i + 2j + 3k.

14. Find the angle between i + j + 3k and 3i + 6j− 3k.

15. Find the angle between
−−→
AB and

−−→
CD if A = (1, 3), B = (7, 4), C = (2, 8), and

D = (1,−5).

16. Find the angle between
−−→
AB and

−−→
CD if A = (1, 2,−5), B = (1, 0, 1),

C = (0,−1, 3), and D = (2, 1, 4).

17. Find the length of the projection of −4i + 5j on the line through (2,−1) and
(6, 1).

(a) By making a drawing and estimating the length by eye.

(b) By using the dot product.

18.

(a) Find a vector C parallel to i + 2j and a vector D perpendicular to i + 2j such
that −3i + 4j = C + D.

(b) Draw the vectors to check that your answer is reasonable.

19.

(a) Find a vector C parallel to 2i− j and a vector D perpendicular to 2i− j such
that 3i + 4j = C + D.

(b) Draw the vectors to check that your answer is reasonable.
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20. What is projB A if A = 2i + j− 3k and B = i + j + k?

21. Express the vector i + j + k as the sum of a vector parallel to i− j + 2k and
a vector perpendicular to i− j + 2k.

22. Give an example of a non-zero vector in the xy-plane that is perpendicular to
3i− 2j.

23. Give an example of a non-zero vector that is perpendicular to 5i− 3j + 4k.

Exercises 24 to 28 refer to the cube in Figure 14.2.10. Find

Figure 14.2.10

24. Find cos(
−→
AC,
−−→
BD).

25. Find cos(
−→
AF,
−−→
BD).

26. Find cos(
−→
AC,
−−→
AM).

27. Find cos(
−−→
MD,

−−→
MF ).

28. Find cos(
−−→
EF,

−−→
BD).

29. If A ·B = A ·C and A is not 0, must B = C?

30. We found the dot product in terms of components by using the Law of Cosines.
We now see why the Law of Cosines is true. The proof consists of two applications
of the Pythagorean Theorem. Figure 14.2.11 shows a triangle with sides a, b, c, with
angle θ opposite side c. (We illustrate the case where θ is less than π

2 .)
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Figure 14.2.11

(a) Show that h2 = a2 − a2 cos2(θ).

(b) Show that h2 = c2 − (b− a cos(θ))2.

(c) By equating the two expressions obtain the Law of Cosines.

(d) Carry out the proof when θ is greater than π/2.

31.

(a) Let A be a vector and u1 and u2 be perpendicular unit vectors in the xy-plane.
If A · u1 = 0 and A · u2 = 0, must A = 0?

(b) Let v1 and v2 be nonparallel unit vectors in the xy-plane. If A · v1 and
A · v2 = 0, must A = 0?

32.

Jane: I don’t like the way the author found how to express A as the sum of a vector
parallel to B and a vector perpendicular to B.

Sam: It was O.K. for me. But I had to memorize a formula.

Jane: My goal is to memorize nothing. I write A = xB+C, when C is perpendic-
ular to A. Then I dot with B, getting

A ·B = xB ·B + C ·B.

Since C is perpendicular to B, C ·B = 0, and lo and behold, I have

x =
A ·B
B ·B

.

So the vector parallel to B is A·B
B·BB.
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Sam: Cool. So why did the author go through all that stuff?

Jane: Maybe they wanted to reinforce the definition of the dot product and the
role of the angle.

Sam: O.K. But how do I get the vector C perpendicular to B?

Jane: Simple...

Complete Jane’s reply.

33. By taking the dot product of the unit vectors u1 = cos θ1i + sin θ1j and
u2 = cos θ2i + sin θ2j, prove that

cos(θ1 − θ2) = cos θ1 cos θ2 + sin θ1 sin θ2.

34. A tetrahedron, not necessarily regular, has six edges. Show that the line
segment joining the midpoints of two opposite edges is perpendicular to the line
segment joining another pair of opposite edges if anly only if the remaining two
edges have the same length.

35. The output of a firm that manufactures x1 washing machines, x2 refrigerators,
x3 dishwashers, x4 stoves, and x5 clothes dryers is recorded by the production vector
P = 〈x1, x2, x3, x4, x5〉. Similarly, the cost vector C = 〈y1, y2, y3, y4, y5〉 records the
cost of producing each item.

(a) What is the economic significance of P·C = 〈20, 0, 7, 9, 15〉·〈50, 70, 30, 20, 10〉?

(b) If the firm doubles the production of all items, what is its new production
vector?

36. Let P1 be the profit from selling a washing machine and let P2, P3, P4, and P5

be defined analogously for the firm of Exercise 35. What does it mean to the firm
to have 〈P1, P2, P3, P4, P5〉 perpendicular to 〈x1, x2, x3, x4, x5〉?

37. Prove that A ·B = B ·A

(a) using the geometric definition of the dot product,

(b) using the formula for the dot product in terms of components.
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Exercises 38 and 41 all deal with the distributive property for the dot product:

A · (B + C) = A ·B + A ·C. (14.2.2)

38. Let A, B, and C be vectors in the xy-plane. Use the formula for the dot
product in terms of components to prove that (14.2.2) is true.

39. In Exercise 38 the distributive property is obtained from the formula for the dot
product in terms of components. Show that if (14.2.2) is true, then 〈a1, a2〉·〈b1, b2〉 =
a1b1 + a2b2. Begin with (a1i + a2j) · (b1i + b2j).

40. Prove that 〈a1, a2, a3〉 · 〈b1, b2, b3〉 = a1b1 + a2b2 + a3b3 (Look at the proof for
planar vectors.)

41. Show that (14.2.2) implies A · (B + C + D) = A ·B + A ·C + A ·D.

42. Let u1, u2, and u3 be unit vectors such that any two are perpendicular. Let
A be a vector.

(a) Draw a picture that shows that there are scalars x, y, and z such that A =
xu1 + yu2 + zu3.

(b) Find B such that A ·B = x.

(c) Find C such that A ·C = x− z.

43. Let A and B be vectors. A vector parallel to B is projB A. We then used a
picture to suggest that A−projB A is perpendicular to B. Using the dot product,
show that A− projB A and B are perpendicular.

44. A force F of 10 newtons is parallel to 2i + 3j + k and pushes an object on a
ramp in a straight line from the point (3, 1, 5) to the point (4, 3, 7), where coordi-
nates are measured in meters. How much work does the force accomplish?

45. Show that if the two diagonals of the parallelogram are perpendicular, then
its four sides have the same length (forming a rhombus). (Use the dot product.)

46. How far is the point (2, 3, 5) from the line through the origin and (1,−1, 2)?
(Use the dot product, not calculus.)

47. How far is the point (1, 2, 3) from the line through (1, 4, 2) and (2, 1,−4)?
(Use the dot product, not calculus.)
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48. Some molecules, such as methane, consist of four atoms arranged as the
vertices of a regular tetrahedron, the points labeled A, B, C, and D in Figure 14.2.12.
E is the center of the cube.

Figure 14.2.12

(a) Show that A, B, C, and D are vertices of a regular tetrahedron. (Show that
the four faces are equilateral triangles.)

(b) Chemists are interested in the angle θ = AEB. Show that cos(θ) = −1/3.

(c) Find θ (approximately).
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14.3 The Cross Product of Two Vectors

The dot product of two vectors is a scalar. In this section we define a product
of two vectors that is a vector perpendicular to both.

Definition of the Cross Product

Let A = a1i + a2j + a3k and B = b1i + b2j + b3k be two non-zero vectors that
are not parallel. We will construct a vector C that is perpendicular to both
A and B. The vector C is not unique since any vector parallel to C is also
perpendicular to A and B.

Let C = xi + yj + zk. We want C ·A and C ·B to be 0. This gives us the
equations

a1x + a2y + a3z = 0 (14.3.1)

b1x + b2y + b3z = 0 (14.3.2)

We eliminate x by subtracting b1 times (14.3.1) from a1 times (14.3.2), as
follows.

a1b1x + a1b2y + a1b3z = 0 (a1 times (14.3.2))
(14.3.3)

b1a1x + b1a2y + b1a3z = 0 (b1 times (14.3.1))
(14.3.4)

Subtracting (14.3.4) from (14.3.3) gives

(a1b2 − a2b1)y + (a1b3 − a3b1)z = 0 (14.3.5)

This is like solving
2y + 3z = 0 by letting

y = −3 and z = 2.

A non-zero solution of (14.3.5) is

y = −(a1b3 − a3b1), z = a1b2 − a2b1.

To find x, substitute these values for y and z into (14.3.1). As Exercise 31
shows, algebra yields

x = a2b3 − a3b2.

So the vector

(a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k (14.3.6)

is perpendicular to A and B. It is denoted A × B and is called the vector
product of A and B or the cross product of A and B. This vector is
defined even if A and B are parallel or if one (or both) of them is the zero
vector, 0.
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A×B is called a cross product because the symbol × is commonly called a
“cross” in mathematics. The name vector product reminds us that A×B is a
vector. This is consistent with the use of both dot product and scalar product
for A ·B.

Determinants and the Cross Product

The expression (14.3.6) for the cross product is not easy to memorize. Deter-
minants provide a convenient memory aid.

Four numbers arranged in a square form a matrix of order 2, for instance(
a1 a2

b1 b2

)
.

Its determinant is the number a1b2 − a2b1, denoted

det

(
a1 a2

b1 b2

)
.

Each term in (14.3.6) is the determinant of a matrix of order 2, namely

det

(
a2 a3

b2 b3

)
, det

(
a1 a3

b1 b3

)
, and det

(
a1 a2

b1 b2

)
Nine numbers arranged in a square form a matrix of order 3, for instance c1 c2 c3

a1 a2 a3

b1 b2 b3

 .

Figure 14.3.1

Its determinant is defined with the aid of determinants of order 2:

c1 det

(
a2 a3

b2 b3

)
− c2 det

(
a1 a3

b1 b3

)
+ c3 det

(
a1 a2

b1 b2.

)
The coefficient of each ci is plus or minus the determinant of the matrix of
order 2 that remains when the row and column in which ci appears are deleted,
as shown in Figure 14.3.1 for the coefficient of c1.

Therefore we can write (14.3.6) as a determinant of a matrix, and we have

A×B = det

 i j k
a1 a2 a3

b1 b2 b3

 (14.3.7)
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DEFINITION (Cross product (vector product) in terms of deter-
minants.) The cross product, or vector product, of the vectors

A = a1i + a2j + a3k and B = b1i + b2j + b3k

can be expressed as the determinant of a 3× 3 matrix:

A×B = det

 i j k
a1 a2 a3

b1 b2 b3


= i det

(
a2 a3

b2 b3

)
− j det

(
a1 a3

b1 b3

)
+ k det

(
a1 a2

b1 b2

)
= (a2b3 − a3b2)i− (a1b3 − a3b1)j + (a1b2 − a2b1)k.

Figure 14.3.2 shows how the determinant for A × B can be evaluated by
expanding the 3× 3 matrix along its first row.

i det
Delete the two lines

through i. The
determinant of the

remaining square is the
coefficient of i in A×B.

− j det
Delete the two lines

through j. The negative
of the determinant of

the remaining square is
the coefficient of j in

A×B.

+ k det
Delete the two lines

through k. The
determinant of the

remaining square is the
coefficient of k in

A×B.

Figure 14.3.2

EXAMPLE 1 Compute A×B if A = 2i− j + 3k and B = 3i + 4j + k.
SOLUTION By definition,

A×B = det

 i j k
2 −1 3
3 4 1


= i det

(
−1 3
4 1

)
− j det

(
2 3
3 1

)
+ k det

(
2 −1
3 4

)
= −13i + 7j + 11k
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�

The cross product has these properties:

1. A×B is perpendicular to both A and B.

2. A×B = −(B×A) (so the cross product is not commutative).

3. A×B = 0 if A and B are parallel or at least one of them is 0.

4. A × (B + C) = A × B + A × C (the cross product distributes over
addition).

The first property holds because that is how we constructed the cross prod-
uct. The second and third are established by straightforward computations,
using (14.3.7). Exercises 16 and 17 take care of the fourth.

What is the Direction of A×B?

We constructed A×B to be perpendicular to A and B, but which of the two
possible directions does it have? (See Figure 14.3.3(a).)

(a) (b) (c)

Figure 14.3.3 (a) The two possible directions for A×B. (b) The right-hand
rule for A×B. (c) The right-hand rule for j× i.

To see which, take a specific case, say j× i:

j× i = det

 i j k
0 1 0
1 0 0

 = 0i− 0j− k = −k.

Figure 14.3.3(b) shows that if you curl the fingers of your right hand from j to
i, your thumb points in the direction −k.

This suggests that the direction of A×B is given by the right hand rule:
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Curl the fingers of the right hand from A and B. The thumb points
in the direction of A×B. (See Figure 14.3.3(c).)

Figure 14.3.4

The next example gives a geometric application of the cross product.

EXAMPLE 2 Find a vector perpendicular to the plane determined by the
three points P = (1, 3, 2), Q = (4,−1, 1), and R = (3, 0, 2).

SOLUTION The vectors
−→
PQ and

−→
PR lie in a plane (see Figure 14.3.4).

The vector N =
−→
PQ ×

−→
PR, being perpendicular to both

−→
PQ and

−→
PR, is

perpendicular to the plane. Because
−→
PQ = 3i− 4j−k and

−→
PR = 2i− 3j+0k,

it follows that

N = det

 i j k
3 −4 −1
2 −3 0

 = −3i− 2j− k.

�

How Long is A×B?

To find the length of A×B, |A×B|, we will compute |A×B|2:

|A×B|2 = |(a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k|2

= (a2b3 − a3b2)
2 + (a3b1 − a1b3)

2 + (a1b2 − a2b1)
2

= a2
2b

2
3 + a2

3b
2
2 + a2

3b
2
1 + a2

1b
2
3 + a2

1b
2
2 + a2

2b
2
1

−2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

= (a2
1 + a2

2 + a2
3)(b

2
1 + b2

2 + b2
3)− (a1b1 + a2b2 + a3b3)

2.

The first term is |A|2|B|2 and the second term is the square of A ·B. Letting
θ denote the angle between A and B, we have:

|A×B|2 = (a2
1 + a2

2 + a2
3)(b

2
1 + b2

2 + b2
3)− (a1b1 + a2b2 + a3b3)

2

= |A|2|B|2 − (A ·B)2

= |A|2|B|2 − (|A||B| cos(θ))2

= |A|2|B|2(1− cos2(θ))

= |A|2|B|2 sin2(θ).

Then, because sin(θ) is not negative for θ in [0, π],

|A×B| = |A||B| sin(θ).
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(a) (b)

Figure 14.3.5

We can now give a geometric meaning for the length of A ×B. The area
of the parallelogram in Figure 14.3.5 is the product of its width and height.
Thus,

area of the parallelogram spanned by A and B = |A|︸︷︷︸
base

|B| sin(θ)︸ ︷︷ ︸
height

.

The Length of A×B
Let A and B be non-zero vectors and θ the angle between them. Then

|A×B| = |A||B| sin(θ).

The length of A×B is the area of the parallelogram spanned by A and B.

EXAMPLE 3 Find the area of the parallelogram spanned by A = a1i+a2j
and B = b1i + b2j.
SOLUTION Write A as a1i + a2j + 0k and B as bi + b2j + 0k. The area of
this parallelogram is the length of A×B and We first compute A×B.

A×B =

∣∣∣∣∣∣
i j k
a1 a2 0
b1 b2 0

∣∣∣∣∣∣ = (a1b2 − a2b1)k.

The area is therefore |a1b2 − a2b1|. It is the absolute value of the determinant

det

(
a1 a2

b1 b2

)
.

�
We now have a completely geometric description of the cross product:

Geometric Description of A×B
For any non-zero vectors A and B, A × B is the vector perpendicular to A
and B, whose direction is given by the right-hand rule, and whose length is
the area of the parallelogram that A and B span.
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The Scalar Triple Product

Figure 14.3.6

The scalar A · (B × C) is called the scalar triple product. It has an
important geometric meaning. (The vector A× (B×C) is called the vector
triple product. See Exercises 21 and 22.)

Three non-zero vectors A, B, and C span a parallelepiped, as shown in
Figure 14.3.6. The angle between B ×C and A is θ (which could be greater
than π/2). The area of the base of the parallelogram is |B ×C|. The height
of the parallelepiped is |A|| cos(θ)|. Thus its volume is

|A|| cos(θ)|︸ ︷︷ ︸
height

|B×C|︸ ︷︷ ︸
area of base

.

Notice that, except for the absolute values around cos(θ), this is the dot prod-
uct of A and (B×C). This connection provides a geometric interpretation of
the scalar triple product.

Geometric Interpretation of A · (B×C)
For non-zero vectors A, B, and C, the scalar triple product A · (B × C) is
plus or minus the volume of the parallelepiped spanned by A, B, and C.

The scalar triple product can be expressed as a determinant. The dot
product of A and B×C is

A · (B×C) = a1 det

(
b2 b3

c2 c3

)
− a2 det

(
b1 b3

c1 c3

)
+ a3 det

(
b1 b2

c1 c2

)
(14.3.8)

which shows, by the definition of the determinant of a matrix of order 3, that

Figure 14.3.7

A · (B×C) = det

 a1 a2 a3

b1 b2 b3

c1 c2 c3


This determinant is plus or minus the volume of the parallelepiped spanned
by A, B, and C.

This is a generalization of the two-dimensional case where det

(
a1 a2

b1 b2

)
is plus or minus the area of the parallelogram spanned by the vectors 〈a1, a2〉
and 〈b1, b2〉.
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Summary

We constructed a vector C perpendicular to vectors A and B by requiring
that C ·A = 0 and C ·B = 0. A formula for it is

det

 i j k
a1 a2 a3

b1 b2 b3.


It is denoted A × B and called the vector product or cross product of A
and B. It also may be described as the vector whose length is the area of
the parallelogram spanned by A and B and whose direction is given by the
right-hand rule (the fingers curling from A and B). It has the properties:

1. A×B = −(B×A) (anticommutative)

2. A× (B×C) is not usually equal to (A×B)×C) (not associative)

3. A× (B×C) = (C ·A)B− (B ·A)C (See Exercises 21 and 22.) Item 4 appeared in finding
the length of A×B. It will
be used in the next chapter.4. (A×B) · (A×B) = (A ·A)(B ·B)− (A ·B)(A ·B)

5. A · (B×C) = ± volume of parallelepiped spanned by A, B, and C
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EXERCISES for Section 14.3

In Exercises 1 to 4 compute and sketch A×B.
1. A = k, B = j

2. A = i + j, B = i− j

3. A = i + j + k, B = i + j

4. A = k, B = i + j

In Exercises 5 and 6, find A×B and check that it is perpendicular to A and B.
5. A = 2i− 3j + k, B = i + j + 2k
6. A = i− j, B = j + 4k

In Exercises 7 to 10 use the cross product to find the area of
7. the parallelogram three of whose vertices are (0, 0, 0), (1, 5, 4), and (2,−1, 3).

8. the parallelogram three of whose vertices are (1, 2,−1), (2, 1, 4), and (3, 5, 2).

9. the triangle two of whose sides are i + j and 3i− j.
10. the triangle two of whose sides are i + 2j + 3k and 2i− j + 2k.

In Exercises 11 to 14 find the volume of the parallelepiped spanned by
11. 〈2, 1, 3〉, 〈3,−1, 2〉, 〈4, 0, 3〉
12. 3i + 4j + 3k, 2i + 3j + 4k, i− j− k.

13.
−−→
PQ,

−→
PR,

−→
PS, where P = (1, 1, 1), Q = (2, 1,−2), R = (3, 5, 2), and

S = (1,−1, 2).

14.
−−→
PQ,

−→
PR,

−→
PS, where P = (0, 0, 0), Q = (3, 3, 2), R = (1, 4,−1), and S =

(1, 2, 3).

15. Evaluate A · (A×B).

16. Prove that B×A = −(A×B) in two ways

(a) using the algebraic definition of the cross product

(b) using the geometric description of the cross product

17. Show that if B = cA, then A×B = 0

(a) using the algebraic definition of the cross product

(b) using the geometric description of the cross product
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18. Show that (0, 0, 0), (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) lie on a plane if and
only if ∣∣∣∣∣∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣∣∣ = 0.

19.

(a) If B is parallel to C, is A×B parallel to A×C?

(b) If B is perpendicular to C, is A×B perpendicular to A×C?

20. Let A be a non-zero vector. If A×B = 0 and A ·B = 0, must B = 0?

Exercises 22 and 23 involve the vector triple product.
21. Show that A× (A×B) = (A ·B)A− (A ·A)B.

22. Show that (A×B)× (C×D) = ((A×B) ·D)C− ((A×B) ·C)D. (Think
of A×B as a single vector, E.)

23.

(a) Give an example of a vector perpendicular to 3i− j + k.

(b) Give an example of a unit vector perpendicular to 3i− j + k.

24. Let u be a unit vector and B a vector. What happens as you keep cross-
ing by u, and form the sequence B, u×B, u×(u×B) and so on? (See Exercise 21)

25. (Crystallography) A crystal is described by three vectors v1, v2, and v3.
They span a fundamental parallelepiped, whose copies fill out a crystal lattice. (See
Figure 14.3.8.) Atoms are at the corners. To study the diffraction of x-rays and
light through a crystal, crystallographers work with the reciprocal lattice, whose
fundamental parallelepiped is spanned by three vectors, k1, k2, and k3. The vector
k1 is perpendicular to the parallelogram spanned by v2 and v3 and has a length
equal to the reciprocal of the distance between the parallelogram and the opposite
parallelogram of the fundamental parallelepiped. The vectors k2 and k3 are defined
similarly in terms of the other four faces of the fundamental parallelepiped.
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Figure 14.3.8

(a) Show that k1, k2, and k3 may be chosen to be

k1 =
v2 × v3

v1 · (v2 × v3)
, k2 =

v3 × v1

v1 · (v2 × v3)
, k3 =

v1 × v2

v1 · (v2 × v3)
.

(b) Show that the volume of the parallelopiped determined by k1, k2, and k3 is
the reciprocal of the volume of the one determined by v1, v2, and v3.

(c) Is the reciprocal of the reciprocal lattice the original lattice? For instance, is

v1 =
k2 × k3

k1 · (k2 × k3)
?

26. The purpose of this Exercise is to motivate the equation known as Jacobi’s
Identity, A× (B×C) = (A ·C)B− (A ·B)C.
Let B and C be non-zero, nonparallel vectors and A a vector that is perpendicular
neither to B nor C.

(a) Why are their scalars x and y such that

A× (B×C) = xB + yC?

(b) Why is 0 = x(A ·B) + y(A ·C)?

(c) Using (b), show that there is a scalar z such that

A× (B×C) = z[(A ·C)B− (A ·B)C].

(d) It would be nice if there were a simple geometric way to show that z is a
constant and equals 1. We could show that z = 1 by writing A, B, and C
in components and making a tedious calculation. Try to find a simple way to
determine that z = 1. (The authors do not know of such a way.)
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27.

(a) From the distributive law A× (B + C) = A×B + A×C, and the property
D×E = −E×D, deduce the distributive law (B+C)×A = B×A+C×A.

(b) From the distributive law A × (B + C) = A × B + A × C, show that
A× (B + C + D) = A×B + A×C + A×D. (Think of B + C as a single
vector E.)

28. Check that −13i + 7j + 11k in Example 1 is perpendicular to A and to B.

29. Show, using (14.3.7), that 0×B = 0.

30. Show, using (14.3.7), that B×A = −A×B.

31. Using the values for y and z found when solving equations (14.3.3) and
(14.3.4), find x.

32. Using (14.3.7), show that if B is parallel to A, then A × B = 0. (If B is
parallel to A, there is a scalar t such that B = tA.)

33. In finding |A×B|2 we stated that

a2
2b

2
3 + a2

3b
2
2 + a2

3b
2
1 + a2

1b
2
3 + a2

1b
2
2 + a2

2b
2
1 − 2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

equals
(a2

1 + a2
2 + a2

3)(b
2
1 + b2

2 + b2
3)− (a1b1 + a2b2 + a3b3)2.

Check that.

34.

(a) How could you use cross products to find a vector perpendicular to 2i+3j+4k?
Give an example.

(b) How could you use cross products to find two vectors perpendicular to 2i +
3j + 4k and to each other? Give an example.

35. To understand why you cannot omit the parentheses in A × (B ×C), let A
and B be non-zero, non-parallel vectors. Show that A× (A×B) is never equal to
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(A×A)×B. This shows that the cross product is not associative.

36.

(a) Explain using parallelepipeds why A · (B×C) is plus or minus B · (C×A).

(b) Using properties of determinants, decide if it is plus or minus.

37. In some expositions of the cross product, A×B is defined as the determinant
of a matrix of order 3. If we start with this definition, use a property of determinants
to show that A×B is perpendicular to both A and B.

38. Let A be a non-zero vector and B be a vector. Let B1 be the projection of
B on a plane perpendicular to A. Let B2 be obtained by rotating B1 through an
angle of 90◦ in the direction given by the right-hand rule with thumb pointing in
the same direction as A.

(a) Show that A×B = A×B1. (Draw a diagram.)

(b) Show that A×B = |A|B2.

39. Using Exercise 38(b), show that for A not 0, A× (B+C) = A×B+A×C.
(Draw a large, clear picture.)
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14.4 Applications of the Dot and Cross Prod-

ucts

This section uses the dot product to deal with lines, planes, and projections
onto planes.

Equation of a Plane

Figure 14.4.1

First we find an equation of the plane through the point P0 = (x0, y0, z0)
and perpendicular to the vector Ai + Bj + Ck, shown in Figure 14.4.1.

Let P = (x, y, z) be a point on the plane. The vector
−−→
P0P is perpendicular

to Ai+ Bj+ Ck. (Slide it so that P0 coincides with the tail of Ai+ Bj+ Ck.)
Thus

(Ai + Bj + Ck) · ((x− x0)i + (y − y0)j + (z − z0)k) = 0;

we have

Equation of a Plane
An equation of the plane containing the point (x0, y0, z0) and perpendicular to
the vector Ai + Bj + Ck is

A(x− x0) + B(y − y0) + C(z − z0) = 0. (14.4.1)

The vector Ai + Bj + Ck is called a normal to the plane.

EXAMPLE 1 Find an equation of the plane through (2,−3, 4) and normal
to i + 2j + 3k.
SOLUTION An equation of the plane is

1(x− 2) + 2(y − (−3)) + 3(z − 4) = 0

which simplifies to
x + 2y + 3z − 8 = 0.

�
The graph of Ax + By + Cz + D = 0, where not all of A, B, and C

are 0, is a plane perpendicular to Ai + Bj + Ck. To show this, first pick a
point (x0, y0, z0) for which Ax0 + By0 + Cz0 + D = 0. Subtracting this from
the original equation gives

A(x− x0) + B(y − y0) + C(z − z0) = 0,

which is an equation of the plane through (x0, y0, z0) perpendicular to Ai + Bj + Ck.
In two dimensions we have

Calculus April 22, 2012



1208 CHAPTER 14 VECTORS

Equation of a Line in the Plane
An equation of the line through (x0, y0) and perpendicular to the vector
Ai + Bj is

A(x− x0) + B(y − y0) = 0.

Distance From (p, q) to the Line Ax+By +C = 0 and from
(p, q, r) to the Plane Ax + By + Cz + D = 0

(a) (b)

Figure 14.4.2

Let us find the distance from P = (p, q) to the line in the xy-plane whose
equation is Ax + By + C = 0, shown in Figure 14.4.2(a).

Pick a point P0 = (x0, y0) on the line and place Ai + Bj with its tail at P0,
as in Figure 14.4.2(b).

Let θ be the angle between
−−→
P0P and Ai + Bj. Then the distance from P

to the line isBecause 0 ≤ θ ≤ π, cos(θ)
could be negative.

|
−−→
P0P || cos(θ)| = |

−−→
P0P |

|(Ai + Bj) · ((p− x0)i + (q − y0)j)|
|
−−→
P0P ||Ai + Bj|

=
|A(p− x0) + B(q − y0)|√

A2 + B2

=
|Ap + Bq − (Ax0 + By0)|√

A2 + B2
.

Since Ax0 + By0 + C = 0, we have

April 22, 2012 Calculus



§ 14.4 APPLICATIONS OF THE DOT AND CROSS PRODUCTS 1209

Distance from a Point to a Line
The distance from (p, q) to the line Ax + By + C = 0 is

|Ap + Bq + C|√
A2 + B2

To find the distance substitute the coordinates of the point (p, q) into Ax +
By + C, take its absolute value, and divide by

√
A2 + B2.

EXAMPLE 2 How far is the point (1, 3) from the line 2x− 4y = 5?
SOLUTION Write the equation in the form 2x − 4y − 5 = 0. Then the
distance is

|2(1)− 4(3)− 5|√
22 + 42

=
| − 15|√

20
=

3
√

5

2
.

�

The corresponding formula for the distance from a point P = (p, q, r) to a
plane is obtained in Exercise 55.

Distance from a Point to a Plane
The distance from (p, q, r) to the plane Ax + By + Cz + D = 0 is

|Ap + Bq + Cr + D|√
A2 + B2 + C2

Using Vectors to Parameterize a Line

Let L be the line through the point P0 = (x0, y0, z0) parallel to B, shown in
Figure 14.4.3(a).

(a) (b)

Figure 14.4.3
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Let P be a point on L. Then the vector
−−→
P0P , which is parallel to B, is tB

for some scalar t. See Figure 14.4.3(b).

So we have
−→
OP =

−−→
OP0 +

−−→
P0P =

−−→
OP0 + tB.

Parametric Equation of a Line
The line through P0 parallel to the vector B is parameterized by−→
OP =

−−→
OP0 + tB. As t varies, the vector from O to P varies, sweeping out

the line L.

EXAMPLE 3 The line L passes through the point (1, 1, 2) and is parallel
to the vector 3i + 4j + 5k. Parameterize the line.

SOLUTION Because
−−→
OP0 = i + j + 2k and B = 3i + 4j + 5k,

−→
OP = i + j + 2k + t(3i + 4j + 5k)

= (3t + 1)i + (4t + 1)j + (5t + 2)k.

If P is (x, y, z), then
−→
OP is the vector xi + yj + zk, where

x = 3t + 1
y = 4t + 1
z = 5t + 2.

One vector equation does the work of three scalar equation. �

SHERMAN: Changed
subsection title for new

example.
Describing the Direction of Vectors, Lines, and Planes

The direction of a vector in the plane is described by the angle it makes with
the positive x-axis. To specify the direction of a vector in space requires three
angles, two of which almost determine the third.

DEFINITION (Direction of a vector.)

Figure 14.4.4

Let A be a non-zero vec-
tor in space. The angle between

A and i is denoted α (alpha),

A and j is denoted β (beta),

A and k is denoted γ (gamma).

The angles α, β and γ are called the direction angles of A. (See
Figure 14.4.4.)
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DEFINITION (Direction cosines of a vector) The direction
cosines of a vector are the cosines of its direction angles, cos(α),
cos(β), and cos(γ).

EXAMPLE 4 The angle between A and k is π/6. Find γ and cos(γ) for

1. A

2. −A.

SOLUTION

Figure 14.4.5

1. By definition, the direction angle γ for A is π/6. It follows that cos(γ) =
cos(π/6) =

√
3/2.

2. To find γ and cos(γ) for −A, we draw Figure 14.4.5. For −A, γ = 5π/6
and cos(γ) = cos(5π/6) = −

√
3/2.

�

As Example 4 illustrates, if the direction angles of A are α, β, γ, then the
direction angles of −A are π − α, π − β, and π − γ. The direction cosines of
−A are the negatives of the direction cosines of A.

The three direction angles are not independent, as is shown by the next
theorem. Two of them determine the third up to sign.

Theorem 14.4.1. If α, β, γ are the direction angles of A, then cos2(α) +
cos2(β) + cos2(γ) = 1.

Figure 14.4.6

Proof

It is no loss of generality to assume that A is a unit vector. Its component on
the y-axis, for instance, is cos(β), as the right triangle 4OPQ in Figure 14.4.6
shows. The vector A lies along the hypotenuse.

Since A is a unit vector, |A|2 = 1, and we have cos2(α)+cos2(β)+cos2(γ) =
12 = 1. •

EXAMPLE 5 If A makes an angle of 60◦ with both the x-axis and the
y-axis, what angle does it make with the z-axis?
SOLUTION Here α = 60◦ and β = 60◦; hence

cos(α) =
1

2
and cos(β) =

1

2
.
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Since
cos2(α) + cos2(β) + cos2(γ) = 1,

it follows that

(
1

2
)2 + (

1

2
)2 + cos2(γ) = 1,

cos2(γ) =
1

2
.

Thus

cos(γ) =

√
2

2
or cos(γ) = −

√
2

2
.

Hence
γ = 45◦ or γ = 135◦.

Figures 14.4.7(a) and (b) show the possibilities for A. �

(a) (b)

Figure 14.4.7

SHERMAN: New example
with cross products. EXAMPLE 6 The points P , Q, and R, which do not lie on a line, determine

a plane. So do the pointso P ′, Q′, and R′. How would one determine whether
the two planes are (a) perpendicular? (b) parallel?

SOLUTION The vector A =
−→
PQ ×

−→
PR is perpendicular to the first plane

and A′ =
−−→
P ′Q′ ×

−−→
P ′R′ is perpendicular to the second plane.

(a) The twoplanes are perpendicular if A is perpendicular to A′, that is,
A ·A′ = 0.

(b) The two vectors are parallel if A is parallel to A′, that is, A×A′ = 0.

�

April 22, 2012 Calculus



§ 14.4 APPLICATIONS OF THE DOT AND CROSS PRODUCTS 1213

Dot Products and Flow

Let the vector v whose magnitude is v describe the velocity of water flowing
down a river, as in Figure 14.4.8(a). Place a stick of length L on the surface

(a) (b) (c)

Figure 14.4.8

of the water. The amount of water crossing the stick depends on its position.
If the stick is parallel to v, no water crosses it. If the stick is perpendicular to
v, water crosses it. How does the angle at which we place the stick affect the
amount of water that crosses it?

To answer this, we introduce a unit vector n perpendicular to the stick and
record its position, as in Figure 14.4.8(b). Let the angle between n and v be
θ.

The amount of water that crosses the stick during time ∆t is proportional to
the area of the parallelogram in Figure 14.4.8(c). The base of the parallelogram
has length v∆t (speed times time). The height is L cos(θ). The area of the
parallelogram is therefore

vL cos(θ)∆t.

Then vL cos(θ) measures the amount of water that crosses the stick in one unit
of time.

But v cos(θ) is equal to v · n. So v · n measures the tendency of water to
cross the stick.

As a check, when the stick is parallel to v, θ = π/2 and cos(π/2) = 0.
Then v ·n = 0 and no water crosses the stick. When the stick is perpendicular
to v, θ = 0, and v · n = v.

Figure 14.4.9

EXAMPLE 7 When a stick is perpendicular to v, water crosses it at the
rate of 100 cubic feet per second. When the stick is placed at an angle of π/6
to v at what rate does water cross it?
SOLUTION Figure 14.4.9 shows the position of the stick

−→
PQ.

The angle between the normal to the stick, n, and v is π/2 − π/6 = π/3.
Let x be the rate at which the water crosses the stick. Since the rate of flow
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across the stick is proportional to v cos(θ), where θ is the angle between the
normal n and v, we have

100

v cos(0)
=

x

v cos(π/3)
.

This tells us that
100

v
=

x

(v)(1/2)
,

hence x = 50. The flow is half the maximum possible. �

Summary

We used the dot product to obtain an equation of a plane in space (or of a
line in the xy-plane) and to find the distance from a point to a line or plane.
We also showed how to parameterize a line using a vector parallel to the line.

Direction angles and cosines of a vector were defined. We showed how the
dot product describes the rate of flow across a line segment. This concept will
be needed in Chapters 17 and 18, where we deal with flows across curves and
surfaces.

The main use of the cross product is providing a vector perpendicular to a
line or to a plane.
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EXERCISES for Section 14.4

In Exercises 1 to 4 find an equation of the line in the xy-plane through the point
and perpendicular to the vector.
1. (2, 3), 4i + 5j

2. (1, 0), 2i− j

3. (4, 5), i + 3j

4. (2,−1), i + 3j

In Exercises 5 to 8 find a vector in the xy-plane that is perpendicular to the line.
5. 2x− 3y + 8 = 0

6. πx−
√

2y = 7

7. y = 3x + 7

8. 2(x− 1) + 5(y + 2) = 0

In Exercises 9 to 12 find a parametric equation of the line in xyz-space with the
indicated properties.
9. Contains (2, 3, 4) and perpendicular to 4i + 5j and 3i + 5j + 6j.

10. Belongs to both x + 2y − z = 4 and −2x + 2y + 5z = −2.

11. Contains (4, 0, 5) and is parallel to i + 3j− 2j.

12. Contains the two points (2,−1,−1) and (0, 1, 3).

13. Find a vector perpendicular to the plane through (2, 1, 3), (4, 5, 1) and
(−2, 2, 3).

14. How far is the point (1, 2, 2) from the plane through (0, 0, 0), (3, 5,−2), and
(2,−1, 3)?

15. How far is the point (1, 2, 3) from the line through (−2,−1, 3), and (4, 1, 2)?

16.

(a) Describe, in words, how you would find an equation for the plane through
P1 = (x1, y1, z1), P2 = (x2, y2, z2), and P3 = (x3, y3, z3).

(b) Find an equation for the plane through (2, 2, 1), (0, 1, 5) and (2,−1, 0).

17.

(a) Describe, in words, how you would decide whether the line through P1 =
(x1, y1, z1) and P2 = (x2, y2, z2) is parallel to the line through P3 = (x3, y3, z3)
and P4 = (x4, y4, z4).
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(b) Is the line through (1, 2,−3) and (5, 9, 4) parallel to the line through (−1,−1, 2)
and (1, 3, 5)?

18.

(a) Describe, in words, how you would decide whether the line through P1 =
(x1, y1, z1) and P2 = (x2, y2, z2) is parallel to the plane Ax+By+Cz+D = 0.

(b) Is the line through (1,−2, 3) and (5, 3, 0) parallel to the plane 2x−y+z+3 = 0?

19.

(a) Describe, in words, how you would decide whether the line through P1 and
P2 is parallel to the plane through Q1, Q2, and Q3.

(b) Is the line through (0, 0, 0) and (1, 1,−1) parallel to the plane through (1, 0, 1),
(2, 1, 0), and (1, 3, 4)?

20.

(a) Describe, in words, how you would decide whether the plane through P1, P2

and P3 is parallel to the plane through Q1, Q2, and Q3.

(b) Is the plane through (1, 2, 3), (4, 1,−1), and (2, 0, 1) parallel to the plane
through (2, 3, 4), (5, 2, 0), and (3, 1, 2)?

21. Find the parametric equations of the line through (1, 1, 2) and perpendicular
to the plane 3x− y + z = 6.
22. Find an equation of the plane through (1, 2, 3) that contains the line given
parametrically as

−−→
OP = 2i− j + 3k + t(3i + 2j + k).

23. Is the point (21,−3, 28) on the line given parametrically as
−−→
OP = i + 2j +

3k + t(4i− j + 5k)?

24. Find the angle between the line through (3, 2, 2) and (4, 3, 1) and the line
through (3, 2, 2) and (5, 2, 7).

25. The angle between two planes is the angle between their normals. Find the
angle between the planes 2x + 3y + 4z = 11 and 3x− y + 2z = 13.

26.
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(a) How many unit vectors are perpendicular to the plane Ax+By+Cz+D = 0?

(b) How would you find one of them?

(c) Find a unit vector perpendicular to the plane 3x− 2y + 4z + 6 = 0.

27.

(a) How would you find a point on the plane Ax + By + Cz + D = 0?

(b) Give the coordinates of a point that lies on the plane 3x− y + z + 10 = 0.

28.

(a) How would you find a point that lies on both planes A1x+B1y+C1z+D1 = 0
and A2x + B2y + C2z + D2 = 0?

(b) Find a point that lies on both planes 3x + z + 2 = 0 and x− y − z + 5 = 0.

29.

(a) Let A and B be vectors in space. How would you find the area of the paral-
lelogram they span?

(b) Find the area of the parallelogram spanned by (2, 3, 1) and (4,−1, 5).

In Exercises 30 to 33 find the distance from the point to the plane.

30. The point (0, 0, 0) to the plane 2x− 4y + 3z + 2 = 0

31. The point (1, 2, 3) to the plane x + 2y − 3z + 5 = 0.

32. The point (2, 2,−1) to the plane that passes through (1, 4, 3) and has a normal
2i− 7j + 2k.

33. The point (0, 0, 0) to the plane that passes through (4, 1, 0) and is perpendic-
ular to the vector i + j + k.

34. Find the direction cosines of 2i + 3j + 4k.

Calculus April 22, 2012



1218 CHAPTER 14 VECTORS

35. Find the direction cosines of the vector from (1, 3, 2) to (4,−1, 5).

36. Let P0 = (2, 1, 5) and P1 = (3, 0, 4). Find the direction cosines and direction
angles of

(a)
−−−→
P0P1

(b)
−−−→
P1P0.

37. Give parametric equations for the line through (1/2, 1/3, 1/2) with direction
cosines 2/

√
93, −5/

√
93, and 8/

√
93 in

(a) scalar form

(b) vector form

38. Give parametric equations for the line through (1, 2, 3) and (4, 5, 7) in

(a) scalar form

(b) vector form

39. Give parametric equations for the line through (7,−1, 5) and (4, 3, 2).

40. A vector A has direction angles α = 70◦ and β = 80◦. Find the third direction
angle γ and show the possibile angles for γ on a diagram.

41. Find where the line through (1, 2) and (3, 5) meets the line through (1,−1)
and (2, 3).

42. Where does the line through (1, 2, 4) and (2, 1,−1) meet the plane x+2y+5z =
0?

43. Give parametric equations for the line through (1, 3,−5) that is perpendicular
to the plane 2x− 3y + 4z = 11.

44. How far is the point (1, 5) from the line through (4, 2) and (3, 7)? (Draw a
picture and think in terms of vectors.)

45. How far is the point (1, 2,−3) from the line through (2, 1, 4) and (1, 5,−2)?
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46. Give parametric equations for the line through (1, 3, 4) that is parallel to the
line through (2, 4, 6) and (5, 3,−2).

47.

(a) If you know the coordinates of point P and parametric equations of line L,
how would you find an equation of the plane that contains P and L? Assume
P is not on L.

(b) Find an equation for the plane through (1, 1, 1) that contains the line param-
eterized by

x = 2 + t
y = 3− t
z = 4 + 2t.

48.

(a) Sketch four points P , Q, R, and S, not all in one plane, such that
−−→
PQ and

−→
RS are not parallel. Explain way there is a unique pair of parallel planes one
of which contains P and Q and one of which contains R and S.

(b) Express a normal vector to the planes in terms of P , Q, R, and S.

49. Find an equation for the plane through P1 that is parallel to the non-parallel
segments P2P3 and P4P5.

50. Find where the line through P0 = (2, 1, 3) and P1 = (4,−2, 5) meets the plane
whose equation is 2x + y − 4z + 5 = 0.

51. Find where the line through (1, 2, 1) and (2, 1, 3) meets the plane that is
perpendicular to 2i + 5j + 7k and passes through the point (1,−2,−3).

52. Are the points (1, 2,−3), (1, 6, 2), and (7, 14, 11) on a single line?

53. If α, β, and γ are direction angles of a vector, what is sin2(α)+sin2(β)+sin2(γ)?

54. Find the angle between the line through (1, 3, 2) and (4, 1, 5) and the plane
x− y − 2z + 15 = 0.
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55. We showed that the distance from (p, q) to the line Ax + By + C = 0 is
|Ap+Bq+C|√

A2+B2
. Show, using a similar argument, that the distance from (p, q, r) to the

plane Ax + By + Cx + D = 0 is |Ap+Bq+Cr+D|√
A2+B2+C2

.

56. How far apart are the planes Ax+By+Cz+D = 0 and Ax+By+Cz+E = 0?
Explain.

57.

(a) Sketch a parabola and a line in the xy-plane that does not meet the parabola.

(b) Identify, graphically, the point on the parabola closest to the line.

(c) Using calculus, find the point on the parabola y = x2 closest to the line
y = x− 3.

(d) The tangent to the parabola at the point found in (a) looks as if it might be
parallel to the line in (a). Is it?

58. The planes A1x+B1y+C1z+D1 = 0 and A2x+B2y+C2z+D2 = 0 intersect
in a line L. Find the direction cosines of a vector parallel to L.

59. How far apart are the lines given parametrically by 2i+ j−3k+ t(3i−5j+2k)
and 3i+ j+5k+s(2i+6j+7k)? We use different letters, s and t, for the parameters
because they are independent of each other.

60.

(a) Using properties of determinants, show that

det

 x y 1
a1 a2 1
b1 b2 1

 = 0

is the equation of a line through (a1, a2) and (b1, b2).

(b) What determinant of order 4 would give an equation for the plane through
three points?

61. A disk of radius a lies in the plane 2x + 3y + 4z = 5. What is the area of its
projection on 2x + y − z = 6?
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62. Does the line through (5, 7, 10) and (3, 4, 5) meet the line through (1, 4, 0) and
(3, 6, 4)? If so, where? (Use parametric equations but give the parameters of the
lines different names, such as t and s.)

63. Develop a formula for determining the distance from P1 = (x1, y1, z1) to the
line through P0 = (x0, y0, z0) that is parallel to A = a1i + z2j + a3k. The formula
should be in terms of

−−−→
P0P1 and A.

64. How far is (1, 2,−1) from the line through (1, 3, 5) and (2, 1,−3)?

(a) Solve by calculus, minimizing a function.

(b) Solve by vectors.

65. How small can the largest of three direction angles ov a vector be?

66. The plane π in Figure 14.4.10 is tilted at an angle θ to a horizontal plane. A
convex region R in π has area A. Show that the area of its projection on the hor-
izontal plane is A cos(θ). If rays of light are perpendicular to the horizontal plane,
find the area of its shadow there.

Figure 14.4.10
67. A square with side a lies in the plane 2x + 3y + 2z = 8. What is the area of
its projection

(a) on the xy-plane?

(b) on the yz-plane?

(c) on the xz-plane?

68. (Computer graphics) How would you decide whether the origin and P =
(x0, y0, z0) are on the same side or on opposite sides of the plane Ax+Bx+Cz+D =
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0?

69. (Computer graphics) How would you decide whether the points P and Q are
on the same side or opposite sides of Ax + By + Cz + D = 0?

70. (Computer graphics) Devise a procedure for determining whether P = (x, y)
is inside the triangle whose three vertices are P1 = (x1, y1), P2 = (x2, y2), and
P3 = (x3, y3).

71.

(a) Let L1 be the line through P1 and Q1 and let L2 be the line through P2 and
Q2. Assume that L1 and L2 are skew lines (that is, not parallel and not
intersecting). How would you find the point R1 on L1 and point R2 on L2

such that
−−−→
R1R2 is perpendicular to both L1 and L2?

(b) Find R1 and R2 when P1 = (3, 2, 1), Q1 = (1, 1, 1), P2 = (0, 2, 0), R2 =
(2, 1,−1).

72. (Contributed by Melvyn Kopald Stein.) An industrial hopper is shaped as
shown in Figure 14.4.11. Its top and bottom are squares of different sizes. The angle
between the plane ABD and the plane BDC is 70◦. The angle between the plane
ABD and the plane ABC is 80◦. What is the angle between plane ABC and plane
BCD? (The angle is needed during the fabrication of the hopper, since the planes
ABC and BCD are made from a single piece of sheet metal bent along the edge
BC.)

Figure 14.4.11
Just as the complex numbers form a mathematical system on the plane, the quater-
nions form a mathematical system on 4-dimensional space. The elements are of
the form r + ai + bj + ck, where r, a, b, and c are real numbers, with the rules
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i2 = j2 = k2 = −1 and ij = k. It follows that ji = −k, jk = i, kj = −i, ki = j, and
ik = −j. Quaternion multiplication is not commutative. Otherwise, the quaternions
obey the usual rules of arithmetic. They are used in computer graphics to rotate
objects.
73. Assuming that i2 = j2 = k2 = −1 and ij = k, obtain the other five products
listed above.
74. Quaternions of the form ai + bj + ck can be viewed as vectors in our usual
3-dimensional space. Let A = a1i+ a2j+ a3k and B = b1i+ b2j+ b3k and let A ?B
denote their product as quaternions. Show that A ? B = −A ·B + A×B.

75. The three vertices of a triangle T of area 1 are P1, P2, and P3. The origin
is O. Let P1 =

−−→
OP1, P2 =

−−→
OP2, and P3 =

−−→
OP3. For each point P in triangle T

the vector P =
−−→
OP can be represented in the form w1P1 + w2P2 + w3P3, where

w1 + w2 + w3 = 1 and each wi is non-negative. T consist of three triangles that
share the vertex P , as shown in Figure 14.4.12. Their areas are A1, A2, and A3.

Figure 14.4.12

(a) Using the fact that the area of T is 1, show that

1
2
|P1 ×P2 + P2 ×P3 + P3 ×P1| = 1.

(b) Show that if P = w1P1 + w2P2 + w3P3, then A3 = w3.

(c) Show that the points P for which w3 is fixed lie on a line parallel to the edge
P1P2.

76. The three vertices of a triangle in the xy-plane are A, B, and C. The origin
is O. Using vector tools, such as the dot and cross products, describe how one can
determine whether a point P is inside the triangle.
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77. A tetrahedron has vertices P , Q, R, and S. Without drawing the tetrahedron,
how can one decide whether a point T is inside the tetrahedron?
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14.S Chapter Summary

The following tables and list summarize the chapter. Assume A = a1i + a2j +
a3k, B = b1i + b2j + b3k, and C = c1i + c2j + c3k. For plane vectors, disregard
the third component.

Symbol Name Comment Formula
A Vector has both direction and magni-

tude
a1i + a2j + a3k or 〈a1, a2, a3〉

|A| Length also called magnitude or norm
√

a2
1 + a2

2 + a2
3

−A Negative, or oppo-
site, of A

points in direction opposite
that of A

−a1i− a2j− a3k or 〈−a1,−a2,−a3〉

A + B Sum of A and B place the tail of B at the head
of A

(a1 + b1)i + (a2 + b2)j + (a3 + b3)k

A−B Difference of A
and B

add −B to A (a1 − b1)i + (a2 − b2)j + (a3 − b3)k

cA Scalar multiple of
A

parallel to A, opposite direc-
tion if c is negative, |c| times
as long as A

ca1i + ca2j + ca3k

A ·B Dot, or scalar,
product

|A||B| cos(A,B) a1b1 + a2b2 + a3b3

A×B Cross, or vector,
product

magnitude: area of parallelo-
gram spanned by A and B,
|A||B| sin(A,B)
direction: perpendicular to A
and B, chosen by right-hand
rule

det

 i j k
a1 a2 a3

b1 b2 b3



projB A (Vector) Pro-
jection of A on
B

A− projB A is perpendicular
to B

(A · u)u,where u = B/|B|

compB A (Scalar) Com-
ponent of A on
B

can be positive, negative, or
zero

A · u,where u = B/|B|

A · (B×C) Scalar triple prod-
uct

± volume of parallelepiped
spanned by A, B, and C

det

 a1 a2 a3

b1 b2 b3

c1 c2 c3


A× (B×C) Vector triple prod-

uct
memory device:

1. first write B - C.

2. then fill in the dot prod-
ucts.

(A ·C)B− (A ·B)C
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Table 14.S.1 Basic combinations of vectors.

Dot Product Cross Product
A ·B A×B

A ·B = B ·A A×B = −B×A
|A ·B| = |A||B|| cos(θ)| |A×B| = |A||B| sin(θ)

A · B = 0 is a test for perpendicular
vectors

A×B = 0 is a test for parallel vectors

formula in components involves aibi

(same indices)
formula in components involves aibj

(unequal indices)

Table 14.S.2 Comparison of the dot product and vector product.

Several applications were discussed. The following list gives the main ideas
in most applications.

1. The angle θ between A and B satisfies cos(θ) = A·B
|A||B| (0 ≤ θ ≤ π).

2. Non-zero vectors A and B are perpendicular when A ·B = 0.

3. The plane through (x0, y0, z0) perpendicular to A has the equation
A · 〈x− x0, y − y0, z − z0〉 = 0.

4. The distance from the point (p, q) to the line Ax + By + C = 0 is
|Ap + Bq + C|√

A2 + B2
.

5. The distance from the plane with equation Ax + By + Cz + D = 0 to
the point (p, q, r) is

|Ap + Bq + Cr + D|√
A2 + B2 + C2

.

6. The line through P0 = (x0, y0, z0) parallel to A = a1i+a2j+a3k is given

parametrically as
−→
OP =

−−→
OP0 + tA or, component-wise,

x = x0 + a1t
y = y0 + a2t
z = z0 + a3t

7. The direction cosines of A are the numbers cos(α), cos(β), and cos(γ)
where α, β, and γ are the direction angles between A and i, j, and k,
respectively.

EXERCISES for 14.S
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1. Find a vector perpendicular to the plane determined by (1, 2, 1), (2, 1,−3), and
(0, 1, 5).

2. Find a vector perpendicular to the plane determined by (1, 3,−1), (2, 1, 1), and
(1, 3, 4).

3. Find a vector perpendicular to the line through (3, 6, 1) and (2, 7, 2) and to the
line through (2, 1, 4) and (1,−2, 3).

4. Find a vector perpendicular to the line through (1, 2, 1) and (4, 1, 0) and also
to the line through (3, 5, 2) and (2, 6,−3).

5. How far apart are the lines whose vector equations are 2i+ 4j+k+ t(i+ j+k)
and i + 3j + 2k + s(2i− j− k)?

6. Find the direction cosines of the vector A shown in Figure 14.S.1. (First draw
a large diagram.)

Figure 14.S.1

7. Why is the angle θ shown in Figure 14.S.2(a) and (b) the same as the angle
between v and n?

8. What is the ratio of the flows across the two sticks in Figure 14.S.2(a) and (b)?
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(a) (b)

Figure 14.S.2
9. Find the point on the line through (1, 2, 1) and (2,−1, 3) that is closest to the
line that goes through (3, 0, 3) and is parallel to the vector i + 2j + 5k.

In Exercises 10 and 11, find the distance from the point to the line.
10. The point (0, 0) to 3x + 4y − 10 = 0.
11. The point (3/2, 2/3) to 2x− y + 5 = 0.

In Exercises 12 and 13 find a normal and a unit normal to the given planes. (Recall
that normal means perpendicular.)
12. 2x− 3y + 4z + 11 = 0
13. z = 2x− 3y + 4

14. Is the line through (1, 1, 1) and (3, 5, 7) perpendicular to the plane x + 2y +
3z + 4 = 0?

In Exercises 15 and 16 answer each part using vectors and again using calculus.
15.

(a) Find the point on the curve y = sin(x), 0 ≤ x ≤ π, that is nearest the line
y = x/2 + 2.

(b) Check your answer by sketching the curve and the line.

(Solve, using vectors and calculus.)

16.

(a) Find the point on the curve y = sin(x), 0 ≤ x ≤ π, that is nearest the line
y = 2x + 4.

(b) Check your answer by sketching the curve and the line.
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(Use vectors and calculus.)

17.

(a) How would you find the angle between the planes A1x + B1y + C1z + D1 = 0
and A2x + B2y + C2z + D2 = 0?

(b) Find the angle between x− y − z − 1 = 0 and x + y + z + 2 = 0.

18. A line segment has projections of lengths a, b, and c on the coordinates axes.
What, if anything, can be said about its length?

19. Suppose that the direction angles of a vector are equal. What can they be?
Draw the cases.

20. What point on the line through (1, 2, 5) and (3, 1, 1) is closest to (2,−1, 5)?

21. Three points P1 = (x1, y1, z1), P2 = (x2, y2, z2), and P3 = (x3, y3, z3) are the
vertices of a triangle.

(a) What is the area of the triangle?

(b) What is the area of its projection of that triangle on the xy-plane?

22. How can you decide whether the line through P and Q is parallel to the plane
Ax + By + Cz + D = 0?

23. Find where the line through (1, 1) and (2, 3) meets the line x + 2y + 3 = 0.

24.

(a) Give an example of a vector perpendicular to the plane 2x + 3y − z + 4 = 0.

(b) Give an example of a vector parallel to it.

25.

Sam: Just because i × j obeys the right-hand rule that doesn’t mean A ×B does
in general. I’m not convinced.

Jane: Oh, but it does settle the general case.
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Sam: How so?

Jane: Slowly move and alter i and j so they become A and B, never letting either
one become 0 or letting them be parallel. If it’s the right hand rule at the
start, it can’t shift to the left hand rule.

Sam: Why not?

Jane: Think about it.

Explain what Jane is thinking.

26. Assume that the planes A1x+B1y+C1z+D1 = 0 and A2x+B2y+C2z+D2 = 0
meet in a line L.

(a) How would you find a vector parallel to L?

(b) How would you find a point on L?

(c) Find parametric equations for the line that is the intersection of the planes
2x− y + 3z + 4 = 0 and 3x + 2y + 5z + 2 = 0.

27.

(a) How far is the point P from the line through Q and R?

(b) How far is (2, 1, 3) from the line through (1, 5, 2) and (2, 3, 4)?

28.

(a) How would you decide whether the points P1 = (x1, y1, z1), P2 = (x2, y2, z2),
P3 = (x3, y3, z3) and P4 = (x4, y4, z4) lie in a plane?

(b) Do the points (1, 2, 3), (4, 1,−5), (2, 1, 6), and (3, 5, 3) lie in a plane?

29. What is the angle between the line through (1, 2, 1) and (−1, 3, 0) and the
plane x + y − 2z = 0?

30. Explain why the projection of a circle is an ellipse. (Set up coordinate systems
in the plane of the circle and in the plane of its shadow, which we can take to be
the xy-plane. Choose the axes for the coordinate systems to be as convenient as
possible. Then express the equation of the shadow in terms of x and y by utilizing
the equation of the circle.)

April 22, 2012 Calculus



§ 14.S CHAPTER SUMMARY 1231

31. Figure 14.S.3 shows a tetrahedron OABC with edges of lengths 4, 5, and 6.

Figure 14.S.3

(a) Find the coordinates of A, B, and C.

(b) Find the volume of the tetrahedron.

(c) Find the area of triangle ABC.

(d) Find the distance from O to the plane in which triangle ABC lies.

(e) Find the cosine of angle ABC.

32. Let f be a differentiable function and L a line that does not meet the graph
of f . Let P0 be the point on the graph that is nearest the line.

(a) Using calculus, show that the tangent there is parallel to L.

(b) Why is the result to be expected?

33. Review the Folium of Descartes in Exercise 38 in Section 9.3. Show that its
part in the fourth quadrant is asymptotic to the line x + y + 1 = 0.

34. A convex set in a plane not parallel to any of the three coordinate planes
has area A. The areas of its projections on the coordinate planes are 3, 4, and 5,
respectively. What is A?
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Vectors and Computer Graphics
Programmers in computer graphics use the dot- and cross-products for various pur-
poses: finding a vector perpendicular to a polygon in a plane, determining shading
and brightness, removing hidden objects, and more.

Exercises 35 to 45 are all related to topics in computer graphics.
35. Let P1, P2, and P3 be the vertices of a triangle in the xy-plane, with the order
P1, P2, and P3 counterclockwise. P is a point inside the triangle (not on its border).
Let ri =

−−→
PPi, i = 1, 2, 3. The vector 1

2(r1× r2 + r2× r3 + r3× r1) has the form Ak
for a scalar A. Show that A is the area of the triangle.
36. Like Exercise 35, except that P is on the border of the triangle but not a
vertex.
37. Like Exercise 35, except that P is a vertex of the triangle.
38. Like Exercise 35, except that P in the xy-plane is outside the triangle.
39. Let P1, P2, P3, and P4 be the vertices of a convex quadrilateral in the xy-
plane, with the points in this order arranged counterclockwise and P any point in
the xy-plane. Show that

1
2
(r1 × r2 + r2 × r3 + r3 × r4 + r4 × r1) = Ak

where A is the area of the quadrilateral. (Cut the quadrilateral into two triangles.)

40. Generalize Exercise 39 to any quadrilateral, even concave.
41. Generalize Exercise 40 to any polygon in the xy-plane.

42. Light parallel to the vector A projects the line segment whose ends are P1 and
P2 onto the plane containing the non-collinear points Q1, Q2, and Q3. How long is
the shadow of the segment on that plane?
43. Two points P and Q lie on a line L that has positive slope and P is to the
left of Q. If R is a point not on L, how can

−−→
PQ×

−→
PR be used to determine whether

R is above or below L?
44. Sunlight in the direction j strikes the curve y = x2.

(a) Where is the curve the brightest?

(b) How does that brightness compare with the brightness at (1, 1)?

(c) at (3, 9)?

45. Lines L1 and L2 in space are not parallel and do not intersect. How can one
decide which is in front of the other when viewed from point P or whether neither
is blocked by the other because P is “between” them?
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Calculus is Everywhere # 18

Space Flight: The Gravitational Slingshot

In a slingshot or gravitational assist a spacecraft picks up speed as it passes
near a planet. For instance, New Horizons, launched on January 19, 2006,
enjoyed a gravitational assist as it passed by Jupiter, February 27, 2007 on
its long journey to Pluto. Its speed increased from 47,000 to 50,000 miles per
hour (mph). It will arrive near Pluto in 2015, instead of 2018.

Before we see how this works, look at a situation involving a truck on
Earth that illustrates the idea. Later we will replace the truck with a planet’s
gravitational field.

A playful lad throws a perfectly elastic tiny ball at 30 mph directly at a
truck approaching him at 70 miles per hour, as shown in Figure C.18.1.

Figure C.18.1

The
truck driver sees the ball coming toward her at 70 + 30 = 100 mph. The
ball hits the windshield and, because the ball is perfectly elastic, the driver
sees it bounce off at 100 mph in the opposite direction. Because the truck is
moving in the same direction as the ball, the ball is moving through the air at
100 + 70 = 170 mph as it returns to the boy. The ball has gained 140 mph,
twice the speed of the truck.

Instead of a truck, think of a planet whose velocity relative to the solar
system is represented by the vector P. A spacecraft, moving in the opposite
direction with the velocity v relative to the solar system, comes close to the
planet.

An observer on the planet sees the spacecraft approaching with velocity
−P + v. The spacecraft swings around the planet as gravity controls its orbit
and sends it off in the opposite direction. Whatever speed it gained as it
arrived, it loses as it exits. Its velocity vector when it exits is −(−P + v) =
P − v as viewed by the observer on the planet. Since the planet is moving
through the solar system with velocity vector P, the spacecraft is now moving
through the solar system with velocity P+(P−v) = 2P−v. If P = 70i and v = −30i,

we have the vector
2(70i)− (−30i) = 170i, the
case of the ball and truck.

See Figure C.18.2.

The direction of the spacecraft as it arrives may not be exactly opposite
the direction of the planet. To treat the general case, assume that P = pi,
where p is positive and v makes an angle θ, 0 ≤ θ ≤ π/2, with −i, as shown
in Figure C.18.3(a). Let v = |v| be the speed of the spacecraft relative to
the solar system. We will assume that the spacecraft’s speed (relative to the
planet) as it exits is the same as its speed relative to the planet on its arrival.
Figure C.18.3(b) shows the arrival vector, v−P, and the exit vector, E. The
y-components of E and v −P are the same, but the x-component of E is the
negative of the x-component of v −P.
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(a) (b)

Figure C.18.2 (a) The velocity vector relative to the solar system. (b) The
velocity vector relative to the planet.

(a) (b) (c)

Figure C.18.3
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Figure C.18.3(c) shows the arrival vector relative to the solar system. So,
v = −v cos(θ)i + v sin(θ)j.

Relative to the planet we have

Arrival Vector: v −P = −pi + (−v cos(θ)i + v sin(θ)j)
Exit Vector: E = pi + v cos(θ)i + v sin(θ)j

The exit vector relative to the solar system is therefore

E = (2p + v cos(θ))i + v sin(θ)j.

The magnitude of E is√
(2p + v cos(θ))2 + (v sin(θ))2 =

√
v2 + 4pv cos(θ) + 4p2.

When θ = 0, we have the truck and ball or the planet and spacecraft in
Figure C.18.2. Then cos(θ) = 1 and |E| =

√
v2 + 4pv + 4p2 = v + 2p, in

agreement with our observations.
The scientists controlling a slingshot carry out more extensive calculations,

which take into consideration the masses of the spacecraft and the planet,
and involve an integration while the spacecraft is near the planet. “Near” for
the slingshot around Jupiter means 1.4 million miles. If the spacecraft gets
too close, the atmosphere slows down or destroys the craft. The diameter of
Jupiter is 86,000 miles.

The gravity assist was proposed by Michael Minovitch in 1963 when he was
a graduate student at UCLA. Before then it was felt that to send a spacecraft to
the outer solar system and beyond would require launch vehicles with nuclear
reactors to achieve the necessary thrust.

Calculus April 22, 2012



1236 CHAPTER 14 VECTORS

April 22, 2012 Calculus



Chapter 15

Derivatives and Integrals of
Vector Functions

In Section 9.3 we studied parametric curves in the plane. Using calculus we
saw how to compute arc length, speed, and curvature. We defined curvature
as the rate at which an angle changes as a function of arc length.

In this chapter we examine curves in the plane or in space. Of particular
interest will be velocity and acceleration. For a particle moving along a straight
line, say the x-axis, these are dx/dt and d2x/dt2. For a particle moving in
space, velocity and acceleration involve both magnitude and direction. How
should we calculate them?

How can we define curvature for a curve that does not lie in a plane? While
arc length still makes sense, there is no angle to differentiate with respect to
arc length. With the aid of vectors we will be able to define curvature for
curves that do not necessarily lie in a plane. Curvature, in turn, will be of use
in analyzing acceleration of an object moving along a curve.

While we could answer these questions using the component notation for
a parameterization 〈x(t), y(t)〉 or 〈x(t), y(t), z(t)〉, we will use vector notation,
where a curve is denoted by one letter. We will sometimes resort to the com-
ponent notation to carry out computations or a proof.
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1238 CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

15.1 The Derivative of a Vector Function: Ve-

locity and Acceleration

For motion on a horizontal line the derivative of position with respect to time
is sufficient to describe the motion of the particle. If it is positive, the particle
is moving to the right. If it is negative, the particle is moving to the left. The
speed is the absolute value of the derivative. For motion in the plane or in
space we need the derivative of a vector function. This section introduces the
calculus of a vector function and applies it to motion along a curve in a plane
or in space.

Defining the Derivative

Figure 15.1.1

Assume that a curve in the plane is parameterized as 〈x(t), y(t)〉 or, in
space, by 〈x(t), y(t), z(t)〉. Let P = P (t) be the point corresponding to t,
which we may think of as time, though it can be any parameter, such as arc
length.

The position vector, r = r(t), has its tail at the origin O and its tip at

P . Then r =
−→
OP , as shown in Figure 15.1.1.

We will assume that r(t) is continuous, in that each of its components
is continuous. The vector function r(t) is said to approach the vector L as
t approaches a if limt→a |r(t) − L| = 0. We write limt→a r(t) = L. This is
equivalent to the assertion that each of the scalar components of r(t) has a
limit and L = 〈limt→a x(t), limt→a y(t), limt→a z(t)〉.

Figure 15.1.2

Figure 15.1.2 shows this geometrically. As t approaches a, r(t)− r(a) gets
shorter as it approaches the zero vector 0.

We will say that r(t) is differentiable at t = a if its components are differ-
entiable at t = a. Then the derivative of r(t) is defined as the vector.

〈x′(a), y′(a), z′(a)〉.

In vector notation,

r′(a) = lim
t→a

r(t)− r(a)

t− a
or r′(a) = lim

∆t→0

r(a + ∆t)− r(a)

∆t
.

and, if ∆r = r(r + ∆t) − r(r), r′(a) = lim∆t→0
∆r
∆t

. When t is near a (or ∆t
is near 0) the vector in the numerator will be short. It is divided by t− a (or
∆t), which is small, so the quotient could be a vector of any size.

Some Derivative Formulas

We state some useful identities:
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If r and s are differentiable vector functions, and f is a differentiable scalar
function, then

(r + s)′ = r′ + s′ differentiate a sum
(fr)′ = f ′r + fr′ product rule (f is a scalar function)

(r× s)′ = r′ × s + r× s′ differentiate a cross product
(r · s)′ = (r′ · s) + (r · s′) differentiate a dot product

(r(f(t)))′ = r′(f(t))f ′(t) chain rule.

The proofs are straightforward. We prove the formula for (r · s)′ in both com-
ponent and vector notation. For convenience, assume r(t) and s(t) are vectors
in the xy-plane so r(t) = 〈x(t), y(t)〉 and s(t) = 〈u(t), v(t)〉.

Proof

Using components:

(r · s)′ = (x(t)u(t) + y(t)v(t))′ = x′u + xu′ + y′v + yv′

= (x′u + y′v) + (xu′ + yv′) = r′ · s + r · s′.

Now, the same proof, but in vectors:

(r · s)′ = lim
∆t→0

r(a + ∆t) · s(a + ∆t)− r(a) · s(a)

∆t

= lim
∆t→0

(r(a) + ∆r) · (s(a) + ∆s)− r(a) · s(a)

∆t

= lim
∆t→0

r(a) · s(a) + ∆r · s(a) + r(a) ·∆s + ∆r ·∆s− r(a) · s(a)

∆t

= lim
∆t→0

∆r

∆t
· s(a) + r(a) · ∆s

∆t
+ ∆r · ∆s

∆t
= r′(a) · s(a) + r(a) · s′(a) + 0 · s′(a)

= r′(a) · s(a) + r(a) · s′(a).

This resembles the proof for the derivative of the product in Section 4.3. •

EXAMPLE 1 At time t, a particle has the position vector r(t) = 3 cos(2πt)i+
3 sin(2πt)j + 5tk. Describe its path.
SOLUTION At time t the particle is at the point (x, y, z) with

x = 3 cos(2πt), y = 3 sin(2πt), and z = 5t.

Because x2+y2 = (3 cos(2πt))2+(3 sin(2πt))2 = 9, the particle is always above
or below the circle

x2 + y2 = 9.
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As t increases, z = 5t increases.

Figure 15.1.3

The path is thus a spiral sketched in Figure 15.1.3. When t increases by
1, the angle 2πt increases by 2π, and the particle goes around the spiral once.
The path is called a helix. �

The Meaning of r′ and r′′

The vector r′(a) is the limit of

r(a + ∆t)− r(a)

∆t

as ∆t→ 0. The numerator r(a + ∆t)− r(a) = ∆r is shown in Figure 15.1.4.

Figure 15.1.4

Since ∆r coincides with a chord, it points almost along the tangent line at
the head of r(a) when ∆t is small. Dividing a vector by a scalar produces a
parallel vector. The position vector is r(t), so

r(a + ∆t)− r(a)

∆t

approximates a vector tangent to the curve at a. We conclude that

r′(a) = lim
∆t→0

r(t + ∆t)− r(a)

∆t

is a vector tangent to the curve at r(a). That is the geometric meaning of the
derivative r′.

r′ is tangent to the curve.

To see what r′ means when t is time, we compute its length.
Since r′(t) = 〈x′(t), y′(t), z′(t)〉, its length is√

x′(t)2 + y′(t)2 + z′(t)2.

This is the natural extension to three dimensions of the speed on a planar
curve in Section 9.4.

The length of r′(t), |r′(t)|, is the speed.
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We can also see that the magnitude of r′(t) is the speed by using vector
language. For small ∆t, the vector ∆r lies on a short chord of the curve and
its length is close to the length of arc swept out during that short interval of
time. (See Figure 15.1.4.) Thus the magnitude of ∆r/∆t approximates the
speed.

Since r′(t) points in the direction of motion and its length is the speed, we
call r′(t) the velocity vector. Note that velocity is a vector, while speed is
a scalar. Velocity carries much more information than speed: it also tells the
direction of the motion.

The velocity r′(t) is also denoted v or v(t).
The speed is |v|, denoted v or v(t).

The acceleration vector, a(t), is the derivative of the velocity vector.

The acceleration is a(t) = v′(t) = dv
dt

= r′′(t) = d2r
dt2

.

EXAMPLE 2 Let r(t) = 〈t, t3〉.

(a) Draw and label r, v, and a at t = 1.

(b) Draw v(1.1).

SOLUTION

(a) r(t) = 〈t, t3〉, v(t) = 〈1, 3t2〉, and a = 〈0, 6t〉. So r(1) = 〈1, 1〉, v(1) =
〈1, 3〉 and a(1) = 〈0, 6〉. We show these in Figure 15.1.5(a).

(b) Before we compute v(1.1), let us predict how it may change from v(1).
The acceleration vector represents a force. Since a(1) is almost in the
direction of v(1), the particle is speeding up. That is, v(1.1) should be
longer than v(1).

Also, it would tend to rotate the velocity vector counterclockwise. So the
direction of v(1.1) should be a bit counterclockwise from that of v(1).
To check, we compute v(1.1) = 〈1.1, 3(1.1)2〉 = 〈1.1, 3.63〉.
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(a) (b)

Figure 15.1.5

It is longer than v(1) = 〈1, 3〉 since
√

(1.1)2 + (3.63)2 is larger than√
1 + 32. Figure 15.1.5(b) shows that it is turned a bit counterclockwise,

as expected. Its tail is placed at the head of

r(1.1) = 〈1.1, 1.331〉 = 1.1i + 1.331j.

�

EXAMPLE 3 Find the speed at time t of the particle described in Exam-
ple 1.
SOLUTION From Example 1, the position is r(t) = 〈3 cos(2πt), 3 sin(2πt), 5t〉.
So the velocity is v(t) = r′(t) = 〈−6π sin(2πt), 6π cos(2πt), 5〉 and

speed = |r′(t)| =
√

(−6π sin 2πt)2 + (6π cos 2πt)2 + 52

=
√

36π2(sin2 2πt + cos2 2πt) + 25 =
√

36π2 + 25.

The particle travels at a constant speed along its helical path. In t units of
time it travels the distance

√
36π2 + 25 t.

The velocity vector is not constant because its direction always changes.
However, its length remains constant, and so the speed is constant. �

EXAMPLE 4 Sketch the path of a particle whose position vector at time
t ≥ 0 is r(t) = cos(t2)i + sin(t2)j. Find its speed at time t.

SOLUTION Because |r(t)| =
√

cos2(t2) + sin2(t2) = 1 the path of the par-
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ticle is on the circle of radius 1 and center (0, 0). Its speed is

|v(t)| = |r′(t)| = | − 2t sin(t2)i + 2t cos(t2)j|
=

√
(−2t sin(t2))2 + (2t cos(t2))2

= 2t
√

sin2(t2) + cos2(t2) = 2t.

The particle travels faster and faster around the circle. �

EXAMPLE 5 If the acceleration vector is always perpendicular to the ve-
locity vector, show that the speed is constant.

SOLUTION The speed is |v|. We will show that the square of the speed,
|v|2, is constant by showing that its derivative with respect to time is zero.
Since |v|2 = v · v, we have

d

dt

(
|v|2
)

=
d

dt
(v · v) = v′ · v + v · v′ = 2 v · v′ = 2 v · a.

Because a is perpendicular to v we know that v · a = 0.
Thus v · v is constant, so the speed is constant. �

The calculation in Example 5 implies that if r(t) is always perpendicular
to r′(t), then the length of r(t) is constant. The converse is also true:

If the length of r(t) is constant,
then r′(t) is perpendicular to r(t).

This is not surprising. If r(t) is constant, the r(t) lies on a sphere of radius
|r(t)| = c. A tangent to the curve at P is tangent to the sphere. The tangent
to a sphere is perpendicular to its radius, as indicated in Figure 15.1.6(a), and
the result follows.

EXAMPLE 6 Is the particle shown in Figure 15.1.6(b) speeding up or
slowing down? Is its direction turning clockwise or counterclockwise?

SOLUTION Represent a as the sum of two vectors, one parallel to v, and
the other perpendicular to v, as shown in Figure 15.1.6(c). Since b is in the
same direction as v, the particle is speeding up. The direction of c indicates
that the direction of v is shifting counterclockwise. �
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(a) (b) (c)

Figure 15.1.6

Summary

Instead of parameterizing a curve by displaying its components 〈x(t), y(t)〉 or

〈x(t), y(t), z(t)〉, we introduced the position vector
−→
OP = r(t). If r(t) describes

the position of a moving particle at time t, then r′(t) is the velocity of the
particle and |r′(t)| is its speed. The acceleration a(t) is the second derivative
of r(t): a = r′′. It is proportional to the force operating on the particle.

We showed that if r(t) and r′(t) are perpendicular, then the length of r(t),
|r(t)|, is constant. The converse holds: If r(t) has constant length, then r′(t)
is perpendicular to r(t), and r(t) · r′(t) = 0.
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EXERCISES for Section 15.1

1. At time t a particle has the position vector r(t) = ti + r2j.

(a) Compute and draw r(1), r(2), and r(3).

(b) Show that the path is a parabola.

2. At time t a particle has the position vector r(t) = (2t + 1)i + 4tj.

(a) Compute and draw r(0), r(1), and r(2).

(b) Show that the path is a straight line.

3. Let r(t) = 2ti + t2j.

(a) Compute and draw r(1.1), r(1), and their difference ∆r = r(1.1)− r(1).

(b) Compute and draw ∆r/0.1.

(c) Compute and draw r′(1). (Use one set of axes for all the graphs.)

4. Let r(t) = 3ti + t2j.

(a) Compute and draw ∆r = r(2.01)− r(2).

(b) Compute and draw ∆r/0.01.

(c) Compute and draw r′(2). (Use one set of axes for all the graphs.)

5. At time t the position vector of a ball is r(t) = 32ti− 16t2j.

(a) Draw r(1) and r(2).

(b) Sketch the path.

(c) Compute and draw v(0), v(1), and v(2). Place the tail of the vector at the
head of the corresponding position vector.

6. At the time t ≥ 0 a particle is at the point x = 2t, y = 4t2.
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(a) What is the position vector r(t) at time t?

(b) Sketch the path.

(c) How fast is the particle moving when t = 1?

(d) Draw v(1) with its tail at the head of r(1).

7. Let r(t) describe the path of a particle moving in the xy plane.
If r(1) = 2.3i + 4.1j and r(1.2) = 2.31i + 4.05j, estimate

(a) how much the position of the particle changes during the time interval [1, 1.2].

(b) the slope of the tangent vector at r(1).

(c) the velocity vector r′(1).

(d) the speed of the particle at time t = 1.

8. Let r(t) describe the path of a particle moving in space.
If r(2) = 1.7i + 3.6j + 8k and r(2.01) = 1.73i + 3.59j + 8.02k, estimate

(a) how far the particle travels during the time interval [2, 2.01].

(b) the velocity vector r′(2).

(c) the speed of the particle at time t = 1.

In Exercises 9 to 12 compute the velocity vector and speed.
9. r(t) = cos 3ti + sin 3tj + 6tk

10. r(t) = 3 cos 5ti + 2 sin 5tj + t2k

11. r(t) = ln(1 + t2)i + e3tj + tan t
1+2tk

12. r(t) = sec2 3ti +
√

1 + t2j

13. At time t the position vector of a particle is

r(t) = 2 cos(4πt)i + 2 sin(4πt)j + tk.

(a) Sketch its path.

(b) Find its speed.
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(c) Find a unit tangent vector to its path at time t.

In Exercises 14 to 21 the figure shows a velocity vector and an acceleration vector.
Decide whether (a) the particle is speeding up, slowing down, or neither, (b) the
velocity vector is turning clockwise, counter-clockwise, or neither.
14. Figure 15.1.7(a)

15. Figure 15.1.7(b)

16. Figure 15.1.7(c)

17. Figure 15.1.7(d)

18. Figure 15.1.8(a)

19. Figure 15.1.8(b)

20. Figure 15.1.8(c)

21. Figure 15.1.8(d)

(a) (b) (c) (d)

Figure 15.1.7

(a) (b) (c) (d)

Figure 15.1.8
22. At time t a particle is at (4t, 16t2).

(a) Show that the particle moves on the curve y = x2.

(b) Draw r(t) and v(t) for t = 0, 1/4, 1/2.

(c) What happens to |v(t)| and the direction of v(t) for large t?
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23. At time t ≥ 1 a particle is at the point (x, y) = (t, t−1).

(a) Draw the path of the particle.

(b) Draw r(1), r(2), and r(3).

(c) Draw v(1), v(2) and v(3).

(d) As t increases, what happens to dx/dt, dy/dt, |v|, and v?

24. At time t a particle is at (2 cos(t2), sin(t2)).

(a) Show that it moves on an ellipse.

(b) Compute v(t).

(c) How does |v(t)| behave for large t? What does this say about the particle?

25. An electron travels at constant speed clockwise in a circle of radius 100 feet
200 times a second. At time t = 0 it is at (100, 0).

(a) Compute r(t) and v(t).

(b) Draw r(0), r(1/800), v(0), v(1/800).

(c) How do |r(t)| and |v(t)| behave as t increases?

26. A ball is thrown up at an initial speed of 200 feet per second and at an angle
of 60◦ from the horizontal. At time t it is at (100t, 100

√
3t − 16t2). Compute and

draw r(t) and v(t) (a) when t = 0, (b) when the ball reaches its maximum height,
and (c) when the ball strikes the ground.

27. A particle moves in a circular orbit of radius a. At time t its position vector
is

r(t) = a cos(2πt)i + a sin(2πt)j.

(a) Draw its position vector when t = 0 and when t = 1
4 .

(b) Draw its velocity when t = 0 and when t = 1
4 .
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(c) Show that its velocity vector is always perpendicular to its position vector.

28. Use a computer or graphing calculator to graph r = r(t) = (2 cos(t) +
cos(3t))i + (3 sin(t) + sin(3t))j, 0 ≤ t ≤ 2π.

29. If r(t) is the position vector, v the velocity vector, and a the acceleration
vector, show that d

dt(r× v) = r× a.

30. Let r(t) = t2i + t3j.

(a) Sketch the vector ∆r = r(1.1)− r(1).

(b) Sketch the vector ∆r/∆t for ∆t = 0.1.

(c) Sketch r′(1).

(d) Find |∆r/∆t− r′(1)| for ∆t = 0.1.

31. Instead of t, use the arc length s along the path as a parameter, so r = r(s).

(a) Sketch ∆r and the arc of length ∆s. Why is it reasonable that |∆r/∆s| is
near 1 when ∆s is small?

(b) Show that dr/ds is a unit vector.

32. A particle at time t = 0 is at the point (x0, y0, z0). It moves on the line through
that point in the direction of the unit vector u = cos(α)i + cos(β)j + cos(γ)k. It
travels at the constant speed of 3 feet per second.

(a) Give a formula for its position vector r = r(t).

(b) Find its velocity vector v = r′(t).

33. A rock is thrown up at an angle θ from the horizontal and at a speed v0.

(a) Show that
r(t) = (v0 cos(θ))ti + ((v0 sin(θ))t− 16t2)j.

(At time t = 0, the rock is at (0, 0) and the x-axis is horizontal. Time is in
seconds and distance is in feet.)
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(b) Show that the horizontal distance that the rock travels by the time it returns
to its initial height is the same whether the angle is θ or π/2− θ.

(c) What value of θ maximizes the horizontal distance traveled?

(This is similar to Exercise 24 in Section 9.3, but uses vectors.)

34.

(a) Solve Example 5 by writing the speed as

√(
dx
dt

)2
+
(

dy
dt

)2
+
(

dz
dt

)2
and differ-

entiating.

(b) Which way do you prefer? The vector method in Example 5 or the component
method in (a)?

35. The force of a magnetic field on a moving electron is always perpendicular to
the velocity vector of the electron, v. What does this imply about v?

36. Show that if r(t) = 〈x(t), y(t), z(t)〉 and limt→a |r(t) − 〈p, q, r〉| = 0, then
limt→a x(t) = p, limt→a y(t) = q, and limt→a z(t) = r.

37. Show the converse of the preceding exercise, namely that if the scalar compo-
nents have limits, so does r(t).

38. At time t the position vector of a particle is

r(t) = t cos(2πt)i + t sin(2πt)j + tk.

Sketch its path.

39. A spaceship is on the path r(t) = t2i + 3tj + 4t3k. At time t = 1 it shuts off
its rockets and coasts along the tangent line to the curve at that point.

(a) Where is it at time t > 1?

(b) Does it pass through the point (9, 15, 50)?

(c) If not, how close does it get to that point? At what time?

40. A particle traveling on the curve r(t) = ln(t)i + cos(3t)j, t ≥ 1, leaves the
curve when t = 2 and travels on the xy-plane along the tangent to the curve at r(2).
Where is it when t = 3?
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41. Drawing a picture of r(t), r(t + ∆t), and ∆r, explain why
∣∣∆r
∆t

∣∣ is an estimate
of the speed of a particle moving on the curve r(t).

42. The moment a ball is dropped straight down from a tall tree, you shoot an
arrow directly at it. Assume that there is no air resistance. Show that the arrow
will hit the ball, assuming that the ball does not hit the ground first.

(a) Solve using the formulas in Exercise 33.

(b) Solve with a maximum of intuition and a minimum of computation.

43.

(a) At time t a particle has the position vector r(t). Show that for small ∆t the
area swept out by the position vector is approximately 1

2 |r(t)× v(t)|∆t. (See
Figure 15.1.9.) (v(t) is approximated by ∆r/∆t.)

(b) Assume that the curve in (a) is parameterized over the time interval [a, b].
Show that the area swept out is 1

2

∫ b
a |r× v| dt.

(c) Must the curve lie in a plane for the formula in (b) to hold?

Figure 15.1.9
In Exercises 44 to 50 v(t) is the velocity vector at time t for a moving particle and
r(0) is the particle’s position at time t = 0. Find r(t), the position vector of the
particle at time t.

44. v(t) = sin2(3t)i +
t

3t2 + 1
j, r(0) = j

45. v(t) =
t

t2 + t + 1
i + tan−1(3t)j, r(0 = i + j

46. v(t) =
t3

t4 + 1
i + ln(t + 1)j, r(0) = 0
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47. v(t) = e2t sin(3t)i +
t3

3t + 2
j, r(0) = i + 3j

48. v(t) =
t

(t + 1)(t + 2)(t + 3)
i +

t2

(t + 2)3
j, r(0) = i− j

49. v(t) =
(ln(t + 1))3

t + 1
i +

1√
1− 4t2

j + sec2(3t)k, r(0) = i + j + k

50. v(t) = t3e−ti + (1 + t)(2 + t)j, r(0) = 2i− j
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15.2 Curvature and Components of Accelera-

tion

In Section 9.6 we defined the curvature of a plane curve as the absolute value
of the derivative dφ/ds, where φ is the angle the tangent makes with the x-axis
and s is the arc length. This definition does not work for a curve that does not
lie in a plane. (Why not?) In this section we use vectors to define curvature
for curves in space and then use curvature to analyze the acceleration vector.

Definition of Curvature

A particle whose position vector at the time t is r(t) has velocity v(t). When
v(t) is not the zero vector, the unit vector in the direction of v(t) is

T(t) =
v(t)

|v|
=

r′(t)

|r′(t)|
, or

T =
v

|v|
=

r′

|r′|
(assuming v 6= 0)

The unit tangent vector, T, records the direction of motion.
As the particle moves along the curve the direction of T changes most

rapidly where the curve is curviest. So we define curvature of a curve in the
plane or in space to be the length of the rate of change with respect to arclength
of the unit tangent vector

Curvature of a Curve

κ =

∣∣∣∣dTds

∣∣∣∣
where s denotes the length of arc of a curve, measured from a fixed starting
point.

We check in Example 1 that the definition of curvature agrees with the
definition for curvature for plane curves in Section 9.6.

EXAMPLE 1 Show that the definition of curvature as |dT/ds| agrees with
the definition |dφ/ds| given earlier for plane curves.
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SOLUTION

Figure 15.2.1

As Figure 15.2.1 shows, φ is the angle that T makes with the
x-axis. Since T is a unit vector, T = cos(φ)i + sin(φ)j. Thus

κ =

∣∣∣∣dTds

∣∣∣∣ =

∣∣∣∣d(cos φi + sin φj

ds

∣∣∣∣ =

∣∣∣∣d(cos φi + sin φj)

dφ

dφ

ds

∣∣∣∣
=

∣∣∣∣(− sin φi + cos φj)
dφ

ds

∣∣∣∣ = |(− sin φi + cos φj)|
∣∣∣∣dφ

ds

∣∣∣∣ =

∣∣∣∣dφ

ds

∣∣∣∣
so that ∣∣∣∣dTds

∣∣∣∣ =

∣∣∣∣dφ

ds

∣∣∣∣ .
�

Define the radius of curvature as the reciprocal of κ.

EXAMPLE 2 Compute the curvature of the helix

r(t) = cos(t)i + sin(t)j + 3tk.

SOLUTION To find T we compute v = − sin(t)i + cos(t)j + 3k and |v| =√
(− sin(t))2 + (cos(t))2 + 32 =

√
10. Thus

T =
1√
10

(− sin(t)i + cos(t)j + 3k).

Figure 15.2.2

Because speed is both v = |v| and the rate of change of arc length, the
curvature equals∣∣∣∣dTds

∣∣∣∣ =

∣∣dT
dt

∣∣∣∣ds
dt

∣∣ =

∣∣dT
dt

∣∣
v

=

∣∣∣ 1√
10

(− cos(t)i− sin(t)j)
∣∣∣

√
10

The curvature is 1/10 and the radius of curvature is 10. For any helix the
curvature and radius of curvature are both constant. �

The Unit Normal N

Since T(t) has constant length, dT/ds is perpendicular to T. By considering
small ∆s and ∆T, as in Figure 15.2.2, we see that dT/ds points in the direction
in which T is turning.

Figure 15.2.3

Since the length of dT/ds is the curvature κ, we may
write

dT

ds
= κN

where N is a unit normal called the principal normal. Because κ is positive,
dT/ds and N point in the same direction. The vectors T and N, if placed
with their tails at a point P on the curve, determine a plane. The part of the
curve near P stays close to the plane. (See Figure 15.2.3.)
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The Acceleration Vector and T and N

The acceleration vector, a, is defined as the second derivative of the position
vector, r. We will show that a is parallel to the plane determined by T and
N, so a can be written in the form c1T + c2N, where c1 and c2 are scalars.

Since a = dv
dt

, we express v in terms of T and N. By the definition of T,
v = vT, where v = |v|, is the speed. N is not needed to express the velocity
vector v.

Thus

a = dv
dt

= d(vT)
dt

= dv
dt

T + v dT
dt

(product rule)

= d2s
dt2

T + v dT
ds

ds
dt

(v = ds
dt

and chain rule)

= d2s
dt2

T + v2 dT
ds

.

Replacing dT
ds

with κN, we find

Acceleration in terms of T, N, and κ

a =
d2s

dt2
T + v2κN

r = 1/κ (κ 6= 0)If κ is not 0, then we have

Acceleration in terms of T, N, and radius of curvature

a =
d2s

dt2
T +

v2

r
N.

Tangential component of

acceleration: a ·T = d2s
dt2

The tangential component of acceleration, d2s
dt2

, is positive if the particle is
speeding up and is negative if it is slowing down. The normal component of
acceleration, v2/r, is always positive.

Figure 15.2.4 shows how a may look relative to T and N. Normal component of

acceleration: a ·N = v2

r

In both cases
T turns in the direction of N. In Figure 15.2.4 that means that T is turning
counterclockwise.

Computing Curvature

We can compute the curvature directly from its definition. There is also a
shorter formula for κ. To develop it we compute

T× a = T×
(

d2s

dt2
T + v2κN

)
. (15.2.1)
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(a) (b)

Figure 15.2.4 The tangential and normal components of acceleration: (a)
d2s/dt2 > 0 and (b) d2s/dt2 < 0.

We do this for two reasons. First, T × T = 0. Second |T ×N| = 1, since T
and N span a unit square. By (15.2.1), we then have

T× a = κv2(T×N).

Thus
|T× a| = κv2.

Because T = v/v, we have
|v × a|

v
= κv2

and thus

Curvature in terms of speed, velocity and acceleration

κ =
|v × a|

v3
. (15.2.2)

We illustrate (15.2.2) by applying it to the helix of Example 2.

EXAMPLE 3 Use (15.2.2) to compute the curvature of the helix r(t) =
cos(t)i + sin(t)j + 3tk.
SOLUTION We compute v, v and a. Because v = − sin ti + cos tj + 3k,
v =

√
(− sin(t))2 + (cos(t))2 + 32 =

√
10. Then

a =
dv

dt
= − cos(t)i− sin(t)j.
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Next we compute v × a:

det

 i j k
− sin(t) cos(t) 3
− cos(t) − sin(t) 0

 = 3 sin(t)i− 3 cos(t)j + (sin2(t) + cos2(t))k

= 3 sin(t)i− 3 cos(t)j + k.

Thus

k =
|v × a|

v3
=
|3 sin(t)i− 3 cos(t)j + k|

(
√

10)3

=

√
(3 sin(t))2 + (−3 cos(t))2 + 12

√
10

3

=

√
10

(
√

10)3
=

1

10
.

�

Though curvature is defined as a derivative with respect to arc length s,
there are two reasons s is rarely used in computations. First, we seldom can
obtain a formula for the arc length. Second, if the curve is described in terms
of a parameter t, such as time or angle, then we can use the chain rule to
express dT/ds as the directly calculatable

dT
dt
ds
dt

.

The Meaning of the Components of a

If no force acts on a moving particle it would move in a line at a constant speed.
But if there is a force F, then, according to Newton’s Laws, it is related to the
acceleration vector a by F = ma.

Figure 15.2.5

If F is parallel to T, the particle of mass m moves in a line with an accel-
eration dv/dt = d2s/dt2. So we would expect a to equal d2s/dt2T.

If F is perpendicular to T, it would not change the particle’s speed, but it
would push it away from a straight path, as shown in Figure 15.2.5

If you spin a pail of water at the end of a rope you can feel the force. It
is proportional to the square of the speed and inversely proportional to the
length of the rope. Driving a car around a sharp curve too fast can cause it
to skid because the friction of the tires against the road cannot supply the
necessary force, whose magnitude is the speed squared divided by the radius
of the turn, to prevent skidding.
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The Third Unit Vector, B

The vector T×N has length 1 and is perpendicular to both T and N. We may
think of it as a normal to the plane parallel to T and N through a point P on
the curve. The unit vector T ×N is denoted B and is called the binormal.
It is shown in Figure 15.2.6

Figure 15.2.6

The three vectors, T, N, and B, may change direction as P moves along
the curve. However, they remain a rigid frame, where T indicates the direction
of motion, N the direction of turning, and B the tilt of the osculating plane,
the plane that contains P and the vectors T and N.

More formulas for κ are
found in Exercises 21, 22,

and 23. When given explicit
formulas for a curve, it can

be easiest to use a
computer algebra system
such as Mathematica or

Maple to find the curvature,
T, N, and B.

Summary

We defined the curvature of a curve in space (or in the xy-plane) using vectors.
The definition agrees with the definition of curvature for curves in the xy-
plane given in Section 9.6. The curvature, or its reciprocal, the radius of the
curvature, appears in the normal component of the acceleration vector.

The section concluded with the definition of the binormal, B = T × N,
which indicates the tilt of the plane determined by T and N.
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EXERCISES for Section 15.2

In Exercises 1 to 4, v denotes the velocity and a denotes the acceleration. Evaluate
the dot product.
1. v ·T
2. a ·T
3. v ·N
4. a ·N

5.

(a) Why is T×N a unit vector?

(b) Why is N perpendicular to T?

In Exercises 6 and 7, v and a are given at an instant. Find the (i) curvature, (ii)
radius of curvature, and (iii) d2s/dt2.
6. v = 2i + 3j + 4k, a = i− j + k
7. v = i + j + k, a = −i + j + k

In Exercises 8 and 9 compute the curvature using κ = |dT/dt|/v.
8. r(t) = ti + t2j + t3k
9. r(t) = 3 cos(2t)i + 3 sin(2t)j + 4tk

In Exercises 10 and 11, compute the curvature using the speed, velocity, and accel-
eration, that is, using κ = |v × a|/v3.
10. r(t) = ti + t2j + t3k
11. r(t) = 3 cos(2t)i + 3 sin(2t)j + 4tk

12. To emphasize the value of the vector approach, compute d|v|/dt in two ways.

(a) Differentiate |v|2 = v · v to conclude that d|v|/dt = v · a/|v|.

(b) Derive the result starting with

|v| =

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

.

13. Let a and b be constants. A particle moves on the helix path described by

r(t) = 3 cos(at)i + 3 sin(at)j + btk
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(a) Compute its curvature.

(b) As b→∞ what happens to the curvature?

(c) Why is the answer to (b) reasonable?

(d) As a→∞, what happens to the curvature?

(e) Why is the answer to (d) reasonable?

14. Show that for r(x) = xi + f(x)j + 0k the formula |(v×a)|
v3 gives the formula in

Section 9.6 for curvature of y = f(x).

15. Show that dr
ds is a unit vector,

(a) by drawing r(s + ∆s) and r(s) and considering r(s+∆s)−r(s)
∆s .

(b) by writing it as (dr/dt)/(ds/dt).

16. Express the area of the parallelogram spanned by v and a in terms of the
curvature and speed.

17. If a particle reaches a maximum speed at time t0, must d2s/dt2 be 0 at t0?
Must d2r/dt2 be 0 at t0? Assume the time interval is (−∞,∞).

18. Let r(t) denote the position vector and s the arc length.

(a) Is dr/dt parallel to dr/ds? Explain.

(b) Is d2r/dt2 parallel to d2r/ds2? Explain.

In Exercises 19 and 20 the Figure 15.2.7 shows the velocity and acceleration vectors
at a point P on a curve. Find (i) v, (ii) d2s/dt2, and (iii) κv2. Then (iv) find r, the
radius of the curvature, (v) draw the osculating circle, and (vi) using the osculating
circle, draw an approximation of a short piece of the path near P .
19. Figure 15.2.7(a)

20. Figure 15.2.7(b)

21.
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(a) (b)

Figure 15.2.7

Jane: After doing Exercises 19 and 20, I have a simpler way to get a formula for
curvature. Just look at the right triangle whose hypotenuse has length |a| and
one leg is the component of a along v. By trigonometry,

κv2 = |a|| sin(a,v)|. (15.2.3)

All that’s left is getting sin(a,v) out and cos(a,v) in because we know how
to express cos(a,v) in terms of a dot product. Squaring (15.2.3) gives

κ2v4 = |a|2
(
1− cos2(a,v)

)
.

If you use the fact that

cos(a,v) =
a · v
|a|v

.

and a little algebra, you get

κ2 =
(v · v)(a · a)− (a · v)2

v6
(15.2.4)

My way is simpler than using the cross product. I guess the authors don’t
understand trigonometry.

(a) Fill in the missing steps.

(b) Check that Jane’s formula agrees with (15.2.2).

22.
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Sam: You used trigonometry. I can do it with just the Pythagorean Theorem. Look
at the triangle with hypotenuse |a|. Its legs have lengths |d2s/dt2| and κv2.
So

|a|2 =
(

d2s

dt2

)2

+ (κv2)2.

Solve this for κ.

Jane: But you have to express everything in vectors. We’re in the chapter on
vectors.

Sam: O.K. First |a|2 = a · a and v2 = |v|2 = v · v.

Jane: But d2s/dt2?

Sam: That’s dv/dt. So I differentiate both sides of v2 = v ·v, getting 2v dv
dt = 2v ·a.

So dv/dt = (v · a)/v. So (dv/dt)2 = (v · a)2/v2. So

a · a =
(v · a)2

v2
+ κ2(v2)2.

Then solve for κ2.

I get the same result that you got in Exercise 21. It seems quite straightfor-
ward. The authors should have used my formula.

Jane: There were so many ”so’s” that I got lost.

Show that the formula for curvature that Sam obtained agrees with Jane’s formula
in Exercise 21.

23. Here is another way to find a formula for curvature. For the right triangle
whose hypotenuse is |a| and whose legs are parallel to T and N, show that

κ2v4 = (ẍ)2 + (ÿ)2 + (z̈)2 − (s̈)2.

(Two dots over a variable denotes its second derivative with respect to t.)

24. Assume that you are prone to car sickness on curvy roads. Which matters
more to you, |dT/ds| where s is arc length or |dT/dt| where t is time? Describe the
difference in the two quantities.

25. Let r = r(s), where s is arc length. Show that the curvature is κ =
∣∣∣d2r
ds2

∣∣∣.
26. Let C be a curve situated on the surface of a sphere S of radius a. (A sphere
is the surface of a ball.)

(a) Show that there are curves on S that have large curvature.

(b) Exhibit a curve whose curvature is as small as 1/a.
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(c) Show that there are no curves with curvature smaller than 1/a. (See Exer-
cise 25 and start with r · r = a2.)

The Frenet formulas are:

dT
ds

= κN,
dB
ds

= τN,
dN
ds

= −κT + τB.

Here κ is curvature and τ is torsion, the measure of the tendency of the plane
through T and N to turn. We already have the first one, while Exercises 27 and 28
develop the formulas for dB/ds and dN/ds.
27.

(a) Why is dB/ds perpendicular to B?

(b) Why are there scalars p and q such that dB
ds = pT + qN?

(c) Using the fact that B and T are always perpendicular show that

(pT + qN) ·T = 0.

(d) From (c) show that p = 0. Thus dB/ds = qN. The scalar function q is usually
denoted τ (tau). Thus dB/ds = τN.

28.

(a) Why are there scalars c and d such that dN
ds = cT + dB?

(b) Using the fact that B and N are always perpendicular, show that τN ·N +
B · (cT + dB) = 0.

(c) From (b) show that d = τ .

(d) Similarly, starting with T ·N = 0, show that c = −κ. Thus dN
ds = −κT+ τN.

29. A pail of water is being swung at the end of a rope. The amount of rope is
slowly increased until the radius of the circle the pail sweeps out doubles. Does the
force of your pull remain the same? Increase? Decrease? Explain.

30. In Example 1 we used calculus to show that for a plane curve |dT/ds| =
|dφ/ds|, when φ is the angle that T makes with the x-axis. This suggests that for
small values of ∆s, |∆φ| = |φ(s + ∆s) − φ(s)| is a good approximate of |∆T| =
|T(s + ∆s)−T(s)|.
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(a) Draw T(s + ∆s) and T(s) with their tails at the origin.

(b) Using the diagram, show why you would expect |∆T| and |∆φ| to be close to
each other in the sense that |∆T/∆φ| would be near 1.

31. Show that a curve that has a constant curvature κ = 0 is a line. (Don’t say,
“Oh, it’s a curve with infinite radius of curvature, so it must be a line”.) (Start with
the definition, κ = |dT/ds|.)

32. Express dT/ds in terms of the curvature and N.

33.

Jane: I don’t like the way the authors got the formula for curvature. I’m sure they
didn’t need to drag in the components of the acceleration vector. It’s not
elegant.

Sam: They’re trying to save space. Calculus books are too long.

Jane: My way is neat and short: just calculate∣∣∣∣dTds

∣∣∣∣ = |dTdt |
|v|

.

To begin I write T as v/|v|. Then I differentiate the quotient v/|v|. Along
the way I’ll need d|v|/dt, but I get that by differentiating |v|2 = v · v. That
will give me

dT
ds

=
v2a− (a · v)v

v4
(15.2.5)

Sam: That’s a nice formula but there’s no cross product.

Jane: If you like cross products, then use (15.2.5) to find (dT)/ds · dT/ds and call
on that identity that appeared when getting the length of the cross product
|A×B| (see (14.3) in Section 14.3). I’ll let you fill in the steps. I don’t want
to deprive you of a little fun.

Fill in the missing steps.

34. Using (15.2.5), obtain the formula in Exercise 15.2.4 for κ2.
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15.3 Line Integrals and Conservative Vector

Fields

In Section 6.2, we defined the integral of f(x) over an interval [a, b] as the
limit of sums of the form

∑n
i=1 f(ci)∆xi. Now we use similar definitions for

integrals over curves. In the next section we apply them to work, fluid flow,
and geometry.

The Integral with Respect to Arc Length s

Let r(t) be the position vector corresponding to a parameter value t in [a, b].
Assume that r(t) sweeps out a curve C with a continuous unit tangent vector
T(t). Let f be a scalar-valued function defined on C. We will define the
integral of f over C with respect to arc length.

Figure 15.3.1

Partition [a, b] by t0 = a, t1, . . . , tn = b and let r(t0) =
−−→
OP0, r(t1) =

−−→
OP1,

. . . , r(tn) =
−−→
OPn be the position vectors as shown in Figure 15.3.1. The points

P0, P1, . . . , Pn break the curve into n shorter curves of lengths ∆s1, ∆s2, . . . ,
∆sn. Form the Riemann sum

n∑
i=1

f(Pi)∆si.

The limit of sums of this form as all the lengths ∆si are chosen smaller and
smaller is denoted

∫
C

f(P )ds. That is,∫
C

f(P ) ds = lim
∆s→0

n∑
i=1

f(Pi)∆si.

The limit does not depend on the parameterization and so it does not depend
on the direction in which the curve is swept out. To compute the integral when
the curve is parameterized by t we can use

∫
C

f(P ) ds =

b∫
a

f(P )

∣∣∣∣ds

dt

∣∣∣∣ dt.

EXAMPLE 1 A fence is built as a semicircle of radius a with center at the
origin. The height of the fence is sin2(θ) where θ is the angle made with the
positive x-axis, as in Figure 15.3.2(b)). What is the area of one side of the
fence?
SOLUTION Let f(P ) be the height of the fence at P = (r, θ) in polar
coordinates. Then f(r, θ) = sin2(θ). The parameter θ ranges from 0 to π. Let
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(a) (b)

Figure 15.3.2

s = aθ be the arc length subtended by the angle θ, as in Figure 15.3.2(b).
Then ds = adθ and we have

area =

∫
C

sin2(θ) ds =

π∫
0

sin2(θ)a dθ = 2

π/2∫
0

sin2(θ)a dθ = 2a
π

4
=

πa

2
.

�

The Integrals with Respect to x, y, or z

The integral with respect to arc length is similar to an integral over an interval.
The integrals with respect to x, y, or z are different.

Let C be a parameterized curve and let f be a scalar function defined on
C. Divide the interval [a, b] into n sections by t0 = a, t1, · · · , tn = b. For
convenience, take the sections to be of equal lengths.

Let r(ti) = 〈x(ti), y(ti), z(ti)〉. Instead of considering the arc length ∆si

of each short interval we consider instead the change in the x-coordinate,
xi+1 − xi = ∆xi. It can be positive or negative. We then make the definition.
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The integral of f over the curve C with respect to x is the limit of sums

n∑
i=1

f(x(ti), y(ti), z(ti))∆xi

as n approaches infinity. It is denoted∫
C

f dx,

∫
C

f(x, y, z) dx, or

∫
C

f(P ) dx.

The integrals
∫

C
f(P ) dy and

∫
C

f(P ) dz are defined similarly.

Each of
∫

C
f(P ) dx,

∫
C

f(P ) dy, and
∫

C
f(P ) dz is called a line integral

of f over the curve C. Another line integral is the line integral with respect
to arc length:

∫
C

f(P ) ds. While it would be more natural to call them curve
integrals, tradition dictates that they be known as line integrals.

To compute a line integral such as
∫

C
f(P ) dx over a parameterized curve

C, express it as
∫ b

a
f(x(t), y(t), z(t))dx

dt
dt. In the same way

∫
C

f(P ) ds =

b∫
a

f(x(t), y(t), z(t))

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt.

A more general line integral is a sum of three types,∫
C

(P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz) . (15.3.1)

The integrand for this line integral, Pdx + Qdy + Rdz, is sometimes referred
to as a differential form. This language will be encountered again in Chap-
ter 18. The differential form can also be written as a dot product of the vector
field F = P i + Qj + Rk and dr = dxi + dyj + dzk, F · dr.

In contrast to an integral with respect to arc length, the value of
∫

C
f(P ) dx

depends on the orientation in which the curve is swept out. If we reverse the
orientation, the expression xi+1 − xi changes sign. For instance, if x is an
increasing function of the parameter in one parameterization, then ∆xi =
xi+1 − xi is positive; but in the reverse orientation x is a decreasing function
of the parameter, so ∆xi = xi+1 − xi is negative.

If −C denotes the curve C swept out in the opposite orientation, then∫
−C

f(P ) dx = −
∫
C

f(P ) dx.
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When evaluating line integrals
∫

C
f(P ) dx,

∫
C

f(P ) dy,
∫

C
f(P ) dz, hence∫

C
F(P ) · dr, it is necessary to pay attention to the orientation of C.

closed curve A closed curve is a curve that starts and ends at the same point. If
the curve does not intersect itself except perhaps at its endpoints, we call
the curve simple.simple curve These are independent: a curve can be neither closed nor
simple, closed but not simple, simple but not closed, or both simple and closed.
(See Figure 15.3.3.)

(a) (b) (c) (d)

Figure 15.3.3

When C is a closed curve we will usually use the notation
∮

C
F · dr for a

line integral over C.

EXAMPLE 2 Let C be a smooth closed convex curve without line segments
that is situated in the first quadrant, as shown in Figure 15.3.4. Find

∮
C

y dx
if C is oriented counterclockwise.

Figure 15.3.4

SOLUTION Let A and B be the contact points of the vertical tangents to
C. Break C into a lower curve C1 from A to B and an upper curve C2 from
B to A, both swept out counterclockwise.

On C1, ∆xi = xi+1 − xi is positive. Let yi be the y-coordinate of a point
on C1 above [xi, xi+1]. Then (xi+1−xi)yi approximates the area under C1 and
above [xi, xi+1], as shown in Figure 15.3.5(a)

We may think of y dx as the local approximation to the area under C1.
Thus ∫

C1

y dx = area below C1 and above the x-axis.

On C2, x is a decreasing function of the parameter and ∆xi = xi+1 − xi is
negative, as Figure 15.3.5(b) shows.

Let yi be the y-coordinate of a point on C2 above the interval whose ends
are xi and xi+1. Because (xi+1 − xi)yi is the negative of an approximation of
the area below C2 and above the x-axis, we conclude that∫

C2

y dx = negative of the area below C2 and above the x-axis.
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(a) (b)

Figure 15.3.5

Since
∫

C
y dx =

∫
C1

y dx +
∫

C2
y dx, it follows that when C is oriented coun-

terclockwise ∫
C

y dx = negative of the area inside C.

�

For curves in the xy-plane, then the most general line integral would be∫
C

(P (x, y, z) dx + Q(x, y, z) dy) . (15.3.2)

Both (15.3.1) and (15.3.2) can be expressed in the compact language of vectors,
as we will now show.

Vector Fields

A vector field assigns a vector to each point in some region of space (or the
plane). The function that assigns to each point the vector that describes the
direction and speed of the wind is an example of a vector field. The use of
field instead of function is in deference to physicists and engineers, who speak
of magnetic field and electric field, which are also examples of vector fields.

A function that assigns a scalar (real number) to each point in a region in
space (or the plane) is called a scalar field. The function that assigns the
temperature at a point in space is a scalar function as is the function that
gives the density of an object at a point.

A typical vector field in space is F(x, y, z) = P (x, y, z)i + Q(x, y, z)j +
R(x, y, z)k where P (x, y, z), Q(x, y, z), and R(x, y, z) are scalar fields. A vector
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field F in the plane can be described by two scalar fields with F(x, y) =
P (x, y)i + Q(x, y)j.

To take advantage of vector notation, we write dr = dxi+dyj+dzk. Then
(15.3.1) can be written in vector notation as∫

C

F(x, y, z) · dr,
∫
C

F(r) · dr, or

∫
C

F · dr.

For computation we may write it as

b∫
a

F(x(t), y(t), z(t)) · dr
dt

dt or

b∫
a

F · dr
dt

dt.

Line integrals in the plane are expressed in the same way.
Another standard notation uses the unit vector T = dr

ds
. Writing dr as T ds

we can rewrite
∫

C
F · dr as

∫
C

F ·T ds.
The integrand depends on the orientation of the curve because switching

it changes T to −T.

Conservative Vector Fields

The next example shows that different paths with the same initial point and
terminal point may yield different integrals.

Figure 15.3.6

EXAMPLE 3 Let C1 be the path from (1, 0) to (0, 1) along the unit circle
with center at the origin. Let C2 be the path that starts at (1, 0), goes to (1, 1)
on the line x = 1, and then to (0, 1) on the line y = 1. Compute

∫
C1

xy dx

and
∫

C2
xy dx.

SOLUTION Figure 15.3.6 shows the two paths C1 and C2, together with two
more curves, C3 and C4, that together make up C2.

We used u = sin(θ) to find
an antiderivative of

sin2(θ) cos(θ).

To compute
∫

C1
xy dx, we parameterize the circle with the angle θ in

[0, π/2]. Thus x = cos(θ), y = sin(θ), and dx = dx
dθ

dθ = − sin(θ) dθ, so

∫
C1

xy dx =

π/2∫
0

(cos(θ))(sin(θ))(− sin(θ)) dθ

= −
π/2∫
0

sin2(θ) cos(θ) dθ = −sin3(θ)

3

∣∣∣∣π/2

0

= −1

3
.

Why could we have predicted that the integral over C1would be negative?
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To calculate
∫

C2
xy dx we break C2 into two curves: C3 from (1, 0) to (1, 1)

and C4 from (1, 1) to (0, 1). (See Figure 15.3.6.)
On C3, x = 1 and dx = 0. Thus

∫
C3

xy dx = 0.
On C4, y = 1 and x begins at 1 and ends at 0. A parameterization of C4

is x = 1− t, y = 1 for 0 ≤ t ≤ 1. Then∫
C4

xy dx =

1∫
0

(1− t)(1)(−dt) =

1∫
0

(t− 1) =
t2

2
− t

∣∣∣∣1
0

= −1

2
.

On C4 we could have used the parameter x itself, which starts at 1 and

decreases to 0. Then we would have
∫

C4
xy dx =

∫ 0

1
x dx = x2

2

∣∣∣0
1

= −1
2
.

On C2, made up of C3 followed by C4, we have
∫

C2
xy dx = 0 + (−1/2) =

−1/2.
The line integrals

∫
C1

xy dx and
∫

C2
xy dx are not equal even though they

start at the same point (1, 0), end at the same point (0, 1), and have the same
integrand. �

As Example 3 shows,
∫

C
xy dx is not determined by the end points of the

curve C. However, some line integrals are. The next example presents a case
where the line integral depends only on the endpoints.

EXAMPLE 4 Compute
∫

C
x dx+y dy

x2+y2 on the paths, C1 and C2, in Exam-
ple 3.
SOLUTION On the circular path C1 we use θ as a parameter and have∫
C1

x dx + y dy

x2 + y2
=

π/2∫
0

(cos(θ))(− sin(θ) dθ) + sin(θ)(cos(θ)) dθ

cos2(θ) + sin2(θ)
=

π/2∫
0

0

1
dθ = 0.

Next we compute the integral on C2. The path from (1, 0) to (1, 1) is C3.
There x = 1, so dx = 0. Therefore, using y as the parameter, we find that∫

C3

x dx + y dy

x2 + y2
=

∫
C3

1 · 0 + y dy

1 + y2
=

∫
C3

y

1 + y2
dy

=

1∫
0

y dy

1 + y2
=

ln(1 + y2)

2

∣∣∣∣1
0

=
ln 2

2
.

On the path C4, from (1, 1) to (0, 1), we use x as the parameter starting at
x = 1 and y = 1, so dy = 0 and we have∫

C4

x dx + y dy

x2 + y2
=

0∫
1

x dx

x2 + 1
=

ln(x2 + 1)

2

∣∣∣∣0
1

= − ln 2

2
.
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Thus
∫

C2

x dx+y dy
x2+y2 = − ln 2

2
+ ln 2

2
= 0. This is the same value as the integral

over C1. �

In Section 18.1 we will show that
∫

C
x dx+y dy

x2+y2 depends only on the end
points of C. That is, if C1 and C2 are any two curves from point A to point
B then ∫

C1

x dx + y dy

x2 + y2
=

∫
C2

x dx + y dy

x2 + y2
.

A differential form P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz is called
a conservative form if its line integrals depend only on the endpoints of
the curves over which the integration takes place. Likewise, the vector field
F = P i+Qj+Rk is called a conservative field when

∫
C

F · dr depends only
on the end points of the curve C. In Section 18.6 we will develop a criterion
for identifying conservative fields and see that conservative fields are easier to
work with in applications.

Summary

We defined four integrals for curves in space (three for curves in the xy-plane).
The first,

∫
C

f(P )ds, is the limit of sums of the form
∑n

i=1 f(Pi)∆si, which is
an integral defined in Chapter 6. The other three,

∫
C

f(P ) dx,
∫

C
f(P ) dy,∫

C
f(P ) dz, are different. For instance, the first is the limit of sums of the form∑n
i=1 f(Pi)∆xi, where x is the x-coordinate of a point on the curve. Putting

them together we have the general line integral∫
C

(P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz) =

∫
C

(P dx + Q dy + R dz).

Introducing the vector field F(x, y, z) = P i + Qj + Rk, we developed three
compact notations for a line integral,

∫
C

F · dr,
∫

C
F · r′dt , and

∫
C

F ·T ds.
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EXERCISES for Section 15.3

1. Following the approach in Example 2, show that if C were oriented clockwise,
then

∮
C y dx would equal the area inside C.

2. Let C in Example 2 be oriented counterclockwise. Show why
∮
C x dy equals

the area inside C.

3. Show that the area within a convex curve C is 1
2

∮
C(x dy−y dx) if C is oriented

counterclockwise.

4. (See Example 3.) Compute
∫
C xy dx on the straight-line path that goes from

(1, 0) to (0, 0), and from there to (0, 1).

5. If F(P ) is perpendicular to the curve C at every point P on C, what is
∫
C F·dr?

6. If F(P ) equals T(P ) for every point P on the curve C, what is
∫
C F · dr?

7. Let a and b be positive numbers. Let C be the curve bounding the rectangle
with vertices (0, 0), (a, 0), (a, b), and (0, b). By calculating

∮
C x dy with C oriented

counterclockwise, confirm the result of Example 2. That is, check that the line in-
tegral over the closed curve C equals the area of the rectangle.

8. Let a and b be positive numbers. Let C be the curve bounding the triangle with
vertices (0, 0), (a, 0), and (0, b). By calculating

∮
C y dx with C oriented clockwise,

show that the integral equals the area of the triangle.

9. Let C be the curve bounding the circle of radius a with center at the origin.
By calculating

∫
C x dy counterclockwise, check that the integral equals the area of

the circle.

10. Let F(x, y, z) = xi+ yj+ zk = r. Let C be a curve starting at (x0, y0, z0) and
ending at (x1, y1, z1). Calculate

∫
C F · dr by rewriting it as

∫ b
a (F · r′) dt. Note that∫

C F · dr depends only on the endpoints of C.

In Exercises 11 to 14, sketch the curve and label its start and finish.
11. r(t) = ti + t2j, t in [0, 1]

12. r(t) = (1− t)i + (1− t)2j, t in [0, 1]

13. r(t) = (2t + 1)i + 3tj, t in [0, 2]

14. r(t) = 4 cos ti + 5 sin tj, t in [0, 1]
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In Exercises 15 to 18, parameterize the curve with the indicated orientation.
15. Figure 15.3.7(a)

16. Figure 15.3.7(b)

17. Figure 15.3.7(c)

18. Figure 15.3.7(d)

(a) (b) (c) (d)

Figure 15.3.7
In Exercises 19 to 22, evaluate
19.

∫
C xy dx, where C is the straight line from (1, 1) to (3, 3).

20.
∫
C x2 dy, where C is the straight line from (2, 0) to (2, 5).

21.
∫
C x2 dy, where C is the straight line from (3, 2) to (7, 2).

22.
∫
C(xy dx + x2 dy), where C is the straight line from (1, 0) to (0, 1).

In Exercises 23 to 26 evaluate the integral with minimum effort. C is a counter-
clockwise curve bounding a region of area 5.
23.

∮
C 3y dx

24.
∮
C(2y dx + 6x dy)

25.
∮
C [2x dx + (x + y) dy]

26.
∮
C [(x + 2y + 3) dx + (2x− 3y + 4) dy]

In Exercise 10, the value of the line integral depends only on the endpoints, not on
the path that joins them. Exercises 27 and 28 are examples where the path matters.
27. Evaluate

∫
C(xy dx + 7 dy) on

(a) the straight path from (1, 1) to (2, 4)

(b) the path from (1, 1) to (2, 4) that lies on the parabola y = x2.

28. Evaluate
∫
C x dy on

(a) the straight path from (0, 0) to (π/2, 1)

(b) the path from (0, 0) to (π/2, 1) that lies on the curve y = sin(x).
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In Exercises 29 and 30, the values of some line integrals are given for curves oriented
as shown. Use this information to find

∫
C f dy. (Pay attention to the orientations.)

29. Figure 15.3.8(a)
30. Figure 15.3.8(b)

(a) (b)

Figure 15.3.8
31. Let the closed curve C bound the region R, which is broken into regions Ri,
1 ≤ i ≤ n, with each Ri bounded by a closed curve Ci. Let F be a vector field on R.
If all the curves are swept out counterclockwise, show that

∮
C F·dr =

∑n
i=1

∮
Ci

F·dr.

32. Show that
∫
C

x dx
x2+y2 is not conservative by calculating the line integral on two

paths joining (1, 0) to (1, 1) for which the integrals are not equal.

33. Let k be a constant. Show that
∮
C k dy = 0.

34. Let r = r(t) describe a curve C in the plane or in space. What is the geometric
interpretation of

1
2

∫
C

|r×T| ds?

(This is used in the first Calculus is Everywhere section (CIE 22) at the end of this
chapter.)

35. If t represents time and r(t) describes a curve C, what is the meaning of∫
C T · dr? (Draw a picture of a small section of the curve.)
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15.4 Four Applications of Line Integrals

In the last section we defined line integrals and showed that
∮

C
y dx and

∮
C

x dy
in the plane are related to the area of the region bounded by the closed curve
C. In this section we show how line integrals occur in the study of work, fluid
flow, and of the angle subtended by a planar curve.

In each application we divide the domain into smaller pieces, approximate
a quantity on each piece, add the contribution from the pieces, and take a
limit as the pieces get smaller and smaller.

Work Along a Curve

Figure 15.4.1

A force F remains constant (in direction and magnitude) and pushes a
particle in a straight line from A to B. The work accomplished by F is defined

as F ·R, where R =
−→
AB:

work = F ·R.

This is the product of the scalar component of F in the direction of R and the
distance the particle moves. (See Figure 15.4.1)

What if F varies and pushes the particle along a curve that is not straight?
(See Figure 15.4.2(a).)

(a) (b)

Figure 15.4.2

Assume the curve, C, is parameterized by r(t) for t in [a, b]. Partition [a, b]

by t0 = a, t1, . . . , tn = b and let r(t0) =
−−→
OP0, r(t1) =

−−→
OP1, . . . , r(tn) =

−−→
OPn,

be the corresponding position vectors. (See Figure 15.4.2(b).) The points P0,
P1, . . . , Pn break the curve into n shorter curves. The work done by F along

C between Pi and Pi+1 is approximately F(Pi) ·∆ri where ∆ri =
−−−−→
PiPi+1. The

total work done by F along C is approximated by

n∑
i=1

F(Pi) ·∆ri.

Taking the limit as the largest |∆ri| approaches 0, we conclude
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work done by F along C is

∫
C

F · dr. (15.4.1)

If F = P i + Qj, where P and Q are functions of x and y and dr = dxi + dyj,
then

Work done by P i + Qj along C is

∫
C

(P dx + Q dy).

Physicists and engineers commonly use (15.4.1) as a starting point when ex-
pressing work.

The vector notation F · dr is far more suggestive than the scalar notation
P dx + Q dy. It says that work is the dot product of force and displacement.
That implies that only the component of the force in the direction of motion
accomplishes work.

EXAMPLE 1 How much work is accomplished by the force F(x, y) = xyi+
yj in pushing a particle from (0, 0) to (3, 9) along the parabola y = x2?
SOLUTION

Figure 15.4.3

Figure 15.4.3 shows the path of the particle. Call it C. Then

Work =

∫
C

F · dr =

∫
C

(xyi + yj) · (dxi + dyj) =

∫
C

(xy dx + y dy).

To evaluate the line integral, we use x as the parameter with x in [0, 3]. Then
y = x2 and dy = 2x dx, so

∫
C

(xy dx + y dy) =

3∫
0

(
x · x2 dx + x2(2x dx)

)
=

3∫
0

3x3 dx =
243

4
.

�

If we write dr as T ds then the work integral becomes
∫

C
F · T ds. This

says “Work is the integral of the tangential component of the force.”
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Circulation of a Fluid

Figure 15.4.4

Draw a closed closed curve C as in Figure 15.4.4 or Figure 15.4.5. In
Figure 15.4.4, C surrounds a whirlpool and there is a tendency for fluid to
flow along C rather than across it. In Figure 15.4.5 most of the fluid flow
is across C rather than parallel to it. The component of F parallel to the
tangent vector determines the tendency of the fluid to flow along C. Because
F · dr represents flow in the direction of dr,

∮
C

F · dr represents the tendency
of the fluid to flow along C. If C is oriented counterclockwise and

∮
C

F · dr is
positive, the flow of F along C would be counterclockwise as well. If

∮
C

F · dr
is negative, the flow would tend to be clockwise.circulation The line integral

∮
C

F · dr is
called the circulation of F along C.

The same integral,
∮

C
F · dr, occurs in the study of work and in the study

of fluids.

Figure 15.4.5

EXAMPLE 2 Find the circulation of the planar flow F(x, y) = xyi + yj
around the closed curve that follows y = x2 from (0, 0) to (3, 9), then horizon-
tally to (0, 9), and straight down to (0, 0).

SOLUTION The closed curve C comes in three parts: C = C1 + C2 + C3

where C1 is y = x2 for 0 ≤ x ≤ 3, −C2 is y = 9, 0 ≤ x ≤ 3, and −C3 is x = 0,
0 ≤ y ≤ 9.

The circulation is∮
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr +

∫
C3

F · dr

=

∫
C1

F · dr−
∫
−C2

F · dr−
∫
−C3

F · dr.

We use −C2 and −C3 because they are easier to parameterize than C2 and C3.
By Example 1,

∫
C1

F · dr = 243
4

. By direct calculation:∫
−C2

F · dr =

3∫
0

〈9x, 9〉 · 〈dx, 0〉 =

3∫
0

9x dx =
81

2

and ∫
−C3

F · dr =

9∫
0

〈0, y〉 · 〈0, dy〉 =

9∫
0

y dy =
81

2
.

The circulation of F around C is
∮

C
F · dr = 243

4
− 81

2
− 81

2
= −81

4
. �

That a negative circulation means this vector field tends to circulate coun-
terclockwise around this curve is hinted at in Exercise 15 and investigated in
more detail in Chapter 18.
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Loss or Gain of a Fluid (Flux)

Draw a closed curve C, fixed in space, on the surface of a moving fluid. In
Figure 15.4.6(a), at what rate is fluid escaping or entering the region R whose
boundary is C?

(a) (b)

Figure 15.4.6

If the fluid tends to escape, then it is thinning out in R, becoming less
dense at some points. If the fluid tends to accumulate, it is becoming denser
at some points. (Think of this ideal fluid as a gas rather than a liquid; gases
can vary in density while liquids tend to have constant density.)

Since the fluid is escaping or entering R only along its boundary, it suffices
to consider the total loss or gain across C. Where v, the fluid velocity, is
tangent to C, fluid neither enters nor leaves. Where v is not tangent to C,
fluid is either entering or leaving across C, as indicated in Figure 15.4.6(a).

The rate at which fluid crosses C depends not only on its velocity but also
on its density, which we denote σ. So the vector field of interest is F = σv.

The vector n is a unit vector perpendicular to C and pointing away from
the region it bounds. It is called the exterior normal or outward normal.

To find the total loss or gain of fluid past C, let us look at a short section
of C, which we will view as a vector dr. How much fluid crosses dr in a short
interval of time ∆t?

During time ∆t the fluid moves a distance |v|∆t across dr. The fluid that
crosses dr during the time ∆t forms approximately the parallelogram shown
in Figure 15.4.6(b).

Its area is the product of its height and its base |dr|. That is,

area of parallelogram = |projn(v∆t)||dr| = (v∆t) · n|dr|.
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Since the density of the fluid is σ,

mass in parallelogram = σ(v∆t) · n|dr| = (σv) · n|dr|∆t = F · n|dr|∆t.

Thus the rate at which fluid crosses dr per unit time is approximately

F · n|dr|∆t

∆t
= F · n|dr|.

Since dr approximates a short piece of the curve, its length |dr| approximates
the arc length ds. Therefore, the rate at which the fluid crosses a short part
of C of length ds is approximately

F · n ds.

Hence the line integral ∮
C

F · n ds

represents the rate of net loss or gain of fluid inside R. If it is positive, fluid
tends to leave R, and the mass of fluid in R decreases. If it is negative, fluid
tends to enter R, and the mass of fluid in R increases.

rate of net loss or gain of fluid inside the region bounded by C is

∮
R

F · n ds.

Flux comes from the Latin
fluxus (flow), from which
we also get influx, reflux

and fluctuate, but, oddly,
not flow, which comes from

the Latin pluere (to rain).

The quantity
∮

C
F · n ds is called the flux of F across C. Contrast this

with
∫

F · T ds, the integral of the tangential component, which describes
circulation and work.

circulation =

∫
C

F ·T ds

flux =

∫
C

F · n ds.
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Flux is the integral of the normal component of F. Circulation is the
integral of the tangential component of F.

EXAMPLE 3 Let F = (2+x)i describe the flow of a fluid in the xy plane.
Does the amount of fluid within the circle C of radius 2 and center (0, 0) tend
to increase or decrease? Before doing any

calculations, what is your
answer?

Figure 15.4.7

SOLUTION Figure 15.4.7 shows the circle and a few of the vectors of F.
Since the flow increases as we move to the right, there appears to be more
fluid leaving the disk than entering it. We expect the flux

∮
C

F · n ds to be
positive. To compute

∮
C

F · n ds, introduce θ as the parameter. Then

x = 2 cos(θ), y = 2 sin(θ) for 0 ≤ θ ≤ 2π.

Since the circle has radius 2, s = 2θ and therefore

ds = 2dθ.

The unit normal is parallel to the radius vector xi + yj. Therefore,

n =
xi + yj

|xi + yj|
=

2 cos(θ)i + 2 sin(θ)j

2
= cos(θ)i + sin(θ)j,

which leads to Evaluate these definite
integrals in your head. Why
are
∫ 2π
0 cos θ dθ = 0 and∫ 2π

0 cos2 θ dθ = π?
flux =

∮
C

F · n ds =

2π∫
0

[(2 + x)i · n]︸ ︷︷ ︸
F·n

2dθ︸︷︷︸
ds

=

2π∫
0

(2 + 2 cos(θ))i · (cos(θ)i + sin(θ)j)2 dθ =

2π∫
0

(4 cos(θ) + 4 cos2(θ))dθ

=

2π∫
0

(4 cos(θ) + 2 + 2 cos(2θ))dθ = (4 sin(θ) + 2θ + sin(2θ))|2π
0 = 4π.
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As expected, the flux is positive since there is a net flow out of the disk. �

The Angle Subtended by a Curve

Our fourth illustration of a line integral concerns the angle subtended at a
point O by a curve C in the plane. We assume that each ray from O meets
C in at most one point. We include this example as background for the solid
angle subtended by a surface, which appears in Chapter 18.

The curve C in Figure 15.4.8(a) subtends an angle θ at the point O. We
will show that θ can be expressed as a line integral. Of course, we do not need
such an integral to find θ, knowing the points A, O, and B is enough. That
θ can be expressed as a line integral. It is this idea that generalizes from a
curve to a surface, where the concept is useful in the theory of gravity and
electromagnetism.

(a) (b) (c)

Figure 15.4.8

In Figure 15.4.8(b). the circle with radius a and center at O has an arc of
length ` intercepted by the angle. The ratio `/a is the radian measure of the
angle.

To express θ in Figure 15.4.8(a) as an integral over C we develop a local
estimate, dθ, of the radians subtended by a part of the curve of length ds, as
shown in Figure 15.4.8(c). OD is a vector, r, of length r, and r̂ is the unit

vector in the direction of r.
_

DF is part of the curve, and
_

DE is part of the
circle. Because they are almost straight, we have

DE ≈ DF cos(r̂,n) = DF
r̂ · n
|̂r||n|

= DF r̂ · n ≈ r̂ · n ds.

Thus

dθ =
DE

r
≈ r̂ · n

r
ds.

From the local estimate we conclude that

April 22, 2012 Calculus



§ 15.4 FOUR APPLICATIONS OF LINE INTEGRALS 1283

angle θ subtended by arc C is

∫
C

r̂ · n
r

ds. (15.4.2)

Therefore, the angle subtended by C is the integral with respect to arc
length of the normal component of the vector function r̂/|r|. That is, it is the
flux of the vector field r̂/r (in the plane).

EXAMPLE 4 Verify (15.4.2) for the angle subtended at the origin by the
line segment that joins (1, 0) and (1, 1).
SOLUTION The subtended angle θ is shown in Figure 15.4.9(a). Obviously
θ = π/4.

(a) (b)

Figure 15.4.9

Let us evaluate the integral in (15.4.2) . Figure 15.4.9(b) shows that n = i
and r = i + yj. Using s = y,

θ =

∫
C

n · r̂
|r|

ds =

∫
C

i ·
(

i+yj√
1+y2

)
√

1 + y2
ds =

∫
C

1

1 + y2
ds

=

1∫
0

1

1 + y2
dy = tan−1(y)

∣∣1
0

=
π

4
.

This agrees with our observation. �
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Summary

The basic concepts introduced in this section are summarized in the following table.

Application Work Circulation Flux Angle Subtended

Integral

∫
C

F ·T ds =

∫
C

F · dr
∮
C

F ·T ds

∫
C

F · n ds

∫
C

r̂ · n
r

ds

Description integral of tangen-
tial component of
force F along C

integral of tangential
component of flow F
around closed curve
C

integral of nor-
mal component
of flow F along
curve C

integral of nor-
mal component
of r̂/r along C

When the vector field F is in the xy-plane, F = P i + Qj, the integral of
the tangential component of F along C is

∫
C

F ·T ds =
∫

C
(P dx + Q dy) and

the integral of the normal component of F along C is
∫

C
F · n ds.
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EXERCISES for Section 15.4
In Exercises 1 to 4 decide whether the work accomplished by the vector field in

moving a particle along the curve from A to B is positive, negative, or zero.
1. Figure 15.4.10(a)

2. Figure 15.4.10(b)

3. Figure 15.4.10(c)

4. Figure 15.4.10(d)

(a) (b) (c) (d)

Figure 15.4.10
In Exercises 5 to 8 decide whether fluid is tending to leave, or enter or neither.
5. Figure 15.4.11(a)

6. Figure 15.4.11(b)

7. Figure 15.4.11(c)

8. Figure 15.4.11(d)

(a) (b) (c) (d)

Figure 15.4.11
In Exercises 9 to 12 compute the work accomplished by the force F = x2yi + yj
along the curve.
9. From (0, 0) to (2, 4) along the parabola y = x2.

10. From (0, 0) to (2, 4) along the line y = 2x.

11. From (0, 0) to (2, 4) along the path in Figure 15.4.12(a).

12. From (0, 0) to (2, 4) along the path in Figure 15.4.12(b).
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(a) (b)

Figure 15.4.12
13. Verify (15.4.2) for the angle subtended at the origin by the line segment that
joins (2, 0) to (2, 3).

14. Verify (15.4.2) for the angle subtended at the origin by the line segment that
joins (1, 0) to (0, 1).

15. Let F = xyi + yj and C be the closed curve along y = x2 from (0, 0) to (3, 9),
then horizontally to (0, 9), and straight down to (0, 0).

(a) Draw F at a few points on each part of C.

(b) Use (a) to determine if the flow of F along C is clockwise or counterclockwise.

(c) Does this agree with the result in Example 2?

16. Find the work done by the force −3j in moving a particle from (0, 3) to (3, 0)
along

(a) The circle of radius 3 with center at the origin.

(b) The straight path from (0, 3) to (3, 0).

(c) The answers to (a) and (b) are the same. Will they by the same for all curves
from (0, 3) to (3, 0)?

17. Figure 15.4.13(a) shows some vectors for the vector field F and curve C. Use
them to estimate
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(a) the circulation of F along the boundary curve C.

(b) the flux of F across C.

(Since you have no formula for F, there is a range of correct answers.)

(a) (b)

Figure 15.4.13
18. Repeat Exercise 17 for the vector field represented in Figure 15.4.13(b).

19. The gravitational force F of Earth, which is located at the origin (0, 0) of a
rectangular coordinate system, on a particle at (x, y) is

−xi

(
√

x2 + y2)3
+

−yj

(
√

x2 + y2)3
=
−r
|r|3

=
−r̂
r2

.

where r̂ = r/|r|. Compute the total work done by F if the particles goes from (2, 0)
to (0, 1) along

(a) the portion of the ellipse x = 2 cos(t), y = sin(t) in the first quadrant;

(b) the line parameterized as x = 2− 2t, y = t.

20.

(a) Let W (b) be the work done by the force in Exercise 19 in moving a particle
along the straight line from (1, 0) to (b, 0).

(b) What is limb→∞ W (b)?

21. Let the vector field describing a fluid flow have the value (x + 1)2i + yj at
the point (x, y). Let C be the unit circle with parametric equations x = cos(t),
y = sin(t), for t in [0, 2π].
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(a) Draw F at eight equally spaced points on the circle.

(b) Is fluid tending to leave or enter the region bounded by C. That is, is the net
outward flow positive or negative? (Answer on the basis of your diagram).)

(c) Compute the net outward flow using a line integral.

22. Repeat Exercise 21 where F(x, y) = (2 − x)i + yj and C is the square with
vertices (0, 0), (1, 0), (1, 1), and (0, 1).

23. Let F(x, y) = σv be fluid flow, and let C be a closed curve in the xy-plane. If∮
C F · dr is positive and C is counterclockwise, does the motion along C tend to be

clockwise or counterclockwise?

24. Let F(x, y) = σv be fluid flow, and let C be a closed curve in the xy-plane. If∮
C F · n ds is positive, is fluid tending to leave the region bounded by C or to enter

it?

25. Let C be a closed convex curve that encloses the point O. Let r be the
position vector

−−→
OP for points P on the curve. Determine the value of

∮
C(r̂ ·n)/r ds

where n is the outward unit normal to C.

26. Write in your own words and diagrams why
∫
C F ·dr represents the work done

by force F along the curve C.

27. Write in your own words and diagrams why
∫
C F ·n ds represents the net loss

of fluid across C if F is the fluid flow and n is a unit external normal to C. Include
the definition of F.

28. Explain why
∫
C F · dr represents the tendency of a fluid to move along C, if

F is the fluid flow.

29. Explain why
∫
C(r̂ · n)/r ds represents the angle subtended by a curve C at

the origin. Assume that each ray from the origin meets C at most once.

30. Let C be a curve in space and C∗ its projection on the xy plane. Assume
that distinct points of C project onto distinct points of C∗. The line integral

∫
C 1 ds

equals the arc length of C. What integral over C equals the arc length of C∗?

31. Sam, Jane, and Sarah are debating a delicate issue.
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Sam: Let C be the circle in the xy-plane whose polar equation is r = 2 cos(θ). It is
a unit circle that passes through the origin O. Let F be the field r̂/r. What
is the flux of F across C?

Jane: The field blows up at O, so the flux is an improper integral.

Sam: Yes, but if I move C rigidly just a tiny bit so O is inside it, the flux is 2π. So
I say the flux across C is 2π.

Sarah: I say it’s π. Just draw a figure 8 made of two copies of C joined smoothly
to form one curve, as in Figure 15.4.14(a).

(a) (b)

Figure 15.4.14

The flux across the curve is 2π. Each half must have flux π. Since each half
looks like C, the flux across C must be π.

Settle the issue by

(a) Evaluating the integral
∮
C F ·n ds by the Fundamental Theorem of Calculus.

(b) Considering the flux across the curve C∗ obtained from C by replacing the
small part of C near O by a semicircle C, as in Figure 15.4.14(b).

(c) By considering the angle the curve C subtends at O.

32. Let F(P ) = σ(P )v(P ) represent the flow of a fluid. Let C be a closed curve
that bounds the region R. Let Q(t) be the total mass of the fluid in R at time t.
Express dQ/dt in terms of a line integral.

33. Let C be a convex curve in the xy-plane and O a point in the xy-plane outside
of C. Let r =

−−→
OP . For P on C, show that

∫
C

br·n
r ds = 0. (Think about when r · n

is negative and when it is positive.)

34. Let a, b and c be positive constants. Verify each antiderivative formula by
showing that the derivative of the right-hand side of the equation is the integrand
on the left-hand side.
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(a)
∫

x

ax2 + c
dx =

1
2a

ln
(
ax2 + c

)
(b)

∫
x
√

ax + b dx =
2(3ax− 2b)

15a2

√
(ax + b)3

(c)
∫

cos3(ax) dx =
1
a

sin(ax)− 1
3a

sin3(ax)

(d)
∫

tan2(ax) dx =
1
a

tan(ax)− x

(e)
∫

x cos(ax) dx =
1
a2

cos(ax) +
x

a
sin(ax)

(f)
∫

arctan(ax) dx = x arctan(ax)− 1
2a

ln(1 + a2x2)
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15.S Chapter Summary

This chapter concerned the derivatives of vector functions and integrals over
curves.

Let r(t) = 〈x(t), y(t), z(t)〉 be the position vector from the origin to a point
on a curve. We defined its derivative, r′(t), in terms of the derivatives of its
components. We could just as well define it as

r′(t) = lim
∆t→0

r(t + ∆t)− r(t)

∆t
= lim

∆t→0

∆r

∆t
. (15.S.1)

Figure 15.S.1

This definition reveals the underlying geometry, as Figure 15.S.1 shows. For
small ∆t, the direction of ∆r is almost along the tangent. The length of ∆r
is almost the same as the scalar length ∆s along the curve. Thus, ∆r/∆t
is a vector pointing almost in the direction of motion and with a magnitude
approximating the instantaneous speed.

The limit in (15.S.1) is called the derivative of the function r(t). If we think
of t as time, then r′ is called the velocity vector, denoted v. The derivative of
v is the acceleration vector: v′ = a.

The vector T = r′/|r′| is a unit tangent vector. The magnitude of its
derivative with respect to arc length, s, is the curvature of the path, κ, as
suggested by Figure 15.S.2. Though the curve may not lie in a plane, the
figure resembles Figure 15.2.6 in Section 15.2.

(a) (b)

Figure 15.S.2
It was shown that curvature equals |v × a|/|v|3.
The vector dT/ds is perpendicular to T. (Why?) The unit vector N =

dT/ds
|dT/ds| is called the principal normal to the curve at the given point. The
vector T ×N = B is the third unit vector forming a frame that moves along
the curve, with T and N indicating the plane in which the curve locally almost
lies.
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The acceleration vector a, even for space curves, can be expressed relative
to T and N (B is not involved):

a =
d2s

dt2
T +

v2

r
N

where r = 1/κ is the radius of curvature. The second coefficient shows that
the force needed to keep the particle in the path is proportional to the square
of the velocity and inversely proportional to the radius of curvature.

This chapter then introduced four integrals involving a curve C:∫
C

f(P ) ds,

∫
C

f(P ) dx,

∫
C

f(P ) dy, and

∫
C

f(P ) dz,

whose definitions resemble those in Chapter 6 for definite integrals. In the last
three the orientation of the curve matters: switching the direction in which
the curve is swept out changes the sign of dx, dy, and dz, and thus that of the
integral.

For a closed curve taken counterclockwise
∮

C
y dx is the negative of the

area enclosed by the curve. (Why?) On the other hand,
∫

C
x dy taken coun-

terclockwise is the area enclosed.
The most general integral considered was∫

C

(P (x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz) .

whose integrand is called a differential form. For F = 〈P, Q, R〉, it can be
written as

∫
C

F · dr. However, in proofs or computations we often need the
differential form.

If
∫

C
F ·dr depends only on the ends of C, F is called a conservative vector

field, which will be important in Chapter 18.
Line integrals were applied to work, circulation, flux, and the angle sub-

tended by a curve (the last in preparation for the solid angle subtended by a
surface).

EXERCISES for 15.S

In Exercises 1 to 6, evaluate
∫
C F · dr for the vector field F and curve C.

1. F(x, y) = 2x i and C is a semicircle, r(θ) = 3 cos θ i + 3 sin θ j, 0 ≤ θ ≤ π.

2. F(x, y) = x2 i+2xy j and C is a line segment, r(t) = 2t2 i+3t2 j, 1 ≤ t ≤ 2.

3. F(x, y, z) = x i + y j + z k and C is a helix, r(t) = cos(t) i + sin(t) j + 3t k,
0 ≤ t ≤ 4π.

4. F(x, y, z) = x2 i+xy j+3 k and C is a line segment, r(t) = 2t i+(3t+1) j+t k,
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1 ≤ t ≤ 2.
5. F(r) = r̂/|r|2 and C is a line, r(t) = 2t i + 3t j + 4t k, 1 ≤ t ≤ 2.
6. F(r) = r and C is the circle r(t) = cos(θ) i + sin(θ) j + 2 k, 0 ≤ θ ≤ 2π.

7. Figure 15.S.3(a) shows T and N for a point P on a curve C. The curve is not
shown. Sketch what a short part of C may look like.

(a) (b)

Figure 15.S.3
8.

(a) Express the area under the hyperbola x2 − y2 = 1 and above the interval
[1, cosh(t)] as a line integral.

(b) Evaluate it).

(c) What is the area of the shaded region in Figure 15.S.3(b)?

(See also Exercises 64 in Section 6.5 and 77 in Section 8.6.)

The CIE at the end of Chapter 3 developed the reflection properties of parabolas
and ellipses. Exercises 9 and 10 show how vectors provide a shorter way to obtain
them.
9. A parabola consists of the points P equidistant from a point F and a line L,
as in Figure 15.S.4.
Let O be a point on L and let u be a unit vector perpendicular to L aimed toward
P . Let r =

−−→
OP and F =

−−→
OF . We assume the curve is parameterized so that there

is a well-defined tangent vector, r′.

(a) Show that |r− F| = r · u.

(b) From (a) deduce that
r− F
|r− F|

· r′ = r′ · u.
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Figure 15.S.4

(c) From (b) deduce that

|r′| cos(r′, r− F) = |r| cos(r′,u).

(Let s is a vector function. To differentiate |s|, start with s · s = ‖s‖2.)

(d) From (c) deduce the reflection principle of a parabola.

This proof, which starts with the geometric definition of a parabola rather than
the equation y = x2, appears in Harley Flanders’, “The Optical Properties of the
Conics,” American Mathematical Monthly, 1968, p. 399.

10. This exercise develops the reflection property of an ellipse. Start with its
geometric definition as the locus of points such that the sum of whose distances
from two fixed points is constant. Let p and q be the position vectors of the fixed
points and r the position vector for a point P on the ellipse, which is parameterized
so we may speak of r′, a tangent vector.

(a) Differentiate both sides of |r− p|+ |r− q| = c, a constant.

(b) Let u1 be the unit vector in the direction of r− p and u2 be the unit vector
in the direction of r− q. Show that u1 · r′ + u2 · r′ = 0.

(c) Show that u1 + u2 is normal to the curve at P .

(d) Show that u1 and u2 make equal angles with u1 + u2.

(e) From (d) deduce the reflection property of an ellipse.

In Exercises 11 to 13, a(t) is the acceleration vector at time t for a particle and
r(t0) and a(t0) are the particle’s position and acceleration at time t = t0. Find the
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velocity and position vectors, v(t) and r(t), of the particle at time t.
11. a(t) = 108t (ln(t))2 i+ln(1+t2)j+t arctan(t)k, r(1) = 19i−j+((π−ln(2))/6−
2)k, and v(1) = 27i− 2j + 1

4(π − 2)k

12. a(t) =
tan(t) + sin(t)

sec(t)
i +

t4

t2 + 4
j +

2t− 4
t2 + 2t + 1

k, r(0) = 1
4 i + j − 8k, and

v(0) = −3
2 i + 4j + 6k

13. a(t) = (t2 + 4t + 5)−1i + t2 cos(t)j +
1

t2 + 4
k, r(0) = 6j, and v(0) = arctan(2)i

14.

Sam: Remember when they defined curvature back in Section 9.6? They used an
angle φ and then the curvature was defined as the limit of ∆φ/∆s.

Jane: Yes.

Sam: Then in this chapter they said that definition will not work for space curves
because there is no angle φ.

Jane: Right.

Sam: Well, I don’t need an angle φ. Watch how I define curvature for a space
curve.

Jane: I can’t wait.

Sam: I take a nearby point a distance ∆s from the point of interest. The angle
between the tangent at the nearby point and the point of interest is small
when ∆s is. I call it A. Then I define the curvature as the limit of A/∆s as
∆s goes to 0. In short, I use the same definition as in Chapter 9.

Jane: It looks reasonable, but does it give the same curvature as the book gets?

Does it? If so, why did the book’s authors not use Sam’s approach?
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Calculus is Everywhere # 19

The Suspension Bridge and the Hanging Cable

In a suspension bridge the roadway hangs from a cable, as shown in Fig-
ure C.19.1.

Figure C.19.1

We will use calculus to find the shape of the cable. We assume
that the weight of a section of the roadway is proportional to its length. That
is, there is a constant k such that x feet of the roadway weighs kx pounds. We
will assume that the cable is weightless. That is justified for it weighs little in
comparison to the roadway.

We introduce an xy-coordinate system with origin at the lowest point of
the cable, and consider the section of the cable, that goes from (0, 0) to (x, y),
as shown in Figure C.19.2(a). Three forces act on it. The force at (0, 0) is

(a) (b)

Figure C.19.2

horizontal and pulls the cable to the left. Call its magnitude T . Gravity pulls
the cable down with a force whose magnitude is kx, the weight of the roadway
beneath it. At the top of the section, at (x, y), the cable above it pulls to the
right and upward along the tangent line to the cable.

The section does not move. The horizontal part of the force at (x, y) must
have magnitude T and the vertical part of the force has magnitude kx, as
shown in Figure C.19.2(b).

Since the force at the point (x, y) is directed along the tangent line there,
we have

dy

dx
=

kx

T
.

Therefore

y =
kx2

T
+ C
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for some constant C. Since (0, 0) is on the curve, C = 0, and the cable has
the equation

y =
kx2

T
.

The cable forms a parabola.
What if we have the cable but no roadway? That is also the case for

a laundry line, or a telephone wire, or a hanging chain. In these cases the
downward force is due to the weight of the cable. If s feet of cable weighs ks
pounds, reasoning similar to that for the suspension bridge leads to

dy

dx
=

ks

T
.

Since

s =

x∫
0

√
1 +

(
dy

dx

)2

dx

we have

dy

dx
=

k

T

x∫
0

√
1 +

(
dy

dx

)2

dx. (C.19.1)

If we differentiate both sides of (C.19.1), and use the second part of the Fun-
damental Theorem of Calculus, we get

d2y

dx2
=

k

T

√
1 +

(
dy

dx

)2

. (C.19.2)

It can be shown that

y =
k

T

(
e

kx
T + e

−kx
T

)
− 2

k

T
.

The curve is called a catenary, after the Latin catena, meaning chain. It
may look like a parabola, but it is not. The 630-foot tall Gateway Arch in St.
Louis, completed October 28, 1965, is a famous catenary.

EXERCISES

1. The reasoning of the bicyclist is expressed in the language of calculus. Express
the assumptions informally, in everyday language, and show that midway between
the two rows is the safest place to ride. Your reasoning should persuade someone
who knows no mathematics.

2. Check that the solution to

d2y

dx2
=

k

T

√
1 +

(
dy

dx

)2
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that passes through (0, 0) is

y =
k

T

(
e

kx
T + e

−kx
T

)
− 2

k

T
. (C.19.3)
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Calculus is Everywhere # 20

The Path of the Rear Wheel of a Scooter

When the front wheel of a scooter follows a certain path, what is the path
of its rear wheel? This question could be asked for a bicycle or car, but the
scooter is more convenient for carrying out experiments.

The tractrix problem is the special case when the front wheel moves in
a straight line. (See Exercise 62 in the Section 8.5.) Now, using vectors, we
will look at the case when the front wheel sweeps out a circular path.

The Basic Equation

/
 

D 

o 

Figure C.20.1

Figure C.20.1 shows the geometry at any instant. Let s denote the arc
length of the path swept out by the rear wheel as measured from its starting
point. Let a be the length of the wheel base, that is, the distance between the
front and rear axles. The vector r(s) gives the position of the rear wheel and
f(s) gives the position of the front wheel. Because the rear wheel is parallel
to f(s) − r(s), the unit vector r′(s) points directly toward the front wheel or
directly away from it.

Thus

f(s) = r(s) + ar′(s)

or

f(s) = r(s)− ar′(s).

In short, we will write f(s) = r(s)± ar′(s).
Assume that the front wheel is moving, say, counterclockwise and tracing

out a circular path with center O and radius c. Because

f(s) · f(s) = c2

we have

(r(s)± ar′(s)) · (r(s)± ar′(s)) = c2.

By distributivity of the dot product,

r(s) · r(s) + a2r′(s) · r′(s)± 2ar(s) · r′(s) = c2. (C.20.1)

Letting r(s) = |r(s)|, we may rewrite (C.20.1) as

(r(s))2 + a2 ± 2ar(s) · r′(s) = c2. (C.20.2)
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Differentiate r(s) · r(s) = r(s)2 to obtain r(s) · r′(s) = r(s)r′(s), which changes
(C.20.1) to an equation involving the scalar function r(s). If we write r(s) as
r and r′(s) as r′ we get

r2 + a2 ± 2arr′ = c2. (C.20.3)

This is the equation we will use to analyze the path of the rear wheel of a
scooter.

The Direction of r′

We first find when r′ points towards the front wheel and when it points away
from the front wheel.

The movement of the back wheel is determined by the projection of f ′ on
the line of the scooter, which is the same as r′.

Thus, when the angle θ between the front wheel and the line of the scooter
is obtuse, as in Figure C.20.2(a), r′ points towards the front wheel. When θ is
acute, the scooter backs up and r′ points away from the front wheel, as shown
in Figure C.20.2(b).

Figure C.20.3

/
 

D 

o 
(a)

/
 

D 

o 

(b)

Figure C.20.2 The direction of r′ depends on the angle θ between the front
wheel and the line of the scooter. (a) θ is obtuse, (b) θ is acute.

When the direction of r′ shifts from pointing towards the front wheel to
pointing away from it, the path of the rear wheel also changes, as shown in
Figure C.20.3.

The path of the rear wheel is continuous but the unit tangent vector r′ is
not defined where its direction suddenly shifts. The path is said to contain a
cusp and the point at which r′(s) shifts direction by the angle π is the vertex
of the cusp.
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The Path of the Rear Wheel for a Short Scooter

Assume the wheelbase a is less than the radius of the circle c, θ is obtuse, and
r2 is less than c2 − a2. Thus, c2 − a2 − r2 is positive. (Exercise 5 shows the
significance of c2 − a2.)

We write c2 = a2 + r2 + 2rr′a in the form

−2rr′

c2 − a2 − r2
=
−1

a
. (C.20.4)

Integration of both sides of (C.20.4) with respect to arc length s shows that
there is a constant k such that

ln(c2 − a2 − r2) =
−s

a
+ k,

so
c2 − a2 − r2 = eke−s/a. (C.20.5)

Equation (C.20.5) tells us that r2 increases but remains less than c2− a2, and
approaches c2 − a2 as s increases. Thus the rear wheel traces a spiral path
that gets arbitrarily close to the circle of radius

√
c2 − a2 and center O, as in

Figure C.20.4.

The Path of the Rear Wheel for a Long Scooter

Assume that the wheelbase is longer than the radius of the circle on which the
front wheel moves, that is, a > c. Assume that initially the scooter is moving
forward, so we again have

c2 = a2 + r2 + 2rr′a. (C.20.6)

The initial position is indicated in Figure C.20.5(a).
Now c2 − a2 − r2 is negative, and we have

2rr′

a2 + r2 − c2
=
−1

a
,

where the denominator on the left-hand side is positive. Thus there is a con-
stant k such that

a2 + r2 − c2 = eke−s/a. (C.20.7)

As s gets arbitrarily large, (C.20.7) implies that r2 approaches c2 − a2. But,
c2−a2 is negative, so this cannot happen. Our assumption that (C.20.6) holds
for all s must be wrong. There must be a cusp and the equation switches to

c2 = a2 + r2 − 2arr′.
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(a) (b) (c)

(d) (e) (f)

Figure C.20.4 The path of the rear wheel of a scooter with length a = 1,
whose front wheel moves counterclockwise around the circle with radius c = 2
from the point (2, 0) with the line of the scooter at an angle θ = −3π/4 with
the front wheel. The snapshots are taken when (a) s = 0, (b) s = 1.25,
(c) s = 2.50, (d) s = 5.0, (e) s = 10.0, and (f) s = 15.0. Because this
is a short scooter (a < c), the rear wheel approaches the circle with radius
r =
√

c2 − a2 =
√

3. (Recall that s is the arclength of the rear wheel’s path.)
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(a) (b) (c)

(d) (e) (f)

Figure C.20.5 The path of the rear wheel of a scooter with length a = 4,
whose front wheel moves counterclockwise around the circle with radius c = 2
from the point (2, 0) with the line of the scooter at an angle θ = π with the
front wheel. The snapshots are taken when (a) s = 0, (b) s = 3, (c) s = 9, (d)
s = 18, (e) s = 36, and (f) s = 72. Because the scooter is long (a > c), the
rear wheel travels along a path that has cusps when r = c + a and r = |c− a|.
(s is the arclength of the rear wheel’s path.)
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This leads to
a2 + r2 − c2 = ekes/a,

which implies that as s increases r becomes arbitrarily large. However, r can
never exceed c + a. So, another cusp must form.

It can be shown that the cusps occur when r = a− c (assuming a > c) and
r = a + c. At the vertex of a cusp, r′ is not defined; it changes direction by π.

Figure C.20.5(b) shows the shape of the path of the rear wheel for a long
scooter, a > c. (For a > 2c, that path remains outside the circle.)

EXERCISES

1. When a bus or car (or scooter) turns a corner why does a rear tire sometimes
go over the curb even though a front tire does not?

2. It is a belief among many bicyclists that the rear tire of a bicycle wears out
more slowly than the front tire. Decide whether the belief is justified. (Assume both
tires support the same weight.)

3.

(a) Is dr
ds a unit vector?

(b) Is df
ds a unit vector?

4. When the front wheel is held at a fixed angle θ, 0 < θ < π/2, to the body of
the scooter both wheels travel on circular paths.
Express the radii of these paths in terms of θ and a, the wheel base of the scooter.
No calculus is required.

5.

(a) Assume a and c are positive with c > a and that the front wheel moves on a
circle of radius c. Show that when the front wheel moves along a circle of radius
c the rear wheel could remain on a concentric circle of radius b =

√
c2 − a2.

(b) Draw the triangle whose sides are a, b, and c and explain why the result in
(a) is plausible.

6. We assumed for a short scooter that initially r2 < c2 − a2. Examine the case
in which initially r2 > c2−a2. Assume that initially the scooter is not backing up.
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7. We assumed in the case of the short scooter that initially r2 < c2 − a2 and
that the scooter is not backing up. Investigate what happens when we assume that
initially r2 < c2 − a2 and the scooter is backing up.

(a) Draw such an initial position.

(b) Predict what will happen.

(c) Carry out the mathematics.

8. Show that if the path of the front wheel of a scooter is a circle and a cusp forms
in the path of the rear wheel, the scooter at that moment lies on a line through the
center of the circle.

9. For a long scooter, a > c, do cusps always form, whatever the initial value of r
and θ?

10. Extend the analysis of the scooter to the case when a = c.

11. Assume that the path of the front wheel is a straight line. For convenience,
choose that line as the x-axis. The path of the rear wheel is called a tractrix. This
case appeared in Section 8.6, Exercise 62.
Write r(s) as x(s)i + y(s)j.

(a) Show that y(s) + y′(s)a = 0.

(b) Deduce that there is a constant k such that y(s) = ke−s/a. Thus the dis-
tance from the rear wheel to the x-axis decays exponentially as a function of
arclength.

12. Show that
y(s) = ke−s/a,

where s is arc length, satisfies (
dy

dx

)2

=
y2

a2 − y2
.

(Differentiate both sides of the equation with respect to x.)

13.

Sam: I can use the scooter to show 1 = 0.
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Jane: Remarkable.

Sam: If I hold the front wheel perpendicular to the scooter base then f ′ · r = 0.

Jane: That makes sense.

Sam: But

f ′ · r′ = (r′ + r′′a) · r′ = 1 + ar′ · r′′

= 1 +
a

2
d(r′ · r′′)

ds
= 1 +

a

2
d(1)
ds

= 1 + 0 = 1.

Jane: So?

Sam: So 1 = 0.

Jane: Something must be wrong. Is something wrong? If so, fix it.
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Calculus is Everywhere # 21

How to Find Planets around Stars

Astronomers have discovered that stars other than the sun have planets circling
them. How do they do this,since the planets are too small to be seen? They
combine some vector calculus with observations of the star.

Suppose there is a star S and a planet P in orbit around it. To describe the
situation, we are tempted to choose a coordinate system attached to the star.
In that case the star would appear motionless, hence having no acceleration.
However, the planet exerts a gravitational force F on the star and the equation
force = mass× acceleration would be violated. We get around this obstacle as
follows.

Figure C.21.1

Let X be the position vector of the planet P and Y be the position vector
of the star S, relative to our standard coordinates, called an inertial system.
We will introduce a second inertial system later.

Let M be the mass of the sun and m the mass of planet P . Let r = X−Y
be the vector from the star to the planet, as shown in Figure C.21.1.

The gravitational pull of the star on the planet is proportional to the prod-
uct of their masses and the reciprocal of the square of the distance between
them:

F =
−GmM r̂

r2
=
−GmMr

r3
.

where G is a constant. Equating the force with mass times acceleration, we
have

mX′′ =
−GmMr

r3
.

Thus

X′′ =
−GMr

r3
.

By calculating the force that the planet exerts on the star, we have

Y′′ =
Gmr

r3
.

Figure C.21.2

The center of gravity of the system consisting of the planet and the star,
which we will denote C (see Figure C.21.2), is given by

C =
MY + mX

M + m
.

The center of gravity is closer to the star than to the planet. For our sun and
Earth, the center of gravity is 300 miles from the center of the sun.

Calculus April 22, 2012



1308 CHAPTER 15 DERIVATIVES AND INTEGRALS OF VECTOR FUNCTIONS

The acceleration of the center of gravity is

C′′ =
MY′′ + mX′′

M + m
=

1

M + m

(
M

(
Gmr

r3

)
+ m

(
−GMr

r3

))
= 0.

Because the center of gravity has no acceleration, va = 0, it is moving at a
constant velocity relative to the coordinate system. Therefore a coordinate
system rigidly attached to the center of gravity may also serve as a system in
which the laws of physics still hold.

Figure C.21.3

We now describe the position of the star and planet in the new coordinate
system. Star S has the vector y from C to it. The vector from S to P is
r = X−Y, as shown in Figure C.21.3.

To obtain a relation between x and y, we express them in terms of r. We
have

y = Y −
−→
OC = Y − MY + mX

M + m
=

m

M + m
Y − m

M + m
X.

Letting k = m/M , a small quantity, we have

y =
k

1 + k
(Y −X) =

−k

1 + k
r. (C.21.1)

Since r = x− y, it follows that x = r + y, hence

x = r +

(
−k

1 + k

)
r =

1

1 + k
r. (C.21.2)

Combining (C.21.1) and (C.21.2) shows thatSHERMAN: This box needs
a title. Can you help?

y = −kx. (C.21.3)

This tells us

1. The star and planet remain on opposite sides of C on a straight line
through C.

2. The star is always closer to C than the planet is.

3. The orbit of the star is similar in shape to the orbit of the planet, but
smaller and reflected through C.

4. If the orbit of the star is periodic so is the orbit of the planet, with the
same period.
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Equation (C.21.3) is the key to the discovery of planets around stars. The
astronomers look for a star that wobbles, which is the sign that it is in orbit
around the center of gravity. The time it takes for the planet to orbit the star
is the time it takes for the star to oscillate back and forth once.

The reference cited below shows that the star and the planet sweep out
elliptical orbits in the second coordinate system (the one relative to C).

Astronomers have found hundreds of stars with planets, some with several
planets. A registry of these exoplanets is maintained at http://exoplanets.
org/.

Reference: Robert Osserman, Kepler’s Laws, Newton’s Laws, and the
search for new planets, American Mathematics Monthly 108 (2001), pp. 813–
820.

EXERCISES

1. The mass of the sun is about 330,000 times that of Earth. The closest Earth
gets to the sun is about 91,341,000 miles, and the farthest is about 94,448,000 miles.
What is the closest the center of the sun gets to the center of gravity of the sun-
Earth system? What is the farthest it gets from it? (It always lies within the sun.)

2. The mass of Earth is 1/330, 000 the mass of the sun. What would its mass
have to be so that the center of gravity of the sun-Earth system would lie outside
the sun? (The diameter of the sun is about 870, 000 miles.)

3. Find the conditions that must be satisfied by a planet if the center of grav-
ity of a sun-planet system lies outside the sun. (The diameter of the sun is about
870,000 miles.)
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Calculus is Everywhere # 22

Newton’s Law Implies Kepler’s Three Laws

After hundreds of pages of computation based on observations by the as-
tronomer Tycho Brahe (1546—1601) in the last thirty years of the sixteenth
century, plus lengthy detours and lucky guesses, Kepler (1571–1630) arrived
at his three laws of planetary motion:

Kepler’s Three Laws

1. Every planet travels around the sun in an elliptical orbit such that the
sun is situated at one focus (discovered in 1605, published in 1609).

2. The velocity of a planet varies so that the line joining the planet to the
sun sweeps out equal areas in equal times (discovered 1602, published
1609).

3. The square of the time required by a planet for one revolution around
the sun is proportional to the cube of its mean distance from the sun
(discovered 1618, published 1619).

The work of Kepler shattered the crystal spheres that for 2,000 years had
been thought to carry the planets. Before Kepler astronomers used only circu-
lar motion and motion composed of circular motions. Copernicus (1473–1543)
used five circles to describe the motion of Mars.

Ellipses were not welcomed. In 1605 Kepler complained to a skeptical
astronomer:

You have disparaged my oval orbit . . . . If you are enraged because I
cannot take away oval flight how much more you should be enraged
by the motions assigned by the ancients, which I did take away . . . .
You disdain my oval, a single cart of dung, while you endure the
whole stable. (If indeed my oval is a cart of dung.)

The astronomical tables that Kepler based on his Laws, published in 1627,
proved to be more accurate than any others, and ellipses gradually gained
acceptance.

The three laws stood as mysteries alongside a related question: If there
are no crystal spheres, what propels the planets? Bullialdus (1605–1694), a
French astronomer and mathematician, suggested in 1645:
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The inverse square law was
conjectured.

The force with which the sun seizes or pulls the planets, a physical
force which serves as hands for it, is sent out in straight lines into all
the world’s space . . . ; since it is physical it is decreased in greater
space; . . . the ratio of this distance is the same as that for light,
namely as the reciprocal of the square of the distance.

In 1666, Hooke (1635–1703), more of an experimental scientist than a math-
ematician, wondered:

why the planets should move about the sun . . . being not included
in any solid orbs . . . nor tied to it . . . by any visible strings . . . . I
cannot imagine any other likely cause besides these two: The first
may be from an unequal density of the medium . . . ; if we suppose
that part of the medium, which is farthest from the centre, or sun,
to be more dense outward, than that which is more near, it will
follow, that the direct motion will be always deflected inwards, by
the easier yielding of the inwards . . . .

But the second cause of inflecting a direct motion into a curve may
be from an attractive property of the body placed in the center;
whereby it continually endeavours to attract or draw it to itself.
For if such a principle be supposed all the phenomena of the planets
seem possible to be explained by the common principle of mechanic
motions. . . . By this hypothesis, the phenomena of the comets as
well as of the planets may be solved.

In 1675, Hooke, in an announcement to the Royal Society, went further:

All celestial bodies have an attraction towards their own centres,
whereby they attract not only their own parts but also other ce-
lestial bodies that are within the sphere of their activity . . . . All
bodies that are put into direct simple motion will so continue to
move forward in a single line till they are, by some other effectual
powers, deflected and bent into a motion describing a circle, ellipse,
or some other more compound curve . . . . These attractive pow-
ers are much more powerful in operating by how much the nearer
the body wrought upon is to their own centers . . . . It is a notion
which if fully prosecuted as it ought to be, will mightily assist the
astronomer to reduce all the celestial motions to a certain rule . . . .

Hooke pressed Newton to
work on the problem.

Trying to interest Newton in the question, Hooke wrote on November 24,
1679: “I shall take it as a great favor if . . . you will let me know your thoughts
of that of compounding the celestial motion of planets of a direct motion by
the tangent and an attractive motion toward the central body.” But four days
later Newton replied:
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My affection to philosophy [science] being worn out, so that I am
almost as little concerned about it as one tradesman used to be
about another man’s trade or a countryman about learning. I
must acknowledge myself averse from spending that time in writing
about it which I think I can spend otherwise more to my own
content and the good of others . . . .

In a letter to Newton on January 17, 1680, Hooke returned to the problem
of planetary motion:

It now remains to know the properties of a curved line (not circular
. . . ) made by a central attractive power which makes the velocities
of descent from the tangent line or equal straight motion at all
distances in a duplicate proportion to the distances reciprocally
taken. I doubt not that by your excellent method you will easily
find out what that curve must be, and its properties, and suggest
a physical reason for this proportion.

Hooke succeeded in drawing Newton back to science, as Newton admitted
in his Philosophiae Naturalis Principia, usually referred to as the Principia,
published in 1687: “I am beholden to him only for the diversion he gave me
from the other studies to think on these things and for his dogmaticalness in
writing as if he had found the motion in the ellipse, which inclined me to try
it.”

It seems that Newton then obtained a proof, perhaps containing a mistake
(the history is not clear), that if the motion is elliptical, the force varies as
the inverse square. In 1684, at the request of the astronomer Halley, Newton
provided a correct proof.Halley, of Halley’s comet,

paid for publication of the
Principia.

With Halley’s encouragement, Newton spent the
next year and a half writing the Principia.

In the Principia, which develops the science of mechanics and applies it to
celestial motions, Newton began with two laws:

1. Every body continues in its state of rest, or of uniform motion in a
straight line, unless it is compelled to change this state by forces im-
pressed upon it.

2. The change of momentum is proportional to the motive force impressed,
and is made in the direction of the straight line in which that force is
impressed.

To state these in the language of vectors, let v be the velocity of the body,
F the force, and m the mass of the body. The first law asserts that v is
constant if F is 0. Momentum is mv so the second law asserts that

F =
d

dt
(mv).
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If m is constant, this reduces to

F = ma,

where a is the acceleration vector.
Newton assumed a universal law of gravitation, that a particle P exerts

an attractive force on any other particle Q, and the direction of the force is
from Q toward P . Then assuming that the orbit of a planet moving about
the sun is an ellipse, he deduced that the force is inversely proportional to the
square of the distance between the particles P and Q.

Nowhere in the Principia does he deduce from the inverse-square law of
gravity that the planets’ orbits are ellipses. (Though there are theorems in
Principia on the basis of which this deduction could have been made.) In the
Principia he showed that Kepler’s second law (concerning areas) was equiva-
lent to the assumption that the force acting on a planet is directed toward the
sun. He also deduced Kepler’s third law.

Newton’s universal law of gravitation asserts that a particle, of mass M ,
exerts a force on any other particle, of mass m, and that the magnitude of the
force is proportional to the product of the masses, mM , inversely proportional
to the square of the distance between them, and is directed toward the particle
with the larger mass. (Here, we assume M > m.)

Assume that the sun has mass M and is located at O and that the planet

has mass m and is located at P . (See Figure C.22.1.) Let r =
−→
OP and r = |r|.

Then the sun exerts a force F on the planet given by

F = −GmM

r2
r, (C.22.1)

where G is a universal constant and u = r/r is the unit vector that points in
the direction of r.

Figure C.22.1
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Now, F = ma, where a is the acceleration vector of the planet. Thus

ma = −GmM

r2
u,

from which it follows that
a = −qu

r2
, (C.22.2)

where q = GM is independent of the planet.
The vectors u, r, and a are in Figure C.22.1.
The following exercises show how to obtain Kepler’s laws from the single

law of Newton, a = −qu/r2.

EXERCISES

Exercises 1 to 3 obtain Kepler’s area law.
1. Let r(t) be the position vector of a planet at time t. Let ∆r = r(t + ∆t)− r(t).
Show that for small ∆t,

1
2
|r×∆r|

approximates the area swept out by the position vector during the small interval of
time ∆t. (Draw a picture.)

Figure C.22.2
2. From Exercise 1 deduce that 1

2

∣∣r× dr
dt

∣∣ is the rate at which the position vector
r sweeps out area. (See Figure C.22.2.)

Let v = dr/dt.
3. With the aid of (C.22.2), show that r× v is constant.

Since r × v is constant, 1
2 |r× v| is constant. In view of Exercise 2, it follows that

the radius vector of a given planet sweeps out area at a constant rate.
To put it another way, the radius vector sweeps out equal areas in equal times. This
is Kepler’s second law.
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Introduce an xyz-coordinate system such that the unit vector k, which points in the
direction of the positive z-axis, has the same direction as the constant vector r× v.
Thus there is a positive constant h such that

r× v = hk. (C.22.3)

Exercises 4 to 13 obtain Kepler’s ellipse law.
4. Show that h in (C.22.3) is twice the rate at which the position vector of the
planet sweeps out area.

5. Show that the planet remains in the plane perpendicular to k that passes
through the sun.

By Exercise 5, the orbit of the planet is planar. We may assume that it lies in
the xy-plane; for convenience, locate the origin of the xy-coordinates at the sun.
Introduce polar coordinates in the plane, with the pole at the sun and the polar axis
along the positive x axis, as in Figure C.22.3.

Figure C.22.3
6.

(a) Show that during the time interval [t0, t] the position vector of the planet
sweeps out the area

1
2

t∫
t0

r2 dθ

dt
dt.

(b) Deduce that the radius vector sweeps out area at the rate 1
2r2 dθ

dt .

We use the dot notation for differentiation with respect to time, so ṙ = v, v̇ = a,
and θ̇ = dθ

dt .
7. Show that r× v = r2θ̇k.
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8. Show that u̇ = du
dθ θ̇ and is perpendicular to u. ( u is defined as r/|r|. )

9. From r = ru, show that hk = r2(u× u̇).

10. Using (C.22.2) and Exercise 9, show that a × hk = qu̇. (What is the vector
identity for A× (B×C)?)

11. Deduce from Exercise 10 that v × hk and qu differ by a constant vector.

By Exercise 11, there is a constant vector C such that

v × hk = qu + C.

Then the angle between r and C is the angle θ of polar coordinates.
The next exercise requires the vector identity (A×B) ·C = A · (B×C), which is
valid for any three vectors.
12.

(a) Show that (r× v) · hk = h2.

(b) Show that r · (v × hk) = rq + r ·C.

(c) Combining (a) and (b), deduce that h2 = rq + rc cos(θ), where c = |C|

It follows from Exercise 12 that the polar equation for the orbit of the planet is
given by

r(θ) =
h2

q + c cos(θ)
. (C.22.4)

13. By expressing (C.22.4) in rectangular coordinates, show that it describes a
conic section.

Since the orbit of a planet is bounded and is also a conic section, it must be an
ellipse. This establishes Kepler’s first law.
Kepler’s third law asserts that the square of the time required for a planet to com-
plete one orbit is proportional to the cube of its mean distance from the sun.
For Kepler mean distance meant the average of the shortest distance and the
longest distance from the planet to the sun. Let us compute the average for the
ellipse with semimajor axis a and semiminor axes b, shown in Figure C.22.4. The
sun is at the focus F , which is also the pole of the polar coordinate system we are
using. The line through the foci contains the polar axis.
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Figure C.22.4
An ellipse is the set of points P such that the sum of the distances from P to the
foci F and F ′ is constant, 2a. The shortest from the planet to the sun is FQ = a−d
and the longest distance is EF = a + d. Thus Kepler’s mean distance is

(a− d) + (a + d)
2

= a.

Let T be the time required by the given planet to complete one orbit. Kepler’s
third law asserts that T 2 is proportional to a3. Exercises 14 to 18 establish this by
showing that T 2/a3 is the same for all planets.
14. Using the fact that the area of the ellipse in Figure C.22.4 is πab, show that
Th/2 = πab, hence that

T =
2πab

h
. (C.22.5)

The rest of the argument depends only on (C.22.4) and (C.22.5) and the fixed sum
of two distances property of an ellipse.
15. Using (C.22.4), show that f in Figure C.22.4 equals h2/q.

16. Show that b2 = af :

(a) From F ′A + FA = 2a, deduce that a2 = b2 + d2.

(b) From F ′B + FB = 2a, deduce that d2 = a2 − af .

(c) From (a) and (b), deduce that b2 = af .

17. From Exercises 15 and 16, deduce that b2 = ah2/q.
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18. Combining (C.22.5) and Exercise 17, show that

T 2

a3
=

4π2

q
.

Since 4π2/q is a constant, the same for all points, Kepler’s third law is established.
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Chapter 16

Partial Derivatives

So far we have been concerned mainly with functions whose domains are part
or all of a line or curve. This chapter generalizes the derivative to functions
whose domains are part or all of a plane or space, called functions of two or
three variables. Chapter 17 does the same for definite integrals.

The first seven sections generalize Chapters 1 to 4: picturing functions
of two or three variables (Section 16.1), their derivatives (Section 16.2), the
chain rule (Section 16.3), more on their derivatives (Section 16.4), the tan-
gent plane to a surface (Section 16.5), and finding extrema (Sections 16.6 and
16.7). In preparation for extending the method of substitution for evaluating
definite integrals, the magnification of a function is introduced in Section 16.8.
Section 16.9 obtains some fundamental equations in introductory thermody-
namics.
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1320 CHAPTER 16 PARTIAL DERIVATIVES

16.1 Picturing a Function of Several Variables

The graph of y = f(x), a function of one variable, x, is a curve in the xy-
plane. The graph of a function of two variables, z = f(x, y) is a surface in
space. It consists of the points (x, y, z) for which z = f(x, y). For instance, if
z = 2x + 3y, the graph is the plane z = 2x + 3y.

This section describes some ways of picturing a scalar-valued function of
two or three variables.

Contour Lines

This is similar to what we
did for vector fields.

For z = f(x, y), the simplest method is to attach at (x, y) the value of the
function there. Figure 16.1.1 illustrates this for z = xy. It gives a sense of the

Figure 16.1.1

function. Its values are positive in the first and third quadrants, negative in
the second and fourth. For (x, y) far from the origin near the lines y = x or
y = −x the values are large.

Rather than attach the values at points, we could indicate points where
the function has a specific fixed value. We could graph for a constant k all the
points (x, y) where f(x, y) = k,contours and level curves called a contour or level curve.

For z = xy, contours are hyperbolas xy = k. In Figure 16.1.2(a) the
contours corresponding to k = 2, 4, 6, 0, −2, −4, −6 are shown.

Many newspapers publish a daily map showing temperatures using contour
lines. Figure 16.1.2(b) is an example; in this case the contour lines are the
boundary curves between the differently colored regions.

At a glance you can see where it is hot or cold and in what direction to
travel to warm up or cool off.
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(a) (b)

Figure 16.1.2

Traces

Another way to see the surface z = f(x, y) is to sketch the intersections of
various planes with the surface. They are cross sections that are called traces.

Figure 16.1.3 shows a trace created by the plane z = k, which is parallel
to the xy-coordinate plane. The curve is a copy of the contour f(x, y) = k.

Figure 16.1.3

EXAMPLE 1 Sketch the traces of the surface z = xy with the planes (a)
z = 1, (b) x = 1, (c) y = x, (d) y = −x, and (e) x = 0.
SOLUTION

(a) The trace with the plane z = 1 is shown in Figure 16.1.4. For points
(x, y, z) on it, xy = 1, a hyperbola. It is the contour line xy = 1 in the
xy-plane raised by one unit, as in Figure 16.1.4(a)
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(b) The trace in the plane x = 1 satisfies the equation z = 1 · y = y. It is a
straight line, shown in Figure 16.1.4(b)

(c) The trace in the plane y = x satisfies the equation z = x2. It is the
parabola shown in Figure 16.1.4(c).

(d) The trace in the plane y = −x satisfies the equation z = x(−x) = −x2.
It is an upside-down parabola, shown in Figure 16.1.4(d).

(e) The intersection with the coordinate plane x = 0 satisfies the equation
z = 0 · y = 0. It is the y-axis, shown in Figure 16.1.4(e).

(a) (b) (c) (d) (e)

Figure 16.1.4

Figure 16.1.5

The surface can be viewed as made up of lines, of parabolas, or of hyper-
bolas. It is shown in Figure 16.1.5 with some of the traces drawn on it. �

The surface z = xy looks like a saddle or the pass between two hills, as
shown in Figure 16.1.6.

(a) (b)

Figure 16.1.6
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Functions of Three Variables

The graph of y = f(x) consists of points in the xy-plane. The graph of
z = f(x, y) consists of points in xyz-space. What if we have a function of
three variables, u = f(x, y, z)? (The volume V of a box of sides x, y, z is
given by the equation V = xyz.) We cannot graph the set of points (x, y, z, u)
where u = f(x, y, z) since we cannot draw graphs in four dimensions. What
we could do is pick a constant k and draw a level surface, the set of points
where f(x, y, z) = k. Varying k may give an idea of the function’s behavior,
just as varying k in f(x, y) = k yields information about the behavior of a
function of two variables.

For example, let T = f(x, y, z) be the temperature (Fahrenheit) at the
point (x, y, z). Then the level surface

68 = f(x, y, z)

consists of all points in space where the temperature is 68◦.

EXAMPLE 2 Describe the level surfaces of u = x2 + y2 + z2.
SOLUTION For each k we examine k = x2 + y2 + z2. If k is negative, there
are no points on the level surface. If k = 0, there is only one, the origin
(0, 0, 0). If k = 1, the equation is 1 = x2 + y2 + z2, which describes a sphere of
radius 1, with center (0, 0, 0). If k is positive, the level surface f(x, y, z) = k
is a sphere of radius

√
k, with center (0, 0, 0). See Figure 16.1.7 �

Figure 16.1.7
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History of Contours
The use of contour lines goes back to the 1774. Surveyors had collected a large
number of the elevations of points on Mount Schiehalli in Scotland in order to
estimate its mass and, by its gravitational attraction, the mass of Earth. They
asked the mathematician Charles Hutton for help in using the data. Hutton
saw that if he connected points on the map that showed the same elevation,
the resulting curves, contour lines, suggested the shape of the mountain.

Reference: Bill Bryson, A Short History of Nearly Everything,
Broadway Books, New York, 2003, p. 57.

Summary

We introduced the idea of a function of two variables z = f(P ) defined for
points P in a region in the xy-plane. The graph of z = f(P ) is usually a
surface. It is often more useful to sketch a few of its level curves than to
sketch the surface. A level curve in the xy-plane is a copy of a trace by a plane
parallel to thet plane. At all points (x, y) on a level curve the function has the
same value, so it is constant on a level curve.

For functions of three variables u = f(x, y, z), which could also be written
as u = f(P ), we defined level surfaces k = f(x, y, z) on which f is constant.
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EXERCISES for Section 16.1

In Exercises 1 to 10, graph the given function. That is, graph z = f(x, y).

1. f(x, y) = y

2. f(x, y) = x + 1
3. f(x, y) = 3
4. f(x, y) = −2
5. f(x, y) = x2

6. f(x, y) = y2

7. f(x, y) = x + y + 1
8. f(x, y) = 2x− y + 1
9. f(x, y) = x2 + 2y2

10. f(x, y) =
√

x2 + y2

In Exercises 11 to 14 draw the level curves corresponding to the values −1, 0, 1, and
2 if they are not empty.

11. f(x, y) = x + y

12. f(x, y) = x + 2y

13. f(x, y) = x2 + 2y2

14. f(x, y) = x2 − 2y2

In Exercises 15 to 18 draw the level curves that pass through the given points.

15. f(x, y) = x2 + y2 through (1, 1) (Compute f(1, 1).)
16. f(x, y) = x2 + 3y2 through (1, 2)
17. f(x, y) = x2 − y2 through (3, 2)
18. f(x, y) = x2 − y2 through (2, 3)

19.

(a) Draw the level curves for f(x, y) = x2 + y2 corresponding to k = 0, 1, . . . , 9.

(b) By inspection of the curves in (a), decide where the function changes most
rapidly. Explain why you think so.

20. Sketch three level curves in the xy-plane for the polar functions.

(a) f(r, θ) = r
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(b) f(r, θ) = r2

(c) f(r, θ) = r cos(θ)

(d) f(r, θ) = r sin(θ)

(e) f(r, θ) = e−r

(f) f(r, θ) = ln(r)

(g) f(r, θ) = 1
r

(h) f(r, θ) = sin(r)

(See also Exercise 24.)

21. Let f(P ) be the average daily solar radiation at point P , measured in langleys.
The level curves corresponding to 350, 400, 450, and 500 langleys are shown in
Figure 16.1.8.

Figure 16.1.8

(a) What can be said about the ratio between the maximum and minimum solar
radiation at points in the United States?

(b) Why are there sharp bends in the level curves in two areas?

22. Let u = g(x, y, z) be a function of three variables. Describe the level surface
g(x, y, z) = 1 if g(x, y, z) is

(a) x + y + z

(b) x2 + y2 + z2

(c) x2 + y2 − z2
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(d) x2 − y2 − z2

23.

Figure 16.1.9
A weather map, Figure 16.1.9, shows level curves of constant barometric pressure
(called isobars).

(a) Where is the lowest pressure?

(b) Where is the highest pressure?

(c) Where do you think the wind at ground level is the fastest? Why?

24. Compare and contrast the level curves drawn in Exercise 20. How are they
similar? How are they different?

25.

(a) Sketch the surface z = x2 + y2.

(b) Show that traces by planes parallel to the xz-plane are parabolas.

(c) Show that the parabolas in (b) are congruent. That implies that the surface
is made up of identical parabolas.

(d) What kind of curve is a trace in a plane parallel to the xy-plane?

(e) Are the curves identified in (c) congruent?

26. For the surface z = x2 + 4y2, what type of curve is produced by a trace by a
plane parallel to
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(a) the xy-plane?

(b) the xz-plane?

(c) the yz-plane?
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16.2 Limits, Continuity, and Partial Deriva-

tives

The concepts of limit, continuity, and derivative carry over with similar def-
initions from functions of one variable to functions of several variables. But
there are differences. A differentiable function f(x) has one first derivative,
f ′(x), but f(x, y) has many first derivatives.

Limits and Continuity of f(x, y)

Figure 16.2.1

The domain of a function f(x, y) is the set of points where it is defined.
The domain of f(x, y) = x+ y is the entire xy-plane. The domain of f(x, y) =√

1− x2 − y2 is smaller because for the square root of 1−x2−y2 to be defined
1 − x2 − y2 must not be negative. So, x2 + y2 ≤ 1. The domain is the disk
bounded by the circle x2 + y2 = 1, shown in Figure 16.2.1.

The domain of g(x, y) = 1/
√

1− x2 − y2 is even smaller. Now 1− x2 − y2

cannot be 0 or negative. The domain of 1/
√

1− x2 − y2 consists of points
(x, y) such that x2+y2 < 1. It is the disk in Figure 16.2.1 without its boundary.

The function h(x, y) = 1/(y − x) is defined everywhere except on the line
y − x = 0. Its domain is the xy-plane from which the line y = x is removed.
(See Figure 16.2.2.)

Figure 16.2.2

The domain of functions we look at will either be the entire xy-plane or a
region bordered by curves or lines, or perhaps one with a few points omitted.

(a) (b)

Figure 16.2.3

Let P0 be a point in the domain of a function f . If there is a disk with
center P0 that lies within the domain of f , we call P0 an interior point of the
domain. (See Figure 16.2.3(a).) When P0 is an interior point of the domain of
f , we know that f(P ) is defined for all points P sufficiently near P0. A set R is
called open if each point P of R is an interior point of R. The entire xy-plane
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is open. Any disk without its circumference is open. The set of points inside
a closed curve but not on it forms an open set.

A point P0 is on the boundary of a set if every disk centered at P0, no
matter how small, contains points in the set and points not in the set. (See
Figure 16.2.3(b).) The boundary of the disk x2+y2 ≤ 1 is the circle x2+y2 = 1.

A set R is called closed if it includes all of its boundary points. The entire
xy-plane is both closed and open. Any disk with its circumference is closed.
The set of points inside a closed curve, including the curve, forms a closed set.

The domains of the functions f , g, and h defined at the beginning of this
section are closed, open, and open, respectively.

The definition of the limit of f(x, y) as (x, y) approaches P0 = (a, b) should
not come as a surprise.

DEFINITION (Limit of f(x, y) at P0 = (a, b)) Let f be a func-
tion defined at least at every point in some disk with center P0,
except perhaps at P0. If there is a number L such that f(P ) ap-
proaches L whenever P approaches P0 we call L the limit of f(P )
as P approaches P0. We write

lim
P→P0

f(P ) = L

or
f(P )→ L as P → P0.

If P0 = (a, b) we also write

lim
(x,y)→(a,b)

f(x, y) = L.

For most of our functions the limit will exist throughout their domains.

EXAMPLE 1 Let f(x, y) = x3/(x2+y2). Determine whether limP→(0,0) f(P )
exists.

SOLUTION The domain of f is the xy-plane without the origin. When P
is near (0, 0) both numerator and denominator approach 0, so we have an
indeterminate limit.

Because of the presence of x2+y2, we introduce polar coordinates, replacing
x2 + y2 by r2 and x3 by r3 cos(θ)3. The quotient now reads

r3 cos3(θ)

r2
= r cos3(θ).

Because r cos3(θ) approaches 0 as r → 0, we conclude that limP→(0,0) f(P ) = 0
�
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EXAMPLE 2 Let f(x, y) = x2−y2

x2+y2 . Determine whether lim(x,y)→(0,0) f(P )
exists.

SOLUTION

Figure 16.2.4

The function is not defined at (0, 0). When (x, y) is near (0, 0),
both the numerator and denominator of (x2−y2)/(x2 +y2) are small numbers.
As in Example 1 there are two opposing influences.

We try a few inputs near (0, 0). For instance, (0.01, 0) is near (0, 0) and

f(0.01, 0) =
(0.01)2 − 02

(0.01)2 + 02
= 1.

Also, (0, 0.01) is near (0, 0) and

f(0, 0.01) =
02 − (0.01)2

02 + (0.01)2
= −1.

More generally, for x 6= 0,
f(x, 0) = 1

while for y 6= 0,
f(0, y) = −1

Since x can be as near 0 as we please and y can be as near 0 as we please, it
is not the case that limP→(0,0) f(P ) exists. Figure 16.2.4 shows the graph of

z = x2−y2

x2+y2 . �

If P0 is not an interior point of the domain of f , we modify the definition
of limit slightly. Let P0 be a point on the boundary of the domain of f . If
f(P )→ L as P approaches P0 through points in the domain of f , we say that
“L is the limit of f(P ) as P → P0.” Example 2 is such a case.

Continuity of f(x, y) at P0 = (a, b)

The definition of continuity for f(x) in Section 2.4 generalizes to the definition
of continuity for f(x, y).

DEFINITION (Continuity of f(x, y) at P0 = (a, b)). Assume
that f(P ) is defined throughout some disk with center P0. Then f
is continuous at P0 if limP→P0 f(P ) = f(P0).

This means

1. f(P0) is defined (that is, P0 is in the domain of f),

2. limP→P0 f(P ) exists, and

3. limP→P0 f(P ) = f(P0).
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Continuity at a point on the boundary of the domain can be defined
similarly. A function f(P ) is continuous if it is continuous at
every point in its domain.

EXAMPLE 3 Determine whether f(x, y) = x2−y2

x2+y2 is continuous at (1, 1).

SOLUTION This is the function in Example 2. First, f(1, 1) is defined and

equals 0. Second, lim(x,y)→(1,1)
x2−y2

x2+y2 exists and is 0
2

= 0. Third, lim(x,y)→(1,1) f(x, y)

exists and equals f(1, 1). Hence, f(x, y) is continuous at (1, 1). �
In fact, the function of Example 3 is continuous at every point (x, y) in its

domain. We do not need to worry about the behavior of f(x, y) when (x, y) is
near (0, 0) because (0, 0) is not in the domain. Since f(x, y) is continuous at
every point in its domain, it is a continuous function.

The Two Partial Derivatives of f(x, y)

Let (a, b) be a point in the domain of f(x, y). The trace on the surface z =
f(x, y) by a plane through (a, b) and parallel to the z-axis is a curve, as shown
in Figure 16.2.5.

If f is well behaved, then, at the point P = (a, b, f(a, b)), the trace has
a slope. It depends on the plane through (a, b). In this section we consider
only the planes parallel to the coordinate planes y = 0 and x = 0. In the next
section we treat the general case.

Figure 16.2.5

For f(x, y) = x2y3, if we hold y constant and differentiate with respect
to x, we obtain 2xy3. This will be called the partial derivative of x2y3 with
respect to x. We could hold x fixed instead and find the derivative of x2y3

with respect to y, that is, 3x2y2. This derivative will be called the partial
derivative of x2y3 with respect to y. Now we give a precise definition of partial
derivatives and see what they mean in terms of slope and rate of change.

DEFINITION (Partial derivatives.) Assume that the domain of
f(x, y) includes the interior of some disk with center (a, b). If

lim
∆x→0

f(a + ∆x, b)− f(a, b)

∆x

exists, it is called the partial derivative of f with respect to
x at (a, b). Similarly, if

lim
∆x→0

f(a, b + ∆y)− f(a, b)

∆y

exists, it is called the partial derivative of f with respect to
y at (a, b).
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There are several notations for the partial derivatives of z = f(x, y) with
respect to x: Notations for partial

derivatives.∂z

∂x
,
∂f

∂x
, fx, f1, or zx

and with respect to y:
∂z

∂y
,
∂f

∂y
, fy, f2, or zy.

The symbol ∂f/∂x may be viewed as the rate at which the function f(x, y)
changes when x varies and y is kept fixed; ∂f/∂y records the rate at which
the function f(x, y) changes when y varies and x is kept fixed.

The value of ∂f/∂x at (a, b) is denoted

∂f

∂x
(a, b) or

∂f

∂x

∣∣∣∣
(a,b)

.

In the middle of a sentence, we will write it as fx(a, b) or ∂f/∂x(a, b).
The partial derivative ∂f

∂y
(a, b) is the slope of the tangent line to the trace

z = f(a, y) at the point (a, b).

Figure 16.2.6

Figure 16.2.6 shows the graph of z = f(x, y)
(in light blue), the plane x = a (in pink), and the trace of z in the place
x = a: z = f(a, y) (in red). The chords (in black) between (a, b, f(a, b)) and
(a, b + ∆y, f(a, b + ∆y)) converge to the tangent line (in blue) to z = f(a, y)
at (a, b); its slope is ∂f

∂y
(a, b). This shows that a partial derivative is just a

derivative in a special context.

EXAMPLE 4 If f(x, y) = sin(x2y), find

(a) ∂f/∂x

(b) ∂f/∂y

(c) ∂f/∂y at (1, π/4).

SOLUTION

(a) To find ∂
∂x

(sin x2y), differentiate with respect to x, keeping y constant:

∂
∂x

(sin x2y) = cos(x2y) ∂
∂x

(x2y) (chain rule)
= cos(x2y)(2xy) (y is constant)
= 2xy cos(x2y).

(b) To find ∂
∂y

(sin x2y), differentiate with respect to y, keeping x constant:

∂
∂y

(sin x2y) = cos(x2y) ∂
∂y

(x2y) (chain rule)

= cos(x2y)(x2) (x is constant)
= x2 cos(x2y).
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(c) By (b)

∂f
∂y

(1, π/4) = x2 cos(x2y)|(1,π/4) = 12 cos
(
12 π

4

)
=

√
2

2
.

�

As Example 4 shows, because partial derivatives are really ordinary deriva-
tives, the procedures for computing derivatives of a function f(x) of a single
variable carry over to functions of two variables.

Higher-Order Partial Derivatives

Just as there are derivatives of derivatives there are partial derivatives of partial
derivatives. For instance, if

z = 2x + 5x4y7,

we have
∂z

∂x
= 2 + 20x3y7 and

∂z

∂y
= 35x4y6.

Then we may compute partial derivatives of ∂z/∂x and ∂z/∂y:

∂
∂x

(
∂z
∂x

)
= 60x2y7 ∂

∂y

(
∂z
∂y

)
= 140x3y6

∂
∂x

(
∂z
∂y

)
= 140x3y6 ∂

∂y

(
∂z
∂y

)
= 210x4y5.

There are four partial derivatives of the second order,

∂

∂x

(
∂z

∂x

)
,

∂

∂y

(
∂z

∂x

)
,

∂

∂y

(
∂z

∂y

)
, and

∂

∂x

(
∂z

∂y

)
.

These are usually denoted, in the same order, as

∂2z

∂x2
= zxx,

∂2z

∂y∂x
= zxy,

∂2z

∂y2
= zyy, and

∂2z

∂x∂y
= zyx.

To compute ∂2z/∂x∂y, we first differentiate with respect to y, then with re-
spect to x. To compute ∂2z/∂y∂x, we first differentiate with respect to x, then
with respect to y. In both cases, we differentiate from right to left in the order
that the variables occur.

The partial derivative ∂f
∂x

is also denoted fx and ∂f
∂y

is denoted fy. The

second partial derivative ∂2f
∂x∂y

= ∂(fy)

∂x
= (fy)x is denoted fyx. In this case

we differentiate from left to right, first fy, then (fy)x.The subscript notation, fyx,
is generally preferred in the

midst of text.

That is, fyx = (fy)x,
fyy = (fy)y, and fxy = (fx)y. In both notations the mixed partial is computed
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in the order that resembles its definition with the parentheses removed. That
is,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
and fxy = (fx)y

are the two mixed second partial derivatives of f .
Equality of the mixed
partials

In the computations just done, the two mixed partials zxy and zyx are equal.
This is not a coincidence. For functions commonly encountered, the two mixed
partials are equal. This equality is used in Section 16.9 and in Chapter 18.

Exercise 56 has a function for which the two mixed particles are not equal.

EXAMPLE 5 Compute
∂2z

∂x2
= fxx,

∂2z

∂y∂x
= fxy,

∂2z

∂x∂y
= zyx, and

∂2z

∂y2
=

zyy for z = y cos(xy).
SOLUTION The first partial derivatives are

∂z

∂x
= y

(
− sin(xy)

∂

∂x
(xy)

)
= y(− sin(xy)y) = −y2 sin(xy)

and

∂z

∂y
=

∂

∂y
(y) · cos(xy) + y · ∂

∂y
cos(xy) = cos(xy) + y(− sin(xy)x) = cos(xy)− xy sin(xy).

Now we can compute the four second derivatives.

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)
=

∂

∂x
(−y2 sin(xy)) = −y3 cos(xy),

∂2z

∂y∂x
=

∂

∂y

(
∂z

∂x

)
=

∂

∂y
(−y2 cos(xy)) = −2y sin(xy)− xy2 cos(xy),

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)
=

∂

∂x
(−yx sin(xy) + cos(xy))

= −y
∂

∂x
(x sin(xy) +

∂

∂x
(cos(xy)) = −y(xy cos(xy) + sin(xy))− y sin(xy)

= −xy2 cos(xy)− y sin(xy)− y sin(xy) = −2y sin(xy)− xy2 cos(xy),

and

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)
=

∂

∂y
(−yx sin(xy) + cos(xy))

= (−x sin(xy)− yx(x cos(xy))) + (−x sin(xy))

= −x sin(xy)− xy2 cos(xy)− x sin(xy) = −2x sin(xy)− x2y cos(xy).

While the computations of the two mixed partials are different, the results are
the same, as is expected. �

In view of the importance of the equation fxy = fyx, we state it as a
theorem.
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Theorem 16.2.1 (Equality of mixed partial derivatives). Assume that f(x, y)
is defined in some disk centered at (a, b). If fx and fy exist in the disk and fxy

is continuous at (a, b), then fyx(a, b) exists and equals fxy(a, b).

This is not obvious. Why should the rate at which the slope in the y-
direction changes with respect to x be the same as the rate at which the slope
in the x-direction changes with respect to y? A proof is outlined in Exercise 21
in the Chapter 16 Summary.

Differentiating Under the Integral Sign

Let g(y) =
∫ b

a
f(x, y) dx, an integral that depends on y. The following theorem

expresses the derivative of g in terms of a partial derivative of f . It provides
a general condition that allows us to differentiate under the integral sign.

Theorem 16.2.2. Assume that f(x, y) is defined in the rectangle whose ver-
tices are (a, a), (a, b), (b, b), and (b, a). Assume also that ∂f/∂y is continuous
there. Then

g′(y) =

b∫
a

∂f

∂y
(x, y) dx.

Example 25 has a suggestion that shows this theorem is plausible.

EXAMPLE 6 Verify Theorem 16.2.2 when g(y) =
∫ 2

1
exy dx.

SOLUTION Evaluate
∫ 2

1
∂
∂y

(exy) dx. We find

2∫
1

∂

∂y
exy dx =

2∫
1

xexy dx =

(
xexy

y
− exy

y2

)∣∣∣∣x=2

x=1

=

(
2e2y

y
− e2y

y2

)
−
(

ey

y
− ey

y2

)
=

(2y − 1)e2y − (y − 1)ey

y2
. (16.2.1)

April 22, 2012 Calculus



§ 16.2 LIMITS, CONTINUITY, AND PARTIAL DERIVATIVES 1337

On the other hand

g(y) =

2∫
1

exy dx =
exy

y

∣∣∣∣∣∣
x=2

x=1

=
e2y

y
− ey

y
.

Then

g′(y) =
2ye2y − e2y

y2
− yey − ey

y2

=
(2y − 1)e2y − (y − 1)ey

y2
. (16.2.2)

The final expressions in (16.2.1) and (16.2.2) are equal. �

Functions of More Than Two Variables

A quantity may depend on more than two variables. For instance, the chill fac-
tor depends on temperature, humidity, and wind velocity. Also, the tempera-
ture T at a point in the atmosphere is a function of the three space coordinates,
x, y, and z: T = f(x, y, z).

To differentiate, hold all
variables constant except
one.

The definitions and notations of partial derivatives carry over to functions
of more than two variables. If u = f(x, y, z, t), there are four first-order partial
derivatives. The partial derivative of u with respect to x, holding y, z, and t
fixed, is denoted

∂u

∂x
,

∂f

∂x
, or ux.

Higher-ordered partial derivatives are defined and denoted similarly. Sec-
tion 16.9 and the CIE on the Wave in a Rope at the end of Chapter 17
(page 1443) illustrate their use in physics.

Summary

We defined limits, continuity, and partial derivatives for functions of several
variables. These are closely related to the one-variable versions.

A difference is that a partial derivative with respect to one variable, say x,
is found by treating all other variables as constants and applying the standard
differentiation rules with respect to x. Higher-order partial derivatives are
defined much like higher-order derivatives. An important property of higher-
order partial derivatives of functions usually met in applications is that the
order in which the partial derivatives are calculated does not affect the results.

For instance,
∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
.
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EXERCISES for Section 16.2

1.

(a) Draw a clear picture that shows the trace of a surface z = f(x, y) by the plane
y = b.

(b) Draw the line through (a, b, f(a, b)) whose slope is ∂f
∂x at (a, b)

2.

(a) Draw a clear picture that shows the trace of a surface z = f(x, y) by the plane
x = a.

(b) Draw the line through (a, b, f(a, b)) whose slope is ∂f
∂y at (a, b)

In Exercises 3 to 16 evaluate the limits if they exist.

3. lim
(x,y)→(2,3)

x + y

x2 + y2

4. lim
(x,y)→(1,1)

x2

x2 + y2

5. lim
(x,y)→(0,0)

x2

x2 + y2

6. lim
(x,y)→(0,0)

xy

x2 + y2

7. lim
(x,y)→(2,3)

xy

8. lim
(x,y)→(0,0)

xy

9. lim
(x,y)→(1,0)

e2xy

xy

10. lim
(x,y)→(1,2)

e2xy

xy

11. lim
(x,y)→(0,0)

sin(x + y)
x + x2

12. lim
(x,y)→(0,0)

sin(2x)
sin(3y)

13. lim
(x,y)→(2,2)

y3 − 8
x2 − 4

14. lim
(x,y)→(3,2)

e2x − e3y

4x2 − 9y2
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15. lim
(x,y)→(0,0)

(1 + xy)1/(xy)

16. lim
(x,y)→(0,0)

(1 + x)1/y

In Exercises 17 to 24, describe the domain of the func.

17. f(x, y) = 1/(x + y)
18. f(x, y) = 1/(x2 + 2y2)
19. f(x, y) = 1/(9− x2 − y2)
20. f(x, y) = 1/(9− x2 − y2)1/3

21. f(x, y) = ln(x + 2y)
22. f(x, y) = ln(4− x2 + y2)
23. f(x, y) = 1/

√
x2 + y2 − 25

24. f(x, y) =
√

49− x2 − y2

In Exercises 25 to 30, R consists of all points (x, y) that satisfy the condition. Find
the boundary of R.
25. x2 + y2 ≤ 1
26. x2 + y2 < 1
27. 1/(x2 + y2) is defined
28. 1/(x + y) is defined
29. y < x2

30. y ≤ x

In Exercises 31 to 36 compute
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
and

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
. (They

should be equal.)
31. f(x, y) = e3x2y

32. f(x, y) = sin(x+2y)
x (for x 6= 0)

33. f(x, y) = ln(2x + 3y) (for 2x + 3y > 0)
34. f(x, y) = arctan(

√
xy3) (for x ≥ 0, y ≥ 0)

35. f(x, y) = y/x

36. f(x, y) =
√

x2 + 3y2

In Exercises 37 to 44 compute
∂2f

∂x2
and

∂2f

∂y2
.

37. f(x, y) = ln(sin2(x) cos3(xy))
38. f(x, y) = exp(x3)
39. f(x, y) = tan(3x2y3)
40. f(x, y) = x3/y2

41. f(x, y) = 3x2y3
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42. f(x, y) = arctan(y/x)
43. f(x, y) = ex2+y2

44. f(x, y) = ln(y2 + y4)

45. Let T (x, y, z) = 1/
√

x2 + y2 + z2, if (x, y, z) is not the origin (0, 0, 0). Show
that

∂2T

∂x2
+

∂2T

∂y2
+

∂2T

∂z2
= 0.

This equation arises in the theory of heat, as we will see in a Calculus is Everywhere
section at the end of Chapter 18.

46. Solve Example 3 by using polar coordinates to express the function.

Check that differentiating under the integral sign gives correct results for the func-
tions in Exercises 47 to 50.
47. g(y) =

∫ b
a xmyn dx, (m, n > 1)

48. g(y) =
∫ b
a sin(xy) dx

49. g(y) =
∫ b
a xy dx, (a, b, y > 1)

50. g(y) =
∫ b
a

dx
xy

51. View
∫ b
a f(x, y) dx as a function of a, b, and y, say, g(a, b, y). Find

(a) ∂g/∂b

(b) ∂g/∂a

(c) ∂g/∂y

52. Let u = f(x, y). Assume that u(1, 2) is 3, ∂u/∂x at (1, 2) is 2, and ∂u/∂y at
(1, 2) is 1.2.

(a) Estimate u(1, 2.01).

(b) Estimate u(0.98, 2).

(c) Estimate u(1.02, 2.03).

Describe your reasoning.

53. Develop a convincing, but not necessarily rigorous, argument justifying dif-
ferentiation under the integral sign. (Start with the definition of g′(y).)

54. Assume that the domain of f is the xy-plane and ∂f
∂x = 0 everywhere.
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(a) Give an example of a non-constant function for which ∂f
∂x = 0.

(b) What is the most general function for which ∂f
∂x = 0 everywhere?

55. Find all functions f defined throughout the xy-plane for which both ∂f
∂x = 0

and ∂f
∂y = 0 everywhere. Explain.

56. This exercise concerns a function f(x, y) whose mixed partial derivatives at
(0, 0) are not equal.

(a) Let g(x, y) = x2−y2

x2+y2 for (x, y) not (0, 0). Show that lim
k→0

( lim
h→0

g(h, k)) = −1 but

lim
h→0

(lim
k→0

g(h, k)) = 1.

(b) Let f(x, y) = xyg(x, y) for (x, y) not (0, 0) and f(0, 0) = 0. Show that
f(x, y) = 0 if x or y is 0.

(c) Show that fxy(0, 0) = limk→0
fx(0,k)−fx(0,0)

k .

(d) Show that fxy(0, 0) = limk→0

(
limh→0

f(h,k)−f(0,k)−f(h,0)+f(0,0)
hk

)
.

(e) Show that fxy(0, 0) = −1.

(f) Similarly, show that fyx(0, 0) = 1.

(g) Show that in polar coordinates the value of f at (r, θ) is r2 sin(4θ)/4.
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16.3 Change and the Chain Rule

For a function of one variable, f(x), the change in its value as the input changes
from a to a + ∆x is approximately f ′(a)∆x. In this section we estimate the
change in f(x, y) as (x, y) moves from (a, b) to (a + ∆x, b + ∆y).

This change is used to obtain the chain rule for functions of several vari-
ables.

Estimating the Change ∆f

Let z = f(x, y) be a function of two variables with continuous partial deriva-
tives at least throughout a disk centered at the point (a, b). We will express
∆f = f(a + ∆x, b + ∆y)− f(a, b) in terms of fx and fy. The change is shown
in Figure 16.3.1. We can view it as obtained in two steps. First, there is the

Figure 16.3.1

change as x goes from a to a + ∆x, that is, f(a + ∆x, b) − f(a, b). Second,
there is the change from f(a + ∆x, b) to f(a + ∆x, b + ∆y), as y changes from
b to b + ∆y.

That is,

∆f = (f(a + ∆x, b)− f(a, b)) + (f(a + ∆x, b + ∆y)− f(a + ∆x, b)) .
(16.3.1)

By the mean value theorem, there is a number c1 between a and a + ∆x such
that

f(a + ∆x, b)− f(a, b) =
∂f

∂x
(c1, b)∆x (16.3.2)

The mean value theorem applied to the second bracketed expression in
(16.3.1) shows that there is a number c2 between b and b + ∆y such that

f(a + ∆x, b + ∆y)− f(a + ∆x, b) =
∂f

∂y
(a + ∆x, c2)∆y. (16.3.3)
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Combining (16.3.1), (16.3.2), and (16.3.3) yields

∆f =
∂f

∂x
(c1, b)∆x +

∂f

∂y
(a + ∆x, c2)∆y. (16.3.4)

When both ∆x and ∆y are small, (c1, b) and (a+∆x, c2) are near (a, b). If
we assume that the partial derivatives fx and fy are continuous at (a, b), then

∂f

∂x
(c1, b) =

∂f

∂x
(a, b) + ε1 and

∂f

∂y
(a + ∆x, c2) =

∂f

∂y
(a, b) + ε2, (16.3.5)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0.
Combining (16.3.4) and (16.3.5) gives the key to estimating the change in

the function f . We state this important result as a theorem.

Theorem 16.3.1. Let f have continuous partial derivatives fx and fy for all
points within some disk with center at the point (a, b). Then ∆f , the change
f(a + ∆x, b + ∆y)− f(a, b), can be written

∆f =
∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b)∆y + ε1∆x + ε2∆y, (16.3.6)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0. (Both ε1 and ε2 are
functions of a, b, ∆x, and ∆y.)

Equation (16.3.6) is the core of this section. The term fx(a, b)∆x estimates
the change due to the change in the x-coordinate and fy(a, b)∆y estimates the
change due to the change in the y-coordinate.

We call f(x, y) differentiable at (a, b) if (16.3.6) holds. If fx and fy exist
in a disk around (a, b) and are continuous at (a, b), then f is differentiable at
(a, b).

Since ε1 and ε2 in (16.3.6) approach 0 as ∆x and ∆y approach 0,

∆f ≈ ∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b)∆y, (16.3.7)

The approximation (16.3.7) gives us a way to estimate ∆f when ∆x and
∆y are small.

EXAMPLE 1 Estimate (2.1)2(0.95)3.
SOLUTION Let f(x, y) = x2y3. Because f(2, 1) = 2213 = 4 all that
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remains is to estimate f(2.1, 0.95). Equation (16.3.7) is used to estimate
∆f = f(2.1, 0.95)− f(2, 1):

∂(x2y3)

∂x
= 2xy3 and

∂(x2y3)

∂y
= 3x2y2.

Then
∂f

∂x
(2, 1) = 4 and

∂f

∂y
(2, 1) = 12.

Since ∆x = 0.1 and ∆y = −0.05,

∆f ≈ 4(0.1) + 12(−0.05) = 0.4− 0.6 = −0.2.

The exact value is
3.78102375.

Thus (2, 1)2(0.95)3 is approximately 4 + (−0.2) = 3.8. �

The Chain Rule

We begin with two special cases of the chain rule for functions of more than one
variable. Afterward we will state the chain rule for functions of any number
of variables.

In the first theorem z = f(x, y) where x and y are functions of t. The
second theorem is more general, where x and y are functions of two variables,
t and u.

Theorem 16.3.2 (Chain Rule, Special Case I). Let z = f(x, y) have continu-
ous partial derivatives fx and fy, and let x = x(t) and y = y(t) be differentiable
functions of t. Then z is a differentiable function of t and

dz

dt
=

∂z

∂x

dx

dt
+

∂z

∂y

dy

dt
. (16.3.8)

Proof

A change ∆t causes changes ∆x and ∆y, which cause a change ∆z in z.
By definition,

dz

dt
= lim

∆t→0

∆z

∆t
.

According to Theorem 16.3.1,

∆z =
∂f

∂x
(x, y)∆x +

∂f

∂y
(x, y)∆y + ε1∆x + ε2∆y,

where ε1 → 0 and ε2 → 0 as ∆x and ∆y approach 0. (x and y are fixed.) Thus

∆z

∆t
=

∂f

∂x
(x, y)

∆x

∆t
+

∂f

∂y
(x, y)

∆y

∆t
+ ε1

∆x

∆t
+ ε2

∆y

∆t
,
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and
dz

dt
= lim

∆t→0

∆z

∆t
=

∂f

∂x
(x, y)

dx

dt
+

∂f

∂y
(x, y)

dy

dt
+ 0

dx

dt
+ 0

dy

dt
.

This proves the theorem. •
The two summands on the right-hand side of (16.3.8) remind us of the

chain rule for functions of one variable. Why is there a “+” in (16.3.8)? It
first appears in (16.3.4) and can be traced back to Figure 16.3.1.

(a) (b) (c)

Figure 16.3.2

The diagram in Figure 16.3.2(a) helps in using this case of the chain rule.
There are two paths from the top variable z down to the bottom variable t.
Label each edge with a partial derivative (or derivative). For each path there
is a summand in the chain rule. The left-hand path (see Figure 16.3.2(b))
gives the summand

∂z

∂x

dx

dt
.

The right-hand path (see Figure 16.3.2(c)) gives the summand

∂z

∂y

dy

dt
.

Then dz/dt is their sum.
The total number of terms in a partial derivative of a “top” variable with

respect to a “bottom” variable is the number of paths from the top one to the
bottom one. Each path produces one summand, the product of the factors
that appear in the path. This simple fact provides a quick way to check if any
terms have been omitted from a partial derivative.

EXAMPLE 2 Let z = x2y3, x = 3t2, and y = t/3. Find dz/dt when t = 1.
SOLUTION To apply Theorem 16.3.2 compute zx, zy, dx/dt, and dy/dt:

∂z

∂x
= 2xy3,

∂z

∂y
= 3x2y2,

dx

dt
= 6t, and

dy

dt
=

1

3
.
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By Theorem 16.3.2,
dz

dt
= 2xy3 · 6t + 3x2y2 · 1

3
,

which implies, when t = 1, x is 3 and y is 1
3
, that

dz

dt
= 2 · 3

(
1

3

)3

6 · 1 + 3 · 32

(
1

3

)2
1

3
=

36

27
+

27

27
=

7

3
.

�

In Example 2, dz/dt can be found without using the theorem by writing z
in terms of t:

z = x2y3 = (3t2)2

(
t

3

)3

=
t7

3
.

Then
dz

dt
=

7t6

3
.

When t = 1, this gives
dz

dt
=

7

3
,

as before.

EXAMPLE 3 The temperature at the point (x, y) on a window is T (x, y).
A bug wandering on the window is at the point (x(t), y(t)) at time t. How fast
does the bug observe that the temperature of the glass changes as he crawls
about?
SOLUTION The bug is asking us to find dT/dt. The chain rule (16.3.8)
asserts that

dT

dt
=

∂T

∂x

dx

dt
+

∂T

∂y

dy

dt
.

The bug can influence this rate by crawling faster or slower, changing dx
dt

and
dy
dt

. He may want to know the direction he should choose in order to cool off
or warm up as quickly as possible. We will be able to tell him how to do this
in the next section. �

The proof of the next chain rule is almost identical to the proof of Theo-
rem 16.3.2. (See Exercise 24.)

Theorem 16.3.3 (Chain Rule, Special Case II). Let z = f(x, y) have con-
tinuous partial derivatives, fx and fy. Let x = x(t, u) and y = y(t, u) have
continuous partial derivatives

∂x

∂t
,

∂x

∂u
,

∂y

∂t
,

∂y

∂u
.
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Then
∂z

∂t
=

∂z

∂x

∂x

∂t
+

∂z

∂y

∂y

∂t
and

∂z

∂u
=

∂z

∂x

∂x

∂u
+

∂z

∂y

∂y

∂u
.

The variables are listed in Figure 16.3.3(a).

(a) (b) (c)

Figure 16.3.3

To find zt, draw paths from z down to t. Label their edges by the appro-
priate partial derivative, as shown in Figure 16.3.3(b). Finding zu is shown in
Figure 16.3.3(c).

Each path from the top variable to the bottom variable contributes a
summand in the chain rule. The only difference between Figure 16.3.2 and
Figure 16.3.3(b) is that ordinary derivatives dx/dt and dy/dt appear in Fig-
ure 16.3.2, while partial derivatives xt and yt appear in Figure 16.3.3(b).

In Theorem 16.3.2 there are two middle variables and one bottom variable.
In Theorem 16.3.3 there are two middle variables and two bottom variables.
The chain rule holds for any number of middle variables and any number of
bottom variables. There may be three middle variables and, say, four bottom
variables. Then there are three summands for each of four partial derivatives.

In the next example there is one middle variable and two bottom variables.

EXAMPLE 4 Let z = f(u) be a function of a single variable. Let u =
2x + 3y. Then z is a composite function of x and y. Show that

Figure 16.3.4

2
∂z

∂y
= 3

∂z

∂x
. (16.3.9)

SOLUTION We will evaluate zx and zy by the chain rule and then show that
(16.3.9) is true.

To find zx we use paths from z down to x. (See Figure 16.3.4.) There is
only one middle variable so there is only one such path. Since u = 2x + 3y,
ux = 2 and

∂z

∂x
=

dz

du

∂u

∂x
=

dz

du
· 2 = 2

dz

du
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(One derivative is ordinary, while the other is partial.)
Next we find zy. There is only one summand. Since u = 2x + 3y, uy = 3.

Thus
∂z

∂y
=

dz

du

∂u

∂y
=

dz

du
· 3 = 3

dz

du
.

Thus zx = 2dz/du and zy = 3dz/du. Substitute these into

2
∂z

∂y
= 3

∂z

∂x

and we have a true equation:

2

(
3
dz

du

)
= 3

(
2
dz

du

)
. (16.3.10)

Since (16.3.10) is true, we have verified (16.3.9). �

An Important Use of the Chain Rule

There is a difference between Example 2 and Example 4. In the first, we were
dealing with explicitly given functions. We did not need to use the chain rule to
find the derivative, dz/dt. In Example 4, we were dealing with a general type
of function formed in a certain way: We showed that (16.3.9) holds for every
differentiable function f(u). No matter what f(u) we choose, if u = 2x + 3y,
we know that 2zy = 3zx.

Example 4 shows why the chain rule is important. It enables us to make
general statements about the partial derivatives of an infinite number of func-
tions, all of which are formed the same way. The next example illustrates this
use again.

The wave equation also
appears in the study of

sound or light.

We begin with a brief introduction to that example. D’Alembert in 1746
obtained the partial differential equation for a vibrating string:

∂2y

∂t2
= k2 ∂2y

∂x2
. (16.3.11)

(See Figure C.23.3 in the CIE about the Wave in a Rope at the end of this
chapter.) This wave equation created a great deal of excitement, especially
since d’Alembert showed that any differentiable function of the form

g(x + kt) + h(x− kt)

is a solution. Here k is a constant, which may be positive, negative, or zero.
Before we show that d’Alembert was right, we check his claim for g(x+kt).

The check for h(x− kt) is similar. (It can also be obtained by replacing k by
−k in g(x + kt).)
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Figure 16.3.5

EXAMPLE 5 Show that any function y = g(x + kt) satisfies the partial
differential equation (16.3.11).
SOLUTION To find the partial derivatives yxx and ytt we express y = g(x +
kt) as a composition of functions:

y = g(u) where u = x + kt.

Note that g is a function of one variable. Figure 16.3.5 lists the variables.
We will compute yxx and ytt in terms of derivatives of g and then check

whether (16.3.11) holds. We first compute yxx. Recall that u = x + kt.

∂y

∂x
=

dy

du

∂u

∂x
=

dy

du
· 1 =

dy

du
. (16.3.12)

(There is only one path from y down to x. See Figure 16.3.5.) In (16.3.12)
dy/du is viewed as a function of x and t; that is, u is replaced by x+kt. Next,

∂2y

∂x2
=

∂

∂x

(
∂y

∂x

)
=

∂

∂x

(
dy

du

)
.

Now, dy/du, viewed as a function of x and t, may be expressed as a composite
function. Letting w = dy/du, we have

w = f(u), where u = x + kt.

Figure 16.3.6

Therefore, since there is only one path from w down to x,

∂2y

∂x2
=

∂

∂x

(
∂y

∂x

)
=

∂w

∂x
=

dw

du
· ∂u

∂x
=

d

du

(
dy

du

)
∂u

∂x

so
∂2y

∂x2
=

d2y

du2
. (16.3.13)

Then we express ytt in terms of d2y/du2, as follows. First

∂y

∂t
=

dy

du

∂u

∂t
=

dy

du
· k = k

dy

du

(see Figure 16.3.6).
Then

∂2y

∂t2
=

∂

∂t

(
∂y

∂t

)
=

∂

∂t

(
k
dy

du

)
= k

d

du

(
dy

du

)
· ∂u

∂t
= k

d2y

du2
· k

so
∂2y

∂t2
= k2 d2y

du2
(16.3.14)
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(a) (b)

Figure 16.3.7

Comparing (16.3.13) and (16.3.14) shows that

∂2y

∂t2
= k2 ∂2y

∂x2

�
If z is a function of x1, x2, . . . , xm and each xi is a function of t1, t2, . . . , tn,

then there are n partial derivatives ∂z/∂tj, j = 1, 2, . . . , n. Each is a sum of
m products of the form (∂z/∂xi)(∂xi/∂tj). To organize the calculation, first
make a roster as shown in Figure 16.3.7(a). To compute ∂z/∂tj, list all paths
from z down to tj, as shown in Figure 16.3.7(b). Each path that starts at z
and goes to tj contributes a product.

Summary

The section opened by showing that, under suitable assumptions on f(x, y),
∆f = f(a + ∆x, b + ∆y)− f(a, b) equals

∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b) + ε1∆x + ε2∆y, (16.3.15)

where ε1 and ε2 approach 0 as ∆x and ∆y approach 0. This gave a way to
estimate ∆f , namely

∆f ≈ ∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b)∆y

The change is due to both the change in x and the change in y. Equation
(16.3.15) generalizes to any number of variables and also is the basis for the
various chain rules for partial derivatives.
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EXERCISES for Section 16.3

In Exercises 1 to 4 verify the chain rule, special case I (Theorem 16.3.2, by computing
dz/dt two ways: (a) with the chain rule, (b) without the chain rule, by writing z as
a function of t.

1. z = x2y3, x = t2, y = t3

2. z = xey, x = t, y = 1 + 3t

3. z = cos(xy2), x = e2t, y = sec(3t)
4. z = ln(x + 3y), x = t2, y = tan(3t).

In Exercises 5 and 6 verify the chain rule, special case II (Theorem 16.3.3, by com-
puting dz/dt two ways: (a) with the chain rule, (b) without the chain rule, by
writing z as a function of t and u.

5. z = x2y, x− 3t + 4u, y = 5t− u

6. z = sin(x + 3y), x =
√

t/u, y =
√

t +
√

u

7. Assume that z = f(x1, x2, x3, x4, x5) and that xi is a function of t1, t2, t3.

(a) List all variables, showing top, middle, and bottom variables.

(b) Draw the paths involved in expressing ∂z/∂t3 in terms of the chain rule.

(c) Express ∂z/∂t3 in terms of the sum of products of partial derivatives.

(d) When computing ∂z/∂t3, which variables are constant?

(e) When computing ∂z/∂t2, which variables are constant?

8. If z = f(g(t1, t2, t3), h(t1, t2, t3))

(a) How many middle variables are there?

(b) How many bottom variables?

(c) What does the chain rule say about ∂z/∂t3? Include a diagram showing the
paths.

9. Find dz/dt if zx = 4, zy = 3, dx/dt = 4, and dy/dt = 1.

10. Find dz/dt if zx = 3, zy = 2, dx/dt = 4, and dy/dt = −3.

11. Let z = f(x, y), x = u + v, and y = u− v.
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(a) Show that (zx)2 − (zy)2 = (zu)(zv). Include diagrams.

(b) Verify (a) when f(x, y) = x2 + 2y3.

12. Let z = f(x, y), x = u2 − v2, and y = v2 − u2.

(a) Show that u∂z
∂v + v ∂z

∂u = 0. Include diagrams.

(b) Verify (a) when f(x, y) = sin(x + 2y).

13. Let z = f(t− u,−t + u).

(a) Show that ∂z
∂t + ∂z

∂u = 0 (Include diagrams.)

(b) Verify (a) when f(x, y) = x2y

14. Let w = f(x− y, y − z, z − x).

(a) Show that ∂w
∂x + ∂w

∂y + ∂w
∂z = 0. Include diagrams.

(b) Verify (a) when f(s, t, u) = s2 + t2 − u.

15. Let z = f(u, v), where u = ax + by, v = cx + dy, and a, b, c, d are constants.
Show that

(a)
∂2z

∂x2
= a2 ∂2f

∂u2
+ 2ac

∂2f

∂u∂v
+ c2 ∂2f

∂v2

(b)
∂2z

∂y2
= b2 ∂2f

∂u2
+ 2bd

∂2f

∂u∂v
+ d2 ∂2f

∂v2

(c)
∂2z

∂x∂y
= ab

∂2f

∂u2
+ (ad + bc)

∂2f

∂u∂v
+ cd

∂2f

∂v2
.

16. Let a, b, and c be constants and consider the partial differential equation

a
∂2z

∂x2
+ b

∂2z

∂x∂y
+ c

∂2z

∂y2
= 0.

Suppose it has a solution z = f(y + mx), where m is a constant. Show that
am2 + bm + c must be 0.

17.
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(a) Show that any function of the form z = f(x + y) satisfies

∂2z

∂x2
− 2

∂2z

∂x∂y
+

∂2z

∂y2
= 0.

(b) Verify (a) when z = (x + y)3.

18.

(a) Show that any function of the form z = f(x + y) + eyf(x− y) satisfies

∂2z

∂x2
− ∂2z

∂y2
− ∂z

∂x
+

∂z

∂y
= 0.

(b) Check (a) for z = (x + y)2 + ey sin(x− y).

19. Let z = f(x, y) denote the temperature at the point (x, y) in the first quadrant.
If polar coordinates are used, then we would write z = f(r, θ).

(a) Express zr in terms of zx and xy. (Use the relation between rectangular
coordinates (x, y) and polar coordinates (r, θ).)

(b) Express zθ in terms of zx and zy.

(c) Show that (
∂z

∂x

)2

+
(

∂z

∂y

)2

=
(

∂z

∂r

)2

+
1
r2

(
∂z

∂θ

)2

.

(d) What variable is held constant in ∂z
∂θ?

(e) What variable is held constant in ∂z
∂x?

20. Let u = f(r) and r = (x2 + y2 + z2)1/2. Show that

∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
=

d2u

dr2
+

2
r

du

dr
.

21. At what rate is the volume of a rectangular box changing when its width is 3
feet and increasing at the rate of 2 feet per second, its length is 8 feet and decreasing
at the rate of 5 feet per second, and its height is 4 feet and increasing at the the
rate of 2 feet per second?
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22. The temperature T at (x, y, z) in space is f(x, y, z). An astronaut is traveling
so that his x- and y-coordinates increase at the rate of 4 miles per second and his
z-coordinate decreases at the rate of 3 miles per second. Compute the rate dT/dt
at which the temperature changes at a point where

∂T

∂x
= 4,

∂T

∂y
= 7, and

∂T

∂z
= 9.

23. Let u(x, t) be the temperature at point x along a rod at time t. The function
u satisfies the one-dimensional heat equation for a constant k:

∂u

∂t
= k

∂2u

∂x2
.

(a) Show that u(x, t) = ektg(x) satisfies the heat equation if g(x) is any function
such that g′′(x) = g(x).

(b) Show that if g(x) = 3e−x + 4ex, then g′′(x) = g(x).

24. We proved Theorem 16.3.2 when there are two middle variables and one
bottom variable. Prove Theorem 16.3.3 when there are two middle variables and
two bottom variables.

25. To prove the general chain rule when there are three middle variables, we need
an analog of Theorem 16.3.1 concerning ∆f when f is a function of three variables.

(a) Let y = f(x, y, x) be a function of three variables. Show that

∆f = f(x + ∆x, y + ∆y, z + ∆z)− f(x, y, z)
= (f(x + ∆x, y + ∆y, z + ∆z)− f(x + ∆x, y + ∆y, z) + (f(x + ∆x, y + ∆y, z)− f(x + ∆x, y, z))

+(f(x + ∆x, y, z)− f(x, y, z)).

(b) Using (a) show that

∆f =
∂f

∂x
(x, y, z)∆x +

∂f

∂y
(x, y, z)∆y +

∂f

∂z
(x, y, z)∆z + ε1∆x + ε2∆y + ε3∆z,

where ε1, ε2, ε3 → 0 as ∆x, ∆y, ∆z → 0.

(c) Obtain the general chain rule for three middle variables and any number of
bottom variables.
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26. Let z = f(x, y), where x = r cos(θ) and y = r sin(θ). Show that

∂2z

∂r2
= cos2(θ)

∂2f

∂x2
+ 2 cos(θ) sin(θ)

∂2f

∂x∂y
+ sin2(θ)

∂2f

∂y2
.

27. Let u = f(x, y), where x = r cos(θ) and y = r sin(θ). Verify the following
equation, which appears in electromagnetic theory,

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
=

∂2u

∂x2
+

∂2u

∂y2
.

28. Let u be a function of x and y, where x and y are both functions of s and t.
Show that

∂2u

∂s2
=

∂2u

∂x2

(
∂x

∂s

)2

+ 2
∂2u

∂x∂y

∂x

∂s

∂y

∂x
+

∂2u

∂y2

(
∂y

∂x

)2

+
∂u

∂x

∂2x

∂s2
+

∂u

∂y

∂2y

∂s2
.

29. Let (r, θ) be polar coordinates for the point (x, y) given in rectangular coor-
dinates.

(a) From r =
√

x2 + y2, show that ∂r/∂x = cos(θ).

(b) From r = x/ cos θ, show that ∂r/∂x = 1/ cos(θ).

(c) Explain why (a) and (b) are not contradictory.

30. In developing (16.3.6), we used the path that started at (x, y), went to
(x + ∆x, y), and ended at (x + ∆x, y + ∆y). Could we have used the path from
(x, y), through (x, y + ∆y), to (x + ∆x, y + ∆y) instead? If not, explain why. If so
write out the argument, using the path.

In Exercises 31 to 35 concern homogeneous functions. A function f(x, y) is
homogeneous of degree r if f(kx, ky) = krf(x, y) for all k > 0.

31. Show that the following functions are homogeneous, and find the degree r.

(a) f(x, y) = x2(lnx− ln y)

(b) f(x, y) = 1/
√

x2 + y2
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(c) f(x, y) = sin
( y

x

)
32. Show that if f is homogeneous of degree r, then xfx + yfy = rf . This is
Euler’s theorem.
33. Verify that the following functions are homogeneous of degree 1 and that they
satisfy the conclusion of Euler’s theorem (with r = 1):

f(x, y) = x
∂f

∂x
+ y

∂f

∂y
.

(a) f(x, y) = 3x + 4y

(b) f(x, y) = x3y−2

(c) f(x, y) = xex/y

34. (See Exercise 32.) Verify Euler’s theorem for the functions in Exercise 31.

35. (See Exercise 31.) Show that if f is homogeneous of degree r, then ∂f/∂x is
homogeneous of degree r − 1.
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16.4 Directional Derivatives and the Gradient

In this section we generalize the notion of a partial derivative to that of a
directional derivative. Then we introduce a vector, called the gradient, to
provide a formula for the directional derivative. The gradient will have other
uses later in this chapter and in Chapter 18.

Directional Derivatives

If z = f(x, y), the partial derivative ∂f/∂x tells how rapidly z changes as we
move (x, y) in a direction parallel to the x-axis with increasing x. Similarly,
fy tells how fast z changes as we move parallel to the y-axis with increasing y.
How rapidly does z change when we move the input point (x, y) in any fixed
direction in the xy-plane? The answer is given by the directional derivative.

Let z = f(x, y), (a, b) be a point, and u be a unit vector in the xy-plane.
It is important to remember
that |u| = 1.

Draw a line through (a, b) parallel to u. Call it the t-axis and let its positive
part point in the direction of u. Place the 0 of the t-axis at (a, b). (See
Figure 16.4.1.) A value of t determines a point (x, y) on the t-axis and thus
a value of z. Along the t-axis, z is a function of t, z = g(t). The derivative
dg/dt, evaluated at t = 0, is called the directional derivative of z = f(x, y)
at (a, b) in the direction u. It is denoted Duf . The directional derivative is the
slope of the tangent line to the curve z = g(t) at t = 0. (See Figure 16.4.1(c).)

(a) (b) (c)

Figure 16.4.1

When u = i, we obtain the directional derivative Dif , which is fx. When
u = j, we obtain Djf , which is fy.

The directional derivative generalizes the partial derivatives fx and fy,
giving the rate of change of z = f(x, y) in any direction in the xy-plane, not
just in the directions indicated by i and j.

The following theorem shows how to compute a directional derivative.
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Theorem 16.4.1 (Directional Derivatives). If f(x, y) has continuous partial
derivatives fx and fy, then the directional derivative of f at (a, b) in the direc-
tion of u = cos(θ)i + sin(θ)j, where θ is the angle between u and i, is

∂f

∂x
(a, b) cos(θ) +

∂f

∂y
(a, b) sin(θ). (16.4.1)

Proof

Figure 16.4.2

The point (x, y) corresponding to the parameter t is (a + t cos(θ), b + t sin(θ)).
Thus the directional derivative of f at (a, b) in the direction u is the derivative
of

g(t) = f(a + t cos(θ), b + t sin(θ))

when t = 0. (See Figure 16.4.2 and Figure 16.4.3.)
Because g is a composite function: g(t) = f(x, y) where x = a + t cos(θ)

and y = b + t sin(θ), the chain rule tells us that

g′(t) =
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Because

Figure 16.4.3

dx

dt
= cos(θ) and

dy

dt
= sin(θ)

it follows that

g′(0) =
∂f

∂x
(a, b) cos θ +

∂f

∂y
(a, b) sin θ,

and the theorem is proved. •

When θ = 0, that is, when u = i, (16.4.1) becomes

∂f

∂x
(a, b) cos(0) +

∂f

∂y
(a, b) sin(0) =

∂f

∂x
(a, b)(1) +

∂f

∂y
(a, b)(0) =

∂f

∂x
(a, b).

When θ = π, that is when u = −i, (16.4.1) becomes

∂f

∂x
(a, b) cos(π) +

∂f

∂y
(a, b) sin(π) =

∂f

∂x
(a, b)(−1) +

∂f

∂y
(a, b)(0) = −∂f

∂x
(a, b).

(It makes sense that if g increases in one direction then it decreases in the
opposite direction.)

When θ = π
2
, that is when u = j, (16.4.1) asserts that the directional

derivative is

∂f

∂x
(a, b) cos(

π

2
) +

∂f

∂y
(a, b) sin(

π

2
) =

∂f

∂x
(a, b)(0) +

∂f

∂y
(a, b)(1) =

∂f

∂y
(a, b),
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also as expected.

EXAMPLE 1 Compute the derivative of f(x, y) = x2y3 at (1, 2) in the di-
rection given by the angle π/3. (That is, u = cos(π/3)i+sin(π/3)j.) Interpret
the result if f describes a temperature distribution.

SOLUTION First of all ∂f
∂x

= 2xy3 and ∂f
∂y

= 3x2y2. Therefore ∂f
∂x

(1, 2) = 16

and ∂f
∂y

(1, 2) = 12. Because cos
(

π
3

)
= 1

2
and sin

(
π
3

)
=

√
3

2
, the derivative of f

in the direction given by θ = π/3 is

16

(
1

2

)
+ 12

(√
3

2

)
= 8 + 6

√
3 ≈ 18.4.

If x2y3 is the temperature in degrees at (x, y), where x and y are measured in
centimeters, then the rate at which the temperature changes at (1, 2) in the
direction given by θ = π/3 is approximately 18.4 degrees per centimeter. �

The Gradient

Equation (16.4.1) resembles a dot product. To exploit this similarity, we in-
troduce the vector whose scalar components are fx(a, b) and fy(a, b).

The del symbol is in
boldface because the
gradient of f is a vector.DEFINITION (The gradient of f(x, y)) The vector

∂f

∂x
(a, b)i +

∂f

∂y
(a, b)j

is the gradient of f at (a, b) and is denoted ∇f . (It is also called
del f , because of the upside-down delta ∇.)

Figure 16.4.4

Let f(x, y) = x2 + y2. We compute and draw ∇f at a few points, listed
in Table 16.4.1: Figure 16.4.4 shows ∇f , with its tail placed where ∇f is

(x, y) ∂f
∂x

= 2x ∂f
∂y

= 2y ∇f

(1, 2) 2 4 2i + 4j
(3, 0) 6 0 6i

(2,−1) 4 −2 4i− 2j

Table 16.4.1

evaluated.
In vector notation, Theorem 16.4.1 reads as follows:
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Theorem 16.4.2 (Directional Derivative, Rephrased). If z = f(x, y) has con-
tinuous partial derivatives fx and fy, then at (a, b)Shorthand: Duf = ∇f · u.

Duf = ∇f(a, b) · u = (fx(a, b)i + fy(a, b)j) · u.

The gradient is introduced not merely to provide a short notation for di-
rectional derivatives. Its importance is made clear in the next theorem.

A Different View of the Gradient

The gradient vector ∇f(a, b) provides two pieces of geometric information
about a function. First, it points in the direction in the xy-plane in which
the function increases most rapidly from the point (a, b). Second, its length,
|∇f(a, b)|, is the largest directional derivative of f at (a, b).

The meaning of |∇f | and
the direction of ∇f

Theorem 16.4.3 (Significance of∇f). Let z = f(x, y) have continuous partial
derivatives fx and fy. Let (a, b) be a point where ∇f is not 0.

Figure 16.4.5

Then the length
of ∇f at (a, b) is the largest directional derivative of f at (a, b). The direction
of ∇f is the direction of the largest directional derivative at (a, b).

Proof

If u is a unit vector, then at (a, b)

Duf = ∇f · u.

By the definition of the dot product

∇f · u = |∇f ||u| cos(∇f,u),

(In Figure 16.4.5 the angle between ∇f and u is labeled α.) Since |u| = 1,

Duf = |∇f | cos(∇f,u). (16.4.2)

The largest value of cos(∇f,u) occurs when the angle between ∇f and u
is 0. That is, when u points in the direction of ∇f . Thus, by (16.4.2), the
largest directional derivative of f(x, y) at (a, b) occurs when the direction is
that of ∇f at (a, b). For that u, Duf = |∇f |. This proves the theorem. •

EXAMPLE 2 What is the largest directional derivative of f(x, y) = x2y3

at (2, 3)? In what direction does the maximum directional derivative occur?
SOLUTION By direct calculation,

∇f = 2xy3i + 3x2y2j.
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The gradient vector at (2, 3) is

∇f(2, 3) = 108i + 108j,

which is sketched in Figure 16.4.6.

Figure 16.4.6

Its angle θ is π/4. The maximal directional

derivative of x2y3 at (2, 3) is |∇f | = 108
√

2. This occurs at the angle θ = π/4
relative to the x-axis, that is, for

u = cos
(π

4

)
i + sin

(π

4

)
j =

√
2

2
i +

√
2

2
j.

�
Direction of fastest decrease
is −∇f

If f(x, y) denotes the temperature at (x, y), the gradient ∇f helps indicate
the direction in which heat flows. It tends to flow toward the cold, which is
the mathematical assertion that heat tends to flow in the direction of −∇f .

The gradient and directional derivative have been interpreted in terms of a
temperature distribution in the plane. It is also instructive to interpret them
for a hiker on a mountain.

The elevation of a point on the surface of a mountain above the point (x, y)
will be denoted by f(x, y). The directional derivative Duf indicates the rate at
which elevation changes per unit change in horizontal distance in the direction
of u. The gradient ∇f at (a, b) points in the direction of steepest ascent. The
length of ∇f tells the hiker how steep the slope is. (See Figure 16.4.7.)

Figure 16.4.7

Generalization to f(x, y, z)

Directional derivatives and gradients can be generalized to functions of three
or more variables. The directional derivative of f(x, y, z) in a direction in
space indicates the rate of change in that direction.

Let u be a unit vector in space with direction angles α, β, and γ. Then
u = cos αi + cos βj + cos γk. We now define the derivative of f(x, y, z) in the
direction u.

DEFINITION (Directional Derivative of f(x, y, z).) The direc-
tional derivative of f at (a, b, c) in the direction of the unit vector
u = cos(α)i + cos(β)j + cos(γ)k is g′(0), where g is defined by

g(t) = f(a + t cos(α), b + t cos(β), c + t cos(γ)).

It is denoted Duf .

The variable t measures the length along the line through (a, b, c) with
direction angles α, β, and γ. Therefore Duf is a derivative along the t-axis.

The proof of Theorem 16.4.4 for a function of three variables is like that
for functions of two variables.
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Theorem 16.4.4 (Directional Derivative of f(x, y, z)). If f(x, y, z) has con-
tinuous partial derivatives fx, fy, and fz, then the directional derivative of f
at (a, b, c) in the direction of the unit vector u = cos(α)i+cos(β)j+cos(γ)k is

∂f

∂x
(a, b, c) cos(α) +

∂f

∂y
(a, b, c) cos(β) +

∂f

∂z
(a, b, c) cos(γ).

To write the directional derivative in space as a dot product brings us to
the definition of the gradient of a function of three variables.

DEFINITION (The gradient of f(x, y, z).) The vector

∂f

∂x
(a, b, c)i +

∂f

∂y
(a, b, c)j +

∂f

∂z
(a, b, c)k

is the gradient of f at (a, b, c) and is denoted ∇f .

Theorem 16.4.4 asserts that

The derivative of f(x, y, z) in the direction of the unit vector u equals the dot
product of the gradient of f and u:

Duf = ∇f · u.

As for a function of two variables, ∇f evaluated at (a, b, c) points in the
direction u that produces the largest directional derivative there and |∇f | is
the largest directional derivative there. As for two variables, the key step in
the proof of this theorem is writing ∇f · u = |∇f ||u| cos(∇f,u).

EXAMPLE 3 The temperature at the point (x, y, z) in a solid piece of
metal is given by f(x, y, z) = e2x+y+3z degrees. In what direction at the point
(0, 0, 0) does the temperature increase most rapidly?

SOLUTION Because

∂f

∂x
= 2e2x+y+3z,

∂f

∂y
= e2x+y+3z,

∂f

∂z
= 3e2x+y+3z,

the gradient vector is

∇f = 2e2x+y+3zi + e2x+y+3zj + 3e2x+y+3zk.

At (0, 0, 0),
∇f = 2i + j + 3k.
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The direction of most rapid increase in temperature is that given by the unit
vector u = (2i + j + 3k)/

√
14. The rate of increase is

|2i + j + 3k| =
√

14 degrees per unit length.

If the line through (0, 0, 0) parallel to 2i + j + 3k is given a coordinate system
so that it becomes the t-axis, with t = 0 at the origin and the positive part in
the direction of 2i + j + 3k, then df/dt =

√
14 at 0. �

The gradient was denoted ∆ by Hamilton in 1846. By 1870 it was denoted ∇,
an upside-down delta, and therefore called “atled.” In 1871 Maxwell wrote,
“The quantity ∇P is a vector. I venture, with much diffidence, to call it the
slope of P . Slope is no longer used in this context, having been replaced by
gradient, which comes from grade, the slope of a road or surface. The name
“del” first appeared in print in 1901, in Vector Analysis, A text-book for the
use of students of mathematics and physics founded upon the lectures of J.
Willard Gibbs, by E.B. Wilson.

Summary

We defined the derivative of f(x, y) at (a, b) in the direction of the unit vector u
in the xy-plane and the derivative of f(x, y, z) at (a, b, c) in the direction of
the unit vector u in space. Both are denoted Duf . Then we introduced the
gradient vector ∇f in terms of its components and obtained the formula

Duf = ∇f · u.

By examining this formula we saw that the length and direction of ∇f at a
given point are significant: ∇f points in the direction u that maximizes Duf
at the given point and |∇f | is the maximum directional derivative of f at the
given point.
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EXERCISES for Section 16.4

As usual, all functions in these exercises are assumed to have continuous partial
derivatives.
1. In what direction from (a, b) does a function decrease most rapidly? What is
the maximum rate of decrease?

2. Explain in words, using no symbols, the meaning of Duf .

In Exercises 3 and 4 compute the directional derivative of x4y5 at (1, 1) in the given
direction.

3. (a) i, (b) −i, (c) cos(π/4)i + sin(π/4)j
4. (a) j, (b) −j, (c) cos(π/3)i + sin(π/3)j

In Exercises 5 and 6 compute the directional derivative of x2y3 in the given direction.

5. (a) j, (b) k, (c) −i

6. (a) i+ j+k, (b) 2i− j, (c) 2i− 3j (As these are not unit vectors. first construct
a unit vector with the same direction.)

7. Assume that at the point (2, 3), ∂f/∂x = 4 and ∂f/∂y = 5.

(a) Draw ∇f at (2, 3).

(b) What is the maximal directional derivative of f at (2, 3)?

(c) For which u is Duf at (2, 3) maximal? (Write u in the form xi + yj.)

8. Assume that at the point (1, 1), ∂f/∂x = 3 and ∂f/∂y = −3.

(a) Draw ∇f at (1, 1).

(b) What is the maximal directional derivative of f at (1, 1)?

(c) For which u is Duf at (1, 1) maximal? (Write u in the form xi + yj.)

In Exercises 9 and 10 compute and draw ∇f at the given point.

9. f(x, y) = x2y at (a) (2, 5), (b) (3, 1)
10. f(x, y) = 1/

√
x2 + y2 at (a) (1, 2), (b) (3, 0)
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11. If the maximal directional derivative of f at (a, b) is 5, what is the minimal
directional derivative there? Explain.

12. For a function f(x, y) at (a, b) is there always a direction in which the direc-
tional derivative is 0? Explain.

13. If (∂f/∂x)(a, b) = 2 and (∂f/∂y)(a, b) = 3, in what direction should a
directional derivative at (a, b) be computed in order that it be

(a) 0?

(b) as large as possible?

(c) as small as possible?

14. If, at the point (a, b, c), ∂f/∂x = 2, ∂f/∂y = 3, ∂f/∂z = 4, what is the largest
directional derivative of f at (a, b, c)?

15. Assume that f(1, 2) = 2 and f(0.99, 2.01) = 1.98.

(a) Which directional derivatives Duf at (1, 2) can be estimated? (Give u.)

(b) Estimate the directional derivatives in (a).

16. Assume that f(1, 1, 1) = 3 and f(1.1, 1.2, 1.1) = 3.1.

(a) Which directional derivatives Duf at (1, 1, 1) can be estimated? (Give u.)

(b) Estimate the directional derivatives in (a).

17. When moving east on the xy-plane, the temperature increases at the rate of
0.02◦ per centimeter. When moving north, the temperature decreases at the rate of
−0.03◦ per centimeter.

(a) At what rate does the temperature change when going south?

(b) At what rate does the temperature change when moving 30◦ north of east?

(c) In what direction should one move to keep the temperature the same? (That
is, moving in what direction stays on the same level curve of the temperature?)
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18. The temperature increases at the rate of 2◦ per kilometer towards the east
and decreases at the rate of 2◦ per kilometer towards the north. In what direction
does the temperature

(a) increase most rapidly?

(b) decrease most rapidly?

(c) change as little as possible?

19. In the direction i, the temperature increases at the rate of 0.03◦ per centimeter.
In the direction j, the temperature decreases at the rate of 0.02◦ per centimeter. In
the direction k the temperature increases at the rate of 0.05◦ per centimeter. Does
the temperature increase, decrease, or stay the same in the direction 〈2, 5, 1〉?

20. Assume that f(1, 2) = 3 and that the directional derivative of f at (1, 2) in
the direction of the (non-unit) vector i + j is 0.7. Estimate f(1.1, 2.1).

21. Assume that f(1, 1, 2) = 4 and that the directional derivative of f at
(1, 1, 2) in the direction of the vector from (1, 1, 2) to (1.01, 1.02, 1.99) is 3. Es-
timate f(0.99, 0.98, 2.01).

In Exercises 22 to 27 find the directional derivative of the function in the given
direction and the maximum directional derivative.

22. xyz2 at (1, 0, 1), i + j + k

23. x3yz at (2, 1,−1), 2i− k

24. exy sin(z) at (1, 1, π/4), i + j + +3k
25. arctan(

√
x2 + y + z) at (1, 1, 1), −i

26. ln(1 + xyz) at (2, 3, 1), −i + j

27. xxyez2
at (1, 1, 0), i− j + k

28. Let f(x, y, z) = 2x + 3y + z.

(a) Compute ∇f at (i) (0, 0, 0) and (ii) (1, 1, 1).

(b) Draw ∇f for the points in (a), putting the tail at the point.

29. Let f(x, y, z) = x2 + y2 + z2.
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(a) Compute ∇f at (i) (2, 0, 0), (ii) (0, 2, 0), and (iii) (0, 0, 2).

(b) Draw ∇f for the points in (a), putting the tail at the point.

30. Let T (x, y, z) be the temperature at the point (x, y, z). Assume that ∇T at
(1, 1, 1) is 2i + 3j + 4k.

(a) Find DuT at (1, 1, 1) if u is in the direction of i− j + 2k.

(b) Estimate the change in temperature as one moves from the point (1, 1, 1) a
distance 0.2 in the direction of i− j + 2k.

(c) Find three unit vectors u such that DuT = 0 at (1, 1, 1).

31. Let f(x, y) = 1/
√

x2 + y2 and r = 〈x, y〉. (Note that f is not defined at
(0, 0).)

(a) Show that ∇f = −r/|r|3.

(b) Show that |∇f | = 1/|r|2.

32. Let f(x, y, z) = 1/
√

x2 + y2 + z2 and r = xi + yj + zk. (Note that f is not
defined at (0, 0, 0).)

(a) Express ∇f in terms of r.

(b) Express |∇f | in terms of r.

33. Let f(x, y) = x2 + y2. Prove that if (a, b) is a point on the curve x2 + y2 = 9,
then ∇f computed at (a, b) is perpendicular to the tangent line to the curve at (a, b).

34. Let f(x, y, z) be the temperature at (x, y, z). Let P = (a, b, c) and Q be a
point near (a, b, c). Show that ∇f ·

−−→
PQ is a good estimate of the change in temper-

ature from P to Q.

35. If f(P ) is the electric potential at the point P , then the electric field E at P is
given by (−1/c2)∇f , where c is a constant. Calculate E if f(x, y) = sin(αx) cos(βy),
where α and β are constants.
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36. The equality ∂2f/∂x∂y = ∂2f/∂y∂x can be written as Di(Djf) = Dj(Dif).
Show that Du2(Du1f) = Du1(Du2f) for any unit vectors u1 and u2. (Assume that
partial derivatives of f of all orders are continuous.)

37. Figure 16.4.8 shows two level curves of f(x, y) near (1, 2), namely f(x, y) = 3
and f(x, y) = 3.02. Use it to estimate

(a) Dif at (1, 2)

(b) Djf at (1, 2)

(c) Draw ∇f at (1, 2).

Figure 16.4.8

38. Assume that ∇f at (a, b) is not 0. Show that there are unit vectors u1 and
u2 such that the directional derivatives of f at (a, b) in the directions of u1 and u2

are 0.

39. Assume that ∇f at (a, b, c) is not 0. How many unit vectors u are there such
that Duf(a, b, c) = 0? Explain.

40. Let f(x, y) be the temperature at (x, y). Assume that ∇f at (1, 1) is 2i + 3j.
A particle moves northwest at the rate of 3 centimeters per second. Let g(t) be the
temperature at the point where the particle is at time t seconds. Then dg/dt is the
rate at which temperature changes on the particle’s journey (degrees per second.)
Find dg/dt when the particle is at (1, 1).

41. Assume that f is defined throughout the xy-plane. If f(x, y) = g(y), then
∂f/∂x = 0. Is the converse true? That is, if ∂f/∂x = 0, is there a function g of one
variable such that f(x, y) = g(y)?
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42. Let f and g be scalar functions defined throughout the xy-plane. Assume
they have the same gradient, ∇f = ∇g at all points. Must f = g? Is there any
relation between f and g?

43. Let f(x, y) = xy.

(a) Draw the level curve xy = 4 carefully.

(b) Compute ∇f at three points on the level curve and draw it with its tail at
the point where it is evaluated.

(c) What angle does ∇f seem to make with the curve at the point where it is
evaluated?

(d) Prove that the angle is what you think it is.

44. Without the aid of vectors, prove that the maximum value of

g(θ) =
∂f

∂x
(a, b) cos(θ) +

∂f

∂y
(a, b) sin(θ)

is
√

(∂f/∂x(a, b))2 + (∂f/∂y(a, b))2. (This is the first part of Theorem 16.4.3.) (To
simplify the notation, write g as A cos(θ) + B sin(θ).)

45.

Sam: They said that if you know ∇f · u for every unit vector u, then you know
∇f .

Jane: What’s wrong with that?

Sam: What if there’s another vector A such that A · u = Duf for every vector u?

Jane: So?

Sam: Then you don’t pinpoint ∇f by its dot products with all unit vectors.

Jane: Maybe they have to rewrite this section?

Sam: If so, it’s their own fault. Sixteen chapters have taught me to question au-
thority.

Is Sam right? Must part of this section be rewritten?
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16.5 Normals and Tangent Planes

In this section we find a normal vector to a curve whose equation is f(x, y) = k
and to a surface whose equation is f(x, y, z) = k. We also find the tangent
plane at a point on a surface.

Normals to a Curve in the xy-Plane

We saw in Section 14.4 how to find a normal vector to a curve when the curve
is given parametrically, r = G(t). Now we will see how to find a normal
when the curve is given as a level curve, that is as the graph of f(x, y) = k.
We assume that functions are well behaved, meaning curves have continuous
tangent vectors and functions have continuous partial derivatives.

Theorem 16.5.1. The gradient ∇f at (a, b) is a normal to the level curve of
f passing through (a, b).

Proof

Let G(t) = x(t)i+y(t)j be a parameterization of the level curve of f that passes
through (a, b) = G(t0). On it f(x, y) is a constant and has value f(a, b). Let
G′(t0) = dx

dt
(t0)i + dy

dt
(t0)j be the tangent vector to the curve at (a, b) and let

the gradient of f at (a, b) be ∇f(a, b) = fx(a, b)i + fy(a, b)j. We wish to show
that

∇f ·G′(t0) = 0

or
∂f

∂x
(a, b)

dx

dt
(t0) +

∂f

∂y
(a, b)

dy

dt
(t0) = 0. (16.5.1)

The left side of (16.5.1) has the form of a chain rule. Let

u(t) = f(x(t), y(t)).

Because f has the same value at every point on a level curve, u(t) = f(a, b).
Thus u(t) is a constant function, which implies du/dt = 0.

Because u can be viewed as a function of x and y, where x and y are
functions of t, the chain rule gives

du

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Since du/dt = 0, (16.5.1) follows. Hence ∇f evaluated at (a, b) is a normal
vector to the level curve of f that passes through (a, b). •

What does the theorem say about a weather map that shows the barometric
pressure? On level curves the pressures are equal. The gradient ∇f points
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in the direction in which the pressure increases most rapidly. Consequently
−∇f points in the direction the pressure is decreasing most rapidly. Since the
wind tends to go from high pressure to low pressure, we can think of −∇f as
representing the wind. (Earth’s rotation also affects the wind.)

Figure 16.5.1

Figure 16.5.1 shows a level curve and gradient. The gradient is perpendic-
ular to the level curve. As we saw in Section 16.4, the gradient points in the
direction in which the function increases most rapidly.

EXAMPLE 1 Find and draw a normal vector to the hyperbola xy = 6 at
the point (2, 3).
SOLUTION Let f(x, y) = xy. Then fx = y and fy = x. Hence,

∇f = yi + xj

Figure 16.5.2

so
∇f(2, 3) = 3i + 2j.

This gradient and level curve xy = 6 are shown in Figure 16.5.2. �

EXAMPLE 2 Find an equation of the tangent line to the ellipse x2 +3y2 =
7 at (2, 1).
SOLUTION As we saw in Section 14.4, we may write the equation of a line
in the plane if we know a point on it and a vector normal to it. We know that
(2, 1) lies on the line. We use a gradient to produce a normal.

The ellipse x2 +3y2 = 7 is a level curve of f(x, y) = x2 +3y2. Since fx = 2x
and fy = 6y, ∇f = 2xi + 6yj, in particular

∇f(2, 1) = 4i + 6j.

Figure 16.5.3

Hence the tangent line at (2, 1) has the equation

4(x− 2) + 6(y − 1) = 0 or 4x + 6y = 14.

The level curve, normal vector, and tangent line are shown in Figure 16.5.3. �

Normals to a Surface

We can construct a vector perpendicular to a surface f(x, y, z) = k at a point
P = (a, b, c) as we constructed a vector perpendicular to a curve. The gradient
vector ∇f evaluated at (a, b, c) is perpendicular to the surface f(x, y, z) = k.
The proof of this is similar to the proof of Theorem 16.5.2 for normal vectors
to a level curve.

We define what is meant by a vector being perpendicular to a surface.
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DEFINITION (Normal vector to a surface) A vector is perpen-
dicular to a surface at (a, b, c) on the surface if it is perpendicular
to each curve on the surface through (a, b, c). It is called a normal
vector.

The next theorem provides a way to find normal vectors to a level surface
f(x, y, z) = k.

Theorem 16.5.2 (Normal vectors to a level surface.). The gradient ∇f at
(a, b, c) is a normal to the level surface of f passing through (a, b, c).

The proof consists of showing that ∇f at (a, b, c) is perpendicular to each
curve in the level surface of f at (a, b, c). It differs from the proof of Theo-
rem 16.5.1 only in that the vectors have three components instead of two.

A check of this theorem is to see whether it is correct when the level surfaces
are planes. Let f(x, y, z) = Ax + By + Cz + D. The plane Ax + By + Cz +
D = 0 is the level surface f(x, y, z) = 0. According to the theorem, ∇f is
perpendicular to it. Because fx = A, fy = B, and fz = C,

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k = Ai + Bj + Ck.

This agrees with the fact that Ai+ Bj+ Ck is normal to the plane, as we saw
by vector algebra in Section 14.4.

EXAMPLE 3 Find a normal vector to the ellipsoid x2 + y2/4 + z2/9 = 3
at (1, 2, 3).
SOLUTION The ellipsoid is a level surface of

f(x, y, z) = x2 +
y2

4
+

z2

9
.

The gradient of f at (x, y, z) is

∇f = 2xi +
y

2
j +

2z

9
k.

At (1, 2, 3)

∇f = 2i + j +
2

3
k.,

which is a normal to the ellipsoid at (1, 2, 3). �
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Tangent Planes to a Surface

Now that we can find a normal to a surface we can define a tangent plane at
a point on the surface.

Figure 16.5.4

DEFINITION (Tangent plane to a surface) Consider a surface
that is a level surface of a function u = f(x, y, z). Let (a, b, c) be a
point on the level surface of u = f(x, y, z) where ∇f is not 0. The
tangent plane to the surface at (a, b, c) is the plane through (a, b, c)
that is perpendicular to the vector ∇f evaluated at (a, b, c).

The tangent plane at (a, b, c) is the plane that best approximates the surface
near (a, b, c). It consists of all the tangent lines to curves in the surface that
pass through (a, b, c). See Figure 16.5.4.

An equation of the plane
through (x0, y0, z0)
perpendicular to 〈A,B, C〉
is A(x− x0) + B(y − y0) +
C(z − z0) = 0.

An equation of the tangent plane to the surface f(x, y, z) = k at (a, b, c) is

∂f

∂x
(a, b, c)(x− a) +

∂f

∂y
(a, b, c)(y − b) +

∂f

∂z
(a, b, c)(z − c) = 0.

EXAMPLE 4 Find an equation of the tangent plane to the ellipsoid x2 +
y2/4 + z2/9 = 3 at (1, 2, 3).
SOLUTION By Example 3, 2i+ j+ 2

3
k is normal to the surface at the point

(1, 2, 3). The tangent plane consequently has an equation

2(x− 1) + 1(y − 2) +
2

3
(z − 3) = 0.

�

Normals and Tangent Planes to z = f(x, y)

A surface may be described explicitly in the form z = f(x, y) rather than
implicitly in the form f(x, y, z) = k. The techniques we developed enable us
to find the normal and tangent plane for z = f(x, y) as well.

Finding a normal to the
surface z = f(x, y)

If we write z = f(x, y) as z − f(x, y) = 0 and let g(x, y, z) be z − f(x, y),
then the surface z − f(x, y) = 0 is the level surface g(x, y, z) = 0. There is
no need to memorize a formula for a vector normal to the surface z = f(x, y).

Figure 16.5.5

The next example illustrates this.

EXAMPLE 5 Find a vector perpendicular to z = y2 − x2 at (1, 2, 3).

SOLUTION Write z = y2 − x2 as z + x2 − y2 = 0. The surface is a level
surface of g(x, y, z) = z + x2 − y2. Hence ∇g = 2xi − 2yj + k and therefore
2i− 4j + k is perpendicular to the surface at (1, 2, 3).

The surface looks like a saddle near the origin. The surface and the normal
vector are shown in Figure 16.5.5. �
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Estimates by Tangent Planes

For a function of one variable, y = f(x), the tangent line at (a, f(a)) closely
approximates the graph of y = f(x) near (a, f(a)). The equation of the tangent
line, y = f(a) + f ′(a)(x − a), gives us a linear approximation of f(x). (See
Section 5.4.)

We can use the tangent plane to the surface z = f(x, y) similarly. To find
the equation of the plane tangent at (a, b, f(a, b)), we first write the equation
of the surface as

g(x, y, z) = f(x, y)− z = 0.

Then ∇g is a normal to the surface at (a, b, f(a, b)). Because

∇g =
∂f

∂x
i +

∂f

∂y
j− k,

(where the partial derivatives are evaluated at (a, b)), the equation of the
tangent plane at (a, b, f(a, b)) is

∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b)− (z − f(a, b)) = 0.

We can write this as

z = f(a, b) +
∂f

∂x
(a, b)(x− a) +

∂f

∂y
(a, b)(y − b). (16.5.2)

Letting ∆x = x− a and ∆y = y − b, (16.5.2) becomes

z = f(a, b) +
∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b)∆y.

This tells us that the change of the z coordinate on the tangent plane, as the
x coordinate changes from a to a + ∆x and the y coordinate changes from b
to b + ∆y, is exactly

∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b)∆y.

Figure 16.5.6

By (16.3.1) in Section 16.3, this is an estimate of the change ∆f in the
function f as its argument changes from (a, b) to (a + ∆x, b + ∆y). This is
another way of saying that the tangent plane to z = f(x, y) at (a, b, f(a, b)) is
close to the surface. See Figure 16.5.6.

The expression fx(a, b) dx + fy(a, b) dy is called the differential of f at
(a, b). For small values of dx and dy it is a good estimate of f(a+dx, b+dy)−
f(a, b).

EXAMPLE 6 Let z = f(x, y) = x2y. Let ∆z = f(1.01, 2.02)− f(1, 2) and
let

dz =
∂f

∂x
(1, 2) · 0.01 +

∂f

∂y
(1, 2) · 0.02.
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Compute ∆z and dz.
SOLUTION

∆z = (1.01)2(2.02)− 122 = 2.060602− 2 = 0.060602

Since fx = 2xy and fy = x2, we have fx = 4 and fy = 1 at (1, 2). Hence,

dz = (4)(0.01) + (1)(0.02) = 0.06,

a good approximation of ∆z. �

Summary

The following table summarizes normals and tangents.

Function Level
Curve/Surface

Normal Tangent

f(x, y) level curve:
f(x, y) = k

∇f = fxi + fyj Tangent line at (a, b) is
fx(a, b)(x−a)+fy(a, b)(y−b) =
0

f(x, y, z) level surface:
f(x, y, z) = k

∇f = fxi + fyj +
fzk

Tangent plane at (a, b, c) is
fx(a, b, c)(x− a)
+ fy(a, b, c)(y − b)
+ fz(a, b, c)(z − c) = 0

To find a normal and tangent plane to a surface given as z = f(x, y), treat
the surface as a level surface of z − f(x, y), namely z − f(x, y) = 0.

We also showed that the differential approximation of ∆f in Section 16.3
is the change along the tangent plane.
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EXERCISES for Section 16.5

The angle between two surfaces that pass through (a, b, c) is defined as the angle
between the lines through (a, b, c) that are perpendicular to the surfaces at the point
(a, b, c). This angle is taken to be acute. Use this definition in Exercises 1 to 3.

1.

(a) Show that (1, 1, 2) lies on the surfaces xyz = 2 and x3yz2 = 4.

(b) Find the angle between the surfaces at (1, 1, 2).

2.

(a) Show that (1, 2, 3) lies on the plane 2x+3y−z = 5 and the sphere x2+y2+z2 =
14.

(b) Find the angle between them at the point (1, 2, 3).

3.

(a) Show that the surfaces z = x2y3 and z = 2xy pass through (2, 1, 4).

(b) At what angle do they cross at that point?

4. Let z = f(x, y) describe a surface. Assume that at (3, 5), z = 7, ∂z/∂x = 2,
and ∂z/∂y = 3.

(a) Find a normal to the surface at (3, 5, 7).

(b) Find two vectors that are tangent to it at (3, 5, 7).

(c) Estimate f(3.02, 4.99).

5. Let T (x, y, z) be the temperature at the point (x, y, z), where ∇T is not 0. A
level surface T (x, y, z) = k is called an isotherm. Show that if you are at the point
(a, b, c) and wish to move in the direction in which the temperature changes most
rapidly, you would move in a direction perpendicular to the isotherm that passes
through (a, b, c).

6. Write a short essay on the chain rule. Include a description of how it was used
to show that Duf = ∇f · u and in showing that ∇f is a normal to the level surface
of f at the point where it is evaluated.
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7. Suppose you are at (a, b, c) on the level surface f(x, y, z) = k. There ∇F =
2i + 3j− 4k.

(a) If u is tangent to the surface at (a, b, c), what would Duf equal? (There are
infinitely many us.)

(b) If u is normal to the level surface at (a, b, c), what would Duf equal? (There
are two us.)

8. We have found a way to find a normal and a tangent plane to a surface. How
would you find a tangent line to a surface? Illustrate your method by finding a line
that is tangent to z = xy at (2, 3, 6).

9.

(a) Draw three level curves of the function f defined by f(x, y) = xy. Include the
curve through (1, 1) as one of them.

(b) Draw three level curves of the function g defined by g(x, y) = x2−y2. Include
the curve through (1, 1) as one of them.

(c) Prove that a level curve of f intersects a level curve of g at a right angle.

(d) If we think of f as air pressure, how may we interpret the level curves of g?

10.

(a) Draw a level curve for 2x2 + y2.

(b) Draw a level curve for y2/x.

(c) Prove that a level curve of 2x2 + y2 crosses a level curve of y2/x at a right
angle.

11. Two surfaces f(x, y, z) = 0 and g(x, y, z) = 0 pass through (a, b, c). Their
intersection is a curve. How would you find a tangent vector to it at (a, b, c)?

12. How far is the point (2, 1, 3) from the tangent plane to z = xy at (3, 4, 12)?

13. The map in Figure 16.5.7 shows isobars, level curves of the pressure p(x, y).
At which of the labeled points on the map is the gradient of p, ∇p, the longest? In
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what direction does it point? In which direction (approximately) would the wind
vector point?

Figure 16.5.7

14. Prove Theorem 16.5.2. (The proof is a slight modification of the proof of
Theorem 16.5.1.)

15. The surfaces x2yz = 1 and xy + yz + zx = 3 pass through (1, 1, 1). Their
tangent planes meet in a line. Find parametric equations for it.

16. The surface x2

a2 + y2

b2
+ z2

c2
= 1 is called an ellipsoid. If a2 = b2 = c2 it is a

sphere. Show that if a2, b2, and c2 are distinct, then there are exactly six normals
to the ellipsoid that pass through the origin.

17. If f(x) is defined for all x and its derivative is always 0, it is constant. Assume
f(x, y) is defined at all points (x, y) and its gradient is always 0. Must f(x, y) = C
for some constant C?

18. Let S be a surface with equation f(x, y, z) = 0, such that each ray from
the origin O meets S at exactly one point. Assume that at each point P in S, the
tangent plane at P is perpendicular to the radial vector r =

−−→
OP . Show that S is

a sphere. (Let P0 and P1 be two points on S. Take a curve with parameterization
(x(t), y(t), z(t)) and show that on it |r| is constant.)

19. Assume that f(x, y, z) and g(x, y, z) have the property that ∇f and ∇g,
evaluated at the same point, are always parallel. Show that they have the same
level surfaces.

20. How far is the tangent plane to xyz = 1 at (1, 1, 1) from the point (2, 1, 3)?
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21. Find three vectors that are tangent to the surface x2 + 3y2 + 4z2 = 8 at
(1, 1, 1).

In Exercises 22 to 23 check the equations by differentiation.
22.

∫
cos3(ax) dx = 1

a sin(ax)− 1
3a sin3(ax)

23.
∫

(p2 − x2)3/2 dx = x
4 (p2 − x2)3/2 + 3p2x

8

√
p2 − x2 + 3p4

8 arcsin
(

x
p

)
In Exercises 24 to 25evaluate each antiderivative.
24.

∫
x+2√
4x2+9

dx

25.
∫

x+2
4x2+9

dx
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16.6 Critical Points and Extrema

For a function of one variable, y = f(x), the first and second derivatives were
of use in searching for relative extrema. We looked for critical numbers, that
is, solutions of the equation f ′(x) = 0If f ′′(x) is positive, the

graph of f is concave up; if
f ′′(x) is negative, the graph

of f is concave down.

and checked the value of f ′′(x) there. If
f ′′(x) was positive, a critical number gave a relative minimum. If f ′′(x) was
negative, a critical number gave a relative maximum. If f ′′(x) was 0, then
anything might happen: a minimum, maximum, or neither. To tell we had to
resort to other tests.

This section extends the idea of a critical point to functions f(x, y) of two
variables and shows how to use the second-order partial derivatives fxx, fyy,
and fxy to see whether the critical point provides a relative maximum, relative
minimum, or neither.

Extrema of f(x, y)

The number M is called the maximum (or global maximum) of f over a
set R in the plane if it is the largest value of f(x, y) for (x, y) in R. A relative
maximum (or local maximum) of f occurs at a point (a, b) in R if there is
a disk around (a, b) such that f(a, b) ≥ f(x, y) for all points (x, y) in the disk.
Minimum and relative (or local) minimum are defined similarly.

Figure 16.6.1

Let us look at the surface above a point (a, b) where a relative maximum
of f occurs. Assume that f is defined for all points in some disk around (a, b)
and possesses partial derivatives at (a, b). Assume, for convenience, that the
values of f are positive. Let L1 be the line y = b in the xy-plane; let L2 be
the line x = a in the xy-plane. (See Figure 16.6.1. )

Let C1 be the curve in the surface above the line L1, C2 be the curve in the
surface above the line L2, and let P be the point on the surface above (a, b).

Since f has a relative maximum at (a, b), no point on the surface near P is
higher than P . Thus P is a highest point on C1 and on C2 (for points near P ).
So both curves have horizontal tangents at P . That is, at (a, b) both partial
derivatives of f must be 0:

∂f

∂x
(a, b) = 0 and

∂f

∂y
(a, b) = 0.

This conclusion is summarized in the following theorem.

Theorem 16.6.1 (Relative Extremum of f(x, y)). Let f be defined on a region
that includes the point (a, b) and all points in some disk whose center is (a, b).
If f has a relative maximum (or relative minimum) at (a, b) and fx and fy

exist at (a, b), then
∂f

∂x
(a, b) = 0 =

∂f

∂y
(a, b),
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which says that the gradient of f , ∇f , is 0 at a relative extremum.

Points (a, b) where both partial derivatives fx and fy are 0 is clearly of
importance. They are analogous to the critical points of a function of one
variable.

DEFINITION (Critical point) If fx(a, b) = 0 and fy(a, b) = 0,
the point (a, b) is a critical point of the function f(x, y).

One might expect that if (a, b) is a critical point of f and the two second
partial derivatives fxx and fyy are both positive at (a, b), then f necessarily
has a relative minimum at (a, b). The next example shows that this is false.

EXAMPLE 1 Find the critical points of f(x, y) = x2 + 3xy + y2 and
determine whether there are extrema there.

SOLUTION Find critical points by setting both fx and fy equal to 0. This
gives

2x + 3y = 0 and 3x + 2y = 0,

whose only solution is (x, y) = (0, 0). The function has one critical point,
(0, 0).

Now look at the graph of f for (x, y) near (0, 0). Because f(x, 0) = x2 +
3 · x · 0 + 02 = x2, considered as a function of x, the function has a minimum
at the origin. (See Figure 16.6.2(a).)

On the y-axis, the function reduces to f(0, y) = y2, whose graph is another
parabola with a minimum at the origin. (See Figure 16.6.2(b).) Also, fxx = 2
and fyy = 2, so both are positive at (0, 0).

(a) (b) (c)

Figure 16.6.2

We might think that f has a relative minimum at (0, 0). However, on the
line y = −x,

f(x, y) = f(x,−x) = x2 + 3x(−x) + (−x)2 = −x2.

Calculus April 22, 2012



1382 CHAPTER 16 PARTIAL DERIVATIVES

On that line the function assumes negative values, and its graph is a parabola
opening downward, as shown in Figure 16.6.2(c).

Thus f(x, y) has neither a relative maximum nor minimum at the origin.
Its graph resembles a saddle. �

Example 1 shows that to determine whether a critical point of f(x, y)
provides an extremum, it is not enough to look at fxx and fyy The criteria
are more complicated and involve the mixed partial derivative fxy as well.
Exercise 55 outlines a proof of Theorem 16.6.2. At the end of this section we
give a proof when f(x, y) is a polynomial of the form Ax2 +Bxy +Cy2, where
A, B and C are constants.

Theorem 16.6.2 (Second-partial-derivative test for f(x, y)). Let (a, b) be a
critical point of the function f(x, y). Assume that the partial derivatives fx,
fy, fxx, fxy, and fyy are continuous at and near (a, b). LetIn subscript notation,

D = fxxfyy − (fxy)2.

D =
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

.

Case 1: If D > 0 and fxx(a, b) > 0, then f has a relative minimum at (a, b).

Case 2: If D > 0 and fxx(a, b) < 0, then f has a relative maximum at (a, b).

Case 3: If D < 0, then f has neither a relative minimum nor a relative maximum
at (a, b). (There is a saddle point at (a, b).)

If D = 0, then anything can happen: there may be a relative minimum, a
relative maximum, or a saddle point as illustrated in Exercise 43.

The expression fxxfyy − (fxy)
2 is called the discriminant of f .

To see what the theorem says, consider case 1, the test for a relative mini-
mum. It says that fxx(a, b) > 0 (which is to be expected) and that

∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b)−

(
∂2f

∂x∂y
(a, b)

)2

> 0,

Or equivalently, (
∂2f

∂x∂y
(a, b)

)2

<
∂2f

∂x2
(a, b)

∂2f

∂y2
(a, b). (16.6.1)

Memory aid regarding size
of fxy

Since the square of a real number is never negative and fxx(a, b) is positive,
it follows that fyy(a, b) > 0, which was to be expected. But (16.6.1) says more.
It says that the mixed partial fxy(a, b) must not be too large. For a relative
maximum or minimum, (16.6.1) must hold. This may be easier to remember
than D > 0.

EXAMPLE 2 Find all relative extrema of:
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1. f(x, y) = x2 + 3xy + y2

2. g(x, y) = x2 + 2xy + y2

3. h(x, y) = x2 + xy + y2

SOLUTION

1. The case f(x, y) = x2 + 3xy + y2 is Example 1. The origin is the only
critical point, and it provides neither a relative maximum nor a relative
minimum. We can check this by the discriminant. We have

∂2f

∂x2
(0, 0) = 2,

∂2f

∂x∂y
(0, 0) = 3, and

∂2f

∂y2
(0, 0) = 2.

Hence D = 2 · 2 − 32 = −5 is negative. By Theorem 16.6.1, there is
neither a relative maximum nor a relative minimum at the origin. There
is a saddle point there.

Figure 16.6.3

2. It is straightforward to show that all the points on the line x+ y = 0 are
critical points of g(x, y) = x2 + 2xy + y2. Because

∂2g

∂x2
(x, y) = 2,

∂2g

∂x∂y
(x, y) = 2, and

∂2g

∂y2
(x, y) = 2,

the discriminant D = 2 ·2−22 = 0. Since D = 0, it gives no information.

However, x2 + 2xy + y2 = (x + y)2 is always greater than or equal to 0.
Hence the origin provides a relative minimum of x2 + 2xy + y2. (So does
any point on x + y = 0.) Since g(x, y) = (x + y)2, it is constant on a lne
x + y = c. See Figure 16.6.3.)

Figure 16.6.4

3. For h(x, y) = x2 + xy + y2, it is easy to check that the origin is the only
critical point and we have

∂2h

∂x2
(0, 0) = 2,

∂2h

∂x∂y
(0, 0) = 1, and

∂2h

∂y2
(0, 0) = 2.

Then, D = 2 ·2−12 = 3 is positive and hxx(0, 0) > 0. Hence x2 +xy+y2

has a relative minimum at the origin.

The graph of h is shown in Figure 16.6.4

�

EXAMPLE 3 Examine f(x, y) = x + y + 1/(xy) for global and relative
extrema.
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SOLUTION When x and y are both large positive numbers or small positive
numbers, then f(x, y) may be arbitrarily large. There is therefore no global
maximum. By allowing x and y to be negative numbers of large absolute
values, we see that there is no global minimum.The function has no global

extrema. Local extrema will occur at critical points. We have

∂f

∂x
= 1− 1

x2y
and

∂f

∂y
= 1− 1

xy2
.

Setting these partial derivatives equal to 0 gives

1

x2y
= 1 and

1

xy2
= 1. (16.6.2)

Hence x2y = xy2. Since f is not defined when x or y is 0, we may assume
xy 6= 0. Dividing both sides of x2y = xy2 by xy gives x = y. By (16.6.2),
1/x3 = 1 so x = 1, and y = 1. Thus there is only one critical point, (1, 1).

To find whether it is a relative extremum, use Theorem 16.6.2. We have

∂2f

∂x2
=

2

x3y
,

∂2f

∂x∂y
=

1

x2y2
, and

∂2f

∂y2
=

2

xy3
.

Thus at (1, 1),

∂2f

∂x2
= 2,

∂2f

∂x∂y
= 1, and

∂2f

∂y2
= 2.

Therefore,
D = 2 · 2− 12 = 3 > 0.

Since the discriminant is positive and fxx(1, 1) > 0, the point (1, 1) provides
a relative minimum. �

Extrema on a Bounded Region

In Section 4.3, we saw how to find a maximum of a differentiable function,
y = f(x), on an interval [a, b]. The procedure was:

1. Find x in [a, b] (other than a or b) where f ′(x) = 0. It is called a critical
number. If there are no critical numbers, the maximum occurs at a or b.

2. If there are critical numbers, evaluate f at them. Also find f(a) and
f(b). The maximum of f in [a, b] is the largest of f(a), f(b), and the
values of f at critical numbers.
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Figure 16.6.5

We can similarly find the maximum of f(x, y) in a region R in the plane
bound by some polygon or curve. (See Figure 16.5.6.) It is assumed that R
includes its border and is a finite region in the sense that it lies within some
disk. (In advanced courses it is proved that a continuous function defined on
such a domain has a maximum – and a minimum – value.) If f has continuous
partial derivatives, the procedure for finding a maximum is similar to that for
maximizing a function on a closed interval.

1. First find points that are in R but not on the boundary of R where both
fx and fy are 0. They are called critical points. If there are no critical
points in R, the maximum occurs on the boundary.

Figure 16.6.6

2. If there are critical points, evaluate f at them. Also find the maximum
of f on the boundary. The maximum of f on R is the largest value of f
on the boundary and at critical points.

A similar procedure finds the minimum value on a bounded region.

EXAMPLE 4 Maximize the function

f(x, y) = xy(108− 2x− 2y) = 108xy − 2x2y − 2xy2

on the triangle R bounded by the x-axis, the y-axis, and the line x + y = 54.
(See Figure 16.6.6.)

SOLUTION When x or y is 0 the function has the value 0. When x and y
are small positive numbers the function is positive. Thus the maximum cannot
occur when either x or y is 0. Find critical points.Find any critical points not on the boundary of
R. We have

∂f

∂x
(x, y) = 108y − 4xy − 2y2 = 0

∂f

∂y
(x, y) = 108x− 2x2 − 4xy = 0

which give the simultaneous equations

2y(54− 2x− y) = 0,

2x(54− x− 2y) = 0.

Because y is not zero, by the first equation, y = 54− 2x. Substituting into
the second equation gives 54 − x − 2(54 − 2x) = 0, or −54 + 3x = 0. Hence
x = 18 and therefore y = 54− 2 · 18 = 18.
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The point (18, 18) lies in the interior of R, since it liesEvaluate f at critical points. above the x-axis,
to the right of the y-axis, and below the line x + y = 54, and f(18, 18) =
18 · 18(108− 2 · 18− 2 · 18) = 11, 664.

Next we examine the function f(x, y) = xy(108−2x−2y) on theEvaluate f on boundary. boundary
of R. On its base, y = 0, so f(x, y) = 0. On its left edge, x = 0, so
again f(x, y) = 0. On the slanted edge, which lies on x + y = 54, we have
108 − 2x − 2y = 0, so f(x, y) = 0 on this edge also. Thus f(x, y) = 0 on the
entire boundary.

Therefore, the local maximum occurs at the critical point (18, 18) and has
the value 11, 664. �

EXAMPLE 5 The combined length and girth (distance around) of a pack-
age sent through the mail cannot exceed 108 inches. If the package is a rect-
angular box, how large can its volume be?

SOLUTION

Figure 16.6.7

We label the length of the box (a longest side) z and the other
sides x and y, as in Figure 16.6.7. The volume V = xyz is to be maximized,
subject to girth plus length being at most 108, that is,

2x + 2y + z ≤ 108.

Since we want the largest box, we will restrict our attention to boxes for which

2x + 2y + z = 108. (16.6.3)

By (16.6.3), z = 108− 2x− 2y. Thus V = xyz can be expressed as a function
of two variables:

V = f(x, y) = xy(108− 2x− 2y).

Why is 2x + 2y ≤ 108? This is to be maximized on the triangle described by x ≥ 0, y ≥ 0, 2x + 2y ≤
108, that is, x + y ≤ 54.

These are the same function and region as in the previous example. Hence,
the largest box has x = y = 18 and z = 108−2x−2y = 108−2·18−2·18 = 36.
Its dimensions are 18 inches by 18 inches by 36 inches and its volume is 11, 664
cubic inches. �

In Example 5 we let z be the length of a longest side, an assumption that
was never used. So if the Postal Service regulations read “The length of one
edge plus the girth around the other edges shall not exceed 108 inches,” the
effect would be the same. You would not be able to send a larger box by
measuring the girth around the base formed by its largest edges.

EXAMPLE 6 Let f(x, y) = x2 + y2 − 2x − 4y. Find the maximum and
minimum values of f(x, y) on the disk R of radius 3 and center (0, 0).
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SOLUTION Find critical points. We have

∂f

∂x
= 2x− 2 and

∂f

∂y
= 2y − 4.

The equations

2x− 2 = 0

2y − 4 = 0

have the solution x = 1 and y = 2. The point (1, 2) lies in R since its distance
from the origin is

√
12 + 22 =

√
5, which is less than 3. At (1, 2) the value of

the function is 12 + 22 − 2(1)− 4(2) = 5− 2− 8 = −5.
Now we find the behavior of f on the boundary, which is a circle of radius

3. We parameterize this circle as

x = 3 cos(θ), y = 3 sin(θ) for 0 ≤ θ ≤ 2π.

On it

f(x, y) = x2 + y2 − 2x− 4y

= (3 cos(θ))2 + (3 sin(θ))2 − 2(3 cos(θ))− 4(3 sin(θ))

= 9 cos2(θ) + 9 sin2(θ)− 6 cos(θ)− 12 sin(θ)

= 9− 6 cos(θ)− 12 sin(θ).

We now find the maximum and minimum of the single-variable function
g(θ) = 9− 6 cos(θ)− 12 sin(θ) for θ in [0, 2π].

To do this, find g′(θ):

g′(θ) = 6 sin θ − 12 cos θ.

Setting g′(θ) = 0 gives

0 = 6 sin(θ)− 12 cos(θ)

or
sin(θ) = 2 cos(θ). (16.6.4)

Why is cos(θ) not 0?To solve (16.6.4), divide by cos(θ) (which will not be 0), getting

sin(θ)

cos(θ)
= 2

or
tan(θ) = 2.

Calculus April 22, 2012



1388 CHAPTER 16 PARTIAL DERIVATIVES

There are two angles θ in [0, 2π] such that tan(θ) = 2. One is in the
first quadrant, θ = arctan(2), and the other is in the third quadrant, θ =
π + arctan(2). To evaluate g(θ) = 9 − 6 cos(θ) − 12 sin(θ) there we must
compute cos(θ) and sin(θ). The right triangle in Figure 16.6.8 helps us do
this.

Figure 16.6.8

Figure 16.6.8 shows that for θ = arctan(2),

cos(θ) =
1√
5

and sin(θ) =
2√
5
.

Then

g(arctan(2)) = 9− 6

(
1√
5

)
− 12

(
2√
5

)
= 9− 30√

5
≈ −4.4.

When θ = π + arctan(2),

cos(θ) =
−1√

5
and sin(θ) =

−2√
5
,

Figure 16.6.9

and we have

g(π + arctan(2)) = 9− 6

(
−1√

5

)
− 12

(
−2√

5

)
= 9 +

30√
5
≈ 22.4.

At the ends of [0, 2π], g(2π) = g(0) = 9 − 6(1) − 12(0) = 3. Thus the
maximum of f on the boundary of R is about 22.4 and the minimum is about
−4.4.

At the critical point the value of f is −5. We conclude that the maximum
value of f on R is about 22.41641 and the minimum value is −5. See Fig-
ure 16.6.9. �

Proof of Theorem 16.6.2 in a Special Case

We will prove Theorem 16.6.2 when f(x, y) is a second-degree polynomial.

Theorem 16.6.3. Let f(x, y) = Ax2 + Bxy + Cy2, where A, B, and C are
constants. Then (0, 0) is a critical point. Let

D =
∂2f

∂x2
(0, 0)

∂2f

∂y2
(0, 0)−

(
∂2f

∂x∂y
(0, 0)

)2

.
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Case 1: If D > 0 and fxx(0, 0) > 0, then f has a relative minimum at (0, 0).

Case 2: If D > 0 and fxx(0, 0) < 0, then f has a relative maximum at (0, 0).

Case 3: If D < 0, then f has neither a relative minimum nor a relative maximum
at (0, 0).

The case when D = 0 is addressed in Exercise 59.

Proof

We prove Case 1, leaving Cases 2 and 3 for Exercises 57 and 58.
Compute the first- and second-order partial derivatives of f :

∂f

∂x
= 2Ax + By,

∂f

∂y
= Bx + 2Cy,

∂2f

∂x2
= 2A,

∂2f

∂x∂y
= B,

∂2f

∂y2
= 2C.

Both fx and fy are 0 at (0, 0). Hence (0, 0) is a critical point; the function has
the value 0 at that input. We must show that f(x, y) ≥ 0 for (x, y) near (0, 0).
(In fact we will show that f(x, y) ≥ 0 for all (x, y).)

In terms of A, B, and C, we have

D = fxx(0, 0)fyy(0, 0)− f 2
xy(0, 0) = (2A)(2C)−B2 = 4AC −B2 > 0,

and fxx(0, 0) = 2A > 0. We are assuming that 4AC − B2 > 0 and A > 0 and
want to deduce that f(x, y) = Ax2 + Bxy + Cy2 ≥ 0, for (x, y) near (0, 0).

Since A is positive, this amounts to showing that

A(Ax2 + Bxy + Cy2) ≥ 0. (16.6.5)

Multiplying by A simplifies completing the square:

A(Ax2 + Bxy + Cy2) = A2x2 + ABxy + ACy2

= A2x2 + ABxy +
B2

4
y2 − B2

4
y2 + ACy2

= (Ax +
B

2
y)2 + (AC − B2

4
)y2

= (Ax +
B

2
y)2 + (

4AC −B2

4
)y2.

We know that
(
Ax + B

2
y
)2 ≥ 0 and y2 ≥ 0, since they are squares of real

numbers. The assumption that the discriminant is positive means 4AC−B2 >
0. Thus (16.6.5) holds for all (x, y), not only for (x, y) near (0, 0). Case 1 of
the theorem is proved. •
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Summary

We defined a critical point of f(x, y) as a point where both partial derivatives
fx and fy are 0. Even if fxx and fyy are negative there, such a point need not
provide a relative maximum. We must also know that |fxy| is not too large.

If fxx < 0 and f 2
xy < fxxfyy, then there is a relative maximum at the critical

point. (The two inequalities imply fyy < 0.)
Similar criteria hold for a relative minimum: if fxx > 0 and f 2

xy < fxxfyy,
then this critical point is a relative minimum.

The critical point is a saddle point when f 2
xy > fxxfyy.

When f 2
xy = fxxfyy, the critical point may be a relative maximum, relative

minimum, or neither.
We also saw how to find extrema of a function defined on a bounded region.
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EXERCISES for Section 16.6

In Exercises 1 to 10 use Theorems 16.6.1 and 16.6.2 to determine relative maxima
or minima of the given functions.

1. x2 + 3xy + y2

2. x2 − y2

3. x2 − 2xy + 2y2 + 4x

4. x4 + 8x2 + y2 − 4y

5. x2 − xy + y2

6. x2 + 2xy + 2y2 + 4x

7. 2x2 + 2xy + 5y2 + 4x

8. −4x2 − xy − 3y2

9. 4/x + 2/y + xy

10. x3 − y3 + 3xy

In each of Exercises 11 to 16 let f by a function of x and y such that at (a, b) both
fx and fy equal 0. Values are specified for fxx, fxy, and fyy at (a, b). Assume that
the partial derivatives are continuous. Decide whether, at (a, b), f has a relative
maximum, a relative minimum, a saddle point, or there is not enough information
to classify the critical point.

11. fxy = 4, fxx = 2, fyy = 8
12. fxy = −3, fxx = 2, fyy = 4
13. fxy = 3, fxx = 2, fyy = 4
14. fxy = 2, fxx = 3, fyy = 4
15. fxy = −2, fxx = −3, fyy = −4
16. fxy = −2, fxx = 3, fyy = −4

In Exercises 17 to 24 find the critical points and the relative extrema.

17. x + y − 1
xy

18. 3xy − x3 − y3

19. 12xy − x3 − y3

20. 6xy − x2y − xy2

21. exp(x3 + y3)
22. 2xy

23. 3x + xy + x2y − 2y

24. x + y + 8
xy
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25. Find the dimensions of the open rectangular box of volume 1 that has the
smallest surface area. Use Theorem 16.6.2 as a check that the critical point provides
a minimum.

26. The material for the top and bottom of a rectangular box costs 3 cents per
square foot, and that for the sides 2 cents per square foot. What is the least expen-
sive box that has a volume of 1 cubic foot? Use Theorem 16.6.2 as a check that the
critical point provides a minimum.

27. UPS ships packages whose combined length and girth is at most 165 inches
(and weigh at most 150 pounds).

(a) What are the dimensions of the package with the largest volume that it ships?

(b) What are the dimensions of the package with maximum surface area that UPS
ships?

28. Let P1 = (x1, y1), P2 = (x2, y2), P3 = (x3, y3), and P4 = (x4, y4). Find the
coordinates of the point P that minimizes the sum of the squares of the distances
from P to the four points.

29. Find the dimensions of the rectangular box of largest volume whose total
surface area is 12 square meters.

30. Three nonnegative numbers x, y, and z have sum 1.

(a) How small can x2 + y2 + z2 be?

(b) How large can it be?

31. Each year a firm can produce r radios and t television sets at a cost of
2r2 + rt + 2t2 dollars. It sells a radio for $600 and a television set for $900.

(a) What is the profit from the sale of r radios and t television sets? (Profit is
revenue less cost.)

(b) Find the combination of r and t that maximizes profit. Use the discriminant
as a check.

32. Find the dimensions of the rectangular box of largest volume that can be
inscribed in a sphere of radius 1.
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33. For what values of k does x2 + kxy + 3y2 have a relative minimum at (0, 0)?

34. For what values of k does the function kx2+5xy+4y2 have a relative minimum
at (0, 0)?

35. Let f(x, y) = (2x2 + y2)e−x2−y2
.

(a) Find all critical points of f .

(b) Examine the behavior of f when (x, y) is far from the origin.

(c) What is the minimum value of f?

(d) What is the maximum value of f?

36. Find the maximum and minimum values of the function in Exercise 35 on the
circle

(a) x2 + y2 = 1,

(b) x2 + y2 = 4.

(Express f in terms of θ.)

37. Find the maximum value of f(x, y) = 3x2 − 4y2 + 2xy for points (x, y) in the
square region whose vertices are (0, 0), (0, 1), (1, 0), and (1, 1).

38. Find the maximum value of f(x, y) = xy for points (x, y) in the triangular
region whose vertices are (0, 0), (1, 0), and (0, 1).

39. Maximize the function −x+3y+6 on the region bounded by the quadrilateral
whose vertices are (1, 1), (4, 2), (0, 3), and (5, 6).

40.

(a) Show that z = x2 − y2 + 2xy has no maximum and no minimum.

(b) Find the minimum and maximum of z if we consider only (x, y) on the circle
of radius 1 and center (0, 0). That is, all (x, y) such that x2 + y2 = 1.

(c) Find the minimum and maximum of z if we consider all (x, y) in the disk of
radius 1 and center (0, 0). That is, all (x, y) such that x2 + y2 ≤ 1.

Calculus April 22, 2012



1394 CHAPTER 16 PARTIAL DERIVATIVES

41. Suppose z is a function of x and y with continuous second partial derivatives.
If, at (x0, y0), zx = 0 = zy, zxx = 3, and zyy = 12, for what values of zxy is it certain
that z has a relative minimum at (x0, y0)?

42. Let U(x, y, z) = x1/2y1/3z1/6 be the utility to a consumer of the amounts x, y,
and z of three commodities. Their prices are, respectively, 2 dollars, 1 dollar, and
5 dollars, and the consumer has 60 dollars to spend. How much of each product
should he buy to maximize the utility?

43. This exercise shows that if the discriminant D is 0, then all three outcomes
mentioned in Theorem 16.6.2 are possible.

(a) Let f(x, y) = x2 +2xy + y2. Show that at (0, 0) both fx and fy are 0, fxx and
fyy are positive, D = 0, and f has a relative minimum.

(b) Let f(x, y) = x2 + 2xy + y2 − x4. Show that at (0, 0) both fx and fy are 0,
fxx and fyy are positive, D = 0, and f has neither a relative maximum nor a
relative minimum.

(c) Give an example of a function f(x, y) for which (0, 0) is a critical point and
D = 0 there, but f has a relative maximum at (0, 0).

44. Let f(x, y) = ax + by + c for non-zero constants a, b, and c. Let R be a
polygon in the xy-plane. Show that the maximum and minimum values of f(x, y)
on R are assumed only at vertices of the polygon.

45. Two rectangles are placed in the triangle whose vertices are (0, 0), (1, 1), and
(−1, 1) as shown in Figure 16.6.10(a).

(a) (b)

Figure 16.6.10
Show that they can fill as much as 2/3 of the area of the triangle.
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46. Two rectangles are placed in the region bounded by the line y = 1 and the
parabola y = x2 as shown in Figure 16.6.10(b). How large can their total area be?

47. Let P0 = (a, b, c) be a point not on the surface f(x, y, z) = 0. Let P be the
point on the surface nearest P0. Show that

−−→
PP0 is perpendicular to the surface at

P . (Show it is perpendicular to each curve on the surface that passes through P .)

48. Let (x1, y1), (x2, y2), . . . , (xn, yn) be n points in the plane. Statisticians
define the line of regression as the line that minimizes the sum of the squares of
the differences between yi and the ordinates of the line at xi. (See Figure 16.6.11.)
Let a line in the plane have the equation y = mx + b.

(a) Show that the line of regression minimizes
∑n

i=1 (yi − (mxi + b))2 considered
as a function of m and b.

(b) Let f(m, b) =
∑n

i=1 (yi − (mxi + b))2. Compute fm and fb.

(c) Show that when fm = 0 = fb, we have

m

n∑
i=1

x2
i + b

n∑
i=1

x1 =
n∑

i=1

xiyi

and

m

n∑
i=1

xi + nb =
n∑

i=1

yi.

(d) When do the simultaneous equations in (c) have a unique solution for m and
b?

(e) Find the regression line for the points (1, 1), (2, 3), and (3, 5).

Figure 16.6.11
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49. If your calculator is programmed to compute lines of regression, find and draw
the line of regression for the points (1, 1), (2, 1.5), (3, 3), (4, 2) and (5, 3.5).

50. Let f(x, y) = (y − x2)(y − 2x2).

(a) Show that f has neither a local minimum nor a local maximum at (0, 0).

(b) Show that f has a local minimum at (0, 0) when considered only on any line
through (0, 0). (Graph y = x2 and y = 2x2 and show where f(x, y) is positive
and where it is negative.

51. Find (a) the minimum value of xyz, and (b) the maximum value of xyz, for
nonnegative real numbers x, y, z such that x + y + z = 1.

52.

(a) Deduce from Exercise 51 that for three nonegative numbers a, b, and c, 3
√

abc ≤
(a+ b+ c)/3. (This shows that the geometric mean of three numbers is not
larger than their arithmetic mean.)

(b) Obtain a corresponding result for four numbers.

53. A surface is called closed when it is the boundary of a region R, as a balloon
is the boundary of the air within it. A surface is called smooth when it has a con-
tinuous outward unit normal vector at each point of the surface. Let S be a smooth
closed surface bounding a region R. Show that for a point P0 in R, there are at least
two points on S such that

−−→
P0P is normal to S. (It is conjectured that if P0 is the

centroid of R, that is, the center of gravity of R, then there are at least four points
on S such that

−−→
P0P is normal to S. The centroid is defined in Section 17.8.)

54. Find the point P on the plane Ax + By + Cz + D = 0 nearest the point
P0 = (x0, y0, z0), which is not on that plane.

(a) Find P by calculus.

(b) Find P by using the algebra of vectors. (Why is
−−→
P0P perpendicular to the

plane?)

55. This exercise outlines the proof of Theorem 16.6.3 when fxx(a, b) > 0 and
fxx(a, b)fyy(a, b)− (fxy)2(a, b) > 0. Assuming that fxx, fyy, and fxy are continuous,
we know by the permanence principle that fxx and fxxfyy − (fxy)2 remain positive
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on a some disk R whose center is (a, b). The following steps show that f has a
minimum (a, b) on each line L through (a, b). Let u = cos(θ)i + sin(θ)j be a unit
vector. Show that Du(Duf) is positive on the part of L that lies in the disk R.

(a) Show that Duf(a, b) = 0.

(b) Show that Du(Duf) = fxx cos2(θ) + 2fxy sin(θ) cos(θ) + fyy sin2(θ) .

(c) Show that (fxx)Du(Duf) = (fxx cos(θ) + fxy sin(θ))2+
(
fxxfyy − (fxy)2

)
sin2(θ)

.

(d) Deduce from (b) that f is concave up on the part of each line through (a, b)
inside the disk R.

(e) Deduce that the graph of f lies above its tangent lines at (a, b, f(a, b)), so f
has a relative minimum at (a, b).

Exercise 56 provides another motivation for the definition in Section 12.7 of the
Fourier series of a function f defined on the interval [0, 2π].
56. For an integer n let

S(x) =
a0

2
+

n∑
k=1

(ak cos(kx) + bk sin(kx)) .

Let f(x) be a continuous function defined on [0, 2π]. The definite integral

2π∫
0

(f(x)− S(x))2 dx

is a measure of how close S(x) is to f(x) on the interval [0, 2π]. The integral can
never be negative. (Why?) The smaller the integral, the better S approximates
f on [0, 2π]. Show that the S that minimizes the integral is a partial sum of the
Fourier series associated with f(x).

57. Prove Case 2 of Theorem 16.6.3.

58. Prove Case 3 of Theorem 16.6.3.

59. Show that if B2 − 4AC = 0 and A is not 0, then C/A is positive and

Ax2 + Bxy + Cy2 = A
(
x +

√
C/A

)2
. What does this imply about the critical

point (0, 0)?
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16.7 Lagrange Multipliers

Joseph Louis Lagrange,
1736–1813

The method of Lagrange multipliers is another way to find maxima or
minima of a function. It makes use of the fact that a gradient of a function is
perpendicular to its level curves (or level surfaces).

The Essence of the Method

We first consider a simple case. Suppose we want to find a maximum or
a minimum of f(x, y) for points (x, y) on the line L that has the equation
g(x, y) = C. See Figure 16.7.1(a).)

Assume the extremum occurs at (a, b). Let ∇f be the gradient of f eval-
uated at (a, b). What can we say about its direction? (See Figure 16.7.1(b).)

(a) (b)

Figure 16.7.1

Suppose that ∇f is not perpendicular to L. Let u be a unit vector parallel
to L. Then Duf = (∇f)·u is not 0. If Duf is positive then f(x, y) is increasing
in the direction u, which is along L. In the direction −u, f(x, y) is decreasing.
Therefore the point (a, b) could not provide either a maximum or a minimum.
That means ∇f must be perpendicular to L. Since g(x, y) = C is a level curve
of g, ∇g is also perpendicular to L. So ∇f and ∇g are parallel and there is a
scalar λ such that

∇f = λ∇g. (16.7.1)

λ, pronounced lambda, is
the Greek letter

corresponding to the
lowercase letter l.

The scalar λ is called a Lagrange multiplier.

EXAMPLE 1 Find the minimum of x2 + 2y2 on the line x + y = 2.
SOLUTION Since x2 +2y2 increases without bound in both directions along
the line it must have a minimum somewhere.

Here f(x, y) = x2 + 2y2 and g(x, y) = x + y; therefore

∇f = 2xi + 4yj and ∇g = i + j.
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At the minimum, the gradients of f and g are parallel. That is, there is a
scalar λ such that

∇f = λ∇g.

This implies that
2xi + 4yj = λ(i + j).

This single vector equation leads to the two scalar equations

2x = λ (equating i components)
4y = λ (equating j components)

(16.7.2)

But we also know that
x + y = 2. (16.7.3)

From (16.7.2), 2x = 4y or x = 2y. Substituting into (16.7.3) gives 2y + y = 2

or y = 2/3, hence x = 2y = 4/3. The minimum is f
(

4
3
, 2

3

)
=
(

4
3

)2
+ 2

(
2
3

)2
=

24
9

= 8
3
. There is no need to find λ. �

The General Method

Figure 16.7.2

Let us see why Lagrange’s method works when the constraint is not a line,
but a curve. The problem is

Maximize or minimize u = f(x, y), given the constraint g(x, y) = k.

The graph of g(x, y) = k is in general a curve C, as shown in Figure 16.7.2.
Assume that f , considered only on points of C, takes a maximum (or min-
imum) value at P0. Let C be parameterized by G(t) = x(t)i + y(t)j. Let

G(t0) =
−−→
OP0. Then u is a function of t:

u = f(x(t), y(t)),

Figure 16.7.3

and, as shown in the proof of Theorem 16.5.1 of Section 16.5,

du

dt
= ∇f ·G′(t0). (16.7.4)

Since f , considered only on C, has an extremum at G(t0),

du

dt
= 0 at t = 0.

Thus, by (16.7.4),
∇f ·G′(t0) = 0.

This means that ∇f is perpendicular to G′(t0) at P0. But ∇g, evaluated at
P0, is also perpendicular to G′(t0), since the gradient ∇g is perpendicular to
the level curve g(x, y) = 0. (We assume that ∇g is not 0.) See Figure 16.7.3.
Thus
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Because ∇f is parallel to ∇g, there is a scalar λ such that ∇f = λ∇g.

EXAMPLE 2 Maximize the function x2y for points (x, y) on the unit circle
x2 + y2 = 1.

SOLUTION Let g(x, y) = x2 + y2. We wish to maximize f(x, y) = x2y for
points on the circle g(x, y) = 1. Then

∇f = ∇(x2y) = 2xyi + x2j

and
∇g = ∇(x2 + y2) = 2xi + 2yj.

At an extreme point of f , ∇f = λ∇g for some scalar λ. This gives us two
scalar equations:

2xy = λ(2x) (i component) (16.7.5)

x2 = λ(2y) (j component) (16.7.6)

The third equation is the constraint,

x2 + y2 = 1. (16.7.7)

Since the maximum does not occur when x = 0, we may assume x is not 0.
Dividing both sides of (16.7.5) by x, we get 2y = 2λ or y = λ. Thus (16.7.6)
becomes

x2 = 2y2. (16.7.8)

Combining this with (16.7.7), we have

2y2 + y2 = 1

or

y2 =
1

3
.

Thus

y =

√
3

3
or y = −

√
3

3
.

By (16.7.8),
x =
√

2y or x = −
√

2y.

There are four points to be considered on the circle:(√
6

3
,

√
3

3

)
,

(
−
√

6

3
,

√
3

3

)
,

(
−
√

6

3
,
−
√

3

3

)
,

(√
6

3
,
−
√

3

3

)
.
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At the first and second x2y is positive, while at the third and fourth x2y is
negative. The first two points provide the maximum value of x2y on the circle
x2 + y2 = 1, (√

6

3

)2 √
3

3
=

2
√

3

9
.

The third and fourth points provide the minimum value of x2y,

−2
√

3

9
.

�

More Variables

In the preceding examples we examined the maximum and minimum of f(x, y)
on a curve g(x, y) = k. The same method works for finding extreme values
of f(x, y, z) on a surface g(x, y, z) = k. If f has, say, a minimum at (a, b, c),
then it does on any level curve through (a, b, c) on the surface g(x, y, z) = k.
Thus∇f is perpendicular to any curve on the surface through P . But so is∇g.
Thus ∇f and ∇g are parallel, and there is a scalar λ such that the ∇f = λ∇g.
There will be four scalar equations: three from the vector equation ∇f = λ∇g
and one from the constraint g(x, y, z) = k. That gives four equations in four
unknowns, x, y, z and λ, but it is not necessary to find λ.

Figure 16.7.4

EXAMPLE 3 Find the rectangular box with the largest volume, if its
surface area is 96 square feet.
SOLUTION Let the dimensions be x, y and z and the volume be V , which
equals xyz. The surface area is 2xy + 2xz + 2yz. See Figure 16.7.4.

We wish to maximize V (x, y, z) = xyz subject to the constraint

g(x, y, z) = 2xy + 2xz + 2yz = 96. (16.7.9)

We have
∇V = yzi + xzj + xyk

and
∇g = (2y + 2z)i + (2x + 2z)j + (2x + 2y)k.

The vector equation ∇V = λ∇g provides three scalar equations

yz = λ(2y + 2z) (16.7.10)

xz = λ(2x + 2z) (16.7.11)

xy = λ(2x + 2y)
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The fourth equation is the constraint,

2xy + 2xz + 2yz = 96.

Solving for λ in (16.7.10) and in (16.7.11), and equating the results gives

yz

2y + 2z
=

xz

2x + 2z
.

Since z 6= 0, we have
y

2y + 2z
=

x

2x + 2z
.

Clearing denominators gives

2xy + 2yz = 2xy + 2xz,

hence, 2yz = 2xz.

Since z 6= 0, we conclude that
x = y.

Figure 16.7.5

Since x, y and z play the same roles in both the volume xyz and in the
surface area, 2(xy + xz + yz), we conclude also that

x = z.

Then x = y = z. The box of maximum volume is a cube.
To find its dimensions use the constraint, which tells us that 6x2 = 96 or

x = 4. Hence y and z are 4 also. �

More Constraints

Figure 16.7.6

Lagrange multipliers can also be used to maximize f(x, y, z) subject to
more than one constraint. The constraints could be

g(x, y, z) = k1 and h(x, y, z) = k2. (16.7.12)

The two surfaces (16.7.12) in general meet in a curve C, as shown in Fig-
ure 16.7.5. Assume that C is parameterized by the function G. Then at a
maximum (or minimum) of f at a point P0(x0, y0, z0) on C,

∇f ·G′(t0) = 0.

Thus ∇f , evaluated at P0, is perpendicular to G′(t0). But ∇g and ∇h,
being normal vectors at P0 to the level surfaces g(x, y, z) = k1 and h(x, y, z) =
k2, respectively, are both perpendicular to G′(t0). Thus

∇f , ∇g, and ∇h are all perpendicular to G′(t0) at (x0, y0, z0).
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(See Figure 16.7.6.) Consequently, ∇f lies in the plane determined by the
vectors ∇g and ∇h that we assume are not parallel. Hence there are scalars
λ and µ mu, mew, is Greek for the

letter M.
such that

∇f = λ∇g + µ∇h.

This vector equation provides three scalar equations in λ, µ, x, y, z. The
two constraints give two more equations. So we have five equations in five
unknowns. We find λ and µ only if they assist the algebra.

If a maximum occurs at an endpoint of the curves or if the two surfaces
do not meet in a curve or if ∇g and ∇h are parallel, this method does not
apply. We will content ourselves by illustrating the method with an example
in which there are two constraints. A rigorous development of the material in
this section belongs in an advanced calculus course.

EXAMPLE 4 Minimize the quantity x2 +y2 +z2 subject to the constraints
x + 2y + 3z = 6 and x + 3y + 9z = 9.

SOLUTION There are three variables and two constraints. Each constraint
is a plane. Together they give a line. The function x2 +y2 +z2 is the square of
the distance from (x, y, z) to the origin. So the problem can be rephrased as
how far is the origin from a certain line? (It could be solved by vector algebra.
See Exercises 19 and 20.) When viewed this way, the problem certainly has a
solution. We are assured that there is a minimum.

We have

f(x, y, z) = x2 + y2 + z2

g(x, y, z) = x + 2y + 3z

h(x, y, z) = x + 3y + 9z.

Thus

∇f = 2xi + 2yj + 2zk

∇g = i + 2j + 3k

∇h = i + 3j + 9k.

There are constants λ and µ such that

∇f = λ∇g + µ∇h.

Therefore, the five equations for x, y, z, λ, and µ are

2x = λ + µ (16.7.13)

2y = 2λ + 3µ (16.7.14)

2z = 3λ + 9µ (16.7.15)

x + 2y + 3z = 6 (16.7.16)

x + 3y + 9z = 9 (16.7.17)
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Another way is to use
software programs that

solve simultaneous linear
equations.

There are several ways to solve them.
One way is to use the first three equations to express x, y, and z in terms of

λ and µ. Then substitute in the last two equations, getting two simultaneous
equations in two unknowns.

By (16.7.13), (16.7.14), and (16.7.15),

x =
λ + µ

2
, y =

2λ + 3µ

2
, z =

3λ + 9µ

2
.

Equations (16.7.16) and (16.7.17) then become

λ + µ

2
+

2(2λ + 3µ)

2
+

3(3λ + 9µ)

2
= 6

and
λ + µ

2
+

3(2λ + 3µ)

2
+

9(3λ + 9µ)

2
= 9,

which simplify to

14λ + 34µ = 12 (16.7.18)

and 34λ + 91µ = 18. (16.7.19)

Solving (16.7.18) and (16.7.19) gives

λ =
240

59
µ = −78

59
.

Thus

x =
λ + µ

2
=

81

59
≈ 1.37

y =
2λ + 3µ

2
=

123

59
≈ 2.08

z =
3λ + 9µ

2
=

9

59
≈ 0.15.

Since there is no maximum,
this must be a minimum.

Why?

The minimum of x2 + y2 + z2 is thus(
81

59

)2

+

(
123

59

)2

+

(
9

59

)2

=
21, 771

3, 481
=

369

59
≈ 6.25.

�
In Example 4 there were three variables, x, y, and z, and two constraints.

There may be many variables, x1, x2, . . .xn, and many constraints. If there
are m constraints, g1, g2 . . . gm, introduce Lagrange multipliers λ1, λ2, . . .λm,
one for each constraint. So there would be m + n equations, n from

∇f = λ1∇g1 + λ2∇g2 + · · ·+ λm∇gm

and m more from the m constraints. There would be m+n unknowns, λ1, λ2,
. . . , λm, x1, x2, . . . , xn.
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Summary

The basic idea of Lagrange multipliers is that if f(x, y, z) has an extreme value
on the surface g(x, y, z) = C, then ∇f and ∇g are parallel where the extreme
value occurs. If there are two constraints g(x, y, z) = k1 and h(x, y, z) = k2,
then ∇f lies in the plane of ∇g and ∇h. In the first case there is a scalar
λ such that ∇f = λ∇g. In the second case, there are scalars λ and µ such
that ∇f = λ∇g+µ∇h. These vector equations, together with the constraints,
provide simultaneous scalar equations, which must then be solved. Similarly,
if f(x, y) has an extremum at P0 on the curve g(x, y) = k, then ∇f and ∇g
are parallel.
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EXERCISES for Section 16.7

In the exercises use Lagrange multipliers unless told otherwise.
1. Maximize xy for points on the circle x2 + y2 = 4.

2. Minimize x2 + y2 for points on the line 2x + 3y = 6.

3. Minimize 2x+3y on the portion of the hyperbola xy = 1 in the first quadrant.

4. Maximize x + 2y on the ellipse x2 + y2 = 8.

5. Find the largest area of rectangles whose perimeters are 12 centimeters.

6. A rectangular box is to have a volume of 1 cubic meter. Find its dimensions if
its surface area is minimal.

7. Find the point on the plane x + 2y + 3z = 6 that is closest to the origin.

(a) Use Lagrange multipliers

(b) Using vector algebra.

(Square roots can be avoided by minimizing the square of the distance.)

8. Maximize x + y + 2z on the sphere x2 + y2 + z2 = 9.

9. Minimize the distance from (x, y, z) to (1, 3, 2) for points on the plane 2x+y+z =
5.

(a) Use Lagrange multipliers

(b) Using vector algebra.

10. Find the dimensions of the box of largest volume whose surface area is 6
square inches.

11. Maximize x2y2z2 subject to x2 + y2 + z2 = 1.

12. Find the points on the surface xyz = 1 closest to the origin.

13. Minimize x2 + y2 + z2 on the line common to the two planes x + 2y + 3z = 0
and 2x + 3y + z = 4.
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14. The plane 2y + 4z − 5 = 0 meets the cone z2 = 4(x2 + y2) in a curve. Find
the point on it nearest the origin.

In Exercises 15 to 18 solve the exercise in Section 16.5 by Lagrange multipliers.
15. Exercise 25
16. Exercise 26
17. Exercise 29
18. Exercise 30

19. Solve Example 4 by vector algebra.

20. Solve Exercise 13 by vector algebra.

21.

(a) Sketch the elliptical paraboloid z = x2 + 2y2.

(b) Sketch the plane x + y + z = 1.

(c) Sketch the intersection of the surfaces in (a) and (b).

(d) Find the highest point on the intersection in (c).

22.

(a) Sketch the ellipsoid x2 + y2/4 + z2/9 = 1 and the point P (2, 1, 3).

(b) Find the point Q on the ellipsoid that is nearest P .

(c) What is the angle between PQ and the tangent plane at Q?

23.

(a) Sketch the hyperboloid x2− y2/4− z4/9 = 1. How many sheets does it have?

(b) Plot the point (1, 1, 1). Is it above or below the hyperboloid?

(c) Find the point on the hyperboloid nearest P .

24. Maximize x3 + y3 + 2z3 on the intersection of the spheres x2 + y2 + z2 = 4
and (x− 3)2 + y2 + z2 = 4.
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25. Show that a triangle in which the product of the sines of the three angles is
maximized is equilateral.

26. Solve Exercise 25 by labeling the angles x,y, and π − x− y and minimizing a
function of x and y by the method of Section 16.6.

27. Maximize x + 2y + 3z subject to the constraints x2 + y2 + z2 = 2 and
x + y + z = 0.

28.

(a) Maximize x1x2 · · ·xn subject to the constraints that
∑n

i=1 xi = 1 and all
xi ≥ 0.

(b) Deduce that for nonnegative numbers a1, a2, . . . , an, n
√

a1a2 · · · an ≤ (a1+a2+
· · · + an)/n. The geometric mean is less than or equal to the arithmetic
mean.

29.

(a) Maximize
∑n

i=1 xiyi subject to the constraints
∑n

i=1 x2
i = 1 and

∑n
i=1 y2

i = 1.

(b) Deduce the Cauchy-Schwarz inequality: for numbers a1, a2, . . . , an and
b1, b2, . . . bn,

n∑
i=1

aibi ≤

(
n∑

i=1

a2
i

)1/2( n∑
i=1

b2
i

)1/2

.

(Let xi = ai

(
Pn

i=1 a2
i )1/2 and y1 = bi

(
Pn

i=1 b2i )1/2 . See also the Average Speed CIE
at the end of Chapter 7.)

(c) How would you justify the inequality in (b), for n = 3, using vectors?

30. Let a1, a2, . . . , an be fixed non-zero numbers. Maximize
∑n

i=1 aixi subject to∑n
i=1 x2

i = 1.

31. Let p and q be positive numbers that satisfy the equation 1/p + 1/q = 1.
Obtain Hölder’s inequality for nonnegative numbers ai and bi,

n∑
i=1

aibi ≤

(
n∑

i=1

ap
i

)1/p( n∑
i=1

bq
i

)1/q

,

as follows.
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(a) Maximize
∑n

i=1 xiyi subject to
∑n

i=1 xp
i = 1 and

∑n
i=1 yq

i = 1.

(b) By letting xi = ai

(
Pn

i=1 ap
i )1/p and yi = bi

(
Pn

i=1 bq
i )1/q , obtain Hölder’s inequality.

Hölder’s inequality, with p = 2 and q = 2, reduces to the Cauchy-Schwarz inequality
in Exercise 29.
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16.8 Mappings and Their Magnification

This section explores mappings from one set to another. In the next chapter
mappings will be used to evaluate integrals over surfaces and solid regions.

Mappings

A mapping or transformation is a one-to-one function. For instance, the
function that assigns to each number θ in [0, 2π) the point (x, y) = (cos(θ), sin(θ))
is a mapping from the interval [0, 2π) to the unit circle with center at (0, 0).

We have met other examples, including the function that assigns to points
in the xy-plane points on a surface. To be specific, letR be a region in the plane
and f(x, y) be a scalar function defined on R. Let F (x, y) = (x, y, f(x, y)), a
point above (or below) (x, y) on the surfce S whose equation is z = f(x, y).

The projection of a slide on a screen is a mapping. It projects a point on
the slide to a point on the screen.

If the mapping F pairs points in R with points in S, S is called the image
of R and we write F (R) = S. S consists of all points F (P ) where P is in R.
F has an inverse, from S to R, denoted invF or F−1.

EXAMPLE 1 Let F be the mapping that assigns to the point (u, v) in the
uv-plane the point (2u, 3v) in the xy-plane, F (u, v) = (2u, 3v).

(a) Describe the mapping geometrically.

(b) Find the formula for invF .

(c) Show that the image of a line is a line.

(d) Find the image of the square whose vertices are (0, 0), (1, 0), (1, 1), and
(0, 1).

(e) Find the image of the disk, u2 + v2 ≤ 1.

SOLUTION

(a) If F (u, v) = (x, y), we have x = 2u and y = 3v. That implies that F
magnifies horizontal distances by a factor of 2 and vertical distances by
a factor of 3. Hence, areas are magnified by a factor of 6.

(b) To find a formula for invF , solve for u and v in terms of x and y. Because
x = 2u and y = 3v, we have

u =
x

2
and v =

y

3
.

Thus invF maps (x, y) to (x/2, y/3).
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(c) A line L in the uv-plane has an equation of the form au + bv + c = 0
where not both a and b are zero. If (x, y) is in the image of the line
(invF )(x, y) lies on L. Thus (x/2, y/3) lies on L in the uv-plane, which
implies that

a
x

2
+ b

y

3
+ c = 0.

Clearing denominators, we conclude that the image of L, F (L), is de-
scribed by the equation 3ax + 2by + 6c = 0; the image of L is another
line.

(d) The square R in Figure 16.8.1 is bound by four lines. So its image
is also bound by four lines. F takes the four corners of the square to
F (0, 0) = (0, 0), F (1, 0) = (2, 0), F (1, 1) = (2, 3), and F (0, 1) = (0, 3).
So the image is the rectangle S. As expected, the area of S is six times
the area of the square R.

Figure 16.8.1

(e) If u2 + v2 ≤ 1 and (x, y) = F (u, v), then (x/2)2 + (y/3)2 ≤ 1 for a point
(x, y) in the image of the disk. Therefore points in the image satisfy the
inequality

x2

22
+

y2

32
≤ 1.

It is the set bounded by the ellipse x2/22 + y2/32 = 1, shown in Fig-
ure 16.8.2.

�

EXAMPLE 2 A parallelogram S in the xy-plane is bound by two level
curves of x + y, namely x + y = 1 and x + y = 4, and by two level curves of
y− 2x, namely y− 2x = 2 and y− 2x = 3. Find a rectangle R in the uv-plane
and a mapping F such that F (R) = S. (See Figure 16.8.3.)
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Figure 16.8.2 Because F magnifies areas by a factor 6, the area of the ellipse
is 6π.

SOLUTION On S, x+y is in the interval from 1 to 4. So let u = x+y, which
is in the interval [1, 4]. Similarly, y − 2x goes from 2 to 3. So let v = y − 2x.
The equations

u = x + y, v = y − 2x (16.8.1)

describe a mapping that maps the parallelogram S to the rectangle R, de-
scribed by 1 ≤ u ≤ 4, 2 ≤ v ≤ 3. Thus invF maps S to R. Solving (16.8.1)
for x and y in terms of u and v, we find that

x =
u

3
− v

3
y =

2u

3
+

v

3
.

The mapping F given by F (u, v) =
(

u
3
− v

3
, 2u

3
+ v

3

)
maps the rectangle R onto

the parallelogram S, as shown in Figure 16.8.3. �

Figure 16.8.3

A function of the form F (x, y) = (au + bv, cu + dv), where ad− bc is not 0,
is called a linear mapping. It takes lines to lines and the origin to the origin.

April 22, 2012 Calculus



§ 16.8 MAPPINGS AND THEIR MAGNIFICATION 1413

The next example provides a fresh perspective on polar coordinates.

EXAMPLE 3 Let F (u, v) = (u cos(v), u sin(v)) and let R be the rectangle
1 ≤ u ≤ 2, π/6 ≤ v ≤ π/4. Sketch the image of R, F (R).

SOLUTION We have x = u cos(v), y = sin(v). Then x2 + y2 = u2 cos2(v) +
u2 sin2(v) = u2. We see that u2 = r2,where r is part of the polar coordinates
(r, θ) for (x, y). Thus, u = r. Similarly v is the angle θ of polar coordinates.

Figure 16.8.4

Thus the image of R is bound by circles of radii 1 and 2 and by rays at
angles π/6 and π/4, shown in Figure 16.8.4. �

If, in Example 3, we had used the letters r and θ instead of u and v,
we would see that r and θ are rectangular coordinates in the rθ-plane. The
mapping F makes them the polar coordinates in the xy-plane.

This is typical of a mapping. That is why a mapping is also called a
coordinate transformation. The point (x, y) is assigned the coordinates in
the uv-plane of (invF )(x, y).

To put it another way, a mapping lifts the coordinates from the uv-plane,
where they are ordinary rectangular coordinates, and places them like tags on
the xy-plane, where they no longer appear as rectangular coordinates.

Magnification of a Mapping

The mapping F given by F (u, v) = (2u, 3v) magnifies areas by a factor 6. The
magnification of other mappings may vary from point to point, and can be
thought of as the local magnification. This leads to the question: If F (u, v) =
(f(u, v), g(u, v)), by what factor does it magnify or shrink the area of a small
patch near a point(u0, v0)?

We will determine by what factor the mapping F magnifies the area of a
small rectangle near (u0, v0).

For positive changes ∆u in u and ∆v in v let B be the rectangle in the
uv-plane whose vertices are (u0, v0), (u0 + ∆u, v0), (u0 + ∆u, v0 + ∆v), and
(u0, v0 + ∆v) shown in Figure 16.8.5. Its area is ∆u∆v. The image F (B),
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Figure 16.8.5

which we call C, is bound by curves that are the images of the edges of B.
They need not be straight lines.

The magnification of F at (u0, v0) is defined as a limit:

lim
∆u,∆v→0

Area of C

Area of B
= lim

∆u,∆v→0

Area of C

∆u∆v
.

To express the limit in terms of the components f(u, v) and g(u, v), we will
estimate the area of C. We will use vectors and the fact that |A × B| is the
area of the parallelogram spanned by the vectors A and B.

Let O be the origin of the xy-coordinates and r(u, v) =
−−−−−−→
OF (u, v). Let

∆r = r(u0 + ∆u, v0) − r(u0, v0) be the change in r due to a change ∆u in u.
Then ∆r/∆u approximates ∂r/∂u evaluated at (u0, v0). If follows that ∂r/∂u
approximates ∆r/∆u. Thus

∆r ≈
(

∂r

∂u

)
∆u.

Similarly, (∂r/∂v)∆v approximates the change in r due to the change ∆v in
v.

Figure 16.8.6

With these observations, we are ready to estimate the area of C.

The vector (∂r/∂u)∆u is tangent to the curve between F (u0, v0) and F (u0+
∆u, v0) and approximates the vector r(u0 + ∆u, v0) − r(u0, v0). Similarly,
(∂r/∂v)∆v approximates the vector from F (u0, v0) to F (u0, v0+∆v). Then the
area of the parallelogram spanned by the vectors (∂r/∂u)∆u and (∂r/∂v)∆v
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approximates the area of C. For this reason we expect that

Magnification of F at (u0, v0) = lim
∆u,∆v→0

Area of parallelogram

∆u∆v

= lim
∆u,∆v→0

∣∣ ∂r
∂u

∆u× ∂r
∂v

∆v
∣∣

∆u∆v

= lim
∆u,∆v→0

∣∣ ∂r
∂u
× ∂r

∂v

∣∣∆u∆v

∆u∆v

=

∣∣∣∣∂r

∂u
× ∂r

∂v

∣∣∣∣ .
Because ∂r/∂u and ∂r/∂v are evaluated at (u0, v0) we have

Magnification of F at (u0, v0) =

∣∣∣∣∂r

∂u
(u0, v0)×

∂r

∂v
(u0, v0)

∣∣∣∣ .
To express this in terms of f(u, v) and g(u, v), we use r(u, v) =

−→
OF (u, v) =

f(u, v)i + g(u, v)j. So

Magnification of F at (u0, v0) =

∣∣∣∣∣∣det

 i j k
∂f
∂u

∂g
∂u

0
∂f
∂v

∂g
∂v

0

∣∣∣∣∣∣
=

∣∣∣∣0i + 0j + det

(
∂f
∂u

∂g
∂u

∂f
∂v

∂g
∂v

)
k

∣∣∣∣
=

∣∣∣∣(∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

)
k

∣∣∣∣
=

∣∣∣∣∂f

∂u

∂g

∂v
− ∂f

∂v

∂g

∂u

∣∣∣∣ .
The magnification is the absolute value of the determinant of the 2× 2 matrix(

∂f
∂u

∂g
∂u

∂f
∂v

∂g
∂v

)
If the magnification is less
than 1, it shrinks area. It
may sound odd to treat
shrinking area as a form of
magnification, but we don’t
complain when we go down
in an elevator or when a
football team gains −3
yards on a play.

Both the matrix and its determinant are called the Jacobian of the mapping
F . The most descriptive notation is J [F ](Q), indicating that the determinant
depends on the transformation F , and the mapping is evaluated at Q. In most
situations we will abbreviate it by J , J(u, v), or ∂(x,y)

∂(u,v)
. The absolute value of

the determinant is the magnification.
Where the local magnification is greater than 1, F increases area.
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Examples of Magnification

We conclude this introduction to magnification with two examples that will
re-appear in the next chapter.

EXAMPLE 4 Find the Jacobian of the mapping F in Example 3, x =
u cos(v), y = u sin(v).
SOLUTION Because f(u, v) = u cos(v) and g(u, v) = u sin(v), the Jacobian
is

det

(
∂(u cos(v))

∂u
∂(u sin(v))

∂u
∂(u cos(v))

∂v
∂(u sin(v))

∂v

)
= det

(
cos(v) sin(v)
−u sin(v) u cos(v)

)
= u cos2(v)+u sin2(v) = u.

�

Figure 16.8.7

Figure 16.8.7 shows that the magnification in Example 4 is to be expected.
In the uv-plane, u and v serve as rectangular coordinates. A small patch in the
uv-plane determined by ∆u and ∆v is a rectangle of area ∆u ∆v. Its image
in the xy-plane has two straight sides and two curved sides, and resembles a
rectangle with sides of lengths u ∆v and ∆u, which has area u ∆u ∆v.

Figure 16.8.8

In the next example a mapping goes from a plane to a surface that might
not be a plane.

EXAMPLE 5 Let f(x, y) be a function defined in a region R in the xy-
plane. Let S be the surface z = f(x, y) above or below R. Let F (x, y) =
(x, y, f(x, y)), so F is a mapping from R to S. Find its magnification.

SOLUTION The mapping F is shown in Figure 16.8.8. If F is the inverse
of the projection from the surface to the xy-plane: We have

r(x, y) = xi + yj + f(x, y)k.
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The magnification is the length of ∂r/∂x× ∂r/∂y. The cross product is

det

 i j k
∂x
∂x

∂y
∂x

∂f
∂x

∂x
∂y

∂y
∂y

∂f
∂y

 = det

 i j k

1 0 ∂f
∂x

0 1 ∂f
∂y

 = −∂f

∂x
i− ∂f

∂y
j + k,

so the magnification is∣∣∣∣−∂f

∂x
i− ∂f

∂y
j + k

∣∣∣∣ =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

+ 1.

This formula will be used in the next chapter when computing integrals over
surfaces. �

Summary

We introduced the notion of a mapping, which is a one-to-one function from one
set to another or even to the same set. A mapping has a local magnification.
For a mapping from the uv-plane to the xy-plane, F (u, v) = (f(u, v), g(u, v)),
the magnification is the absolute value of the Jacobian determinant

det

(
∂f
∂u

∂g
∂u

∂f
∂v

∂g
∂v

)
.

In general, the magnification is
∣∣ ∂r
∂u
× ∂r

∂v

∣∣ where r(u, v) =
−→
OF (u, v). We used a

parallelogram to approximate the image of a small rectangle. A mapping pro-
vides a way to introduce a coordinate system; for instance, if F (u, v) = (x, y),
(u, v) can be used as coordinates of the point whose rectangular coordinates
are (x, y).
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EXERCISES for Section 16.8

1. Use the Jacobian to find the magnification of the mapping F (u, v) = (2u, 3v).
As we noticed in Example 1, it should be 6.

2. Let F (u, v) = (2u + 3v, 3u− 4v) = (x, y).

(a) Solve for u and v in terms of x and y.

(b) Why is F a mapping?

(c) What is its magnification?

3. Let F be the mapping defined in Exercise 2.

(a) Find the formula for invF , which goes from the xy-plane to the uv-plane.

(b) Compute F (F−1(x, y)).

4. Let F (u, v) = (u− v, u + v).

(a) Draw F (R) if R is the square whose vertices are (0, 0), (1, 0), (1, 1), and (0, 1).

(b) Find the Jacobian of F .

(c) Using (b), determine the area of F (R). (Assume that if the magnification of a
mapping is constant with value k, it magnifies all areas by k. This is justified
in Exercise 9 in Section 17.9.)

5. Let F (u, v) = (eu cos(v), eu sin(v)).

(a) Draw F (R) for the rectangle R with 0 ≤ u ≤ 1 and 0 ≤ θ ≤ π/6.

(b) Find the Jacobian of F .

6. Let F (u, v) = (2u + 3v, u− v) = (x, y).

(a) Find the Jacobian of F .

(b) Find invF by solving for u and v in terms of x and y.

(c) Find the Jacobian of invF .
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(d) The product of the Jacobians of F and invF is 1. Is that to be expected or is
it a coincidence? (See Exercise 24.)

7. The set S is bound by the curves y = x + 3, y = x + 4, y = −x + 5, and
y = −x + 6.

(a) Find a rectangle R in the uv-plane and a mapping F from R to S.

(b) Find the magnification of F .

(c) Use (c) to find the area of the parallelogram S.

8.

(a) Find the area of the parallelogram in Example 2 by using the mapping F
constructed there.

(b) Find the same area by expressing it in terms of the cross product of two
vectors.

9. Find a mapping from uv-space to xy-space such that the image of the square
with vertices (0, 0), (1, 0), (1, 1), and (0, 1) is the parallelogram with vertices (0, 0),
(2, 1), (2, 5), and (0, 4).

Exercises 10 to 12 help us to understand why mappings are required to be one-to-
one.
10. Let a, b, c, and d be constants such that ad− bc is not zero. Define F (u, v) to
be (au + bv, cu + dv) = (x, y).

(a) Show that F (0, 0) = (0, 0).

(b) Show that F takes a line to a line.

(c) Show that F is a mapping, that is, show that it is one-to-one. (See Exer-
cise 12.)

(d) Find the magnification of F .

11. Let F (u, v) = (2u + 6v, u + 3v).

(a) Sketch F (u, v) for (u, v) = (0, 1), (1, 0), (2, 3), and (4, 1).

(b) Show that for all (u, v), F (u, v) lies on a line L in the xy-plane.
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12. Let a, b, c, and d be constants. Define F (u, v) to be (au+bv, cu+dv) = (x, y).
In Exercise 10 it was shown that F is a mapping when ad − bc 6= 0. Show that if
ad− bc = 0, then F is not a mapping.

13. Let r be a function of u and v, r(u, v).

(a) Define ∂r
∂u at (u0, v0) as a limit.

(b) Explain why ∂r
∂u is approximately ∆r

∆u for small ∆u.

14. Let x = f(u) be a scalar function of a single variable. Assume its domain
is [a, b] on the u-axis, its range is [c, d] on the x-axis, and f is one-to-one. (See
Figure 16.8.9.)

Figure 16.8.9

(a) How would you define its magnification at u0 in [a, b]?

(b) How would you calculate it?

(c) Let f(k) = u3. What is its magnification at x = 2?

15.

(a) Sketch the parabolas R, whose equation is v = u2/4, and S, whose equation
is y = 4x2.

(b) Do they seem to have the same shape, with one being a larger version of the
other?

(c) Find a mapping F from uv-space to xy-space such that F (R) = S with
F (u, v) = (ku, kv) for some constant k.
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(d) What does (c) imply about (b)?

16. Let F (x, y) = (x, y, xy) for x, y > 0.

(a) Describe F geometrically, with a diagram.

(b) Explain why F is one-to-one.

(c) Find the Jacobian of F .

17. Let F (uv) = (u+ v, 3u− v) describe the mapping from uv-space to xy-space.

(a) Find the magnification of F .

(b) Sketch the image of at least five points from the circle u2 + v2 = 4.

(c) Use the data in (b) to sketch the image of the disk u2 + v2 ≤ 4.

(d) What is the area of the image of the disk u2 + v2 ≤ 4?

18. Let S be the region in xy-space bound by the lines y = x, y = 2x, x + y = 3,
and x + y = 5.

(a) Draw S.

(b) Find a rectangle R in uv-space and a mapping F such that F (R) = S. (Start
by expressing the lines as level curves of two suitable functions.)

19. Let R be the rectangle in uv-space given by 0 ≤ u ≤ 2π, 0 < v < π. Let
F (u, v) = (a sin(v) cos(u), a sin(v) sin(u), a cos(v)), a point in xyz-space.

(a) Show that F (R) is the sphere of radius a and center at the origin, but without
its north pole at (ρ, θ, φ) = (a, 0, 0), and its south pole at (ρ, θ, φ) = (a, 0, π).

(b) Show that F is one-to-one.

(c) Show that on the closed rectangle, 0 ≤ u ≤ 2π, 0 ≤ v ≤ π, F is not one-to-one.

(d) Find the Jacobian of F .

(e) What coordinate system is F putting on the sphere? (Look at x2 + y2 + z2.)
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20.

(a) Make a large drawing of the octant of the sphere of radius a with center
(0, 0, 0) where x, y, and z are non-negative. On this section the latitude varies
from 0 at the equator, to π/2 at the north pole, (0, 0, a). The longitude varies
from 0, at the xz-plane, to π/2, at the yz-plane. Let p be the latitude and q
the longitude of a point on this surface.

(b) Show that the rectangular coordinates of the point with latitude p and longi-
tude q are x = a cos(p) cos(q), y = a cos(p) sin(q), and z = a sin(p).

(c) Show that the magnification of the mapping from the pq-plane to the sphere
is a2 cos(p). (Review Example 5, which involves a mapping from a plane to a
surface.)

21. In Exercise 20 the magnification was computed using a determinant. Find
the magnification directly by estimating the area of the image on the sphere of a
small rectangular patch in the pq-plane whose sides have lengths ∆p and ∆q. (See
Figure 16.8.7 and the comments after Example 4.)

22. (The formula developed in this exercise is used in Exercise 23.) Let A,
B, and C be vectors in space such that they span a parallelepiped, as shown in
Figure 16.8.10.

Figure 16.8.10

(a) Explain why the volume of the parallelepiped is |A · (B×C)|.

(b) Let A = 〈a1, a2, a3〉, B = 〈b1, b2, b3〉, and C = 〈c1, c2, c3〉. Show that the
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volume in (a) is the absolute value of the determinant

det

 a1 a2 a3

b1 b2 b3

c1 c2 c3

 .

23. Let F be a mapping from uvw-space to xyz-space:

F(u, v, w) = (f(u, v, w), g(u, v, w), h(u, v, w)).

(a) Define the magnification of F at the point (u0, v0, w0) in terms of a limit.

(b) Show that that limit is the absolute value of the determinant

det

 ∂f
∂u

∂g
∂u

∂h
∂u

∂f
∂v

∂g
∂v

∂h
∂v

∂f
∂w

∂g
∂w

∂h
∂w

 .

This determinant is called the Jacobian of the mapping F . (Before starting,
review how magnification of a mapping from uv-space to xy-space was found
and expressed as a determinant. Instead of a cross product, you may need
Exercise 22.)

24. Show that the product of the Jacobians of F and invF is 1. (x and y are
functions of u and v, but u and v are, in turn, functions of x and y. Use the chain
rule, keeping in mind such things as ∂x/∂x = 1 and ∂x/∂y = 0.)
25. Let F be a mapping from uv-space to xy-space and G a mapping from xy-
space to st-space. Then the composition H = G ◦ F is a mapping from uv-space to
st-space.

(a) How do you think the magnification of H is related to the magnifications of
F and of G?

(b) Show that your opinion in (a) is correct.

(F (u, v) = (x, y), where x and y are functions of u and v, and G(x, y) = (s, t),
where s and t are functions of x and y.)

26. Sam and Jane have their book open to Figure 16.8.5 on 16.8.5 and Figure 16.8.6
on 16.8.6/.

Sam: I can avoid that curly thingy in Figure 16.8.6 that looks like a parallelogram.
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Jane: How?

Sam: Say F(0, 0) = (0, 0) for convenience.

Jane: No problem. Just move the axes.

Sam: Let F = (f, g). For (u, v) near (0, 0), f(u, v) is well approximated by fu(0, 0)u+
fv(0, 0)v; the same for g.

Jane: That’s old stuff.

Sam: So, near (0, 0), F behaves like the mapping given by

L(u, v) = (fu(0, 0)u + fv(0, 0)v)i + (gu(0, 0)u + gv(0, 0)v)j.

Jane: So?

Sam: So the magnification of F must be the same as the magnification of L, which
was easy to get by vectors.

Does Sam get the same formula that was obtained with the aid of the “curvy
thingy”? If so, how does his approach compare with the one presented in this
section?
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16.9 Thermodynamics and Partial Derivatives

Some basic equations of thermodynamics follow from the chain rule and the
equality of mixed partial derivatives. We will describe the mathematics within
the thermodynamics context. This section may serve as a review of the chain
rule or as a reference.

Implications of the Chain Rule

We start with a function of three variables, f(x, y, z), which we assume has
first partial derivatives

∂f

∂x

∣∣∣∣
y,z

∂f

∂y

∣∣∣∣
x,z

∂f

∂z

∣∣∣∣
x,y

.

The subscripts denote the variables held fixed. These subscripts can be omitted
where there is no possible confusion about which variables are not varying.
However, there are cases in this section where the subscripts must be used for
the sake of clarity.

Figure 16.9.1 A change
in x affects f directly
and also indirectly because
it causes a change in z,
which also affects f .

Assume that z is a function of x and y, z = g(x, y). Then f(x, y, z) =
f(x, y, g(x, y)) is a function of two variables. We call it h(x, y): h(x, y) =
f(x, y, g(x, y)). There are only two first partial derivatives of h:

∂h

∂x

∣∣∣∣
y

and
∂h

∂y

∣∣∣∣
x

.

Let the value of f(x, y, z) be called u, u = f(x, y, z). But x, y, and z are
functions of x and y: x = x, y = y, and z = g(x, y). So u = h(x, y).

Figure 16.9.1 provides a pictorial view of the relationship between the vari-
ables. Both x and y appear as middle and independent variables. We have
u = f(x, y, z) and also u = h(x, y). By the chain rule

∂h

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

∂x

∂x

∣∣∣∣
y

+
∂f

∂y

∣∣∣∣
x,z

∂y

∂x

∣∣∣∣
y

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

.

We know ∂x/∂x = 1. Because x and y are independent variables, ∂y/∂x = 0
and we have

∂h

∂x

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

, (16.9.1)

or
∂h

∂x
=

∂f

∂x
+

∂f

∂z

∂g

∂x
. (16.9.2)
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When the subscripts are omitted we have to look back at the definitions of f ,
g, and h to see which variables are held fixed.

EXAMPLE 1 We check (16.9.2) when

f(x, y, z) = x2y3z5 and g(x, y) = 2x + 3y.

SOLUTION In this case h(x, y) = f(x, y, g(x, y) = x2y3(2x+3y)5. Comput-
ing ∂h/∂x directly gives

∂h

∂x
=

∂

∂x

(
x2y3(2x + 3y)5

)
= y3 ∂

∂x

(
x2(2x + 3y)5

)
= y3

(
2x(2x + 3y)5 + x2

(
5(2x + 3y)4(2)

))
= 2xy3(2x + 3y)5 + 10x2y3(2x + 3y)4. (16.9.3)

Let us find ∂h
∂x

with the aid of (16.9.2). We have
∂f

∂x
= 2xy3z5 and

∂f

∂z
=

5x2y3z4. Also
∂g

∂x
= 2. Thus

∂h

∂x
=

∂f

∂x
+

∂f

∂z

∂g

∂x
= 2xy3z5 + (5x2y3z4)(2)

= 2xy3(2x + 3y)5 + 10x2y3(2x + 3y)4,

which agrees with (16.9.3). �

What If z = g(x, y) Makes f(x, y, z) Constant?

Assume that when z is replaced by g(x, y), h(x, y) = f(x, y, g(x, y)) is con-
stant: h(x, y) = f(x, y, g(x, y)) = C. This happens when we use the equation
f(x, y, z) = C to determine z implicitly as a function of x and y.

Then
∂h

∂x

∣∣∣∣
y

= 0 and
∂h

∂y

∣∣∣∣
x

= 0.

In this case, which occurs frequently in thermodynamics,(16.9.4) is the foundation
for (16.9.8) and (16.9.9),

key equations in
thermodynamics.

(16.9.1) becomes

0 =
∂f

∂x

∣∣∣∣
y,z

+
∂f

∂z

∣∣∣∣
x,y

∂g

∂x

∣∣∣∣
y

. (16.9.4)
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Solving (16.9.4) for
∂g

∂x

∣∣∣∣
y

we obtain

∂g

∂x

∣∣∣∣
y

=
− ∂f

∂x

∣∣
y,z

∂f
∂z

∣∣
x,y

. (16.9.5)

Equation (16.9.5) expresses the partial derivative of g(x, y) with respect to x
in terms of the partial derivatives of the original function f(x, y, z).

EXAMPLE 2 Let f(x, y, z) = x3y5z7. Define z = g(x, y) implicitly by
x3y5(g(x, y))7 = 1. That is, z = g(x, y) = x−3/7y−5/7. Verify (16.9.5).

SOLUTION We have
∂g

∂x

∣∣∣∣
y

= −3
7

x−10/7y−5/7, ∂f
∂x

∣∣
y,z

= 3x2y5z7, and ∂f
∂z

∣∣
x,y

=

7x3y5z6. Substituting in the right-hand side of (16.9.5), yields

−
∂f

∂x

˛̨̨̨
˛̨
y,z

∂f

∂z

˛̨̨̨
˛̨
x,y

=
− (3x2y5z7)

7x3y5z6

= −3

7
x−1z

= −3

7
x−1x−3/7y−5/7 (because x3y5z7 = 1)

= −3

7
x−10/7y−5/7

=
∂g

∂x

∣∣∣∣
y

,

and 16.9.5) is satisfied. �

The Reciprocity Relations

A thermodynamics text has equations of the form

∂x

∂z

∣∣∣∣
y

=
1

∂z

∂x

∣∣∣∣
y

.

We will explain where this comes from, presenting the mathematical details
often glossed over in the applied setting. There is a function f(x, y, z) with
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constant value C, f(x, y, z) = C. It is assumed that this equation determines
z as a function of x and y, or, similarly, determines x as a function of y and
z, or y as a function of x and z. There are six first partial derivatives:See Exercise 5.

∂z

∂x

∣∣∣∣
y

,
∂z

∂y

∣∣∣∣
x

,
∂x

∂y

∣∣∣∣
z

,
∂x

∂z

∣∣∣∣
y

,
∂y

∂x

∣∣∣∣
z

,
∂y

∂z

∣∣∣∣
x

. (16.9.6)

An equation analogous to (16.9.5) holds for each. For instance,

∂x

∂z

∣∣∣∣
y

=

− ∂f

∂z

∣∣∣∣
x,y

∂f

∂x

∣∣∣∣
y,z

. (16.9.7)

Combining (16.9.5) and (16.9.7) shows thatThis is to be expected, for
∆z
∆x is the reciprocal of ∆x

∆z .

∂x

∂z

∣∣∣∣
y

=
1

∂z

∂x

∣∣∣∣
y

. (16.9.8)

Equation (16.9.8) is an example of a reciprocity relation: The partial deriva-
tive of one variable with respect to a second variable is the reciprocal of the
partial derivative of the second variable with respect to the first variable.

EXAMPLE 3 Let f(x, y, z) = 2x + 3y + 5z = 12. Verify that ∂z/∂x is the
reciprocal of ∂x/∂z.
SOLUTION Since 2x + 3y + 5z = 12, z = (12− 2x− 3y)/5. Then ∂z/∂x =
−2/5.

Also, x = (12 − 3y − 5z)/2, so ∂x/∂z = −5/2, which is, as it should be,
the reciprocal of ∂z/∂x. �

The Cyclic Relation, also
known as the Triple Product
Rule, the Cyclic Chain Rule,

or Euler’s Chain Rule.
The Cyclic Relations

With the aid of equations like (16.9.7) we can establish the surprising relation

∂x

∂y

∣∣∣∣
z

∂y

∂z

∣∣∣∣
x

∂z

∂x

∣∣∣∣
y

= −1. (16.9.9)
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Equation (16.9.9) results from the use of three versions of (16.9.7). The left-
hand side of (16.9.9) can be expressed as

− ∂f

∂y

∣∣∣∣
x,z

∂f

∂x

∣∣∣∣
y,z



− ∂f

∂z

∣∣∣∣
x,y

∂f

∂y

∣∣∣∣
x,z



− ∂f

∂x

∣∣∣∣
y,z

∂f

∂z

∣∣∣∣
x,y

 (16.9.10)

Cancellation reduces (16.9.10) to −1.

EXAMPLE 4 Let f(x, y, z) = 2x+3y +5z = 12. The equation determines
implicitly each variable in terms of the others. Verify (16.9.9) in this case.
SOLUTION From 2x + 3y + 5z = 12,

x =
12− 3y − 5z

2
y =

12− 2x− 5z

3
z =

12− 2x− 3y

5

Then ∂x/∂y = −3/2, ∂y/∂z = −5/3, and ∂z/∂x = −2/5, and we have

∂x

∂y

∂y

∂z

∂z

∂x
=

(
−3

2

)(
−5

3

)(
−2

5

)
= −1

�

If two of the three partial derivatives in (16.9.9) are easy to calculate, then
we can use (16.9.9) to find the third, which may otherwise be hard to calculate.

v is the reciprocal of densityThe next Example illustrates the use of the cyclic relation in thermodynamics.

EXAMPLE 5 In van der Waal’s equation p, T , and v are related by van der Waal’s equation is
only one example of an
equation of state. See also
Exercises 11 and 12.

p =
RT

v − b
− a

v2
; (16.9.11)

R, a and b are constants. Use a cyclic relation to find (∂v/∂T )p.

SOLUTION Exercises 13 and 14 describe
other ways to solve
Example 5.

We use the cyclic relation

∂v

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
v

∂p

∂v

∣∣∣∣
T

= −1. (16.9.12)

Looking at (16.9.11), we see that (∂p/∂T )v is easier to calculate than (∂T/∂p)v.
So (16.9.12) becomes

∂v

∂T

∣∣∣∣
p

∂p

∂v

∣∣∣∣
T

∂p

∂T

∣∣∣∣
v

= −1
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and therefore

∂v

∂T

∣∣∣∣
p

= −

∂p

∂T

∣∣∣∣
v

∂p

∂v

∣∣∣∣
T

. (16.9.13)

Since p is given as a function of v and T , the numerator and denominator in
(16.9.13) are(

∂p

∂T

)
v

=
R

v − b
and

(
∂p

∂v

)
T

=
−RT

(v − b)2
+

2a

v3
.

Thus, by (16.9.13), (
∂v

∂T

)
p

=
−R/(v − b)

−RT/(v − b)2 + 2a/v3
.

�

Using the Equality of the Mixed Partial Derivatives

Having shown how the chain rule provides some of the basic equations in
thermodynamics, let us show how the equality of the mixed partials leads to
other basic equations.

In a thermodynamic process there may be a pressure p, a temperature T ,
and a volume per unit mass v. Other common variables are

u thermal energy per unit mass
s entropy per unit mass
a Helmholtz free energy per unit mass
g Gibbs free energy per unit mass
h enthalpy per unit mass

That is a total of eight variables. If they were independent, the states would be
part of an eight-dimensional space, but they are not. In fact any two determine
all the others.

For instance, u may be viewed as a function of s and v, and we have ∂u
∂s

∣∣
v
,

which is the definition of temperature, T .When you look at a
thermometer, you are

gazing at the value of a
partial derivative.

Thermodynamic texts either state
or derive the Gibbs relation:

du = T ds− p dv.

It tells us that u can be viewed as a function of s and v, and that

∂u

∂s

∣∣∣∣
v

= T and
∂u

∂v

∣∣∣∣
s

= −p.
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We then have

∂2u

∂v∂s
=

∂2u

∂s∂v
(equality of mixed partials of u(s, v))

∂

∂v

(
∂u

∂s

)
=

∂

∂s

(
∂u

∂v

)
∂T

∂v

∣∣∣∣
s

=
∂(−p)

∂s

∣∣∣∣
v

(because
∂u

∂s

∣∣∣∣
v

= T and
∂u

∂v

∣∣∣∣
s

= −p)

∂T

∂v

∣∣∣∣
s

= − ∂p

∂s

∣∣∣∣
v

.

Several thermodynamic statements that equate two partial derivatives,
such as the final equation above, are obtained this way. The starting point is dz = Mdx + Ndy is an

exact differential.
dz = M dx + N dy

where M is
∂z

∂x

∣∣∣∣
y

and N is
∂z

∂y

∣∣∣∣
x

. Then, because

∂2z

∂x∂y
=

∂2z

∂y∂x
,

it follows that
∂M

∂y

∣∣∣∣
x

=
∂N

∂x

∣∣∣∣
y

.

Summary

We showed how the chain rule in the special case where an intermediate vari-
able is also a final variable justifies certain identities, namely, the reciprocal
and cyclic relations used in thermodynamics. Then we showed how the equal-
ity of the mixed partial derivatives is used to derive other equations.
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EXERCISES for Section 16.9

1. Let u = x2 + y2 + z2 and let z = x + y.

(a) The symbol
∂u

∂x
has two interpretations. What are they?

(b) Evaluate
∂u

∂x
in both cases.

(c) Using subscripts, distinguish the two partial derivatives.

2. Let z = rst and let r = st.

(a) The symbol
∂z

∂t
has two interpretations. What are they?

(b) Evaluate
∂z

∂t
in both cases.

(c) Using subscripts, distinguish the two partial derivatives.

3. Let u = f(x, y, z) and z = g(x, y). Then u is indirectly a function of x and y.

Express
∂u

∂x

∣∣∣∣
y

in terms of partial derivatives of f . Supply all the steps.

4. Assume that the equation f(x, y, z) = C, C a constant, determines x as a

function of y and z: x = h(y, z). Express
∂x

∂y

∣∣∣∣
z

in terms of partial derivatives of f .

Supply all the steps.

5. What is the product of the six partial derivatives in (16.9.6)?

6. Using f from Example 2, verify the analog of (16.9.7) for
∂z

∂y

∣∣∣∣
x

.

7. Let f(x, y, z) = 2x + 4y + 3z. The equation f(x, y, z) = 7 determines one vari-
able as a function of the other two. Verify (16.9.7), where z is viewed as a function
of x and y.

8. Obtain the cyclic relation

∂x

∂z

∣∣∣∣
y

∂z

∂y

∣∣∣∣
x

∂y

∂x

∣∣∣∣
z

= −1.

(Duplicate the steps leading to (16.9.9).)
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9. Verify (16.9.9) for f(x, y, z) = x3y5z7 = 1.

10. Verify (16.9.9) for f(x, y, z) = 2x + 4y + 3z = 7.

11. The equation of state for an ideal gas is pv = RT , where R is a constant.
Find (∂v/∂T )p.

12. The Redlich-Kwang equation

p =
RT

v − b
− a

v(v + b)T 1/2
.

is an improvement upon the van der Waal’s equation of state (16.9.11) for gases and
liquids. Find (∂v/∂T )p.

13. Find (∂v/∂T )p in Example 5 by differentiating both sides of (16.9.11) with
respect to T , holding p constant.

14. One way to find (∂v/∂T )p in Example 5 is by first finding an equation that
expresses v in terms of T and p. What difficulty occurs in this approach?

15. In Example 5, find (∂v/∂p)T , (∂T/∂v)p, and (∂T/∂p)v.

16. In thermodynamics there is the Gibbs relation

dh = T ds + v dp.

It is understood that
∂h

∂s

∣∣∣∣
p

= T and
∂h

∂p

∣∣∣∣
s

= v. Deduce that
∂T

∂p

∣∣∣∣
s

=
∂v

∂s

∣∣∣∣
p

.

In Exercises 17 to 20 use these five steps as a guide to deriving the given equation.

(a) What are the dependent variables?

(b) What are the independent variables?

(c) What are the intermediate variables?

(d) Draw a diagram showing the paths from the dependent variables to the inde-
pendent variables.

(e) Use the chain rule to complete the derivation of (16.9.14).

17.
∂E

∂T

∣∣∣∣
v

=
∂E

∂T

∣∣∣∣
p

+
∂E

∂p

∣∣∣∣
T

∂p

∂T

∣∣∣∣
v

. (16.9.14)
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18.
∂p

∂T

∣∣∣∣
v

=
−

∂v

∂T

˛̨̨̨
˛
p

∂v

∂p

˛̨̨̨
˛
T

.

19.

(a)
∂E

∂v

∣∣∣∣
p

=
∂E

∂T

∣∣∣∣
p

∂T

∂v

∣∣∣∣
p

(b)
∂E

∂p

∣∣∣∣
v

=
∂E

∂T

∣∣∣∣
p

∂T

∂p

∣∣∣∣
v

+
∂E

∂p

∣∣∣∣
T

.

20.
∂p

∂T

∣∣∣∣
v

∂T

∂p

∣∣∣∣
v

= 1.

21. Show that van der Waal’s equation, (16.9.11) in Example 5, leads to

∂p

∂T

∣∣∣∣
v

∂T

∂v

∣∣∣∣
p

∂v

∂p

∣∣∣∣
T

= −1.

22. Let u = F (x, y, z) and z = f(x, y). Thus u is a composite function of x and
y: u = G(x, y) = F (x, y, f(x, y)). Assume that G(x, y) = x2y. Obtain a formula for
∂f

∂x
in terms of

∂F

∂x
,

∂F

∂y
, and

∂F

∂z
. All three need not appear in your answer.

23. Let u = F (x, y, z) and x = f(y, z). Thus u is a composite function of y and
z: u = G(y, z) = F (f(y, z), y, z). Assume that G(y, z) = 2y + z2. Obtain a formula

for
∂f

∂z
in terms of

∂F

∂x
,

∂F

∂y
, and

∂F

∂z
. All three need not appear in your answer.

24. Two functions u and v of x and y are defined implicitly by

F (u, v, x, y) = 0 and G(u, v, x, y) = 0.

Assuming all necessary differentiability, find a formula for
∂u

∂x
in terms of partial

derivatives of F and G.
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16.S Chapter Summary

This chapter extended to functions of two or more variables the notion of
the derivative. For a function of several variables a partial derivative is the
derivative with respect to one of the variables when the other variables are
held constant.

The definition rests on a limit. The partial derivative with respect to x of
f(x, y) at (a, b) is

∂f

∂x
(a, b) = lim

∆x→0

f(a + ∆x, b)− f(a, b)

∆x
.

As there are higher-order derivatives, there are higher-order partial derivatives:

∂2f

∂x∂x
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
, and

∂2f

∂y∂y
=

∂

∂y

(
∂f

∂y

)
.

For functions usually encountered in applications the two mixed partials,
∂2f/∂x∂y and ∂2f/∂y∂x, are equal; the order of differentiation does not mat-
ter.

Also, for common functions we can differentiate under the integral sign:

if g(y) =

b∫
a

f(x, y) dx, then
dg

dy
=

b∫
a

∂f

∂y
(x, y) dx.

For a function of one variable, f(x), with a continuous derivative,

∆f = f(a+∆x)−f(a) = f ′(c)∆x = (f ′(a)+ε)∆x = f ′(a)∆x+ε∆x. (16.S.1)

Here c is in [a, a + ∆x] and ε → 0 as ∆x → 0. The analog of (16.S.1) for a
function of two or more variables is the basis for the chain rule for functions
of several variables:

∆f = f(a + ∆x, b + ∆y)− f(a, b)

= f(a + ∆x, b + ∆y)− f(a, b + ∆y) + f(a, b + ∆y)− f(a, b)

=
∂f

∂x
(a, b)∆x +

∂f

∂y
(a, b)∆y + ε1∆x + ε2∆y,

where ε1 and ε2 → 0 as ∆x→ 0 and ∆y → 0.
The gradient, a vector function, was defined as ∇f = 〈fx, fy〉 or, for a

function of three variables, ∇f = 〈fx, fy, fz〉. The gradient points in the
direction a function increases most rapidly. The rate at which f(x, y) changes
in the direction of a unit vector u is ∇f ·u. The gradient evaluated at a point
on the level curve f(x, y) = k or level surface f(x, y, z) = k is perpendicular
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to the level curve or level surface that passes through that point. At a critical
point the gradient is 0.

For a function of one variable the sign of the second derivative helps tell
whether a critical point is a maximum or a minimum. For a function of two
variables, the test involves three second-order partial derivatives. The signs of
fxx and fxxfyy − (fxy)

2 are important.

The Lagrange method of finding an extremum of f subject to constraints
g1 = 0, g2 = 0, . . . , gn = 0 depends on the observation that at an extremum
∇f can be written as λ1∇g1 + λ2∇g2 + · · ·+ λn∇gn.

In Section 16.8 partial derivatives were shown to be involved in finding the
magnification of a mapping.

The final section, using the chain rule and the equality of mixed partial
derivatives, developed some fundamental equations in thermodynamics.

EXERCISES for 16.S

1. Let f(x, y) = x2 − y2 and g(x, y) = 2xy. Show that

(a) ∂f
∂x = ∂g

∂y

(b) ∂f
∂y = − ∂g

∂x

(c) ∂2f
∂x2 + ∂2f

∂y2 = 0

(d) ∂2g
∂x2 + ∂2g

∂y2 = 0

2. Repeat Exercise 1 for f(x, y) = ln
(√

x2 + y2
)

and g(x, y) = arctan (y/x).

3. In estimating the volume of a right circular cylinder tree trunk, there may be
a 5 percent error in estimating the diameter and a 3 percent error in measuring the
height. How large an error may occur in the estimate?

4. Let T denote the time it takes for a pendulum to complete a back-and-forth
swing. If its length is L and g is the acceleration due to gravity, then

T = 2π

√
L

g
.

A 3 percent error may be made in measuring L and a 2 percent error in measuring g.
How large an error may we make in estimating T?
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5. Let u = f(x, y, z) and r = G(t). Then u is a composite function of t. Show
that

du

dt
= ∇f ·G′(t),

where ∇f is evaluated at G(t). For instance, let u = f(x, y, z) and let G describe
the path of a particle. Then the rate of change in the temperature on the path is
the dot product of the temperature gradient ∇f and the velocity vector v = G′.

In Exercises 6 to 12 assume the functions are defined throughout the xy-plane and
have continuous partial derivatives.
6. The function 3x+ g(y), for any differentiable function g(y), satisfies the partial
differential equation ∂f/∂x = 3. Are there any other solutions to that equation?
Explain your answer.

7. Find all functions f such that ∂f/∂x = 3 and also ∂f/∂y = 4.

8. Show that there is no function f such that ∂f/∂x = 3y and ∂f/∂y = 4x.

9. Find all functions such that fxx(x, y) = 0.

10. Find all functions such that fxx(x, y) = 0 and fyy(x, y) = 0.

11. Find all functions such that fxy(x, y) = 0.

12. Find all functions such that fxy(x, y) = 1.

13. Show that for a polynomial P (x, y), Pyx equals Pxy. (It is enough to show it
for an arbitrary monomial axmyn, where a is constant and m and n are non-negative
integers. Treat the cases where m or n is 0 separately.)

14. A hiker is at the origin on a hill whose surface has the equation z = x. If he
walks south, above the positive x-axis the slope of his path would be steep, 1, with
angle π/4. If he walked along the y-axis, the slope would be 0.

(a) If he walked NE what would the slope of his path be?

(b) In what direction should he walk so his path would have a slope of 0.2?

15. Let f and g be functions of x and y that have continuous second derivatives.
Assume the first partial derivatives of f and g satisfy

∂f

∂x
=

∂g

∂y
and

∂f

∂y
= −∂g

∂x
. (16.S.2)
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Show that
∂2f

∂x2
+

∂2f

∂y2
= 0 and

∂2g

∂x2
+

∂2g

∂y2
= 0. (16.S.3)

16. Let V (x, y, z) = xyz be the volume of a box of sides x, y, and z. Compute
∆V and dV and show them in Figure 16.S.1.

Figure 16.S.1

Exercises 17 to 20 concern the definition of lim(x,y)→P0
f(x, y).

17. Let f(x, y) = x + y.

(a) Show that if P = (x, y) lies within a distance 0.01 of (1, 2), then |x−1| < 0.01
and |y − 2| < 0.01. (See Figure 16.S.2).

(b) Show that if |x− 1| < 0.01 and |y − 2| < 0.01, then |f(x, y)− 3| < 0.02.

(c) Find a number δ > 0 such that if P = (x, y) is in the disk with center (1, 2)
and radius δ, then |f(x, y)− 3| < 0.001.

(d) Show that for any positive number ε, no matter how small, there is a positive
number δ such that when P = (x, y) is in the disk with radius δ and center
(1, 2), then |f(x, y)− 3| < ε. Give δ as a function of ε.

(e) What does (d) imply about the function f(x, y) = x + y?

April 22, 2012 Calculus



§ 16.S CHAPTER SUMMARY 1439

Figure 16.S.2
18. Let f(x, y) = 2x + 3y.

(a) Find a disk with center (1, 1) such that whenever P is in it, |f(P )− 5| < 0.01

(b) Let ε be a positive number. Show that there is a disk with center (1, 1) such
that whenever P is in it, |f(P )− 5| < ε. Give δ as a function of ε.

(c) What may we conclude from (b)?

19. Let f(x, y) = x2y/(x4 + 2y2).

(a) What is the domain of f?

(b) Fill in the three missing values in the table:

(x, y) (0.01, 0.01) (0.01, 0.02) (0.001, 0.003)
f(x, y)

(c) From (b), do you think limP→(0,0) f(P ) exists? If so, what is it?

(d) Fill in the three missing values in the table:

(x, y) (0.5, 0.25) (0.1, 0.01) (0.001, 0.000001)
f(x, y)

(e) From (d), do you think limP→(0,0) f(P ) exists? If so, what is it?

(f) Does limP→(0,0) f(P ) exist? If so, what is it? Explain.

20. Let f(x, y) = 5x2y/(2x4 + 3y2).

(a) What is the domain of f?
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(b) As P approaches (0, 0) on the line y = 2x, what happens to f(P )?

(c) As P approaches (0, 0) on the line y = 3x, what happens to f(P )?

(d) As P approaches (0, 0) on the parabola y = x2, what happens to f(P )?

(e) Does limP→(0,0) f(P ) exist? If so, what is it? Explain.

21. This exercise outlines a proof that the mixed partials of f(x, y) are generally
equal. It suffices to show that fxy(0, 0) = fyx(0, 0). We assume that the first and
second partial derivatives are continuous in some disk with center (0, 0).

(a) Why is fxy(0, 0) equal to

lim
k→0

fx(0, k)− fx(0, 0)
k

? (16.S.4)

(b) Why is the limit in (16.S.4) equal to

lim
k→0

(
lim
h→0

(f(h, k)− f(0, k))− (f(h, 0)− f(0, 0))
hk

)
? (16.S.5)

(c) Let u(y) = f(h, y)− f(0, y). Show that the fraction in (16.S.5) equals

u(k)− u(0)
hk

,

and it equals u′(K)/h for some K between 0 and k.

(d) Why is u′(K) = fy(h, K)− fy(0,K)?

(e) Why is u′(K)/h equal to (fy)x(H,K) for some H between 0 and h?

(f) Deduce that fxy(0, 0) = fyx(0, 0).

(g) Did this derivation use the continuity of fyx? If so, how?

(h) Did this derivation use the continuity of fxy? If so, how?

(i) Did we need to assume fxy exists? If so, where was the assumption used?

(j) Did we need to assume fyx exists? If so, where was the assumption used?

22. The assertion that we can differentiate across the integral sign says that

d

dt

b∫
a

f(x, t) dx =

b∫
a

∂

∂t
f(x, t) dx. (16.S.6)
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(a) Why is the derivative on the left an ordinary derivative but the derivative on
the right is a partial derivative?

(b) Using the definitions of ordinary derivatives and partial derivatives as limits,
show what (16.S.6) says about limits.

(c) Verify (16.S.6) for f(x, t) = x7t4.

(d) Verfiy (16.S.6) for f(x, t) = cos(xt).

23. A consumer has a budget of B dollars and may purchase n different items.
The price of the ith item is pi dollars. When the consumer buys xi units of the ith
item, the total cost is

∑n
i=1 pixi. Assume that

∑n
i=1 pixi = B and that the consumer

wishes to maximize her utility u(x1, x2 . . . xn).

(a) Show that when x1, . . . , xn, are chosen to maximize utility, then

∂u/∂xi

pi
=

∂u/∂xj

pj
.

(b) Explain the result in (a) using economic intuition. (Consider a slight change
in xi and xj , with the other xk’s held fixed.)

24. The following is quoted from a bioeconomics text (Colin W. Clark in Mathe-
matical Bioeconomics, Wiley, New York, 1976):

[S]uppose there are N fishing grounds. Let H i = H i(Ri, Ei) denote
the production function for the total harvest H i on the ith ground as a
function of the recruited stock level Ri and effort Ei on the ith ground.
The problem is to determine the least total cost

∑N
i=1 ciE

i at which a
given total harvest H =

∑n
i=1 H i can be achieved. This problem can

be easily solved by Lagrange multipliers. The result is simply

1
ci

∂H i

∂Ei
= constant

[independent of i].

Verify the assertion. The ci‘s are constants. The superscripts are not exponents but
are used to name the functions.

25. (Computer science) This exercise is based on J. D. Ullman, Principles of
Database Systems, pp. 82–83, Computer Science Press, Potomac, Md., 1980. It
arises in the design of efficient bucket sorts. (A bucket sort is a way of rearranging
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information in a database.) Let p1, p2, . . . , pk and B be positive constants. Let
b1, b2, . . . , bk be k nonnegative variables satisfying

∑k
j=1 bj = B. The quantity∑k

j=1 pj · 2B−bj represents the expected search time. What values of b1, b2, . . . ,
bk does the method of Lagrange multipliers give for the minimum expected search
time?

26. Assume that f(x, y, z) has an extreme value at p0 on the level surface
g(x, y, z) = k. Why are ∇g and ∇f evaluated at p0 both perpendicular to the
surface at p0?

27. (Computer graphics) Justify these two recipes for finding the minimum dis-
tance from a point Q to a surface p = F(u, v):

(a) Let q =
−−→
OQ. Solve the equation

(p− q)×
(

∂p
∂u
× ∂p

∂v

)
= 0

for p.

(b) Find a scalar c such that

p− q = c

(
∂p
∂u
× ∂p

∂v

)
.

28. To find the border of the silhouette of the surface p = F(u, v) on the xy-plane,
solve for p such that

k ·
(

∂p
∂u
× ∂p

∂v

)
= 0.
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Calculus is Everywhere # 23

The Wave in a Rope

We will develop what may be the most famous partial differential equation.
In the CIE of the next chapter we will solve it and then apply it in the final
chapter.

As Morris Kline writes in Mathematical Thought from Ancient to Modern
Times, “The first real success with partial differential equations came in re-
newed attacks on the vibrating string problem, typified by the violin string.
The approximation that the vibrations are small was imposed by d’Alembert
(1717-1783) in his papers of 1746.”

Figure C.23.1

Imagine shaking the end of a rope up and down gently, as in Figure C.23.1.
That starts a wave moving along the rope. The molecules in the rope move
up and down while the wave travels to the right. For a sound wave, the wave
travels at 700 miles per hour, but the air vibrates back and forth. (When
someone says “good morning” to us, we feel no wind.)

To develop the mathematics of the wave, we make some simplifying as-
sumptions. We suppose that each molecule moves only up and down, the
distance it moves is very small, and the slope of the curve assumed by the
rope remains close to zero.

At time t the vertical position of the molecule whose x-coordinate is x
is y = y(x, t), for it depends on both x and t.

Figure C.23.2

Assume that the tension T
throughout the rope is constant. For a short section of the rope at time t,
shown as PQ in Figure C.23.2, we apply Newton’s Second Law, which implies
force equals mass times acceleration.

If the linear density of the rope is λ, the mass of the segment is λ times its
length. Because displacements are small we will approximate the length by ∆x.
The upward force exerted by the rope on the segment is T sin(θ +∆θ) and the
downward force is T sin(θ). The net vertical force is T sin(θ + ∆θ)− T sin(θ).
Thus

T sin(θ + ∆θ)− T sin(θ)︸ ︷︷ ︸
net vertical force

= λ∆x︸︷︷︸
mass

∂2y

∂t2︸︷︷︸
acceleration

. (C.23.1)

Because y is a function of x and t, we have a partial derivative, not an ordinary
derivative.

We express sin(θ) and sin(θ+∆θ) in terms of the partial derivative ∂y/∂x.
Because θ is near 0, cos(θ) is near 1. Thus sin(θ) is approximately sin(θ)/ cos(θ) =
tan(θ), the slope of the rope at time t above (or below) x, which is ∂y/∂x at
x and t. Similarly, sin(θ + ∆θ) is approximately ∂y/∂x at x + ∆x and t. So
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(C.23.1) is approximated by

T
∂y

∂x
(x + ∆x, t)− T

∂y

∂x
(x, t) = λ∆x

∂2y

∂t2
(x, t).

Dividing by ∆x gives

T
(

∂y
∂x

(x + ∆x, t)− ∂y
∂x

(x, t)
)

∆x
= λ

∂2y

∂t2
(x, t).

Letting ∆x approach 0, we obtain

T
∂2y

∂x2
(x, t) = λ

∂2y

∂t2
(x, t).

Since both T and λ are positive, T/λ = c2 for some constant c, and we can
write (23) in the traditional form

∂2y

∂x2
=

1

c2

∂2y

∂t2
.

This is the famous wave equation. It relates the acceleration of the molecule,
∂2y/∂t2, to the geometry of the curve, expressed by ∂2y/∂x2. Since we assume

that the slope of the rope remains near 0, ∂2y
∂x2 is approximately

∂2y
∂x2(√

1 +
(

∂y
∂x

)2)3 ,

which is curvature. At the curvier part of the rope, the acceleration is greater.
The wave moves along the rope, but the molecules of the rope move up and
down perpendicular to the direction of the waves.

As the CIE in the next chapter shows, the constant c turns out to be the
velocity of the wave.

EXERCISES

1. Figure C.23.3 shows a vibrating string whose ends are fixed at A and B.
Assume that each part of the string moves parallel to the y-axis. Let y = f(x, t)
be the height of the string at the point with abscissa x at time t, as shown in the
figure. The partial derivatives are denoted ∂y/∂x and ∂y/∂t.
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Figure C.23.3

(a) What is the meaning of ∂y/∂x?

(b) What is the meaning of ∂y/∂t?

2. The argument used in this section depended on the approximation of sin(θ)
by tan(θ) for small θ. Check this approximation by computing sin(x)

tan(x) for x equal to
(a) 0.3 (about 17 degrees), (b) 0.1, and (c) 0.01.
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Chapter 17

Plane and Solid Integrals

In Chapter 2 we introduced the derivative, one of the two main concepts in cal-
culus. In Chapter 16 we extended the derivative to higher dimensions. In the
present chapter, we generalize the concept of the definite integral, introduced
in Chapter 6, to higher dimensions.

Instead of using the notation of Chapter 6 to define the definite integral,
we will restate the definition so that it generalizes to higher dimensions.

We started with an interval [a, b], which we will call I, and a continuous
function f defined at each point P of I. Then we cut I into n short intervals I1,
I2, . . . , In, and chose a point P1 in I1, P2 in I2, . . . , Pn in In. See Figure 17.0.1.

Figure 17.0.1

Denoting the length of Ii by Li, we formed

n∑
i=1

f(Pi)Li.

The limit of the sums as all the subintervals are chosen shorter and shorter is
the definite integral of f over interval I. We denoted it

∫ b

a
f(x) dx. We now

denote it
∫

I
f(P )dL. This notation tells us that we are integrating a function,

f , over an interval I. The dL reminds us that the integral is the limit of
approximations formed as the sum of products of the function value and the
length of a short interval.

We will define integrals of functions over plane regions, such as squares and
disks, over solid regions, such as cubes and balls, and over surfaces such as the
surface of a ball, in the same way. Integrals can be used to compute total
mass of an object if we know its density at each point, or total gravitational
attraction, or center of gravity, and so on.

It is one thing to define these higher-dimensional integrals. It is another
to calculate them. Most of our attention will be devoted to seeing how to
compute them with the aid of iterated integrals, which involve integrals over
intervals, the type defined in Chapter 6.
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1448 CHAPTER 17 PLANE AND SOLID INTEGRALS

17.1 The Double Integral: Integrals Over Plane

Areas

The goal of this section is to introduce the integral of a function defined in a
region of a plane. We assume that the reader is familiar with the remarks in
the introduction to this chapter.

Volume Approximated by Sums

Let R be a region in the xy-plane, bounded by curves. For convenience, assume
R is convex, for example, an ellipse, a disk, a parallelogram, a rectangle, or a
square. We draw R in perspective in Figure 17.1.1(a). Suppose that there is

(a) (b) (c)

Figure 17.1.1

a surface above R and that f(P ) is the height of the surface above any point
P on R, as shown in Figure 17.1.1(b)

If we know f(P ) for every point P could we estimate the volume, V , of the
solid under the surface and above R? As we used rectangles to estimate the
area of a region in Section 6.1, we will use cylinders to estimate the volume of
a solid. Just as the area of a rectangle is the product of the length of its base
and its height, the volume of a cylinder is the product of the area of its base
and its height.

Cut R into n regions R1, R2, . . . , Rn. Each Ri has area Ai. Choose points
P1 in R1, P2 in R2, . . . , Pn in Rn. Over each region Ri put a cylinder with
height f(Pi) and base Ri. The total volume of the n cylinders,

n∑
i=1

f(Pi)Ai, (17.1.1)

is an approximation to the volume V . If f is a continuous function, cutting R
into more and smaller regions, the sum (17.1.1) approaches the volume V .

EXAMPLE 1 Estimate the volume of the solid under the paraboloid z =
x2 + y2 and above the rectangle R whose vertices are (0, 0), (3, 0), (3, 2), and
(0, 2).
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SOLUTION Figure 17.1.2(a) shows the solid.

(a) (b) (c)

Figure 17.1.2

The highest point is above (3, 2), where z = 13. So the solid fits in a box
whose height is 13 and whose base has area 6. So we know its volume is at
most 13 · 6 = 78.

To estimate the volume we cut the rectangular base into six 1-by-1 squares
and evaluate z = x2 + y2 at, say, the center of each square, as shown in
Figure 17.1.2(b).

Then we form a cylinder for each square. The base is the square and
the height is the value of x2 + y2 at the center of the square, as shown in
Figure 17.1.2(c).

Then the total volume is

1

2︸︷︷︸
height

· 1︸︷︷︸
area of base

+
5

2︸︷︷︸
height

· 1︸︷︷︸
area of base

+
13

2︸︷︷︸
height

· 1︸︷︷︸
area of base

+
5

2︸︷︷︸
height

· 1︸︷︷︸
area of base

+
9

2︸︷︷︸
height

· 1︸︷︷︸
area of base

+
17

2︸︷︷︸
height

· 1︸︷︷︸
area of base

= 25.

This estimate is 25 cubic units. By cutting the base into smaller pieces and
using more cylinders we could make a more accurate estimate. �

Density

Before we consider a total mass problem we must define the concept of density.
Imagine that we have a piece of sheet metal, which we view as part of a plane,
that is homogeneous, the same everywhere. Let R be any region in it, of area
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A and mass m. The quotient m/A is the same for all regions R, and is called
the density.

The material, unlike sheet metal, may not be uniform.

Figure 17.1.3

As R varies, the
quotient m/A, or average density in R, also varies. Physicists define density
at a point as follows.

They consider a small disk R of radius r and center at P , as in Figure 17.1.3.
Let m(r) be the mass in the disk and A(r) be its area (πr2). Then

Density at P = lim
r→0

m(r)

A(r)
.

Thus density is denoted σ(P ), which is read as “sigma of P .”
With the physicists, we will assume the density σ(P ) exists at each point

and that it is a continuous function. This implies that if R is a small region
of area A and P is a point in it then the product σ(P )A is an approximation
of the mass in R.σ is Greek for our letter “s”,

the initial letter of
“surface.” σ(P ) denotes the

density of a surface at P .
Total Mass Approximated by Sums

Assume that a flat region R is occupied by a material of varying density. The
density at point P in R is σ(P ). Estimate M , the total mass in R.

We cut R into n small regions R1, R2, . . . , Rn. Each Ri has area Ai. We
choose points P1 in R1, P2 in R2, . . . , Pn in Rn. Then we estimate the mass in
each region Ri, as shown in Figure 17.1.4.

Figure 17.1.4

The mass in Ri is approximately

σ(Pi)︸ ︷︷ ︸
density

· Ai︸︷︷︸
area

.

Thus
n∑

i=1

σ(Pi)Ai (17.1.2)

is the total estimate. If σ is a continuous function, then as we divide R into
smaller and smaller regions the sums (17.1.2) approach the total mass M .

A lamina is a thin plate,
sheet, or layer. EXAMPLE 2 A rectangular lamina, of varying density occupies the rect-

angle with corners at (0, 0), (3, 0), (3, 2), and (0, 2) in the xy-plane. Its density
at (x, y) is x2+y2 grams per square centimeter.

Figure 17.1.5

Estimate its mass by cutting it
into six 1-by-1 squares and evaluating the density at the center of each square.
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SOLUTION The six squares are shown in Figure 17.1.5. The density at
the center of the square bounded by x = 1, x = 2, y = 0, and y = 1 is(

3
2

)2
+
(

1
2

)2
= 5

2
. Since its area is 1× 1 = 1, an estimate of its mass is

5

2︸︷︷︸
density

· 1︸︷︷︸
area

=
5

2
grams.

Similar estimates for the remaining small squares give a total estimate of

1

2
· 1 +

5

2
· 1 +

13

2
· 1 +

5

2
· 1 +

9

2
· 1 +

17

2
· 1 = 25 grams

This sum is identical to the sum (17.1.2), which estimates a volume. �
The arithmetic in Examples 1 and 2 shows that unrelated problems, one

about volume, the other about mass, lead to the same estimates. Moreover, as
the rectangle is cut into smaller pieces, the estimates would become closer and
closer to the volume or the mass. These estimates, similar to the estimates∑n

i=1 f(Pi)Li that appear in the definition of the definite integral
∫ b

a
f(x) dx,

bring us to the definition of a double integral. It is called a double integral
because the domain of the function is in the two-dimensional plane.

The Double Integral

The definition of the double integral is almost the same as that of
∫ b

a
f(x) dx,

the integral over an interval. The differences are:

1. instead of dividing an interval into smaller intervals, we divide a plane
region into smaller plane regions,

2. instead of a function defined on an interval, we have a function defined
on a plane region, and

3. we need a quantitative way to say that a little region is small.

To meet the need described in (3) we define the diameter of a plane region.
The diameter of a region bounded by a curve is the maximum distance be-
tween two points in the region. For instance, the diameter of a square S of
side s is diam(S) = s

√
2 and the diameter of a disk is the same as its diameter

that we know from geometry.

DEFINITION (Double Integral) Let R be a plane region bounded
by curves and f a continuous function defined on R. Partition R
into n smaller regions R1, R2, . . . , Rn with areas A1, A2, . . . , An
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and sampling points P1, P2, . . . , Pn. The limit of sums of the form

n∑
i=1

f(Pi)Ai, (17.1.3)

Figure 17.1.6

as the diameter of each Ri approaches 0, exists (no matter how
the sampling points Pi are chosen). The limiting value is called the
integral of f over R or the double integral of f over R and
is denoted ∫

R

f(P ) dA.

It is proved in advanced courses that when f is continuous, the sums ap-
proach a limit. That is, if f is continuous on R then the double integral∫

R
f(P ) dA exists.

Volume Expressed as a Double Integral

Let S be a solid and R its projection on a plane, as in Figure 17.1.6. Assume
that for each point P in R the line through P perpendicular to R intersects S
in a line segment of length c(P ). Then

Figure 17.1.7

The double integral of cross section is the volume

Volume of S =

∫
R

c(P ) dA.

Mass Expressed as a Double Integral

For a plane distribution of mass through a region R, as shown in Figure 17.1.7,
the density may vary. Denote the density at P by σ(P ). Then

The double integral of density is the total mass

Mass in R =

∫
R

σ(P ) dA
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Average Value as a Double Integral

The average value of f(x) for x in the interval [a, b] was defined in Section 6.3
as ∫ b

a
f(x) dx

length of interval
.

We make a similar definition for a function defined on a two-dimensional region.

DEFINITION (Average value) The average value of f over the
region R is ∫

R
f(P ) dA

Area of R
.

If f(P ) is positive for all P in R, there is a geometric interpretation of the
average of f over R. Let S be the solid below the graph of f (a surface) and
above R. The average value of f over R is the height of the cylinder whose base
is R and whose volume is the same as the volume of S. (See Figure 17.1.8.)

Figure 17.1.8

The integral
∫

R
f(P ) dA is called an integral over a plane region to distin-

guish it from
∫ b

a
f(x) dx, which is called, an integral over an interval. Another

notation is
∫ ∫

R
f(x, y) dA. We prefer the notation

∫
R

f(P ) dA because it does
not favor any particular coordinate system.

In the case of the constant function, f(t) = 1, we compute
∫

R
f(P ) dA. The

approximating sum
∑n

i=1 f(Pi)Ai equals
∑n

i=1 1·Ai = A1+A2+· · ·+An, which
is the area of the region R that is being partitioned. Since every approximating
sum has this same value, it follows that

lim
n→∞

n∑
i=1

f(Pi)Ai = Area of R.

Consequently

The double integral of the function 1 is the area∫
R

1 dA = Area of R.

This formula will come in handy on several occasions. The 1 is often omitted,
in which case we write

∫
R

dA = Area of R. A table summarizing some of
the main applications of the double integral

∫
R

f(P ) dA can be found in the
Summary section for this chapter (see Table 17.S.1 on page 1576).
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Properties of Double Integrals

Integrals over plane regions have properties similar to those of integrals over
intervals:

1.
∫

R
cf(P ) dA = c

∫
R

f(P ) dA for any constant c.

2.
∫

R
[f(P ) + g(P )] dA =

∫
R

f(P ) dA +
∫

R
g(P ) dA.

3. If f(P ) ≤ g(P ) for all points P in R, then
∫

R
f(P ) dA ≤

∫
R

g(P ) dA.

4. If R is broken into two regions, R1 and R2, overlapping at most on their
boundaries, then∫

R

f(P ) dA =

∫
R1

f(P ) dA +

∫
R2

f(P ) dA.

For instance, consider (3) when f(P ) and g(P ) are both positive. Then∫
R

f(P ) dA is the volume under the surface z = f(P ) and above R in the
xy-plane. Similarly

∫
R

g(P ) dA is the volume under z = f(P ) and above R.
Then (3) asserts that the volume of a solid is not larger than the volume of a
solid that contains it. (See Figure 17.1.9.)

Figure 17.1.9

Summary

Just as
∫ b

a
f(x) dx, an integral over an interval is defined as the limit of sums of

the form
∑n

i=1 f(Pi)Li,
∫

R
f(P ) dA, a double integral, is defined as the limit of

sums of the form
∑n

i=1 f(Pi)Ai. They arise in computing volumes, total mass,
or average value. The sum

∑n
i=1 f(Pi)Ai is an estimate of the double integral∫

R
f(P ) dA.
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EXERCISES for Section 17.1

1. In the estimates for the volume in Example 1, the centers of the squares were
used as the Pi’s. Make an estimate for the volume in Example 1 by using the same
partition but taking as Pi

(a) the lower left corner of Ri,

(b) the upper right corner of Ri.

(c) What do (a) and (b) tell about the volume of the solid?

2. Estimate the mass in Example 2 using the partition of R into six squares and
taking as the Pi’s

(a) upper left corners,

(b) lower right corners.

3. Let R be a set in the plane whose area is A. Let f be the function such that
f(P ) = 5 for every point P in R.

(a) What can be said about any approximating sum
∑n

i=1 f(Pi)Ai formed for this
R and this f?

(b) What is the value of
∫
R f(P ) dA?

4. Let R be the square with vertices (1, 1), (5, 1), (5, 5), and (1, 5). Let f(P ) be
the distance from P to the y-axis.

(a) Estimate
∫
R f(P ) dA by partitioning R into four squares and using their

centers as sampling points.

(b) Show that 16 ≤
∫
R f(P ) dA ≤ 80.

5. Let f and R be as in Example 1. Use the estimate of
∫
R f(P ) dA obtained in

the text to estimate the average of f over R.
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6. Assume that for P in R, m ≤ f(P ) ≤ M , where m and M are constants. Let
A be the area of R. By examining approximating sums, show that

mA ≤
∫
R

f(P ) dA ≤MA.

7.

(a) Let R be the rectangle with vertices (0, 0), (2, 0), (2, 3), and (0, 3). Let
f(x, y) =

√
x + y. Estimate

∫
R

√
x + y dA by partitioning R into six 1-by-1

squares and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f over R.

8.

(a) Let R be the square with vertices (0, 0), (0.8, 0), (0.8, 0.8), and (0, 0.8). Let
f(P ) = f(x, y) = exy. Estimate

∫
R exy dA by partitioning R into sixteen

squares and choosing the sampling points to be their centers.

(b) Use (a) to estimate the average value of f(P ) over R.

(c) Show that 0.64 ≤
∫
R f(P ) dA ≤ 0.64e0.64.

9.

(a) Let R be the triangle with vertices (0, 0), (4, 0), and (0, 4) shown in Fig-
ure 17.1.10. Let f(x, y) = x2y. Use the partition into four triangles and
sampling points shown in the diagram to estimate

∫
R f(P ) dA.

(b) What is the maximum value of f(x, y) in R?

(c) From (b) obtain an upper bound on
∫
R f(P ) dA.
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Figure 17.1.10

10.

(a) Sketch the surface z =
√

x2 + y2.

(b) Let V be the region in space below the surface in (a) and above the square R
with vertices (0, 0), (1, 0), (1, 1), and (0, 1). Let v be the volume of V . Show
that v ≤

√
2.

(c) Using a partition of R with sixteen squares, find an estimate for v that is too
large.

(d) Using the partition in (c), find an estimate for v that is too small.

11. The amount of rain that falls at point P during one year is f(P ) inches. Let
R be a region, and assume areas are measured in square inches.

(a) What is the meaning of
∫
R

f(P ) dA?

(b) What is the meaning of

∫
R f(P ) dA

Area of R
?
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12. A region R in the plane is divided into two regions R1 and R2. The function
f(P ) is defined throughout R. Assume that you know the areas, A1 and A2, of R1

and R2 and the averages, f1 and f2, of f over R1 and R2. Find the average of f
over R. (See Figure 17.1.11(a).)

(a) (b)

Figure 17.1.11

13. Figure 17.1.12(a) shows parts of some level curves of a function z = f(x, y)
and a square R. Estimate

∫
R f(P ) dA, and describe your reasoning.

(a) (b)

Figure 17.1.12

14. Figure 17.1.12(b) shows parts of some level curves of a function z = f(x, y)
and a unit disk R. Estimate

∫
R f(P ) dA, and describe your reasoning.

15. A point Q on the xy-plane is at a distance b from the center of a disk R

of radius a(a < b) in the xy-plane. For P in R let f(P ) = 1/
−−→
PQ. Find positive
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numbers c and d such that:

c <

∫
R

f(P ) dA < d.

The numbers c and d depend on a and b. See Figure 17.1.11(b).

16.

(a) Let R be a disk of radius 1. Let f(P ), for P in R, be the distance from P to
the center of the disk. By cutting R into narrow circular rings with centers at
the center of the disk, evaluate

∫
R f(P ) dA.

(b) Find the average of f(P ) over R.

Exercises 17 and 18 introduce Monte Carlo methods for estimating a double
integral using randomly chosen points. They tend to be inefficient because the error
decreases on the order of 1/

√
n, where n is the number of random points. That is a

slow rate. They are used only when it’s possible to choose n very large.
17. This exercise involves estimating an integral by choosing points randomly.
A computing machine can be used to generate random numbers and thus random
points in the plane that can be used to estimate definite integrals, as we now show.
Say that a region R lies in the square whose vertices are (0, 0), (2, 0), (2, 2), and
(0, 2), and a complicated function f is defined in R. The machine generates 100
random points (x, y) in the square. Of these, 73 lie in R. The average value of f for
these 73 points is 2.31.

(a) What is a reasonable estimate of the area of R?

(b) What is a reasonable estimate of
∫
R f(P ) dA?

18. Let R be the disk bounded by the unit circle x2 + y2 = 1 in the xy-plane. Let
f(x, y) = ex2y be the temperature at (x, y).

(a) Estimate the average value of f over R by evaluating f(x, y) at twenty random
points in R. (Adjust your program to select each of x and y randomly in the
interval [−1, 1]. In this way you construct a random point (x, y) in the square
whose vertices are (1, 1), (−1, 1), (−1,−1), (1,−1). Consider only those points
that lie in R.)

(b) Use (a) to estimate
∫
R f(P ) dA.

(c) Show why π/e ≤
∫
R f(P ) dA ≤ πe.
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19. Sam is heckling again.

Sam: As usual, the authors made this harder than necessary. They didn’t need to
introduce diameters. Instead they could have used good old area. They could
have taken the limit as all the areas of the little pieces approached 0. I’ll send
them a note.

Is Sam right?

20. The unit square can be partitioned into nine congruent squares.

(a) What is the diameter of the small squares?

(b) It is possible to partition the square into nine regions whose largest diameter
is 5/11. Show that 5/11 is smaller than the diameter in (a).

(c) Does a region of diameter d always fit in a disk of diameter d?

In Exercises 21 and 24 a and b are constants. In each case verify that the derivative
of the first function is the second function.
21. ax2+b

x3 , −(ax2+3b)
x4 .

22. x
2 + sin(2ax)

4a , cos2(ax).

23. 1
a sin(ax)− 1

3a sin3(ax), cos3(ax).

24. b
a2(ax+b)

+ 1
a2 ln |ax + b|, x

(ax+b)2
.
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17.2 Computing

∫
R

f (P ) dA Using Rectangular

Coordinates

In this section we will show how to use rectangular coordinates to evaluate∫
R

f(P ) dA, the integral of a function f over a plane region R. The method
requires that both R and f be described in rectangular coordinates. We first
show how to describe plane regions R in rectangular coordinates.

Describing R in Rectangular Coordinates

Some examples illustrate how to describe plane regions by their cross sections
in rectangular coordinates.

EXAMPLE 1 Describe a disk R of radius a in rectangular coordinates.

(a) (b)

Figure 17.2.1

SOLUTION Introduce an xy-coordinate system with its origin at the center
of the disk, as in Figure 17.2.1(a). The figure shows that x ranges from −a to
a. We now tell how y varies for each x in [−a, a].

Figure 17.2.1(b) shows a cross section at x. The circle has the equation
x2+y2 = a2. The top half has the equation y =

√
a2 − x2 and the bottom half,

y = −
√

a2 − x2. So, for x in [−a, a], y varies from −
√

a2 − x2 to
√

a2 − x2.
(As a check, test x = 0. Does y vary from −

√
a2 − 02 = −a to

√
a2 − 02 = a?

It does, as Figure 17.2.1(b) shows.)
Region R is described by vertical cross sections as

−a ≤ x ≤ a, −
√

a2 − x2 ≤ y ≤
√

a2 − x2.
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�

EXAMPLE 2 Let R be the region bounded by y = x2, the x-axis, and the
line x = 2. Describe R by cross sections parallel to the y-axis.

SOLUTION Figure 17.2.2(a) shows that for points (x, y) in R, x ranges from
0 to 2. To describe R completely, we describe the behavior of y for x in the
interval [0, 2].

Because the cross section above (x, 0) extends from the x-axis to the curve
y = x2 the y-coordinate varies from 0 to x2. The description of R by vertical
cross sections is

0 ≤ x ≤ 2, 0 ≤ y ≤ x2.

�

(a) (b)

Figure 17.2.2

EXAMPLE 3 Describe the region R of Example 2 by cross sections parallel
to the x-axis, that is, by horizontal cross sections.

SOLUTION Figure 17.2.2(b) shows that y varies from 0 to 4. For y in [0, 4],
x varies from a smallest value x1(y) to a largest value x2(y). For each value of
y in [0, 4], x2(y) = 2. To find x1(y), use the fact that the point (x1(y), y) is on
the curve y = x2, that is,

x1(y) =
√

y.

The description of R in terms of horizontal cross sections is

0 ≤ y ≤ 4,
√

y ≤ x ≤ 2.
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�

EXAMPLE 4 Describe the region R whose vertices are (0, 0), (6, 0), (4, 2),
and (0, 2) by vertical cross sections and then by horizontal cross sections. See
Figure 17.2.3.

Figure 17.2.3

SOLUTION In Figure 17.2.3 x varies between 0 and 6. For x in [0, 4], y
ranges from 0 to 2. For x in [4, 6], y ranges from 0 to the value of y on the line
through (4, 2) and (6, 0), which has the equation y = 6 − x. The description
of R by vertical cross sections breaks into two parts:

0 ≤ x ≤ 4, 0 ≤ y ≤ 2

and

4 ≤ x ≤ 6, 0 ≤ y ≤ 6− x.

Using horizontal cross sections provides a simpler description. First, y goes
from 0 to 2. For y in [0, 2], x goes from 0 to the value of x on the line y = 6−x.
Solving this equation for x yields x = 6− y.

The description in terms of horizontal cross sections is shorter:

0 ≤ y ≤ 2, 0 ≤ x ≤ 6− y.

�

These examples are typical. First, determine the range of one coordinate,
and then see how the other coordinate varies for any fixed value of the first
coordinate.

Evaluating
∫

R f(P ) dA by Iterated Integrals

We will offer an intuitive development of a formula for computing double in-
tegrals over plane regions.

We first develop a way for computing a double integral over a rectangle.
After applying this in Example 5, we make the modification needed to evaluate
double integrals over more general regions.

The cross sections of a rectangular region R are described by

a ≤ x ≤ b, c ≤ y ≤ d,

as shown in Figure 17.2.4(a). If f(P ) ≥ 0 for all P in R, then
∫

R
f(P ) dA is

the volume V of the solid whose base is R and which has height f(P ) above
P . (See Figure 17.2.4(b).) Let A(x) be the area of the cross section made by a

Calculus April 22, 2012



1464 CHAPTER 17 PLANE AND SOLID INTEGRALS

(a) (b) (c)

Figure 17.2.4

plane perpendicular to the x-axis and having abscissa x, as in Figure 17.2.4(c).
As was shown in Section 5.1,

V =

b∫
a

A(x) dx.

The area A(x) is expressible as a definite integral

A(x) =

d∫
c

f(x, y) dy.

Here x is held fixed throughout this integration to find A(x). This provides a
way to evaluate V =

∫
R

f(P ) dA, namely,

∫
R

f(P ) dA = V =

b∫
a

A(x) dx =

b∫
a

 d∫
c

f(x, y) dy

 dx.

In short, ∫
R

f(P ) dA =

b∫
a

 d∫
c

f(x, y) dy

 dx.

Cross sections by planes perpendicular to the y-axis could be used. Then
similar reasoning shows that

∫
R

f(P ) dA =

d∫
c

 b∫
a

f(x, y) dx

 dy.

The quantities
∫ b

a

(∫ d

c
f(x, y) dy

)
dx and

∫ d

c

(∫ b

a
f(x, y) dx

)
dy are called

iterated integrals. Usually the parentheses are omitted and they are written
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∫ b

a

∫ d

c
f(x, y) dy dx and

∫ d

c

∫ b

a
f(x, y) dx dy. The order of dx and dy matters.

The differential on the left tells which integration is performed first.

EXAMPLE 5 Compute the double integral
∫

R
f(P ) dA, where R is the

rectangle shown in Figure 17.2.5(a) and f is defined by f(P ) = |AP |2.

(a) (b)

Figure 17.2.5

SOLUTION Introduce xy-coordinates as in Figure 17.2.5(b). In rectangular
coordinates

f(x, y) = |AP |2 = x2 + y2.

Because x takes all values from 0 to 3 and for each x the number y takes
all values from 0 to 2,∫

R

f(P ) dA =

4∫
0

 2∫
0

(x2 + y2) dy

 dx.

The double integral appeared in Example 1 for a volume and in Example 2 for
the mass of a solid.

We must first compute the inner integral

2∫
0

(x2 + y2) dy, where x is fixed in [0, 3].

To apply the Fundamental Theorem of Calculus, find a function F (x, y)
such that

∂F

∂y
= x2 + y2.

Because x is constant during this first integration,

F (x, y) = x2y +
y3

3
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is such a function. By the Fundamental Theorem of Calculus,

2∫
0

(x2 + y2) dy =

(
x2y +

y3

3

)∣∣∣∣y=2

y=0

=

(
x2 · 2 +

23

3

)
−
(

x2 · 0 +
03

3

)
= 2x2 +

8

3
.

The formula 2x2 + 8
3

is the area A(x) discussed earlier in this section.

Next we compute

3∫
0

A(x) dx =

3∫
0

(2x2 +
8

3
) dx.

By the Fundamental Theorem of Calculus,

3∫
0

(
2x2 +

8

3

)
dx =

(
2x3

3
+

8x

3

)∣∣∣∣3
0

= (18 + 8)− (0 + 0) = 26.

Hence the double integral has the value 26. The volume of the region in
Example 1 of Section 17.1 is 26 cubic centimeters. The mass in Example 2 is
26 grams. �

If R is not a rectangle, the iterated integral that equals
∫

R
f(P ) dA differs

from that for the case where R is a rectangle only in the intervals of integration.
If R has the description

a ≤ x ≤ b y1(x) ≤ y ≤ y2(x),

by cross sections parallel to the y-axis, as in Figure 17.2.6, then

Figure 17.2.6

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Similarly, if R has the description

c ≤ y ≤ d x1(y) ≤ x ≤ x2(y),

by cross sections parallel to the x-axis, then
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Figure 17.2.7

∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

The intervals of integration are determined by R; the function f influences
only the integrand. See Figure 17.2.7.

In the next example R is the region described in Examples 2 and 3.

EXAMPLE 6 Evaluate
∫

R
3xy dA over the region R shown in Figure 17.2.8(a).

SOLUTION We can use cross sections parallel either to the y-axis or to the
x-axis (see Figure 17.2.8(b) and (c)).

(a) (b) (c)

Figure 17.2.8 The red slices show which integration is performed first.

If, as shown in Figure 17.2.8(b), cross sections parallel to the y-axis are
used, then R is described by

0 ≤ x ≤ 2 0 ≤ y ≤ x2.

Thus ∫
R

3xy dA =

2∫
0

 x2∫
0

3xy dy

 dx.

To compute the iterated integral, we start with the integral in which x is fixed
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and y goes from 0 to x2. With x fixed,

x2∫
0

3xy dy =

(
3x

y2

2

)∣∣∣∣y=x2

y=0

= 3x
(x2)2

2
− 3x

02

2
=

3x5

2
.

Then
2∫

0

3x5

2
dx =

3x6

12

∣∣∣∣2
0

= 16.

The region R can also be described in terms of cross sections parallel to
the x-axis:

0 ≤ y ≤ 4
√

y ≤ x ≤ 2.

See Figure 17.2.8(c). Then the double integral is evaluated by a different
iterated integral, ∫

R

3xy dA =

4∫
0

 2∫
√

y

3xy dx

 dy,

which, as may be verified, equals 16. See Figure 17.2.8(b). �

The fact that
∫

R
3xy dA = 16 has three interpretations:

Figure 17.2.9

1. If at each point P = (x, y) in R we erect a line segment above P of length
3xy cm, then the volume of this solid is 16 cm3 (See Figure 17.2.9.)

2. If the density of matter at (x, y) in R is 3xy kg/cm2, then the total mass
in R is 16 kg.

3. If the temperature at (x, y) is 3xy degrees, then the average temperature
in R is 16 divided by the area of R. The area of R is:

∫
R

dA =

2∫
0

x2∫
0

dy dx =

2∫
0

x2 dx =
1

3
x3

∣∣∣∣2
0

=
8

3
.

Figure 17.2.10

So, the average temperature of R is 16
8/3

= 6 degrees.

In Example 6 we could evaluate
∫

R
f(P ) dA by cross sections in either

direction. In the next example we don’t have that choice.

EXAMPLE 7 A triangular lamina is located as in Figure 17.2.10. Its
density at (x, y) is ey2

. Find its mass, that is,
∫

R
f(P ) dA, where f(x, y) = ey2

.
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SOLUTION The description of R by vertical cross sections is

0 ≤ x ≤ 2,
x

2
≤ y ≤ 1.

Hence ∫
R

f(P ) dA =

2∫
0

 1∫
x/2

ey2

dy

 dx.

Since ey2
does not have an elementary antiderivative, the Fundamental Theo-

rem of Calculus is useless in computing

1∫
x/2

ey2

dy.

So we try horizontal cross sections instead. The description of R is now

0 ≤ y ≤ 1, 0 ≤ x ≤ 2y.

This leads to a different iterated integral, namely∫
R

f(P ) dA =

1∫
0

 2y∫
0

ey2

dx

 dy.

For the first integration,
∫ 2

0
ey2

dx, y is fixed; the integrand is constant. Thus

2y∫
0

ey2

dx = ey2

2y∫
0

1 dx = ey2

x
∣∣∣x=2y

x=0
= ey2

2y.

The second definite integral in the iterated integral is thus
∫ 1

0
ey2

2y dy, which

can be evaluated by the Fundamental Theorem of Calculus, since d(ey2
)/dy =

ey2
2y:

1∫
0

ey2

2y dy = ey2
∣∣∣1
0

= e12 − e02

= e− 1.

The total mass is e− 1. �
Computing a definite integral over a plane region R involves a wise choice

of an xy-coordinate system, a description of R and f relative to this coordinate
system, and the computation of two definite integrals over intervals. The order
of the integrations may affect the difficulty of the computation. That order is
determined by the description of R by cross sections.
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Summary

We showed that the integral of f(P ) over a plane region R can be evaluated
by an iterated integral, where the limits of integration are determined by R.
If a line parallel to the y-axis meets R in at most two points then R has the
description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)

and ∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

If a line parallel to the x-axis meets R in at most two points, then, similarly,
R can be described in the form

c ≤ y ≤ d x1(y) ≤ x ≤ x2(y)

and ∫
R

f(P ) dA =

d∫
c

 x2(y)∫
x1(y)

f(x, y) dx

 dy.

A Few Words on Notation
We use the notation

∫
f(P ) dA or

∫
R

f(P ) dA for a (double) integral over a
plane region, and later in this chapter,

∫
f(P ) dS or

∫
S f(P ) dS for an integral

over a surface, and
∫

f(P ) dV or
∫

R
f(P ) dV for an integral over a region in

space. The symbols dA, dS, and dV indicate the type of set over which the
integral is defined.

Many people use repeated integral signs to distinguish dimensions. For in-
stance they write

∫
f(P ) dA as

∫∫
f(P ) dA or

∫∫
f(x, y) dx dy. Similarly,

they denote an integral over a region in space by
∫∫∫

f(P ) dx dy dz.
We use the single integral sign and P for point for all integrals for three reasons:

1. it is free of any coordinate system

2. it is compact (uses the fewest symbols):
∫

for “integral”, f(P ) or f for
the integrand, and dA, dS, or dV for the set

3. it allows the symbols
∫∫

and
∫∫∫

to be reserved for iterated integrals.

An iterated integral is a different mathematical object. Each integral in an
iterated integral is an integral over an interval.
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EXERCISES for Section 17.2

Exercises 1 to 12 provide practice in describing plane regions by cross sections in rect-
angular coordinates. Describe the region by (a) vertical cross sections and (b) hori-
zontal cross sections.
1. The triangle whose vertices are (0, 0), (2, 1), (0, 1).
2. The triangle whose vertices are (0, 0), (2, 0), (1, 1).
3. The parallelogram with vertices (0, 0), (1, 0), (2, 1), (1, 1).
4. The parallelogram with vertices (2, 1), (5, 1), (3, 2), (6, 2).
5. The disk of radius 5 and center (0, 0).
6. The trapezoid with vertices (1, 0), (3, 2), (3, 3),(1, 6).
7. The triangle bounded by the lines y = x, x + y = 2, and x + 3y = 8.
8. The region bounded by the ellipse 4x2 + y2 = 4.
9. The triangle bounded by the lines x = 0, y = 0, and 2x + 3y = 6.
10. The region bounded by the curves y = ex, y = 1− x, and x = 1.
11. The quadrilateral bounded by the lines y = 1, y = 2, y = x, and y = x/3.
12. The quadrilateral bounded by the lines x = 1, x = 2, y = x, and y = 5−x.

In Exercises 13 to 16 draw the regions and describe them by horizontal cross sec-
tions.
13. 0 ≤ x ≤ 2, 2x ≤ y ≤ 3x

14. 1 ≤ x ≤ 2, x3 ≤ y ≤ 2x2

15. 0 ≤ x ≤ π/4, 0 ≤ y ≤ sinx and π/4 ≤ x ≤ π/2, 0 ≤ y ≤ cos x

16. 1 ≤ x ≤ e, (x− 1)/(e− 1) ≤ y ≤ lnx

In Exercises 17 to 22 evaluate
17.

∫ 1
0

(∫ x
0 (x + 2y) dy

)
dx

18.
∫ 2
1

(∫ 2x
x dy

)
dx

19.
∫ 2
0

(∫ x2

0 xy2 dy
)

dx

20.
∫ 2
1

(∫ y
0 ex+y dx

)
dy

21.
∫ 2
1

(∫ √y
0 yx2 dx

)
dy

22.
∫ 1
0

(∫ x
0 y sin(πx) dy

)
dx

23. Complete the calculation of the second iterated integral in Example 6.

24.

(a) Sketch the solid region S below the plane z = 1+x+y and above the triangle
R in the xy-plane with vertices (0, 0), (1, 0), (0, 2).
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(b) Describe R in terms of coordinates.

(c) Set up an iterated integral for the volume of S.

(d) Evaluate the expression in (c), and show in the manner of Figure 17.2.8(a)
and 17.2.8(b) which integration you performed first.

(e) Carry out (c) and (d) in the other order of integration.

25. Let S be the solid region below the paraboloid z = x2 + 2y2 and above the
rectangle in the xy-plane with vertices (0, 0), (1, 0), (1, 2), (0, 2). Carry out the steps
of Exercise 24.

26. Let S be the solid region below the saddle z = xy and above the triangle in the
xy-plane with vertices (1, 1), (3, 1), and (1, 4). Carry out the steps of Exercise 24 .

27. Let S be the solid region below the saddle z = xy and above the region in the
first quadrant of the xy-plane bounded by the parabolas y = x2 and y = 2x2 and
the line y = 2. Carry out the steps of Exercise 24.

28. Find the mass of a lamina occupying the bounded region bounded by y = 2x2

and y = 5x− 3 and whose density at (x, y) is xy.

29. Find the mass of a thin lamina occupying the triangle whose vertices are
(0, 0), (1, 0), (1, 1) and whose density at (x, y) is 1/(1 + x2).

30. The temperature at (x, y) is T (x, y) = cos(x + 2y). Find the average temper-
ature in the triangle with vertices (0, 0), (1, 0), (0, 2).

31. The temperature at (x, y) is T (x, y) = ex−y. Find the average temperature in
the region in the first quadrant bounded by the triangle with vertices (0, 0), (1, 1),
and (3, 1).

In Exercises 32 to 35 replace the iterated integral by an equivalent one with the
order of integration reversed. First sketch the region R of integration.
32.

∫ 2
0

(∫ x2

0 x3y dy
)

dx

33.
∫ π/2
0

(∫ cos x
0 x2 dy

)
dx

34.
∫ 1
0

(∫ x
x/2 xy dy

)
dx +

∫ 2
1

(∫ 1
x/2 xy dy

)
dx

35.
∫ 0
−1/

√
2

(∫ √1−x2

−x x3y dy
)

dx +
∫ 1
0

(∫ √1−x2

0 x3y dy
)

dx
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In Exercises 36 to 39 evaluate the iterated integrals. First sketch the region of inte-
gration.
36.

∫ 1
0

(∫ 1
x sin(y2) dy

)
dx

37.
∫ 1
0

(∫ 1√
x

dy√
1+y3

)
dx

38.
∫ 1
0

(∫ 1
3
√

y

√
1 + x4 dx

)
dy

39.
∫ 2
1

(∫ y
1

ln x
x dx

)
dy +

∫ 4
2

(∫ 2
y/2

ln x
x dx

)
dy

40. Let f(x, y) = y2ey2
and let R be the triangle bounded by y = a, y = x/2, and

y = x. Assume that a is positive.

(a) Set up two iterated integrals for
∫
R f(P ) dA.

(b) Evaluate the easier one.

41. Let R be the finite region bounded by the curve y =
√

x and the line y = x.
Let f(x, y) = (sin(y))/y if y 6= 0 and f(x, 0) = 1. Compute

∫
R f(P ) dA.

Exercises 42 to 44 are related.
42. Two points are picked at random in an interval of length a. What is the
average value of the square of the distance between them?

(a) Let R be the square whose vertices are (0, 0), (a, 0), (a, a), and (0, a). Define
a function f on R by f(x, y) = (y − x)2. Why is the answer to the question
1
a2

∫
R f(x, y) dA?

(b) Why is the average less than a2?

(c) Show that the average is a2

2 .

43. Two points are picked at random in an interval of length a. Show that the
average value of the distance between them is a

3 . In contrast to the previous prob-
lem, f(x, y) = |y − x|.

44.

Sam: I can do Exercise 43 without calculus, in my head.

Jane: Impossible.

Sam: Take a typical point, say a
5 . The average distance from it to points to the left

of it is a
10 . The average distance from it to points to the right of it is 2a

5 . The
average of a

10 and 2a
5 is a

4 .
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Jane: I believe you.

Sam: So the average distance between any two random points is a
4 , not a

3 , which
Exercise 43 says.

Jane: There must be a mistake; a
3 and a

4 cannot both be correct.

Find the mistake.
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17.3 Computing

∫
R

f (P ) dA Using Polar Coor-

dinates

This section shows how to evaluate
∫

R
f(P ) dA using polar coordinates. The

method is appropriate when the region R has a simple description in polar
coordinates, for instance if it is a disk or cardioid. As in Section 17.2, we first
examine how to describe cross sections in polar coordinates. Then we describe
the iterated integral in polar coordinates that equals

∫
R

f(P ) dA.

Describing R in Polar Coordinates

In describing a region R in polar coordinates, we first determine the range of
θ and then see how r varies for a fixed value of θ. (The reverse order is seldom
useful.) Some examples show how to find how r varies.

EXAMPLE 1 Let R be the disk of radius a and center at the pole of a
polar coordinate system. (See Figure 17.3.1.) Describe R with cross sections
by rays emanating from the pole.

Figure 17.3.1

SOLUTION To sweep out R, θ goes from 0 to 2π. On the ray for a fixed
angle θ, r goes from 0 to a. (See Figure 17.3.1.) The description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

�

EXAMPLE 2 Let R be the region between the circles r = 2 cos θ and
r = 4 cos θ. Describe R in terms of cross sections by rays from the pole. (See
Figure 17.3.2.)

Figure 17.3.2

SOLUTION To sweep out this region, use the rays from θ = −π/2 to θ =
π/2. For each θ, r varies from 2 cos θ to 4 cos θ. The description is

−π

2
≤ θ ≤ π

2
, 2 cos θ ≤ r ≤ 4 cos θ.

�
As Examples 1 and 2 suggest, polar coordinates provide simple descriptions

for regions bounded by circles. The next example shows that polar coordinates
may also provide simple descriptions of regions bounded by straight lines,
especially if some of them pass through the origin.

EXAMPLE 3 Let R be the triangular region whose vertices, in rectangular
coordinates, are (0, 0), (1, 1), and (0, 1). Describe R in polar coordinates.
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SOLUTION

Figure 17.3.3

Inspection of R in Figure 17.3.3 shows that θ varies from π/4
to π/2. For each θ, r goes from 0 until the point (r, θ) is on the line y = 1, that
is, on the line r sin(θ) = 1. Thus the upper limit of r for each θ is 1/ sin(θ).
The description of R is

π

4
≤ θ ≤ π

2
, 0 ≤ r ≤ 1

sin(θ)
.

�
In general, cross sections by rays lead to descriptions of plane regions of

the form:
α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

A Basic Difference Between Rectangular and Polar Co-
ordinates

Before we can set up an iterated integral in polar coordinates for
∫

R
f(P ) dA

we contrast certain properties of rectangular and polar coordinates.
The rectangle in Figure 17.3.4(a) is described by

x0 ≤ x ≤ x0 + ∆x and y0 ≤ y ≤ y0 + ∆y,

where x0, ∆x, y0 and ∆y are numbers with ∆x and ∆y positive. The area of
the rectangle is the product of ∆x and ∆y:

Area = ∆x ∆y.

In polar coordinates the situation is much different. As we will show, the area

(a) (b)

Figure 17.3.4

of the little region corresponding to small changes ∆r in r and ∆θ in θ is not
∆r∆θ.
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The set in the plane consisting of the points (r, θ) such that

r0 ≤ r ≤ r0 + ∆r and θ0 ≤ θ ≤ θ0 + ∆θ,

where r0, ∆r, θ0 and ∆θ are numbers, with r0, ∆r, θ0 and ∆θ all positive, is
shown in Figure 17.3.4(b).

The exact area is found in
Exercise 30.

When ∆r and ∆θ are small, the set is approximately a rectangle, one side
of which has length ∆r and the other, r0 ∆θ. So its area is approximately
r0 ∆r ∆θ. In this case,

Area ≈ r0 ∆r ∆θ.

The area is not the product of ∆r and ∆θ. (It could not be since ∆θ is in
radians, a dimensionless quantity. Thus ∆r ∆θ would have the dimension of
length, not of area.)

When setting up an iterated integral in polar coordinates it is necessary to
replace dA by r dr dθ, not by dr dθ.

How to Evaluate
∫

R f(P ) dA by an Iterated Integral in
Polar Coordinates

The method for computing
∫

R
f(P ) dA with polar coordinates involves an iter-

ated integral where the dA is replaced by r dr dθ. A more detailed explanation
of why the r must be added is given at the end of this section.

Evaluating
∫

R
f(P ) dA in Polar Coordinates

1. Express f(P ) as f(r, θ).

2. Describe the region R in polar coordinates:

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

Figure 17.3.5

3. Evaluate the iterated integral

β∫
α

 r2(θ)∫
r1(θ)

f(r, θ)r dr

 dθ.

Notice the factor r in the integrand.

EXAMPLE 4 Let R be the semicircle of radius a shown in Figure 17.3.5.
Let f(P ) be the distance from a point P to the x-axis. Evaluate

∫
R

f(P ) dA
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by an iterated integral in polar coordinates.
SOLUTION In polar coordinates, R has the description

0 ≤ θ ≤ π, 0 ≤ r ≤ a.

The distance from P to the x-axis is y in rectangular coordinates. Since
y = r sin(θ), f(P ) = r sin(θ). Thus,Notice the extra r in the

integrand. ∫
R

f(P ) dA =

π∫
0

 a∫
0

(r sin(θ)) r︸︷︷︸
Remember this r.

dr

 dθ.

From here on the calculation is like those in the preceding section. First,
evaluate the inside integral:

a∫
0

r2 sin(θ) dr = sin(θ)

a∫
0

r2 dr = sin(θ)

(
r3

3

)∣∣∣∣a
0

=
a3 sin(θ)

3
.

The outer integral is therefore

π∫
0

a3 sin(θ)

3
dθ =

a3

3

π∫
0

sin(θ) dθ =
a3

3
(− cos(θ))

∣∣∣∣π
0

=
a3

3
[(− cos(π))− (− cos(0))] =

a3

3
(1 + 1) =

2a3

3
.

Thus ∫
R

f(P ) dA =
2a3

3
.

�

EXAMPLE 5 A ball of radius a has its center at the pole of a polar co-
ordinate system. Find the volume of the part of the ball that lies above the
plane region R bounded by the curve r = a cos(θ). (See Figure 17.3.6(a).)
SOLUTION It is necessary to describe R and f in polar coordinates, where
f(P ) is the length of a cross section of the solid made by a vertical line through
P . R is described as follows: r goes from 0 to a cos(θ) for each θ in [−π/2, π/2],
that is,

−π

2
≤ θ ≤ π

2
, 0 ≤ r ≤ a cos θ.

We have to express f(P ) in polar coordinates. Figure 17.3.6(b) shows the top
half of a ball of radius a. By the Pythagorean Theorem,

r2 + (f(r, θ))2 = a2.
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(a) (b)

Figure 17.3.6

Thus

f(r, θ) =
√

a2 − r2.

Consequently,

Volume =

∫
R

f(P ) dA =

π/2∫
−π/2

 a cos(θ)∫
0

√
a2 − r2 r dr

 dθ.

Exploiting symmetry, compute half the volume, keeping θ in [0, π/2], and then
double the result:

a cos(θ)∫
0

√
a2 − r2 r dr =

−(a2 − r2)3/2

3

∣∣∣∣a cos(θ)

0

= −
(

(a2 − a2 cos2(θ))3/2

3
− (a2)3/2

3

)

=
a3

3
− (a2 − a2 cos2(θ))3/2

3
=

a3

3
− a3(1− cos2(θ))3/2

3

=
a3

3
(1− sin3(θ)).

(The trigonometric formula sin(θ) =
√

1− cos2(θ) is true when 0 ≤ θ ≤ π/2,
but not when −π/2 ≤ θ ≤ 0.)
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Then comes the second integration:

π/2∫
0

a3

3

(
1− sin3(θ)

)
dθ =

a3

3

π/2∫
0

(1− (1− cos2(θ)) sin(θ)) dθ

=
a3

3

π/2∫
0

(
1− sin(θ) + cos2(θ) sin(θ)

)
dθ

=
a3

3

(
θ + cos(θ)− cos3(θ)

3

)∣∣∣∣π/2

0

=
a3

3

[
π

2
−
(

1− 1

3

)]
= a3

(
3π − 4

18

)
.

The total volume is twice as large,

V = a3

(
3π − 4

9

)
.

�

EXAMPLE 6 A circular disk of radius a is formed of a material that has
density σ(P ) at each point P equal to the distance from P to the center.

(a) Set up an iterated integral in rectangular coordinates for the total mass
of the disk.

(b) Set up an iterated integral in polar coordinates for the total mass of the
disk.

(c) Compute the easier one.

Figure 17.3.7

SOLUTION The disk is shown in Figure 17.3.7.

(a) (Rectangular coordinates) The density σ(P ) at the point P = (x, y) is√
x2 + y2. The disk has the description

−a ≤ x ≤ a, −
√

a2 − x2 ≤ y ≤
√

a2 − x2.

Thus

Mass =

∫
R

σ(P ) dA =

a∫
−a


√

a2−x2∫
−
√

a2−x2

√
x2 + y2 dy

 dx.
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(b) (Polar coordinates) The density σ(P ) at P = (r, θ) is r. The disk has
the description

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

Thus

Mass =

∫
R

σ(P ) dA =

2π∫
0

 a∫
0

r · r dr

 dθ =

2π∫
0

 a∫
0

r2 dr

 dθ.

(c) Even the first integration in the iterated integral in (a) would be diffi-
cult. However, the iterated integral in (b) is straightforward: The first
integration gives

a∫
0

r2 dr =
r3

3

∣∣∣∣a
0

=
a3

3
.

The second integration gives

2π∫
0

a3

3
dθ =

a3θ

3

∣∣∣∣2π

0

=
2πa3

3
.

The total mass is 2πa3/3.

�

A Fuller Explanation of the Extra r in the Integrand

To estimate
∫

R
f(P ) dA for the region in the plane bounded by the circles

r = a and r = b and the rays θ = α and θ = β, break the region into n2 pieces
with the aid of the partition r0 = a, r1, . . . , rj, . . . rn = b and θ0 = α, θ1, . . . ,
θi, . . . , θn = β. For convenience, assume that all rj− rj−1 are equal to ∆r and
all θi− θi−1 are equal to ∆θ. (See Figure 17.3.8(a).) A typical piece, shown in
Figure 17.3.8(b), has area exactly

Aij =
(rj + rj−1)

2
(rj − rj−1)(θi − θi−1),

as shown in Exercise 6.
Let Pij =

(
1
2
(rj + rj−1),

1
2
(θi + θi−1)

)
. Then the sum of the n2 terms of the

form f(Pij)Aij is an estimate of
∫

R
f(P ) dA. Let us look closely at the n pieces

between the rays θ = θi−1 and θ = θi, as shown in Figure 17.3.8(c). This sum
is

n∑
j=1

f

(
rj + rj−1

2
,
θi + θi−1

2

)
rj + rj+1

2
∆r∆θ. (17.3.1)
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(a) (b) (c)

Figure 17.3.8

In (17.3.1), θi, θi−1, ∆r, and ∆θ are constants. If we define g(r, θ) to be
f(r, θ)r, then the sum is(

n∑
j=1

g

(
rj + rj+1

2
,
θi + θi−1

2

)
∆r

)
∆θ. (17.3.2)

The sum in parentheses in (17.3.2) is an estimate of

b∫
a

g

(
r,

θi + θi−1

2

)
dr.

Thus the sum (17.3.1), corresponding to the region between the rays θ = θi

and θ = θi−1, is
n∑

i=1

b∫
a

g

(
r,

θi + θi−1

2

)
dr ∆θ. (17.3.3)

Let h(θ) =
∫ b

a
g(r, θ)dr. Then (17.3.3) equals

n∑
i=1

h

(
θi + θi−1

2

)
∆θ.

This is an estimate of
∫ b

a
h(θ)dθ. Hence the sum of n2 terms of the form

f(Pij)Aij is an approximation of

β∫
α

h(θ) dθ =

β∫
α

 b∫
a

g(r, θ) dr

 dθ =

β∫
α

 b∫
a

f(r, θ)r dr

 dθ.(17.3.4)

The extra factor r appears when we obtained the first integral,
∫ b

a
f(r, θ)r dr.

The sum of the n2 terms of the form f(Pij)Aij, which we knew approximated
the double integral

∫
R

f(P ) dA, we now see approximates also the iterated
integral (17.3.4). Taking limits as n → ∞ shows that the iterated integral
equals the double integral.
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Summary

We saw how to calculate an integral
∫

R
f(P ) dA by introducing polar coordi-

nates. To do this, the plane region R is described in polar coordinates as

α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ).

Then ∫
R

f(P ) dA =

β∫
α

r2(θ)∫
r1(θ)

f(r, θ)r dr dθ.

The extra r in the integrand is due to the fact that a small region corresponding
to changes dr and dθ has area area approximately r dr dθ (not dr dθ). Polar
coordinates are convenient when either the function f or the region R has a
simple description in terms of r and θ.
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EXERCISES for Section 17.3

In Exercises 1 to 6 draw and describe the regions in the form α ≤ θ ≤ β, r1(θ) ≤
r ≤ r2(θ).
1. The region inside the curve r = 3 + cos(θ).
2. The region between the curve r = 3 + cos(θ) and the curve r = 1 + sin(θ).
3. The triangle whose vertices have the rectangular coordinates (0, 0),(1, 1), and
(1,
√

3).
4. The circle bounded by the curve r = 3 sin(θ).
5. The region shown in Figure 17.3.9.

Figure 17.3.9

6. The region in the loop of the three-leaved rose, r = sin(3θ), that lies in the first
quadrant.

7.

(a) Draw the region R bounded by the lines y = 1, y = 2, y = x, y = x/
√

3.

(b) Describe R in terms of horizontal cross sections.

(c) Describe R in terms of vertical cross sections.

(d) Describe R in terms of cross sections by polar rays.

8.

(a) Draw the region R whose description is given by

−2 ≤ y ≤ 2, −
√

4− y2 ≤ x ≤
√

4− y2.

(b) Describe R by vertical cross sections.
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(c) Describe R by cross sections formed by using polar rays.

9. Describe in polar coordinates the square whose vertices have rectangular coor-
dinates (0, 0), (1, 0), (1, 1), (0, 1).

10. Describe the trapezoid whose vertices have rectangular coordinates (0, 1),
(1, 1), (2, 2), (0, 2)

(a) by horizontal cross sections.

(b) by vertical cross sections.

(c) in polar coordinates.

In Exercises 5 to 14 draw the region R and evaluate
∫
R r2 dA.

11. −π/2 ≤ θ ≤ π/2, 0 ≤ r ≤ cos(θ)
12. 0 ≤ θ ≤ π/2, 0 ≤ r ≤ sin2(θ)
13. 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1 + cos(θ)
14. 0 ≤ θ ≤ π/6, 0 ≤ r ≤ sin 2(θ)

In Exercises 15 to 18 draw R and evaluate
∫
R y2 dA.

15. The circle of radius a, center at the pole.
16. The circle of radius a with center at (a, 0) in polar coordinates.
17. The region within the cardioid r = 1 + sin(θ).
18. The region within the leaf that is symmmetric with respect to the ray θ = π/4
of the four-leaved rose r = sin(2θ) .

The average of a function f(P ) over a region R in the plane is defined as
∫
R f(P ) dA

divided by the area of R. In Exercises 19 to 22, find this average.
19. f(P ) is the distance from P to the pole; R is one leaf of the three-leaved rose,
r = sin(3θ).
20. f(P ) is the distance from P to the x-axis; R is the region between the rays
θ = π/6, θ = π/4, and the circles r = 2, r = 3.
21. f(P ) is the distance from P to a fixed point on the border of a disk R of
radius a. (Choose the pole wisely.)
22. f(P ) is the distance from P to the x-axis; R is the region within the cardioid
r = 1 + cos(θ).

In Exercises 23 to 26 evaluate the iterated integral using polar coordinates.
23.

∫ 1
0

(∫ x
0

√
x2 + y2 dy

)
dx
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24.
∫ 1
0

(∫ √1−x2

0 x3 dy
)

dx

25.
∫ 1
0

(∫ √1−x2

x xy dy
)

dx

26.
∫ 2
1

(∫ √3x

x/
√

3
(x2 + y2)3/2 dy

)
dx

27. Evaluate:

(a)
∫
R cos(x2 + y2) dA where R is the portion in the first quadrant of the disk of

radius a centered at the origin.

(b)
∫
R

√
x2 + y2 dA where R is the triangle bounded by the line y = x, the line

x = 2, and the x-axis.

28. Find the volume of the region above the paraboloid z = x2 + y2 and below
the plane z = x + y.

29. The area of a region R is equal to
∫
R 1 dA. Use this to find the area of a disk

of radius a. (Use an iterated integral in polar coordinates.)

30. Find the area of the shaded region in Figure 17.3.4(b) as follows:

(a) Find the area of the ring between two circles, one of radius r0, the other of
radius r0 + ∆r.

(b) What fraction of the area in (a) is included between two rays whose angles
differ by ∆θ?

(c) Show that the area of the shaded region in Figure 17.3.4(b) is(
r0 +

∆r

2

)
∆r∆θ.

31. In Example 5 we computed half of

π/2∫
−π/2

 a cos(θ)∫
0

√
a2 − r2 r dr

 dθ

and doubled the result. Evaluate it directly. The result should still be a3(3π−4)/9.
Use trigonometric formulas with care.

Exercise 32 shows that
∫∞
0 e−x2

dx =
√

π
2 , an equation which connects the constants

e and π and plays a key role in statistics. In spite of what is claimed in the following
comment it is not as obvious to a mathematician as “twice two is four.”. Before
beginning this exercise, read these two quotes that concern this improper integral.
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“Once when lecturing to a class he [the physicist Lord Kelvin] used the
word ‘mathematician’ and then interrupting himself asked the class:
‘Do you know what a mathematician is?’ Stepping to his blackboard he
wrote upon it:

∫∞
−∞ e−x2

dx =
√

π. Then putting his finger on what he
had written, he turned to his class and said, ‘A mathematician is one
to whom this is as obvious as that twice two makes four is to you.’ ”

S. P. Thompson, in Life of Lord Kelvin (Macmillan, London, 1910).
32. Let f(P ) = e−r2

where r is the distance from P to the origin. Hence, f(r, θ) =
e−r2

in polar coordinates and, in rectangular coordinates, f(x, y) = e−x2−y2
. In

Figure 17.3.10, R1 is inside R2 and R2 is inside R3.

(a) Show that
∫
R1

f(P ) dA = π
4

(
1− e−a2

)
and that

∫
R3

f(P ) dA = π
4

(
1− e−2a2

)
.

(b) By considering
∫
R2

f(P ) dA and the results in (a), show that

π

4

(
1− e−a2

)
<

 ∞∫
0

e−x2
dx

2

<
π

4

(
1− e−2a2

)
.

(c) Show that
∫∞
0 e−x2

dx =
√

π
2 .

(a) (b) (c)

Figure 17.3.10 R1 is inside R2 and R2 is inside R3.

33. Figure 17.3.11 shows the bell curve or normal curve. Show that the area
under the curve in Figure 17.3.11 is 1. Use the information that

∫∞
0 e−x2

dx =
√

π/2,
established in Exercise 32.
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Figure 17.3.11

Transportation problems lead to integrals over plane sets, as Exercises 34 to 37
illustrate.
34. Show that the average travel distance from the center of a disk of area A to
points in the disk is 2

√
A/(3

√
π) ≈ 0.376

√
A.

35. Show that the average travel distance from the center of a regular hexagon of
area A to points in the hexagon is

√
2A

33/4

(
1
3

+
ln 3
4

)
≈ 0.377

√
A.

36. Show that the average travel distance from the center of a square of area A
to points in the square is (

√
2 + ln(tan(3π/8)))

√
A/6 ≈ 0.383

√
A.

37. Show that the average travel distance from the centroid of an equilateral
triangle of area A to points in the triangle is

√
A

39/4

(
2
√

3 + ln(tan(
5π

12
))
)
≈ 0.404

√
A

(The centroid of a triangle is the intersection point of its medians.)

In Exercises 34 to 37 distance is the ordinary straight-line distance. In cities the
usual street pattern suggests that the metropolitan distance between the points
(x1, y1) and (x2, y2) should be measured by |x1 − x2|+ |y1 − y2|.
38. Show that if in Exercise 34 metropolitan distance is used, then the average is
8
√

A/(3π3/2) ≈ 0.470
√

A.
39. Show that if in Exercise 37 metropolitan distance is used, then the average is√

A/2. In most cities the metropolitan average tends to be about 25 percent larger
than the direct-distance average.

40.
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Sam: The formula in this section for integrating in polar coordinates is wrong. I’ll
get the right formula. We don’t need the factor r.

Jane: But the book’s formula gives correct answers.

Sam: I don’t care. Let f(r, θ) be positive and I’ll show how to integrate over the
set R bounded by r = b and r = a, b > a, and θ = β and θ = α, β > α. We
have

∫
R f(P ) dA is the volume under the graph of f and above R. Right?

Jane: Right.

Sam: The area of the cross section corresponding to a fixed angle θ is
∫ b
a f(r, θ) dr.

Right?

Jane: Right.

Sam: So I just integrate cross-sectional areas as θ goes from α to β, and the vol-
ume is therefore

∫ β
α (
∫ b
a f(r, θ) dr) dθ. Perfectly straightforward. I hate to

overthrow a formula that’s been around for three centuries.

What does Jane say next?

41.

Jane: You looked at fixed θ. I’ll use a fixed r. Look at the area under the graph
of f and above the circle of radius r. I’ll draw this fence for you (see Fig-
ure 17.3.12(a)).

(a) (b)

Figure 17.3.12

To estimate its area I’ll cut the arc
_

AB into n sections of equal length by
angle θ0 = a, . . . , θn = β.

Then I break
_

AB into n short arcs, each of length r∆θ. (Remember, Sam,
how radians are defined.) The approximation to the shaded area looks like
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Figure 17.3.12(b) and resembles a rectangle of height f(r, θ) and width r ∆θ.
So the local approximation to the area is f(r, θ) r ∆θ and the area of the fence
is
∫ β
α f(r, θ) r dθ. Here r is fixed. Then I integrate this cross-sectional area

as r goes from a to b. The total volume is then
∫ b
a

(∫ β
α f(r, θ) r dθ

)
dr. That

gives the volume, which equals
∫
R f(r, θ) dA.

Sam: All right.

Jane: At least it gives the factor r.

Sam: Maybe we’re both right.

What does Jane say?

April 22, 2012 Calculus



§ 17.4 THE TRIPLE INTEGRAL: INTEGRALS OVER SOLID REGIONS 1491

17.4 The Triple Integral: Integrals Over Solid

Regions

In this section we define integrals over solid regions in space and show how to
compute them by iterated integrals using rectangular coordinates. Throughout
we assume the regions are bounded by smooth surfaces and the functions are
continuous.

The Triple Integral

Let R be a region in space bound by a surface and f a continuous function
on R. For instance, R could be a ball, a cube, or a tetrahedron. Partition
of R into n smaller regions R1, R2, . . . , Rn with volumes V1, V2, . . . , Vn and
sampling points P1, P2, . . . , Pn. The limit of sums of the form

n∑
i=1

f(Pi)Vi,

as the diameter of each Ri approaches 0, exists (no matter how the sampling
points Pi are chosen). The limiting value is called the integral of f over R or
the triple integral of f over R and is denoted∫

R

f(P ) dV. (17.4.1)

Double and triple integrals are examples of multiple integrals. More gener-
ally, a multiple integral of a function f of n variables over an n-dimensional
region R is the limit of Riemann sums of f over partitions of R as the largest
diameter of the partitions approaches 0.

EXAMPLE 1 If f(P ) = 1 for each point P in a solid region R, compute∫
R

f(P ) dV .
SOLUTION Each approximating sum

∑n
i=1 f(Pi)Vi has the value

n∑
i=1

1 · Vi = V1 + V2 + · · ·+ Vn = Volume of R.

Hence ∫
R

f(P ) dV = Volume of R,

which is useful for computing volumes. �
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The average value of a function f defined on a region R in space is defined
as ∫

R
f(P ) dV

Volume of R
.

This is the analog of the definition of the average value of a function over an
interval (Section 6.3) or the average value of a function over a plane region
(Section 17.1).

If a mass is distributed in a region R its density at a point P is defined as
a limit. For positive r let V (r) be the volume of a ball of radius r centered at
P , and m(r) the mass in it. Then the density at P is

lim
r→0

m(r)

V (r)
.

If f describes the density of matter in R, then the average value of f is the
density of a homogeneous solid occupying R and having the same total mass
as the given solid. That is, if the average density∫

R
f(P ) dV

Volume of R
.

is multiplied by the volume of R, the product is∫
R

f(P ) dV,

which is the total mass.

An Interpretation of
∫

R f(P ) dV .

Triple integrals appear in the study of gravitation, rotating bodies, centers of
gravity, and in electromagnetic theory. The simplest way to think of them is
to interpret f(P ) as the density at P of some distribution of matter. Then∫

R
f(P ) dV is the total mass in a region R.
We can’t picture

∫
R

f(P ) dV as measuring the volume of something. We
could do this for

∫
R

f(P ) dA, because we could use two dimensions for describ-
ing the region of integration and then the third dimension for the values of the
function, obtaining a solid region in three-dimensional space. However, with∫

R
f(P ) dV , we use up three dimensions describing the region of integration.

We need four-dimensional space to show the values of the function.

Describing a Solid Region

In order to evaluate triple integrals, it is necessary to describe solid regions in
terms of coordinates.
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There are six possible orders
of the variables. This is the
order x, then y, then z.

A description of a solid region in rectangular coordinates has the form

Figure 17.4.1

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

The inequalities on x and y describe the projection of the region on the xy-
plane. The inequalities for z then tell how z varies on a line parallel to the z-
axis and passing through the point (x, y) in the projection. (See Figure 17.4.1.)

EXAMPLE 2 Describe in terms of x, y, and z the rectangular box shown
in Figure 17.4.2(a).

(a) (b)

Figure 17.4.2

SOLUTION The projection of the box on the xy-plane has a description
1 ≤ x ≤ 2, 0 ≤ y ≤ 3. For each point in it, z varies from 0 to 2, as shown in
Figure 17.4.2(b). So the description of the box is

1 ≤ x ≤ 2, 0 ≤ y ≤ 3, 0 ≤ z ≤ 2,

which is read from left to right as “x goes from 1 to 2; for each x, y goes from
0 to 3; for each x and y, z goes from 0 to 2.”

We could have changed the order of x and y in the description or projected
the box on one of the other two coordinate planes. There are six possible
descriptions. �

EXAMPLE 3 Describe by cross sections the tetrahedron bounded by the
planes x = 0, y = 0, z = 0, and x + y + z = 1, as shown in Figure 17.4.3(a).
SOLUTION Project the tetrahedron onto the xz-plane. The projection is
shown in Figure 17.4.3(b). A description of the shadow is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x,
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(a) (b) (c)

Figure 17.4.3

since the slanted edge has the equation x + z = 1. For each point (x, z) in
the projection, y ranges from 0 up to the value of y that satisfies the equation
x+y+z = 1, that is, up to y = 1−x−z. (See Figure 17.4.3(c).) A description
of the tetrahedron is

0 ≤ x ≤ 1, 0 ≤ z ≤ 1− x, 0 ≤ y ≤ 1− x− z.

That is, x goes from 0 to 1; for each x, z goes from 0 to 1− x; for each x and
z, y goes from 0 to 1− x− z. �

EXAMPLE 4 Describe in rectangular coordinates the ball of radius 4
whose center is at the origin.

SOLUTION The projection of the ball on the xy-plane is the disk of radius
4 and center (0, 0). Its description is

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2.

Figure 17.4.4

Hold (x, y) fixed in the xy-plane and consider the way z varies on the line
parallel to the z-axis that passes through the point (x, y, 0). Since the sphere
that bounds the ball has the equation

x2 + y2 + z2 = 16,

for each (x, y), z varies from

−
√

16− x2 − y2 to
√

16− x2 − y2.

This describes the line segment shown in Figure 17.4.4.
The ball, therefore, has a description

−4 ≤ x ≤ 4, −
√

16− x2 ≤ y ≤
√

16− x2,
√

16− x2 − y2 ≤ z ≤
√

16− x2 − y2.

�
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Iterated Integrals for
∫

R f(P ) dV

The iterated integral in rectangular coordinates for
∫

R
f(P ) dV is similar to

that for evaluating integrals over plane sets. It involves three integrations
instead of two. The limits of integration are determined by the description of
R in rectangular coordinates. If R has the description

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y),

then ∫
R

f(P ) dV =

b∫
a

 y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy

 dx.

An example illustrates how this formula is applied. In Exercise 31 an argument
for its plausibility is presented.

EXAMPLE 5 Compute
∫

R
z dV , where R is the tetrahedron in Example 3.

SOLUTION One description of the tetrahedron is

0 ≤ y ≤ 1, 0 ≤ x ≤ 1− y, 0 ≤ z ≤ 1− x− y.

Hence ∫
R

z dV =

1∫
0

 1−y∫
0

 1−x−y∫
0

z dz

 dx

 dy.

Compute the inner integral first, treating x and y as constants. By the
Fundamental Theorem of Calculus,

1−x−y∫
0

z dz =
z2

2

∣∣∣∣z=1−x−y

z=0

=
(1− x− y)2

2
.

The next integration, where y is fixed, is

1−y∫
0

(1− x− y)2

2
dx = −(1− x− y)3

6

∣∣∣∣x=1−y

x=0

= −03

6
+

(1− y)3

6
=

(1− y)3

6
.

The third integration is

1∫
0

(1− y)3

6
dy = −(1− y)4

24

∣∣∣∣1
0

= −04

24
+

14

24
=

1

24
.
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This completes the calculation that∫
R

z dV =
1

24
.

�

A Word about Four-Dimensional Space
We can think of two-dimensional space as the set of ordered pairs (x, y) of real
numbers. The set of ordered triplets of real numbers (x, y, z) represents three-
dimensional space. The set of ordered quadruplets of real numbers (x, y, z, t)
represents four-dimensional space.
In two-dimensional space the set of points of the form (x, 0), the y-axis, meets
the set of points of the form (0, y), the y-axis, in a point, namely the origin
(0, 0). In 4-space the set of points of the form (x, y, 0, 0) forms a plane con-
gruent to the xy-plane. The set of points of the form (0, 0, z, t) forms another.
Their intersection is a single point (0, 0, 0, 0). Can you picture two endless
planes meeting in a single point? If so, please tell us how.

Summary

We defined
∫

R
f(P ) dV , where R is a region in space. The volume of a solid

region R is
∫

R
dV and, if f(P ) is the density of matter at P , then

∫
R

f(P ) dV
is the total mass. We also showed how to evaluate integrals by introducing
rectangular coordinates and computing an iterated integral.

There are six possible orders for the three variables x, y, and z. If R is
described by

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Then ∫
R

f(P ) dV =

b∫
a

 y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy

 dx.

To use any of the other five orders requires a corresponding description of R.
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EXERCISES for Section 17.4

Exercises 1 to 4 concern the definition of
∫
R f(P ) dV .

1. A cube of side 4 centimeters is made of a material of varying density. Near
one corner, A, it is very light; at the opposite corner it is very dense. The density
f(P ) (in grams per cubic centimeter) at a point P in the cube is the square of the
distance from A to P (in centimeters). See Figure 17.4.5.

Figure 17.4.5

(a) Find upper and lower estimates for the mass of the cube by partitioning it
into eight cubes.

(b) Using the same partition, estimate the mass of the cube, but select as the Pi’s
the centers of the cubes.

(c) What does (b) say about the average density in the cube?

2. How would you define the average distance from points of a set in space to a
point P0?
3. If R is a ball of radius r and f(P ) = 5 for each point in R, compute

∫
R f(P ) dV

by examining approximating sums. The ball has volume (4/3)πr3.
4. If R is a three-dimensional set and f(P ) is never more than 8 for all P in R,

(a) what can we say about the maximum value of
∫
R f(P ) dV ?

(b) what can we say about the average of f over R?

In Exercises 5 to 10 draw the solids.
5. 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ x

6. 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 1 ≤ z ≤ 1 + x + y

7. 0 ≤ y ≤ 1, 0 ≤ x ≤ y2, y ≤ z ≤ 2y
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8. 0 ≤ y ≤ 1, y2 ≤ x ≤ y, 0 ≤ z ≤ x + y

9. −1 ≤ z ≤ 1, −
√

1− z2 ≤ x ≤
√

1− z2, −1
2 ≤ y ≤

√
1− x2 − z2

10. 0 ≤ z ≤ 3, 0 ≤ y ≤
√

9− z2, 0 ≤ x ≤
√

9− y2 − z2

In Exercises 11 to 14 evaluate the iterated integral.
11.

∫ 1
0

(∫ 2
0

(∫ x
0 z dz

)
dy
)

dx

12.
∫ 1
0

(∫ x2

x3

(∫ x+y
0 z dz

)
dy
)

dx

13.
∫ 3
2

(∫ 2x
x

(∫ 1
0 (x + z) dz

)
dy
)

dx

14.
∫ 1
0

(∫ x
0

(∫ 3
0 (x2 + y2) dz

)
dy
)

dx

15. Describe the solid cylinder of radius a and height h shown in Figure 17.4.6(a)
in rectangular coordinates in the order

(a) x, y, z,

(b) x, z, y.

(a) (b)

Figure 17.4.6

16. Describe the prism shown in Figure 17.4.6(b) in rectangular coordinates in
two ways.

(a) First project it onto the xy-plane.

(b) First project it onto the xz-plane.
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(a) (b)

Figure 17.4.7
17. Describe the tetrahedron in Figure 17.4.7(a) in rectangular coordinates in two
ways:

(a) First project it onto the xy-plane.

(b) First project it onto the xz-plane.

18. Describe the tetrahedron in Figure 17.4.7(b) with vertices at (1, 1, 0), (1, 0, 1),
(0, 0, 2), and (1, 1, 3).

(a) Draw its projection on the xy-plane.

(b) Obtain equations of its top and bottom planes.

19. Let R be the tetrahedron whose vertices are (0, 0, 0), (a, 0, 0), (0, b, 0), and
(0, 0, c), where a, b, and c are positive.

(a) Sketch R.

(b) Find the equation of its top surface.

(c) Compute
∫
R z dV .

20. Compute
∫
R z dV , where R is the region above the rectangle whose vertices

are (0, 0, 0), (2, 0, 0), (2, 3, 0), and (0, 3, 0) and below the plane z = x + 2y.
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21. Find the mass of the cube in Exercise 1. (See Figure 17.4.1.)

22. Find the average value of the square of the distance from a corner of a cube
of side a to points in the cube.

23. Find the average of the square of the distance from a point in a cube of side
a to the center of the cube.

24. A solid consists of points below the surface z = xy that are above the triangle
whose vertices are (0, 0, 0), (1, 0, 0), and (0, 2, 0). If the density at (x, y, z) is x + y,
find the total mass.

25. Compute
∫
R xy dV for the tetrahedron of Example 3.

26.

(a) Describe in rectangular coordinates the right circular cone, C, of radius r and
height h if its axis is on the positive z-axis and its vertex is at the origin.
Draw the cross sections for fixed x and fixed x and y.

(b) Find
∫
C z dV .

(c) Find the average value of z in the cone in (a).

27. The temperature at (x, y, z) is e−x−y−z. Find the average temperature in the
tetrahedron whose vertices are (0, 0, 0), (1, 1, 0), (0, 0, 2), and (1, 0, 0).

28. The temperature at (x, y, z), y > 0, is e−x/
√

y. Find the average temperature
in the region bounded by the cylinder y = x2, the plane y = 1, and the plane z = 2y.

29. Without using an iterated integral, evaluate
∫
R x dV , where R is a ball whose

center is (0, 0, 0) and whose radius is a.

30. The work done in lifting a weight of w pounds a vertical distance of x feet
is wx foot-pounds. Imagine that through geological activity a mountain is formed
consisting of material originally at sea level. Let the density of the material near
point P in the mountain be g(P ) pounds per cubic foot and the height of P be
h(P ) feet. What definite integral represents the total work expended in forming
the mountain? This type of problem arises in the geological theory of mountain
formation.
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31. In Section 17.2 an intuitive argument was presented for the equality

∫
R

f(P ) dA =

b∫
a

 y2(x)∫
y1(x)

f(x, y) dy

 dx.

Here is an intuitive argument for the equality

∫
R

f(P ) dV =

x2∫
x1

 y2(x)∫
y1(x)

 x2(x,y)∫
x1(x,y)

f(x, y, z) dz

 dy

 dx.

Interpret f(P ) as density.

(a) Let R(x) be the plane cross section consisting of all points in R with abscissa
x. Show that the average density in R(x) is∫ y2(x)

y1(x)

(∫ z2(x,y)
z1(x,y) f(x, y, z) dz

)
dy

Area of R(x)
.

(b) Show that the mass of R between the plane sections R(x) and R(x + ∆x) is
approximately

y2(x)∫
y1(x)

 z2(x,y)∫
z1(x,y)

f(x, y, z) dz

 dy ∆x.

(c) From (b) obtain an iterated integral in rectangular coordinates for
∫
R f(P ) dV .
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17.5 Cylindrical and Spherical Coordinates

Rectangular coordinates provide convenient descriptions of solids bounded by
planes. In this section we describe two other coordinate systems, cylindri-
cal, ideal for describing circular cylinders, and spherical, ideal for describing
spheres and cones.

Figure 17.5.1

Both will be used in the next section to evaluate multiple
integrals by iterated integrals.

Cylindrical Coordinates

Cylindrical coordinates combine polar coordinates in the plane with the z
of rectangular coordinates in space. A point P in space receives the name
(r, θ, z) as in Figure 17.5.1. We are free to choose the direction of the polar
axis; usually it will coincide with the x-axis of an (x, y, z) system. The point
(r, θ, z) is directly above (or below) P ∗ = (r, θ) in the rθ-plane. Since the set
of points P = (r, θ, z) for which r is some constant is a circular cylinder, this
coordinate system is convenient for describing such cylinders. As with polar
coordinates, the cylindrical coordinates of a point are not unique.

Figure 17.5.2 shows the coordinate surfaces θ = k, r = k, and z = k, where
k is a positive number.

(a) (b) (c)

Figure 17.5.2 The coordinates surfaces for cylindrical coordinates: (a) θ = k,
(b) r = k, and (c) z = k, where k is a positive number.

EXAMPLE 1 Describe a solid cylinder of radius a and height h in cylin-
drical coordinates. Assume that its axis is on the positive z-axis and its lower
base has its center at the pole, as in Figure 17.5.3(a).

SOLUTION The projection of the cylinder on the rθ-plane is the disk of
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(a) (b) (c)

Figure 17.5.3

radius a with center at the pole shown in Figure 17.5.3(b). Its description is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

For each point (r, θ) in the projection, the line through it and parallel to
the z-axis intersects the cylinder in a line segment. On the segment z varies
from 0 to h. (See Figure 17.5.3(c).) Thus a description of the cylinder is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, 0 ≤ z ≤ h.

�

EXAMPLE 2 Describe in cylindrical coordinates the region in space formed
by the intersection of a solid (endless) cylinder of radius 3 with a ball of radius
5 whose center in on the axis of the cylinder. Place the cylindrical coordinate
system as shown in Figure 17.5.4.

Figure 17.5.4

SOLUTION The point P = (r, θ, z) is a distance
√

r2 + z2 from the origin
O, for, by the Pythagorean theorem, r2 + z2 = |OP |2. (See Figure 17.5.5.) We
will use this fact in a moment.

Now we describe the solid. The projection of the cylinder on the rθ-plane
is a disk or radius 3. For fixed θ and r, the cross section of the solid is
a line segment determined by the sphere that bounds the ball, as shown in
Figure 17.5.5(b). Because the sphere has radius 5, for any point (r, θ, z) on it

r2 + z2 = 25 or z = ±
√

25− r2.

Thus, on the segment determined by r and θ, z varies from −
√

25− r2 to√
25− r2.
The solid has the description

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3︸ ︷︷ ︸
the projection

, −
√

25− r2 ≤ z ≤
√

25− r2︸ ︷︷ ︸
range of z for each θ and r

.
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�

EXAMPLE 3 Describe a ball of radius a in cylindrical coordinates.

SOLUTION Place the origin at the center of the ball, as in Figure 17.5.5(a).
The projection of the ball on the rθ-plane is a disk of radius a, shown in
Figure 17.5.5(b) in perspective. The projection is described by

(a) (b) (c)

Figure 17.5.5

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a.

All that remains is to see how z varies for given r and θ. How does z vary
on the line segment AB in Figure 17.5.5(c)?

If r is a, then z varies from 0 to 0, as Figure 17.5.5(c) shows. If r is 0, then
z varies from −a to a. The bigger r is, the shorter AB is. Figure 17.5.6 shows
the geometry, first in perspective. Using Figure 17.5.6, we see that z varies

(a) (b)

Figure 17.5.6
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from −
√

a2 − r2 to
√

a2 − r2. You can check this by testing the easy cases,
r = 0 and r = a. All told,

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a︸ ︷︷ ︸
the projection

, −
√

a2 − r2 ≤ z ≤
√

a2 − r2︸ ︷︷ ︸
range of z for each θ and r

�

EXAMPLE 4 Draw the region R bounded by the surfaces r2 + z2 = a2,
θ = π/6, and θ = π/3, situated in the first octant.

SOLUTION The surface r2 + z2 = a2 is a sphere with radius a centered at
the origin: x2 + y2 + z2 = a2. Figure 17.5.7(a) shows the part of it in the first
octant.

(a) (b) (c)

Figure 17.5.7

Next we draw the half planes θ = π/6 and θ = π/3, as in Figure 17.5.7(b),
again showing only the parts in the first octant. Finally we put Figure 17.5.7(a)
and (b) together in (c), to see that R is a wedge from a ball.

The boundary of R has three plane surfaces, z = 0, θ = π/6, and θ = π/3,
and one curved surface, r2 + z2 = a2.

The description of R in cylindrical coordinates is

0 ≤ r ≤ a, 0 ≤ z ≤
√

a2 − r2, π/6 ≤ θ ≤ π/3.

�

The Volume Swept Out by ∆r, ∆θ, and ∆z

To use polar coordinates to evaluate an integral over a plane set we needed to
know that the area of the region corresponding to small changes ∆r and ∆θ
is roughly r∆r∆θ. To evaluate integrals over solids using an iterated integral
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(a) (b)

Figure 17.5.8

in cylindrical coordinates, we will need to estimate the volume of the region
corresponding to small changes ∆r, ∆θ, ∆z in the three coordinates.

The set of points (r, θ, z) whose r-coordinates are between r and r + ∆r,
whose θ-coordinates are between θ and θ + ∆θ, and whose z-coordinates are
between z and z + ∆z is shown in Figure 17.5.8(a). It is a solid with four flat
surfaces and two curved surfaces.

When ∆r and ∆θ are small, the area of the flat base of the solid is approx-
imately r∆r∆θ, as shown in Section 9.2 and as we saw when working with
polar coordinates in the plane. Thus, when ∆r, ∆θ, and ∆z are small, the
volume ∆V of the solid in Figure 17.5.8(b) is approximately

(Area of base)(height) ≈ r ∆r ∆θ∆z.

That is,

∆V ≈ r∆r∆θ∆z.

As the factor r appears in iterated integrals in polar coordinates, it also
appears in iterated integrals in cylindrical coordinates.

ρ is pronounced “row”; it is
the Greek letter for r. The

letter φ is pronounced “fee”
or “fie.”

Spherical Coordinates

The third standard coordinate system in space is spherical coordinates,
which combines the θ of cylindrical coordinates with two others.
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In spherical coordinates a point P is described by three numbers: ρ, the
distance from P to the origin O; θ, the same angle as in cylindrical coordinates;
φ, the angle between the positive z-axis and the ray from O to P .

In physics and engineering the letter r is used instead of ρ, and ρ is put to
other uses.

Figure 17.5.9

The point P is denoted P = (ρ, θ, φ). The angle φ is the same as the
direction angle of OP with k, 0 ≤ φ ≤ π. (See Figure 17.5.9.) For a positive
constant k the coordinate surfaces ρ = k (a sphere), θ = k (a half plane), and
φ = k (a cone) are shown in Figure 17.5.10. Thus a point is described by the
sphere, half plane, and cone on which it lies.

(a) (b) (c)

Figure 17.5.10 The coordinates surfaces for spherical coordinates: (a) ρ = k,
(b) θ = k, and (c) φ = k, where k is a positive number.

When φ and θ are fixed and ρ varies, the result is a ray, as shown in
Figure 17.5.11.

Figure 17.5.11

Relation to Rectangular Coordinates

Figure 17.5.12 displays the relation between spherical and rectangular coordi-
nates of a point P = (ρ, θ, φ) = (x, y, z).

The right triangle OSP has hypotenuse OP and a right angle at S, and
the right triangle OQR has a right angle at Q.

We have z = ρ cos(φ), |OR| = |SP | = ρ sin(φ), and x = |OR| cos(θ) =
ρ sin(φ) cos(θ) and y = |OR| sin(θ) = ρ sin(φ) sin(θ).

EXAMPLE 5 Figure 17.5.13 shows a point given in spherical coordinates.
Find its rectangular coordinates.
SOLUTION Because ρ = 2, θ = π/3, φ = π/6,
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(a) (b) (c) (d)

Figure 17.5.12

Figure 17.5.13
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x = 2 sin(
π

6
) cos(

π

3
) = 2 · 1

2
· 1
2

=
1

2

y = 2 sin(
π

6
) sin(

π

3
) = 2 · 1

2
·
√

3

2
=

√
3

2

z = 2 cos(
π

6
) = 2

√
3

2
=
√

3.

As a check, x2 + y2 + z2 should equal ρ2, and it does, for (1/2)2 + (
√

3
2

)2 +

(
√

3)2 = 1
4

+ 3
4

+ 3 = 4 = 22. �
The next example uses spherical coordinates to describe a cone topped by

part of a ball.

EXAMPLE 6 The region R consists of the portion of a ball of radius a that
lies within a cone of half angle π/6. The vertex of the cone is at the center of
the ball.

(a) (b)

Figure 17.5.14

SOLUTION R is shown in Figure 17.5.15(a). It resembles an ice cream cone,
the dry cone topped with spherical ice cream.

Because R is a solid of revolution (around the z-axis), 0 ≤ θ ≤ 2π. The
section of R corresponding to an angle θ is the intersection of R with a half
plane, shown in Figure 17.5.15(b).

In this sector of a disk, φ goes from 0 to π/6, independent of θ. Finally, θ
and φ determine a ray on which ρ goes from 0 to a, as in Figure 17.5.15(b).
So the description in spherical coordinates is

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

6
, 0 ≤ ρ ≤ a.
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(a) (b)

Figure 17.5.15

�
The next example describes a ball in rectangular and spherical coordinates.

EXAMPLE 7 Describe a ball of radius a in (a) rectangular and (b) spher-
ical coordinates.

Figure 17.5.16

SOLUTION In each case we put the origin of the coordinate system at the
center of the ball.

(a) Rectangular coordinates: The projection of the ball on the xy-plane is
a disk of radius a, described by

−a ≤ x ≤ a, −
√

a2 − x2 ≤ y ≤
√

a2 − x2.

For (x, y) in the projection, z varies along the segment AB in Figure 17.5.16.
The equation of the sphere is x2 + y2 + z2 = a2. Therefore, at A, z is

−
√

z2 − x2 − y2, and, at B, z is
√

a2 − x2 − y2. The entire description is

−a ≤ x ≤ a, −
√

a2 − x2 ≤ y ≤
√

a2 − x2, −
√

a2 − x2 − y2 ≤ z ≤
√

z2 − x2 − y2.

(b) Spherical coordinates: This time the projection on the xy-plane plays
no role. Instead, we begin with

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π,

which sweeps out all the rays from the origin. On each ray ρ goes from 0 to
a. The complete description involves only constants as bounds:

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a.

Since the range of each variable is not influenced by other variables, the three
restraints can be given in any order. �
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The Volume Swept Out by ∆ρ, ∆φ, and ∆θ

In the next section we will need an estimate of the volume of the little box-like
region bounded by the spheres with radii ρ and ρ + ∆ρ, the half-planes with
angles θ and θ +∆θ, and the cones with half-angles φ and φ+∆φ. It is shown
in Figure 17.5.17. Two of its surfaces are flat, two are parts of spheres, and

two are parts of cones. Arc
_

AD is part of a circle of radius ρ and arc
_

AB is
part of a circle of radius ρ sin(φ).

(a) (b)

Figure 17.5.17

_
AB and

_
AD are arcs of

circles, while AC is a line
segment

The product of the lengths of
_

AB, AC, and
_

AD is an estimate of the
volume of the little box. Figure 17.5.18 shows how to find each length.

(a) (b) (c)

Figure 17.5.18

Therefore the volume of the small box is approximately (ρ sin(φ)∆θ)(ρ∆φ)(∆ρ):
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∆V ≈ ρ2 sin(φ)∆ρ ∆φ ∆θ

As we added an r to an integrand in polar coordinates, we must add the
factor ρ2 sin(φ) to an integrand when using an iterated integral in spherical
coordinates.

Summary

This section described cylindrical and spherical coordinates. The volume of the
small box corresponding to small changes in the three cylindrical coordinates is
approximately r ∆r ∆θ ∆z. Because of the presence of the factor r, we must
adjoin an r to the integrand when using an iterated integral in cylindrical
coordinates.

Similarly, ρ2 sin(φ) must be added to an integrand when using an iterated
integral in spherical coordinates.
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EXERCISES for Section 17.5

1. Fill in the blanks.

(a) In rectangular coordinates in space a point is described as the intersection of
.

(b) In cylindrical coordinates a point is described as the intersection of a ,
a , and a .

(c) In cylindrical coordinates a point is described as the intersection of a ,
a , and a .

2. On the region in Example 2 draw the set of points described by (a) z = 2, (b)
z = 3, (c) z = 4.5.

3. For the cylinder in Example 1 draw the set of points described by (a) r = a/2,
(b) θ = π/4, (c) z = h/3.

4.

(a) In the formula ∆V ≈ r∆r∆θ∆z, which factors have the dimension of length?

(b) Why would you expect three such factors?

5.

(a) In the formula ∆V ≈ ρ2 sin(φ)∆ρ∆θ∆φ, which factors have the dimension of
length?

(b) Why would you expect three such factors?

6. Drawing one clear, large diagram, show how to express rectangular coordinates
in terms of cylindrical coordinates.

7. Drawing one clear, large diagram, show how to express rectangular coordinates
in terms of spherical coordinates.

8. Find the cylindrical coordinates of (x, y, z) = (3, 3, 1), including a clear dia-
gram.
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9. Find the spherical coordinates of (x, y, z) = (3, 3, 1), including a clear diagram.

In Exercises 10 to 15 (a) draw the set of points described, and (b) describe it in
words.
10. r and z fixed, θ varies.

11. r and θ fixed, z varies.

12. θ and z fixed, r varies.

13. ρ and φ fixed, θ varies.

14. ρ and θ fixed, φ varies.

15. θ and φ fixed, ρ varies.

16. What is the equation of a sphere of radius a centered at the origin in

(a) spherical,

(b) cylindrical,

(c) rectangular coordinates?

17. Explain why if P = (x, y, z) = (ρ, θ, φ), in spherical coordinates, that
x2 + y2 + z2 = ρ2. (Draw a box.)

18. Describe the region in Example 6 in cylindrical coordinates in the order
α ≤ θ ≤ β, r1(θ) ≤ r ≤ r2(θ), z1(r, θ) ≤ z ≤ z2(r, θ).

19. Like Exercise 18, but in the order a ≤ z ≤ b, θ1(z) ≤ θ ≤ θ2(z), r1(θ, z) ≤ r ≤
r2(θ, z).

20. Sketch the region in the first octant bounded by the planes θ = π
6 and θ = π

3
and the sphere ρ = a.

21. Estimate the area of the bottom face of the curvy box shown in Figure 17.5.17.
It lies on the sphere of radius ρ.

22. A cone of half-angle π/6 is cut by a plane perpendicular to its axis at a
distance 4 from its vertex.

(a) Place it on a cylindrical coordinate system.

(b) Describe it in cylindrical coordinates.
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23. Like the preceding exercise, but use spherical coordinates.

24. A solid, infinite cone has its vertex at the origin and its axis along the positive
z-axis. It is made by revolving a line through the origin that has an angle A with
the z-axis, about the z-axis. Describe it in

(a) spherical coordinates

(b) cylindrical coordinates

(c) rectangular coordinates

25. Use spherical coordinates to describe the surface in Figure 17.5.19. It is part
of a cone of vertex half-angle α with the z-axis as its axis, situated within a sphere
of radius a centered at the origin.

Figure 17.5.19
26. (See Exercise 3(c) in the Summary of Chapter 9.) A ball of radius a has
a diameter coinciding with the interval [0, 2a] on the x-axis. Describe the ball in
spherical coordinates.

27. The ray described in spherical coordinates by θ = π
6 and φ = π

4 makes an
angle α with the x-axis.

(a) Draw a picture that shows the three direction angles of the ray.

(b) Find cos(α).

28.
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(a) If the region in Example 2 is described in the order 0 ≤ θ ≤ 2π, z1(θ) ≤ z ≤
z2(θ), r1(θ, z) ≤ r ≤ r2(θ, z), what complication arises?

(b) Describe the region using the order given in (a).

29. What is the distance between P1 = (ρ1, θ1, φ1) and P2 = (ρ2, θ2, φ2)?

30. The points P1 = (ρ1, θ1, φ1) and P2 = (ρ1, θ2, φ2) both lie on a sphere of radius
ρ1. Assuming that both are in the first octant, find the great circle distance between
them. (If the sphere is Earth’s surface, ρ is approximately 3960 miles, north of the
equator φ is the complement of the latitude, and θ is related to longitude.)

31. At time t a particle moving along a curve is at the point (ρ(t), θ(t), φ(t)) in
spherical coordinates. What is its speed?

32. How far apart are the points (r1, θ1, z1) and (r2, θ2, z2) in the first octant?

(a) Draw a large clear diagram.

(b) Find the distance.

33. Let S be the surface of a cylinder described by 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤
z ≤ 2. One path on S from (3, 0, 2) to (−3, 0, 0) is straight to (3, 0, 0) followed by a
straight path on the base along a diameter. Is that the shortest path on the surface?
If not, what is?

34. (See Exercises 10 to 12.) In cylindrical coordinates if two coordinates are held
fixed and the third allowed to vary, one obtains a curve. Because there are three
choices for the two fixed coordinates, there are three such curves at each point. Us-
ing a drawing, determine the angles between these curves.

35. (See Exercises 13 to 15.) In spherical coordinates if two coordinates are held
fixed and the third allowed to vary, one obtains a curve. Because there are three
choices for the two fixed coordinates, there are three such curves at each point. Us-
ing a drawing, determine the angles between these curves.

By differentiating, verify the equations in Exercises 36 and 37.
36.

∫
dx

x3
√

z2+x2
= −

√
a2+x2

2a2+x2 + 1
2a3 ln

∣∣∣a+
√

a2+x2

x

∣∣∣.
37.

∫
x2 dx
a4−x4 = 1

4a ln |a+x
a−x | −

1
2a arctan x

a .
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By integrating, verify the equations in Exercises 38 and 41. (Show all steps.)
38.

∫ √
ax+b
x dx = 2

√
ax + b + b

∫
dx

x
√

ax+b
.

39.
∫

dx
x2
√

ax+b
= −

√
ax+b
bx − a

2b

∫
dx

x
√

ax+b
.

40.
∫

tan2(ax) dx = 1
a tan(ax)− x + C.

41.
∫

ln(ax) = x (ln(ax)− 1) + C.
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17.6 Iterated integrals for
∫

R f (P ) dV in Cylin-

drical or Spherical Coordinates

In Section 17.2 we evaluated an integral of the form
∫

R
f(P ) dA by an iterated

integral in polar coordinates. In this method it is necessary to multiply the
integrand by an r because the area of the small piece determined by small
increments in r and θ is not ∆r ∆θ but r ∆r ∆θ. Similarly, when developing
iterated integrals using cylindrical coordinates, an extra r must be adjoined
to the integrand. For spherical coordinates we adjoin ρ2 sin(φ). These adjust-
ments are based on the estimates of the volumes of the small curvy boxes made
in the previous section.

A few examples will illustrate the method, which is: Describe the solid
R and the integrand in the most convenient coordinate system. Then use the
description to set up an iterated integral, being sure to include the appropriate
extra factor in the integrand.

Iterated Integrals in Cylindrical Coordinates

To evaluate
∫

R
f(P ) dV in cylindrical coordinates express the integrand in

cylindrical coordinates and describe the region R in cylindrical coordinates
with dV replaced by r dz dr dθ. There are six possible orders of integration,
but the most common one has z varying first, then r, and finally θ:

Evaluating
∫

R
f(P ) dV in Cylindrical Coordinates

∫
R

f(P ) dV =

β∫
α

 r2(θ)∫
r1(θ)

 z2(r,θ)∫
z1(r,θ)

f(r, θ, z)r dz

 dr

 dθ.

Figure 17.6.1

EXAMPLE 1 Find the volume of a ball R of radius a using cylindrical
coordinates.

SOLUTION Place the origin of a cylindrical coordinate system at the center
of the ball, as in Figure 17.6.1.

The volume of the ball is
∫

R
1 dV . The description of R in cylindrical

coordinates is

0 ≤ θ ≤ 2π, 0 ≤ r ≤ a, −
√

a2 − r2 ≤ z ≤
√

a2 − r2.
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The iterated integral for the volume is thus

∫
R

1 dV =

2π∫
0

 a∫
0


√

a2−r2∫
−
√

a2−rs

1 · r dz

 dr

 dθ.

Note the factor r.

Evaluation of the first integral yields
√

a2−r2∫
−
√

a2−r2

r dz = rz|z=
√

a2−r2

z=−
√

a2−r2 = 2r
√

a2 − r2.

The order of integration is
determined by the order of
the variables in describing
R.

Evaluation of the second integral yields

a∫
0

2r
√

a2 − r2 dr =
−2(a2 − r2)3/2

3

∣∣∣∣r=a

r=0

=
2a3

3
.

Finally, evaluation of the third integral gives

2π∫
0

2a3

3
dθ =

2a3

3

2π∫
0

dθ =
2a3

3
· 2π =

4

3
πa3.

�

EXAMPLE 2 Find the volume of the region R inside the cylinder x2+y2 =
9, above the xy-plane, and below the plane z = x + 2y + 9. Use cylindrical
coordinates.
SOLUTION We wish to evaluate

∫
R

1 dV over the region R described in
cylindrical coordinates R by

0 ≤ θ ≤ 2π, 0 ≤ r ≤ 3, 0 ≤ z ≤ r cos(θ) + 2r sin(θ) + 9.

(We replace z = x + 2y + 9 by z = r cos(θ) + 2r sin(θ) + 9.)
Note the factor r.The iterated integral takes the form

2π∫
0

 3∫
0

 r cos(θ)+2r sin(θ)+9∫
0

1 · r dz

 dr

 dθ.

Integration with respect to z gives r and θ are constant

r cos(θ)+2r sin(θ)+9∫
0

r dz = r

r cos(θ)+2r sin(θ)+9∫
0

dz = r2 cos(θ) + 2r2 sin(θ) + 9r.
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Then comes integration with respect to r, with θ constant:

3∫
0

(
r2 cos(θ) + 2r2 sin(θ) + 9r

)
dr =

r3

3
cos(θ) +

2r3

3
sin(θ) +

9r2

2

∣∣∣∣r=3

r=0

= 9 cos(θ) + 18 sin(θ) +
81

2
.

Finally, integration with respect to θ gives

2π∫
0

(
9 cos(θ) + 18 sin(θ) +

81

2

)
dθ. (17.6.1)

Why is
∫ 2π
0 cos(x) dx =∫ 2π

0 sin(x) dx = 0?

Because
∫ 2π

0
cos(θ) dθ = 0 =

∫ 2π

0
sin(θ) dθ, (17.6.1) reduces to

∫ 2π

0
81
2

dθ = 81π.
The volume is 81π. �

Computing
∫

R f(P ) dV in Spherical Coordinates

To evaluate a triple integral
∫

R
f(P ) dV in spherical coordinates, first describe

R in spherical coordinates. Usually this will be in the order

α ≤ θ ≤ β, φ1(θ) ≤ φ ≤ φ2(θ), ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ).

Sometimes the order of ρ and φ is switched:

α ≤ θ ≤ β, ρ1(θ) ≤ ρ ≤ ρ2(θ), φ1(ρ, θ) ≤ φ ≤ φ2(ρ, θ).

Then set up an iterated integral, expressing dV as ρ2 sin(φ) dρ dφ dθ or
ρ2 sin(φ) dφ dρ dθ.

EXAMPLE 3 Find the volume of a ball of radius a, using spherical coor-
dinates.

Figure 17.6.2

SOLUTION Place the origin of spherical coordinates at the center of the
ball, as in Figure 17.6.2. The ball is described by

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π, 0 ≤ ρ ≤ a.

Hence

Volume of ball =

∫
R

1 dV =

2π∫
0

π∫
0

a∫
0

ρ2 sin(φ) dρ dφ dθ.

April 22, 2012 Calculus



§ 17.6 ITERATED INTEGRALS IN CYLINDRICAL OR SPHERICAL COORDINATES 1521

The inner integral is

a∫
0

ρ2 sin(φ) dρ = sin(φ)

a∫
0

ρ2 dρ =
a3 sin(φ)

3
.

The next integral is

π∫
0

a3 sin(φ)

3
dφ =

−a3 cos(φ)

3

∣∣∣∣π
0

=
−a3(−1)

3
− −a3(1)

3
=

2a3

3
.

The final integral is

2π∫
0

2a3

3
dθ =

2a3

3

2π∫
0

dθ =
2a3

3
2π =

4πa3

3
.

�

An Integral in Gravity

The next example is of importance in the theory of gravitational attraction.
It implies that a homogeneous ball attracts a particle as if all the mass of the
ball is at its center.

EXAMPLE 4 A homogeneous ball of mass M and radius a occupies a
region R. Let A be a point at a distance H from the center of the ball, H > a.
Compute

∫
R
(δ/q(P )) dV , where δ is the density of the ball and q(P ) is the

distance from point P in R to A. (See Figure 17.6.3.)

SOLUTION Express q(P ) in spherical coordinates. To do so, choose a spher-
ical coordinate system whose origin is at the center of the sphere and such that
the φ coordinate of A is 0. (See Figure 17.6.3(b).)

Let P = (ρ, θ, φ) be a point in the ball. Applying the law of cosines to
triangle AOP , we find that

q2 = H2 + ρ2 − 2ρH cos(φ).

Hence
q =

√
H2 + ρ2 − 2ρH cos(φ).

Since the ball is homogeneous, if its total mass is M , then

δ =
M

4
3
πa3

=
3M

4πa3
.
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(a) (b)

Figure 17.6.3

Hence∫
R

δ

q(P )
dV =

∫
R

3M

4πa3q(P )
dV =

3M

4πa3

∫
R

1

q(P )
dV. (17.6.2)

Now evaluate ∫
R

1

q(P )
dV

by an iterated integral in spherical coordinates:An integral where
integration with respect to

ρ is not first. ∫
R

1

q(P )
dV =

2π∫
0

 a∫
0

 π∫
0

ρ2 sin(φ)√
H2 + ρ2 − 2ρH cos(φ)

dφ

 dρ

 dθ.

We integrate with respect to φ first, rather than ρ, because it is easier.
Evaluation of the first integral, where ρ and θ are constants, is accomplished

with the aid of the Fundamental Theorem of Calculus:
π∫

0

ρ2 sin φ√
H2 + ρ2 − 2ρH cos(φ)

dφ =
ρ
√

H2 + ρ2 − 2ρH cos(φ)

H

∣∣∣∣∣
φ=π

φ=0

=
ρ

H

(√
H2 + ρ2 + 2ρH −

√
H2 + ρ2 − 2ρH

)
.

Now,
√

H2 + ρ2 + 2ρH = H + ρ. Since ρ ≤ a < H, H − ρ is positive and√
H2 + ρ2 − 2ρH = H − ρ.
Thus the first integral equals

ρ

H
(H + ρ)− (H − ρ)) =

2ρ2

H
.
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Evaluation of the second integral yields

a∫
0

2ρ2

H
dρ =

2a3

3H
.

Evaluation of the third integral yields

2π∫
0

2a3

3H
dθ =

4πa3

3H
.

Hence ∫
R

1

q(P )
dV =

4πa3

3H
.

By (17.6.2) ∫
R

δ

q(P )
dV =

3M

4πa3

4πa3

3H
=

M

H
.

Newton obtained this
remarkable result in 1687.

This result, M/H, is what we would get if all the mass were located at the
center of the ball. �

The Moment of Inertia about a Line

In the study of rotation of an object about an axis its moment of inertia, I,
is used. It is defined as follows. The object occupies a region R. Its density
at a point P is δ(P ), so its mass is M =

∫
R

δ(P ) dV .

Figure 17.6.4

Usually the density is
constant, in which case it is M divided by the volume of R (or M divided by
the area of R if R is planar). Let r(P ) be the distance from P to a line L.
Then, by definition,

I = Moment of Inertia about the line L =

∫
R

(r(P ))2δ(P ) dV.

A similar definition holds for objects distributed on a plane region, with dV
replaced by dA.

EXAMPLE 5 Compute the moment of inertia of a uniform mass M in the
form of a ball of radius a around a diameter L.
SOLUTION As a check on our answer

we note in advance that I
must be less than Ma2,
since the maximum of r(P )
is a.

The density δ(P ), being constant, is M/(4
3
πa3). We place the

diameter L along the z-axis, as in Figure 17.6.4
We will compute the moment of inertia two ways. Because the distance

r(P ) is r in cylindrical coordinates, we will first use those coordinates. Then
we will calculate the moment of inertia in spherical coordinates.
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One description of the ball in cylindrical coordinates is

0 ≤ θ ≤ 2π, −a ≤ z ≤ a, 0 ≤ r ≤
√

a2 − z2.

Then

I =

∫
R

M
4
3
πa3

r2 dV =
3M

4πa3

∫
R

r2 dV

=
3M

4πa3

2π∫
0

a∫
−a

√
a2−z2∫
0

r3 dr dz dθ.

Exercise 27 shows that I
plays the same role in a

rotating body (such as a
spinning skater) as mass
does in an object moving

along a line.

Note the introduction of the extra factor of r in the integrand.
The first integration is

√
a2−z2∫
0

r3 dr =
r4

4

∣∣∣∣
√

a2−z2

0

=
(a2 − z2)2

4
.

The second is

a∫
−a

(a2 − z2)2

4
dz =

a∫
−a

a4 − 2a2z2 + z4

4
dz =

1

4

(
a4z − 2a2z3

3
+

z5

5

)∣∣∣∣a
−a

=
1

4

(
a5 − 2a5

3
+

a5

5

)
− 1

4

(
−a5 +

2a5

3
− a5

5

)
=

4

15
a5.

And the third is
2π∫
0

4

15
a5 dθ =

8π

15
a5.

Then remembering to include the factor 3M/4πa3, we have

I =
3M

4πa3
· 8π
15

a5 =
2

5
Ma2.

Because spherical coordinates provide a simple description of the ball, we
will use them to find I to see if the computations are easier. The distance r(P )
in spherical coordinates is ρ sin(φ). The integral for the moment of inertia is

I =
3M

4πa3

∫
R

(ρ sin (φ))2 dV.

April 22, 2012 Calculus



§ 17.6 ITERATED INTEGRALS IN CYLINDRICAL OR SPHERICAL COORDINATES 1525

The iterated integral for it is

2π∫
0

 π∫
0

 a∫
0

(ρ sin(φ))2 ρ2 sin(φ) dρ

 dφ

 dθ.

The first integration is

a∫
0

ρ4 sin3(φ) dρ =
ρ5

5
sin3(φ)

∣∣∣∣ρ=a

ρ=0

=
a5 sin3(φ)

5
.

The second is
π∫

0

a5

5
sin3(φ) dφ =

a5

5

π∫
0

sin3(φ) dφ.

Since the exponent, 3, is odd, we write sin3(φ) as (1− cos2(φ)) sin(φ) and have

π∫
0

sin3(φ) dφ =

π∫
0

(sin(φ)− cos2(φ) sin(φ)) dφ =

(
− cos(φ) +

cos3(φ)

3

)∣∣∣∣π
0

=

(
−(−1) +

(−1)3

3

)
−
(
−1 +

1

3

)
=

4

3
.

For the final integration, remember the coefficient of a5/5:

a5

5

2π∫
0

4

3
dθ =

8a5

15
π.

Bringing back the factor 3M/(4πa3) gives the same moment of inertia as
found with an iterated integral in cylindrical coordinates:

I =
2

5
Ma2.

If all the mass were at a distance a from L, the moment of inertia would
be Ma2. So 2/5Ma2 is plausible. �

Note also that in this example cylndrical coordinates provided a simple
description of the integrand and spherical coordinates a simple description of
the region.
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Summary

A triple integral
∫

R
f(P ) dV may be evaluated by an iterated integral in cylin-

drical or spherical coordinates. In cylindrical coordinates the iterated integral
takes the form

θ2∫
θ1

 r2(θ)∫
r1(θ)

 z2(r,θ)∫
z1(r,θ)

f(r, θ, z)r dz

 dr

 dθ.

The description of the region determines the range of integration on the
integrals over intervals. (Changing the order of the description of R changes
the order of the integrations.) The factor r must be inserted into the integrand.

In spherical coordinates the iterated integral usually takes the form

θ2∫
θ1

 φ2(θ)∫
φ1(θ)

 ρ2(θ,φ)∫
ρ1(θ,φ)

f(r, θ, φ)ρ2 sin(φ) dρ

 dφ

 dθ.

In this form, integration with respect to ρ is first, but as Example 4 illus-
trates, it may be convenient to integrate first with respect to φ. The factor
ρ2 sin(φ) must be inserted in the integrand.
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EXERCISES for Section 17.6

In Exercises 1 to 4 (a) draw the region, (b) set up an iterated integral in cylindrical
coordinates for the multiple integrals, and (c) evaluate the iterated integral.
1.

∫
R r2 dV , R is bounded by the cylinder r = 3 and the planes z = 2x and

z = 3x.
2.

∫
R z dV , R is bounded by the sphere z2 + r2 = 25, the plane z = 0, and the

plane z = 2.
3.

∫
R rz dV , R is the part of the ball bounded by r2 + z2 = 16 in the first octant.

4.
∫
R cos θ dV , R is bounded by the cylinder r = 2 cos(θ) and the paraboloid

z = r2.

5. Compute the volume of a right circular cone of height h and radius r using (a)
spherical coordinates, (b) cylindrical coordinates, and (c) rectangular coordinates.

6. Find the volume of the region above the xy-plane and below the paraboloid
z = 9− r2 using cylindrical coordinates.

7. A right circular cone of radius a and height h has a density at point P equal
to the distance from P to the base of the cone. Find its mass, using spherical coor-
dinates.

In Exercises 8 to 9 draw the region R and give a formula for the integrand f(P ) such
that

∫
R f(P ) dV is described by the iterated integrals in spherical coordinates.

8.
∫ π/2
0 [

∫ π/4
0 (

∫ cos φ
0 ρ3 sin2(θ) sin(φ) dρ) dφ] dθ.

9.
∫ π/4
0 [

∫ π/2
π/6 (

∫ sec θ
0 ρ3 sin(θ) cos(φ) dρ) dφ] dθ.

10. Let R be the solid region inside both the sphere x2 + y2 + z2 = 1 and the
cone z =

√
x2 + y2. Let the density at (x, y, z) be z. Set up iterated integrals

for the mass in R using (a) rectangular coordinates, (b) cylindrical coordinates, (c)
spherical coordinates. (d) Evaluate the iterated integral in (c).

11. Find the average temperature in a ball of radius a if the temperature is the
square of the distance from a fixed equatorial plane.

In Exercises 12 and 13 evaluate
12.

∫ 2π
0

(∫ 1
0

(∫ 1
r zr3 cos2 θ dz

)
dr
)

dθ

13.
∫ 2π
0

(∫ 1
0

(∫ √a2−r2

−
√

a2−r2 z2r dz
)

dr
)

dθ
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14. Using cylindrical coordinates, find the volume of the region below the plane
z = y + 1 and above the circle in the xy-plane whose center is (0, 1, 0) and whose
radius is 1. Include a drawing of the region. (What is the equation of the circle in
polar coordinates when the polar axis is along the positive x-axis?)

15. Find the average distance from the center of a ball of radius a to other points
of the ball by setting up iterated integrals in the three types of coordinate systems
and evaluating the easiest.

16. A solid consists of that part of a ball of radius a that lies within a cone
of vertex half-angle φ = π/6, the vertex being at the center of the ball. Set up it-
erated integrals for

∫
R z dV in three coordinate systems and evaluate the simplest.

In Exercises 17 to 22 evaluate the multiple integrals over a ball of radius a with
center at the origin, without using an iterated integral.
17.

∫
R cos(θ) dV

18.
∫
R cos2 θ dV

19.
∫
R z dV

20.
∫
R(3 + 2 sin(θ)) dV

21.
∫
R sin2(φ) dV

22.
∫
R cos3(φ) dV

23. In polar, cylindrical, and spherical coordinates we introduce an extra factor
in the integrand when using an iterated integral. Why is that not necessary when
using rectangular coordinates?

24. Is
√

a2 always equal to a? Explain.

25. Using the method of Example 4 find the average value of q for all points P
in the ball. The result is not the same as if the entire ball were placed at its center.

26.

(a) By integrating the function f(P ) = 1, find the exact volume of the little curvy
box corresponding to the changes ∆ρ, ∆θ, ∆φ.

(b) Show that the ratio between that exact volume and our estimate, ρ2 sin(φ)∆ρ∆θ∆φ
approaches 1 as ∆ρ, ∆θ, and ∆φ approach 0.

(c) Show that the exact volume in (a) can be written as (ρ∗)2 sin(φ∗) ∆ρ ∆φ ∆θ,
where ρ∗ is between ρ and ρ + ∆ρ and φ∗ is between φ and φ + ∆φ.

April 22, 2012 Calculus



§ 17.6 ITERATED INTEGRALS IN CYLINDRICAL OR SPHERICAL COORDINATES 1529

27. The kinetic energy of an object with mass m moving at the velocity v is
mv2/2. An object moving in a circle of radius r at the angular speed of ω radians
per unit time has velocity rω. (Why?) Thus its kinetic energy is (mr2/2)ω2.
The calculation of the kinetic energy of a mass M that occupies a region R in space
involves an integral. The density of the mass is δ(P ), which may vary from point
to point. Let f(P ) be the distance from P to a fixed line L. If the mass is spinning
around the axis L at the angular rate ω, show that its total kinetic energy is∫

R

1
2
(f(P ))2 δ(P ) ω2 dV.

This can be written as
Kinetic Energy =

1
2
Iω2.

Thus I plays the same role in rotational motion that mass m plays in linear motion
in the formula 1

2mv2.
Every spinning ice skater knows this. When spinning with her arms extended she
has a certain amount of kinetic energy. If she puts her arms to her sides she de-
creases her moment of inertia but has not destroyed her kinetic energy. That forces
her angular speed to increase. The larger the mass M is, the harder it is to start it
moving along a line and to stop it. Similarly, the larger I is, the harder it is to stop
the mass from moving along a line and to stop it when it is spinning.

In Exercises 28 to 32 the objects have a homogeneous (constant density) mass M .
Find the moment of inertia, I, of the given object relative to the given axis.
28. A rectangular box of dimensions, a× b× c, rotating around a line through the
center of the box and perpendicular to the face of dimensions a× b.
29. A solid cylinder of radius a and height h rotating around its axis.
30. A solid cylinder of radius a and height h rotating around a line on its surface
that is parallel to the cylinder’s axis.
31. A cylindrical tube of height h, inner radius a, and outer radius b, rotating
around its axis.
32. A solid cylinder of radius a and height h rotating around a diameter in its
base.

33. In Example 2 the region R was parameterized as 0 ≤ 2π, 0 ≤ r ≤ 3,
0 ≤ z ≤ r cos(θ) + 2 sin(θ) + 9. There are five other possible orderings of the vari-
ables for the parameterization of R. Some of these orderings require splitting the
region into two or more pieces to write the parameterization. Which, if any, of these
orderings can parameterize the entire region in one piece? (You do not have to find
each parameterization to answer this question.)

34. Solve Example 2 using rectangular coordinates.
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35. Evaluate the moment of inertia in Example 5 using the description 0 ≤ θ ≤ 2π,
0 ≤ r ≤ a, −

√
a2 − r2 ≤ z ≤

√
a2 − r2.

36. Let R be a solid ball of radius a with center at the origin of a coordinate
system.

(a) Explain why
∫
R x2 dV = 1

3

∫
R(x2 + y2 + z2) dV .

(b) Evaluate the second integral by spherical coordinates.

(c) Use (b) to find
∫
R x2 dV .

37. Let R be a ball whose center is the origin of a rectangular coordinate system.
Show that

∫
R(x3+y3+z3) dV = 0. Do not use an iterated integral. Use symmetry.

38. A homogeneous object with mass M occupies the region R between concentric
spheres of radii a and b, a < b. Let A be a point at a distance H from their center,
H < a. Evaluate

∫
R

δ
q dV , where δ is the density and q = q(P ) is the distance from

H to any point P in R. (That the value of the integral does not involve H implies
that a uniform hollow sphere exerts no gravitational force on objects in its interior.)

39. In Example 4, H is greater than a. Solve the same problem for H less than
a. (For some ρ,

√
H2 + ρ2A− 2ρH equals H − ρ and for some it equals ρ−H.)

40. (See Exercise 39.) Let A be a point in the plane of a disk but outside the
disk. Is the average of the reciprocal of the distance from A to points in the disk
equal to the reciprocal of the distance from A to the center of the disk?

41. Show that the result of Example 4 holds if the density δ(P ) depends only on
ρ, the distance to the center. (This is approximately the case with Earth, which is
not homogeneous.) Let g(ρ) denote δ(ρ, θ, φ).

42. A ball of radius a is not homogeneous. However, its density at P depends
only on the distance from P to the center of the ball. That is, there is a function
g(ρ) such that the density at P = (ρ, θ, φ) is g(ρ). Using an iterated integral, show
that the mass of the ball is

4π

a∫
0

g(ρ)ρ2 dρ.

43. Let R be the part of a ball of radius a removed by a cylindrical drill of
diameter a whose edge passes through the center of the sphere.
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(a) Sketch R.

(b) Region R consists of four congruent pieces. Find the volume of one of them
using cylindrical coordinates. Multiply by four to get the volume of R.

44. Let R be the ball of radius a. For any point P in the ball other than its center,
define f(P ) to be the reciprocal of the distance from P to the origin. The average
value of r over R involves an improper integral, since the function is unbounded near
the origin. Does the improper integral converge or diverge? What is the average
value of f over R? (Examine the integral over the region between concentric spheres
of radii a and t, and let t→ 0+.)

In Exercises 45 to 46 check the equations by differentiation.
45. tan

(
x
2

)
=
∫

dx
1+cos(x)

46. x tan
(

x
2

)
+ 2 ln

∣∣cos
(

x
2

)∣∣ = ∫ x dx
1+cos(x)
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17.7 Integrals Over Surfaces

In this section we treat integrals over surfaces that may not be flat.

Definition of a Surface Integral

Let S be a surface such as the surface of a ball or art of the saddle z = xy.
If f is a scalar function defined on S, we will define the integral

∫
S f(P ) dS.

The definition is practically identical with the definition of the double integral,
which is the special case when the surface is a plane.

We assume that the surface is smooth, or composed of a finite number of
smooth pieces, and that the integrals we define exist.

Figure 17.7.1

If S is a surface and f(P ) a scalar function defined on S, the surface
integral

∫
S f(P ) dS is defined juat like a double integral over a flat surface.

The only difference is that the partitions of S involve small curved surfaces,
as shown in Figure 17.7.1.

If f(P ) is 1 for each point P in S then
∫
S f(P ) dS is the area of S. If S

is occupied by material of surface density σ(P ) at P then
∫
S σ(P ) dS is the

total mass of S.
If matter is distributed on the surface S, its density at a point P in S is

defined much the way density in a lamina was defined in Section 17.1. The only
difference is that instead of considering a small disk around P one considers a
small patch on S that contains P . “Small” means that the patch fits in a ball
of radius r, and we let r approach 0.

First we show how to integrate over a sphere.

Integrating over a Sphere

If the surface S is a sphere or part of a sphere, it is often convenient to evaluate
an integral over it with the aid of spherical coordinates.

If the center of a spherical coordinate system (ρ, θ, φ) is at the center of a
sphere of radius a, then ρ is constant on the sphere, ρ = a. As Figure 17.7.2
suggests, the area of the small region on the sphere corresponding to slight
changes dθ and dφ is approximately

(a dφ) (a sin(φ) dθ) = a2 sin(φ) dθ dφ.

Thus we may write
dS = a2 sin(φ) dθ dφ

and evaluate ∫
S

f(P ) dS
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Figure 17.7.2

as an iterated integral in φ and θ. Example 1 illustrates this.

EXAMPLE 1 A sphere of radius a has its center at the origin of an xyz-
coordinate system. Let S be the top half, for which z is positive. Evaluate∫
S z dS.

SOLUTION Since the sphere has radius a, ρ = a. The top half of the sphere
is described by 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π/2. In spherical coordinates
z = ρ cos(φ) = a cos(φ). Thus∫

S

z dS =

∫
S

(a cos(φ)) dS =

2π∫
0

 π/2∫
0

(a cos(φ))a2 sin(φ) dφ

 dθ.

Now,

π/2∫
0

(a cos(φ))a2 sin(φ) dφ = a3

π/2∫
0

cos(φ) sin(φ) dφ = a3 (− cos2(φ))

2

∣∣∣∣π/2

0

=
a3

2
[−0− (−1)] =

a3

2
.

Thus ∫
S

z dS =

2π∫
0

a3

2
dθ = πa3.

�
We can interpret the result in Example 1 in terms of average value. The

average value of f(P ) over a surface S is defined as∫
S f(P ) dS
Area of S

.
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Example 1 shows that the average value of z over the given hemisphere is∫
S z dS

Area of S
=

πa3

2πa2
=

a

2
.

The average height above the equator is exactly half the radius.

A General Technique

We evaluated an integral over a curve,
∫

C
f ds, by replacing it with

∫ b

a
f ds

dt
dt,

an integral over an interval [a, b].

Figure 17.7.3

We will do something similar for an integral over a surface: We will replace
a surface integral by a double integral over a set in a coordinate plane.

The idea is to replace a small patch on the surface S by its projection on,
say, the xy-plane. The area of the projection is not the same as the area of the
patch. With the aid of Figure 17.7.3 we will express the area of the shadow in
terms of the tilt of the patch.

The unit normal vector to the patch is n. The angle between n and k is
γ. Call the area of the patch dS, and the area of its projection dA. Then

dA ≈ | cos(γ)| dS.

Direction angles and
direction cosines were

defined in Section 14.4.

The angle γ is one of the direction angles of the unit normal vector, n. For
instance, if γ = 0, then dA = dS. If γ = π/2, then dA = 0. We use the
absolute value of cos(γ), since γ could be larger than π/2. It follows, if cos(γ)
is not 0, that

Approximate Relationship Between dA and dS

dS ≈ dA

| cos(γ)|
(17.7.1)

Figure 17.7.4

With the aid of (17.7.1), we replace an integral over S with an integral over
its shadow in the xy-plane.

Let S be a surface that meets each line parallel to the z-axis at most once.
Let f be a function whose domain includes S.

An approximating sum for
∫
S f(P ) dS is

∑n
i=1 f(Pi)∆Si, where ∆Si is the

area of the small patch Si in a typical partition of S. The partition is shown
in Figure 17.7.4.

Let A be the projection of S in the xy-plane. The patch Si, with surface
area ∆Si, projects to Ai, of area ∆Ai, and the point Pi on Si projects down to
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Qi in Ai. Let γi be the angle between the normal at Pi and k. Then f(Pi)∆Si

is approximately f(Pi)
| cos(γi)|∆Ai. Thus an approximation of

∫
S f(P ) dS is

n∑
i=1

f(Pi)

|cos(γi)|
∆Ai.

Taking the limit as the Ai are chosen smaller and smaller yields the follow-
ing theorem.

Theorem 17.7.1. Let S be a surface and let A be its projection on the xy-
plane. Assume that for each point Q on A the line through Q parallel to the
z-axis meets S in exactly one point P . Let f be a function defined on S. Define
h on A by

h(Q) = f(P ).

Then

Figure 17.7.5

∫
S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.

In this equation γ denotes the angle between k and a vector normal to the
surface of S at P . (See Figure 17.7.5.)

To apply this, we need to compute cos(γ).

Computing cos(γ)

We find a vector perpendicular to the surface in order to compute cos(γ). If
S is the level surface of g(x, y, z), that is, g(x, y, z) = c for some constant c,
then the gradient ∇g is such a vector.

If the surface S is given as z = f(x, y), it is a level surface of g(x, y, z) =
z − f(x, y). Theorem 17.7.2 provides formulas for cos(γ). However, it is
unnecessary to memorize them. Just remember that a gradient provides a
normal to a level surface.

Theorem 17.7.2. (a) If the surface S is part of the level surface g(x, y, z) =
c, then

| cos(γ)| =
|∂g
∂z
|√

( ∂g
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) If the surface S is given in the form z = f(x, y), then

| cos(γ)| = 1√
(∂f

∂x
)2 + (∂f

∂y
)2 + 1

.
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Proof

(a) A normal vector to S at a point is provided by the gradient

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k.

The cosine of the angle between k and ∇g is

k · ∇g

|k||∇g|
=

k · ( ∂g
∂x

i + ∂g
∂y

j + ∂g
∂z

k)

(1)
(
·
√

(∂f
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
)

so

| cos(γ)| =
|∂g
∂z
|√

( ∂g
∂x

)2 + (∂g
∂y

)2 + (∂g
∂z

)2
.

(b) Rewrite z = f(x, y) as z − f(x, y) = 0. The surface z = f(x, y) is thus
the level surface g(x, y, z) = 0, where g(x, y, z) = z − f(x, y). Because

∂g

∂x
= −∂f

∂x
,

∂g

∂y
= −∂f

∂y
, and

∂g

∂z
= 1

the formula in (a) gives

| cos(γ)| = 1√
(∂f

∂x
)2 + (∂f

∂y
)2 + 1

.

•

Theorem 17.7.2 is stated for projections on the xy-plane. Similar theorems
hold for projections on the xz- or yz-planes. The direction angle γ is then
replaced by the corresponding direction angle, β or α, and the normal vector
is dotted with j or i. Draw a picture in each case; there is no point in trying
to memorize the formulas.

EXAMPLE 2 Find the area of the part of the saddle z = xy inside the
cylinder x2 + y2 = a2.
SOLUTION Let S be the part of the surface z = xy inside x2 + y2 = a2.
Then

Area of S =

∫
S

1 dS.
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The projection of S on the xy-plane is a disk of radius a and center (0, 0). Call
it A, as in Figure 17.7.6. Then

Area of S =

∫
S

1 dS =

∫
A

1

| cos(γ)|
dA. (17.7.2)

Figure 17.7.6

To find the normal to S rewrite z = xy as z − xy = 0. Thus S is a level
surface of g(x, y, z) = z − xy. A normal to S is therefore

∇g =
∂g

∂x
i +

∂g

∂y
j +

∂g

∂z
k

= −yi− xj + k.

Then

cos(γ) =
k · ∇g

‖k‖‖∇g‖
=

k · (−yi− xj + k)√
y2 + x2 + 1

=
1√

y2 + x2 + 1
.

By (17.7.2),

Area of S =

∫
A

√
y2 + x2 + 1 dA. (17.7.3)

Use polar coordinates to evaluate the integral in (17.7.3):

∫
A

√
y2 + x2 + 1 dA =

2π∫
0

a∫
0

√
r2 + 1 r dr dθ.

The inner integration gives

a∫
0

√
r2 + 1r dr =

(r2 + 1)3/2

3

∣∣∣∣a
0

=
(1 + a2)3/2 − 1

3
.

The second integration gives

2π∫
0

(1 + a2)3/2 − 1

3
dθ =

2π

3

(
(1 + a2)3/2 − 1

)
.

�
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A Geometric Application: Steradians

Let S be a surface such that each ray from the point O meets S in at most
one point. S subtends a solid angle at O. It consists of all rays from O that
meet S, as shown in Figure 17.7.7(a). To measure this solid angle introduce a
sphere with center at O. Call its radius a. The solid angle intercepts a patch
on the sphere. Call the area of that patch A. (See Figure 17.7.7(b).) The
quotient A

a2 is the steradian measure of the solid angle. For instance, take
the case of a surface S that completely surrounds the point O. If the sphere
has radius a, the area, A, of the patch determined by S is 4πa2, the area of
the sphere. Thus the steradian measure of the solid angle subtended by S is
4πa2

a2 = 4π. This is the analog of the fact that a closed convex curve subtends
an angle of 2π radians at any point in the region it bounds.

Steradians comes from
stereo, the Greek word for

space, and radians.

(a) (b)

Figure 17.7.7

EXAMPLE 3 Find how large is the angle subtended by one face of a cube
at its center.
SOLUTION Imagine a large sphere containing the cube and having center
at the center of the cube. The entire surface of the cube subtends an angle
of 4π steradians. Because there are six identical faces, each face subtends
4π/6 = 2π/3 steradians, which is a little more than 2 steradians. �

In Section 15.4 the radians subtended by a curve C was expressed as a
line integral over C, namely

∫
C r̂ · n/rds. Almost identical reasoning shows

that
∫
S r̂ · n/r2 dS equals the steradian measure of the angle subtended by a

surface S. (Exercise 26 outlines this reasoning.)
The next example shows how to use the geometry of steradians to evaluate

this integral.

EXAMPLE 4 One corner C of a cube of side b is at the origin of xyz-
space. Find

∫
S

br·n
r2 dS where S is one face of the cube that does not contain
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the origin.
SOLUTION The surface integral

∫
S

br·n
r2 dS equals the steradian measure of

the angle subtended by that face at C. Eight identical cubes of side b, all
having C as a corner, fill up the space around C and form one large cube.
The surface of the large cube consists of 24 congruent squares, each of which
subtends the same angle at C. Because the origin is contained within the large
cube, the angle subtended by it is 4π. Thus one face subtends 4π/24 steradians
at C. Consequently, the value of

∫
S

br·n
r2 dS is 4π/24 = π/6, which is about

0.52. �

The following special case will be used in Section 18.5. It is the analog in
space of the observation in Section 15.4 that the radian measure of the angle
subtended by a curve in the xy-plane is given by a line integral.

Theorem 17.7.3 (Closed Surfaces Subtend a Solid Angle of 4π Steradians).
Let O be a point in the region bounded by the closed surface S. Assume each
ray from O meets S in exactly one point, and let r denote the position vector
from O to that point. Then ∫

S

r̂ · n
r2

dS = 4π. (17.7.4)

When S is a sphere of radius a and O is its center, it is very easy to check
that (17.7.4) is true. In this case we have r̂ = n, so r̂ ·n = 1. The integrand in
(17.7.4) is 1

a2 and
∫
S(1/a

2) dS = (1/a2)4πa2 = 4π. However, it is not obvious
that (17.7.4) holds when S is a sphere and the origin is not its center, or when
S is not a sphere.

Summary

After defining
∫
S f(P ) dS, an integral over a surface, we showed how to com-

pute it when the surface is part of a sphere or can be projected onto a coordi-
nate plane. For a sphere of radius a,

∫
S f(P ) dS equals

2π∫
0

π∫
0

f(a, φ, θ)a2 sin(φ)dφdθ.

If each line parallel to the z-axis meets a surface S in at most one point,
an integral over S can be replaced by an integral over A, the projection of S
on the xy-plane: ∫

S

f(P ) dS =

∫
A

h(Q)

| cos(γ)|
dA.
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To find cos(γ), use a gradient. If the surface is a level surface of, g(x, y, z) = c,
use ∇g. If it has the equation z = f(x, y), rewrite it as z − f(x, y) = 0.

We also defined the steradian measure of a solid angle and related it to an
integral of the vector field r̂/r2. In particular, for a surface S that encloses the
origin,

∫
S r̂/r2 dS equals 4π, a fact that will be needed in the next chapter.
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EXERCISES for Section 17.7

1. A small patch of a surface makes an angle of π/4 with the xy-plane. Its pro-
jection on that plane has area 0.05. Estimate the area of the patch.

2. A small patch of a surface makes an angle of 25◦ with the yz-plane. Its projec-
tion on that plane has area 0.03. Estimate the area of the patch.

3.

(a) Draw a diagram of the part of the plane x + 2y + 3z = 12 that lies inside the
cylinder x2 + y2 = 9.

(b) Find that area using integration.

(c) Find that area using vectors.

4.

(a) Draw a diagram of the part of the plane z = x+3y that lies inside the cylinder
r = 1 + cos(θ).

(b) Find its area.

5. Let f(P ) be the square of the distance from P to a diameter of a sphere of
radius a. Find the average value of f(P ) for points on the sphere.

6. Find the area of that part of the sphere of radius a that lies within a cone of
vertex half-angle π/4 and vertex at the center of the sphere, as in Figure 17.7.8.

Figure 17.7.8
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In Exercises 7 and 8 evaluate
∫
S F · n dS for the given sphere and vector field (n is

the outward unit normal.)
7. The sphere x2 + y2 + z2 = 9 and F = x2i + y2j + z2k.

8. The sphere x2 + y2 + z2 = 1 and F = x3i + y2j.

9. Find the area of the part of the spherical surface x2 + y2 + z2 = 1 that lies
within the vertical cylinder erected on the circle r = cos θ and above the xy-plane.

10. Find the area of that portion of the parabolic cylinder z = 1
2x2 between the

three planes y = 0, y = x, and x = 2.

11. Evaluate
∫
S x2y dS, where S is the portion in the first octant of a sphere with

radius a and center at the origin, as follows:

(a) Set up an integral using x and y as parameters.

(b) Set up an integral using φ and θ as parameters.

(c) Evaluate the easier of (a) and (b).

12. A triangle in the plane z = x+ y is directly above the triangle in the xy-plane
whose vertices are (1, 2), (3, 4), and (2, 5). Find the area of

(a) the triangle in the xy-plane,

(b) the triangle in the plane z = x + y.

13. Let S be the triangle with vertices (1, 1, 1), (2, 3, 4), and (3, 4, 5). Find the
area of S

(a) using vectors.

(b) using the formula: Area of S =
∫
S 1 dS.

14. Find the area of the portion of the cone z2 = x2 + y2 that lies above one loop
of the curve r =

√
cos(2θ).

15. Let S be the triangle whose vertices are (1, 0, 0), (0, 2, 0), and (0, 0, 3). Let
f(x, y, z) = 3x + 2y + 2z. Evaluate

∫
S f(P ) dS.
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16. An electric field radiates power at the rate of k sin2(φ)/ρ2 units per square
meter to the point P = (ρ, θ, φ). Find the total power radiated to the sphere ρ = a.

17. A spherical surface of radius 2a has its center at the origin of a rectangular
coordinate system. A circular cylinder of radius a has its axis parallel to the z-axis
and passes through the z-axis. Find the area of that part of the sphere that lies
within the cylinder and is above the xy-plane.

A mass M is distributed on the surface S. Let its density at P be σ(P ). The mo-
ment of inertia of the mass around the z-axis is defined as

∫
S(x2 + y2)σ(P ) dS.

Exercises 18 and 19 concern this integral.
18. Find the moment of inertia of a homogeneous distribution of mass on the
sphere of radius a around a diameter.
19. Let a, b, and c be positive numbers. Find the moment of inertia about the
z-axis of a homogeneous distribution of mass, M , of the triangle whose vertices are
(a, 0, 0), (0, b, 0), and (0, 0, c).

Exercises 20 and 21 involve calculations similar to those in Section 17.6 for a ball
instead of its surface.
20. Let S be a spherical surface of radius a. Let A be a point at distance b > a
from the center of S. For P in S let f(P ) be 1/q, where q is the distance from P to
A. Show that the average of f(P ) over S is 1/b.
21. The data are the same as in Exercise 20 but b < a. Show that in this case the
average of 1/q is 1/a. The average does not depend on b in this case.

Exercises 22 to 25 deal with steradians. They are intended to be answered using the
definition and basic properties of geometry.
22. A right circular cone has angle 2φ radians at its vertex. What is the steradian
measure of the solid angle its base subtends at the vertex

(a) when φ is π/2?

(b) when φ is less than π/2?

23. Let C be a convex body bounded by the smooth surface S. Show that if the
origin is outside of C, then the integral of br·n

r2 over S is 0. (Note where r̂ ·n is positive
and where it is negative.)
24. Let C be a convex body bounded by the smooth surface S. (A surface is
smooth if it has a continuous unit normal vector and no planar parts.) Let n
denote the external normal to S. Assume that the origin is on the surface S. Use
steradians to show that

∫
S r · n/r3 dS = 2π.

25. Let C be a cube.

(a) How many steradians are there in the solid angle subtended at a corner of C
by the surface of C?
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(b) Does this contradict Exercise 24?

26. This exercise shows that the steradian measure of the angle subtended by a
surface S is measured by

∫
S

br·n
r2 dS.

(a) Draw a surface and a small patch S on it.

(b) Draw a sphere with center O that does not meet the patch.

(c) On the sphere draw the correspoonding patch where rays from the origin to
S meet the sphere.

(d) Following the approach used in Section 15.4 to write the radians subtended
by a curve in terms of a line integral, complete the derivation of the steradian
measure of a surface in terms of a surface integral.

Spherical coordinates are also useful for integrating over a right circular cone as in
Exercises 27 to 29. Place the origin at the vertex of the cone and the φ = 0 ray along
the axis of the cone, as shown in Figure 17.7.9(a). Let α be the vertex half-angle of
the cone.
On the surface of the cone φ is constant, φ = α, but ρ and θ vary. A small patch on
the surface of the cone corresponding to slight changes dθ and dρ has area approxi-
mately

(ρ sin(α) dθ) dρ = ρ sin(α) dρ dθ.

(Why? See Figure 17.7.9.) So we may write

dS = ρ sinα dρ dθ.

(a) (b)

Figure 17.7.9
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27. Find the average distance from points on the curved surface of a cone of radius
a and height h to its axis.

28. Evaluate
∫
S z2 dS, where S is the entire surface of the cone shown in Fig-

ure 17.7.9(b), including its base.

29. Evaluate
∫
S x2 dS, where S is the curved surface of the right circular cone of

radius 1 and height 1 with axis along the z-axis.

Integration over the curved surface of a right circular cylinder is easiest in cylindrical
coordinates. Given the cylinder of radius a and axis on the z-axis, a patch on the
cylinder corresponding to dz and dθ has area approximately dS = a dz dθ. (Why?)
Exercises 30 and 31 illustrate the use of these coordinates.
30. Let S be the entire surface of a solid cylinder of radius a and height h. For P
in S let f(P ) be the square of the distance from P to one base. Find

∫
S f(P ) dS.

Be sure to include the two bases in the integration.

31. Let S be the curved part of the cylinder in Exercise 30. Let f(P ) be the
square of the distance from P to a fixed diameter in a base. Find the average value
of f(P ) for points in S.

32. The areas of the projections of a small flat surface patch on the three coordi-
nate planes are 0.01, 0.02, and 0.03. Is that enough information to find the area of
the patch? If so, find it. If not, explain why not.

33. Let F describe the flow of a fluid in space. (See Section 15.4 for fluid flow
in a plane region.) F(P ) = δ(P )v(P ), where δ(P ) is the density of the fluid at P
and v(P ) is the velocity of the fluid at P . Making clear, large diagrams, explain
why the rate at which the fluid is leaving the solid region enclosed by a surface S is∫
S F · n dS, where n denotes the unit outward normal to S.

34. Let S be the smooth surface of a convex body. Show that
∫
S z cos(γ) dS is

equal to the volume of the solid bounded by S. (Break S into two parts. In one
part cos(γ) is positive; and the other it is negative.)

35. Let R(x, y, z) be a scalar function defined over a closed surface S. (See
Figure 17.7.10.) Show that

∫
S

R(x, y, z) cos(γ) dS =
∫
A

(R(x, y, z2)−R(x, y, z1)) dA,

where A is the projection of S on the xy-plane and the line through (x, y, 0) parallel
to the z-axis meets S at (x, y, z1) and (x, y, z2), with z1 ≤ z2.
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Figure 17.7.10
36. Thie Exercise may be of use in Exercise 37.

(a) Let g be a differentiable function such that g((x + y)/2) = ((g(x) + g(y))/2
for all x and y. Show that g(x) = kx + c for some k and c. (Differentiate the
first equation.)

(b) Let f be a differentiable function such that (x+y)f(x+y)+(x−y)f(x−y) =
2xf(x) for all x and y. Deduce that there are constants k and c such that
f(x) = k + c/x.

37. (Suggested by Exercise 20.) Let d(P ) be the distance from P to a point
at a distance b from the center of a sphere of radius a, a < b. Let f(x) have the
property that the average value of f(d(P )) on the sphere is equal to f(b). This
condition holds for all a and b, with 0 < a < b. Show that f must have the form
f(x) = k + c/x. (Exercise 36 may be useful.)
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17.8 Moments, Centers of Mass, and Centroids

Now that we can integrate over plane regions, surfaces, and solid regions, we
can define and calculate the center of mass of a physical object. The center
of mass is important for naval architects, who do not want ships to tip over
easily. Pole vaulters hope that as they clear the bar their centers of mass go
under the bar. Archimedes, the first person to study the center of mass, was
interested in the stability of floating paraboloids.

The Center of Mass

Figure 17.8.1

A small boy on one side of a seesaw (which we regard as weightless) can
balance a bigger boy on the other side. For example, the two boys in Fig-
ure 17.8.1 balance. Each boy exerts a force on the seesaw, due to gravitational
attraction, proportional to his mass. The small mass with the long lever arm
balances the large mass with the small lever arm. Each boy contributes the
same tendency to turn but in opposite directions.

This tendency is called the moment:

Moment = (Mass) · (Lever arm),

where the lever arm can be positive or negative. To be more precise, introduce
on the seesaw an x-axis with its origin 0 at the fulcrum, the point on which
the seesaw rests. Define the moment about 0 of a mass m located at the point
x on the x-axis to be mx. Then the bigger boy has a moment (90)(4), while
the smaller boy has a moment (40)(−9). The total moment of the lever-mass
system is 0, and the masses balance. (See Figure 17.8.2.)

Figure 17.8.2

If a mass m is located on a line with coordinate x, we define its moment
about the point having coordinate k as the product m(x− k).

For several point masses m1, m2, . . . , mn. if mass mi is located at xi, for
i = 1, 2, . . . , n, then

∑n
i=1 mi(xi− k) is the total moment of the masses about

the point k. If a fulcrum is placed at k, then the seesaw rotates clockwise if
the total moment is greater that 0, rotates counterclockwise if it is less than
0, and is in equilibrium if the total moment is 0. See Figure 17.8.3.

Figure 17.8.3

To find where to place the fulcrum so that the total tendency to turn is 0,
we find k such that

n∑
i=1

mi(xi − k) = 0.

Writing this as

k
n∑

i=1

mi =
n∑

i=1

mixi,

we see that
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k =

∑n
i=1 mixi∑n
i=1 mi

. (17.8.1)

The number k given by (17.8.1) is called the center of mass or center
of gravity of the system of masses. It is the point about which all the masses
balance. The x-coordinate of the center of mass is found by dividing the total
moment about 0 by the total mass.x̄ is pronounced “x bar”. It is usually denoted x̄.

(a) (b)

Figure 17.8.4

Finding the center of mass of a finite number of point masses involves only
arithmetic. For example, suppose three masses are placed on a seesaw as in
Figure 17.8.4(a). Introduce an x-axis with origin at mass m1 = 20 pounds.
Two additional masses are located at x2 = 4 feet and x3 = 14 feet with masses
m2 = 10 pounds and m3 = 50 pounds, respectively. The total moment about
x = k is

M = 20(0− k) + 10(4− k) + 50(14− k) = 740− 80k.

This moment vanishes when M = 0, that is, when k = 740/80 = 9.25.
This is consistent with the formula for the center of mass:

x̄ =
m1x1 + m2x2 + m3x3

m1 + m2 + m3

=
0 + 40 + 700

10 + 20 + 50
=

740

80
= 9.25.

The seesaw balances when the fulcrum is placed 9.25 feet from the first mass.
(See Figure 17.8.4(b).)

Calculus is needed to find the center of mass of a one-dimensional rod that
occupies the interval a ≤ x ≤ b with density λ(x) at x. To apply the previous
ideas, divide the rod into n pieces of width ∆x = (b− a)/n. Let xi = a+ i∆x,
i = 0, . . . , n. For the piece of the rod for xi−1 ≤ x ≤ xi, select a point ci in
it. The mass of the piece is approximately λ(ci)∆x. An approximation to the
total moment about x = k is

M ≈
n∑

i=1

λ(ci)∆x︸ ︷︷ ︸
mass

(ci − k)︸ ︷︷ ︸
lever

.
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As n increases without bound these Riemann sums converge to a definite
integral for the total moment

M =

b∫
a

λ(x)(x− k) dx.

The total moment vanishes when

k =

∫ b

a
xλ(x) dx∫ b

a
λ(x) dx

.

The denominator is the mass of the rod.
To find the center of mass of a continuous distribution of matter in a plane

region, we use a double integral.
Let R be a region in the plane occupied by a thin piece of metal whose

density at P is σ(P ). Let L be a line in the plane, as shown in Figure 17.8.5(a).
We will find a formula for the unique line parallel to L, around which the mass
in R balances.

(a) (b)

Figure 17.8.5

Let L′ be any line parallel to L. We will compute the moment about L′ and
then see how to choose L′ to make it 0. To compute the moment of R about
L′, introduce an x-axis perpendicular to L with its origin at its intersection
with L. Assume that L′ passes through the x-axis at the point x = k, as in
Figure 17.8.5(b). In addition, assume that line parallel to L meets R either in
a line segment or at a point on the boundary of R. The lever arm of the mass
distributed throughout R varies from point to point.

Partition R into n small regions R1, R2, . . . , Rn. Let Ai be the area of Ri.
In each region the lever arm around L′ varies only a little. If we pick a point
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P1 in R1, P2 in R2, . . . , Pn in Rn, and the x-coordinate of Pi is xi, then

(xi − k)︸ ︷︷ ︸
lever arm

σ(Pi)Ai︸ ︷︷ ︸
mass in Ri

is a local estimate of the turning tendency.
Thus

n∑
i=1

(xi − k)σ(Pi)Ai (17.8.2)

would be a good estimate of the total turning tendency around L′. Taking the
limit of (17.8.2) as all Ri are chosen smaller and smaller, we expect∫

R

(x− k)σ(P ) dA (17.8.3)

to represent the turning tendency of the total mass around L′. The quantity
(17.8.3) is called the moment of the mass distribution around L′.

Figure 17.8.6

EXAMPLE 1 Let R be the region under y = x2 and above [0, 1] with the
density σ(x, y) = xy. Find its moment around the line x = 1/2.
SOLUTION R is shown in Figure 17.8.6. The moment (17.8.3) equals∫

R

(
x− 1

2

)
xy dA. (17.8.4)

We evaluate the double integral by the iterated integral

1∫
0

 x2∫
0

(
x− 1

2

)
xy dy

 dx.

See Exercise 2. The first integration gives

x2∫
0

(
x− 1

2

)
xy dy = (x− 1

2
)x

x2∫
0

y dy =

(
x− 1

2

)
x5

2
.

The second integration is

1∫
0

(
x− 1

2

)
x5

2
=

1∫
0

2x6 − x5

4
dx =

5

168
.

Since the total moment (17.8.4) is positive, the object would rotate clockwise
around the line x = 1

2
. �
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Now that we have a way to find the moment around any line parallel to
the y-axis we can find the line around which the moment is zero, the balancing
line. We solve for k in the equation∫

R

(x− k)σ(P ) dA = 0.

Thus ∫
R

xσ(P ) dA = k

∫
R

σ(P ) dA,

from which we find that

k =

∫
R

xσ(P ) dA∫
R

σ(P ) dA
.

The denominator is the total mass. The numerator is the total moment. So
we can think of k as the average lever arm as weighted by the density.

There is therefore a unique balancing line parallel to the y-axis. Call its x-
coordinate x. Similarly, there is a unique balancing line parallel to the x-axis.
Call its y-coordinate y. The point (x, y) is called the center of mass of the
region R. We have:

Center of Mass of Region R with Density σ
The center of mass of a region R with density σ(P ) has coordinates (x̄, ȳ)
where

x =

∫
R

xσ(P ) dA∫
R

σ(P ) dA
and y =

∫
R

yσ(P ) dA∫
R

σ(P ) dA
.

The integral
∫

R
xσ(P ) dA is called the moment of R around the y-

axis, and is denoted My. Similarly, Mx =
∫

R
yσ(P ) dA is the moment of R

around the x-axis.
If the density σ(P ) is constant, say, equal to 1 everywhere in R, then the

two equations reduce to

x =

∫
R

x dA∫
R

dA
and y =

∫
R

y dA∫
R

dA
.

In this case the center of mass R is also called the centroid of the region, a
purely geometric concept:
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Centroid of R
The centroid of the plane region R has the coordinates (x̄, ȳ) where

x =

∫
R

x dA

Area of R
and y =

∫
R

y dA

Area of R
. (17.8.5)

EXAMPLE 2 Find the center of mass of the region in Example 1.
SOLUTION The density at (x, y) in R is given by σ = xy. We compute three
double integrals: the mass

∫
R

xy dA and the moments My =
∫

R
x(xy) dA and

Mx =
∫

R
y(xy) dA.

We have

M =

∫
R

xy dA =

1∫
0

 x2∫
0

xy dy

 dx =

1∫
0

x5

2
dx =

1

12
.

Then

My =

∫
R

x2y dA =

1∫
0

 x2∫
0

x2y dy

 dx =

1∫
0

x6

2
dx =

1

14
.

Finally,

Mx =

∫
R

xy2 dA =

1∫
0

 x2∫
0

xy2 dy

 dx =

1∫
0

x7

3
dx =

1

24
.

Thus

x =
1
14
1
12

=
6

7
and y =

1
24
1
12

=
1

2
.

It is not surprising that x is greater than 1/2, since in Example 17.8.1 we
found that the object rotates clockwise around the line x = 1/2. �

Figure 17.8.7

An Important Point About an Important Point
We defined the center of mass (x, y) by first choosing an xy-coordinate system.
What if we choose an x′y′-coordinate system at an angle to the xy-coordinate
system? Would the center of mass computed in this system, (x′, y′), be the
same point as (x, y)? See Figure 17.8.7. Fortunately, it is, as Exercise 38
shows.
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Shortcuts for Computing Centroids

Assume that f is a non-negative function and let R be the region under y =
f(x) for x in [a, b]. Then, in computing the centroid of R, we encounter the
moment about the x-axis

Mx =

∫
R

y dA.

Thus

Mx =

b∫
a

(

f(x)∫
0

y dy) dx =

b∫
a

(f(x))2

2
dx =

1

2

b∫
a

(f(x))2 dx.

By (17.8.5)

y =
1
2

∫ b

a
(f(x))2 dx

Area of R
. (17.8.6)

Figure 17.8.8

EXAMPLE 3 Find the centroid of the semicircular region of radius a shown
in Figure 17.8.8.
SOLUTION By symmetry, x = 0.

To find y, use (17.8.6). The function f is given by f(x) =
√

a2 − x2, an
even function. The moment of R about the x-axis is

a∫
−a

(
√

a2 − x2)2

2
dx =

a∫
−a

a2 − x2

2
dx = 2

a∫
0

a2 − x2

2
dx

=

a∫
0

(a2 − x2) dx =

(
a2x− x3

3

)∣∣∣∣a
0

= (a3 − a3

3
)− 0 =

2

3
a3.

Since 4/(3π) ≈ 0.42, the
centroid of R is at a height
of about 0.42a.

Thus

y =
2
3
a3

Area of R
=

2
3
a3

1
2
πa2

=
4a

3π
.

�
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Centers of Other Masses

We defined moment, center of gravity, and centroid for masses situated in a
plane. They generalize to masses distributed on a curve (such as a wire), a
surface (such as a spherical surface), or in space (such as an ellipsoid).

For a curve, the mass has a linear density λ(P ). A short piece around P
of length ∆s would have mass approximately λ(P )∆s. Thus, the mass and
moments of the curve would be

M =

∫
C

λ(P ) ds, My =

∫
C

xλ(P ) ds, and Mx =

∫
C

yλ(P ) ds.

The definitions in the case of a surface S are obtained from the definitions
for a plane region R by replacing R by S.

The definition for a solid object of density δ(P ) occupying the region R.
We assume an xyz-coordinate system. The total mass is

M =

∫
R

δ(P ) dV.

There are three moments, one around each of the coordinate planes, indicated
by the subscripts:

Myz =

∫
R

xδ(P ) dV, Mxz =

∫
R

yδ(P ) dV, Mxy =

∫
R

zδ(P ) dV.

The center of mass is (x, y, z), where

Figure 17.8.9

x =

∫
R

xδ(P ) dV

M
, y =

∫
R

yδ(P ) dv

M
, z =

∫
R

zδ(P ) dV

M
.

If δ(P ) = 1 for all P in R, then the mass is the same as the volume and the
center of mass is called the centroid.

EXAMPLE 4 Find the centroid of the hemisphere of radius a shown in
Figure 17.8.9.
SOLUTION We place the origin of an xyz-coordinate system at the center
of the hemisphere, as in Figure 17.8.9.

By symmetry, the centroid is on the z-axis. (If you spin the hemisphere
about the z-axis you get the same hemisphere back, which must have the same
centroid.) If the centroid were not on the z-axis, you would get more than one
centroid for the same object.

So x = y = 0. Calling the hemisphere R, we have

z =

∫
R

z dV

Volume of R
.
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The volume of the hemisphere is half that of a ball, (2/3)πa3. To evaluate the
moment

∫
R

z dV , we use an iterated integral in spherical coordinates. Because
z = ρ cos(φ), we have: See Exercise 3.

∫
R

z dV =

2π∫
0

π/2∫
0

a∫
0

(ρ cos(φ))ρ2 sin(φ) dρ dφ dθ.

Straightforward computations show that∫
R

z dV =
πa4

4
.

Thus

Figure 17.8.10

z =
πa4

4
2
3
πa3

=
3a

8
.

The centroid is (0, 0, 3a
8
). �

EXAMPLE 5 Find the centroid of a homogeneous cone of height h and
radius a.
SOLUTION As we saw for the sphere in Example 4, symmetry tells us the
centroid lies on the axis of the cone.

Introduce a spherical coordinate system with the origin at the vertex of the
cone and with the axis of the cone lying on the ray φ = 0, as in Figure 17.8.10.
The vertex half-angle is arctan(a/h). The plane of the base of the cone is
z = h (in rectangular coordinates), or, in spherical coordinates, ρ cos(φ) = h.
The cone’s description is

0 ≤ θ ≤ 2π, 0 ≤ φ ≤ arctan(a/h), 0 ≤ ρ ≤ h/ cos(φ).

To find the centroid we compute
∫

R
z dV and divide the result by the

volume of the cone, which is 1
3
πa2h.

Now

∫
R

z dV =

2π∫
0

arctan(a/h)∫
0

h/ cos(φ)∫
0

ρ cos(φ)(ρ2 sin(φ)) dρ dφ dθ.

For the first integration, φ and θ are constant:

h/ cos(φ)∫
0

ρ cos(φ)ρ2 sin(φ) dρ = cos(φ) sin(φ)

h/ cos(φ)∫
0

ρ3 dρ =
h4 sin(φ)

4 cos3(φ)
.
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The second integration is

arctan(a/h)∫
0

h4 sin(φ)

4 cos3(φ)
dφ =

h4

4

arctan(a/h)∫
0

sin(φ)

cos3(φ)
dφ =

a2h2

8
.

The final integral is

2π∫
0

a2h2

8
dθ =

a2h2

8
2π =

πa2h2

4
.

Thus,

z =

∫
R

z dV

Volume of R
=

(
πa2h2

4

)
(

πa2h
3

) =
3h

4
.

The centroid of a cone is three-fourths of the way from the vertex to the
base. �

Archimedes and Centroids
How did Archimedes find centroids? Integral calculus was not invented until
1684, some 1900 years after his death. In one approach, he used axioms, in
the style of Euclid’s geometry text, written a generation or two before him.
These are the axioms:

1. The centroids of similar figures are similarly situated.

2. The centroid of a convex region lies within the region.

3. If an object is cut into two pieces, its centroid C lies on the line segment
joining the centroids of the two pieces. Moreover, if the pieces are R
with centroid A and S with centroid B, then |CA| times the area of R
equals |CB| times the area of S.

The book cited in Exercise 6 describes how he used them to find the centroid
of a triangle.

Summary

We defined the moment about a line and used it to define the center of mass for
a plane distribution of mass. The moment of a mass about a line L measures
the tendency of the mass to rotate about the line L. The center of mass for a
region R in the xy-plane is the point in the region where the region balances.

April 22, 2012 Calculus



§ 17.8 MOMENTS, CENTERS OF MASS, AND CENTROIDS 1557

The moment about the y-axis is

My =

∫
R

xδ(P ) dA.

The moment about the x-axis is

Mx =

∫
R

yδ(P ) dA.

The center of mass is (x̄, ȳ) where

x =
My

Mass
, y =

Mx

Mass
.

If the density is constant, we have a purely geometric concept,

x =

∫
R

x dA

Area of R
, y =

∫
R

y dA

Area of R
.

The definitions, which generalize to curves and solids, are listed in Ta-
ble 17.8.1.

curve (C) solid (R)
density λ(P ) δ(P )

M
∫

C
λ(P ) ds

∫
R

δ(P ) dV
Myz

∫
C

xλ(P ) ds
∫

R
xδ(P ) dV

Mxz

∫
C

yλ(P ) ds
∫

R
yδ(P ) dV

Mxy

∫
C

zλ(P ) ds
∫

R
zδ(P ) dV

Table 17.8.1
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EXERCISES for Section 17.8

1.

(a) How would you define the centroid of a curve? Call its linear density λ(P ).

(b) Find the centroid of a semicircle of radius a.

In Exercises 2 to 4 carry out the integrations in
2. Example 1.

3. Example 4.

4. Example 5.

5. Example 4 showed that the centroid of a hemisphere is at a distance less than
half the radius. Why is that to be expected?

6. Find the centroid of a solid paraboloid of revolution. This is the region above
z = x2 + y2 and below the plane z = c. Archimedes found the centroid without
calculus and used the result to analyze the equilibrium of a floating paraboloid. (If
it is slightly tilted, will it come back to the vertical or topple over?) To see how
he did this 2200 years ago see S. Stein, Archimedes: What Did He Do Besides Cry
Eureka?, Mathematical Association of America, 1999.

7. Using cylindrical coordinates, find z for the region below the paraboloid
z = x2 + y2 and above the disk r = 2 cos(θ) in the rθ-plane. Include a drawing
of the region.

8. Find the z-coordinate, z, of the centroid of the part of the saddle z = xy that
lies above the portion of the disk bounded by the circle x2 + y2 = a2 in the first
quadrant.

In Exercises 9 to 16 find the centroid of R. (Exercises 13 to 16 require integral tables
or techniques of Chapter 8.)
9. R is bounded by y = x2 and y = 4.

10. R is bounded by y = x4 and y = 1.

11. R is bounded by y = 4x− x2 and the x-axis.

12. R is bounded by y = x, x + y = 1, and the x-axis.

13. R is the region bounded by y = ex and the x-axis, between the lines x = 1
and x = 2.
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14. R is the region bounded by y = sin(2x) and the x-axis, between the lines
x = 0 and x = π/2.
15. R is the region bounded by y =

√
1 + x and the x-axis, between the lines

x = 0 and x = 3.
16. R is the region bounded by y = ln(x) and the x-axis between the lines x = 1
and x = e.

In Exercises 17 to 24 find the center of mass of the lamina.
17. The triangle with vertices (0, 0), (1, 0), (0, 1); density at (x, y) is x + y.
18. The triangle with vertices (0, 0), (2, 0), (1, 1); density at (x, y) is y.
19. The square with vertices (0, 0), (1, 0), (1, 1), (0, 1); density at (x, y) is
y arctan(x).
20. The finite region bounded by y = 1 + x and y = 2x; density at (x, y) is x + y.

21. The triangle with vertices (0, 0), (1, 2), (1, 3); density at (x, y) is xy.
22. The finite region bounded by y = x2, the x-axis, and x = 2; density at (x, y)
is ex

23. The finite region bounded by y = x2 and y = x + 6, situated to the right of
the y-axis; density at (x, y) is 2x.
24. The trapezoid with vertices (0, 0), (3, 0), (2, 1), (0, 1); density at (x, y) is
sin(x).

25. In a letter of 1680 Leibniz wrote:

Huygens, as soon as he had published his book on the pendulum,
gave me a copy of it; and at that time I was quite ignorant of Cartesian
algebra and also of the method of indivisibles, indeed I did not know
the correct definition of the center of gravity. For, when by chance I
spoke of it to Huygens, I let him know that I thought that a straight line
drawn through the center of gravity always cut a figure into two equal
parts; since that clearly happened in the case of a square, or a circle,
an ellipse, and other figures that have a center of magnitude. I imagine
that it was the same for all other figures. Huygens laughed when he
heard this, and told me that nothing was further from the truth.

[Quoted in C.H. Edwards, The Historical Development of the Cal-
culus, p. 239, Springer-Verlag, New York, 1979.]

Give an example showing that Huygens was right.

26. Cut an irregular shape out of cardboard and find three balancing lines for
it experimentally. Are they concurrent? That is, do they pass through a common
point?
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27. Let f and g be continuous functions such that f(x) ≥ g(x) ≥ 0 for x in
[a, b]. Let R be the region above [a, b] that is bounded by the curves y = f(x) and
y = g(x).

(a) Set up a definite integral in terms of f and g for the moment of R about the
y-axis.

(b) Set up a definite integral with respect to x in terms of f and g for the moment
of R about the x-axis.

In Exercises 28 to 31 find (a) the moment of R about the y-axis, (b) the moment of
R about the x-axis, (c) the area of R, (d) x, (e) y. Assume the density is 1. (See
Exercise 27.)
28. R is bounded by the curves y = x2, y = x3.

29. R is bounded by y = x, y = 2x, x = 1, and x = 2.

30. R is bounded by the curves y = 3x and y = 2x between x = 1 and x = e.

31. (Use a table of integrals or techniques from Chapter 8.) R is bounded by the
curves y = x− 1 and y = ln(x), between x = 1 and x = e.

32. If R is the region below y = f(x) and above [a, b], show that

x =

∫ b
a xf(x) dx

Area of R
.

33. A plane distribution of matter occupies the region R. It is cut into two pieces,
occupying regions R1 and R2, as in Figure 17.8.11(a). The part in R1 has mass M1

and centroid (x1, y1). The part in R2 has mass M2 and centroid (x2, y2). Find the
centroid (x, y) of the entire mass. Express it in terms of M1, M2, x1, x2, y1, and
y2.]

(a) (b)

Figure 17.8.11
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34. Let R, R1, and R2 be as in Exercise 33. Show that the centroid of R lies on
the line segment joining the centroids of R1 and R2.

35. Use the formula in Exercise 33 to find the center of mass of the homogeneous
lamina shown in Figure 17.8.11(b).

In Exercises 36 and 37 find z for the surfaces.
36. The portion of the paraboloid 2z = x2 + y2 below the plane z = 9.

37. The portion of the plane x + 2y + 3z = 6 above the triangle in the xy plane
whose vertices are (0, 0), (4, 0), and (0, 1).

38. This exercise shows that the medians of a triangle meet at the centroid of
the triangle. (A median of a triangle is a line that passes through a vertex and the
midpoint of the opposite edge.)
Let R be a triangle with vertices A, B, and C. Introduce an xy-coordinate system
such that the origin is at A and that B lies on the x-axis, as in Figure 17.8.12.

(a) Compute (x, y).

(b) Find the equation of the median through C and M , the midpoint of AB.

(c) Verify that the centroid lies on the median computed in (b).

(d) Why would you expect the centroid to lie on each median? (Use physical
intuition.)

Figure 17.8.12
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39. Which do you think would have the highest centroid? The semicircular
wire of radius a, shown in Figure 17.8.13(a); the top half of the surface of a ball of
radius a, shown in Figure 17.8.13(b); or the top half of a ball of radius a, shown in
Figure 17.8.13(c). Give your opinion, with reason.

(a) (b) (c)

Figure 17.8.13

40. Using calculus, determine the highest centroid in Exercise 39.

41. The corners of a homogeneous triangular piece of metal are (0, 0), (1, 0), and
(0, 2).

(a) Is the line y = 11
5 x a balancing line?

(b) If not, if the metal rests on the line which way would it rotate?

DEFINITION (Section of a region) Let R be a convex set in the
plane. A section of R is a part of R that is bounded by a chord and
part of the the boundary, as shown in Figure 17.8.14

Figure 17.8.14
42. If R is a convex set in the plane, show that different sections have different
centroids.
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43. (See Exercise 42.) Do you think every point in R that is not on the boundary
is the centroid of some section of R? Why?

44. Archimedes (287-212 b.c.) investigated the centroid of a section of a parabola.
A section of the parabola y = x2 is shown in Figure 17.8.15. M is the midpoint of
the chord and N is the point on the parabola directly below M .

Figure 17.8.15
He showed, without calculus, that the centroid is on the line MN , three-fifths of the
way from N and M . Obtain his result with calculus.

45. (See Exercise 44.) Is every point in the region bounded by the parabola the
centroid of some section?

46. (See Exercise 6.) The plane z = c in Exercise 6 is perpendicular to the axis
of the paraboloid. Archimedes was also interested in the case when the plane is not
perpendicular to the axis. Find the centroid of the region below the tilted plane
z = ky and above the paraboloid z = x2 + y2.

Exercises 47 to 49 concern Pappus’s Theorem, which relates the volume of a solid of
revolution to the centroid of the plane region R that is revolved to form the solid.

Theorem 17.8.1 (Pappus). Let R be a region in the plane and L a line in the plane
that does not cross R, though it can touch R at its border. Then the volume of the
solid formed by revolving R about L is equal to the product

(Distance the centroid of R is rotated) · (Area of R) .

47.

(a) Prove Pappus’s Theorem

(b) Use Pappus’s Theorem to find the volume of the torus formed by revolving a
disk of radius 3 inches about a line in the plane of the disk and 5 inches from
its center.
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48. Use Pappus’s Theorem to find the centroid of the half disk R of radius a.

49. Use Pappus’s Theorem to find the centroid of the right triangle in Fig-
ure 17.8.16.

Figure 17.8.16

50. This exercise concerns hydrostatic pressure. (See Section 7.6.)

(a) Show that the pressure of water against a submerged, vertical planar surface
occupying the plane region R equals the pressure at the centroid of R times
the area of R.

(b) Is the assertion in (a) correct if R is not vertical?

51. Let R be a region in a plane and P a point a distance h > 0 from the plane.
P and R determine a cone with base R and vertex P , as shown in Figure 17.8.17.
Let the area of R be A. What can be said about the distance from the centroid of
the cone to the plane of R?

(a) What is the distance in the case of a right circular cone?

(b) Experiment with another cone with a convenient base of your choice.

(c) Make a conjecture.

(d) Explain why it is true.
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Figure 17.8.17

52. (Contributed by Jeff Lichtman.) Let f and g be two continuous functions
such that f(x) ≥ g(x) ≥ 0 for x in [0, 1]. Let R be the region under y = f(x) and
above [0, 1] and let R∗ be the region under y = g(x) and above [0, 1].

(a) Do you think the centroid of R is at least as high as the centroid of R∗? (Give
your opinion, without any supporting calculations.)

(b) Let g(x) = x. Define f(x) to be 1
3 for 0 ≤ x ≤ 1

3 and to be x if 1
3 ≤ x ≤ 1. (f

is continuous.) Find ȳ for R and also for R∗. (Which is larger?)

(c) Let a be a constant, 0 ≤ a ≤ 1. Let f(x) = a for 0 ≤ x ≤ a, and let f(x) = x
for a ≤ x ≤ 1. Find ȳ for R.

(d) Show that the number a for which ȳ defined in (c) is a minimum is a root of
x3 + 3x− 1 = 0.

(e) Show that the equation in (d) has only one real root q.

(f) Find q to four decimal places.

(g) Show that ȳ = q

53. The plane z = a2 is above the parabolic surface z = x2 + y2.

(a) Set up a double integral in the xy-plane for the moment about the xy-plane.

(b) Express it as an iterated integral in polar coordinates.

(c) Evaluate the integral.

(d) Find the centroid of the surface.
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17.9 The Jacobian and Multiple Integrals

In this section the Jacobian, developed in Section 16.8, is used to evaluate
multiple integrals by replacing the domain of integration by a simpler domain.
This is similar to the way we replaced an integral over a curve with an inte-
gral over an interval (replacing ds by ds

dx
dx, in Section 9.4) and an integral

over a surface by an integral over a plane region (replacing dS by dA
| cos(γ)| in

Section 17.7).

The Jacobian Enters the Integral

Let F be a mapping from a region R in uv-space to the region S in xy-space
and let f(P ) be a scalar function defined on S. We will express the integral∫
S f(P ) dS as a multiple integral over R. If R is simpler than S, it may be

easier to compute the integral over R than the integral over S.
For a point P in S, let Q be the point in R such that F (Q) = P , as shown

in Figure 17.9.1. We can form an approximating sum for
∫
S f(P ) dS indirectly,

Figure 17.9.1

as follows.
Partition R into n small patches R1, R2, . . . , Rn. Then S1 = F (R1),

S2 = F (R1), . . . , Sn = F (Rn) is a partition of S. Pick points Q1 in R1, Q2 in
R2, . . . , Qn in Rn. Let P1 = F (Q1), P2 = F (Q2), . . . , Pn = F (Qn), as shown
in Figure 17.9.2. Let the area of Si be Si.

Figure 17.9.2
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Then
n∑

i=1

f(Pi)Si =
m∑

i=1

f(F (Qi)) Si (17.9.1)

is an approximation of
∫
S f(P ) dS. (Now that we will be working with the

Jacobian, the notation J [F ](Q) used in Section 16.8 will be shortened to J(Q).)
Let the area of Ri be Ai. Let J(Q) be the Jacobian of F evaluated at Q.

Since the Jacobian records local magnification, |J(Qi)|Ai is an approximation
of Si. In view of (17.9.1),

n∑
i=1

f(F (Qi))|J(Qi)|Ai (17.9.2)

is an approximation of
∫
S f(P ) dS. But (17.9.2) is also an approximation of∫

R

f(F (Q)) |J(Q)| dA.

Taking limits as all Ri are chosen smaller, we conclude that

Change of Domain∫
S

f(P ) dS =

∫
R

f(F (Q))|J(Q)| dA (17.9.3)

Equation (17.9.3) says we can replace an integral over S by an integral over
R. The equation remains valid even if F is not one-to-one on the boundary of
R.

The notation in (17.9.3) is precise but forbidding. In shorthand, it is sum-
marized in the equation dS = |J(F )| dA.

Applying the Idea

EXAMPLE 1 Let S be the parallelogram bounded by the lines x + y = 1,
x + y = 4, y − 2x = 2, and y − 2x = 3. Evaluate

∫
S x2 dS.

SOLUTION

Figure 17.9.3

The set S is shown in Figure 17.9.3.
Evaluating

∫
S x2 dS by iterated integrals would require breaking S into

two triangles and a parallelogram. Instead, let us change the domain.
By Example 2 in Section 16.8, S is the image of the rectangleR in uv-space

described by 1 ≤ u ≤ 4, 2 ≤ v ≤ 3 by the mapping

F (u, v) =

(
u− v

3
,
2u + v

3

)
,
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as shown in Figure 17.9.4. If F (u, v) = (x, y), we have x = (u − v)/3 and
y = (2u + v)/3. The Jacobian of F is

Figure 17.9.4

det

 ∂(u−v
3 )

∂u

∂( 2u+v
3 )

∂u
∂(u−v

3 )
∂v

∂( 2u+v
3 )

∂v

 = det

(
1
3

2
3

−1
3

1
3

)
=

1

9
+

2

9
=

1

3
.

In this case, the Jacobian is constant.

Then
∫
S x2 dS =

∫
R

(
u−v

3

)2 (1
3

)
dA.

The latter integral is easily evaluated as an iterated integral in which u and
v are the variables:∫
R

(
u− v

3

)2(
1

3

)
dA =

1

27

∫
R

(u− v)2 dA =
1

27

4∫
1

 3∫
2

(u− v)2 dv

 du.

The first integration is

3∫
2

(u−v)2 dv =
−(u− v)3

3

∣∣∣∣v=3

v=2

=
−(u− 3)3

3
−−(u− 2)3

3
=
−(u− 3)3

3
+

(u− 2)3

3
.

The second integration is

4∫
1

(
−(u− 3)3

3
+

(u− 2)3

3

)
du =

−(u− 3)4

12
+

(u− 2)4

12

∣∣∣∣u=4

u=1

=

(
−(1)4

12
+

24

12

)
−
(
−(−2)4

12
+

(−1)4

12

)
=

(
−14

12
+

24

12

)
−
(
−24

12
+

14

12

)
=

30

12
=

5

2
.

Thus
∫
S x2 dS = 1

27
· 5

2
= 5

54
. �
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EXAMPLE 2 Let S be the region in xy-plane bounded by the circles of
radii 1 and 2 with centers at the origin and by the lines y = x and y = x/2.
Find

∫
S(x

2 + y2) dS.
SOLUTION The region S appeared in Example 3 of Section 16.8. It is the
image of the rectangle R in the uv-plane described by 1 ≤ u ≤ 2, π/6 ≤ v ≤
π/4 by the mapping F (u, v) = (u cos(v), u sin(v)). Then∫

S

(x2 + y2) dS =

∫
R

(
(u cos(v))2 + (u sin(v))2

)
|J(u, v)| dA.

The Jacobian of F is

det

(
∂(u cos(v))

∂u
∂(u sin(v))

∂u
∂(u cos(v))

∂v
∂(u sin(v))

∂v

)
= det

(
cos(v) sin(v)
−u sin(v) u cos(v)

)
= u.

Because (u cos(v))2 + (u sin(v))2 = u2, we have∫
S

(x2 + y2) dS =

∫
R

u2︸︷︷︸
function

· u︸︷︷︸
Jacobian of F

dA =

∫
R

u3 dA.

Finally,

∫
R

u3 dA =

π/4∫
π/6

 2∫
1

u3 du

 dv =

π/4∫
π/6

15

4
dv =

15

4

(π

4
− π

6

)
=

15

48
π.

�
In this example the Jacobian introduced the extra factor u in the integrand.

But u and v are the same as the r and θ of polar coordinates. The extra factor
r was introduced in Section 17.3 because the area of a small patch is r∆r∆θ,
not simply ∆r∆θ. Now we see that the factor r is the Jacobian of a certain
mapping.

Exercise 23 in Section 16.8 develops the Jacobian for a mapping from uvw-
space to xyz-space. One can check that the Jacobian associated with cylindri-
cal coordinates (r, θ, z) where

x = r cos(θ), y = r sin(θ), z = z

is r, which then must be introduced as a factor in the integrand.
The Jacobian associated with spherical coordinates (ρ, θ, φ), where

x = ρ sin(φ) cos(θ), y = ρ sin(φ) sin(θ), z = ρ cos(φ),

is ρ2 sin(φ), which is consistent with what we found in Section 17.6 by consid-
ering the volume of a small patch corresponding to changes ∆ρ, ∆φ, ∆θ in the
coordinates.
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Summary

A mapping F from R to S enables us to replace an integral over S by an
integral over R: ∫

S

f(P ) dS =

∫
R

f(F (Q)) |J(Q)| dA.

The Jacobian of F appears because it tells by how much F magnifies the area
of a small patch in R. The factors that we introduced in earlier sections into
integrands, r for polar and cylindrical coordinates and ρ2 sin(φ) for spherical
coordinates, are instances of Jacobians.
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EXERCISES for Section 17.9

1. State the relation between an integral over R and an integral over its image S
by a mapping F , S = F (R). Use as few symbols as you can.

2. State, using as few symbols as you can, why the Jacobian of F appears in the
integrand on the right-hand side of

∫
S f(P ) dS =

∫
R f(F (Q))|J(Q)| dA. Start your

explanation from an approximating sum.

In Exercises 3 to 6, construct a mapping F from R to S, and use it to evaluate the
given integral.
3.

∫
S x2 dS. (See Figure 17.9.5.)

(a) (b)

Figure 17.9.5 S = F (R) for Exercise 3.

4.
∫
S(x + y) dS. (See Figure 17.9.6.)

(a) (b)

Figure 17.9.6 S = F (R) for Exercise 4.

5.
∫
S xy dS. (See Figure 17.9.7.)
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(a) (b)

Figure 17.9.7 S = F (R) for Exercise 5.

6.
∫
S cos(x) dS. (See Figure 17.9.8.)

(a) (b)

Figure 17.9.8 S = F (R) for Exercise 6.

7. Let S be the elliptical region x2/25 + y2/16 ≤ 1.

(a) Sketch S.

(b) Find a mapping F from the disk R described by u2 + v2 ≤ 1 to S.

(c) Use it to evaluate
∫
S sin2(x) dS.

(d) Do enough of the direct calculation of
∫
S sin2(x) dS without using a mapping

to see that it is more complicated than the method in (c).

8.

(a) Find a linear mapping F from the uv-plane to the xy-plane such that the image
of the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) is the parallelogram
S with vertices (0, 0), (3, 2), (5,−1), and (2,−3).
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(b) Use it to evaluate
∫
S xy dS.

9. It is plausible that if the local magnification of a mapping has the constant
value k, then it would magnify all areas by that factor. However, there is nothing in
the definition of the local magnification that assures us that this is so. After all, the
definition involves a limit of quotients that need not equal k. However, a mapping
that has a constant local magnification k does magnify all areas by the factor k.
Justify this claim.

10.

(a) Use the mapping in Example 1 to find the area of the parallelogram in that
example.

(b) Find the area of the parallelogram by using the cross product.

11. The Jacobian of a mapping F at (u, v) is u2v. Find the area of the image of
the rectangle 1 ≤ u ≤ 2, 3 ≤ v ≤ 5.

12. (See Exercise 14 in Section 16.8.) Show that an integral of the form
∫ b
a f(x) dx

can be replaced by an integral of the form
∫ 1
0 g(u) du.

13. Mappings F (u, v) = (au + bv + e, cu + dv + f), with ad − bc 6= 0, are affine
mappings. Note that F (0, 0) = (e, f). The linear mappings are the affine map-
pings that map the origin in the uv-plane to the origin in the xy-plane. Show that
if S is a triangle in the xy-plane there is an affine mapping from the triangle R in
the uv-plane whose vertices are (0, 0), (1, 0), and (0, 1) onto S. That implies that
an integral over a triangle can be replaced by an integral over the fixed triangle R.

14.

Sam: I can even use a mapping to get rid of improper integrals.

Jane: Another of your tricks.

Sam: Say I had
∫∞
0 e−x2

dx. The mapping x = tan(u) sends the interval [0, π/2)
onto the infinite interval [0,∞). Since dx = sec2(u) du, it follows that that
integral equals

∫ π/2
0 e− tan2(u) sec2(u) du.

Jane: Very impressive. Surely something is wrong.

Is Sam’s claim correct for a change?
15. Let F be described by x = u2 − v2, y = uv.
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(a) Find the Jacobian of F .

(b) Let R be the square with vertices (0, 0), (1, 0), (1, 1), and (0, 1) and let S be
F (R). Sketch S. (Sketch the images of the edges of R.)

(c) Evaluate
∫
S y2 dS using the Jacobian.

16.

(a) Sketch the set S in xyz-space given by x2 + y2/9 + z2/16 ≤ 1. (It is called an
ellipsoid, and resembles a football.)

(b) Find its volume by using a mapping from a sphereR of radius 1, whose volume
is 4π/3.

17. This exercise uses the Jacobian to find the formula for the area of a surface of
revolution. In Section 9.5 we developed such a formula. Let f be a positive function
defined for x in [a, b]. The graph of f is rotated around the x-axis to produce a
surface of revolution, S.

(a) Sketch S.

(b) Show on the sketch that each point (x, y, z) on S is determined by x and an
angle θ, 0 ≤ θ ≤ 2π.

(c) Express (x, y, z) in terms of x and θ.

(d) Part (c) describes a mapping from the rectangle a ≤ x ≤ b, 0 ≤ θ ≤ 2π. Find
its Jacobian.

(e) Use the Jacobian to show that the area of S is 2π
∫ b
a

√
1 + (f ′(x))2 dx.

We have concentrated on using mappings to simplify the domain of integration.
They may also simplify an integrand, as the next two exercises show.
18. Consider

∫
S exp((y − x)/(y + x)) dS where S is the triangle bounded by the

lines x = 0, y = 0, and x + y = 1. The substitution u = x + y, v = x− y simplifies
the integrand.

(a) Sketch S and the set R in uv-space that is the image of S under the mapping
u = x + y, v = y − x.

(b) Find the mapping F from R to S that is the inverse of the mapping in (a).

(c) Use F to evaluate the integral. (Choose the iterated integral wisely.)
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19. Evaluate
∫
S(x+y)2 cos2(x−y) dS, where S is the square with vertices (π/2, 0),

(π, π/2), (π/2, π), and (0, π/2).
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17.S Chapter Summary

This chapter generalized the notion of a definite integral over an interval to
integrals over plane sets, surfaces, and solids. The definitions of multiple
integrals are almost the same, the integral of f(P ) over a set being the limit of
sums of the form

∑
f(Pi) ∆Ai,

∑
f(Pi) ∆Si, or

∑
f(Pi) ∆Vi as i goes from

1 to n for integrals over plane sets, surfaces, or solids, respectively.

Three different interpretations of double integrals are given in Table 17.S.1.
The only difference is the interpretation of the integrand.

Integral Integrand Interpretation∫
R

1 dA 1 Area of R∫
R

σ(P ) dA σ(P ) = density per unit area Mass of R∫
R

c(P ) dA c(P ) = length of cross section of solid Volume of R

Table 17.S.1

Average value extends easily to functions of several variables. For instance,
if f(P ) is defined on a plane region R, its average value over R is defined as

1

area of R

∫
R

f(P ) dA.

Some multiple integrals (also known as double or triple integrals) can be
calculated by repeated integrations over intervals, that is, as iterated integrals.
This requires a description of the region in a coordinate system and replaces
dA or dV by an expression based on the area or volume of a small patch swept
out by small changes in the coordinates, as recorded in Table 17.S.2.

The final section showed the role of the Jacobian determinant in replacing
an integral over one set by an integral over another. The absolute value of the
Jacobian is the magnification factor that is inserted into an integrand if the
computation uses coordinates other than rectangular: r for polar coordinates
and ρ2 sin(φ) for spherical coordinates. That is, if F is a mapping from R
to S,

∫
S

f(P ) dS equals
∫

R
f(F (Q))|J(Q)| dA where J is short for J [F ], the

Jacobian of the mapping F .

The equation holds whether R and S are solids, surfaces, or intervals. The
last case was called integration by substitution in Section 8.2.

An integral over a surface S,
∫

S
f(P ) dS, can be replaced by an integral

over the projection of S onto a plane R, replacing dS by dA/| cos(γ)| where γ
is the angle between a normal to S and a normal to R.
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Coordinate System Substitution
Rectangular (2-D) dA = dx dy
Rectangular (3-D) dV = dx dy dz
Polar dA = r dr dθ
Cylindrical dV = r dr dθ dz
Cylindrical (surface) dS = r dθ dz
Spherical dV = ρ2 sin(φ) dφ dρ dθ
Spherical (surface) dS = ρ2 sin(φ) dφ dθ

Table 17.S.2

Key Facts
If density is 1, the center of
mass is called the centroid.

Formula Significance∫
R

1 dA Area of R∫
R

1 dV Volume of RR
R f(P ) dA

Area of R
or

R
R f(P ) dV

Volume of R
Average value of f over R∫

R
σ(P ) dA or

∫
R

δ(P ) dV Total mass of R, M (σ and
δ denote density)∫

R
yσ(P ) dA,

∫
R

xσ(P ) dA Moments, Mx and My about
x- and y-axes, respectively.
(A moment can be com-
puted around any line in the
plane.)∫

R
f(P )σ(P ) dA,

∫
R

f(P )σ(P ) dV
where f(P ) is the square of the distance
from P to some fixed line L

Moment of inertia around L
for plane and solid regions,
respectively.∫

R
x2σ(P ) dA,

∫
R

y2σ(P ) dA Second moments, Mxx and
Myy about x- and y-axes, re-
spectively.(

My

M
, Mx

M

)
Center of mass, (x̄, ȳ)∫

R
zδ(P ) dV Moment Mxy∫

R
yδ(P ) dV Moment Mxz∫

R
xδ(P ) dV Moment Myz(

Myz

M
, Mxz

M
, Mxy

M

)
Center of mass of solid,
(x̄, ȳ, z̄)

Table 17.S.3
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(a) (b)

Figure 17.S.1

EXERCISES for 17.S

1. In each of the following conversions from one integral to another, what is the
“local magnification” that is involved?

(a) Using substitution to replace an integral over [a, b] by an integral over [c, d].
(Section 8.2)

(b) Replacing an integral over a curve by an integral over an interval. (Sec-
tion 15.3)

(c) Replacing an integral over a surface that is the graph of z = f(x, y) by an
integral over its projection on the xy-plane. (Section 17.7)

(d) Replacing a double integral in rectangular coordinates by one in polar coor-
dinates. (Section 17.3)

(e) Using spherical coordinates to integrate over the a ball or solid cone. (Sec-
tion 17.6)

(f) Using spherical coordinates to integrate over surface of a sphere or cone. (Sec-
tion 17.7)

2. The temperature at (x, y) at time t is T (x, y, t) = e−tx sin(x + 3y). Let f(t) be
the average temperature in the rectangle 0 ≤ x ≤ π, 0 ≤ y ≤ π/2 at time t. Find
df/dt.

3. Let f be a function such that f(−x, y) = −f(x, y).

(a) Give some examples of such functions.
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(b) For what type regions R in the xy-plane is
∫
R f(x, y) dA certainly equal to 0?

4. Find
∫
R(2x3y2 + 7) dA where R is the square with vertices (1, 1), (−1, 1),

(−1,−1), and (1,−1). Do this with as little work as possible.

5. Let f(x, y) be a continuous function. Define g(x) to be
∫
R f(P ) dA, where R

is the rectangle with vertices (3, 0), (3, 5), (x, 0), and (x, 5), x > 3. Express dg/dx
as a suitable integral.

6. Let R be a plane lamina in the shape of the region bounded by the graph of
the function r = 2a sin(θ) (a > 0). If the variable density of the lamina is given by
σ(r, θ) = sin(θ), find the centroid R.

In Exercises 7 and 8, use iterated integrals in polar coordinates to find the point.
7. The centroid of the region within the cardioid r = 1 + cos(θ).
8. The centroid of the region within the leaf of r = cos 3(θ) that lies along the
polar axis.

In Exercises 9 to 12 find the moment of inertia of a homogeneous lamina of mass M
of the given shape, around the given line.
9. A disk of radius a, about the line perpendicular to it through its center.
10. A disk of radius a, about a line perpendicular to it through a point on the
circumference.
11. A disk of radius a, about a diameter.
12. A disk of radius a, about a tangent.

13.

(a) In a diagram much larger than Figure 16.8.5 in Section 16.8, show C and
the parallelogram that approximates it. Include the vectors (∂r/∂u)∆u and
(∂r/∂v)∆v.

(b) Why are the vectors in (a) tangent to the curves that meet at F (u0, v0)?

14. Let F (u, v, w) = (u sin(v) cos(w), u sin(v) sin(w), u cos(v)). Let R in uvw-space
be described by 1 ≤ u ≤ 2, 0 ≤ v ≤ π/4, 0 ≤ w ≤ π/2.

(a) Sketch R.

(b) Sketch F (R).

(c) Find the magnification of F .
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15. Let S be the spherical surface with radius a and center at the origin. We
want to find

∫
S(xz + y2)dS.

(a) Why is
∫
S xzdS = 0?

(b) Why is
∫
S x2dS =

∫
S y2dS =

∫
S z2dS?

(c) Why is
∫
S y2dS =

∫
S(a2/3)dS?

(d) Show that
∫
S(xz + y2)dS = 4πa2/3.

16. Let a be a positive number and R the region bounded by y = xa, the x-axis,
and the line x = 1.

(a) Show that the centroid of R is
(

a+1
a+2 ,

(
a+1
a+2

)a)
.

(b) Find lima→∞ x and lima→∞ y.

(c) Show that the centroid of R lies in R for all large values of a.

(It is true that the centroid lies in R for all positive values of a, but the proof is
more difficult.)

17. Define the moment of a curve in the xy-plane around the x-axis to be∫ s2

s1
y ds, where s1 and s2 refer to the range of the arc length s. The moment of

the curve around the y-axis is defined as
∫ s2

s1
x ds. The centroid of the curve,

(x, y), is defined by setting

x =

∫ s2

s1
x ds

length of curve
and y =

∫ s2

s1
y ds

length of curve
.

Find the centroid of the top half of the circle x2 + y2 = a2.

18. Show that the area of the surface obtained by revolving about the x-axis a
curve that lies above it is equal to the length of the curve times the distance that
the centroid of the curve moves. (See Exercise 17.)

19. Use Exercise 18 to find the surface area of the torus formed by revolving a
circle of radius a around a line a distance b from its center, b ≥ a.

20. Use Exercise 18 to find the area of the curved part of a cone of radius a and
height h.

21. Let f(P ) and g(P ) be continuous functions defined on a plane region R.
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(a) Show that∫
R

f(P )g(P ) dA

2

≤

∫
R

f(P )2 dA

∫
R

g(P )2 dA

 .

(Review the proof of the Cauchy-Schwarz inequality presented in the CIE on
Average Speed and Class Size on page 682.)

(b) Show that if equality occurs in the inequality in (a), then f is a constant times
g.

22. (Contributed by G. D. Chakerian.) A solid region R is bounded below by the
xy-plane, above by the surface z = f(P ), and the sides by the surface of a cylinder,
as shown in Figure 17.S.2.
The volume of R is V . If V is fixed, show that the top surface that minimizes the
height of the centroid of R is a horizontal plane. (Water in a glass illustrates this,
for nature minimizes the height of the centroid of the water.) (See Exercise 21.)

Figure 17.S.2

23. Find the average distance from points in a disk of radius a to the center of
the disk.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

24. Find the average distance from points in a square of side a to the center of
the square.

Calculus April 22, 2012



1582 CHAPTER 17 PLANE AND SOLID INTEGRALS

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

25. Find the average distance from points in a ball of radius a to the center of
the ball.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in spherical coordinates.

(c) Evaluate the easier integral in (a) and (b).

26. Find the average distance from points in a cube of side a to the center of the
cube.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

Exercises 27 and 28 refer to the distance from a point to a curve, that is, the shortest
distance from the point to the curve.
27. Find the average distance from points in a square of side a to the border of
the square.

(a) Set up the pertinent definite integral in rectangular coordinates.

(b) Set it up in polar coordinates.

(c) Evaluate the easier integral in (a) and (b).

28. Find the average distance from the points in a disk of radius a to the circular
border.

(a) Before doing any calculations, decide whether the average distance is greater
than a/2 or less than a/2. Explain how you made this decision.

(b) Carry out the calculation using a convenient coordinate system.
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29.

(a) Show that a region of diameter d can always fit into a disk of diameter 2d.

(b) Can it always fit into a disk of diameter d?

30. If a region has diameter d,

(a) how small can its area be?

(b) show that area is less than or equal to πd2/2.

31. Let A and B be two points in the xy-plane. A curve C (in the xy-plane)
consists of all points P such that the sum of the distances from P to A and P to B
is constant, say 2a. The distance from P to A is a function of arclength on C. Find
the average of that distance.

Exercises 32 to 34 concern the moment of inertia. Note that if the object is homo-
geneous, has mass M and volume V , its density δ(P ) is M/V .
32. A homogeneous rectangular solid box has mass M and sides of lengths a, b,
and c. Find its moment of inertia about an edge of length a.
33. A rectangular homogeneous box of mass M has dimensions a, b and c. Show
that the moment of inertia of the box about a line through its center and parallel
to the side of length a is M(b2 + c2)/12.
34. A right solid circular cone has altitude h, radius a, constant density, and mass
M .

(a) Why is its moment of inertia about its axis less that Ma2?

(b) Show that its moment of inertia about its axis is 3Ma2/10.

Exercises 35 and 36 imply that the centroid of a region R does not depend on the
particular choice of xy-axes used to define it. That means that the centroid is an
intrinsic geometric property of R. More generally, the center of gravity does not
depend on the choice of axes; it is an intrinsic property of the distribution of the
mass.
35. Matter in a plane region R has density δ(P ). Relative to the xy-axes its
center of mass is P = (x̄, ȳ). Introduce a second rectangular coordinate system
with x′y′-axes parallel to the original system. The x′y′-axes are a translation of the
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xy-axes. The origin of the x′y′-axes is at the point (h, k) relative to the xy-axes.
The center of gravity is Q = (x̄′, ȳ′) when computed using the x′y′-axes. Show that
P = Q. This shows that the center of gravity does not depend on the choice of axes,
as long as one set of axes is a translation of the other set.

36. (This continues Exercise 35.) Assume that the center of mass is (0, 0) when
computed relative to the xy-axes. These axes are rotated around (0, 0) by an angle
θ to produce x′y′-axes.

(a) Show that the center of mass computed with the x′y′-axes is the same as
that computed with the xy-axes. (Show that the x′-axis and the y′-axis are
balancing lines.)

(b) From (a) and the preceding Exercise, show that the center of mass does not
depend on the particular coordinate system chosen.

37. A solid of varying density δ(P ) occupies the region R in space. Let L1 be a
line through its center of mass and L2 a line parallel to L1 and at a distance r from
it. Let I1 be the moment of inertia of the solid around L1 and I2 the moment of
inertia around L2.

(a) Show that I2 = I1 + r2M where M is the mass of the solid.

(b) Which choice of r leads to the smallest value of I2?

(c) How could the center of gravity be defined in terms of moments of inertia?

38. Let z = g(y) be a decreasing function of y such that g(1) = 0. Let R be the
solid of revolution formed by revolving about the z-axis the region in the yz-plane
bounded by y = 0, z = 0, and z = g(y). Using repeated integrals in cylindrical coor-
dinates, show that

∫
R z dV =

∫ 1
0 πy (g(y))2 dy and

∫
R z dV =

∫ g(0)
0 πz

(
g−1(z)

)2
dz.

39. (See Exercise 38.)

(a) Show that the z-coordinate of the centroid of the solid described in Exercise 38
is ∫ 1

0
x
2 (g(x))2 dx∫ 1
0 xg(x) dx

,

while the z-coordinate of the centroid of the plane region that was revolved is∫ 1
0

1
2 (g(x))2 dx∫ 1
0 g(x) dx

.
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(b) By considering

1∫
0

1∫
0

g(x)g(y)(x− y)(g(x)− g(y)) dx dy,

show that the centroid of the solid of revolutions is below that of the plane
region. (Why is the iterated integral less that or equal to 0?)

40.

Sam: I can make things clearer and cut the book by two pages.

Jane: How?

Sam: Those guys make separate definitions for integrals over line segments, curves,
plane regions, solid regions, and surfaces.

Jane: You don’t like the definitions?

Sam: They’re the same definition over and over.

Jane: So?

Sam: I’d make one definition back in Chapter 6 to do them all wholesale.

Jane: Impossible.

Sam: Look, each type involves a measure of size, length for intervals and curves,
area for plane and surface regions, and volume for solid ones. I’ll just write
m(R) for the measure of the region R. I’m done. All those sums involving
partitions have the same form:∑

f(Pi)m(Ri)

Then I take the limit as the little Ri get small. That gets all types in one
blow.

Jane: But we won’t know how to compute them.

Sam: I’ll add suspense. I’ll promise that Chapters 6, 15, and 17 will show how to
compute them.

(a) Write out Sam’s definition.

(b) Should it be in Chapter 6? (Explain.)
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Calculus is Everywhere # 24

Solving the Wave Equation

The Calculus is Everywhere section in the previous chapter (The Wave in a
Rope) introduced the partial differential equation

∂2y

∂x2
=

1

c2

∂2y

∂t2
. (C.24.1)

We will solve it to find y as a function of x and t. First, we solve some simpler
equations, which will help us solve (C.24.1).

EXAMPLE 1 Let u(x, y) satisfy ∂u/∂x = 0. Find the form of u(x, y).
SOLUTION Since ∂u/∂x is 0, for a fixed value of y, u(x, y) is constant.
Thus, u(x, y) depends only on y, and can be written in the form h(y) for some
function h of a single variable.

On the other hand, any function u(x, y) that can be written in the form
h(y) has the property that ∂u/∂x = 0 . �

EXAMPLE 2 Let u(x, y) satisfy

∂2u

∂x∂y
= 0. (C.24.2)

Find the form of u(x, y).
SOLUTION We know that

∂
(

∂u
∂y

)
∂x

=
∂2u

∂x∂y
= 0.

By Example 1, ∂u
∂y

= h(y) for some function h(y). By the Fundamental Theo-
rem of Calculus, for any number b,

u(x, b)− u(x, 0) =

b∫
0

∂u

∂y
dy =

b∫
0

h(y)dy.

Let H be an antiderivative of h. Then

u(x, b)− u(x, 0) = H(b)−H(0).

Replacing b by y shows that

u(x, y) = u(x, 0) + H(y)−H(0).
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So u(x, y) is a sum of a function of x and a function of y,

u(x, y) = f(x) + g(y). (C.24.3)

A quick calculation shows that any function of this form satisfies (C.24.2). �
We will solve the wave equation (C.24.1) by using a change of variables

that transforms it into the one solved in Example 2.
Let c be a positive constant. The new variables are

p = x + ct and q = x− ct.

so

x =
1

2
(p + q) and t =

1

2c
(p− q).

We will apply the chain rule, where y is a function of p and q and p and q

Figure C.24.1

are functions of x and t, as indicated in Figure C.24.1. Thus y(x, t) = u(p, q).
Because

∂p

∂x
= 1,

∂p

∂t
= c,

∂q

∂x
= 1, and

∂q

∂t
= −c,

we have
∂y

∂x
=

∂u

∂p

∂p

∂x
+

∂u

∂q

∂q

∂x
=

∂u

∂p
+

∂u

∂q
.

Then

∂2y

∂x2
=

∂

∂x

(
∂u

∂p
+

∂u

∂q

)
=

∂

∂p

(
∂u

∂p
+

∂u

∂q

)
∂p

∂x
+

∂

∂q

(
∂u

∂p
+

∂u

∂q

)
∂q

∂x

=

(
∂2u

∂p2
+

∂2u

∂p∂q

)
· 1 +

(
∂2u

∂q∂p
+

∂2u

∂q2

)
· 1.

Thus
∂2y

∂x2
=

∂2u

∂p2
+ 2

∂2u

∂p∂q
+

∂2u

∂q2
. (C.24.4)

A similar calculation shows that

∂2y

∂t2
= c2

(
∂2u

∂p2
− 2

∂2u

∂p∂q
+

∂2u

∂q2

)
. (C.24.5)

Substituting (C.24.4) and (C.24.5) in (C.24.1) leads to

∂2u

∂p2
+ 2

∂2u

∂p∂q
+

∂2u

∂q2
=

1

c2

(
c2
)(∂2u

∂p2
− 2

∂2u

∂p∂q
+

∂2u

∂q2

)
,
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which reduces to

4
∂2u

∂p∂q
= 0.

By Example 2, there are function f(p) and g(q) such that

y(x, t) = u(p, q) = f(p) + g(q)

which can be written as

y(x, t) = f(x + ct) + g(x− ct). (C.24.6)

The expression (C.24.6) is the most general solution of the wave equation
(C.24.1).

What does a solution (C.24.6) look like? What does the constant c tell us?
To answer these questions, suppose

y(x, t) = g(x− ct). (C.24.7)

Here t represents time. For each t, y(x, t) = g(x − ct) is a function of x and
we can graph it in the xy-plane. For t = 0, (C.24.7) becomes

y(x, 0) = g(x).

That is the graph of y = g(x), whatever g is, as shown in Figure C.24.2(a).

(a) (b)

Figure C.24.2 (a) t = 0, (b) t = 1.

One unit of time later, when t = 1, Then

y = y(x, 1) = g(x− c · 1) = g(x− c).

The value of y(x, 1) is the same as the value of g at x − c, c units to the left
of x. So the graph at t = 1 is the graph of g in Figure C.24.2(a) shifted to the
right c units, as in Figure C.24.2(b).
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As t increases, the initial wave shown in Figure C.24.2(a) moves to the right
at the constant speed, c. Thus c tells us its velocity. That will play a role in
Maxwell’s prediction that electromagnetic waves travel at the speed of light,
as we will see in the Calculus is Everywhere section at the end of Chapter 18.

EXERCISES

1. We interpreted y(x, t) = g(x − ct) as the description of a wave moving with
speed c to the right. Interpret y(x, t) = f(x + ct).

2. Which functions u(x, y) have both ∂u/∂x and ∂u/∂y equal to 0 for all x and
y?

3. Let u(x, y) satisfy ∂2u/∂x2 = 0. Find the form of u(x, y).

4. Show that any function of the form (C.24.3) satisfies (C.24.2).

5. Verify that any function of the form (C.24.6) satisfies the wave equation.

6. Carry out the similar calculations to verify (C.24.5).

7. Let k be a positive constant.

(a) What are the solutions to the equation

∂2y

∂x2
= k

∂2y

∂t2
?

(b) What is the speed of the waves?
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Chapter 18

The Theorems of Green, Stokes,
and Gauss

Imagine a fluid or gas moving through space or on a plane. Its density may
vary from point to point as may its velocity vector. Figure 18.0.1 illustrates
four examples. The diagrams show flows in the plane because they are easier
to visualize.

(a) (b) (c) (d)

Figure 18.0.1 Four vector fields in the plane.

The plots in Figure 18.0.1 resemble the slope fields of Section 3.6 but
instead of short segments, we have vectors, which may be short or long. Two
questions are:

For a fixed region of the plane (or in space), is the amount of fluid in it
increasing, decreasing, or not changing?

At a point, does the field create a tendency for the fluid to rotate? If we
put a little propeller in the fluid would it turn? If so, in which direction, and
how fast?

Questions like these arise in several areas, including fluid flow, electromag-
netism, thermodynamics, and gravity. This chapter provides techniques for
answering them.

Throughout we assume that all partial derivatives of the first and second
orders exist and are continuous.
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18.1 Conservative Vector Fields

In Section 15.3 we defined integrals of the form∫
C

(P dx + Q dy + R dz) (18.1.1)

where P , Q, and R are scalar functions of x, y, and z and C is a curve in
space. Similarly, in the xy-plane, for scalar functions of x and y, P and Q, we
have ∫

C

(P dx + Q dy).

Instead of three scalar fields, P , Q, and R, we could think of a single vector
function F(x, y, z) = P (x, y, z)i + Q(x, y, z)j + R(x, y, z)k, called a vector
field, in contrast to a scalar field.

(a) (b) (c)

Figure 18.1.1 Maps showing the direction and speed of the wind for (a) the
United States, (b) near Pierre, SD and (c) near Tallahassee, FL on April 24,
2009. [Source: www.intellicast.com/National/Wind/Windcast.aspx]

In Chapter 15 the formal vector dr = dxi + dyj + dzk was introduced as a
way to rewrite (18.1.1) as ∫

C

F · dr.

The vector notation is compact, is the same in the plane and in space, and
emphasizes the idea of a vector field. More important, it frees us from referring
to any specific coordinate system. The longer notations∫
C

(P dx+Q dy+R dz) and

∫
C

(P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz)

are used to prove theorems and to carry out calculations.
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Return to Central Vector Fields

In Section 15.3 we made this definition:

DEFINITION (Conservative Field) A vector field F defined in a
plane or spatial region is called conservative if∫

C1

F · dr =

∫
C2

F · dr

whenever C1 and C2 are any two simple curves in the region with
the same initial and terminal points.

Our goal is to find a more convenient characterization of a conservative
field. The first step is Theorem 18.1.1, an equivalent definition of conservative
that involves the line integral along a simple closed curve. We review the
definitions of simple and closed, then state the theorom, and give its proof.

Recall from Section 15.3 that a closed curve is a curve that begins and ends
at the same point, forming a loop. It is simple if it passes through no point
more than once other than its start and finish points. A curve that starts at
one point and ends at a different point is simple if it never intersects itself.
Figure 18.1.2 shows some curves that are simple and some that are not.

Figure 18.1.2

Theorem 18.1.1. A vector field F is conservative if and only if
∮

C
F · dr = 0

for every simple closed curve in the region where F is defined.

Proof

Assume that F is a conservative and let C be simple closed curve that starts
and ends at the point A. Pick a point B on the curve and break C into two
curves: C1 from A to B and C∗

2 from B to A, as in Figure 18.1.3(a).
Let C2 be the curve C∗

2 traversed in the opposite direction, from A to B.
Then, since F is conservative, Note the sign change.∮

C

F · dr =

∫
C1

F · dr +

∫
C∗2

F dr =

∫
C1

F · dr−
∫
C2

F · dr = 0.
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To prove the converse, assume that
∮

C
F · dr = 0 for any simple closed

curve C in the region. Let C1 and C2 be two simple curves in the region,
starting at A and ending at B. Let −C2 be C2 taken in the reverse direction.
(See Figures 18.1.3(b) and (c).) Then C1 followed by −C2 is a closed curve C
from A back to A. Thus

(a) (b) (c)

Figure 18.1.3

0 =

∮
C

F · dr =

∫
C1

F · dr +

∫
−C2

F · dr =

∫
C1

F · dr −
∫
C2

F · dr.

Consequently, ∫
C1

F · dr =

∫
C2

F · dr.

•

In this proof we assumed that C1 and C2 overlap only at their endpoints,
A and B. Exercise 25 treats the case when the curves intersect elsewhere.

Every Gradient Field is Conservative

Whether a vector field is conservative is important in the study of gravity,
electromagnetism, and thermodynamics. In the rest of this section we describe
ways to determine whether a vector field F is conservative.

It is impossible to evaluate
∮

F · dr for every simple closed curve and see
if it is always 0 because there are infinitely many of them. The first practical
test involves gradients and makes use of Theorem 18.1.2.

The Fundamental Theorem of Calculus asserts that
∫ b

a
f ′(x) dx = f(b) −

f(a). Theorem 18.1.2 asserts that
∫

C
∇f · dr = f(B) − f(A), where f is a

function of two or three variables and C is a curve from A to B. Because of its
resemblance to the Fundamental Theorem of Calculus, it is sometimes called
the Fundamental Theorem of Vector Fields.
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A vector field that is the gradient of a scalar field is conservative. That
is the substance of Theorem 18.1.2. It says that the circulation of a gradient
field of a scalar function f along a curve is the difference in values of f at the
end points.

Fundamental Theorem of Vector Fields

Theorem 18.1.2. Let f be a scalar field defined in a region R in the plane or
in space. Then the gradient field F = ∇f is conservative. For any points A
and B in R and any curve C in R from A to B,∫

C

∇f · dr = f(B)− f(A).

Proof

For simplicity take the planar case. Let C be given by the parameterization
r = G(t) for t in [a, b]. Let G(t) = x(t)i + y(t)j. Then

∫
C

∇f · dr =

∫
C

(
∂f

∂x
dx +

∂f

∂y
dy

)
=

b∫
a

(
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

)
dt.

The integrand (∂f/∂x)(dx/dt) + (∂f/∂y)(dy/dt) is reminiscent of the chain
rule in Section 16.3. If we define H by

H(t) = f(x(t), y(t)),

then the chain rule asserts that

dH

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

Thus
b∫

a

(
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

)
dt =

b∫
a

dH

dt
dt = H(b)−H(a)

by the Fundamental Theorem of Calculus. Because

H(b) = f(x(b), y(b)) = f(B)

and
H(a) = f(x(a), y(a)) = f(A)
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we have ∫
C

∇f · dr = f(B)− f(A), (18.1.2)

and the theorem is proved. •

In differential form Theorem 18.1.2 reads:

• If f is defined on the xy-plane, and C starts at A and ends at B,∫
C

(
∂f

∂x
dx +

∂f

∂y
dy

)
= f(B)− f(A) (18.1.3)

• If f is defined in space, then,∫
C

(
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

)
= f(B)− f(A). (18.1.4)

One vector equation (18.1.2) covers (18.1.3) and (18.1.4). This illustrates
an advantage of vector notation.

It is a much easier to evaluate f(B)−f(A) than to compute a line integral.

EXAMPLE 1 Let f(x, y, z) = 1√
x2+y2+z2

, which is defined everywhere ex-

cept at the origin. (a) Find the gradient field F = ∇f , (b) Compute
∫

C
F · dr

where C is a curve from (1, 2, 2) to (3, 4, 0).
SOLUTION (a) Straightforward computations show that

∂f

∂x
=

−x

(x2 + y2 + z2)3/2
,
∂f

∂y
=

−y

(x2 + y2 + z2)3/2
,
∂f

∂z
=

−z

(x2 + y2 + z2)3/2
.

So

∇f =
−xi− yj− zk

(x2 + y2 + z2)3/2
. (18.1.5)

If we let r(x, y, z) = xi + yj + zk, r = |r|, and r̂ = r/r, then (18.1.5) can
be written as

F = ∇f =
−r

r3
=
−r̂

r2
.

(b) For a curve C from (1, 2, 2) to (3, 4, 0),∫
C

∇f · dr = f(3, 4, 0)− f(1, 2, 2) =
1√

32 + 42 + 02
− 1√

12 + 22 + 22

=
1

5
− 1

3
= − 2

15
.
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�

For a constant k, a vector field, F = kr̂/r2, is called an inverse square
central field. It plays an important role in gravity and electromagnetism.

In Example 1, |∇f | = |−r|
r3 = r

r3 = 1
r2 and f(x, y, z) = 1

r
. In the study of

gravity, ∇f measures gravitational attraction, and f measures potential.

EXAMPLE 2 Evaluate
∮

C
(y dx + x dy) around a closed curve C taken

counterclockwise.

SOLUTION In Section 15.3 it was shown that if the area enclosed by a
curve C is a, and if C is swept out counterclockwise then

∮
C

x dy = a and∮
C

y dx = −a. Thus, ∮
C

(y dx + x dy) = −a + a = 0.

A second solution uses Theorem 18.1.2. The gradient of xy is

∇(xy) =
∂(xy)

∂x
i +

∂(xy)

∂y
j = yi + xj.

Hence, by Theorem 18.1.2, if the endpoints of C are A and B∮
C

(y dx + x dy) =

∮
C

∇(xy) · dr = xy|BA .

Because C is a closed curve, A = B and the integral is 0. �

A differential form P (x, y, z) dx+Q(x, y, z) dy+R(x, y, z) dz is called exact
if there is a scalar function f such that P (x, y, z) = ∂f/∂x, Q(x, y, z) = ∂f/∂y,
and R(x, y, z) = ∂f/∂z. Then the expression takes the form

∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz.

That is the same thing as saying that the vector field F = P (x, y, z)i +
Q(x, y, z)j + R(x, y, z)k is a gradient field: F = ∇f .

If F is Conservative Must It Be a Gradient Field?

The proof of the next theorem is similar to the proof of the second part of the
Fundamental Theorem of Calculus. FTC II states that every

continuous function has an
antiderivative.

It would be helpful to review that proof
(page 536) before reading the following proof.
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If F is conservative, is it necessarily the gradient of some scalar function?
The answer is yes. That is the substance of the next theorem. First we
introduce some terminology about regions.

Recall that a region R in the plane is open if for each point P in R there
is a disk with center at P that lies entirely in R.

An open region in space is defined similarly, with “disk” replaced by “ball.”
A region R is arcwise-connected if every two points in it can be joined

by a curve that lies completely in R. An arcwise-connected region has only
one piece.

Theorem 18.1.3. Let F be a conservative vector field defined in an arcwise-
connected open region R in the plane (or in space). Then there is a scalar
function f defined there such that F = ∇f .

Proof

Suppose F = P (x, y)i+Q(x, y)j. (If F is defined in space the proof is similar.)
Define the scalar function f as follows. Let (a, b) and (x, y) be points in R.
Select a curve C in R that starts at (a, b) and ends at (x, y).

Figure 18.1.4

Define f(x, y) to be
∫

C
F · dr. Since F is conservative, f(x, y) depends only

on the point (x, y) and not on the choice of C. (See Figure 18.1.4.)
All that remains is to show that ∇f = F; that is, ∂f/∂x = P and ∂f/∂y =

Q. We will go through the details for the first case, ∂f/∂x = P . The other is
similar.

Let (x0, y0) be a point in R and form the difference quotient whose limit
is ∂f/∂x(x0, y0), namely,

f(x0 + h, y0)− f(x0, y0)

h
,

for h small enough so that (x0 + h, y0) is also in the region.

Figure 18.1.5

Let C1 be a curve from (a, b) to (x0, y0) and let C2 be the straight path
from (x0, y0) to (x0 + h, y0). (See Figure 18.1.5.) Let C be the curve from
(0, 0) to (x0 + h, y0) formed by taking C1 first and continuing on C2. Then

f(x0, y0) =

∫
C1

F · dr,

and

f(x0 + h, y0) =

∫
C

F · dr =

∫
C1

F · dr +

∫
C2

F · dr.

Thus

f(x0 + h, y0)− f(x0, y0)

h
=

∫
C2

F · dr
h

=

∫
C2

(P (x, y) dx + Q(x, y) dy)

h
.
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On C2, y is constant, y = y0, so dy = 0. Thus
∫

C2
Q(x, y) dy = 0. Also,

∫
C2

P (x, y) dx =

x0+h∫
x0

P (x, y) dx.

See Section 6.3 for the
MVT for Definite Integrals.

By the mean value theorem for definite integrals, there is a number x∗ between
x0 and x0 + h such that

x0+h∫
x0

P (x, y) dx = P (x∗, y0)h.

Hence

∂f

∂x
(x0, y0) = lim

h→0

f(x0 + h, y0)− f(x0, y0)

h

= lim
h→0

1

h

x0+h∫
x0

P (x, y0) dx = lim
h→0

P (x∗, y0) = P (x0, y0).

Consequently,
∂f

∂x
(x0, y0) = P (x0, y0),

as was to be shown.
Similarly, we can show that

∂f

∂y
(x0, y0) = Q(x0, y0).

•
For a vector field F defined throughout some region in the plane (or space)

the three properties in Figure 18.1.6 are therefore equivalent because any one
of them describes a conservative field. We used property (3) as the definition.

Almost A Test For Being Conservative

Figure 18.1.6 describes three ways of deciding whether a vector field F =
P i + Qj + Rk is conservative. Now we give a simple way to tell that it is not
conservative. It is simpler than finding a line integral

∫
C

F · dr that is not 0.
The test depends on the equality of the two mixed second-order partial

derivatives: ∂
∂x

(
∂f
∂y

)
= ∂

∂y

(
∂f
∂x

)
.

If F = P i + Qj + Rk is a gradient there is a scalar function f such that

∂f

∂x
= P,

∂f

∂y
= Q,

∂f

∂z
= R.
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Figure 18.1.6 Double-headed arrows (⇔) mean “if and only if” or “is equiv-
alent to.”)

Since
∂

∂y

(
∂f

∂x

)
=

∂

∂x

(
∂f

∂y

)
we have

∂P

∂y
=

∂Q

∂x
.

Similarly we find
∂Q

∂z
=

∂R

∂y
and

∂P

∂z
=

∂R

∂x
.

To summarize,

Partial Test for a Conservative Field
If the vector field F = P i + Qj + Rk is conservative, then

∂Q

∂x
− ∂P

∂y
= 0,

∂R

∂y
− ∂Q

∂z
= 0,

∂R

∂x
− ∂P

∂z
= 0. (18.1.6)

If at least one of the equations in (18.1.6) does not hold, then F = P i +
Qj + Rk is not conservative and P dx + Q dy + R dz is not exact.

EXAMPLE 3 Show that cos(y) dx+sin(xy) dy+ln(1+x) dz is not exact.
SOLUTION Checking (18.1.6) we compute

∂Q

∂x
− ∂P

∂y
=

∂(sin(xy))

∂x
− ∂(cos(y))

∂y
= y cos(xy) + sin(y),

which is not 0. There is no need to check the remaining equations in (18.1.6).
The expression cos(y) dx + sin(xy) dy + ln(1 + x) dz is not exact. Thus the
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vector field cos(y)i+sin(xy)j+ln(1+x)k is not a gradient field and hence not
conservative. �

To restate (18.1.6) as a vector equation introduce a 3× 3 determinant

det

 i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

 (18.1.7)

Expanding it as though its entries were numbers, we get

i

(
∂R

∂y
− ∂Q

∂z

)
− j

(
∂R

∂x
− ∂P

∂z

)
+ k

(
∂Q

∂x
− ∂P

∂y

)
. (18.1.8)

If the scalar equations in (18.1.6) hold, then (18.1.8) is the 0-vector. It is given
a name.

DEFINITION (Curl of a Vector Field) The curl of the vector
field F = P i + Qj + Rk is the vector field given by (18.1.7) or
(18.1.8). It is denoted curl F.

The determinant (18.1.7) is like the one for the cross product of two vectors.
For this reason, it is also denoted ∇×F (read as “del cross F”). That is easier
to write than (18.1.8), which refers to components.

The definition also applies to a vector field F = P (x, y)i + Q(x, y)j in the
plane. Writing F as P (x, y)i + Q(x, y)j + 0k and observing that ∂Q/∂z = 0
and ∂P/∂z = 0, we find that

∇× F =

(
∂Q

∂x
− ∂P

∂y

)
k.

EXAMPLE 4 Compute the curl of F = xyzi + x2j− xyk.
SOLUTION The curl of F is given by

det

 i j k
∂
∂x

∂
∂y

∂
∂z

xyz x2 −xy,


which is short for(

∂

∂y
(−xy)− ∂

∂z
(x2)

)
i −

(
∂

∂x
(−xy)− ∂

∂z
(xyz)

)
j +

(
∂

∂x
(x2)− ∂

∂y
(xyz)

)
k

= (−x− 0)i− (−y − xy)j + (2x− xz)k

= −xi + (y + xy)j + (2x− xz)k.

�
From (18.1.6), for vector fields in space or in the xy-plane we have
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Theorem 18.1.4. If F is a conservative vector field, then ∇× F = 0.

The vector field curl F is call curl because if F describes a fluid flow, then
curl F describes the tendency of the fluid to rotate and form whirlpools —
that is, to curl.

The Converse of Theorem 18.1.4 Is False

The converse of Theorem 18.1.4 is not true. There are vector fields F whose
curl is 0 that are not conservative. Example 5 provides one such F in the
xy-plane. Its curl is 0 but it is not conservative.

EXAMPLE 5 Let F = −yi
x2+y2 + xj

x2+y2 . Show that (a) ∇×F = 0, but (b) F
is not conservative.
SOLUTION (a) We compute

det

 i j k
∂
∂x

∂
∂y

∂
∂z

−y
x2+y2

x
x2+y2 0

 ,

which equals (
∂(0)

∂y
− ∂

∂z

(
x

x2 + y2

))
i−
(

∂(0)

∂x
− ∂

∂z

(
−y

x2 + y2

))
j

+

(
∂

∂x

(
x

x2 + y2

)
− ∂

∂y

(
−y

x2 + y2

))
k.

The i and j components are clearly 0, and a computation shows that the k
component is

y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2
= 0.

Thus the curl of F is 0.

(b) To show that F is not conservative, it suffices to exhibit a closed curve
C such that

∮
C

F · dr is not 0. One such C is the unit circle with center at
the origin parameterized counterclockwise by

x = cos(θ), y = sin(θ), 0 ≤ θ ≤ 2π.

On it x2 + y2 = 1. Figure 18.1.7 shows a few values of F at points on C. It
appears that

∫
C

F · dr, which measures circulation, is positive, not 0. Its exact
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§ 18.1 CONSERVATIVE VECTOR FIELDS 1603

Figure 18.1.7

value is
∫

C
F · dr. Recall that, on C,

x2 + y2 = 1.∮
C

F · dr =

∮
C

(
−y dx

x2 + y2
+

x dy

x2 + y2

)

=

2π∫
0

(− sin θ d(cos θ) + cos θ d(sin θ))

=

2π∫
0

(sin2 θ + cos2 θ) dθ =

2π∫
0

dθ = 2π.

This establishes (b): F is not conservative. �

The curl of F being 0 is not enough to assure us that a vector field F
is conservative. An extra condition must be satisfied by F. This condition
concerns the domain of F. This extra assumption will be developed for planar
fields in Section 18.2 and for spatial fields in Section 18.6. Only then will we
have a complete test for determining whether a vector field is conservative.

Summary

We showed that a vector field being conservative is equivalent to its being the
gradient of a scalar field. Then we defined the curl of a vector field. If the field
is denoted F, the curl of F is a new vector field denoted curl F or ∇× F. If
F is conservative, then ∇× F is 0. However, if the curl of F is 0, it does not
follow that F is conservative. An extra assumption on the domain of F must
be added. That assumption will be described in the next section.
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EXERCISES for Section 18.1

In Exercises 1 to 4 answer true or false and explain.
1. If F is conservative, then ∇× F = 0.

2. If ∇× F = 0, then F is conservative.

3. If F is a gradient field, then ∇× F = 0.

4. If ∇× F = 0, then F is a gradient field.

5. Using information in this section, describe various ways of showing a vector
field F is not conservative.

6. Using information in this section, describe various ways of showing a vector
field F is conservative.

7. Decide if the sets are open, closed, neither open nor closed, or both open and
closed.

(a) unit disk with its boundary

(b) unit disk without any of its boundary points

(c) the x-axis

(d) the xy-plane

(e) the xy-plane with the x-axis removed

(f) a square with its edges and corners

(g) a square with its edges but with its corners removed

(h) a square with none of its edges

8. In Example 1 we computed a line integral by using the fact that the vector field
(−xi−yj−zk)/(x2 +y2 +z2)3/2 is a gradient field. Compute the integral directly.

9. Let F = y cos(x)i + (sin(x) + 2y)j.

(a) Show that curlF is 0 and F is defined in an arcwise-connected region of the
plane.

(b) Construct a function f whose gradient is F.
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10. Let f(x, y, z) = e3x ln(z + y2). Compute
∫
C ∇f · dr where C is the straight

path from (1, 1, 1) to (4, 3, 1).

11. We obtained the first equation in (18.1.6). Derive the other two.

12. Find the curl of F(x, y, z) = ex2
yzi + x3 cos2 3yj + (1 + x6)k.

13. Find the curl of F(x, y) = tan2(3x)i + e3x ln(1 + x2)j.

14. Using theorems of this section, explain why the curl of a gradient is 0, that
is, curl(∇f) = 0 (∇ ×∇f = 0) for a scalar function f(x, y, z). (No computations
are needed.)

15. By a computation using components, show that for the scalar function
f(x, y, z), curl(∇f) = 0.

16. Let f(x, y) = cos(x + y). Evaluate
∫
C ∇f · dr, where C is the part of the

parabola y = x2 that goes from (0, 0) to (2, 4).

17. In Example 5 we computed
∮
C F · dr, where F = −yi+xj

x2+y2 and C is the unit
circle with center at the origin. Compute the integral when C is the circle of radius
5 with center at the origin.

18. Let F and G be conservative fields defined throughout the xy-plane. Is F+G
necessarily conservative?

19. Show that curl(fF) = ∇f × F + f curlF.

20. Show that curl(F×G) = (G · ∇)F− (F · ∇)G + F(∇ ·G)−G(∇ · F). The
first two terms on the right-hand side of the equation involve a notation not defined
earlier. If F = F1i + F2j + F3k and G = G1i + G2j + G3k, then, by definition,

(G · ∇)F = G1
∂F1

∂x
+ G2

∂F2

∂y
+ G3

∂F3

∂z
.

21. If F and G are conservative, is F×G?

22. Assume that F(x, y) is conservative. Let C1 be the straight path from (0, 0, 0)
to (1, 0, 0) and C2 the straight path from (1, 0, 0) to (1, 1, 1). If

∫
C1

F dr = 3 and
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∫
C2

F dr = 4, what can be said about
∫
C F dr where C is the straight path from

(0, 0, 0) to (1, 1, 1)?

23. Let F(x, y) be the field

F(x, y) = g(
√

x2 + y2)
xi + yj√
x2 + y2

where g is a scalar function. If we denote xi + yj as r, then F(x, y) = g(r)r̂, where
r = |r| and r̂ = |r|/r. Show that

∮
C F · dr = 0 for any path ABCDA of the form

shown in Figure 18.1.8. The path consists of two circular arcs and parts of two rays
from the origin.

Figure 18.1.8

24. In view of the previous exercise, we may expect F(x, y) = g(
√

x2 + y2) xi+yj√
x2+y2

to be conservative. Show that it is by showing that F is the gradient of G(x, y) =
H(
√

x2 + y2), where H is an antiderivative of g, that is, H ′ = g.

25. In Theorem 18.1.1 we proved that ∂f/∂x = P . Prove that ∂f/∂y = Q.

26. The domain of a vector field F is all of the xy-plane. Assume that there are
two points A and B such that

∫
C F dr is the same for all curves C from A to B.

Deduce that F is conservative.

27. A gas at temperature T0 and pressure P0 is brought to temperature T1 > T0

and pressure P1 > P0. The work done in this process is given by the line integral in
the TP - plane ∫

C

(
RT dP

P
−R dT

)
,

where R is a constant and C is the curve that records the various combinations
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of T and P during the process. Evaluate the integral over the paths shown in
Figure 18.1.9.

Figure 18.1.9

(a) The pressure is kept constant at P0 while the temperature is raised from T0

to T1 and then the temperature is kept constant at T1 while the pressure is
raised from P0 to P1.

(b) The temperature is kept constant at T0 while the pressure is raised from P0

to P1 and then the temperature is raised from T0 to T1 while the pressure is
kept constant at P1.

(c) Both pressure and temperature are raised so that the path from (P0, T0) to
(P1, T1) is straight.

Because the integrals are path dependent, the differential expression RT dP/P −
R dT defines a thermodynamic quantity that depends on the process, not only on
the state. The vector field (RT/P )i−Rj is not conservative.

28. Assume that F(x, y) is defined throughout the xy-plane and that
∮
C F(x, y) · dr = 0

for every closed curve that can fit inside some disk of diameter 0.01. Show that F
is conservative.

29. This exercise completes the proof of Theorem 18.1.1 when C1 and C2 overlap
outside of their endpoints A and B. Introduce a third simple curve from A to B
that overlaps C1 and C2 only at A and B. Make an argument similar to that in the
proof of Theorem 18.1.1 to dispose of this case.

30. We proved that limh→0

R x0+h
x0

P (x,y0) dx

h equals P (x0, y0), by using the mean-
value theorem for definite integrals. Find a proof that uses a part of the fundamental
theorem of calculus.
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18.2 Green’s Theorem and Circulation

In this section we discuss a theorem that relates an integral of a vector field
over a closed curve C in a plane to an integral of a related scalar function
over the region R whose boundary is C. We will also see what this means in
terms of the circulation of a vector field. In the next section we relate it to
flux across a curve.

Statement of Green’s Theorem

We begin by stating Green’s theorem. Then we will see several of its applica-
tions. The proof is at the end of the next section.

Green’s Theorem

Theorem 18.2.1. Let C be a simple, closed counterclockwise curve in the xy-
plane, bounding a region R. Let P and Q be scalar functions defined at least
on an open set containing R. Assume P and Q have continuous first partial
derivatives. Then ∮

C

(P dx + Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

Since P and Q are independent of each other, Green’s Theorem consists of
two theorems:∫

C

P dx = −
∫
R

∂P

∂y
dA and

∮
C

Q dy =

∫
R

∂Q

∂x
dA. (18.2.1)

EXAMPLE 1 In Section 15.3 we showed that if the counterclockwise curve
C bounds a region R, then

∮
C

y dx is the negative of the area of R. Obtain
this result with the aid of Green’s Theorem.
SOLUTION Let P (x, y) = y, and Q(x, y) = 0. Then Green’s Theorem says
that ∮

C

(y dx + 0 dy) =

∮
C

y dx = −
∫
R

∂y

∂y
dA.

Since ∂y/∂y = 1, it follows that
∮

y dx is −
∫

R
1 dA, the negative of the area

of R. �
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Green’s Theorem and Circulation

What does Green’s Theorem say about a vector field F = P i + Qj? First of
all,

∮
C
(P dx + Q dy) now becomes simply

∮
C

F · dr.
The right hand side of Green’s Theorem looks a bit like the curl of a vector

field in the plane. To be specific, we compute the curl of F: i j k
∂x ∂y ∂z

P (x, y) Q(x, y) 0

 = 0i− 0j +

(
∂Q

∂x
− ∂P

∂y

)
k

Thus the curl of F equals the vector function(
∂Q

∂x
− ∂P

∂y

)
k. (18.2.2)

To obtain the (scalar) integrand on the right-hand side of (18.2.2), we “dot
(18.2.2) with k,” ((

∂Q

∂x
− ∂P

∂y

)
k

)
· k =

∂Q

∂x
− ∂P

∂y
.

We can now express Green’s Theorem using vectors. In particular, circu-
lation around a closed curve can be expressed in terms of a double integral of
the curl over a region.

Green’s Theorem in Vector Notation
If the counterclockwise closed curve C bounds the region R in the xy-plane,
then ∮

C

F · dr =

∫
R

(∇× F) · k dA.

Recall that if F describes the flow of a fluid in the xy-plane, then
∮

C
F · dr

represents its circulation, or tendency to form whirlpools. This theorem tells
us that the magnitude of the curl of F represents the tendency of the fluid to
rotate. If the curl of F is 0 everywhere, then F is called irrotational — there
is no rotational tendency.

This form of Green’s theorem provides an easy way to show that a vector
field F is conservative. It uses the idea of a simply connected region. Informally
“a simply connected region in the xy-plane comes in one piece and has no
holes.” More precisely, an arcwise-connected region R in the plane or in space
is simply connected if each closed curve in R can be shrunk gradually to a
point while remaining in R.
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(a) (b)

Figure 18.2.1 Regions in the plane that are (a) simply connected and (b)
not simply connected.

Figure 18.2.1 shows two regions in the plane. The one on the left is simply
connected, while the one on the right is not simply connected. For instance, the
xy-plane is simply connected. So is the xy-plane without its positive x-axis.
However, the xy-plane without the origin is not simply connected, because
a circular path around the origin cannot be shrunk to a point while staying
within the region.

If the origin is removed from xyz-space, what is left is simply connected.
However, if we remove the z-axis, as in Figure 18.2.2(a), what is left is not
simply connected.

(a) (b)

Figure 18.2.2 (a) xyz-space with the origin removed is simply connected. (b)
xyz-space with the z-axis removed is not simply connected.
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Figure 18.2.2(b) shows a curve that cannot be shrunk to a point while
avoiding the z-axis.

Now we can state an easy way to tell whether a vector field is conservative.

Theorem 18.2.2. If a vector field F is defined in a simply connected region
in the xy-plane and ∇×F = 0 throughout that region, then F is conservative.

Proof

Let C be any simple closed curve in the region and R the region it bounds.
We wish to prove that the circulation of F around C is 0. We have∮

C

F · dr =

∫
R

(curl F) · k dA.

Since curl F is 0 throughout R, it follows that
∮

C
F · dr = 0. •

In Example 5 in Section 18.1, there is a vector field whose curl is 0 but it
is not conservative. In view of the theorem just proved, its domain must not
be simply connected. Indeed, the domain of the vector field in that example
is the xy-plane without the origin.

EXAMPLE 2 Let F(x, y, z) = exyi + (ex + 2y)j.

(a) Show that F is conservative.

(b) Exhibit a scalar function f whose gradient is F.

SOLUTION

(a) A straightforward calculation shows that ∇×F = 0. Since F is defined
throughout the xy-plane, a simply connected region, Theorem 18.2.2 tells
us that F is conservative.

(b) By Section 18.1, we know that there is a scalar function f such that
∇f = F. There are several ways to find f . We show one of these
methods. Additional approaches are pursued in Exercises 9 and 10.

The approach chosen here is suggested by the construction in the proof
of Theorem 18.1.3. For a point (a, b), define f(a, b) to equal

∫
C

F · dr,
where C is any curve from (0, 0) to (a, b). We call the arbitrary point
(a, b) instead of (x, y) in order to have x and y available to describe
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an integrand. Any curve with the prescribed endpoints will do. For
simplicity, choose C to be the curve that goes from (0, 0) to (a, b) in a
straight line. (See Figure 18.2.3.) When a is not zero, we can use x as
a parameter and write this segment as: x = t, y = (b/a)t for 0 ≤ t ≤ a.
(If a = 0, we would use y as a parameter.) Then

Figure 18.2.3

f(a, b) =

∫
C

(exy dx + (ex + 2y) dy) =

a∫
0

(
et bt

a
dt +

(
et +

2bt

a

)
b

a
dt

)

=
b

a

a∫
0

(
tet + et +

2bt

a

)
dt =

b

a

(
(t− 1)et + et +

bt2

a

)∣∣∣∣a
0

=
b

a

(
tet +

bt2

a

)∣∣∣∣a
0

= bea + b2.

Since f(a, b) = bea + b2, we see that f(x, y) = yex + y2 is the desired
function. One could check this by showing that the gradient of f is indeed
yexi + (ex + 2y)j. Other suitable potential functions f are yex + y2 + k
for any constant k.

�
The next example uses the cancellation principle, which is based on the

fact that the sum of two line integrals in opposite directions on a curve is zero.
This idea is used here to develop the two-curve version of Green’s Theorem
and several more times before the end of this chapter.

EXAMPLE 3 Figure 18.2.4(a) shows two closed counterclockwise curves
C1, and C2 that enclose a ring-shaped region R in which ∇ × F is 0. Show
that the circulation of F over C1 equals the circulation of F over C2.
SOLUTION Cut R into two regions, each bound by a simple curve, to which
we can apply Theorem 18.2.2. Let C3 bound one of the regions and C4 bound
the other, with the usual counterclockwise orientation. On the cuts, C3 and
C4 go in opposite directions. On the outer curve C3 and C4 have the same
orientation as C1. On the inner curve they have the opposite orientation of
C2. (See Figure 18.1.2(b).) Thus∫

C3

F · dr +

∫
C4

F · dr =

∫
C1

F · dr −
∫
C2

F · dr. (18.2.3)

By Theorem 18.2.2 the two integrals on the left-hand side of (18.2.3) are 0.
Thus ∫

C1

F · dr =

∫
C2

F · dr (18.2.4)
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(a) (b)

Figure 18.2.4

�
Example 3 justifies the “two-curve” variation of Green’s Theorem:

Changing the Surface when curlF = 0
Assume two nonoverlapping curves C1 and C2 lie in a region where curl F
is 0 and form the border of a ring. Then, if C1 and C2 both have the same
orientation, ∮

C1

F · dr =

∮
C2

F · dr.

This theorem tells us “as you move a closed curve within a region of zero-
curl, you don’t change the circulation.” The next Example illustrates this
point.

EXAMPLE 4 Let F = −yi+xj
x2+y2 and C be the closed counterclockwise curve

bounding the square whose vertices are (−2,−2), (2,−2), (2, 2), and (−2, 2).
Evaluate the circulation of F around C as easily as possible.
SOLUTION This vector field appeared in Example 5 of Section 18.1. Since
its curl is 0 at all points except the origin, where F is not defined, we may use
the two-curve version of Green’s Theorem. Thus

∮
C

F·dr equals the circulation
of F over the unit circle in Example 5, hence equals 2π.

This is a lot easier than integrating F directly over each of the four edges
of the square. �

How to Draw ∇× F

For the planar vector field F, its curl, ∇×F, is of the form z(x, y)k. If z(x, y)
is positive, the curl points directly up from the page. Indicate this by the
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symbol �, which suggests the point of an arrow or the nose of a rocket. If
z(x, y) is negative, the curl points down from the page. To show this, use
the symbol ⊕, which suggests the feathers of an arrow or the fins of a rocket.
These are standard notations in physics. Figure 18.2.5 illustrates their use.

Figure 18.2.5

Summary

We first expressed Green’s theorem in terms of scalar functions∮
C

(P dx + Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA.

We then translated it into a statement about the circulation of a vector field;∮
C

F · dr =

∫
R

(∇× F) · k dA.

In the theorem the closed curve C is oriented counterclockwise.
With its aid we obtained the following important result:

Test for a Conservative Field.
If the curl of F is 0 and if the domain of F is simply connected, then F is
conservative.

Also, in a region in which ∇×F = 0, the value of
∮

C
F · dr does not change

as you gradually change C to other curves in the region.
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EXERCISES for Section 18.2

1. State Green’s theorem in words, using no mathematical ymbols.

2. State the two-curve form of Green’s theorem in words, using no mathematical
symbols.

In Exercises 3 through 6 verify Green’s Theorem for the given functions P and Q
and curve C.
3. P = xy, Q = y2 and C is the border of the square whose vertices are (0, 0),
(1, 0), (1, 1) and (0, 1).
4. P = x2, Q = 0 and C is the boundary of the unit circle with center (0, 0).
5. P = ey, Q = ex and C is the triangle with vertices (0, 0), (1, 0), and (0, 1).
6. P = sin(y), Q = 0 and C is the boundary of the portion of the unit disk with
center (0, 0) in the first quadrant.

7. Figure 18.2.6 shows a vector field for a fluid flow F. At the indicated
points A, B, C, and D tell when the curl of F is pointed up, down or is 0.
(Use the � and ⊕ notation.) (When the fingers of your right hand copy the di-
rection of the flow, your thumb points in the direction of the curl, up or down.)

Figure 18.2.6

8. Assume that F describes a fluid flow. Let P be a point in the domain of F and
C a small circular path around P .

(a) If the curl of F points upward, in what direction is the fluid tending to turn
near P , clockwise or counterclockwise?

(b) If C is oriented clockwise, would
∮
C F · dr be positive or negative?

9. In Example 2 we constructed a function f by using a straight path from (0, 0)
to (a, b). Instead, construct f by using a path that consists of two line segments,
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the first from (0, 0) to (a, 0), and the second, from (a, 0) to (a, b).
10. In Example 2 we constructed a function f by using a straight path from (0, 0)
to (a, b). Instead, construct f by using a path that consists of two line segments,
the first from (0, 0) to (0, b), and the second from (0, b) to (a, b).
11. Another way to construct a potential function f for a vector field F = P i+Qj
is to work directly with the requirement that ∇f = F. That is, with the equations

∂f

∂x
= P (x, y) and

∂f

∂y
= Q(x, y).

Use this approach for the vector field of Example 2.

(a) Integrate ∂f
∂x = exy with respect to x to conclude that f(x, y) = exy + C(y).

Note that the “constant of integration” can be any function of y, which we
call C(y). (Why?)

(b) Next, differentiate the result found in (a) with respect to y. This gives two
formulas for ∂f

∂y : ex +C ′(y) and ex +2y. Use this fact to explain why C ′(y) =
2y.

(c) Solve the equation for C found in (b).

(d) Combine the results of (a) and (c) to obtain the general form for a potential
function for this vector field.

In Exercises 12 through 15:

(a) Check that F is conservative in the given domain, that is ∇×F = 0 and the
domain of F is simply connected.

(b) Construct f such that ∇f = F, using integrals on curves.

(c) Construct f such that ∇f = F, using antiderivatives, as in Exercise 11.

12. F = 3x2yi + x3j, domain the xy-plane
13. F = y cos(xy)i + (x cos(xy) + 2y)j, domain the xy-plane
14. F = (yexy + 1/x)i + xexyj, domain all (x, y) with x > 0

15. F = 2y ln(x)
x i + (ln(x))2j, domain all (x, y) with x > 0

16. Verify Green’s Theorem when F(x, y) = xi + yj and R is the disk of radius a
and center at the origin.

17. In Example 1 we used Green’s Theorem to show that
∮
C y dx is the negative

of the area that C encloses. Use Green’s Theorem to show that
∮
C x dy equals that

area. (We obtained this result in Section 15.3 without Green’s Theorem.)
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18. Let A be a plane region with boundary C a simple closed curve swept out
counterclockwise. Use Green’s theorem to show that the area of A equals

1
2

∮
(−y dx + x dy).

19. Use Exercise 18 to find the area of the region bounded by the line y = x and
the curve {

x = t6 + t4

y = t3 + t
for t in [0, 1].

20. Assume that curlF at (0, 0) is −3. Let C sweep out counterclockwise the
boundary of a circle of radius a, center at (0, 0). When a is small, estimate the
circulation

∮
C F · dr.

21. Which of these fields are conservative:

(a) xi− yj

(b) xi−yj
x2+y2

(c) 3i + 4j

(d) (6xy − y3)i + (4y + 3x2 − 3xy2)j

(e) yi−xj
1+x2y2

(f) xi+yj
x2+y2

22. Figure 18.2.7 shows a fluid flow F. All the vectors are parallel, but their
magnitudes increase from bottom to top. A small simple curve C is placed in the
flow.

Figure 18.2.7
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(a) Assume C has a counterclockwise orientation. Is the circulation around C
positive, negative, or 0? Justify your opinion.

(b) A paddle wheel with small blades is dipped into the flow with its axis parallel
to k. Would the paddle wheel rotate? If so, which way?

23. Let F(x, y) = y2i.

(a) Sketch the field.

(b) Without computing it, predict where (∇×F) ·k is positive, negative, or zero.

(c) Compute (∇× F) · k.

(d) What would happen if you dipped a paddle wheel with small blades into the
flow. You keep its axis parallel to k.

24. Check that the curl of the vector field in Example 2 is 0, as asserted.

25. Explain in words, without explicit calculations, why the circulation of the
field f(r)r̂ around the curve PQRSP in Figure 18.2.8(a) is zero. As usual, f is a
scalar function, r = |r|, and r̂ = r/r.

(a) (b)

Figure 18.2.8
Figure 18.2.8(b) shows four curves C1, C2, C3, and C4 and a point P where the
vector field F is not defined. Assume that ∇× F = 0 and that

∫
C1

F · dr = 5. In
Exercises 26 to 31 what, if anything, can be said about

26.
∫
C F · dr, where C is the curve formed by C1 followed by C2?
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27.
∫
C F · dr, where C is the curve formed by C1 followed by C3?

28.
∫
C F · dr, where C is the curve formed by C2 followed by −C3?

29.
∫
C2

F · dr?

30.
∫
C3

F · dr?

31.
∫
C4

F · dr?

In Exercises 32 to 35 show that the vector field is conservative and then construct
a scalar function of which it is the gradient. Use the method in Example 2.
32. 2xyi + x2j

33. sin(y)i + (x cos(y) + 3)j

34. (y + 1)i + (x + 1)j

35. 3y sin2(xy) cos(xy)i + (1 + 3x sin2(xy) cos(xy))j

36. Show that

(a) 3x2y dx + x3 dy is exact.

(b) 3xy dx + x2 dy is not exact.

37. Show that (x dx + y dy)/(x2 + y2) is exact and exhibit a function f such that
df equals the given expression. (That is, find f such that ∇f · dr agrees with the
given differential form.)

38. Let F = r̂/|r| in the xy-plane and let C be the circle of radius a and center
(0, 0) and n is a unit exterior normal.

(a) Evaluate
∮
C F · n ds without using Green’s theorem.

(b) Let C ′ now be the circle of radius 3 and center (4, 0). Evaluate
∮
C′ F · n ds,

doing as little work as possible.
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39. Figure 18.2.9(a) shows the direction of a vector field at three points. Draw a
non-zero vector field compatible with these values.

(a) (b)

Figure 18.2.9

40. Figure 18.2.9(b) shows the vector field. A paddle wheel with small blades is
inserted into the flow with its axis parallel to k. Will the paddle wheel turn if it is
inserted at A? At B? At C? If so, in which direction?

41. Use Exercise 18 to obtain the formula for area in polar coordinates:

Area =
1
2

β∫
α

r2 dθ.

(Assume C is given parametrically as x = r(θ) cos(θ), y = r(θ) sin(θ), for α ≤ θ ≤ β.)

42. A curve is given parametrically by x = t(1− t2), y = t2(1− t3), for t in [0, 1].

(a) Sketch the points corresponding to t = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, and use
them to sketch the curve.

(b) Let R be the region enclosed by the curve. What difficulty arises when you try
to compute the area of R by a definite integral involving vertical or horizontal
cross sections?

(c) Use Exercise 18 to find the area of R.

43. Repeat Exercise 42 for x = sin(πt) and y = t − t2, for t in [0, 1]. In (a), let
t = 0, 1/4, 1/2, 3/4, and 1.
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44. Assume that the circulation of F along every circle in the xy-plane is 0. Must
F be conservative?

45. Assume that you know that Green’s theorem is true for every triangle R.

(a) Deduce that it therefore holds for quadrilaterals.

(b) Deduce that it holds for polygons.

46. Assume that ∇ × F = 0 in the region R bounded by an exterior curve C1

and two interior curves C2 and C3, as in Figure 18.2.10. Show that
∫
C1

F · dr =∫
C2

F · dr +
∫
C3

F · dr. (All three curves have a counterclockwise orientation.)

Figure 18.2.10
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18.3 Green’s Theorem, Flux, and Divergence

In the previous section we introduced Green’s Theorem and applied it to obtain
a theorem about circulation and curl. That concerned the line integral of F·T,
the tangential component of F, since F · dr is short for (F · T) ds. Now we
will translate Green’s Theorem into a theorem about the line integral of F ·n,
the normal component of F,

∮
F · n ds. Thus Green’s Theorem will provide

information about the flow of the vector field F across a closed curve C.

Green’s Theorem Expressed in Terms of Flux

Let F = M i + N j and C be a counterclockwise closed curve. At a point on a
closed curve the unit exterior normal vector (or unit outward normal
vector) n is perpendicular to the curve and points outward from the region
enclosed by the curve. To compute F ·n in terms of M and N , we first express
n in terms of i and j.

Figure 18.3.1

The vector

T =
dx

ds
i +

dy

ds
j

is tangent to the curve, has length 1, and points in the direction in which the
curve is swept out, as shown in Figure 18.3.1. This figure shows the exterior
unit normal n has its x-component equal to the y-component of T and its
y-component equal to the negative of the x-component of T. Thus

n =
dy

ds
i− dx

ds
j.

Consequently, if F = M i + N j, then∮
C

F · n =

∮
C

(M i + N j) ·
(

dy

ds
i− dx

ds
j

)
ds =

∮
C

(
M

dy

ds
−N

dx

ds

)
ds

=

∮
C

(M dy −N dx) =

∮
C

(−N dx + M dy). (18.3.1)

In (18.3.1), −N plays the role of P and M plays the role of Q in Green’s
Theorem. Since Green’s Theorem states that∮

C

(P dx + Q dy) =

∫
R

(
∂Q

∂x
− ∂P

∂y

)
dA

we have ∮
C

(−N dx + M dy) =

∫
R

(
∂M

∂x
− ∂(−N)

∂y

)
dA
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or, if F = M i + N j, then∮
C

F · n ds =

∫
R

(
∂M

∂x
+

∂N

∂y

)
dA.

In our customary notation, we have

Green’s Theorem Expressed in Terms of Flux

Theorem 18.3.1. If F = P i + Qj, then∮
C

F · n ds =

∫
R

(
∂P

∂x
+

∂Q

∂y

)
dA

where C is the boundary of R.

The expression
∂P

∂x
+

∂Q

∂y
,

the sum of two partial derivatives, is called the divergence of F = P i + Qj.
It is written div F or ∇ · F. The latter notation is suggested by the symbolic
dot product (

∂

∂x
i +

∂

∂y
j

)
· (P i + Qj) =

∂P

∂x
+

∂Q

∂y
.

It is pronounced “del dot eff”. Theorem 18.3.1 is called the divergence theorem
in the plane. It can be written as

Divergence Theorem in the Plane

Theorem 18.3.2. ∮
C

F · n ds =

∫
R

div F dA

where C is the boundary of R.

EXAMPLE 1 Compute the divergence of (a) F = exyi + arctan(3x)j and
(b) F = −x2i + 2xyj.
SOLUTION

(a) ∂
∂x

exy + ∂
∂y

arctan(3x) = yexy + 0 = yexy

Calculus April 22, 2012



1624 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

(b) ∂
∂x

(−x2) + ∂
∂y

(2xy) = −2x + 2x = 0

�

The double integral of the divergence of F over a region thus describes the
amount of flow across the border of the region. It tells how rapidly the fluid
is leaving (diverging) or entering the region (converging). Hence the name
“divergence”.

In the next section we will be using the divergence of a vector field defined
in space, F = P i + Qj + Rk, where P , Q, and R are functions of x, y, and z.
It is defined as the sum of three partial derivatives

∇ · F =
∂P

∂x
+

∂Q

∂y
+

∂R

∂z
.

It will play a role in measuring flux across a surface.

EXAMPLE 2 Verify that
∮

C
F · n ds equals

∫
R
∇ · F dA, when F(x, y) =

xi+yj, R is the disk of radius a and center at the origin and C is the boundary
curve of R.

Figure 18.3.2

SOLUTION We compute
∮

C
F ·n ds, where C is the circle bounding R. See

Figure 18.3.2.
Since C is a circle centered at (0, 0), the unit exterior normal n is r̂:

n = r̂ =
xi + yj

|xi + yj|
=

xi + yj

a
.

Thus ∮
C

F · n ds =

∮
C

(xi + yj) ·
(

xi + yj

a

)
ds =

∮
C

x2 + y2

a
ds

=

∮
C

a2

a
ds = a

∮
C

ds = a(2πa) = 2πa2. (18.3.2)

Next we compute
∫

R

(
∂P
∂x

+ ∂Q
∂y

)
dA. Since P = x and Q = y, ∂P/∂x +

∂Q/∂y = 1 + 1 = 2. Then∫
R

(
∂P

∂x
+

∂Q

∂y

)
dA =

∫
R

2 dA,

which is twice the area of the disk R, and hence is 2πa2. This agrees with
(18.3.2). �
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As the next example shows, a double integral can provide a way to compute
the flux

∮
F · n ds.

Figure 18.3.3

EXAMPLE 3 Let F = x2i + xyj. Evaluate
∮

F · n ds over the curve that
bounds the quadrilateral with vertices (1, 1), (3, 1), (3, 4), and (1, 2) shown in
Figure 18.3.3.

SOLUTION The line integral could be evaluated directly, but would require
parameterizing each of the four edges of C. With Green’s theorem we can
instead evaluate an integral over a single plane region.

Let R be the region that C bounds. By Green’s theorem∮
C

F · n ds =

∫
R

∇ · F dA =

∫
R

(
∂(x2)

∂x
+

∂(xy)

∂y

)
dA

=

∫
R

(2x + x) dA =

∫
R

3x dA.

Then ∫
R

3x dA =

3∫
1

y(x)∫
1

3x dy dx,

where y(x) is determined by the equation of the line that provides the top edge
of R. The line through (1, 2) and (3, 4) has the equation y = x+1. Therefore,

∫
R

3x dA =

3∫
1

x+1∫
1

3x dy dx.

The inner integration gives

x+1∫
1

3x dy = 3xy|y=x+1
y=1 = 3x(x + 1)− 3x = 3x2.

The second integration gives

3∫
1

3x2 dx = x3
∣∣3
1

= 27− 1 = 26.

�
This same integral appears in Exercise 15 where it is to be evaluated di-

rectly as a line integral. This provides an opportunity to see the benefits of
Green’s theorem.
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A Local View of div F

We have presented a global view of div F, integrating it over a region R to get
the total divergence across the boundary of R. There is a way of viewing div F
locally. It uses an extension of the permanence principle of Section 2.5 to the
plane and to space.

Let P = (a, b) be a point in the plane and F a vector field describing fluid
flow. Choose a small region R around P , and let C be its boundary. See
Figure 18.3.4. Then the net flow out of R is∮

C

F · n ds.

By Green’s theorem, the net flow is also∫
R

div F dA.

Figure 18.3.4

Since div F is continuous and R is small, div F is almost constant throughout
R, staying close to the divergence of F at (a, b). Thus∫

R

div F dA ≈ div F(a, b) Area(R).

or, equivalently,
Net flow out of R

Area of R
≈ div F(a, b). (18.3.3)

This means that
div F at P

is a measure of the rate at which fluid tends to leave a small region around P ,
hence another reason for the name “divergence.” If div F is positive, fluid near
P tends to get less dense (diverge). If div F is negative, fluid near P tends to
accumulate (converge). Physicists also refer to div F as “flux density,” for if it
is multiplied by the area of a small region around it, the product approximates
the flux out of the region.

(18.3.3) suggests another definition of div F at P = (a, b). This definition
involves a limit as the diameters of regions R containing P approach 0. Rather
than writing limdiam R→0 we will write limR→P .

Local Definition of div F(a, b)

div F(a, b) = lim
R→P

∮
C

F · n ds

Area of R

where R is a region enclosing (a, b) whose boundary C is a simple closed curve.
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The definition appeals to our physical intuition. We began by defining
div F mathematically, as ∂P/∂x + ∂Q/∂y. We now see its physical meaning,
which is independent of a coordinate system. The coordinate-free definition is
needed in Section 18.9.

EXAMPLE 4 Estimate the flux of F across a small circle C of radius a if
div F at the center of the circle is 3.
SOLUTION The flux of F across C is

∮
C

F ·n ds, which equals
∫

R
div F dA,

where R is the disk that C bounds. Since div F is continuous, it changes little
in a small enough disk, and we treat it as almost constant. Then

∫
R

div F dA
is approximately (3)(Area of R) = 3(πa2) = 3πa2. �

Proof of Green’s Theorem

As Steve Whitaker of the
chemical engineering
department at the
University of California at
Davis has observed, “The
concepts that one must
understand to prove a
theorem are frequently the
concepts one must
understand to apply the
theorem.”

The proof is not here just to show that Green’s theorem is true. It has
been known for over 150 years, and no one has said it is false. Studying a
proof strengthens one’s understanding of the fundamentals.

In the proof we will use the concepts of a double integral, an iterated
integral, a line integral, and the Fundamental Theorem of Calculus. The
reasoning provides a review of four basic ideas.

We prove that
∮

C
P dx = −

∫
R

∂P
∂y

dA. The proof that
∮

C
Q dy =

∫
R

∂Q
∂x

dA
is similar.

To avoid distracting details we assume that R is strictly convex. It has
no dents and its border has no straight line segments. The ideas in the proof
show up clearly in this special case. Thus R has the description a ≤ x ≤ b,
y1(x) ≤ y ≤ y2(x), as shown in Figure 18.3.5. We will express

∫
R

∂P
∂y

dA and∫
C

P dx as definite integrals over the interval [a, b].

Figure 18.3.5
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We have ∫
R

∂P

∂y
dA =

b∫
a

y2(x)∫
y1(x)

∂P

∂y
dy dx.

By the Fundamental Theorem of Calculus,

y2(x)∫
y1(x)

∂P

∂y
dy = P (x, y2(x))− P (x, y1(x)).

Hence ∫
R

∂P

∂y
dA =

b∫
a

(P (x, y2(x))− P (x, y1(x))) dx. (18.3.4)

To express
∫

C
P dx as an integral over [a, b], break C into two paths, one

along the bottom part of R, described by y = y1(x), the other along the top
part of R, described by y = y2(x). Denote the bottom path C1 and the top
path C2. See Figure 18.3.6.

Figure 18.3.6

Then ∮
C

P dx =

∫
C1

P dx−
∫
C2

P dx. (18.3.5)

But ∫
C1

P dx =

∫
C1

(P (x, y1(x))) dx =

b∫
a

(P (x, y1(x))) dx,

and∫
C2

P dx =

∫
C2

(P (x, y2(x))) dx =

a∫
b

(P (x, y2(x))) dx = −
b∫

a

P (x, y2(x)) dx.

Thus by (18.3.5),∮
C

P dx =

b∫
a

P (x, y1(x)) dx−
b∫

a

P (x, y2(x)) dx

=

b∫
a

(P (x, y1(x))− P (x, y2(x))) dx.

As this is the negative of the right side of (18.3.4), this concludes the proof
that ∮

C

P dx = −
∫
R

∂P

∂y
dA
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in this special case.

Summary

We introduced the divergence of a vector field F = P i+Qj, namely the scalar
field ∂P

∂x
+ ∂Q

∂y
denoted div F or ∇ · F.

We translated Green’s theorem into a theorem about the flux of a vector
field in the xy-plane, ∮

C

F · n ds =

∫
R

div F dA.

It says that the integral of the normal component of F around a simple closed
curve equals the integral of the divergence of F over the region which the curve
bounds.

From this it follows that

div F(P ) = lim
R→P

∮
C

F · n ds

Area of R
= lim

R→P

Flux across C

Area of R

where C is the boundary of the region R, which contains P .
The section concluded with a proof of Green’s theorem.
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EXERCISES for Section 18.3

1. State the divergence form of Green’s theorem in symbols for a vector field H.

2. State the divergence form of Green’s theorem in words, using no symbols.

In Exercises 3 to 6 compute the divergence of
3. F = x3yi + x2y3j

4. F = arctan(3xy)i + (ey/x)j

5. F = ln(x + y)i + xy(arcsin y)2j

6. F = y
√

1 + x2i + ln((x + 1)3(sin(y))3/5ex+y)j

In Exercises 7 to 10 compute
∫
R div F dA and

∮
C F · n ds and check that they are

equal.
7. F = 3xi + 2yj, and R is the disk of radius 1 with center (0, 0).

8. F = 5y3i− 6x2j, and R is the disk of radius 2 with center (0, 0).

9. F = xyi + x2yj, and R is the rectangle with vertices (0, 0), (a, 0) (a, b) and
(0, b), where a, b > 0.

10. F = cos(x + y)i + sin(x + y)j, and R is the triangle with vertices (0, 0), (a, 0)
and (a, b), where a, b > 0.

In Exercises 11 to 14 use Green’s theorem expressed in terms of divergence to eval-
uate

∮
C F · n ds, where C is the boundary of R.

11. F = ex sin yi + e2x cos(y)j, and R is the rectangle with vertices (0, 0), (1, 0),
(0, π/2), and (1, π/2).

12. F = y tan(x)i + y2j, and R is the square with vertices (0, 0), (1, 0), (1, 1), and
(0, 1).

13. F = 2x3yi−3x2y2j, and R is the triangle with vertices (0, 1), (3, 4), and (2, 7).

14. F = −i
xy2 + j

x2y
, and R is the triangle with vertices (1, 1), (2, 2), and (1, 2).

(Write F with a common denominator.)

15. In Example 3 we found
∮
C F · n ds by computing a double integral. Evaluate

it directly.

16. Let F(x, y) = i, a constant field.

(a) Evaluate directly the flux of F around the triangular path, (0, 0) to (1, 0), to
(0, 1), back to (0, 0).

(b) Use the divergence of F to evaluate the flux in (a).
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17. Let a be a small number and R be the square with vertices (a, a), (−a, a),
(−a,−a), and (a,−a), and C its boundary. If the divergence of F at the origin is 3,
estimate

∮
C F · n ds.

18. Assume |F(P )| ≤ 4 for points P on a curve of length L that bounds a region
R of area A. What can be said about the integral

∫
R∇ · F dA?

19. Verify the divergence form of Green’s theorem for F = 3xi + 4yj and C is the
square whose vertices are (2, 0), (5, 0), (5, 3), and (2, 3).

A vector field F is said to be divergence-free or incompressible when ∇ ·F = 0
at every point in the field.
20. Figure 18.3.7 shows four vector fields. Two are divergence-free and two are
not. Decide which two are not, copy them onto a sheet of drawing paper, and sketch
a closed curve C for which

∮
C F · n ds is not 0.

Figure 18.3.7

21. For a vector field F,

(a) Is the curl of the gradient of F always 0?

(b) Is the divergence of the gradient of F always 0?

(c) Is the divergence of the curl of F always 0?

(d) Is the gradient of the divergence of F always 0?

22. Figure 18.3.8 shows the flow F of a fluid. Decide whether ∇ · F is positive,
negative, or zero at A, B, and C.
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Figure 18.3.8

23. If div F at (0.1, 0.1) is 3 estimate
∮
C F ·n ds, where C is the curve around the

square whose vertices are (0, 0), (0.2, 0), (0.2, 0.2), and (0, 0.2).

24. Find the area of the region bounded by the line y = x and the curve

x = t6 + t4

y = t3 + t

for t in [0, 1]. ( Use Green’s theorem. )

25. Let f be a scalar function. Let R be a convex region and C its boundary
taken counterclockwise. Show that∫

R

(
∂2f

∂x2
+

∂2f

∂y2

)
dA =

∮
C

(
∂f

∂x
dy − ∂f

∂y
dx

)
.

26. Let F be the vector field whose formula in polar coordinates is F(r, θ) = rnr̂,
where r = xi+yj, r = |r|, and r̂ = r/r. Show that the divergence of F is (n+1)rn−1.
(First express F in rectangular coordinates.)

Figure 18.3.9
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27. (This continues Exercise 26.) Assume that F is defined everywhere in the xy-
plane except at the origin and that the divergence of F is identically 0. Let C1 and
C2 be two counterclockwise simple curves circling the origin. They may intersect.
Show that

∮
C1

F · n ds =
∮
C2

F · n ds. The exercise shows that if the divergence of
F is 0, an integral over a complicated curve can be replaced by an integral over a
simpler curve.

28. A region R with a hole is bounded by two oriented curves C1 and C2, as in
Figure 18.3.9, which includes exterior-pointing unit normal vectors.

(a) Show that
∮
C1

F · n ds −
∫
C2

F · n ds =
∫
R(∇ · F) dA. (Break R into two

regions that have no holes, as in Exercises 26 and 27.)

(b) If ∇ · F = 0 in R, show that
∫
C1

F · n ds =
∫
C2

F · n ds.

29. Let F be a vector field in the xy-plane whose flux across any rectangle is 0.
Show that its flux across the curves in Figure 18.3.10(a) and (b) is also 0.

(a) (b)

Figure 18.3.10
30. The line integral for flux,

∮
C F · n ds, and for circulation it is

∮
C F · T ds.

Why is the first integral independent of the orientation of the curve but the second
one is dependent on the orientation?

31. The field F is defined throughout the xy-plane. If the flux of F across every
circle is 0, must the flux of F across every square be 0? Explain.

32. Let F(x, y) describe a fluid flow. Assume ∇ · F is never 0 in a certain region
R. Show that none of the streamlines in the region forms a loop within R. (At each
point P on a stream line, F(P ) is tangent to the streamline.)
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33. Let R be a region in the xy-plane bounded by the closed curve C. Let f(x, y)
be defined on the plane. Show that∫

R

(
∂2f

∂x2
+

∂2f

∂x2

)
dA =

∮
C

Dn(f) ds

where Dn(f) is the directional derivative of f in the direction of the unit vector n.

34. Evaluate
∮
C

br·n
r ds where C is the closed curve consisting of the top half of the

unit circle centered at the origin, the graph of y = −2x − 2 in the third quadrant,
and the graph of y = 2x2 − 2 in the fourth quadrant, .

35.

(a) Draw enough vectors for the field F(x, y) = (xi + yj)/(x2 + y2) to show what
it looks like.

(b) Compute ∇ · F.

(c) Does your sketch in (a) agree with what you found for ∇ · F. in (b)? If not,
redraw the vector field.

36. We proved that
∫
R

∂P
∂y dA =

∫
C −P dx in a special case. Prove it in this more

general case, in which we assume less about the region R. Assume that R has the
description a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x). Figure 18.3.11 shows such a region, which
need not be convex. The curved path C breaks up into four paths, two of which are
straight (or may be empty), as in Figure 18.3.11.

Figure 18.3.11
37. We proved the first part of (18.2.1), namely that

∮
C P dx = −

∫
R

∂P
∂y dA.

Prove the first part,
∮
C Q dy =

∫
R

∂Q
∂x dA.
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18.4 Central Vector Fields and Steradians

Central vector fields are a special but important type of vector field that ap-
pears in the study of gravity and the attraction or repulsion of electric charges.
They radiate from a point mass or point charge. They provide a way to deal
with “action at a distance.” One particle acts on another directly, through the
vector field it creates.

Figure 18.4.1

Central Vector Fields

A central vector field is a continuous vector field defined everywhere in the
plane (or in space) except, perhaps, at a point O, with the properties:

1. Each vector points towards (or away from) O.

2. The magnitudes of all vectors at a given distance from O are equal.

The point O is called the center, or pole, of the field. A central vector
field is also called radially symmetric. There are various ways to think of a
central vector field. For one in the plane, the vectors at points on a circle with
center O are perpendicular to the circle and have the same length, as shown
in Figures 18.4.1 and 18.4.2.

The same holds for central vector fields in space, with “circle” replaced by
“sphere.”

Figure 18.4.2

The formula for a central vector field has a simple form. Let the field be

F and let P be any point other than O. Denote the vector
−−→
OP by r, its

magnitude by r, and the unit vector r/r by r̂. Then there is a scalar function
f , defined for all positive numbers, such that

F(P ) = f(r)r̂.

The magnitude of F(P ) is |f(r)|. If f(r) is positive, F(P ) points away
from O. If f(r) is negative, F(P ) points toward O.

If the domain of a central field F is part of the xy-plane we can write F(P )

as F(x, y) or F(r), where r =
−→
OP .

We have already met a central field defined on part of the xy-plane in
Section 18.1 in the study of line integrals. There f(r) = 1/r, so the field varied
as the inverse first power. When, in Section 15.4 (page 1282), we encountered
the line integral for the normal component of this field along a curve we found
that it gives the number of radians the curve subtends.

The vector field F(r) = (1/r)r̂ can also be written as

F(r) =
r

r2
. (18.4.1)
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Its magnitude is not inversely proportional to the square of r because the
magnitude of r/r2 is r/r2 = 1/r, the reciprocal of the first power of r.

Figure 18.4.3

EXAMPLE 1 Evaluate the flux
∮

C
F · n ds for the central field F(x, y) =

f(r)r̂, where r = xi + yj, over the closed curve shown in Figure 18.4.3. We
have a < b and the path goes from A = (a, 0) to B = (b, 0) to C = (0, b) to
D = (0, a) and ends at A = (a, 0).
SOLUTION On the paths from A to B and from C to D the exterior normal,
n, is perpendicular to F, so F ·n = 0, and these integrands contribute nothing
to the integral. On BC, F equals f(b)r̂. There r̂ = n, so F · n = f(b) since
r · n = 1. The length of arc BC is (2πb)/4 = πb/2. Thus

C∫
B

F · n ds =

C∫
B

f(b) ds = f(b)

C∫
B

ds =
π

2
bf(b).

On the arc DC, r̂ = −n. A similar calculation shows that

C∫
D

F · n ds = −π

2
af(a).

Hence ∮
C

F · n ds = 0 +
π

2
bf(b) + 0− π

2
af(a) =

π

2
(bf(b)− af(a)).

�
For a central field f(r)r̂ to have zero flux around all paths of the special

type shown in Figure 18.4.3, we must have

f(b)b− f(a)a = 0

for positive a and b. In particular,

f(b)b− f(1)1 = 0 or f(b) =
f(1)

b
.

Thus f(r) is inversely proportional to r and there is a constant c such that

f(r) =
c

r
.

If f(r) is not of the form c/r, the vector field F(x, y) = f(r)r̂ does not have
zero flux across these paths. In Exercise 5 you may compute the divergence of
(c/r)r̂ and show that it is zero.
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Divergence Free Central Fields in the Plane
The only central vector fields in the plane with zero divergence are those whose
magnitude is inversely proportional to the distance from their pole.

In space the only central fields with zero flux across closed surfaces have a
magnitude inversely proportional to the square of the distance to the pole, as
we will see in a moment.

Knowing that the central field F = r̂/r has zero divergence helps us to
evaluate some line integrals of the form

∮
C

br·n
r

ds, as the next example shows.

EXAMPLE 2 Let F(r) = r̂/r. Evaluate
∮

C
F · n ds where C is the coun-

terclockwise circle of radius 1 and center (2, 0), as shown in Figure 18.4.4.

Figure 18.4.4

SOLUTION Exercise 5 shows that the field F has divergence zero throughout
the region R that C bounds. By Green’s theorem, the line integral equals the
integral of the divergence over R:∮

C

F · n ds =

∫
R

∇ · F dA. (18.4.2)

Since the divergence of F is 0 throughout R, the right side of (18.4.2) is 0.
Therefore

∮
C

F · n ds = 0. �
The next example involves a curve that surrounds a point where the vector

field F = r̂/r is not defined.

EXAMPLE 3 Let C be a simple closed curve enclosing the origin. Evaluate∮
C

F · n ds, where F = r̂/r.
SOLUTION Figure 18.4.5 shows C and a small circle D centered at the
origin and in the region that C bounds. Without a formula for C, we can
not compute

∮
C

F · n ds directly. However, since the divergence of F is 0
throughout the region bounded by C and D, we have, by the two-curve case
of Green’s theorem,

Figure 18.4.5

∮
C

F · n ds =

∮
D

F · n ds. (18.4.3)

The integral on the right-hand side of (18.4.3) can be computed directly. To
do so, let the radius of D be a. Then for points P on D, F(P ) = r̂/a. Because
r̂ and n are the same unit vector, r̂ · n = 1. Thus∮

D

F · n ds =

∮
D

r̂ · n
a

ds =

∫
D

1

a
ds =

1

a
2πa = 2π.
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Hence
∮

C
F · n ds = 2π. �

Figure 18.4.6

This should not be a surprise, for the integral equals the number of radians
that C subtends, as was shown in Section 15.4.

Central Vector Fields in Space

A central vector field in space with center at the origin has the form F(x, y, z) =
F(r) = f(r)r̂. We show that if the flux of F over surfaces described below is
zero then f(r) must be inversely proportional to the square of r.

The surface S shown in Figure 18.4.6 consists of the parts of two spherical
surfaces, one of radius a, the other of radius b, a < b, located in the octant
where the coordinates are all positive, together with the parts of the coordinate
planes between the two spheres. Let R be the region bound by S. On its three
flat sides F is perpendicular to the exterior normal. On the outer sphere
F(x, y, z) · n = f(b). On the inner sphere F(x, y, z) · n = −f(a). ThusSurface area of a sphere of

radius r is 4πr2. ∮
S

F · n dS = f(b)(
1

8
)(4πb2)− f(a)(

1

8
)(4πa2) =

π

2
(f(b)b2 − f(a)a2).

Since this is 0 for positive a and b, it follows that there is a constant c such
thatCompare with Example 1.

f(r) =
c

r2
.

Figure 18.4.7

The magnitude must be proportional to the inverse square of r.

The following assertion is justified in Exercise 28:

Divergence Free Central Fields in Space
The only central vector fields in the plane with zero divergence are those whose
magnitude is inversely proportional to the distance from their pole.

In physics books the integral
∫
S

br·n
r2 dS is also written as∫

S

r · n
r3

dS,

∫
S

r̂ · dS
r2

,

∫
S

r · dS
r3

, or

∫
S

cos(r,n)

r2
dS.

Recall that cos(r,n)
denotes the cosine of the

angle between r and n; see
also Section 14.2.

The symbol dS is short for n dS, and calls to mind Figure 18.4.7, which shows
a small patch on the surface, together with an exterior normal unit vector.
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Summary

We investigated central vector fields. Vector fields whose divergence is al-
ways zero are called divergence-free or incompressible. In the plane the only
divergence-free central fields are of the form (c/r)r̂ where c is a constant, an in-
verse first power. In space the only incompressible central fields are of the form
(c/r2)r̂, an inverse second power. Divergence-free vector fields are discussed
again in Section 18.6.
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EXERCISES for Section 18.4

1. Define a central field in words, using no symbols.

2. Define a central field with center at O in symbols.

3. Give an example of a non-constant central field in the plane that

(a) does not have zero divergence,

(b) has zero divergence.

4. Give an example of a non-constant central field in space that

(a) is not divergence-free,

(b) is divergence-free.

5. Let F(x, y) be an inverse-first-power central field in the plane F(x, y) = (c/r)r̂,
where r = xi+ yj. Compute the divergence of F. (First write F(x, y) as cxi+cyj

x2+y2 .)

6. Show that the curl of a central vector field in the plane is 0.

7. Show that the curl of a central vector field in space is 0.

8. Let F(r) = r̂/r. Evaluate the flux
∮
C F · n ds as simply as you can for the

ellipses in Figure 18.4.8.

(a) (b)
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Figure 18.4.8
9. Figure 18.4.9 shows a cube of side 2 with one corner at the origin.

Figure 18.4.9
Use steradian measure of a solid angle to evaluate the integral of r̂ · n/r2 over

(a) the square EFGH.

(b) the square ABCD (see Exercise 10).

(c) the entire surface of the cube.

10.

(a) Why is the integral in Exercise 9(b) improper?

(b) How could one express the integral as a limit of multiple integrals that are
not improper?

(c) Use (b) to evaluate the integral in Exercise 9(b).

11. Let F(r) = r̂/r3. Evaluate the flux of F over the sphere of radius 2 and center
at the origin.

12. In Example 2 the integral
∮
C r̂ · n/r ds is 0. How would you explain this in

terms of subtended angles and radians?

13. Let F and G be central vector fields in the plane with different centers.

(a) Show that F + G is not a central field.

(b) Show that the divergence of F + G is 0.
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14. A cube is bounded by the planes x = ±a, y = ±b, and z = ±c.

(a) Evaluate
∫
S

br·n
r2 dS by interpreting it in terms of the size of a subtended solid

angle.

(b) Evaluate the integral directly, without that knowledge.

15. Let S be the triangle whose vertices are (1, 0, 0), (0, 1, 0), and (0, 0, 1). Eval-
uate

∫
S

br·n
r2 dS by using steradians.

16. Evaluate the integral in Exercise 15 directly.

17. Let F(x, y, z) = xi+yj+0k
x2+y2 be a vector field in space.

(a) What is the domain of F?

(b) Sketch F(1, 1, 0) and F(1, 1, 2) with tails at the given points.

(c) Show F is not a central field.

(d) Show its divergence is 0.

Exercises 18 to 26 are related.
18. Let F be a planar central field. Show that ∇ × F is 0. (F(x, y) =
g(
√

x2+y2(xi+yj))√
x2+y2

for some scalar function g. )

19. (This continues Exercise 18.) Show that F is a gradient field; to be specific,
F = ∇G(

√
x2 + y2) where G is an antiderivative of g.

20. Carry out the computation to show that the only central fields in space that
have zero divergence have the form F(r) = cr̂/r2 if the origin of the coordinates is
at the center of the field.

21. If we worked in four-dimensional space instead of the two-dimensional plane
or three-dimensional space, which central fields do you think would have zero diver-
gence? Carry out a calculation to confirm your conjecture.

22. Let F = r̂/r2 and S be the surface of the lopsided pyramid with square base,
whose vertices are (0, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), and (1, 1, 1).
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(a) Sketch the pyramid.

(b) What is the integral of F · n over the square base?

(c) What is the integral of F · n over each of the remaining four faces?

(d) Evaluate
∮
S F · n dS.

Exercises 23 and 24 are related.
23. Let C be the circle x2 + y2 = 4 in the xy-plane. For each point Q in the
disk bounded by C consider the central field with center Q, F(P ) =

−−→
PQ/|PQ|2. Its

magnitude is inversely proportional to the first power of the distance from P to Q.
Evaluate the flux of F across C

(a) when Q is the origin (0, 0)

(b) when Q is (1, 0)

(c) when Q lies on C

(d) when Q is (3, 5).

24. Let S be the sphere x2 + y2 + z2 = 4 in the xy-plane. For each point Q in
the ball bounded by S consider the central field with center Q, F(P ) =

−−→
PQ/|PQ|3.

Its magnitude is inversely proportional to the square of the distance from P to Q.
Evaluate the flux of F across C

(a) when Q is the origin (0, 0, 0)

(b) when Q is (1, 0, 0)

(c) when Q lies on S

(d) when Q is (3, 5, 7).

25. Let F be the central field in the plane, with center at (1, 0) and with mag-
nitude inversely proportional to the first power of the distance to (1, 0): F(x, y) =
(x−1)i+yj
|(x−1)i+yj|2 . Let C be the circle of radius 2 and center at (0, 0).

(a) By thinking in terms of subtended angle, evaluate the flux
∮
C F · n ds.

(b) Evaluate it by carrying out the integration.
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26. This exercise gives a geometric way to see why a central force is conservative.
Let F(x, y) = f(r)r̂. Figure 18.4.10 shows F(x, y) and a short vector

−→
dr and two

circles.

Figure 18.4.10

(a) Why is F(x, y) · dr approximately f(r) dr, where dr is the difference in the
radii of the two circles?

(b) Let C be a curve from A to B, where A = (a, α) and B = (b, β) in polar
coordinates. Why is

∫
C F · dr =

∫ b
a f(r) dr?

(c) Why is F conservative?

Radiation, light, or sound comes from a point source at a distance h from a plane.
In applications it is important to know the fraction of the signal that strikes the
plane hits a disk located in that plane. There are tables that list that fraction as a
function of h and the distance the center of the disk is from the point in the plane
closest to the source (with the radius of the disk taken as 1). Exercises 27 to 30
concern the special case where the center of the disk is on the line through the source
perpendicular to the plane of the disk.
27. Let the radius of the disk be a. Let s(a) be the number of steradians subtended
by the disk. Explain why the fraction of interest equals s(a)/(2π).

28. Recall that the surface area of a sphere between two parallel planes that
intersect the sphere is proportional to the distance between the planes. Use this
information (and an integration) to show that

s(a) = 2π

(
1− 1√

z2 + h2

)
.
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29. Use the integral for the flux of the field r̂/r2 to find s(a). (The integration is
much easier in polar coordinates.)
30. For h = 0.8 and a = 1 a table lists s(a) = 2.35811.

(a) Does that agree with the formula obtained in Exercise 28?

(b) What fraction of the radiation that strikes the plane hits the disk?

(c) Why does the table list only disks of radius 1? How would you use the table
if h = 3 and a = 2?

31. Show that the derivative of 1
3 tan3(x)− tan(x) + x is tan4(x).

32. Use integration by parts to show that∫
tann(x) dx =

tann−1(x)
n− 1

−
∫

tann−2(x) dx.

33. Entry 16 in the table of antiderivatives in the front of this book is∫
dx

x(ax + b)
=

1
b

ln
∣∣∣∣ x

ax + b

∣∣∣∣ .
(a) Use a partial fraction expansion to evaluate the antiderivative.

(b) Use differentiation to check that the formula is correct.

34. Repeat Exercise 33 for entry 17 in the Table of Antiderivatives:∫
dx

x2(ax + b)
=
−1
bx

+
a

b2
ln
∣∣∣∣ax + b

x

∣∣∣∣ .

35. Show that x arccos(x)−
√

1− x2 is an antiderivative of arccos(x).

36. Find
∫

arctan(x).

37.

(a) Find
∫

xeax dx.
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(b) Use integration by parts to show that∫
xmeax dx =

xmeax

a
− m

a

∫
xm−1eax dx.

(c) Verify the equation in (b) by differentiating the right hand side.
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18.5 The Divergence Theorem in Space (Gauss’s

Law)

In Sections 18.2 and 18.3 we developed Green’s theorem and applied it in two
forms for a vector field F in the plane. One concerned the line integral of
the tangential component of F,

∮
C

F · T ds, also written as
∮

C
F · dr. The

other concerned the integral of the normal component of F,
∮

C
F · n ds. In

this section we develop the divergence theorem, an extension of the second
form from the plane to space. The extension of the first form to space is the
subject of Section 18.6. In Section 18.7 the divergence theorem will be applied
to electromagnetism.

The Divergence Theorem

A region V in space is bounded by a surface S. For instance, V may be a ball
and S its surface, a sphere, a case encountered in the elementary theory of
electromagnetism (see Figure 18.5.1(a)). In another case, V is a right circular
cylinder and S is its surface, which consists of two disks and its curved side
(see Figure 18.5.1(b)). Both figures show unit exterior normals, perpendicular

(a) (b)

Figure 18.5.1 Normal vectors to surfaces.

to the surface. The divergence theorem relates an integral over the surface to
an integral over the region it bounds. It is assumed that all surfaces of interest
have a continuous exterior normal (such as a sphere) or are made up of a finite
number of such surfaces (such as the surface of a cube).

Theorem 18.5.1 (Divergence Theorem —One-Surface Case). Let V be the
region in space bound by the surface S. Let n denote the exterior unit normal
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of V along the boundary S. Then∫
S

F · n dS =

∫
V

∇ · F dV

for any vector field F defined on V .

In words, the integral of the normal component of F over a surface equals
the integral of the divergence of F over the region the surface bounds.

The integral
∫
S F · n dS is called the flux of the field F across the surface

S.
If F = P i+Qj+Rk and cos(α), cos(β), and cos(γ) are the direction cosines

of the exterior normal, then the divergence theorem reads∫
S

(P i+Qj+Rk)·(cos(α)i+cos(β)j+cos(γ)k) dS =

∫
V

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dV.

Direction cosines are
defined in Section 14.4.

Evaluating the dot product puts the divergence theorem in the form∫
S

(P cos(α) + Q cos(β) + R cos(γ)) dS =

∫
V

(
∂P

∂x
+

∂Q

∂y
+

∂R

∂z

)
dV.

When the divergence theorem is expressed in this form, we see that it amounts
to three scalar theorems:∫

S

P cos(α) dS =

∫
V

∂P

∂x
dV,

∫
S

Q cos(β) dS =

∫
V

∂Q

∂y
dV, (18.5.1)

and

∫
S

R cos(γ) dS =

∫
V

∂R

∂z
dV.

Establishing these equations will prove the divergence theorem. We delay
the proof to the end of this section, after we have shown how the divergence
theorem is applied.

The divergence theorem also is the basis for this coordinate-free descrip-
tion of divergence. Its proof is like the proof for its analog in the plane (in
Section 18.3).

Local Definition of div F(P )

div F(P ) = lim
V→P

∫
S F · n dS

Volume of V

where V is a region enclosing P whose boundary is S.
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Two-Surface Version of the Divergence Theorem

Figure 18.5.2

The divergence theorem also holds if the solid region has holes it it. Then
the boundary consists of several separate closed surfaces. The most important
case is when there is just one hole and hence an inner surface S1 and an outer
surface S2, as shown in Figure 18.5.2.

Theorem 18.5.2 (Divergence Theorem — Two-Surface Case). Let V be a
region in space bounded by the surfaces S1 and S2. Let n∗ denote the exterior
normal along the boundary. Then∫

S1

F · n∗ dS +

∫
S2

F · n∗ dS =

∫
V

div F dV

for a vector field defined on V .

Compare with (18.2.4) in
Exercise 3 in Section 18.2.

The importance of this form of the divergence theorem is that it allows us
to conclude that if div F is 0 on the solid region V the two surfaces bound,
then the flux across the surfaces are the same.

Changing the Surface when div F = 0
Let S1 and S2 be two closed surfaces that form the boundary of the region
V . Let F be a vector field defined on V such that the divergence of F is 0
throughout V . Then ∫

S1

F · n dS =

∫
S2

F · n dS (18.5.2)

Because the proof of this parallels the derivation of (18.2.4) for curves in
Section 18.2 we omit it.

The next example illustrates (18.5.2), which enables us, if the divergence
of F is 0, to replace the integral of F · n over a surface by an integral of F · n
over a more convenient surface.

EXAMPLE 1 Let F(r) = r̂/r2, the inverse square vector field with center
at the origin. Let S be a convex surface that encloses the origin. Find the flux
of F over the surface,

∫
S F · n dS.

SOLUTION Select a sphere with center at the origin that does not intersect
S. It should be small in order to miss S. Call it S1 and its radius a. Equation
(18.5.2) applies because div F = 0, it gives∫

S

F · n dS =

∫
S1

F · n dS
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Because (r̂/r2) · n equals r·n
r2 = 1/a2 on the sphere S1, we have∫

S1

F · n dS =

∫
S1

1

a2
dS =

1

a2

∫
S1

dS =
1

a2
4πa2 = 4π.

Thus
∫
S F · n dS is equal to 4π. �

Example 1 agrees with the fact that a convex surface subtends an angle of
4π steradians at any point in the region it bounds.

A uniform or constant vector field is a vector field whose vectors are
identical. We use one in the next example.

EXAMPLE 2 Verify the divergence theorem for the constant field F(x, y, z) =
2i + 3j + 4k and the surface S of the cube whose sides have length 5 in Fig-
ure 18.5.3.

Figure 18.5.3

SOLUTION To find
∫
S F · n dS we consider the integral of F · n over each

of the six faces.
On the bottom face, ABCD the unit exterior normal is −k. Thus

F · n = (2i + 3j + 4k) · (−k) = −4.

So ∫
ABCD

F · n dS =

∫
ABCD

(−4) dS = −4

∫
ABCD

dS = (−4)(25) = −100.

The integral over the top face involves the exterior unit normal k instead
of −k. Then

∫
EFGH

F ·n dS = 100. The sum of the two integrals is 0. Similar
computations show that the flux of F over the entire surface is 0.
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The divergence theorem says that the flux equals
∫

V
div F dV , where V is

the solid cube. Now, div F = ∂(2)/∂x + ∂(3)/∂y + ∂(4)/∂z = 0 + 0 + 0 = 0.
So the integral of div F over V is 0, verifying the divergence theorem. �

Why div F is Called the Divergence

Let F(x, y, z) be the vector field describing the flow for a gas. That is, F(x, y, z)
is the product of the density of the gas at (x, y, z) and the velocity vector of
the gas there.

The integral
∫
S F · n dS over a closed surface S represents the tendency of

the gas to leave the region V that S bounds. If it is positive the gas is tending
to escape or diverge. If negative, the effect is for the amount of gas in V to
increase and become denser.

Let ρ(x, y, z, t) be the density of the gas at time t at the point (x, y, z),
with units mass per unit volume. Then

∫
V

ρ dV is the total mass of gas in
V at a given time. The rate at which the mass in V changes is given by the
derivative

d

dt

∫
V

ρ dV.

SHERMAN: Do we need to
explain the negative sign?

If ρ is sufficiently well-behaved we may differentiate past the integral sign.
Therefore

d

dt

∫
V

ρ dV =

∫
V

∂p

∂t
dV.

Therefore ∫
S

F · n dS = −
∫
V

∂p

∂t
dV

since both represent the rate at which gas accumulates in or escapes from V .
But by the divergence theorem,

∫
S F · n dS =

∫
V
∇ · F dV , and so∫

V

∇ · F dV = −
∫
V

∂p

∂t
dV

or ∫
V

(∇ · F +
∂p

∂t
) dV = 0. (18.5.3)

From this it is possible to conclude that ∇·F+ ∂p
∂t

= 0, known as the equation
of continuity. Justification for this conclusion is given next.

The zero integral principle (Section 6.3) says: If a continuous function f

on an interval [a, b] has the property that
∫ d

c
f(x) dx = 0 for every subinterval

[c, d] then f(x) = 0 on [a, b]. An extension of the zero integral principle
(Exercise 27) is:
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Zero Integral Principle in Space
Let V be a region in space bounded by a surface, and let f be a continuous
function on V . Assume that for every region S in V ,

∫
S f(P ) dS = 0. Then

f(P ) = 0 for all P in V .

Equation 18.5.3 holds not just for the solid V but for any solid region within
V . By the zero integral principle, the integrand must be zero throughout V ,
and we conclude that

∇ · F = −∂p

∂t
.

This tells us that div F at a point P represents the rate gas is getting denser
or lighter near P .See Exercise 20 in

Section 18.3.
That is why div F is called the divergence of F. Where div F

is positive, the gas is dissipating (diverging). Where div F is negative, the gas
is collecting.

For this reason a vector field for which the divergence is zero is called
incompressible.

We conclude this section with a proof of the divergence theorem.

Proof of the Divergence Theorem

We prove the theorem for the special case that each line parallel to an axis
meets the surface S in at most two points and V is convex. We prove the third
equation in (18.5.1). The other two are established the same way.

We wish to show that∫
S

R cos(γ) dS =

∫
V

∂R

∂z
dV. (18.5.4)

Figure 18.5.4

Let A be the projection of S on the xy-plane. Its description is

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x).

The description of V is then

a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x), z1(x, y) ≤ z ≤ z2(x, y).

Then (see Figure 18.5.4)

∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

z2(x,y)∫
z1(x,y)

∂R

∂z
dz dy dx.
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The first integration gives, by the Fundamental Theorem of Calculus,

z2(x,y)∫
z1(x,y)

∂R

∂z
dz = R(x, y, z2)−R(x, y, z1).

We have, therefore,

∫
V

∂R

∂z
dV =

b∫
a

y2(x)∫
y1(x)

(R(x, y, z2)−R(x, y, z1)) dy dx,

hence ∫
V

∂R

∂z
dV =

∫
A

(R(x, y, z2)−R(x, y, z1)) dA. (18.5.5)

Next we convert the integral over A to two integrals over different parts of
the surface S. First,

∫
A

R(x, y, z2) dA involves the top part of S, where cos(γ)
is positive; call this part S2. We have∫

A

R(x, y, z2) dA =

∫
S2

R(x, y, z) cos(γ) dS. (18.5.6)

On the bottom part of S, which we call S1, cos(γ) is negative because the
angle between k and γ is between π/2 and π. Thus∫

A

R(x, y, z1) dA = −
∫
S1

R(x, y, z) cos(γ) dS. (18.5.7)

Inserting (18.5.6) and (18.5.7) into (18.5.5) establishes (18.5.4).
The proof of the divergence theorem is completed by using similar ap-

proaches to derive the other two parts of (18.5.1). (See Exercises 32 and 33.)

Summary

We stated the divergence theorem for a single surface and for two surfaces. It
lets us calculate the flux of a vector field in terms of an integral of its divergence
over a region. This is especially useful for fields that are incompressible (di-
vergence free), such as the inverse-square field in space, r̂/r2. The flux across
a surface of such a field depends on whether its center is inside or outside the
surface. If the center is at Q and the field is of the form cQP/|QP |3, its flux
across a surface not enclosing Q is 0. If it encloses Q, its flux is 4π. This is
a consequence of the divergence theorem. It can also be explained in terms of
solid angles.
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EXERCISES for Section 18.5

1. State the divergence theorem in symbols.

2. State the divergence theorem using only words.

3. Explain, using no symbols, the meaning of ∇ · F at a point P . (Use the
coordinate-free definition of ∇ · F.)

4. What is the two-surface version of Gauss’s theorem?

5. Verify the divergence theorem for F(x, y, z) = xi + yj + 0k and the surface
x2 + y2 + z2 = 9.

6. Verify the divergence theorem for the field F(x, y, z) = xi and the cube whose
vertices are (0, 0, 0), (2, 0, 0), (2, 2, 0), (0, 2, 0), (0, 0, 2), (2, 0, 2), (2, 2, 2), and (0, 2, 2).

7. Verify the divergence theorem for F = 2i + 3j + 4k and the tetrahedron whose
four vertices are (0, 0, 0), (1, 0, 0), and (0, 1, 0), and (0, 0, 1).

8. Verify the two-surface version of Gauss’s theorem for F(x, y, z) = (x2 + y2 +
z2)(xi + yj + zk) where the surfaces are spheres of radii 2 and 3 centered at the
origin.

9. Let F = 2xi + 3yj + (5z + 6x)k, and let G = (2x + 4z2)i + (3y + 5x)j + 5zk.
Show that ∫

S

F · n dS =
∫
S

G · n dS,

where S is a surface bounding a region in space.

10. Show that the divergence of r̂/r2 is 0. (r = xi + yj + zk.)

In Exercises 11 to 18 use the divergence theorem.
11. Let V be the solid region bound by the xy-plane and the paraboloid z =
9− x2 − y2. Evaluate

∫
S F · n dS where F = y3i + z3j + x3k and S is the boundary

of V.
12. Evaluate

∫
V ∇ · F dV for F =

√
x2 + y2 + z2(xi + yj + zk) and V the ball of

radius 2 and center at (0, 0, 0).

In Exercises 13 and 14 find
∫
S F · n dS.

13. F = z
√

x2 + z2i + (y + 3)j − x
√

x2 + z2k and S is the boundary of the solid
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region between z = x2 + y2 and the plane z = 4x.
14. F = xi+ (3y + z)j+ (4x + 2z)k and S is the surface of the cube bound by the
planes x = 1, x = 3, y = 2, y = 4, z = 3, and z = 5.

15. Evaluate
∫
S F · n dS, where F = 4xzi− y2j + yzk and S is the surface of the

cube bound by the planes x = 0, x = 1, y = 0, z = 0, and z = 1, with the face
corresponding to x = 1 removed.
16. Evaluate

∫
S F · n dS, where F = xi + yj + 2xk and S is the boundary of the

tetrahedron with vertices (1, 2, 3), (1, 0, 1) (2, 1, 4), and (1, 3, 5).
17. Let S be a surface of area S that bounds a region V of volume V . Assume that
|F(P )| ≤ 5 for all points P on the surface S. What can be said about

∫
V ∇ ·F dV ?

18. Evaluate
∫
S F ·n dS, where F = x3i + y3j + z3k and S is the sphere of radius

a and center (0, 0, 0).

In Exercises 19 to 22 evaluate
∫
S F · n dS for F = r̂/r2.

19. S is the sphere of radius 2 and center (5, 3, 1).
20. S is the sphere of radius 3 and center (1, 0, 1).
21. S is the surface of the box bound by the planes x = −1, x = 2, y = 2, y = 3,
z = −1, and z = 6.
22. S is the surface of the box bound by the planes x = −1, x = 2, y = −1, y = 3,
z = −1, and z = 4.

23. Assume that the flux of F across every sphere is 0. Must the flux of F across
the surface of every cube be 0 also?
24. If F is always tangent to a surface S what can be said about the integral of
∇ · F over the region that S bounds?

Figure 18.5.5
25. Let F(r) = f(r)r̂ be a central vector field in space that has zero divergence.
Show that f(r) has the form f(r) = a/r2 for some constant a. (Consider the flux
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of F across the closed surface bound by a cone with vertex at the origin and two
spheres centered at the origin, see Figure 18.5.5.)

26. Let F be defined everywhere except at the origin and be divergence-free. Let
S1 and S2 be two closed surfaces that enclose the origin. Explain why

∫
S1

F ·n dS =∫
S2

F · n dS. The two surfaces may intersect.

27. Provide the details for the proof of the zero integral principle in space. Treat
the assumptions f(P ) > 0 and f(P ) < 0 separately.

28. Show that the flux of an inverse-square central field cr̂/r2 across any closed
surface that bounds a region that does not contain the origin is zero.

29.

(a) Show that the proof in the text of the divergence theorem applies to a tetra-
hedron. (Choose your coordinate system carefully.)

(b) Deduce that if the divergence theorem holds for a tetrahedron then it holds
for any polyhedron. A polyhedron can be cut into tetrahedra.

30. Exercise 25 showed by considering a particular type of surface that the only
central fields with zero divergence are the inverse square fields. Show this, instead,
by computing the divergence of F(x, y, z) = f(r)r̂, where r = xi + yj + zk.

31. Let F be defined everywhere in space except at the origin and is divergence-
free. Assume that

lim
|r|→∞

F(r)
|r|2

= 0.

What can be said about
∫
S F · n dS, where S is the sphere of radius 2 centered at

the origin?

We proved one-third of the divergence theorem. Exercises 32 and 33 concern the
other two-thirds.
32. Prove that ∫

S

Q cos(β) dS =
∫
V

∂Q

∂y
dV.

33. Prove that ∫
S

P cos(α) dS =
∫
V

∂P

∂x
dV.
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18.6 Stokes’ Theorem

In Section 18.1 we learned that Green’s theorem in the xy-plane can be written
as ∮

C

F · dr =

∫
R

(curl F) · k dA,

where C is traversed counterclockwise and bounds the region R. Stokes’ the-
orem in this section extends this to closed curves in space. It asserts that if
the closed curve C bounds a surface S, as in Figure 18.6.1, then

Figure 18.6.1

∮
C

F · dr =

∫
S

(curl F) · n dS.

As usual, the vector n is a unit normal to the surface. There are two unit
normals at each point on the surface and we will soon describe how to decide
which one to use. The choice depends on the orientation of C.

In words, Stokes’ theorem says that the circulation of a vector field around
a closed curve is equal to the integral of the normal component of the curl of
the field over any surface that the curve bounds.

Figure 18.6.2

Choosing the Normal n

In order to state Stokes’ theorem precisely, we must describe what kind of
surface S is permitted and which of the two normals n to choose.

For the surfaces S that we consider it is possible to assign at each point
on S a unit normal n in a continuous manner. On the surface shown in
Figure 18.6.2, there are two ways to do this, shown in Figure 18.6.3.

(a) (b)

Figure 18.6.3
For the surface shown in Figure 18.6.4, a Möbius band, it is impossible to

choose. If you start with choice (1) and move the normal continuously along
the surface, by the time you return to the initial point on the surface at stage
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(9), you have the opposite normal. A surface for which a continuous choice
can be made is called orientable or two-sided. Stokes’ theorem holds for
orientable surfaces, which include, for instance, any part of the surface of a
convex body, such as a ball, cube, or cylinder.

Right-hand rule for choosing
n.

Let S be an orientable surface that is bound by a parameterized curve C
so that the curve is swept out in a definite direction. If the surface is part
of a plane, we can use the right-hand rule to choose n: The direction of n
should match the thumb of the right hand if the fingers curl in the direction
of C and the thumb and palm are perpendicular to the plane.

Figure 18.6.4 Follow the
choices through all nine
stages — there’s trouble.

If the surface
is not flat, we still use the right-hand rule to choose a normal at points near
C. The choice of one normal determines normals throughout the surface.
Figure 18.6.5 illustrates the choice of n. For instance, if C is counterclockwise
in the xy-plane, the definition picks out the normal k.

(a) (b)

Figure 18.6.5

Theorem 18.6.1 (Stokes’ theorem). Let S be an orientable surface bound by
the parameterized curve C. At each point of S let n be the unit normal chosen
by the right-hand rule. Let F be a vector field defined on some region in space
including S. Then ∮

C

F · dr =

∫
S

(∇× F) · n dS.

Some Applications of Stokes’ Theorem

Stokes’ theorem enables us to replace
∫
S(curl F) · n dS by a similar integral

over a surface that might be simpler than S. That is the substance of the
following observation.
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Replacing One Surface by Another
Let S1 and S2 be two surfaces bound by the same curve C and oriented so
that they yield the same orientation on C. Let F be a vector field defined on
both S1 and S2. Then∫

S1

(curl F) · n dS =

∫
S2

(curl F) · n dS (18.6.1)

Equation (18.6.1) gives a way to replace an integral of curl F · n over a
complicated surface by an integral over a simpler surface.

The two integrals in (18.6.1) are equal since both equal
∮

C
F · dr.

EXAMPLE 1 Let F = xezi + (x + xz)j + 3ezk and let S be the top half of
the sphere x2 + y2 + z2 = 1. Find

∫
S(curl F) · n dS, where n is the outward

normal. See Figure 18.6.6.

Figure 18.6.6

SOLUTION Let S∗ be the flat base of the hemisphere. By (18.6.1),∫
S

(∇× F) · n dS =

∫
S∗

(∇× F) · k dS.

(Note that the correct normal to use on S∗ is k, not −k.)
A calculation shows that

∇× F = −xi + xezj + (z + 1)k,

hence (∇× F) · k = z + 1. Because z = 0 on S∗,∫
S∗

(∇× F) · k dS =

∫
S∗

dS = π.

Thus the original integral over S is also π. �
Just as there are two-curve versions of Green’s theorem and of the Diver-

gence theorem, there is a two-curve version of Stokes’ theorem.

Stokes’ Theorem for a Surface Bounded by Two Closed Curves

Theorem 18.6.2. Let S be an orientable surface whose boundary consists of
the two closed curves C1 and C2. Give C1 an orientation. Orient S consistent
with the right-hand rule as applied to C1. Give C2 the same orientation as C1.
(If C2 is moved on S to C1, the orientations will agree.) Then∮

C1

F · dr−
∮
C2

F · dr =

∫
S

(∇× F) · n dS. (18.6.2)
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Proof

Figure 18.6.7(a) shows the typical situation.

(a) (b) (c)

Figure 18.6.7

The cancellation principle
was introduced in

Section 18.2.

We will obtain (18.6.2) from Stokes’ theorem with the aid of the cancella-
tion principle. Introduce lines AB and CD on S, cutting S into two surfaces,
S∗ and S∗∗. See Figure 18.6.7(c). Apply Stokes’ theorem to S∗ and S∗∗. See
Figure 18.6.7(c).

Let C∗ be the curve that bounds S∗, oriented so that where it overlaps C1

it has the same orientation as C1. Let C∗∗ be the curve that bounds S∗∗, again
oriented to match C1. See Figure 18.6.7(c).

By Stokes’ theorem, ∮
C∗

F · dr =

∫
S∗

(curl F) · n dS (18.6.3)

and ∮
C∗∗

F · dr =

∫
S∗∗

(curl F) · n dS. (18.6.4)

Adding (18.6.3) and (18.6.4) and using the cancellation principle gives∮
C1

F · dr−
∮
C2

F · dr =

∫
S

(curl F) · n dS.

•

F is irrotational when
curlF = 0.

In practice, it is most common to apply (18.6.2) when curl F = 0. This is
so important we state it explicitly:
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Replacing One Curve by Another If curl F = 0
Let F be a field such that curl F = 0. Let C1 and C2 be two closed curves
that together bound an orientable surface S on which F is defined. If C1 and
C2 are similarly oriented, then∮

C1

F · dr =

∮
C2

F · dr. (18.6.5)

This follows directly from (18.6.2) since
∫
S(curl F) · n dS = 0.

EXAMPLE 2 Assume that F is irrotational and defined everywhere except
on the z-axis. Assume that

∮
C1

F· dr = 3. Find (a)
∮

C2
F· dr and (b)

∮
C3

F· dr.
(See Figure 18.6.8.)

Figure 18.6.8

SOLUTION (a) By (18.6.5),
∮

C2
F · dr =

∮
C1

F · dr = 3. (b) By Stokes’

theorem, (18.6.1),
∮

C3
F · dr = 0. �

Curl and Conservative Fields

In Section 18.2 we saw that if F = P i + Qj is defined on a simply connected
region in the xy-plane and if curl F = 0, then F is conservative. Now that
we have Stokes’ theorem, this can be extended to a field F = P i + Qj + Rk
defined on a simply connected region in space.

Theorem 18.6.3. Let F be defined on a simply connected region in space. If
curl F = 0, then F is conservative.

Proof

We provide only a sketch of the proof. Let C be a simple closed curve situated
in the simply connected region. To avoid topological complexities, we assume
that it bounds an orientable surface S. To show that

∮
C

F · dr = 0, we use the
same argument as in Section 18.2:∮

C

F · dr =

∫
S

(∇× F) · n dS =

∫
S

0 dS = 0.

•
It follows from Theorem 18.6.3 that a central field F that is defined through-

out space with the possible exception of its center is conservative. First, its
curl is 0 (see Exercises 6 and 7 in Section 18.4). Second, its domain is simply
connected.

Calculus April 22, 2012



1662 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

Exercise 26 of Section 18.4 presents a geometric argument that shows why
a central field is conservative.

Figure 18.6.9

Why Curl is Called Curl

Let F be a vector field describing the flow of a fluid, as in Section 18.1. Stokes’
theorem will give a physical interpretation of curl F.

Let P0 be a fixed point in space. Imagine a small circular disk S with
center P0. Let C be the boundary of S oriented in such a way that C and n
fit the right-hand rule. (See Figure 18.6.9)

Now examine the two sides of∫
S

(curl F) · n dS =

∮
C

F ·T ds. (18.6.6)

Figure 18.6.10

The right side measures the tendency of the fluid to move along C (rather
than, say, perpendicular to it.) Thus

∮
C

F · T ds might be thought of as the
circulation or whirling tendency of the fluid along C. For each tilt of the small
disk S at P0, or, equivalently, each choice of unit normal vector n, the line
integral

∮
C

F ·T ds measures a circulation. It records the tendency of a paddle
wheel at P0 with axis along n to rotate. (See Figure 18.6.10.)

On the left side of (18.6.6), if S is small, the integrand is almost constant
and the integral is approximately

(curl F)P0 · n · Area of S, (18.6.7)

where (curl F)P0 denotes the curl of F evaluated at P0.
Keeping the center of S at P0, vary the vector n by tilting S. For which

choice of n will (18.6.7) be largest? The answer is, that n with the same di-
rection as the fixed vector (curl F)P0 . With that choice of n, (18.6.7) becomes

|(curl F)P0| Area of S .

The physical interpretation
of curl

Thus a paddle wheel placed in the fluid at P0 rotates most quickly when its
axis is in the direction of curl F in that position. The magnitude of curl F
is a measure of how fast the paddle wheel rotates when placed at P0. Thus
curl F records the direction and magnitude of maximum circulation at a given
point.

A Vector Definition of Curl

In Section 18.1 curl F was defined in terms of the partial derivatives of the
components of F. By Stokes’ theorem, curl F is related to the circulation∮

C
F · dr. We exploit this to obtain a new view of curl F, free of coordinates.
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Let P be a point in space. For a unit vector n, S denotes a region containing
P situated in the plane through P perpendicular to n. Let C be the boundary
of S oriented by the right-hand rule. Then, by the reasoning just used,

(curl F(P )) · n) Area of S ≈
∮
C

F · dr.

Thus

(curl F(P )) · n = lim
S→P

∮
C

F · dr

Area of S
. (18.6.8)

This gives meaning to the component of curl F(P ) in a direction n. The
magnitude and direction of curl F at P can be described in terms of F, without
looking at the components of F. The left-hand side of (18.6.8) is maximized
when n is in the direction of curl F(P ). For this choice of n the dot product
equals the magnitude of curl F(P ).

Figure 18.6.11

Coordinate-Free Definition of curlF(P )
The magnitude of curl F(P ) is the maximum value of

lim
S→P

∮
C

F · dr

Area of S
(18.6.9)

for all unit vectors n. The regions S are in the plane through P perpendicular
to n. The direction of curl F(P ) is given by the vector n that maximizes
(18.6.9).

EXAMPLE 3 Let F be a vector field such that at the origin curl F =
2i + 4j + 4k. Estimate

∮
C

F · dr if C encloses a disk of radius 0.01 in the
xy-plane with center (0, 0, 0). C is swept out clockwise. (See Figure 18.6.11.)
SOLUTION Let S be the disk whose border is C. Choose the normal to
S that is consistent with the orientation of C and the right-hand rule. That
choice is −k. Thus

(curl F) · (−k) ≈
∮

C
F · dr

Area of S
.

The area of S is π(0.01)2 and curl F = 2i + 3j + 4k. Thus

(2i + 3j + 4k) · (−k) ≈
∮

C
F · dr

π(0.01)2
.

From this it follows that ∮
C

F · dr ≈ −4π(0.01)2.

�
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Proof of Stokes’ Theorem

We include the proof because it reviews several basic ideas. It uses Green’s
theorem, the normal to a surface z = f(x, y), and the expression for an integral
over a surface as an integral over its projection on a plane.

Assume that the surface S meets each line parallel to an axis in at most
one point. That is, there are one-to-one projections of S onto the coordinate
planes.

Write F(x, y, z) as P (x, y, z)i+Q(x, y, z)j+R(x, y, z)k, or F = P i+Qj+Rk.
If the equation for S is written as z− f(x, y) = 0, a unit normal for S is found
to be

n =
−∂f

∂x
i− ∂f

∂y
j + k√(

∂f
∂x

)2
+
(

∂f
∂y

)2

+ 1

.

(Since the k-component of n is positive, it is the correct normal, given by the
right-hand rule.) Let C∗ be the projection of C on the xy-plane, swept out
counterclockwise.

See Exercise 36. A computation shows that Stokes’ theorem, expressed in components, reads∫
C

P dx + Q dy + R dz

=

∫
S

(
∂R
∂y
− ∂Q

∂z

) (
−∂f

∂x

)
−
(

∂R
∂x
− ∂P

∂z

) (
−∂f

∂y

)
+
(

∂Q
∂x
− ∂P

∂y

)
(1)√(

∂f
∂x

)2
+
(

∂f
∂y

)2

+ 1

dS.

This reduces to three equations, one for P , one for Q, and one for R.
We will establish the result for P , namely∫

C

P dx =

∫
S

∂P
∂z

(−∂f
∂y

)− ∂P
∂y

(1)√
(∂f

∂x
)2 + (∂f

∂y
)2 + 1

dS. (18.6.10)

To change the integral over S to one over its projection, S∗, on the xy-
plane, we replace dS by

√
(∂f/∂x)2 + (∂f/∂y)2 + 1 dA. At the same time we

project C onto a counterclockwise curve C∗. The square roots cancel leaving
us with this equation in the xy-plane:∫

C∗

P (x, y, f(x, y)) dx =

∫
S∗

(
−∂P

∂z

∂f

∂y
− ∂P

∂y

)
dA. (18.6.11)

We apply Green’s theorem to the left side of (18.6.11), and obtain∫
C∗

P (x, y, f(x, y)) dx =

∫
S∗

−∂P (x, y, f(x, y))

∂y
dA.
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But
∂P (x, y, f(x, y))

∂y
=

∂P

∂y
+

∂P

∂z

∂f

∂y
. (18.6.12)

Combining (18.6.11) and (18.6.12) completes the proof of (18.6.10).
We assumed that S has a special form, meeting lines parallel to an axis just

once. More general surfaces, such as the surface of a sphere or a polyhedron
can be cut into pieces of this type. The proof that Stokes’ theorem holds in
these cases is covered in more advanced courses.

The Origin of the Term curl
In a letter to the mathematician Tait written on November 7, 1870, Maxwell
offered some names for ∇× F:

Here are some rough-hewn names. Will you like a good Divinity
shape their ends properly so as to make them stick? . . .

The vector part ∇×F I would call the twist of the vector func-
tion. Here the word twist has nothing to do with a screw or helix.
The word turn . . . would be better than twist, for twist suggests
a screw. Twirl is free from the screw motion and is sufficiently
racy. Perhaps it is too dynamical for pure mathematicians, so for
Cayley’s sake I might say Curl (after the fashion of Scroll.)

His last suggestion, curl, has stuck.

Summary

Stokes’ theorem relates the circulation of a vector field over a closed curve C
to the integral over a surface S with boundary C. The integrand over the
surface is the component of the curl of the field perpendicular to the surface,∫

C

F · dr =

∫
S

(curl F) · n dS.

The normal n to S is determined by the right-hand rule.
Stokes published his theorem in 1854 (without proof, for it appeared as a

question on a Cambridge University examination). By 1870 it was in common
use. It is the most recent of the three theorems discussed in this chapter,
for Green published his theorem in 1828 and Gauss published the divergence
theorem in 1839.

Sections 18.7 and 18.9 will show how Stokes’ theorem is applied in the
theory of electromagnetism.
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EXERCISES for Section 18.6

1. State Stokes’ theorem using mathematical symbols.

2. State Stokes’ theorem in words, using no mathematical symbols.

3. For curves in the xy-plane we spoke of clockwise and counterclockwise orienta-
tions. Why is this distinction not made for curves in space?

4. Let F (r) be an antiderivative of f(r). Show that f(r)r̂ is the gradient of F (r),
hence is conservative. (f(r)r

r = f(r)r̂.)

5.

(a) Use the fact that a gradient, ∇f , is conservative to show that its curl is 0.

(b) Compute ∇×∇f in terms of components to show that the curl of a gradient
is 0.

In Exercises 6 to 9 verify Stokes’ theorem for F and S.
6. F = xy2i + y3j + y2zk, S is the top half of the sphere x2 + y2 + z2 = 1.

7. F = yi+xzj+x2k, S is the triangle with vertices (1, 0, 0), (0, 1, 0) and (0, 0, 1).

8. F = y5i + x3j + z4k, S is the portion of z = x2 + y2 below the plane z = 1.

9. F = −yi + xj + zk, S is the portion of the cylinder z = x2 inside the cylinder
x2 + y2 = 4.

10. Assume that F is defined everywhere except on the z-axis and is irrotational.
The curves C1, C2, C3, and C4 are shown in Figure 18.6.12. What, if anything, can
be said about

∮
C1

F · dr,
∮
C2

F · dr,
∮
C3

F · dr, and
∮
C4

F · dr.
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Figure 18.6.12

11. Evaluate
∫
S F · n dS, where F(x, y, z) = xi − yj and S is the surface of the

cube bounded by the three coordinate planes and the planes x = 1, y = 1, z = 1,
exclusive of the surface in the plane x = 1. Let n be outward from the cube.

12. Using Stokes’ theorem, evaluate
∫
S(∇×F) · n dS, where F = (x2 + y − 4)i +

3xyj + (2xz + z2)k, and S is the portion of the surface z = 4− (x2 + y2) above the
xy-plane. Let n be the upward normal.

In Exercises 13 to 16 use Stokes’ theorem to evaluate
∮
C F · dr for F and C. Assume

that C is oriented counterclockwise when viewed from above.
13. F = sin(xy)i, C is the intersection of the plane x + y + z = 1 and the cylinder
x2 + y2 = 1.

14. F = exj, C is the triangle with vertices (2, 0, 0), (0, 3, 0), and (0, 0, 4).

15. F = xyk, C is the intersection of the plane z = y with the cylinder
x2 − 2x + y2 = 0.

16. F = cos(x + z)j, C is the boundary of the rectangle with vertices (1, 0, 0),
(1, 1, 1), (0, 1, 1), and (0, 0, 0).

17. Let S1 be the top half and S2 the bottom half of a sphere of radius a in
space. Let F be a vector field defined on the sphere and let n denote an exterior
normal to the sphere. What relation, if any, is there between

∫
S1

(∇×F) ·n dS and∫
S2

(∇× F) · n dS?

18. Let F be a vector field throughout space such that F(P ) is perpendicular
to the curve C at each point P on C, the boundary of a surface S. What can one
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conclude about ∫
S

(∇× F) · n dS?

19. Let C1 and C2 be two closed curves in the xy-plane that encircle the origin
and are similarly oriented, as in Figure 18.6.13.

Figure 18.6.13

Let F be a vector field defined throughout the plane except at the origin. Assume
that ∇× F = 0.

(a) Must
∮
C1

F · dr = 0?

(b) What, it any, relation exists between
∮
C1

F · dr and
∮
C2

F · dr?

20. Let F be defined everywhere in space except on the z-axis. Assume also that
F is irrotational and

∮
C1

F · dr = 3. See Figure 18.6.14. What if, anything, can be
said about

(a)
∮
C2

F · dr,

(b)
∮
C3

F · dr,

(c)
∮
C4

F · dr?
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Figure 18.6.14

21. Which central fields have curl 0?

22. Let V be the solid bounded by z = x + 2, x2 + y2 = 1, and z = 0. Let S1 be
the portion of the plane z = x + 2 that lies within the cylinder x2 + y2 = 1. Let C
be the boundary of S1, with a counterclockwise orientation as viewed from above.
Let F = yi + xzj + (x + 2y)k. Use Stokes’ theorem for S1 to evaluate

∮
C F · dr.

23. (See Exercise 22.) Let S2 be the curved surface of V together with the base
of V. Use Stokes’ theorem for S2 to evaluate

∮
C F · dr.

24. Verify Stokes’ theorem for the special case when F has the form ∇f , that is,
is a gradient field.

25. Let F be a vector field defined on the surface S of a convex solid. Show that∫
S(∇× F) · n dS = 0

(a) by the divergence theorem,

(b) by drawing a closed curve on C on S and using Stokes’ theorem on the parts
into which C divides S.

26. Evaluate
∮
C F ·dr if F(x, y, z) = (−yi+xj)/(x2 +y2) and C is the intersection

of the plane z = 2x+2y and the paraboloid z = 2x2 +3y2 oriented counterclockwise
as viewed from above.

27. Let F(x, y) be a vector field defined everywhere in the plane except at the
origin. Assume that ∇×F = 0. Let C1 be the circle x2 + y2 = 1 counterclockwise;
let C2 be the circle x2 + y2 = 4 clockwise; let C3 be the circle (x − 2)2 + y2 = 1
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counterclockwise, and let C4 be the circle(x−1)2 +y2 = 9 clockwise. Assuming that∮
C1

F · dr is 5, evaluate

(a)
∮
C2

F · dr

(b)
∮
C3

F · dr

(c)
∮
C4

F · dr.

28. Let F(x, y, z) = r/|r|a, where r = xi + yj + zk and a is a real number.

(a) Show that ∇× F = 0.

(b) Show that F is conservative.

(c) Exhibit a scalar function f such that F = ∇f .

Exercises 29 to 31 are related.
29. Assume that G is the curl of a vector field F, G = ∇×F. Let S be a surface
that bounds a solid region V . Let C be a closed curve on the surface S breaking S
into two pieces S1 and S2. Show that

∫
S1

G · n dS = −
∫
S2

G · n dS.

30. Using the divergence theorem, show that
∫
S G · n dS = 0.

31. Using Stokes’ theorem, show that
∫
S G · n dS = 0. (Break the integral into

integrals over S1 and S2.)

32. Let F be defined throughout space and have continuous divergence and curl.

(a) For which F is
∫
S F · n dS = 0 for all spheres S?

(b) For which F is
∮
C F · dr = 0 for all circles C?

33. Let C be the curve formed by the intersection of the plane z = x and the
paraboloid z = x2 + y2. Orient C to be counterclockwise when viewed from above.
Evaluate

∮
C(xyz dx + x2 dy + xz dz).

34. Assume that Stokes’ theorem is true for triangles. Deduce that it holds for the
surface S in Figure 18.6.15(a), consisting of the three triangles DAB, DBC, DCA,
and the curve ABCA.
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(a) (b)

Figure 18.6.15
35.

Sam: Theorem 18.6.2 must be wrong.

Jane: Always questioning authority.

Sam: In the assumptions C1 and C2 play the same role. But they play different
roles in the conclusion. There’s a negative sign in front of the integral over
C2.

Jane: Maybe you are right, for once.

Is Sam right? If not, what is his error?

Exercises 36 to 40 concern the proof of Stokes’ theorem.
36. Carry out the calculations in the proof that translated Stokes’ theorem into
an equation involving P , Q, and R.
37. Draw a picture of S, S∗, C, and C∗ that appear in the proof of Stokes’
theorem.
38. Write the four steps involved in the proof of Stokes’ theorem, giving an
explanation for each.
39. In the proof of Stokes’ theorem we used a normal n. Show that it is the
correct one, compatible with counterclockwise orientation of C∗.
40.

(a) State Stokes’ theorem for
∫
C Q dy.

(b) Prove Stokes’ theorem for
∫
C Q dy.

41. A Möbius band can be made by making a half-twist in a narrow rectangular
strip, bringing the two ends together, and fastening them with glue or tape. See
Figure 18.6.15(a).
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(a) Make a Möbius band.

(b) Letting a pencil represent a normal n to the band, check that it is not ori-
entable.

(c) If you form a band by putting in a full twist (360◦), is it orientable?

(d) What happens when you cut the bands in (a) and (c) down the middle? one
third of the way from one edge to the other?
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18.7 Connections Between the Electric Field

and r̂/|r|2

This section develops one of the four equations that describe the phenomena
of electricity and magnetism. It depends on properties of the central inverse
square field r̂/r2.

The Mathematics

We will need the following properties of the flux of the field r̂/r2.

If the center of the field is inside the region bound by a surface S, its flux
across S is 4π. And, if the center of the field is outside the region bound by
S, its flux is 0.∫

S

r̂ · n
r2

dS =

{
4π if center 0 is enclosed by S
0 if center 0 is outside S.

The divergence theorem is used to prove these results, with the proof of
the first property using the two-surface version. Both cases depend on the fact
that the central inverse square field has zero divergence everywhere except
at its center. The two properties also can be obtained with the aid of the
steradian measure of solid angles.

The concept of the integral of a vector field is also needed. The definition
is similar to the definition of the definite integral in Section 6.2. Let F(P ) be
a continuous vector field defined on a solid region R. Break R into regions R1,
R2, . . . , Rn and choose a point Pi in Ri, 1 ≤ i ≤ n. Let the volume of Ri

be Vi. The sums
∑n

i=1 F(Pi)Vi have a limit as all Ri are chosen smaller and
smaller. This limit, denoted

∫
R
F(P ) dV is called the integral of F over R.

It can be computed componentwise. For example, if F = F1i+F2j+F3k then∫
R
F(P ) dV =

∫
R

F1 dV i +
∫

R
F2 dV j +

∫
R

F3 dV k. Similar definitions hold
for vector fields defined on surfaces or curves.

The Physics

Figure 18.7.1

We make some assumptions about the fundamental electrical charges, elec-
trons and protons. A proton has a positive charge and an electron has a
negative charge of equal absolute value. Two like charges exert a force of
repulsion on each other and unlike charges attract each other.

Let C and P denote the location of charges q and q0, respectively. Let r be
the vector from C to P , as in Figure 18.7.1; so r = |r| is the distance between
them. The unit vector r̂ in the direction of r is r/r.
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If both q and q0 are protons or both are electrons, the force pushes them
farther apart. If one is a proton and the other is an electron, the force draws
them closer. The magnitude of the force is inversely proportional to r2.

Assume that q is positive. The magnitude of the force it exerts on charge
q0 is proportional to q and q0, and it is also inversely proportional to r2. For
some constant k, the magnitude of the force is

k
q q0

r2
.

It is directed along the vector r. If q0 is also positive, it is in the same direction
as r. If q0 is negative, it is in the direction of−r. So we have the vector equation

F = k
q q0

r2
r̂ (18.7.1)

where k is positive.
It is customary to write k as 1/(4πε0) to simplify expressions that appear

later. The value of ε0 depends on the units in which charge, distance, and
force are measured. Then (18.7.1) is written

F =
q q0

4πε0r2
r̂.

Physicists associate a vector field E with a charge q. Called the electro-
static field, it exerts a force on other charges.

A positive charge q at point C creates a central inverse-square vector field
E with center at C. It is defined everywhere except at C. Its value at a point
P is

E(P ) =
q r̂

4πε0r2

where r =
−→
CP , as in Figure 18.7.2.

(a) (b) (c)

Figure 18.7.2 (a)

The value of E depends only on q and the vector from C to P .
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The force F exerted by charge q on charge q0 at P is obtained by multiplying
E by q0:

F = q0E. (18.7.2)

The field E can be calculated in principle by putting a charge q0 at P ,
observing the force F, and then dividing F by q0. The field E enables the
charge q to act at a distance on other charges. It plays the role of a rubber
band or a spring.

The Electrostatic Field Due to a Distribution of Charge

Electrons and protons usually do not exist in isolation. Charge may be dis-
tributed on a line, a curve, a surface, or in space.

If a total charge Q occupies a region R in space its density varies from
point to point. Denote the density at P by δ(P ). Like the density of mass,
it is defined as a limit. Let V (r) be a small ball of radius r and center at P .
Then we have the definition

δ(P ) = lim
r→0+

charge in V (r)

volume of V (r)
.

The charge in V (r) is approximately the volume of V (r) times δ(P ). We
will be interested only in uniform charges, where the density is constant with
the value δ. Thus the charge in a region of volume V is δV .

The field due to a uniform charge Q distributed in a region R is the sum
of the fields due to the individual point charges in Q.

Figure 18.7.3

To estimate this field
due to a distribution of charge, partition R into small regions R1, R2, . . . ,
Rn and choose a point Pi in Ri, i = 1, 2 . . . , n. The volume of Ri is Vi. The
charge in Ri is δVi, where δ is the density of the charge. Figure 18.7.3 shows
the contribution to the field at a point P .

Let ri be the vector from Pi to P , and ri = |ri|. Then the field due to the
charge in Ri is approximately

δ Vi r̂i

4πε0 r2
i

=
δ r̂i

4πε0 r2
i

Vi.

As an estimate of the field due to Q, we have the sum

n∑
i=1

δ r̂i Vi

4πε0r2
i

. (18.7.3)

Taking limits as all the regions Ri are chosen smaller, we have

E(P ) = Field at P =

∫
R

δ r̂

4πε0r2
dV =

δ

4πε0

∫
R

r̂

r2
dV.
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That is an integral over a solid region. If the charge is on a surface S with
uniform surface density σ, then

E(P ) =
σ

4πε0

∫
S

r̂

r2
dS.

If the charge lies on a line or a curve C (such as a wire), with uniform
density λ, then

E(P ) =
λ

4πε0

∫
C

r̂

r2
ds.

Though they are not central fields they are divergence-free. This is to be
expected because the sums (18.7.3) whose limit is the integral are divergence-
free fields.

The Flux Across a Surface Due to a Distribution of Charge

A surface S bounds a solid region V . The field E due to a point charge q
creates a flux across S. If the point charge is inside the solid region bound by
S, the flux is

q

4πε0

4π =
q

ε0

.

If it is outside S, then the flux is 0.
A distribution of charge also creates a flux across S. Assume the charge

is distributed in space with a density δ(P ) at point P . The charge in a small
region around P of volume dV is approximately δ(P ) dV . The corresponding
flux across S is δ(P ) dV/ε0. If the charge occupies a region R the flux it creates
is then expressed by an integral. To evaluate this integral break R into two
regions, R1 inside S and R2 outside S.

The flux due to the charge in R1 is∫
R1

δ(P ) dV

ε0

=
1

ε0

∫
R1

δ(P ) dV

where
∫

R1
δ(P ) dV is the charge in R1.

The charge in R2 creates a flux of 0 across S. This brings us to one of the
four fundamental equations of electromagnetism.

Gauss’s Law
A charge distributed on a curve, a surface, or a solid region induces a flux
across a closed surface. This flux equals Q/ε0, where Q is the charge enclosed
within the surface. The charge outside the surface creates no flux across the
surface.
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Applying Gauss’s Law to Find E

Example 1 shows that Gauss’s law provides a way to determine the electrostatic
field E associated with a distribution of charge. At the end of this section the
same field is found directly, without the aid of Gauss’s law. The contrast
illustrates the power of Gauss’s law.

EXAMPLE 1 A charge Q is distributed uniformly on a spherical surface
of radius a. Find the electrostatic field E at a point B a distance b > a from
the center of the sphere.
SOLUTION Figure 18.7.4(a) shows the sphere and a hypothetical vector v
representing the electrostatic field at B due to the charge on the sphere. When

(a) (b)

Figure 18.7.4

the sphere with its charge is spun around the axis OB we get the same situation

as when we started. Therefore the vector v must be parallel to
−−→
OB. By the

symmetry of the sphere the magnitude of v depends only on the distance from
B to 0. Call this magnitude f(b). All that remains is to find f(b).

To do this, take another sphere S∗, with center O and radius b, as in
Figure 18.7.4(b). The flux of E across S∗ is

∫
S∗

E · n dS.
But E · n is just f(b) since E and n are parallel and E(P ) has magnitude

f(b) for all points P on S∗. Thus∫
S∗

E · n dS =

∫
S∗

f(b) dS = f(b)

∫
S∗

dS = f(b)4πb2.

By Gauss’s law
Q

ε0

= f(b)(4πb2).
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That tells us that

f(b) =
Q

4πε0b2
for b > a.

�

The same result is obtained if the entire charge Q were at the center of the
sphere.

The same technique shows that for the charge in Example 1 the field inside
the sphere is 0.

Figure 18.7.5

Let f(r) be the magnitude of E at a distance r from the center of the
sphere. For r > a, f(r) = Q/(4πε0r

2) and for 0 < r < a, f(r) = 0. Exercise 13
concerns f(a). The graph of f is in Figure 18.7.5.

Finding E without Gauss’s Law

To appreciate the power of Gauss’s law we determine the field in Example 1
directly.

EXAMPLE 2 A charge Q is distributed uniformly on a sphere of radius a.
Find the electrostatic field E at a point B a distance b > a from the center of
the sphere.
SOLUTION We use an iterated integral to evaluate

E(B) =
σ

4πε0

∫
S

r̂

r2
dS. (18.7.4)

Since the charge is uniform over a region with area 4πa2, σ = Q/4πa2.
Place a rectangular coordinate system with its origin at the center of the

sphere and the z-axis on B, so that B = (0, 0, b). By the symmetry argument
used in Example 1 the x- and y-components of E(B) are 0. We need only find
its z-component, which is E(B) · k.

Let (x, y, z) be a point on the sphere S. Then

r = (0i + 0j + bk)− (xi + yj + zk) = −xi− yj + (b− z)k. (18.7.5)

Hence

r̂

r2
=

r

r3
=

−xi− yj + (b− z)k

(
√

x2 + y2 + b2 − 2bz + z2)3
=
−xi− yj + (b− z)k

(a2 + b2 − 2bz)3/2
.

Only its z-component is needed:

b− z

(a2 + b2 − 2bz)3/2
.
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The magnitude of E(B) is therefore

σ

4πε0

∫
S

b− z

(a2 + b2 − 2bz)3/2
dS. (18.7.6)

To evaluate the integral in (18.7.6) introduce spherical coordinates in the
standard position. We have dS = a2 sin(φ)dφ dθ and z = a cos(φ). Thus the
integral in (18.7.6) becomes

π∫
0

2π∫
0

(b− a cos φ)a2 sin φ

(a2 + b2 − 2ab cos φ)3/2
dθ dφ

After the first integration with respect to θ this reduces to

2πa2

π∫
0

(b− a cos φ) sin φ dφ

(a2 + b2 − 2ab cos φ)3/2
. (18.7.7)

Let u = cos(φ), hence du = − sin(φ) dφ. This transforms (18.7.7) into

−2πa2

−1∫
1

(b− au) du

(a2 + b2 − 2abu)3/2
. (18.7.8)

Then we make the substitution v = a2 + b2− 2abu. This changes (18.7.8) into

2πa2

4ab2

(b+a)2∫
(b−a)2

v + b2 − a2

v3/2
dv. (18.7.9)

Writing the integrand as the sum of 1/
√

v and (b2 − a2)/v3/2, we use the
Fundamental Theorem of Calculus to show that (18.7.8) equals 4πa2/b2.

Combining this with (18.7.9) shows that

E(B) =
σ

4πε0

4πa2

b2
k =

Q

4πε0b2
k for b > a.

�

Summary

This section applied the field r̂/r2 and the divergence theorem to the field
created by a charged particle. The key is that its flux across a closed surface is
either 4π or 0, depending on whether the center of the central inverse square
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field is inside or outside the surface. Using Gauss’ law and the symmetry of
the sphere, we showed that a uniform charge on a sphere exerts a force outside
as if all the charge were at the center of the sphere.

The field due to a point charge q at a point C is given by the formula

E(P ) = 1
4πε0

qbr
r2 , where r =

−→
CP . This field produces a force q0E(P ) on a charge

q0 located at P . The field due to a distribution of charge is obtained by an
integration.

The flux of the field E across a surface produced by the charge Q within
that surface is Q/ε0. That is Gauss’s law.
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EXERCISES for Section 18.7

1. Describe the force F exerted by one charged particle upon another.

2.

(a) Define the electrostatic field E due to a charged particle.

(b) How is E related to the field F in Example 1?

3. State Gauss’s law using no mathematical symbols.

4. A charge is distributed uniformly along an infinite straight wire. The charge
on a section of length l is kl. Find the field E due to the charge.

(a) Use symmetry to say as much as you can about the direction and magnitude
of E.

(b) Find the magnitude by applying Gauss’s law to the cylinder of radius r and
height h shown in Figure 18.7.6

(c) Find the force directly by an integral over the line, as in Example 1.

Figure 18.7.6
5. Exercise 4 concerned the field E due to a charge uniformly spread on an
infinite line. If the charge density is λ, E at a point at a distance a from the line is
(λ/(2πaε0)) j.
Assume instead that the line occupies only the right half of the x-axis, [0,∞).

(a) Using the result in Exercise 4, show that the j-component of E(0, a) is (λ/4πaε0)j.

(b) By integrating over [0,∞), show that the i-component of E at (0, a) is λ/(4πaε0)i.
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(c) What angle does E(0, a) make with the y-axis?

(d) Why is Gauss’ law of no use in determining the i-component of E?

6. A charge of surface density k is distributed uniformly over an infinite plane.
Find the field E due to the charge at any point P not in the plane.

(a) Use symmetry to say as much as you can about it. Be sure to discuss its
direction.

(b) Show that the magnitude is constant by applying Gauss’s law to a cylinder
whose axis is perpendicular to the plane and which does not intersect the
plane, as shown in Figure 18.7.7(a).

(a) (b)

Figure 18.7.7

(c) Find the magnitude of E by applying Gauss’s law to the cylinder in Fig-
ure 18.7.7(b) which intersects the plane of the charge. Let the area of the
circular cross section be A and the area of its curved side be B.

7. Suppose that there is a uniform distribution of charge Q throughout a ball of
radius a. Use Gauss’ law to find the electrostatic field E produced by the charge

(a) at points outside the ball

(b) at points inside the ball.

8. Let f(r) be the magnitude of the field in Exercise 7 at a distance r from the
center of the ball. Graph f(r) for r ≥ 0.
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9. Show that a charge Q distributed in a solid region R outside a closed surface
S induces zero flux across S.

10. We showed that E(P ) = δ
4πε0

∫
R

br
r2 dV if the charge density is constant. Find

the integral for E(P ) when the charge density varies.

11. Find the field E in the Exercise 6 by integrating over the whole (infinite)
plane. Do not use Gauss’s law.

12. A charge Q lies partly inside a closed surface S and partly outside. Let Q1

be the amount inside and Q2 the amount outside. What is the flux across S of the
charge Q?

13. Find the field E of the charge in Example 1 at a point on the surface of
the sphere. Why is Gauss’s law not applicable here? (Let the point be (0, 0, a).
Steradians might help.)

14. Find the field E of the charge in Example 1 at the center of the sphere. (Use
symmetry, don’t integrate.)

15. Fill in the omitted details in the calculation in Example 1.

16. In Example 1, we used an integral to find the electrostatic field outside a
uniformly charged sphere. Carry out similar calculation to find the field inside the
sphere. (Is the square root of (b− a)2 still b− a?)

17. Show that
∫
S

br
r2 · n dS = 4π if the center of the field is within the solid that

S bounds, and is 0 if the center is outside. Use the divergence theorem for one or
two surfaces.

18. Solve Exercise 17 using solid angles.
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18.8 Expressing Vector Functions in Other Co-

ordinate Systems

Earlier in this chapter we defined gradient, divergence, and curl in rectangular
coordinates:

grad f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k, div(P i + Qj + Rk) =

∂P

∂x
+

∂Q

∂y
+

∂R

∂z
,

curl(P i + Qj + Rk) = det

 i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

 .

This is convenient when f(x, y, z) or F = P i + Qj + Rk are given in
rectangular coordinates. But what if they are given in polar, cylindrical, or
spherical coordinates? Then it would be convenient to have expressions for
grad, div, and curl in the same coordinate system. This section develops
the corresponding expressions. The keys to doing this are the coordinate-free
descriptions of the three concepts:

SHERMAN: Check these
carefully! grad f at P div F at P curl F at P

For every unit vector
n, (grad f)·n = Dnf
at P .

div F(P ) =

limR→P

R
S F·n dS

volume of R)

where R is a region
that contains P and
S is its surface.

For every unit vec-
tor n, curl F(P ) ·
n = limR→P

H
C F·T ds

Area of R

where R is a region
that contains P and
C is the boundary of
R (with positive ori-
entation).

The region R that appears in the div F column is often a ball or cube,
but any solid bound by a surface can be used. Similarly, the surface S in
the curl F column is usually a disk or a square. When appropriate, solid or
plane regions determined by the coordinate systems are chosen to simplify the
computations.

The first step towards expressing grad, div, and curl in a specific coordi-
nate systems is to identify the unit vectors in that coordinate system that play
the same role that the vectores i, j, and k play in rectangular coordinates.

The Unit Vectors Associated with a Coordinate System

The unit vectors associated with a coordinate system indicate the direction
one moves when one coordinate is increased while the others are kept fixed.
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For example, in the xy-coordinate system, moving from (x, y) to (x+∆x, y)
is motion in the direction i. If, instead, one keeps x fixed but moves from (x, y)
to (x, y + ∆y), the direction is given by j.

The corresponding cases for polar coordinates are shown in Figure 18.8.1.
In (a) a small positive change ∆r in the radius moves the point a distance ∆r

(a) (b) (c)

Figure 18.8.1

along the ray from the pole O. The direction of the change is recorded by the
unit vector r̂ along the ray. In (b) a small change ∆θ in θ moves the point
to a point along the circle of radius r centered at O. Changing the angle by
∆θ moves the point a distance that is approximately r∆θ from the point with
polar coordinates (r, θ). A tangent to a circle is perpendicular to the radius to

the point of contact. As a result, the unit vector θ̂ is the same as the counter-
clockwise vector T tangent to the circle of radius r with center O. Note that
r̂ is perpendicular to θ̂ because the vector from O to (r, θ) is perpendicular to
the circle of radius r with center O.

In the case of cylindrical coordinates three unit vectors record the directions
r̂, θ̂, and k. In spherical coordinates the three coordinate unit vectors are ρ̂,
φ̂, and θ̂. A sketch shows that r̂, θ̂, and k are mutually perpendicular, as are
ρ̂, φ̂, and θ̂.

Directional Derivatives and Coordinate Systems

Let f(r, θ) be a scalar function given in polar coordinates. We will compute
Dbrf and Dbθf at (r, θ). First, Dbrf .

As Figure 18.8.2 illustrates, Dbrf is the limit as ∆r → 0 of the quotient
f(r + ∆r, θ)− f(r, θ) divided by the distance from (r, θ) to (r + ∆r, θ):

lim
∆r→0

f(r + ∆r, θ)− f(r, θ)

∆r
.

That limit is just ∂f
∂r

at (r, θ). It also equals the slope of the curve in Fig-
ure 18.8.2(a) at (r, θ).
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(a) (b)

Figure 18.8.2

Next we find Dbθf at (r, θ). This is the limit as ∆θ → 0 of f(r, θ + ∆θ)−
f(r, θ) divided by the distance from (r, θ) to (r, θ+∆θ). (See Figure 18.8.2(b).)
When ∆θ is small that distance is approximately r∆θ. So

Dbθf = lim
∆θ→0

f(r, θ + ∆θ)− f(r, θ)

r∆θ
=

1

r
lim

∆θ→0

f(r, θ + ∆θ)− f(r, θ)

∆θ
=

1

r

∂f

∂θ
.

Thus Dbθf is not ∂f
∂θ

. It is 1
r

∂f
∂θ

. The r comes from the expression r∆θ, which
measures the distance a point moves when the angle changes by ∆θ. The slope
of the curve in Figure 18.8.2(b) is not ∂f

∂θ
; it is Dbθf = 1

r
∂f
∂θ

.
A similar phenomenon occurs in other coordinate systems. For instance,

in cylindrical coordinates

Dbrf =
∂f

∂r
, Dbθf =

1

r

∂f

∂θ
, and Dkf =

∂f

∂z
.

And, in spherical coordinates one has

Dbρf =
∂f

∂ρ
, D bφf =

1

ρ

∂f

∂φ
, and Dbθf =

1

ρ sin(φ)

∂f

∂θ
.

In rectangular coordinates, because the changes ∆x, ∆y, and ∆z coincide with
the distances a point is moved in each direction,

Dif =
∂f

∂x
, Djf =

∂f

∂y
, and Dkf =

∂f

∂z
.

No extra factors are needed.

Gradient in Polar Coordinates

Let f(r, θ) be a scalar function expressed in polar coordinates. Its gradient is

a vector, and can be written in the form A(r, θ)r̂ + B(r, θ)θ̂ for some scalar
functions A(r, θ) and B(r, θ), which we will call A and B for short.
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We know that Dbrf = grad f · r̂ and have just shown that Drf = ∂f
∂r

. Thus

∂f

∂r
=
(
Ar̂ + Bθ̂

)
· r̂ = A.

(From the fact that θ̂ and r̂ are perpendicular, θ̂ · r̂ = 0.) It then follows that
A = ∂f

∂r
.

Next we find B by starting with

Dbθf = (grad f) · θ̂.

We have seen that Dbθf = 1
r

∂f
∂θ

. Hence

1

r

∂f

∂θ
=
(
Ar̂ + Bθ̂

)
· θ̂ = B.

By the same logic as before, B = 1
r

∂f
∂θ

.
All told

Gradient in Polar Coordinates

grad f(r, θ) =
∂f

∂r
r̂ +

1

r

∂f

∂θ
θ̂.

EXAMPLE 1 Find grad(r2θ3).
SOLUTION

grad(r2θ3) =
∂

∂r

(
r2θ3

)
r̂+

1

r

∂

∂θ

(
r2θ3

)
θ̂ = 2rθ3r̂+

1

r

(
3r2θ2

)
θ̂ = 2rθ3r̂+3rθ2θ̂.

�

Divergence in Polar Coordinates

Figure 18.8.3 redraw

The divergence of F(x, y) = P (x, y)i + Q(x, y)j is ∂P
∂x

+ ∂Q
∂y

. However, the

divergence of G(r, θ) = A(r, θ)r̂ + B(r, θ)θ̂ is not the sum of ∂A
∂r

and ∂B
∂θ

.
To find div G(r, θ) at (r, θ) we use the coordinate-free description of diver-

gence in the plane:

∇ ·G = lim
length of C → 0

∮
C

G ·N ds

area within C
. (18.8.1)

We are free to choose the small closed curve C to make it easy to estimate
the flux across it. The curve C that corresponds to small changes ∆r and ∆θ
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is the one we will use. (See Figure 18.8.3.) Exploiting (18.8.1), we will find
the divergence of G at P = (r, θ).

To estimate the flux across C, we estimate the flux across the four parts
of the curve. Because they are short when ∆r and ∆θ are small, we may
estimate the integral over each part by multiplying the value of the integrand
at any point of the section by the length of the section. As usual, n̂ denotes
an exterior unit vector perpendicular to C.SHERMAN: Significantly

revised (but not figures,
yet).

On PQ and RS only Bθ̂ contributes to the flux; On QR and SP it does
not since n · θ̂ is 0. On RS, θ̂ is parallel to n, as shown in Figure 18.8.4.

Figure 18.8.4 redraw

However, on PQ it points in the opposite direction and θ̂ · n̂ is −1.

Only PQ and RS can have nonzero contributions to the flux of Bθ̂ across
C. Across PQ the flux is approximately

(Bθ̂ · n̂)∆r = −B(r, θ)∆r (18.8.2)

and across RS the flux is approximately B(r, θ+∆θ)∆r. The total contribution

of Bθ̂ to the flux across C is

B(r, θ + ∆θ)∆r −B(r, θ)∆r. (18.8.3)

The nonzero contributions of Ar̂ to the flux must come from QR and SP
because r̂ and n̂ are perpendicular on the other two sides, PQ and RS. On
SP , r̂ and n̂ point in directly opposite directions, hence r̂ · n̂ is −1. The flux
of Ar̂ there is approximately

A(r, θ)(r̂ · n̂)r∆θ = −A(r, θ)r∆θ. (18.8.4)

On QR, which has radius r + ∆r, r̂ = n̂, hence r̂ · n̂ is 1. The contribution on
QR, which has length (r + ∆r)∆θ, is approximately

A(r + ∆r, θ) (r + ∆r) ∆θ. (18.8.5)

Combining (18.8.3), (18.8.4) and (18.8.5) shows that the limit in (18.8.1)
is the sum of two limits:

lim
∆r,∆θ→0

A(r + ∆r, θ)(r + ∆r)∆θ − A(r, θ)r∆θ

r∆r∆θ
(18.8.6)

The area within C is
approximately, r∆r∆θ.

and

lim
∆r,∆θ→0

B(r, θ + ∆θ)∆r −B(r, θ)∆r

r∆r∆θ
(18.8.7)

The first limit, (18.8.6), equals

lim
∆r,∆θ→0

1

r

(r + ∆r)A(r + ∆r, ∆θ)− rA(r, θ)

∆r
,
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which is
1

r

∂(rA)

∂r
.

In addition to the factor 1/r the function being differentiated is rA.
The second limit, (18.8.7), equals

lim
∆r,∆θ→0

1

r

B(r, θ + ∆θ)−B(r, θ)

∆θ
=

1

r

∂B

∂θ
.

Here there is only the factor 1/r and the function being differentiated is simply
B.

Thus we have the divergence formula
The notation ∇· is used
only for rectangular
coordinates; div is used in
all coordinate systems.Divergence in Polar Coordinates

div(Ar̂ + Bθ̂) =
1

r

∂(rA)

∂r
+

1

r

∂B

∂θ
. (18.8.8)

Curl in Polar Coordinates

The curl of F(x, y) = P (x, y)i + Q(x, y)j + 0k, a vector field in the plane, is
given by

curl F =

(
∂Q

∂x
− ∂P

∂y

)
k.

What is the formula for the curl when the field is described in polar coordinates:
G(r, θ) = A(r, θ)r̂ + B(r, θ)θ̂? To find out we will reason as we did with
divergence. This time we use

(curlG) · k = lim
length of C→0

∮
C

G ·T ds

Area bounded by C
.

See (18.6.8) on page 1663.where C is a closed curve around a point in the (r, θ) plane, and the limit is
taken as the length of C approaches 0. The curl is evaluated at a point, which
is on or within C.

We compute the circulation of G = Ar̂ + Bθ̂ around the same curve used
in the derivation of divergence in polar coordinates.

On SP and QR, Ar̂, being perpendicular to the curve, contributes nothing
to the circulation of G around C. On PQ it contributes approximately

A(r, θ)(r̂ ·T)∆r = A(r, θ)∆r.
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On RS, since there r̂ ·T = −1, Ar̂ contributes to the total circulation

A(r, θ + ∆θ)(r ·T)∆r = −A(r, θ + ∆θ)∆r.

A similar computation shows that Bθ̂ contributes to the total circulation
approximately

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ.

Therefore (curlG) · k is the sum of two limits:

lim
∆r,∆θ→0

A(r, θ)∆r − A(r, θ + ∆θ)∆r

r∆r∆θ
= −1

r

∂A

∂θ

and

lim
∆r,∆θ→0

B(r + ∆r, θ)(r + ∆r)∆θ −B(r, θ)r∆θ

r∆r∆θ
=

1

r

∂(rB)

∂r
.

All told, we haveThe use of ∇× is restricted
to rectangular coordinates;

curl is used in all
coordinate systems. Curl in Polar Coordinates

curl(Ar̂ + Bθ̂) =

(
−1

r

∂A

∂θ
+

1

r

∂(rB)

∂r

)
k. (18.8.9)

EXAMPLE 2 Find the divergence and curl of F = rθ2r̂ + r3 tan(θ)θ̂.
SOLUTION The calculations use (18.8.8) and (18.8.9). First, the divergence:

div F =
1

r

∂

∂r

(
r · rθ2

)
+

1

r

∂

∂θ

(
r3 tan(θ)

)
=

1

r

(
2rθ2

)
+

1

r

(
r3 sec2(θ)

)
= 2θ2 + r2 sec2(θ).

Then, the curl:

curl F =

(
−1

r

∂

∂θ

(
rθ2
)

+
1

r

∂

∂r

(
r · r3 tan(θ)

))
k

=

(
−1

r
(2rθ) +

1

r

(
4r3 tan(θ)

))
k =

(
−2θ + 4r2 tan(θ)

)
k.

�
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Cylindrical Coordinates

In cylindrical coordinates the gradient of g(r, θ, z) is

Gradient in Cylindrical Coordinates

grad g =
∂g

∂r
r̂ +

1

r

∂g

∂θ
θ̂ +

∂g

∂z
ẑ (18.8.10)

Here ẑ is the unit vector in the positive z direction, denoted k in Chapter 14.
Formula (18.8.10) differs from the case of polar coordinates only by the extra
term (∂g/∂z)ẑ. It is obtained by computing directional derivatives of g along

r̂, θ̂, and ẑ. The derivation is similar to the one for the formula for the gradient
in polar coordinates.

The divergence of G(r, θ, z) = Ar̂ + Bθ̂ + Cẑ is given by

Divergence in Cylindrical Coordinates

div G =
1

r

∂(rA)

∂r
+

1

r

∂B

∂θ
+

∂C

∂z
. (18.8.11)

To obtain (18.8.11) use the relation between div G and the flux across the
small surface determined by small changes ∆r, ∆θ, and ∆z.

The curl of G = Ar̂ + Bθ̂ + Cẑ is given by a determinant:

Curl in Cylindrical Coordinates

curlG =
1

r
det

 r̂ rθ̂ k
∂
∂r

∂
∂θ

∂
∂z

A rB C


This formula is obtained from the circulation around three small closed curves
lying in planes perpendicular to r̂, θ̂, and k.

Spherical Coordinates

In mathematics texts, spherical coordinates are denoted ρ, φ, θ. In physics
and engineering a different notation is standard. There ρ is replaced by r, θ
is the angle with z-axis, and φ plays the role of θ; the roles of φ and θ are
interchanged. The formulas we state are in the mathematicians’ notation.
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The three basic unit vectors for spherical coordinates are denoted ρ̂, φ̂, θ̂.
For instance, ρ̂ points in the direction of increasing ρ. See Figure 18.8.5(a).

Note that at the point P , φ̂ and θ̂ are tangent to the sphere through P and
center at the origin, while ρ̂ is perpendicular to that sphere. Also, any two of
ρ̂, φ̂, θ̂ are perpendicular.

(a) (b)

Figure 18.8.5

To obtain the formulas for div G and curlG, use the region corresponding
to small changes ∆ρ, ∆φ, and ∆θ, shown in Figure 18.8.5(b). That computa-
tion yields the following formulas:

Gradient, Divergence, and Curl in Spherical Coordinates
If g(ρ, φ, θ) is a scalar function,

grad g =
∂g

∂ρ
ρ̂ +

1

ρ

∂g

∂φ
φ̂ +

1

ρ sin(φ)

∂g

∂θ
θ̂.

If G(ρ, φ, θ) = Aρ̂ + Bφ̂ + Cθ̂ then

div G =
1

ρ2

∂(ρ2A)

∂r
+

1

ρ sin(φ)

∂(sin(φ)B)

∂φ
+

1

ρ sin(φ)

∂C

∂θ

and

curlG =
1

ρ2 sin(φ)
det

 r̂ ρθ̂ ρ sin(φ)φ̂
∂
∂ρ

∂
∂θ

∂
∂φ

A ρB ρ sin(φ)C


Each can be obtained by the method we used for polar coordinates. The

change in φ or θ is not the same as the distance the point moves. However, a
change in ρ is the same as the distance the point moves. When, in Chapter 17,
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we set up iterated integrals for spherical coordinates, we found the distance
between (ρ, φ, θ) and (ρ, φ + ∆φ, ∆θ) is approximately ρ∆φ and the distance
between (ρ, φ, θ) and (ρ, φ, θ + ∆θ) is approximately ρ sin(φ)∆θ.

An Application to Rotating Fluids

If a fluid is rotating in a cylinder, for instance, in a centrifuge, it rotates as a
rigid body and its velocity at a distance r from the axis of rotation is

G(r, θ) = crθ̂,

where c is a positive constant describing the angular speed.
Then

curlG =
1

r

∂(cr2)

∂r
k = 2ck.

The curl is independent of r. Now imagine that a paddle wheel is placed in
the fluid with its axis parallel to the axis of the cylinder. The wheel is kept in
the same place but is free to rotate about its axis. That the curl is constant
says that the wheel will turn at the same rate no matter how far it is from the
axis of the cylinder.

In the more general case with

G(r, θ) = crnθ̂,

and n is an integer, we have

curlG =
1

r

∂(crn+1)

∂r
k = c(n + 1)rn−1k.

We just considered n = 1. For n > 1 the curl increases as r increases. The
paddle wheel rotates faster if placed farther from the axis of rotation. The
direction of rotation is the same as that of the fluid, counterclockwise.

When n = −2 the speed of the fluid decreases as r increases and

curlG = c(−2 + 1)r−2−1k = −cr−3k.

The minus sign on the right-hand side means the paddle wheel spins clockwise
even though the fluid rotates counterclockwise. The farther the paddle wheel
is from the axis, the slower it rotates.

Summary

We expressed gradient, divergence, and curl in several coordinate systems.
Though the basic unit vectors in each system may change direction from point
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to point, they remain perpendicular to each other. That simplified the com-
putation of directional derivatives, flux, and circulation. The formulas are
more complicated than those in rectangular coordinates because the amount
a parameter changes is not the same as the distance the corresponding point
moves.
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EXERCISES for Section 18.8

In Exercises 1 through 4 find and draw the gradient of the function of (r, θ) at
(2, π/4).
1. r

2. r2θ

3. e−rθ

4. r3θ2

In Exercises 5 through 8 find the divergence of the function.
5. 5r̂ + r2θθ̂

6. r3θr̂ + 3rθθ̂

7. rr̂ + r3θ̂

8. r sin(θ)r̂ + r2 cos(θ)θ̂

In Exercises 9 through 12 compute the curl of the function.
9. rθ̂

10. r3θr̂ + erθ̂

11. r cos(θ)r̂ + rθθ̂

12. 1/r3θ̂

13. Find the directional derivative of r2θ3 in the direction

(a) r̂

(b) θ̂

14. What property of rectangular coordinates makes the formulas for gradient,
divergence, and curl in those coordinates relatively simple?

15. Where did we use the fact that r̂ and θ̂ are perpendicular when developing
the expression for divergence in polar coordinates?

16. Estimate the flux of F(r, θ) = r2θ3θ̂ across the circle of radius 0.01 with center
at (r, θ) = (2, π/6).

17. Estimate the circulation of the field in the preceding exercise around the same
circle.

When translating between rectangular and polar coordinates, it may be necessary to
express r̂ and θ̂ in terms of i and j and also i and j in terms of r̂ and θ̂. Exercises 18
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and 19 concern this matter.
18. Let (r, θ) be a point that has rectangular coordinates (x, y).

(a) Show that r̂ = cos(θ)i + sin(θ)j, which equals xi+yj√
x2+y2

.

(b) Show that θ̂ = − sin(θ)i + cos(θ)j, which equals −yi+xj√
x2+y2

(c) Draw a picture to accompany the calculations done in (a) and (b).

So we have r̂ and θ in terms of i and j:

r̂ = xi+yj√
x2+y2

θ̂ = −yi+xj√
x2+y2

(18.8.12)

19. Show that if (x, y) has polar coordinates (r, θ), then

i = cos(θ) r̂− sin(θ) θ̂

j = sin(θ) r̂ + cos(θ) θ̂

by solving the equations (18.8.12) for i and j.

In Exercises 20 through 23

(a) Find the gradient of the function, using the formula for gradient in rectangular
coordinates and expressing the result in polar coordinates.

(b) Find it by first expressing the function in polar coordinates and using the
formula for the gradient in polar coordinates.

(c) Show that the gradients found in (a) and (b) agree.

20. x2 + y2

21.
√

x2 + y2

22. 3x + 2y

23. x/
√

x2 + y2

In Exercises 24 through 27

(a) Find the gradient of the function, using its formula in polar coordinates.

(b) Find it by expressing the function in rectangular coordinates and then ex-
pressing the result in polar coordinates.

(c) Show that the gradients in (a) and (b) agree.
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24. r2

25. r2 cos(θ)
26. r sin(θ)
27. er

In Exercises 28 and 29

(a) Find the divergence of the vector field in rectangular coordinates.

(b) Find it by expressing the function in polar coordinates.

(c) Show that the divergences in (a) and (b) agree.

28. x2i + y2j

29. xyi

In Exercises 30 and 31

(a) Find the curl of the vector field in rectangular coordinates,

(b) Find it by expressing the function in polar coordinates.

(c) Show that the curls found in (a) and (b) agree.

30. xyi + x2y2j

31. x√
x2+y2

i

Exercises 32 and 33 are useful in developing the formula for the gradient in cylindrical
and spherical coordinates.
32. Find the distance from (r, θ, z) to each of the points

(a) (r + ∆r, θ, z),

(b) (r, θ + ∆θ, z),

(c) (r, θ, z + ∆z).

33. Approximate the distance from the point (ρ, φ, θ) to

(a) (ρ + ∆ρ, φ, θ),

(b) (ρ, φ + ∆φ, θ),

(c) (ρ, φ, θ + ∆θ).
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34. Using the formula for the gradient of g(r, φ, θ), find the directional derivative
of g in the direction

(a) ρ̂,

(b) φ̂,

(c) θ̂.

35. Using the formula for the gradient of g(r, θ, z), find the directional derivative
of g in the direction

(a) r̂,

(b) θ̂,

(c) k.

36. Using as few mathematical symbols as you can, state the formula for the
divergence of a vector field given in polar coordinates.

37. Using as few mathematical symbols as you can, state the formula for the curl
of a vector field given in polar coordinates.

38. In the formula for the divergence of Ar̂ + Bθ̂, why do the terms rA and 1/r
appear in 1

r
∂
∂r (rA)?

39. Obtain the formula for the gradient in cylindrical coordinates.

40. Obtain the formula for curl in cylindrical coordinates.

41. Obtain the formula for divergence in cylindrical coordinates.

42. Obtain the formula for the gradient in spherical coordinates.

43. Obtain the formula for the gradient of g(r, θ) in polar coordinates by starting
with the formula for the gradient of f(x, y) in rectangular coordinates. During the
calculations some parts cancel and cos2(θ) + sin2(θ) = 1 simplifies expressions.
Assume g(r, θ) = f(x, y), where x = r cos(θ) and y = r sin(θ). To express ∇f =
∂f/∂xi + ∂f/∂yj in terms of polar coordinates, it is necessary to express ∂f/∂x,
∂f/∂y, i, and j in terms of partial derivative of g(r, θ), r̂, and θ̂.
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(a) Show that ∂r/∂x = cos(θ), ∂r/∂y = sin(θ), ∂θ/∂x = − sin(θ)/r, and ∂θ/∂y =
cos(θ)/r.

(b) Use the chain rule to express ∂f/∂x and ∂f/∂y in terms of partial derivatives
of g(r, θ).

(c) Recalling the expression of i and j in terms of r̂ and θ̂ in Exercise 19 obtain
the gradient of g(r, θ) in polar coordinates.

44. In Exercise 26 of Section 18.3 we found the divergence of F = rnr̂ using
rectangular coordinates. Find the divergence using polar coordinates. (The second
way is easier.)

45. In Exercise 20 in Section 18.4 we used rectangular coordinates to show that an
incompressible central field in the plane must have the form F(r) = (k/r)r̂. Obtain
this result using the formula for divergence in polar coordinates.

46.

(a) Using a diagram, show that r̂, θ̂, and ẑ are mutually perpendicular.

(b) Using a diagram, show that ρ̂, φ̂, and θ̂ are mutually perpendicular.

Coordinate systems whose basic unit vectors are mutually perpendicular are called
orthogonal. Orthogonality is useful in developing the formulas for grad, div, and
curl in such systems.
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18.9 Maxwell’s Equations

At any point in space there is an electric field E and a magnetic field B. The
electric field is due to charges (electrons and protons), whether stationary or
moving. The magnetic field is due to moving charges.

To assure yourself that the magnetic field B is everywhere, hold up a pocket
compass. The Earth’s magnetic field moves the needle so it points north.

All electrical phenomena and their applications can be described by four
equations called Maxwell’s equations. They allow B and E to vary in time.
We state them for the simpler case when B and E are constant: ∂B/∂t = 0
and ∂E/∂t = 0. We met the first equation in the previous section. Here are
the four equations

I.
∫

S
E · n dS = Q/ε0, where S is a surface bounding a spatial region and

Q is the charge in that region. (Gauss’s law for electricity)

II.
∮

C
E · dr = 0 for a closed curve C. (Faraday’s law of induction)

III.
∫

S
B · n dS = 0 for a surface S that bounds a spatial region. (Gauss’s

law for magnetism)

IV.
∮

C
B · dr = µ0

∫
S
J · n dS, where C bounds the surface S and J is the

electric current flowing through S. (Ampere’s law)

The constants ε0 and µ0 (“mew naught”) depend on the units used.
The statements about integrals can be translated into information about

the behavior of E or B at each point.
In derivative or local form they are

I′. div E = ρ/ε0, where ρ is the charge density (Coulomb’s Law)

II′. curlE = 0

III′. div B = 0

IV′. curlB = µ0J

It turns out that 1/(µ0ε0) equals the square of the speed of light. Why that is
justified is an astonishing story told in CIE 26 at the end of this chapter.

Going Back and Forth Between Local and Global.

Examples 1 and 2 show that Gauss’s law is equivalent to Coulomb’s law.

EXAMPLE 1 Obtain Gauss’s law for electricity (I) from Coulomb’s law
(I′).
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SOLUTION Let V be any solid region whose boundary is the surface S.
Then∫

S
E · n dS =

∫
V
∇ · E dV (divergence theorem)

=
∫

V
ρ
ε0

dV (Coulomb’s law)
= 1

ε0

∫
V ρ dV

= Q
ε0

. (charge is Q =
∫
V ρ dV )

�

EXAMPLE 2 Obtain Coulomb’s law (I′) from Gauss’s law for electricity
(I).
SOLUTION Let V be any spatial region bound by a surface S. Let Q be
the total charge in V . Then

Q

ε0

=

∫
S

E · n dS (Gauss’s law)

=

∫
V

∇ · E dV (divergence theorem).

On the other hand,

Q =

∫
V

q dV,

where q is the charge density. Thus∫
V

q

ε0

dV =

∫
V

∇ · E dV or

∫
V

(
q

ε0

−∇ · E
)

dV = 0,

for all spatial regions. Since the integrand is assumed to be continuous, the
zero integral principle implies it is identically 0. That is,

q

ε0

−∇ · E = 0,

which gives us Coulomb’s law. �

EXAMPLE 3 Show that II implies II′. That is,
∮

C
E · dr = 0 for closed

curves implies curlE = 0.
SOLUTION We know that

∫
C

E · dr = 0. Therefore, by Stokes’ theorem, for
any orientable surface S bound by a closed curve,∫

S

(curlE) · n dS = 0
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1702 CHAPTER 18 THE THEOREMS OF GREEN, STOKES, AND GAUSS

The zero integral principle implies that (curlE) · n = 0 at each point on the
surface. Choosing S such that n is parallel to curlE (if curlE is not 0),
implies that the magnitude of curlE is 0, hence curlE is 0. �

The exercises present the analogy of the equations in integral form for the
general case where B and E vary with time. In this generality they are known
as Maxwell’s equations, in honor of James Clerk Maxwell (1831-1879), who
put them in their final form in 1865.

Mathematics and Electricity
Benjamin Franklin, in his book Experiments and Observations Made in
Philadelphia, published in 1751, made electricity into a science. For his ac-
complishments, he was elected a Foreign Associate of the French Academy of
Sciences, an honor bestowed on no other American for over a century. In 1865,
Maxwell completed the theory that Franklin had begun.

At the time that Newton published his Principia on the gravitational field
(1687), electricity and magnetism were the subjects of little scientific study.
The experiments of Franklin, Oersted, Henry, Ampère, Faraday, Volta, and
others in the late eighteenth and early nineteenth centuries gradually built up
a mass of information subject to mathematical analysis. All the phenomena
could be summarized in four equations, which in their final form appeared in
Maxwell’s Treatise on Electricity and Magnetism, published in 1873.

Summary

We stated the four equations that describe electrostatic and magnetic fields
that do not vary with time. Then we showed how to use the divergence theorem
or Stokes’ theorem to translate between their global and local forms. The
exercises include the four equations in their general form, where E and B vary
with time.
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EXERCISES for Section 18.9

1. Obtain II from II′.

2. Obtain III′ from III.

3. Obtain III from III′.F

4. Obtain IV′ from IV.

5. Obtain IV from IV′.

In Exercises 6 to 9 use terms such as circulation, flux, current, and charge density
to express the equation in words.
6. I

7. II

8. III

9. IV

10. Which of the laws imply that an electric current produces a magnetic field?

11. Which of the laws imply that a magnetic field produces an electric current?

SHERMAN: Move this to
the body of the section? Do
we assume rectangular
coordinates? That is, ∇×
or curl, etc.? Think about
the CIE before you answer.

In this section we assumed that the fields E and B do not vary in time, that is,
∂E/∂t = 0 and ∂B/∂t = 0. The general case, in empty space, where E and B
depend on time, is also described by four equations, which we call (i), (ii), (iii), and
(iv). Equations (i) and (iii) do not involve time; they are (I′) and (III′).

i. div E = q/ε0

ii. curlE = −∂B
∂t

iii. div B = 0

iv. curlB = µ0J + µ0ε0
∂E
∂t (J is the current density.)

Exercises 12 to 15 are about these equations.

12. Which equation implies that a changing magnetic field creates an electric
field?
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13. Which equation implies that a changing electrostatic field creates a magnetic
field?

14. Show that (ii) is equivalent to∮
C

E · dt = − ∂

∂t

∫
S

B · n dS

Here, C bounds S. (Assume that ∂
∂t

∫
S B · n dS equals

∫
S(∂B/∂t) · n dS.)

15. Show that (iv) is equivalent to∮
C

B · dr = µ0

∫
S

J · n dS + µ0ε0
∂

∂t

∫
S

E · n dS

(The circulation of B is related to the total current through the surface S that C
bounds and to the rate at which the flux of E through S changes.)
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18.S Chapter Summary

The first six sections developed three theorems: Green’s theorem, Gauss’ law
(also called the divergence theorem), and Stokes’ theorem. The final three
sections applied them to non-rectangular coordinate systems and to physics.

Name Mathematical Expression Description
Green’s
theorem

∮
C

F · n ds =
∫

R
div F dA flux of F across C

∮
C
(−Qdx + Pdy) =

∫
R

(
∂P
∂x

+ ∂Q
∂y

)
dA differential form∮

C
F ·T ds =

∮
C

F · dr =
∫

R
(curl F) · k dA circulation of F around C∮

C
(Pdx + Qdy) =

∫
R

(
∂Q
∂x
− ∂P

∂y

)
dA

Gauss’
law (di-
vergence
theorem)

∫
S F · n dS =

∫
R

div F dV flux across a surface equals the inte-
gral of the divergence over the spa-
tial region it bounds

Stokes’
theorem

∮
C

F ·T ds =
∫
S(curl F) · n dS

(S is a surface bound by C with n compatible
with orientation of C)

circulation along a curve equals the
integral over the surface it bounds
of the component of the curl per-
pendicular to the surface

SHERMAN: Do we need to
somehow distinguish
between the two instances
of
∮
C F ·T ds? Do we

really need both∮
C(−Qdx + Pdy) and∮
C(Pdx + Qdy)? If kept,

better descriptions?

Green’s theorem can be viewed as the planar version of either the divergence
theorem or Stokes’ theorem.

Though div F and curl F were defined in rectangular coordinates, they
have a meaning that is independent of coordinates. For instance, if F is a
vector field in space, the divergence of F at a point multiplied by the volume
of a small region containing the point approximates the flux of F across the
surface of the small region. More precisely,

div F(P ) = lim
R→P

∫
S F · n dS

volume of R

where S is the boundary of R.

The description of the curl of F at P is more complicated. For each unit
vector n,

curl F(P ) = lim
R→P

∫
C

F · dr
Area of V

where R is a region that contains P perpendicular to n and C is the boundary
of R oriented according to right-hand rule.

A field whose curl is 0 is called irrotational. A field whose divergence is 0
is called incompressible (or divergence-free).
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Of particular interest are conservative fields. A field F is conservative if its
circulation along a curve depends only on its endpoints. If the domain of F is
simply connected, F is conservative if and only if its curl is 0. A conservative
field is expressible as the gradient of a scalar function.

Among the conservative fields are the central fields. If, in addition, they
are divergence-free, they take a special form that depends on the dimension,
as shown in the table below.

In the table R stands for the set of real numbers, R2 for the set of pairs
(x, y), R3 for the set of triplets (x, y, z), and Rn for the set of n-tuplets
(x1, x2, . . . , xn).

General Form of Divergence-Free
Geometry Central Fields Description

R2 (plane) cbr
r

inverse first power
R3 (space) c br

r2 inverse square power
Rn c br

rn−1 inverse n− 1 power

When curl F = 0 we can replace an integral
∫ B

A
F · dr by an integral over

another curve joining A and B, which can be helpful if the new line integral is
easier to evaluate than the original one. Similarly, in a region where ∇·F = 0
we can replace an integral

∫
S F · n dS with a more convenient integral over a

different surface.
In applications in space the most important field is the inverse square

central field, F = br
r2 . Its flux over a closed surface that does not enclose the

origin is 0, but its flux over a surface that encloses the origin is 4π. This is
established with the aid of the divergence theorem. If one thinks in terms
of steradians, it is clear why the second integral is 4π: the flux of r̂/r2 also
measures the solid angle subtended by a surface. Also, the first case becomes
clear in terms of solid angle when the parts of the surface where n ·r is positive
and where it is negative are treated separately.

EXERCISES for 18.S

1. Explain, in words, the difference between f(r)r̂ and f(r)r̂.

2. Use Green’s theorem to evaluate
∮
C(xy dx + ex dy), where C is the curve

that goes from (0, 0) to (2, 0) on the x-axis and returns from (2, 0) to (0, 0) on the
parabola y = 2x− x2.

3. Let F(x, y, z) = 3i.

(a) Find the flux of F across each of the faces of the pyramid with vertices (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (0, 0, 0).
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(b) Find the total flux of F across the surface of the pyramid.

(c) Verify the divergence theorem for F.

Figure 18.S.1
4. Let V be the cylinder bound by the surfaces x2 + y2 = 1, z = a, and z = b and
let S be its bounding surface. Verify the divergence theorem for F = xi + yj in this
case.

5. Let F be the uniform field F(x, y, z) = 2i + 3j + 0k. Carry out the three parts
of Exercise 3 for this field.

6. See Exercise 13 in Section 18.7. Suppose you placed the point at which E is
evaluated at (a, 0, 0) instead of at (0, 0, a).

(a) What integral in spherical coordinates arises?

(b) Would you like to evaluate it?

In Exercises 7 to 10, F is defined on the whole plane but indicated only at points
on a curve C bounding a region R. What can be said about

∫
R∇ · F dA?

(a) (b) (c) (d)

Figure 18.S.2
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7. See Figure 18.S.2(a).
8. See Figure 18.S.2(b).
9. See Figure 18.S.2(c).
10. See Figure 18.S.2(d).
Exercises 11 to 14, involve the same F as for Exercises 7 to 10. What can be said
about

∫
S(∇× F) · k dA in each case?

11. See Figure 18.S.2(a).
12. See Figure 18.S.2(b).
13. See Figure 18.S.2(c).
14. See Figure 18.S.2(d).

15. Let C be the circle of radius 1 with center (0, 0).

(a) What does Green’s theorem say about the line integral∮
C

(
(x2 − y3) dx + (y2 + x3) dy

)
?

(b) Use Green’s theorem to evaluate the integral.

(c) Evaluate it directly.

16. A pyramid is made of four congruent equilateral triangles. Find the steradians
subtended by one face at the centroid of the pyramid. No integration is necessary.

17. How many steradians does one face of a cube subtend at

(a) One of the four vertices not on that face?

(b) The center of the cube? No integration is necessary.

18. Which of the sets are connected? simply connected?

(a) A circle (x2 + y2 = 1) in the xy-plane

(b) A disk (x2 + y2 ≤ 1) in the xy-plane

(c) The xy-plane from which a circle is removed

(d) The xy-plane from which a disk is removed

(e) The xy-plane from which one point is removed
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(f) xyz-space from which one point is removed

(g) xyz-space from which a sphere is removed

(h) xyz-space from which a ball is removed

(i) A solid torus

(j) xyz-space from which a solid torus is removed

(k) A coffee cup with one handle

19. In Example 5, Section 18.1, we computed
∮
C F · dr where F = −yi+xj

x2+y2 and C
is the unit circle with center at the origin.

(a) Without doing any new computations, evaluate
∮
C F ·dr where C is the square

path with corners (1, 0), (2, 0), (2, 1), and (1, 1).

(b) Evaluate the integral in (a) by a direct computation, breaking the integral
into four integrals, one over each edge.

20. Let F(x, y) = (x + y)i + x2j and let C be the counterclockwise path around
the triangle whose vertices are (0, 0), (1, 1), and (−1, 1).

(a) Use the planar divergence theorem to evaluate
∫
C F · n ds, where n is the

outward unit normal.

(b) Evaluate the line integral in (a) directly.

21. Let b and c be positive and S the infinite rectangle parallel to the xy-plane,
consisting of the points (x, y, c) such that 0 ≤ x ≤ b and y ≥ 0.

(a) If b were replaced by∞, what is the solid angle that S subtends at the origin?
(No integration is needed.)

(b) Find the solid angle subtended by S when b is finite. (See Exercise 91 in
Section 8.6.)

(c) Is the limit of your answer in (b) as b→∞ the same as your answer in (a)?

22. Look back at the Fundamental Theorem of Calculus (Section 6.4), Green’s
theorem (Section 18.2), the divergence theorem (Section 18.5), and Stokes’ theorem
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(Section 18.6). What single theme runs through all of them?

23. Any vector field G that is the curl of a vector field has the property that the
integral of G · n over a surface depends only on the curve bounding the surface. So
two surfaces with the same boundary provide the same value of the integral. Is this
property shared by all vector fields, not just those that are the curl of another field?

April 22, 2012 Calculus



C.25– Heating and Cooling 1711

Calculus is Everywhere # 25

Heating and Cooling

Engineers who design a car radiator or a home air conditioner are interested in
the distribution of temperature in a fin. We present one of the mathematical
tools they use as an example that shows how Green’s theorem is applied.

A plane region A with boundary curve C is occupied by a sheet of metal.
By heating and cooling devices, the temperature along the border is held
constant, independent of time. Assume that the temperature in A eventually
stabilizes. The steady-state temperature at point P in A is denoted T (P ).
What does that imply about the function T?

Heat tends to flow from high to low temperatures, that is, in the direction
of −∇T . According to Fourier’s law, flow is proportional to the conductivity
of the material k (a positive constant) and the magnitude of the gradient ∇T .
Thus ∮

C

(−k∇T ) · n ds

measures the rate of heat loss across C for any curve C in A.
Since the temperature in the metal is at a steady state, the heat in the

region bounded by C remains constant. Thus∮
C

(−k∇T ) · n ds = 0.

Green’s theorem then tells us that∫
A

∇ · (−k∇T ) dA = 0

for any region A bound by a curve in the metal plate. Since ∇ · ∇T is the
Laplacian of T and k is not 0, we conclude that∫

A

(
∂2T

∂x2
+

∂2T

∂y2

)
dA = 0. (C.25.1)

By the zero integral theorem, the integrand must be 0 throughout A,

∂2T

∂x2
+

∂2T

∂y2
= 0.

This reduces the study of the temperature distribution to solving a partial
differential equation.
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Calculus is Everywhere # 26

How Maxwell Did It

In a letter to his cousin Charles Cay, dated January 5, 1865, Maxwell wrote:

I have also a paper afloat containing an electromagnetic theory
of light, which, till I am convinced to the contrary, I hold to be
great guns. [Everitt, F., James Clerk Maxwell: a force for physics,
Physics World, December 2006, http://physicsworld.com/cws/
article/print/26527]

SHERMAN: ”imagination”?
is ”ingenuity” or ”insight”

better?

It indeed was great guns, for in a dazzling feat of imagination Maxwell
predicted that light is an electrical phenomenon. Out of his theory has come
countless inventions, such as television, cell phones, and remote garage door
openers.

SHERMAN: Modify this
reference if the equations

are moved to body of
Section 18.9.

In this section we will see how that prediction came out of the equations
(i), (ii), (iii), and (iv) on page 1703.

First we look at the dimensions of the constants ε0 and µ0 that appear in
them.

The constant ε0 appears in

Force = F =
1

4πε0

qq0

r2
. (C.26.1)

Since the force F is mass times acceleration its dimensions are

mass · length

time2 ,

or, in symbols

m
L

T 2
.

The number 4π is a pure number, without any physical dimensions.
The quantity qq0 has the dimensions of charge squared, q2, and r2 has

dimensions L2.
Solving (C.26.1) for ε0, we find its dimensions. Since

ε0 =
qq0

4πFr2
,

its dimensions are (
T 2

mL

)(
q2

L2

)
=

T 2q2

mL3
.
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To find the dimensions of µ0, we will use its appearance in calculating the
force between two wires of length L each carrying a current I in the same
direction and separated by a distance R. Each generates a magnetic field that
draws the other towards it.

F = µ0
I2L

2πR
.

It follows that

µ0 =
2πRF

I2L
.

Since R has the dimensions of length L and F has dimensions mL/T 2, the
numerator has dimensions mL2/T 2. The current I is “charge q per second,”
so I2 has dimensions q2/T 2. The dimensions of the denominator are, therefore,

q2L

T 2
.

Hence µ0 has the dimensions

mL2

T 2
· T 2

q2L
=

mL

q2
.

The dimensions of the product µ0ε0 are therefore

mL

q2
· T

2q2

mL3
=

T 2

L2
.

The dimensions of 1/µ0ε0 are the same as the square of speed. In short,
1/
√

µ0ε0 has the dimensions of speed, length divided by time.
Now we are ready to do the calculations leading to Maxwell’s prediction.

We will use the equations (i) and (iv), as stated on page 1703, with the as-
sumptions that there is no charge (q = 0), no current J = 0, and the fields B
and E vary with time.

Differentiating (iv) with respect to time t yields

∂

∂t
(curlB) = µ0ε0

∂2E

∂t2
. (C.26.2)

The operator ∂
∂t

can be moved past the curl to operate directly on B. Thus
(C.26.2) becomes

curl
∂B

∂t
= µ0ε0

∂2E

∂t2
. (C.26.3)

The negative of (ii) is

−∇× E =
∂B

∂t
. (C.26.4)
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Taking the curl of both sides of (C.26.4) we get

curl (− curlE) = curl
∂B

∂t
. (C.26.5)

Combining (C.26.3) and (C.26.5) gives an equation that involves E alone:

curl (− curlE) = µ0ε0
∂2E

∂t2
. (C.26.6)

Another of the assumptions on electromagnetic fields is (i): div E = 0.
This simplifies the vector identity curl (curlE) = grad (div E)− (div grad)E
to

curl (curlE) = − (div grad)E. (C.26.7)

Combining (C.26.6) and (C.26.7) yields

(∇ · ∇)E = µ0ε0
∂2E

∂t2
or

∂2E

∂t2
− 1

µ0ε0

∇2E = 0. (C.26.8)

The expression ∇2 in (C.26.8) is short for div grad. In rectangular coordinates

∇2 = ∇ · ∇ =

(
∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
·
(

∂

∂x
i +

∂

∂y
j +

∂

∂z
k

)
=

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (C.26.9)

In (div grad)E we apply (C.26.9) to the components of E. Thus ∇2E is a
vector. So is ∂2E/∂t2 and (C.26.8) makes sense.

For simplicity, suppose E has only a y-component, which depends on x and
t. Thus E(x, y, z, t) = E(x, t)j, where E is a scalar function. We have(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
E(x, t) =

∂2E

∂x2
+ 0 + 0 =

∂2E

∂x2
.

Then (C.26.8) becomes

∂2

∂t2
E(x, t)j− 1

µ0ε0

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
E(x, t)j = 0,

from which it follows that

∂2

∂t2
E(x, t)− 1

µ0ε0

∂2E

∂x2
= 0. (C.26.10)

Multiply (C.26.10) by −µ0ε0 to obtain

∂2E

∂x2
− µ0ε0

∂2E

∂t2
= 0.
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This is an instance of the wave equation ((16.3.11) in Section 16.3). See also
the Wave in a Rope CIE at the end of Chapter 16. The solutions are waves
traveling with speed 1/

√
µ0ε0.

Maxwell then compares 1/
√

µ0ε0, which equals in his terminology “the
ratio of electrical units,” with the velocity of light:

“In the following table, the principal results of direct observa-
tion of the velocity of light, are compared with the principal results
of the calculation of electrical units.

Velocity of light (meters per second) Ratio of electrical units
Fizeau 314,000,000 Weber 310,740,000
Sun’s Parallax 308,000,000 Maxwell 288,000,000
Foucault 298,360,000 Thomson 282,000,000

Table C.26.1

It is significant that the velocity of light and the ratio of the
units are quantities of the same order of magnitude. Neither of
them can be said to be determined as yet with such a degree of
accuracy as to enable us to assert that the one is greater or less
than the other. It is to be hoped that, by further experiment, the
relation between the magnitude of the two quantities may be more
accurately determined.

In the meantime our theory, which asserts that these two quan-
tities are equal, and assigns a physical reason for this equality, is
certainly not contradicted by the comparison of these results such
as they are.” [James Clerk Maxwell, Treatise on Electricity and
Magnetism, Vol. 2, third edition, Oxford University Press, (1904),
first edition 1873, p. 436]

On this basis Maxwell concluded that light is an electromagnetic distur-
bance, uniting the fields of optics and electromagnetism. Earlier, in 1848,
Gustav Kirchoff had noticed that the expression involving the two electrical
units was near the velocity of light, but viewed it as a coincidence.

By 1890 experiments gave the velocity of light as 299, 766, 000 meters per
second and

√
1/µ0ε0 as 299, 550, 000 meters per second, overwhelming evidence

for Maxwell’s conjecture.
Newton, in his Principia of 1687, related gravity on Earth to gravity in

the heavens. Benjamin Franklin with his kite experiment showed that light-
ning was an electric phenomenon. From then through the early nineteenth
century experimenters showed that electricity and magnetism were insepara-
ble. It is still not known whether there is any connection between gravity and
electromagnetism.
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EXERCISES

1. Justify the assertion that ∂
d∂ curlB = curl

(
∂B
∂t

)
.
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