
Calculus

Sherman Stein Douglas Meade

October 29, 2007



Contents

Overview of Calculus I 1

1 Pre-Calculus Review of Functions 2
1.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The basic functions of calculus . . . . . . . . . . . . . . . . . . 20
1.3 Building more functions from basic functions . . . . . . . . . . 35
1.4 Graphing Functions Using A Graphing Calculator or Computer

Algebra System . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1.S Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Introduction to Calculus 50
2.1 Four special limits . . . . . . . . . . . . . . . . . . . . . . . . 51
2.2 The Limit of a Function: The General Case . . . . . . . . . . 67
2.3 Continuous Functions . . . . . . . . . . . . . . . . . . . . . . . 82
2.4 Three Important Properties of Continuous Functions . . . . . 96
2.S Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 106

3 The Derivative 109
3.1 Velocity and Slope: Two Problems with One Theme . . . . . . 110
3.2 The Derivatives of the Basic Functions . . . . . . . . . . . . . 123
3.3 Shortcuts for Computing Derivatives . . . . . . . . . . . . . . 132
3.4 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.5 Derivative of an Inverse Function . . . . . . . . . . . . . . . . 157
3.6 Antiderivatives and Slope Fields . . . . . . . . . . . . . . . . . 168
3.7 Motion and the Second Derivative . . . . . . . . . . . . . . . . 176
3.8 Precise Definition of Limits at Infinity: lim

x→∞
f(x) = L . . . . . 186

3.9 Precise Definition of Limits at a Finite Point: lim
x→a

f(x) = L . . 197

3.S Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 205

4 Derivatives and Curve Sketching 210
4.1 Three Theorems about the Derivative . . . . . . . . . . . . . . 211
4.2 The First-Derivative and Graphing . . . . . . . . . . . . . . . 229

October 30, 2007 Calculus i



CONTENTS CONTENTS

4.3 The Second Derivative and Graphing . . . . . . . . . . . . . . 239
4.4 Proofs of the Three Theorems . . . . . . . . . . . . . . . . . . 250
4.S Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . 257

5 More Applications of Derivatives 258
5.1 Applied Maximum and Minimum Problems . . . . . . . . . . 259
5.2 Implicit Differentiation and Related Rates . . . . . . . . . . . 280
5.3 Higher Derivatives and the Growth of A Function . . . . . . . 301
5.4 Taylor Polynomials and their Errors . . . . . . . . . . . . . . . 312
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Overview of Calculus I

There are two main concepts in calculus: the derivative and the integral. To
introduce these ideas, consider the follow two complementary problems:

Scenario A
Setting Your odometer is broken but you can still record your speed

every second.
Question How would you estimate the total distance?

Scenario B
Setting Your speedometer is broken but the total distance covered

every second can be recorded.
Question How would you estimate our velocity throughout the trip?

To estimate the distance traveled in Scenario A, we use the observation that
the velocity does not change very much during the one second between two
velocity measurements. The product of the recorded velocity (with units of,
say, meters per second) and the time between recordings (one second) provides
an estimate of the distance traveled during this one second time interval (with
units of meters). An estimate of the total distance traveled.

In Scenario A the speedometer is functional and the odometer is broken.
Scenario B presents a complentary situation: the speedometer is broken and
the odemeter works. Velocity is the rate of change of position with respect
to time. Reasoning as before, the distance traveled between any two data
recordings is the distance traveled over that second. This distance (with units
of, say, meters), divided by the amount of time between the recordings (here,
one second), gives an estimate of the velocity at any point during this one-
second time interval. Note that the units for the velocity are meters per second.

Both the derivative and the integral are based on limits (Chapter 2. In
both situations, the estimates become better if the data recordings are taken
at more frequent times.

Derivatives, the rate of change of one variable with respect to another vari-
able, are discussed in Chapters 3 and 4. Integrals are discussed in Chapters 5
and 6. The connection between these derivatives and integrals is very deep.
The Fundamental Theorem of Calculus (Sections 5.4 and 5.5) explores this
fundamental connection between derivatives and integrals.
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Chapter 1

Pre-Calculus Review of
Functions

Calculus is the study of functions. To understand the concepts introduced in
this text, it is important to have a solid understanding of functions.

We begin this chapter with a review of the terminology for functions that
will be used for the remainder of this book. In Section 1.2 three fundamental
types of functions — and their inverses — are reviewed: power functions,
exponentials, and logarithms. The final section describes how functions can
be combined to create new functions.
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Pre-Calculus Review of Functions § 1.1

1.1 Functions

This section begins with a brief review of the notion of a function. It then
discusses one-to-one functions, inverse functions, increasing functions, and de-
creasing functions.

Definition of a Function

The area of a square depends on the length of its side x and is given by the
formula A = x2. (See Figure 1.1.1.)

Figure 1.1.1:
Similarly, the distance s (in feet) that a freely falling object drops in the

first t seconds is described by the formula s = 16t2. Each choice of t determines
a specific value for s. For instance, when t = 3 seconds, s = 16 · 32 = 144 feet.

Both of these formulas illustrate the mathematical notion of a function.

DEFINITION (Function.) Let X and Y be sets. A function
from X to Y is a rule (or method) for assigning one (and only one)
element in Y to each element in X.

Figure 1.1.2:
The notion of a function is illustrated in Figure 1.1.2, where the element

y in Y is assigned to the element x in X. Usually X and Y will be sets of
numbers.

A function is often denoted by the symbol f . The element that the function
assigns to the element x is denoted f(x) (read “f of x”). In practice, though,
almost everyone speaks interchangeably of the function f or the function f(x).

If f(x) = y, x is called the input or argument and y is called the output
or value of the function at x. Also, x is called the independent variable
and y the dependent variable.

A function may be given by a formula, as in the function A = x2. Because
A depends on x, we say that “A is a function of x.” Because A depends on
only one number, x, it is called a function of a single variable, or univariate
function. The first ten chapters concern functions of a single variable. The
area A of a rectangle depends on its length l and width w of the rectangle;
it is a function of two variables, A = lw. The last five chapters of this book
extend calculus to multivariate functions and vector-valued functions.

Ways to write and talk about a function

The function that assigns to each argument x the value x2 is usually described
in a shorthand. For instance, we may write x 7→ x2 (and say “x goes to
x2” or “x is mapped to x2”). Or we may say simply, “the formula x2”, “the
function x2”, or, sometimes, just “x2.” Using this abbreviation, we might say,
“How does x2 behave when x is large?” Some people object to the shorthand

October 30, 2007 Calculus 3



Pre-Calculus Review of Functions § 1.1

“x2” because they fear that it might be misinterpreted as the number x2, with
no sense of a general assignment. In practice, the context will make it clear
whether x2 refers to a number or to a function.

Figure 1.1.3:

EXAMPLE 1 Consider a circle of radius a, as shown in Figure 1.1.3. Let
f(x) be the length of chord AB of this circle at a distance x from the center
of the circle. Find a formula for f(x).

SOLUTION We are trying to find how the length AB varies as x varies.
That is, we are looking for a formula for AB, the length of AB, in terms of x.

Before searching for the formula, it is a good idea to calculate f(x) for

Check the formula at x = 0
and x = a.

some easy inputs. These values can serve as a check on the formula we work
out.

In this case f(0) and f(a) can be read at a glance at Figure 1.1.3: f(0) = 2a
and f(a) = 0. (Why?) Now let us find f(x) for all x in [0, a].

Let M be the midpoint of the chord AB and let C be the center of the
circle. Observe that CM = x and CB = a. By the Pythagorean theorem,
BM =

√
a2 − x2. Hence AB = 2

√
a2 − x2. Thus

f(x) = 2
√
a2 − x2.

�

Domain and Range

If f is a function from X to Y , we will often be concerned with the set of
inputs (X) and the set of possible outputs (Y ). For this reason we give names
to the two sets.

DEFINITION (Domain and range) Let X and Y be sets and let
f be a function from X to Y . The set X is called the domain of The range is not necessarily

all of Y .the function. The set of all outputs of the function is called the
range of the function.

When the function is given by a formula, the domain is usually understood
to consist of all the numbers for which the formula is defined.

In Example 1 the domain is the closed interval [0, a] and the range is the For interval notation see
Appendix A.closed interval [0, 2a].

When using a calculator you must pay attention to the domain correspond-
ing to a function key or command. If you enter a negative number as x and Try it. What does your

calculator do? Some ad-
vanced calculators go into
“complex number” mode to
handle square roots of neg-
ative numbers.

press the
√
x-key to calculate the square root of x your calculator will not be

happy. It might display an E for “error” or start flashing, the calculator’s stan-
dard signal for distress. Your error was entering a number not in the domain
of the square root function.

October 30, 2007 Calculus 4



Pre-Calculus Review of Functions § 1.1

You can also get into trouble if you enter 0 and press the 1/x-key. The
Try it. No calculator, how-
ever advanced, can permit
division by zero.

domain of 1/x, the reciprocal function, consists of all numbers — except 0.

Graph of a Function

In case both the inputs and outputs of a function are numbers, we can draw a
picture of the function, called its graph.

DEFINITION (Graph of a function) Let f be a function whose
inputs and output are numbers. The graph of f consists of those
points (x, y) in the xy-plane such that y = f(x).

The next example illustrates the usefulness of a graph. We will encounter
this function again in Chapter 4.

EXAMPLE 2 A tray is to be made from a rectangular piece of paper. by
cutting congruent squares from each corner and folding up the flaps. The
dimensions of the rectangle are 81

2

′′ × 11′′. Find how the volume of the tray
depends on the size of the cutout squares.

SOLUTION Let the side of the cutout square be x inches, as shown in Fig-
ure 1.1.4(a). The resulting tray is shown in Figure 1.1.4(b).

(a) (b)

Figure 1.1.4: (a) A rectangular sheet with a square cutout from each corner.
(b) The tray formed when the sides are folded.

The volume V (x) of the tray is the height, x, times the area of the base
(11− 2x)(8.5− 2x),

V (x) = x(11− 2x)(8.5− 2x). (1)

The domain of V contains all values of x that lead to an actual tray. This means Note the peculiar trays that
are obtained when x = 0 or
x = 4.25.

that x cannot be negative, and x cannot be more than half of the shortest side.

October 30, 2007 Calculus 5



Pre-Calculus Review of Functions § 1.1

Thus, the largest corners that can be cut out have sides of length 4.25”. So,
for this tray problem, the domain of interest is only the interval [0, 4.25].

Of course we are free to graph (1) viewed simply as a polynomial whose
domain is (−∞,∞).

A short table of inputs and corresponding outputs will help us to sketch
the graph. Figure 1.1.5 displays the graph of V (x).

x (in) -1 0 1 2 3 4 4.25 5 6
V (x) (in3) -136.5 0 5.85 63 37.5 6 0 -7.5 21

Table 1.1.1:

6

60

20
1

−20

5

−60

−1

−100

−140

43

40

2

0

−40

0

−80

−120

x

Figure 1.1.5:
When 11 − 2x = 0, that is, when x = 11

2
= 5.5, V (x) = 0. When x is

greater than 11
2

all three factors in the formula for V (x) are positive, and V (x)
becomes very large for large values of x.

For negative x, two factors in (1) are positive and one is negative. Thus Which factor is negative?
V (x) is negative and has large absolute value for negative inputs of large
absolute value.

Only the part of the graph above the interval [0, 4.25] is meaningful in the The fact that V (x) > 0 for
x > 5.5 is irrelevant. Why?tray problem. All other values of x have nothing to do with trays. �

If you want to test whether some curve drawn in the xy-plane is the graph
of a function, check that each vertical line meets the curve no more than once.
If the vertical line x = a meets the curve twice, say at (a, b) and (a, c), there
would be the two outputs b and c for the single input a. What does it mean if the

vertical line x = a never in-
tersects the curve?Vertical Line Test The input a is in the domain of f if and only if

the vertical line x = a intersects the graph of y = f(x) exactly once.
Otherwise, a is not in the domain of f .

In Example 2 the function is described by a single formula, V (x) = x(11−
2x)(8.5 − 2x). But a function may be described by different formulas for
different intervals or individual points in its domain, as in the next example.

EXAMPLE 3 A hollow sphere of radius a has mass M , distributed uni-
formly throughout its surface. Describe the gravitational force it exerts on a
particle of mass m at a distance r from the center of the sphere.

SOLUTION Let f(r) be the force at a distance r from the center of the
sphere. In an introductory physics course it is shown that the sphere exerts
no force at all on objects in the interior of the sphere. Thus for 0 ≤ r < a,
f(r) = 0.

The sphere attracts an external particle as though all the mass of the sphere
were at its center. Thus, for r > a, f(r) = GMm

r2 , where G is the gravitational

October 30, 2007 Calculus 6



Pre-Calculus Review of Functions § 1.1

0.8

y

4.0

1.6

0.0

x

5

5.6

4.8

−5

2.4

−0.8
100

6.4

−10

3.2

Figure 1.1.6: The input-output table corresponding to this graph would have
three entries for each input −2 < x < 2, two entries for x = −2 and x = 2 and
exactly one entry for each input x < −2 or x > 2.

constant, which depends on the units used for measuring length, time, mass,
and force.

In the SI system (Systeme International), the standard for length is the
meter, for time is the second, and for mass is the kilogram. Force is
measured in Newtons. One Newton, N, is the force required to impart
an acceleration of one meter per second per second to a mass of one
kilogram. G ≈ 6.67x10−11Nm2/kg2. (See http://en.wikipedia.org/
wiki/Gravitational_constant.)

It can be shown by calculus that for a particle on the surface, that is, for
r = a the force is GMm

2a2 . The graph of f is shown in Figure 1.1.7. A solid dot
indicates that point is present; a hollow dot, that that point is absent. �

r

a

f(r)

Figure 1.1.7:

Inverse Functions

If you know a particular output of the function f(x) = x3 you can figure out
what the input must have been. For instance, if x3 = 8, then x = 2 – you
can go backwards from output to input. However, you cannot do this with the
function f(x) = x2. If you are told that x2 = 25, you do not know what x is.
It can be 5 or −5. However, if you are told that x2 = 25 and that x is positive,
then you know that x is 5.

This brings us to the notion of a one-to-one function. See also Appendix B.

DEFINITION (One-to-one function) A function f that does not
assign the same output to two different inputs is one-to-one. That
is, if f(x1) = f(x2), then x1 = x2.

October 30, 2007 Calculus 7
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Pre-Calculus Review of Functions § 1.1

Horizontal Line Test The graph of a one-to-one function never meets a
horizontal line more than once. (See Figure 1.1.8.)

x

8

1.0

0

−4

0.0

−8

y

10

6

1.5

4

2

−2
0.5

−6

−10

−0.5−1.0−1.5

(a)

0

0.0

5

0.75

−5

x

10

1.0

0.5

0.25

−10

(b)

Figure 1.1.8: The function in (a) is one-to-one because it passes the horizontal
line test. The function in (b) does not pass the horizontal line test, so it is not
one-to-one.

The function f(x) = x3 is one-to-one on the entire real line. A few entries
in the tables for f(x) and its inverse function are shown in Table 1.1.2(a) and
(b), respectively.

input 1 2 1
2

3 -2
output 1 8 1

8
27 -8

(a)

input 1 8 1
8

27 -8
output 1 2 1

2
3 -2

(b)

Table 1.1.2: (a) Table of input and output value for f(x) = x3. (b) Table of
input and output values for the inverse of f(x) = x3.

In this case an explicit formula for the inverse function can be found al-
gebraically: if y = x3 then y1/3 = (x3)1/3 = x. Then x = y1/3. Since it is
customary to use the x-axis for the input and the y-axis for the output, it is
convenient to rewrite x = y1/3 as y = x1/3. Both say the same thing:

“The output is the cube
root of the input.”.)

By the way, an inverse of a one-to-one function may not be given by a nice
formula. For instance, f(x) = 2x+ cosx is one-to-one, as will be easily shown
by a technique presented in Chapter 4. However, the inverse function is not
described by a convenient formula. Happily, we do not need to deal with an
explicit formula for this particular inverse function.
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The Graph of an Inverse Function

Suppose you know the graph of a one-to-one function. Then there is an easy
way to draw the graph of the inverse function.

If (a, b) is a point on the graph of the function f , that is, b = f(a), then
(b, a) is a point on the graph of invf , shown in Figure 1.1.9.

y

43

1

21

4

3

x

0

2

0

(a,b)                   

(b,a)                   

y=x                     

Figure 1.1.9: Geomet-
rically, the point (b, a)
is obtained by reflecting
(a, b) around the line y =
x.

Notation: The use of invf to denote the inverse function of f is based
on the fact that many calculators have a button marked inv to indicate
the inverse of a function. The mathematical notation for the inverse
function of f is f−1. Note that the −1 is not an exponent, and in general

the inverse and reciprocal functions are different: f−1 is not equal to 1
f

.

EXAMPLE 4 Draw the graphs of (a) the inverse of the cubing function
given by f(x) = x3, and (b) the squaring function g(x) = x2 restricted to
x ≥ 0.

SOLUTION See Figure 1.1.10. �

y

21

−1

0−1

2

1

x

−2

0

−2

y=x^3                   

y=x^(1/3)               

y=x                     

(a)

y

x

2.01.5

0.5

1.00.5

2.0

1.5

0.0

1.0

0.0

y=x^2                   

y=x^(1/2)               

y=x                     

(b)

Figure 1.1.10: (a) Plots of f(x) = x3 and f−1(x) = x1/3. (b) Plots of g(x) = x2

(x ≥ 0) and g−1(x) =
√
x.

EXAMPLE 5 Let m 6= 0 and b be constants and f(x) = mx + b. Show
that f is one-to-one and describe its inverse function.

SOLUTION If f(x1) = f(x2) we have

mx1 + b = mx2 + b
mx1 = mx2 subtract b from both sides
x1 = x2 divide both sides by m 6= 0
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Because f(x1) = f(x2) only when x1 = x2, f is one-to-one. 2.0

0.0

−1.6

x

−1

y

0.8

−1.2

0.4

1.2

−0.4

−0.8

−2.0

20

1.6

−2 1

Figure 1.1.11:

This problem can also be analyzed graphically. The graph of y = f(x) is
the line with slope m and y-intercept b. (See Figure 1.1.11.)

To find the inverse function, solve the equation y = f(x) to express x in
terms of y:

y = mx+ b
y − b = mx subtract b from both sides
y−b
m

= x divide by m 6= 0
x = y

m
− b

m
move x to left-hand side

y = x
m
− b

m
interchange x and y.

Reversing the roles of x and y in the final step is done only to present the
inverse function in a form where the input is called x and the output is called
y. Thus the inverse function has the formula

f−1(x) =
x

m
− b

m
.

The graph of the inverse function is also a line; the slope is 1/m and the y-
intercept is −b/m. �

x

21

−1

0−1

2

1

y

−2

0

−2

y=mx+b                  

reflection of y=mx+b...

y=x                     

Figure 1.1.12:

OBSERVATION (Reflecting a line of slope m) If you reflect a This observation will play
an important role in Sec-
tion 3.5.

line of slope m 6= 0 across the line y = x, you obtain a line of slope
1/m, the reciprocal of m. This is shown in Figure 1.1.12.

Decreasing and Increasing Functions

There is another way to check whether a function is one-to-one on an interval.
It uses the following concepts.

A function is increasing on an interval if whenever x1 and x2 are in the
interval and x2 is greater than x1, then f(x2) is greater than f(x1). As you
move along the graph of f from left to right, you go up. This is shown in
Figure 1.1.13(a). In the case of a decreasing function, you go down as you
move from left to right: if x2 > x1 then f(x2) < f(x1). (See Figure 1.1.13(b).)

For instance, consider f(x) = sinx, whose graph is shown in Figure 1.1.14.
On the interval [−π/2, π/2] the values of sinx increase. On the interval

21

0.8

−1

0.4

1.0

0

0.0

−3

−0.4

−5

−0.8

0.6

0.2

−2
−0.2

−0.6

−4

−1.0

−6

x

3 654

Figure 1.1.14:
[π/2, 3π/2] the values of sinx decrease. The function x3 increases on its entire
domain (−∞,∞).

EXAMPLE 6 For k 6= 0 and x > 0, xk is a monotonic function. The
inverse of xk is x1/k. If k = 0, we have a constant function, x0 = 1. The Power functions, xk, will be

discussed in greater detail
in Section 2.2.
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1

2

x

−3

−5

0

−1

−2

−4

109876543210

(a)

0.0

−5.0

7.5

5.0

2.5

−2.5

−7.5

x

210−1−2

(b)

Figure 1.1.13: Graph of (a) an increasing function and (b) a decreasing func-
tion.

constant function does not pass the Horizontal Line Test; therefore it has no
inverse. �

A monotonic function is a function that is either only increasing or only Monotone is from the
Greek, mono=single,
tonos=tone, which
also gives us the word
‘monotonous’).

decreasing.
Because strict inequalities are used in the definitions of increasing and

decreasing, we sometimes say these functions are strictly increasing or strictly
decreasing on an interval. A function f is said to be non-decreasing on an
interval if f(x2) ≥ f(x1) for all x2 > x1 in that interval. The graph of a
non-decreasing function is generally increasing except at points where it can
be constant. Likewise, f is non-increasing on an interval if f(x2) ≤ f(x1)
for all x2 > x1 in the interval.

Summary

This section introduced concepts that will be used throughout the coming
chapters: function, domain, range, graph, one-to-one functions are invert-
ible, increasing functions, decreasing functions, and monotonic functions. The
graph of the inverse function is the reflection across the line y = x of the graph
of the original function.

A function can be described in several ways: by a formula, such as V (x) =
x(11 − 2x)(8.5 − 2x), by a table of values, or by words, such as “the volume
of a tray depends on the size of the cut-out square.”
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EXERCISES for 1.1

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

Exercises 1–4 refer to Figure 1.1.15.

Figure 1.1.15: Exer-
cises 1–4.

1. Express the circle of triangle ABC as a function of x = CM

2. Express the perimeter of triangle ABC as a function of x.

3. Express the area of triangle ABC as a function of θ.

4. Express the perimeter of triangle ABC as a function of θ.

In Example 2 a tray was formed from an 8” by 11” rectangle by removing
squares from the corners. Find and graph the corresponding volume function
for trays formed from sheets with the dimensions given in Exercises 5–8.

5. 4” by 13”

6. 5” by 7”

7. 6” by 6”

8. 5” by 5”

In Exercises 9 and 10 decide which curves are graphs of (a) functions, (b)
increasing functions, and (c) one-one functions.

9.
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10.
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11. Let f(x) = x3.

(a) Fill in this table

x 0 1/4 1/2 −1/4 −1/2 1 2
x3

(b) Graph f .

(c) Use the table in (a) to find seven points on the graph of f−1.

(d) Graph f−1 (use the same axes as in (b)).

12. Let f(x) = cosx, 0 ≤ x ≤ π (angles in radians).

(a) Fill in this table

x 0 π/6 π/4 2π/3 π/2 3π/4 π

cosx

(b) Graph f .

(c) Use the table in (a) to find seven points on the graph of inv cos.

(d) Graph inv cos (use the same axes as in (b)).

In Exercises 13–18 the functions are one-one. Find the formula for each
inverse function, expressed in the form y = g(x), so that the independent
variable is labeled x. Note: If you have trouble with the use of logarithms in
Exercise 17 or Exercise 18, read Appendix D.

13. y = 3x− 2

14. y = x/2 + 7

15. y = x5

16. y = 3
√
x

17. y = 3x

18. y = 5(2x)

In Exercises 19–23 the slope of line L is given. Let L′ be the reflection of
L across the line y = x. What is the slope of the reflected line, L′? In each
case sketch a possible L and its reflection, L′.

19. L has slope 2.
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20. L has slope 1.

21. L has slope 0.

22. L has slope -1/3.

23. L has slope -2.

24. A camper at A will walk to the river, put some water in a pail at P , and
take it to the campsite at B. Where should P be located to minimize the length
of the walk, AP + PB? (See Figure 1.1.16.) Hint: Reflect B across the line L.
Note: Calculus-based methods for finding minima and maxima will be developed

Figure 1.1.16: Sketch of situation in Exercise 24.

in Chapter 4.

In Exercises 25–34 state the formula for the function f and give the domain
of the function.

(a) (b) (c) (d)

Figure 1.1.17:

25. f(x) is the perimeter of a circle of radius x.

26. f(x) is the area of a circle of radius x.
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27. f(x) is the perimeter of a square of side x.

28. f(x) is the volume of a cube of side x.

29. f(x) is the total surface area of a cube of side x.

30. f(x) is the length of the hypotenuse of the right triangle whose legs have
lengths 3 and x.

31. f(x) is the length of the side AB in the triangle in Figure 1.1.17(a).

32. For 0 ≤ x ≤ 4, f(x) is the length of the path from A to B to C in
Figure 1.1.17(b).

33. For 0 ≤ x ≤ 10, f(x) is the perimeter of the rectangle ABCD, one side of
which has length x, inscribed in the circle of radius 5 shown in Figure 1.1.17(c).

34. A person at point A in a lake is going to swim to the shore ST and
then walk to point B. She swims at 1.5 miles per hour and walks at 4 miles per
hour. If she reaches the shore at point P , x miles from S, let f(x) denote the
time for her combined swim and walk. Obtain an algebraic formula for f(x). (See
Figure 1.1.17(d).)

35. Let f(x) be the length of the segment AB in Figure 1.1.18.

Figure 1.1.18: Exer-
cise 35.

(a) What are f(0) and f(a)?

(b) What is f(a/2)?

(c) Find the formula for f(x) and explain your solution.

36. Let f(x) be the area of the right circular cone cross section in Figure 1.1.19.

Figure 1.1.19: Exer-
cise 36.

(a) What are f(0) and f(h)?

(b) Find a formula for f(x) and explain your solution.

In Exercises 37–41 give (a) three functions that satisfy the equation through-
out their domain and (b) one function that does not.

37. f(x+ y) = f(x) + f(y).

38. f(x+ y) = f(x)f(y)

39. f(xy) = f(x) + f(y)

40. f(x+ y) = f(x)f(y)

41. f(x) = f(y)
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42. The cost of life insurance depends on whether the person is a smoker or a
non-smoker. The following chart lists the annual cost for a male for a million-dollar
life insurance policy.

age (yrs) 20 30 40 50 60 70 80
cost for smoker ($) 1150 1164 1944 4344 9864 26500 104600
cost for non-smoker ($) 396 396 600 1490 3684 10900 41600

Note: A “smoker” is a person who has used tobacco during the previous three
years.

(a) Plot the data and sketch the graphs on the same axes for both groups of males.

(b) A smoker at age 20 pays as much as a non-smoker of about what age?

(c) A smoker pays about how many times as much as a non-smoker of the same
age?

43. The cost of a ride in a New York city taxi is described by this formula:
Note: The cost also depends on other factors. For every two minutes stopped in
traffic, 40 cents is added. During the evening rush, 4–8 pm, there is a surcharge
of one dollar. Between 8 pm and 6 am there is a surcharge of 50 cents. So the
cost, which depends on distance travelled, time stopped, and time of day, is actu-
ally a function of three variables.) At the start the meter reads $2.50. For every
fifth of a mile, 40 cents is added. Graph the cost as a function of distance travelled.

44. If f is an increasing function, what, if anything, can be said about f−1?

45. On a typical summer day in the Sacromento Valley the temperature is at a
minimum of 60◦ at 7 AM and a maximum of 95◦ at 4 PM.

(a) Sketch a graph that shows how the temperature may vary during the twenty-
four hours from midnight to midnight.

(b) A closed shed with little insulation is in the middle of a treeless field. Sketch
a graph that shows how the temperature inside the shed may vary during the
same period.

(c) Sketch a graph that shows how the temperature in a well-insulated house may
vary. Assume that in the evening all the windows and skylights are opened
when the outdoor temperature equals the indoor temperature, and closed in
the morning when the two temperatures are again equal.
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Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Air Temp (◦) 56 60 68 76 83 88 91 89 85 77 69 60

Water Temp (◦) 51 52 57 62 69 77 81 83 80 73 65 55

Table 1.1.3: Source: http://www.myrtle-beach-resort.com/weather.htm

46. The monthly average air and water temperatures in Myrtle Beach, SC, are
shown in Table 1.1.3. Note: Assume, for convenience, that the temperatures in the
table are the temperatures on the first day of each month.

(a) Sketch a graph that shows how the water temperature may vary during one
calendar year, that is, from January 1 through December 31.

(b) Sketch a graph that shows how the difference between the air and water tem-
peratures may vary during one calendar year. During what month is the water
temperature difference greatest? least?

(c) During February, the water temperature increases 5◦ in 28 days so the average
daily change is 5/28 ≈ 0.1786◦/day. For each month, estimate the average
daily change in the water temperature from one day to the next. Note: For
example, During which month is this daily change greatest? least?

(d) Repeat (b) and (c) for the air temperature data.

47. This problem grew out of a question raised by the daughter of one of the
authors, when cutting cloth for a dress. She wanted to cut out two congruent
semicircles from a long strip of fabric 44 inches wide, as shown in Figure 1.1.20. The

Figure 1.1.20: Exer-
cise 47.

radius of the semicircles determines d, the length of fabric used.

(a) Draw a picture to show f(22) = 44.

(b) For 0 ≤ r ≤ 22, determine d as a function of r, d = f(r).

(c) For 22 ≤ r ≤ 44, determine d as a function of r, d = f(r).

(d) Obtain an equation expressing r as a function of d.

(e) She had 104 inches of fabric, and guesed that the largest semicircle she could
cut set has a radius of about 30 inches. Use (c) to see how good her guess is.

48. Let g(d) be the radius of the largest pair of semicircles with diameters on the
edge of the fabric, if the fabric is d inches long and 44 inches wide. The domain of
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g is (0, ∞). Find g and graph it. Note: This is related to Exercise 47.

49. A solar cooker for campers can be made out of a 60◦-section of a sphere whose
radius is 2 feet. A typical cross section is sketched in Figure 1.1.21. The cooker’s

Figure 1.1.21: Exer-
cise 49.

axis AO is aimed toward the sum. A ray of light BD is reflected off the surface at
B. Angle OBD equals angle OBC.

(a) Express the length OC as a function of θ.

(b) How long a hot dog can be placed on the radius AO and be heated by the
cooker?
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1.2 The basic functions of calculus

This section describes the basic functions in calculus. In the next section you
will see how to use these functions as building blocks for more complicated
functions.

The Power Functions

The first group of functions consists of the power functions xk where the
exponent k is a fixed non-zero number and the base x is the input. If k is an
odd integer, then xk has an inverse, x1/k, another power function. If k is an
even integer and we restrict the domain of xk to the positive numbers, then it
is one-to-one, and has an inverse, again x1/k, with, again, a domain consisting
of all positive numbers.

In Section 2.1 it was shown that the inverse of f(x) = x3 is f−1(x) = x1/3

for all x. Notice, however, g(x) = x4 does not pass the horizontal line test
unless the domain is restricted to, say, positive inputs (x ≥ 0). Thus, the
inverse of g(x) = x4 is g−1(x) = x1/4 only for x ≥ 0.

2

2

0

0

−2

x

3

3

1

1

−1

−3

−1−2−3

(a)

3

0

−2

−1

2

x

3

1

−3

−3

0

2

−2 1−1

(b)

Figure 1.2.1: Graphs of power functions. (a) xk for k = 1 (red), 5 (blue), 1/5
(blue), 5/3 (green), and 3/5 (green). (b) xk for k = 1 (red), 4 (pink), 1/4
(pink), 3/2 (aqua), and 2/3 (aqua). Note that the pairs of blue and green
graphs are inverses in (a), as are the pairs of (solid) pink and aqua graphs
in (b). In (b) the graphs of x4 and x2/3 pass the horizontal line test only for
x ≥ 0, and the graphs of x1/4 and x3/2 are defined only for x ≥ 0.

OBSERVATION (Inverses of Power Functions)

1. The inverse of a power function is another power function.
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2. When k = 0, we obtain the function x0, which is constant
(with all outputs equal to 1), the very opposite of being one-
to-one. Constant functions are discussed in more detail in
Section 1.3.

3. When the exponent k is an even integer or a rational number
(in lowest terms) whose numerator is even (2/3, 4/7, etc.) the
graph of y = xk will not pass the horizontal line test unless
the domain is restricted to x ≥ 0. When k is an even inte-

ger or a rational number
(in lowest terms) whose nu-
merator is even, (−x)k =
xk. That’s why these power
functions are not one-to-
one throughout (−∞,∞).

The Exponential and Logarithm Functions

Next we have the exponential functions bx where the base b is fixed and
the exponent x is the input. The inverses of exponential functions are not
exponential functions. The inverses are called logarithms and are the next
class of functions that we will consider. A review of exponential

and logarithmic functions
is in Appendix D.

Consider a function of the form bx, where b is positive and fixed. In order
to be concrete, let’s take the case b = 2, that is, f(x) = 2x.

As x increases, so does 2x. So the function 2x has an inverse function. In
other words, if y = 2x, then if we know the output y we can determine the
input x, the exponent, uniquely. For instance, if 2x = 8 then x = 3. This is
expressed as 3 = log2 8 and it read as “the logarithm of 8, base 2, is 3.” If
y = bx, then we write x = logb y.

Since we usually denote the independent variable (the input or argument)
by x, and the dependent variable (the output, or value) by y, we will rewrite
this as y = logb x.

The table of easy values of log2 x in Table 1.2.1 will help us graph y = log2 x.
Putting a smooth curve through the seven points in Table 1.2.1 yields the graph
in Figure 1.2.2.

x 1 2 4 8 1/2 1/4 1/8
log2 x 0 1 2 3 -1 -2 -3

Table 1.2.1: Table of easy values of y = log2 x.

As x increases, log2 x grows very slowly. For instance log2 1024 = 10, as
every computer scientist knows. For x between 0 and 1, log2 x is negative. As
x moves from 1 towards 0, | log2 x| grows very large. For instance, log2

1
1024

=
−10.

Because y = 2x and y = log2 x are inverse functions, we could have sketched
the graph of y = log2 x by first sketching the graph of y = 2x and reflecting it
around the line y = x.

For any positive base b, logb x is defined similarly.
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0.0

15.012.510.07.55.02.50.0

−5.0

2.5

−2.5

Figure 1.2.2: Plot of y = log2 x based on data in Table 1.2.1.

For x and b both positive numbers, the logarithm of x to the base b, denoted Whenever you see “logb x”
you should think, “Ah, ha!
The fancy name for an ex-
ponent.”

logb x, is the power to which we must raise b to obtain x. By the very definition
of the logarithm

blogb x = x.

The Trigonometric Functions and Their Inverses

So far we have the power functions, xk, the exponential functions, bx, and
the logarithm functions, logb x. The last major group of important functions
consists of the trigonometric functions, sinx, cosx, tanx, and their inverses
(after we shrink their domains to make the functions one-to-one).

sinx and its inverse
In calculus we generally
measure angles in radians.
See also Appendix E.

The graph of the sine function sinx has period 2π and is shown in Fig-
ure 1.2.2. The range is [−1, 1]. On the domain [−π/2, π/2], sinx is increasing

0

x

0

Figure 1.2.3:

and its values for these inputs already sweep out the full range, [−1, 1].
When we restrict the domain of the function sin x to [−π/2, π/2] it is a

one-to-one function with range [−1, 1]. This means the sine function has an
inverse with domain [−1, 1] and range [−π/2, π/2]. The inverse sine function
is denoted by arcsinx, sin−1 x, or inv sinx.

Let’s stop for a moment to summarize our findings: For x in [−1, 1], arcsin x
is the angle in [−π/2, π/2] whose sine is x. In equations:

y = arcsinx ⇐⇒ sin y = x.

For instance, arcsin 1 = π/2 because the angle in [−π/2, π/2] whose sine is
1 is π/2. Similarly, sin−1(1/2) = π/6, inv sin 0 = 0, arcsin(−1/2) = −π/6,
sin−1(−1) = −π/2.
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We could graph y = arcsin x with the aid of these five values. However,
it’s easier just to reflect the graph of y = sinx around the line y = x. (See
Figure 1.2.4.)

−1.0

x

0.5

1.51.0

0.0

0.5

1.5

1.0

−1.0

−0.5

−0.5−1.5

−1.5

0.0

Figure 1.2.4: The graph of y = sin−1 x is the graph of y = sinx on [−π/2, π/2]
reflected around the line y = x.

cosx and its inverse

The graph of the cosine function cosx is shown in Figure 1.2.5.

0

50

x

Figure 1.2.5:
It is clearly not one-to-one, even if we restrict the domain to the domain

used for sinx, namely [−π/2, π/2]. In this case note that cosx is a decreasing
function on [0, π]. So the cosine function is one-to-one on [0, π]. Moreover,
the values of cosx for x in [0, π] sweep out all possible values of the cosine
function, namely [−1, 1].

Because cosx is a one-to-one function on the domain [0, π], cosine has an
inverse function, called arccosx, inv cosx, or simply cos−1 x. Each of these is
short for “the angle (in radians) in [0, π] whose cosine is x”. For instance,
cos−1 0 = π/2, cos−1 1 = 0, and cos−1(−1) = π. Moreover, because the range
of the cosine function is the closed interval [−1, 1], the domain of arccos is
[−1, 1]. Figure 1.2.6 shows that the graph of cos−1 x is obtained by reflecting
the graph of cosx, with domain [0, π], around the line y = x.

tanx and its inverse

The range of the function tan x = sinx
cosx

is (−∞,∞), as Figure 1.2.7 shows.

x
K3 K2 K1 0 1 2 3 4 5 6

K10

K5

5

10

Figure 1.2.7:
When the inputs are restricted to (−π/2, π/2), tanx is one-to-one, and

therefore has an inverse function, denoted arctanx, tan−1 x, or inv tanx. The
domain of the inverse tangent function is (−∞,∞) and its range is (−π/2, π/2).

For instance, tan−1(0) = 0, tan−1 1 = π/4, and as x increases, tan−1 x
approaches π/2. Also, tan−1(−1) = −π/4, and when x is negative and becomes
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2.8

1.6

−0.4

1.2

x

2.4

2.0

2

0.8

0

−0.8

0.4

31

3.2

−1

0.0

Figure 1.2.6: The graph of y = cos−1 x is defined for x in [−1, 1]. It is obtained
by reflecting the graph of y = cosx, with domain restricted to [0, π], around
the line y = x.

ever more negative (that is, |x| becomes bigger and bigger) tan−1 x approaches
−π/2. Figure 1.2.8 is the graph of tan−1 x. It is the reflection of the blue part
of the graph in Figure 1.2.7 across the line y = x. (See Figure 1.2.8.)

2

6

4

2

−6

−2 10

x

10

8

8

6

4

−4

0

−2
0

−8

−10

−4−6−8−10

Figure 1.2.8:

EXAMPLE 1 Evaluate (a) sin(sin−1 0.3), (b) sin(tan−1 3), and (c) tan(cos−1(0.4)).

3

1q

Figure 1.2.9:SOLUTION
The traditional symbol for
angles is the Greek letter θ
(pronounced ”theta”).

(a) The expression sin−1(0.3) is short for the angle in the interval [−π/2, π/2]
whose sine is 0.3. So, the sine of sin−1(0.3) is 0.3.

(b) To find sin(tan−1 3), first draw the angle θ whose tangent is 3 (and lies in
the interval [−π/2, π/2]. Figure 1.2.9 shows a simple way to draw this an-
gle. To find the sine of θ, recall that sine equals “opposite/hypotenuse.”
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By the Pythagorean Theorem, the hypotenuse is
√

32 + 12 =
√

10. Thus,
sin(tan−1 3) = 3/

√
10.

(c) To evaluate tan(cos−1 0.4), first draw an angle whose cosine is 0.4 = 2
5
, as

in Figure 1.2.10, which is based on the fact that “cos θ = adjacent/hypotenuse.”
To find the tangent of this angle, we need the length of the other leg in

5

2q

Figure 1.2.10:

Figure 1.2.10. By the Pythagorean Theorem this length is
√

52 − 22 =√
21.

From the relation tan θ = opposite/adjacent, we conclude that tan(cos−1 0.4) =√
21/2 ≈ 2.291.

�

WARNING (about notation for inverse functions) We use “arcsin(x)”
to denote “the angle whose sine is x.” There is another common
notation, “sin−1 x.” Unfortunately, this may be read as (sinx)−1,
the reciprocal of sin x. After all, sin2 x means (sin x)2. Though the
notation “sin−1 x” is shorter than “arcsin x,” we prefer the latter
to avoid the risk of misinterpretation. Similar comments apply to
tan−1 x and arctanx and to cos−1 x and arccosx. We will use both
notations throughout this book.

cscx, secx, and cotx and their inverses

The cosecant, secant, and cotangent functions are defined in terms of the
sine and cosine functions:

cscx =
1

sinx
, secx =

1

cosx
, and cotx =

sinx

cosx
.

While we could write cscx = (sinx)−1, we do not because of the possible
confusion with sin−1 x = arcsinx. Each of these functions is defined only
when the denomonator is not zero. Figure 1.2.11 shows the graphs of these
three functions.

Note that | secx| ≥ 1 and | cscx| ≥ 1. In each case the range consists of
two separate intervals: [1,∞) and (−∞,−1].

These three functions have inverses, when restricted to appropriate inter-
vals. Table 1.2.2 contains a summary of the three inverse functions, csc−1 x,
sec−1 x, and tan−1 x. Figure 1.2.12 shows the graphs of csc, sec, and cot and
their inverses.
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Figure 1.2.11: The graphs of (a) the cosecant, (b) the secant, and (c) the
cotangent functions.

function domain (input) range (output)
csc−1 x (−∞,−1] and [1,∞) all of [−π/2, π/2] except 0
sec−1 x (−∞,−1] and [1,∞) all of [0, π] except 0
cot−1 x (−∞,∞) the open interval (0, π)

Table 1.2.2: Summary of the inverse cosecant, inverse secant, and inverse
cotangent functions.
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Figure 1.2.12: Graphs of (a) y = cscx and y = csc−1 x, (b) y = secx and
y = sec−1 x, and (c) y = cotx and y = cot−1 x. Notice how the inverse
function is the reflection of the original function across the line y = x.
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Summary

This section reviewed the basic functions in calculus, xk, bx, sinx, cosx, and
tanx, and their inverses logb x, arcsinx, arccosx, and arctanx. (The inverse
of xk, k 6= 0, is just another power function x1/k).

The functions that may be hardest to have a feel for are the logarithms.
Now, log2 x is typical of logb x, b > 1. These are its key features:

• its graph crosses the x-axis at (1, 0) because log2 1 = 0 (20 = 1),

• it is defined only for positive inputs, that is, the domain of log2 is (0,∞),
because only positive numbers can be expressed in the form 2x,

• it is always an increasing function,

• it grows very slowly as the argument increases: log2 8 = 3, log2 16 = 4,
log2 32 = 5, log2 64 = 6, and log2 1024 = 10,

• for values of x in (0, 1), log2 x is negative (x = 2y < 1 only when y < 0),

• as x gets near 0 (and is positive), |log2 x| becomes very large.

The case when the base b is less than 1 is treated in Exercise 55.
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EXERCISES for 1.2

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

1. Graph the power function x3/2, x ≥ 0, and its inverse.
2. Graph the power function x5 and its inverse.
3. Explain your calculator’s response when you try to calculate log10(−3)?
4. Explain your calculator’s response when you try to calculate arcsin(2)?

5.

(a) Graph 2x and (1/2)x on the same axes.

(b) How could you obtain the second graph from the first?

6.

(a) Graph 3x and (1/3)x are the same axes.

(b) How could you obtain the second graph from the first?

7. For any base b, b0 = 1. What is the corresponding property of logarithms?

Explain.
8. For any base b, bx+y = bxby. What is the corresponding property of logarithms?

Note: If you have trouble with Exercise 8, study Appendix D.
9. Explain why logb (1/x) = − logb x. (“The log of the reciprocal of x is the

negative of the log of x.”)
10. Explain why logb(cx) = x logb c. (“The log of a number raised to a power x

is x times the log of the number.”)
11.

(a) Evaluate log2 x and log4 x at x=1, 2, 4, 8, 16, and 1/16.

(b) Graph log2 x and log4 x on the same axes (clearly label each point found in
(a)).

(c) Compute log4 x
log2 x

for the six values of x in (a).

(d) Explain the phenomenon observed in (c).

(e) How would you obtain the graph of log4 x from that for log2 x?
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12.

(a) Evaluate log2 x and log8 x at x=1, 2, 4, 8, 16, and 1/8.

(b) Graph log2 x and log8 x on the same axes (clearly label each point found in
(a)).

(c) Compute log8 x
log2 x

for the six values of x in (a).

(d) Explain the phenomena observed in (c).

(e) How would you obtain the graph of log8 x from that for log2 x?

13. Evaluate

(a) log10 1000

(b) log100 10

(c) log10 0.01

(d) log10

√
10

(e) log10 10

14. Evaluate

(a) log3(317)

(b) log3(1/9)

(c) log3 1

(d) log3

√
3

(e) log3 81

15. Evaluate 5log5(17).
16. Evaluate 3− log3(21).
17. For large values of x, the three functions, 2x, x2, and log2 x

18. For very large values of x what happens to the quotent x2/2x? Illustrate by
using specific values for x.
19. What happens to (log2 x)/x for large values of x? Illustrate by citing specific
x.

20. What happens to log4(x)
log2(x) as x increases.
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21. Draw graphs of cosx, x in [0, π], and arccosx on the same axes.
22. Draw graphs of tanx, x in (−π/2, π/2), and arctanx on the same axes.
23. Evaluate

(a) sin−1(1/2)

(b) arcsin 1

(c) inv sin(−
√

3/2)

(d) arcsin(
√

2/2)

24. Evaluate

(a) cos−1 0

(b) inv cos(−1)

(c) arccos(1/2)

(d) arccos(−1/
√

2)

25. Evaluate

(a) arctan 1

(b) inv tan(−1)

(c) arctan
√

3

(d) arctan 1000 (approximately)

26. Evaluate

(a) arcsec 2

(b) inv sec(−2)

(c) arcsec
√

2

(d) sec−1 1000 (approximately)

27. Evaluate
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(a) arcsin(0.3)

(b) arccos(0.3)

(c) arctan(0.3)

(d) arcsin(0.3)
arccos(0.3)

Note: Observe that (c) and (d) are different.

28. Evaluate sin(tan−1(2)).

29. Evaluate sin(cos−1(0.4)).

30. Evaluate tan(tan−1(3)).

31. Evaluate tan(sin−1(0.7)).

32. Evaluate tan(sec−1(3)).

33. Evaluate sec(tan−1(0.3)).

34. Evaluate sin(sec−1(5)).

35. Evaluate sec(cos−1(0.2)).

36. Evaluate arctan(tan π
3 ).

37. Evaluate arcsin(sin −3π
4 ).

38. Evaluate arccos(cos 5π
2 ).

39. Evaluate arcsec(sec −π3 ).

In Exercises 40–43 express log10 f(x) as simple as possible.

40. f(x) = (cosx)7
√

(x2+5)3

4+(tanx)2

41. f(x) =
√

(1 + x2)5(3 + x)4
√

(1 + 2x)

42. f(x) = (x
√

2 + cosx)x
2

43. f(x) =
√

x(1+x)√
1+2x

3

44. Imagine that your calculator fell on the floor and its multiplication and division
keys stopped working. However, all the other keys, including the trigonometric,
arithmetic, logarithmic, and exponential keys still functioned. Show how you would
use your calculator to calculate the product and quotient of two positive numbers,
a and b.

45. (Slide Rule) This exercise shows this may how to build a slide rule by
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exploring the indenty logb xy = logb x+ logb y. We will use log2 for convenience.

Step 1. Mark on the bottom edge of a stick (or page) the numbers 20, 21 = 2, 22 = 4,
23 = 8, and 24 = 16, placing 2n n cm from the left end. In other words, place

−0.05

−0.1

64

0.0

32168421

0.1

0.05

Figure 1.2.13:
each number x, at a distance log2 x cm from the left edge. Figure 1.2.13 shows
only numbers with convenient integer logarithms, with base 2.

Step 2. Do the same thing as the top edge of another stick or sheet of paper.

Step 3. You now have a slide rule. To compute 4× 8, say, with your slide rule, slide
the bottom stick along the top stick until its left edge is next to the 4 of the
top stick. The product 4× 8 appears above the 8 on the lower stick. Why?

46. (Richter Scale) In 1989, San Francisco and vicinity was struck by an
earthquake that measured 7.1 on the Richter scale. The strongest earthquake in
recent years had a Richter measure of 8.9 (Colombia-Equador in 1906 and Japan in
1933). A “major earthquake” typically has a measuer of at least 7.5.

In his Introduction to the Theory of Seismology, Cambridge, 1965, pp. 271–272,
K. E. Bullen explains the Richter scale as follows:

“Gutenburg and Richter sought to connect the magnitude M with the energy E
of an earthquake by the formula

aM = log10

(
E

E0

)
and after several revisions arrived in 1956 at the result a = 1.5, E0 = 2.5×1011 ergs.”
Note: Energy E is measured in ergs. M is the number assigned to the earthquake
on the Richter scale. E0 is the energy of the smallest instrumentally recorded earth-
quake.

(a) Deduce that log10E ≈ 11.4 + 1.5M .

(b) What is the ratio between the energy of the earthquake that struck Japan in
1933 (M = 8.9) and the San Francisco earthquake of 1989 (M = 7.1)?

(c) What is the ratio between the energy of the San Francisco earthquake of 1906
(M = 8.3) and that of the San Francisco earthquake of 1989 (M = 7.1)?

(d) Find a formula for E in terms of M .

(e) If one earthquake has a Richter measure 1 larger than that of another earth-
quake, what is the ratio of their energies?

(f) What is the Richter measure of a 10-megaton H-bomb, that is, of an H-bomb
whose energy is equivalent to that of 10 millon tons of TNT?

Note: One ton of TNT releases an energy of 4.2× 106 ergs.
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47. Translate the sentence, “She has a five-figure annual income” into logarithms.
How small can the income be? How large?

48. As of 2006 the largest known prime was 230402457 − 1.

(a) When written in decimal notation, how many digits will it have?

(b) How many pages of this book would be needed to print it? (One page can
hold about 6,400 digits.)

Note: There is a prize of $250,000 for the discovery of the first billion-digit prime.
Do a Google search for “largest prime”.

49.

(a) In many calculators the log key refers to base-ten logarithms. You can use
it to find logarithms to any base b > 0. To see why, start with the equation
blogb x = x and then take log10 of both sides. This gives the formula

logb x =
log10 x

log10 b
.

(b) Use (a) to find log3 7. (Why should the result be between 1 and 2?)

(Semi-log graphs) In most graphs the scale on the y-axis is the same as the
scale on the x-axis, or a constant multiple of it. However, to graph a rapidly
increasing function, such as 10x, it is convenient to “distort” the y-axis. Instead
of plotting the point (x, y) at a height of, say, y inches, you plot it at a height
of log10 y inches. So the datum (x, 1) could be drawn with height O, the
datum (x, 10), would have height 1, and the datum (x, 100) would have height
2 inches. Instead of graphs y = f(x), you graph Y = log10 f(x). In particular,
if f(x) = 10x, y = log10 10x = x: the graph would be a straight line. To avoid
having to calculate a bunch of logarithms, it is convenient to use semi-log
graph paper, shown in Figure 1.2.14.

101

100

10−1

31

x

0−1 2

103

102

Figure 1.2.14:
50. Using semi-log paper, graph y = 23x.
51. Using semi-log paper, graph y = 2

3x .
52. By the method described in Section 9.2, Newton computed the logarithms

of 0.8, 0.9, 1.1, and 1.2 to 57 decimal places by hand.

(a) Show how to compute log 2, using log 1.2, log 0.8 and log 0.9.

(b) Show how to compute log 3, using log 2, log 1.2 and log 0.8.

(c) Show how to compute log 4, using log 2.

(d) Show how to compute log 5, using log 2 and log 0.8.

(e) How would you then compute log 6, log 8, log 9, and log 10.

(f) How would you then estimate log 11.

Note: You don’t need to know the base, why?
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53. The graph of y = log2 x consists of the part to the right of (1, 0) and the
part to the left of (1, 0). Are the two parts congruent?

54. Say that you have drawn the graph of y = log2 x. Jane says that to get the
graph of y = log2(4x), you just raise that graph 2 units parallel to the y-axis. Sam
says, “No, just shrink the x-coordinate of each part on the graph by a factor of 4.”
Who is right? Or are both wrong?

55. Answer the following questions about y = logb(x) where 0 < b < 1.

(a) Sketch the graphs of y = bx and y = logb(x) on the same set of axes.

(b) What is the domain of logb?

(c) What is the x-intercept, that is, solve logb(x) = 0?

(d) For what values of x is logb(x) positive? negative?

(e) Is the graph of y = logb(x) an increasing or decreasing function?

(f) What can you say about the values of logb(x) when x is close to zero (and in
the domain)?

(g) What can you say about the values of logb(x) when x is a large positive
number?

(h) What can you say about the values of logb(x) when x is a large negative
number?

56. Let a, b, c, d be constants such that ad− bc 6= 0.

(a) Show that y = (ax+ b)/(cx+ d) is one-to-one.

(b) For which a, b, c, d does the function in (a) equal its inverse function?

57. Prove that log3 2 is irrational. Hint: Assume that it is rational, that is, equal
to m/n for some integers m and n, and obtain a contradiction.
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1.3 Building more functions from basic func-

tions

In this section we complete the list of functions needed for calculus. Our
starting point is the basic functions introduced in Section 1.1. We will use just
two general ideas – arithmetic and composition – to build more complicated
functions from xk, bx, sin x, cos x, tan x, and their inverses. For instance we
will see how to obtain

f(x) =
sin(2x) + 3 + 4x+ 5x2

log2 x+ 3−5x +
√

1 + x3
. (1)

Before we go into the details of how we construct new functions from old
ones, we must introduce one more type of basic function. These functions are
so simple, however, that they did not deserve to appear with the types in the
preceding section. They are the constant functions. (See Figure 2.3.1.)

The Constant Functions

DEFINITION () A function f(x) is constant if there is a number
C such that f(x) = C for all x. x

1.5

2.5

2.0

1.0

5.0

0.5

0.0

0.0−2.5−5.0

Figure 1.3.1:Using the Four Arithmetic Operations: +, −, x, ÷
Given two functions f and g, we can produce other functions from them by
using the four operations of arithmetic:

f + g for an input value x, the function assigns f(x) + g(x) as the output

f − g for an input value x, the function assigns f(x)− g(x) as the output

fg for an input value x, the function assigns f(x)g(x) as the output

f/g for an input value x with g(x) 6= 0, the function assigns f(x)/g(x) as the
output

The domains of f+g, f−g, and fg consist of the numbers that belong to both
the domain of f and the domain of g. The domain of f/g is a little different
because division by zero is not defined. The function f/g is defined for all
numbers x that belong to the domain of f and the domain of g with the extra
condition that g(x) 6= 0.

With the aid of these constructions we can build any polynomial or rational
function from the simple function f(x) = x, called the identity function, and
the constant functions.
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A polynomial is a function of the form p(x) = a0 +a1x+a2x
2 + . . .+anx

n,
where the coefficients a0, a1, a2, . . . , an are numbers. If an is not zero, the
degree of the polynomial is n. A rational function is the quotient of two
polynomials. The domain of a polynomial is all real numbers. The domain of
a rational polynomial is all real numbers except those where the denominator
is zero.

EXAMPLE 1 Use addition, subtraction, and multiplication to form the
polynomial F (x) = x3 + 3x− 7.

SOLUTION We first build each of the three terms: x3, 3x, and 7. The last of
these is just a constant function. Multiplying the function x and the constant
function 3 gives 3x. The first term is obtained by first multiplying x and x
to obtain x2. Then multiplying x2 and x yields x3. Adding x3 and 3x gives
x3 + 3x. Lastly, subtract the constant function 7 to obtain x3 + 3x− 7.

Notice that each of the three functions involved in forming F is defined
for all real numbers. As a result, the domain of F is also all real numbers,
(−∞,∞). �

Example 1 shows how to build any polynomial using +, −, and ×. Con-
structing rational functions also requires one use of the division operator.

But how would we build a function like
√

1 + 3x? This leads us to the
most important technique for combining two or more functions to build more
complicated functions.

Composite Functions

Given two functions f and g we can use the output of g as the input for f .
That is, we can find f(g(x)). For instance, if g(x) = 1+3x and f is the square
root function, f(x) =

√
x, then f(g(x)) = f(1 + 3x) =

√
1 + 3x. This brings

us to the definition of a composite function.

DEFINITION (Composition of functions) Let X, Y , and Z be
sets. Let g be a function from X to Y and let f be a function from Some or all of the sets X,

Y , and Z could be the same
set.

Y to Z. Then the function that assigns to each element x in X the
element f(g(x)) in Z is called the composition of f with g. It is
denoted f ◦g, which is read as “f circle g” or as “f composed with
g”.

Thinking of f and g as input-output machines we may consider f ◦ g as
the machine built by hooking up the machine for f to process the outputs of
the machine for g (see Figure 1.3.2).

Most functions we encounter are composititions. For instance, sin(2x) is the
composition of g(x) = 2x and f(x) = sin x. Of course, we can hook up three or
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Figure 1.3.2: The output of the g machine, g(x), becomes the input for the f
machine. The result is the composition of f with g, (f ◦ g)(x) = f(g(x)).

more functions to make even fancier functions. Consider sin3(2x) = (sin(2x))3.
This function is built up as follows:

x −→ 2x −→ sin(2x) −→ (sin(2x))3. (2)

It is the composition of three functions: the first doubles the input, the second
takes the sine of its input, and the third cubes its input.

The order does matter. If, instead, you cube first, then take the sine, and
then double the input you obtain:

x −→ x3 −→ sin(x3) −→ 2 sin(x3). (3)

When you enter a function on your calculator or on a computer, you have to
be careful of the order in which the functions are applied as you evaluate a
composite function. The specific way that you would evaluate sin(log10 240)
on your calculator depends on your calculator. On a traditional scientific
calculator you enter 240 followed by the log10 key, and finally the sin key. On
many of the newer graphing calculators you would press the sin key followed
by the log10 key, then 240, followed by two right parentheses, )), and, finally,
the Enter key. Note that these two approaches are different. If you press the Before pressing the sin key,

be sure to check that your
calculator is in radians
mode.

sin key before log10, you will get log10(sin 240). For most computer software
it is necessary to use parentheses to indicate arguments to functions. In this
case you might enter sin(log10(240)).

If your calculator is in de-
gree mode, you will find
that sin(240◦) < 0 and so
log10(sin(240◦)) is not de-
fined.

To describe the build-up of a composite function it is convenient to use
various letters, not just x, to denote the variables. This is illustrated in Ex-
amples 2–4.

EXAMPLE 2 Show how the function
√

4− x2 is built up by the composi-
tion of functions. Find its domain.

SOLUTION The function
√

4− x2 is obtained by applying the square-root
function to the function 4− x2. To be specific, let

g(x) = 4− x2 and f(u) =
√
u (u ≥ 0). (4)
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Then
f(g(x)) = f(4− x2) =

√
4− x2. (5)

The square-root function is defined for all u ≥ 0 and the polynomial g(x)
is defined for all numbers. So f(g(x)) is defined only when g(x) ≥ 0:

g(x) ≥ 0

4− x2 ≥ 0

4 ≥ x2

2 ≥ |x|.

Thus, the domain of
√

4− x2 is the closed interval [−2, 2]. �

EXAMPLE 3 Express 1/
√

1 + x2 as a composition of three functions. Find
the domain of this function.

SOLUTION Call the input x. First, we compute 1 + x2. Second, we take
the square root of that output, getting

√
1 + x2. Third, we take the reciprocal

of that result, getting 1/
√

1 + x2. In summary, we form

u = 1 + x2, then v =
√
u then y =

1

v
. (6)

Given x, we first evaluate the polynomial 1 + x2, then apply the square-root
function, then the reciprocal function. The function in Example 3

can also be written as the
composition of two func-
tions: x −→ 1 + x2 −→
(1 + x2)−1/2.

The domain of a polynomial consists of all real numbers, the domain of the
square-root function is v ≥ 0, and the domain of the reciprocal function is all
numbers except zero. Because u = 1 +x2 ≥ 1, v is defined for all x. Moreover,
v =
√

1 + x2 ≥ 1, so that y = 1
v

= 1/
√

1 + x2 is defined for all real numbers
x. �

EXAMPLE 4 Let f be the cubing function and g the cube-root function.
Compute (f ◦ g)(x), (f ◦ f)(x) and (g ◦ f)(x).

SOLUTION In terms of formulas, f(x) = x3 and g(x) = 3
√
x.

(f ◦ g)(x) = f(g(x)) = f( 3
√
x) =

(
3
√
x
)3

= x. (7)

(f ◦ f)(x) = f(f(x)) = f(x3) =
(
x3
)3

= x9. (8)

(g ◦ f)(x) = g(f(x)) = g(x3) =
3
√
x3 = x. (9)

Observe that the domains of f and g are (−∞,∞). Therefore, each of
f ◦ g, f ◦ f , and g ◦ f is defined for all real numbers.
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Notice that both f ◦ g and g ◦ f are the identity function. Whenever g is
the inverse of f , f ◦g and g◦f are the identity function. Each function undoes
the action of the other. �

EXAMPLE 5 Give two different ways of obtaining the function 1/f(x)
from the function f .

SOLUTION The first approach is to view 1/f(x) as the quotient of the
constant function 1 and the function f(x).

This function can also be viewed as a composition. The quotient 1/f(x)
can be obtained in two steps: First, evaluate f(x). Second, take the reciprocal
of the result. So, if g(x) = 1/x, then

1

f(x)
= g(f(x)). (10)

The observation that
1/f(x) can be expressed as
a composition will be used
in Section 3.4.

Regardless of the way in which 1/f(x) is constructed, the domain is all real
numbers for which f(x) 6= 0. �

EXAMPLE 6 Show that every power function xk, x > 0, can be con-
structed as a composition. That a power function can

be expressed in terms of an
exponential function will be
used in Chapter 4.

SOLUTION The first step is to write x = 2log2 x. Then, xk =
(
2log2 x

)k
or,

using the properties of exponentials, xk = 2k log2 x. So xk is the composition of
three functions: First, find log2 x, then multiply by the constant function k,
and then raise 2 to the resulting power. �

OBSERVATION (Consequences of Example 6)

1. While the inputs in Example 6 are restricted to positive num- Why? Because the domain
of log2 contains only posi-
tive numbers.

bers, this construction of the power functions provides a mean-
ing to functions like x

√
2 and x−π.

2. As a result of Example 6 we could remove the power functions
from our list of basic functions in Section 1.1. We choose not
to do so because power functions with integer exponents are
so common and in many instances we want to define a power
function for all numbers (not just positive numbers).

3. It might seem surprising that the power functions can be ex-
pressed in terms of exponentials (and logarithms). An even
more astonishing result is that trigonometric functions, such
as sinx, can also be expressed in terms of exponentials, as
shown in Section 12.8.
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WARNING (Traveler’s Advisory) Be careful when composing
functions when one of them is a trigonometric function. For in-
stance, what is meant by sin x3? Is it sin(x3) or (sin x)3? Do we
first cube x, then take the sine, or the other way around? There is
a general agreement that sinx3 stands for sin(x3); you cube first,
then take the sine.

Spoken aloud, sinx3 is usually “the sine of x cubed,” which is
ambiguous. We can either insert a brief pause – “sine of (pause) x
cubed” – to emphasize that x is cubed rather than sinx, or rephrase
it as “sine of the quantity x cubed.”

On the other hand (sinx)3, which is by convention usually written
as sin3 x, is spoken aloud as “the cube of sinx” or “sine cubed of
x.”

Similar warnings apply to other trigonometric functions and loga-
rithmic functions.

Summary

This section showed how to build more complicated functions from power,
exponential, and trigonometric functions and their inverses and the constant
functions. One method is to simply add, multiply, subtract, or divide outputs.
The other method is the “composition of functions” in which one function op-
erates on the output of a second function. Composite functions are extremely
important, especially when we calculate derivatives and integrals beginning in
Chapter 3.
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EXERCISES for 1.3

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

The function y =
√

1 + x2 is the composition of s = 1 + x2 and y =
√
s.

In Exercises 1–12 use a similar format to build the given functions as the
composition of two or more functions.

1. sin 2x

2. sin3 x

3. sin 3x

4. sin(x3)

5. sin2(x3)

6. 2x
2

7. (x2 + 3)10

8. log10(1 + x2)

9. 1/(x2 + 1)

10. cos3(2x+ 3)

11. ( 2
3x+5)3

12. arcsin(
√
x)

13. These tables show some of the values of functions f and g:

x 1 2 3 4 5
f(x) 6 8 9 7 10

x 6 7 8 9 10
g(x) 4 3 2 5 1

(a) Find f(g(7)).

(b) Find g(f(3)).

14. Figure 1.3.3 shows the graphs of functions f and g.

Figure 1.3.3:(a) Estimate f(g(0.6)).

(b) Estimate f(g(0.3)).

(c) Estimate f(f(0.5)).

In Exercises 15 and 16 write y as a function of x.
15. u = sinx, y = x2
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16. u = x2, y = 2x

17. Let f(x) = 2x2−1 and g(x) = 4x3−3x. Show that (f◦g)(x) = (g◦f)(x). [Rare
indeed are pairs of polynomials that commute with each other under composition,
as you may convince yourself by trying to find more examples.] Note: Of course,
any two powers, such as x3 and x4, commute. (The composition of x3 and x4 in any
order is x12, as may be checked.)
18. Let f(x) = 1/(1−x). What is the domain of f? of f ◦ f? of f ◦ f ◦ f? Show

that (f ◦ f ◦ f)(x) = x for all x in the domain of f ◦ f ◦ f.
19. Let g(x) = x2. Find all first degree polynomials f(x) = ax+ b, a 6= 0, such

that f ◦ g = g ◦ f , that is, f(g(x)) = g(f(x)).
20. Let f(x) = x3. Is there a function g(x) such that (f ◦ g)(x) = x for all

numbers x? If so, how many such functions are there?
21. Let f(x) = x4. Give two functions g(x) such that (f ◦ g)(x) = x for all

numbers x?
22. Figure 1.3.4 shows the graph of a function f whose domain is [0, 1]. Let

g(x) = f(2x).

Figure 1.3.4:(a) What is the domain of g?

(b) Graph y = g(x)

23. Show that there is a function u(x) such that cosx = sinu(x). Note: This
shows that we didn’t need to include cosx among our basic functions.

24. Find a function u(x) such that 3x = 2u(x).

25. If f and g are one-to-one, must f ◦ g be one-to-one?

26. If f ◦ g is one-to-one, must f be one-to-one? Must g be one-to-one?

27. If f has an inverse, invf , compute (f ◦ invf)(x) and ((invf) ◦ f)x.

28. Let g(x) = x2. Find all second-degree polynomials f(x) = ax2 + bx+ c, a 6= 0,
such that f ◦ g = g ◦ f , that is, f(g(x)) = g(f(x)).

29. Let f(x) = 2x+ 3. How many functions are there of the form g(x) = ax+ b,
a and b constants, such that f ◦ g = g ◦ f?

30. Let f(x) = 2x + 3. How many functions are there of the form g(x) =
ax2 + bx+ c, a, b, and c constants, such that f ◦ g = g ◦ f?

31. Find all functions of the form f(x) = 1/(ax+b), a 6= 0, such that (f◦f◦f)(x) =
x for all x in the domain of f ◦f ◦f . Note: See also Exercise 18. Ans: 1/(k−k2x),
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k 6= 0.

32. (Induction) This exercise rests as the identifies sin(x + y) = sinx cos y +
cosx sin y, cos(x+ y) = cosx cos y − sinx sin y, and cos2 x+ sin2 x = 1.

(a) Show that sin 2x = 2 sinx cosx and cos 2x = 2 cos2 x− 1.

(b) Show that sin 3x = 3 sinx− 4 sin3 x and cos 3x = 4 cos 3x− 3 cosx.

(c) Show that sin 4x = cosx(4 sinx− 8 sin3 x) and cos 4x = 8 cos4 x− 8 cos2 x+ 1.

(d) Use induction to show that for each positive integer n, cosnx is a polynomial
in cosx. That is, there is a polynomial Pn such that cosnx = Pn(cosx).
Note: You will have to consider the form of sinnx, n odd or even, in the
induction.

(e) Explain why Pn ◦ Pm = Pm ◦ Pn. Note: This does not require the explicit
formulas for Pn and Pm.
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1.4 Graphing Functions Using A Graphing Cal-

culator or Computer Algebra System
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Figure 1.4.1:

New technology has changed how and where mathematics is used. Graphing
calculators provide an easy way to graph of a function. Computer algebra
systems (CAS) such as Maple, Mathematica, and Derive can perform sym-
bolic operations on mathematical expressions: for example, the factoring a
polynomial

x5 − 2 ∗ x4 − 2 ∗ x3 + 4 ∗ x2 + x− 2 = (x− 1)2(x+ 1)2(x− 2),

expressing the quotient of two polynomials as the sum of simpler quotients

36

x5 − 2 ∗ x4 − 2 ∗ x3 + 4 ∗ x2 + x− 2
=

−3

(x+ 1)2
− 9

(x− 1)2
− 4

x+ 1
+

4

x− 2
,

solving nonlinear equations, such as

arctan(x2 + 1) = π/3 and sin
(π
x

)
− π

x
cos
(π
x

)
= 0.

Some of these symbolic features are now available on some calculators, PDAs,
telephones, and other handheld devices.

In this section we illustrate some of the problems that you may meet when
using technology to graph a function. Calculus, especially the tools developed
in Chapter ??, will help you resolve those problems. We also provide general
guidelines on the use of a graphing calculator or computer algebra system
(CAS) to graph a function. The graphing utility needs to know the function
and the viewing window. We will show by three examples some of the
obstacles you may run into and how to avoid them.
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Figure 1.4.2:
The two basic pieces of information needed by the graphing routine are the

function and the viewing window. The viewing window is the portion of the
xy-plane to be displayed. We will say the viewing window is [a, b]× [c, d] when
the window extends horizontally from x = a to x = b and vertically from y = c
to y = d. The graph of a function y = f(x) is created by evaluating f(x) for
a sample of numbers x between a and b. The point (x, f(x)) is added to the
plot. It is customary to connect these points to form the graph of y = f(x).
The examples in the remainder of this section demonstrate some of the things
that can happen, and the steps you need to be prepared to take to avoid them.

EXAMPLE 1 Find a viewing window that shows the general shape of the
graph of y = x4 + 6x3 + 3x62− 12x + 4. Use graphs to estimate the location
of the rightmost x intercept.
SOLUTION Figure 1.4.1 is typical of the first plot of a function. Choose

x
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y
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Figure 1.4.3:
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a fairly wide x interval, here [−10, 10], and let the graphing software choose
an appropriate vertical range. While this view is useless for estimating any
specific x intercept, it is clear that any x intercepts will be between x = −6
and x = 3. Figure 1.4.2 is the graph of this function on the viewing window
[−6, 3]× [−30, 30]. Now four x intercepts are visible. The rightmost one occurs
around x = 0.8. Figure 1.4.3 is the result of zooming in on this part of the
graph. From this view we estimate that the rightmost x intercept occurs when
x ≈ 0.83.

In fact, using a CAS, the four x intercepts for this function are found to
occur at x = 0.828427, x = 0.414213, x = −2.414213, and x = −4.828427. �
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Figure 1.4.4:
Generating a collection of points and connecting the dots can sometimes

lead to ridiculous results, as in Example 2.

EXAMPLE 2 Find a viewing window that clearly shows the general shape
and periodicity of the graph of y = tan(x).
SOLUTION A computer-generated plot of y = tan(x) for x between −10
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Figure 1.4.5:

and 10 with no vertical height of the viewing window is shown in Figure 1.4.4.
This graph is not periodic; it looks more like an echocardiogram than the graph
of one of the six standard trigonometric functions.
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Figure 1.4.6:

Notice that the default vertical height is very long: [−1000, 1000]. Reducing
this by a factor of 100, that is, to [−10, 10], yields Figure 1.4.5. This graph is
periodic and exhibits the expected behavior.

The “vertical” lines in Figure 1.4.5 are not really vertical. These are gener-
ated by the software by joining the last point to the left of the asymptote and
the first point to the right of the asymptote. These segments are not really
a part of the graph. Figure 1.4.3 shows the graph of y = tan(x) with these
extraneous segments removed. �

Example 2 illustrates why we must never become complacent about using
technology. We have to check the results and verify that they are consistent
with the rest of our knowledge.

The last example shows that sometimes it is not possible to show all of the
important features of a function in a single graph.

EXAMPLE 3 Use one or more graphs to show all major features on the
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Figure 1.4.7:

graph y = 3
√
x2 − 8e−x.

SOLUTION The graph of this function on the x interval [−10, 10] with the
vertical window chosen by the software is shown in Figure 1.4.7. In this win-
dow, the exponential function dominates the graph.

At x = 0 the value of the function is (0 − 8)1/3e0 = −2. To get enough
detail to see both the positive and negative values of the function, zoom in by
reducing the x interval to [−5, 5]. The result is Figure 1.4.8. Reducing the x
interval to [−4, 4] and specifying the y interval as [−15, 15] gives Figure 1.4.9.
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We could continue to adjust the viewing window until we found suitable
views. A more systematic approach is to look at the graphs of y = 3

√
x2 − 8

and y = e−x separately, but on the same pair of axes. (See Figure 1.4.10(a).)
The exponential growth of e−x for negative values of x stretches (vertically)
the graph of y = 3

√
x2 − 8 to the left of the y axis while the exponential decay

for x > 0 (vertically) compresses the graph of y = 3
√
x2 − 8 to the right of the

y axis.
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Figure 1.4.8:

It is prudent to produce two separate plots to represent the sketch of this
function. To the left of the y axis, with a viewing window of [−4, 0]×[−15, 100],
the graph of the function is shown in Figure 1.4.10(b). To the right of the y
axis, with a much shorter viewing window of [0, 4] × [−2.2, 0.2], the graph is
as shown in Figure 1.4.10(c).

y=(x^2-8)^(1/3) y=exp(-x)
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Figure 1.4.9:

�

Summary

The purpose of this brief section is two-fold. First, to give you some explicit
pointers for using a graphing calculator or CAS to generate the graph of a
function.

The second purpose is to make you aware that these tools do exist, and
are likely to become more powerful and more widespread. These tools can
change the way mathematics is used in the real world. The ability to factor a
polynomial or to solve an equations will be less important than the ability to
apply basic principles of mathematics and science to set up and analyze the
equations.
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Figure 1.4.10:
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EXERCISES for 1.4

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

Use a graphing utility to sketch a graph of the functions in Exercise 1 to
10. Be sure to indicate the viewing window used to generate your graph.

1. (x2 + x− 6) ln(x+ 2)

2. (x2 − x+ 6) ln(x+ 2)

3. (x2 − 4) ln(x+ 1)

4. (x2 + 4) ln(x+ 1)

5. x3 arctan(x/5)
x2−4

6. (x62−4) arctan(x/5)
x3

7. x3−3x
x2−4

8. x3−2x
x2−4

9. x3−3x
x2−4

arctan
(
x
4

)
10. x3−2x

x2−4
arctan

(
x
4

)
Modern graphing utilities provide for the graphing of piecewise defined

functions. Read the directions for your graphing software to learn how to do
this. Then use your graphing utility to sketch a graph of the piecewise-defined
functions in Exercises 11 and 12.

11. y =
{

x2 − x x < 1√
x− 1 x ≥ 1

12. y =


sin(x)
x x < 1

sinx 0 ≤ x ≥ π
x− 2 x > π

Some graphing utilities have trouble plotting functions with fractional ex-
ponents. Some general rules to follow when graphing y = xp/q where p/q is a
positive fraction in lowest terms are:

• If p is even and q is odd, then graph y = |x|p/q.

• If p and q are both odd, then graph y = |x|
x
|x|p/q.

Use these general facts to sketch the graph of each function in Exercises 13 to
16.

13. y = x1/3

14. y = x2/3
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15. y = x4/7

16. y = x3/7
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1.S Chapter Summary

The text and exercises for the summary will be written after the organization
of the chapters is firmly settled.
EXERCISES for 1.S Key: R–routine, M–moderate, C–challenging
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Chapter 2

Introduction to Calculus

There are two main concepts in calculus: the derivative and the integral.
Underlying both is the concept of a limit. This chapter introduces limits, with
an emphasis on developing both your intuitive understanding of limits and
techniques for finding limits.

The four limits introduced in Section 2.1 provide a foundation for comput-
ing many other limits, particularly the limits needed in Chapter 3.
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2.1 Four special limits

This section develops the notion of a limit of a function, using four examples
that play a key role in Chapter 3.

A Limit Involving xn

Let a and n be fixed numbers.

What happens to the quotient
xn − an

x− a
as x is chosen nearer and nearer to a?

(1)
To keep the reasoning down-to-earth, let’s look at a typical concrete case:

What happens to
x3 − 23

x− 2
as x gets closer and closer to 2? (2)

As x approaches 2, the numerator approaches 23 − 23 = 0. Because 0
divided by almost anything is 0 we suspect that the quotient may approach
0. But the denominator approaches 2 − 2 = 0. This is unfortunate because
division by zero is not defined.

That x3−23 approaches 0 as x approaches 2 may make the quotient small.
The denominator approaches 0 as x approaches 2 may make the quotient very
large. The balance between these two opposing forces contains the answer to
what happens to (2) as x approaches 2.

We have already seen that it is pointless to replace x in (2) by 2 as this
leads to (23 − 23)/(2− 2) = 0/0, a meaningless expression.

Instead, let’s do some experiments and see how the quotient behaves for
specific values of x near 2; some less than 2, some more than 2. Table 2.1.1
shows the results as x increases from 1.9 to 2.1. You can add to the list with Math is not a spectator

sport. Check some of the
calculuations reported in
Table 2.1.1.

values of x even closer to 2.

x x3 x3 − 23 x− 2 x3−23

x−2

1.90 6.859 −1.141 −0.1 11.41
1.99 7.8806 −0.1194 −0.01 11.94
1.999
2.00 8.0000 0.0000 0.00 undefined
2.001
2.01 8.1206 0.1206 0.01 12.06
2.10 9.261 1.261 0.1 12.61

Table 2.1.1: Table showing the steps in the evaluation of x3−23

x−2
for four choices

of x near 2. Fill in the rows for 1.999 and 2.001.
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As x increases the quotient increases. The cases with x = 1.99 and 2.01,
being closest to 2, should provide the best estimates of the quotient. This
suggests that the quotient (2) approaches a number near 12 as x approaches
2, whether from below or from above.
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Figure 2.1.1: The graph of a y = x3−23

x−2
suggests that the quotient approaches

12 as x approaches 2. In (b), zooming for x near 2 shows how the data in
Table 2.1.1 also suggests the quotient approaches 12 as x approaches 2.

While the numerical and graphical evidence is very suggestive, this question
can be answered once-and-for-all with a little bit of algebra. You can check
that x3 − 23 = (x− 2)(x2 + 2x+ 22). We have Check this factorization by

multiplying the two terms
in the numerator on the
right-hand side.

x3 − 23

x− 2
=

(x− 2)(x2 + 2x+ 22)

x− 2
for all x other than 2. (3)

Cancelling the (x− 2) in (3) shows that For x = 2, both sides of (3)
become the meaningless ex-
pression 0/0.x3 − 23

x− 2
= x2 + 2x+ 22, x 6= 2.

Now it is easy to see what happens to x2 + 2x + 22 as x gets nearer and
nearer to 2: x2 + 2x + x2 approaches 4 + 4 + 4 = 12. This agrees with the
calculations (see Table 2.1.1).

We say “the limit of (x3− 23)/(x− 2) as x approaches 2 is 12” and use the
shorthand

lim
x→2

x3 − 23

x− 2
= lim

x→2
(x2 + 2x+ 22) (4)

= 3 · 22 = 12. (5)

Similar algebra yields the following limit, which will be used in the next chap-
ter. An outline of the algebra

for the general case can
be found in Exercises 16
and 17.
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Theorem 2.1.1 For any positive integer n and fixed number a,

lim
x→a

xn − an

x− a
= n · an−1 (6)

A Limit Involving bx

What happens to 2x−1
x

and to 4x−1
x

as x approaches 0?
Consider (2x − 1)/x first: As x approaches 0, 2x − 1 approaches 20 − 1 =

1− 1 = 0. Since the numerator and denominator in (2x− 1)/x both approach
0 as x approaches 0, we face the same challenge as with (x3 − 23)/(x − 2).
There is a battle between two opposing forces.

This time algebra will not help us. Instead, we will depend on our calcula-
tors. Table 2.1.2 records some results (rounded off), for four choices of x. You
are invited to test values of x even closer to 0. Fill in the missing entries in

the rows for x = ±0.0001.
x 2x 2x − 1 2x−1

x

−0.01 0.993093 −0.006907 0.691
−0.001 0.999307 −0.000693 0.693
−0.0001

0.0001
0.001 1.000693 0.000693 0.693
0.01 1.006956 0.006956 0.696

Table 2.1.2: Numerical evaluation of (2x − 1)/x for four different choices of x.
The numbers in the last column are rounded to three decimal places. See also
Figure 2.1.2.

WARNING (Do not believe your eyes!) The graphs in Fig-
ure 2.1.1(b) and Figure 2.1.2(b) are not the graphs of straight
lines. They look straight only because the viewing windows are
so small. Compare the labels on the axes in the two views in each
of Figure 2.1.1 and Figure 2.1.2. The observation that the graphs
of some functions do look straight as you zoom in on a point will
be important in Section 3.1.

It seems that, as x approaches 0, (2x − 1)/x approaches a number whose
decimal value begins 0.693. We write

lim
x→0

2x − 1

x
≈ 0.693 rounded to three decimal places (7)

It is then a simple matter to find

lim
x→0

4x − 1

x
.
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x
K2 K1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

(a)

x
K0.10 K0.05 0.00 0.05 0.10

0.67

0.68

0.69

0.70

0.71

(b)

Figure 2.1.2: (a) Graph of y = (2x − 1)/x for x near 0. (b) View for x nearer
to 0, with the data points from Table 2.1.2. Note that there is no point for
x = 0 since the quotient is not defined when x is 0.

Recalling the algebraic identity for the difference of two squares, a2 − b2 =
(a− b)(a+ b), we have 4x − 1 = (2x)2 − 12 = (2x − 1)(2x + 1). Hence

4x − 1

x
=

(2x − 1)(2x + 1)

x
= (2x + 1)

2x − 1

x
.

As x → 0, 2x + 1 approaches 20 + 1 = 1 + 1 = 2 and (2x − 1)/x approaches
(approximately) 0.693. Thus,

lim
x→0

4x − 1

x
≈ 2 · 0.693 ≈ 1.386 rounded to three decimal places.

We now know lim
x→0

bx − 1

x
for b = 2 and b = 4. They suggest that the larger

b is, the larger the limit is. Since limx→0
2x−1
x

is less than 1 and limx→0
4x−1
x

is more than 1, it seems reasonable that there should be a value of b such
that limx→0

bx−1
x

= 1. This special number is called e, Euler’s number. We Euler named this constant
e, but no one knows why he
chose this name.

know that e is between 2 and 4 and that limx→0
ex−1
x

= 1. It turns out that
e is an irrational number with an endless decimal representation that begins
2.718281828 . . . . In Chapter 3 we will see that e is as important in calculus as
π is in geometry and trigonometry.

In Section 1.2 it was remarked that the logarithm base b, logb can be defined
for any base b > 0. The logarithm with base b = e deserves special attention.
The loge(x) is called the natural logarithm, and is typically written as ln(x).
Thus, in particular,

y = ln(x) is equivalent to x = ey.
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Note that, as with any logarithm function, the domain of ln is the set of
positive numbers (0,∞) and the range is the set of all real numbers (−∞,∞).

We will see later that limx→0
2x−1
x

is the logarithm of 2, base e. More
generally, limx→0

bx−1
x

= loge(b) = ln(b) for any positive number b.

Three Important Bases for Logarithms
While logarithms can be defined for any positive base, three numbers
have been used most often: 2, 10, and e. Logarithms to the base 2
are used in information theory, for they record the number of “yes
– no” questions needed to pinpoint a particular piece of information.
Base 10 was used for centuries to assist in computations. Since the
decimal system is based on powers of 10, certain convenient numbers
had obvious logarithms; for instance, log(1000) = log(103) = 3. Tables
of logarithms to several decimal places facilitated the calculations of
products, quotients, and roots. To multiply two numbers, you looked
up their logarithms, and then searched the table for the number whose
logarithm was the sum of the two logarithms. The calculator made the
tables obsolete, just as it sent the slide rule into museums. However,
a Google search for “slide rule” returns a list of more than 15 million
websites full of history, instruction, and sentiment. The number e is
the most convenient base for logarithms in calculus. Euler, as early as
1728, used e for the base of logarithms.

A Limit Involving sin(x)

What happens to sinx
x

as x gets nearer and nearer to 0?
Here x represents an angle, measured in radians. In Chapter 3 we will see Appendix E includes a re-

view of radians.that in calculus radians are much more convenient than degrees.
Consider first x > 0. Figure 2.1.3 identifies both x and sinx on a circle of

radius 1, the unit circle.
To get an idea of the value of this limit, let’s try x = 0.1. Setting our

calculator in the “radian mode”, we find You may graph y = sin(x)
x

on your calculator.
sin 0.1

0.1
≈ 0.099833

0.1
= 0.99833. (8)

Likewise, with x = 0.01,

sin 0.01

0.01
≈ 0.0099998

0.01
= 0.99998. (9)

These results lead us to suspect that maybe this limit is 1.
Geometry and a bit of trigonometry can be used to show that limx→0

sinx
x

is indeed 1. First, using Figure 2.1.3, we show that sinx
x

is less than 1 for all
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Figure 2.1.3: On the circle with radius 1, (a) x is the arclength subtended by
an angle of x radians and sinx = AB.

positive x. Recall that sinx = AB. Now, AB is shorter than AC, since a leg
of a right triangle is shorter than the hypotenuse. Then AC is shorter than
the circular arc joining A to C, since the shortest distance between two points
is a straight line. Thus,

sinx < AC < x.

So sinx < x. Since x is positive, dividing by x preserves the inequality. We
have

sinx

x
< 1. (10)

Next, we show that sinx
x

is greater than something which gets near 1 as x
approaches 0. Figure 2.1.3 again helps with this step.

The area of triangle OCD is greater than the area of the sector OCA. Thus

1

2
· 1 · tan(x)︸ ︷︷ ︸

area of ∆OCD

>
x · 12

2︸ ︷︷ ︸
area of sector OCA

.

Multiplying this inequality by 2 simplifies it to The area of a sector sub-
tended by an angle x of a
circle with radius r is πr2 ·
x
2π = xr2

2 .
tanx > x.

In other words,
sinx

cosx
> x.

Now, multiplying by cosx and dividing by x gives This step requires that
both x > 0 and cosx > 0.
We have already assumed
x > 0. To ensure cosx >
0 requires that x < π/2.
This additional assumption
is not a problem because we
are interested in the behav-
ior of sinx

x for x near 0.

sinx

x
> cosx. (11)
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Putting (10) and (11) together we have

cosx <
sinx

x
< 1. (12)

Since cosx approaches 1 as x approaches 0 (through positive values), sinx
x

is
squeezed between 1 and something that gets closer and closer to 1, sinx

x
must

itself approach 1.
We still must look at sinx

x
for x < 0 as x gets nearer and nearer to 0. Define

u to be −x. Then u is positive, and

sinx

x
=

sin(−u)

−u
=
− sinu

−u
=

sinu

u
.

As x is negative and approaches zero, u is positive and approaches 0. But, Recall that sine is an
odd function. That is,
sin(−u) = − sin(u).

the previous analysis (with x replaced by u) shows that sinu
u

approaches 1 as
u > 0 approaches 0.

In short,

lim
x→0

sin(x)

x
= 1 where the angle is measured in radians.
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The Meaning of lim
x→→0

sin(x)

x
= 1

When x is near 0, sin(x) and x are both small. That their quotient is
near 1 tells us much more, namely, that x is a “very good approximation
of sin(x).”
That means that the difference sin(x)− x is small, even in comparison
to sin(x). In other words, the “relative error”

sin(x)− x
sinx

(13)

approaches 0 as x approaches 0.
To show that this is the case, we compute

lim
x→0

sin(x)− x
sin(x)

.

We have

lim
x→0

sin(x)− x
sin(x)

= lim
x→0

(
sin(x)

sin(x)
− x

sin(x)

)
= lim

x→0

(
1− x

sin(x)

)
= lim

x→0

1− 1(
x

sin(x)

)


= 1− 1

1
= 0.

As you may check by graphing, the relative error in (13) stays less than
1 percent for x less than 0.24 radians, just under 14 degrees.

It is often quite useful to replace sinx by the much simpler quantity
x. For instance, the force tending to return a swinging pendulum is
proportional to sin θ, where θ is the angle that the pendulum makes
with the vertical. As one physics book says, “If the angle is small, sin θ
is nearly equal to θ”; it then replaces sin(θ) by θ.

A Limit Involving cos(x)

Knowing that lim
x→0

sin(x)

x
= 1, we can show that

lim
x→0

1− cosx

x
= 0. (14)
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All we will say about this limit here is that the numerator, 1− cos(x) is easily
identified as the length of BC in Figure 2.1.3. Exercises 29 and 30 outline how
to establish this limit.

Summary

This section examined four important limits:

lim
x→a

xn − an

x− a
= nan−1 (n a positive integer)

lim
x→0

ex − 1

x
= 1 (e ≈ 2.71828)

lim
x→0

sinx

x
= 1 (angle in radians)

lim
x→0

1− cosx

x
= 0 (angle in radians).

Each of these limits will be needed in Chapter 3, which introduces the deriva-
tive of a function.

The next section examines the general notion of a limit. This is the basis
for all of calculus.
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EXERCISES for 2.1

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In each of Exercises 1–10 describe the two opposing forces involved in the
limit. If you can figure out the limit on the basis of results in this section, give
it. Otherwise, use a calculator to estimate the limit.

1. lim
x→2

x4 − 16
x− 2

2. lim
x→0

sin(x)
x cos(x)

3. lim
x→0

(1− x)1/x

4. lim
x→0

(cos(x))1/x

5. lim
x→0

xx

6. lim
x→0

arcsin(x)
x

7. lim
x→0

tan(x)
x

Hint: Write tan(x) = sin(x)/ cos(x).

8. lim
x→0

tan(2x)
x

9. lim
x→0

8x − 1
2x − 1

Hint: The numerator is the difference of two cubes; factor it!

10. lim
x→∞

x1/3 − 2
x− 8

Exercises 11–17 concern lim
x→a

xn − an

x− a
.

11. Using the factorization (x− a)(x+ a) = x2 − a2 find lim
x→a

x2 − a2

x− a
.

12. Using Exercise 11,

(a) find lim
x→3

x2 − 9
x− 3

(b) find lim
x→
√

3

x2 − 3
x−
√

3

13.
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(a) By multiplying it out, show that (x− a)(x2 + ax+ a2) = x3 − a3.

(b) Use (a) to show that lim
x→a

x3 − a3

x− a
= 3a2.

(c) By multiplying it out, show that (x− a)(x3 + ax2 + a2x+ a3) = x4 − a4.

(d) Use (c) to show that limx→a
x4−a4

x−a = 4a3.

14.

(a) What is the domain of (x3 − 8)/(x− 2)?

(b) Graph (x3 − 8)/(x− 2).

Note: Use a hollow dot to indicate an absent point in the graph.
15.

(a) What is the domain of (x2 − 9)/(x− 3)?

(b) Graph (x2 − 9)/(x− 3).

16. Let n be a positive integer. Find the polynomial P (x), of degree n − 1,
such that xn − an = (x− a)P (x). Note: Check that your formula holds for n = 2
(Exercise 11), n = 3 (Exercise 13(a)), and n = 4 (Exercise 13(c)).

17. Use Exercise 16 to show that lim
x→a

xn − an

x− a
= nan−1.

Exercises 18–21 concern lim
x→0

ax − 1

x
.

18. What is a definition of the number e?

19. Use a calculator to estimate (2.718x − 1)/x for x = 0.1, 0.01, and 0.001.

20. Use a calculator to compute (2.7x − 1)/x and (2.8x − 1)/x for x = 0.001.
Note: This suggests that e is between 2.7 and 2.8.

21. Graph y = (ex − 1)/x for x 6= 0.

Exercises 22–31 concern limx→0
sin(x)
x

and limx→0
1−cos(x)

x
.

Figure 2.1.4:

Figure 2.1.5:

22. Find lim
x→0

tanx
x

. Hint: tanx = sin(x)/ cos(x).

23. Using the fact that lim
x→0

sin(x)
x

= 1, find the limits of the following as x
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approaches 0.

(a)
sin(3x)

3x

(b)
sin(3x)
x

(c)
sin(3x)
sin(x)

(d)
sin2(x)
x

24. Why is the arc length from A to C in Figure 2.1.4 equal to x?
25. Why is the length of CD in Figure 2.1.4 equal to tanx?
26. Why is the area of triangle OCD in Figure 2.1.4 equal to (tanx)/2?
27. An angle of θ radians in a circle of radius r subtends a sector, as shown

in Figure 2.1.5. What is the area of this sector? Note: If you need a review of
trigonometry, see Appendix E.

28.

(a) Graph (sin(x))/x for x in [−π, 0)

(b) Graph (sin(x))/x for x in (0, π].

(c) How are the graphs in (a) and (b) related?

(d) Graph (sin(x))/x for x 6= 0.

29. When x = 0, (1 − cos(x))/x is not defined. Estimate lim
x→0

1− cos(x)
x

by

evaluating (1− cos(x))/x at x = 0.1 (radians).

30. To find lim
x→0

1− cos(x)
x

first check this algebra and trigonometry:

1− cos(x)
x

=
1− cos(x)

x

1 + cos(x)
1 + cos(x)

=
1− cos2 x

x(1 + cos(x))
=

sin2 x

x(1 + cos(x))
=

sin(x)
x

sin(x)
1 + cos(x)

.

Then show that
lim
x→0

sin(x)
x

sin(x)
1 + cos(x)

= 0.

31. Note: See Exercise 30. Show that

lim
x→0

1− cos(x)
x2

=
1
2
.
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Thus suggests that, for small values of x, 1− cos(x) is close to x2

2 , so that cos(x) is
approximately 1− x2

2 .

(a) Use a calculator to compare cos(x) with 1 − x2

2 Note: 0.2 radians is about
11◦. for x = 0.2 and 0.1 radians.

(b) Use a graphing calculutor to compare the graphs of cos(x) and 1 − x2

2 for x
in [−π, π].

(c) What is the largest interval on which the values of cos(x) and 1 − x2

2 dif-
fer by no more than 0.1? That is, for what values of x is it true that∣∣∣cos(x)− (1− x2

2 )
∣∣∣ < 0.1?

32. In the design of a water sprinkler lim
θ→0

sin 4θ
sin θ

appears. Find that limit.

33.

(a) What two influences operate on (1 + x)1/x as x gets arbitrarily large?

(b) Using a calculator, examine (1 + x)1/x for large positive values of x.

(c) Using a calculator, examine (1 + x)1/x for x near −1 but x > −1.

(d) Investigate (1 + x)1/x for x near 0. (See also Exercise 39.)

(e) On the basis of (a), (b), and (c), graph y = (1 + x)1/x for x > −1 (x 6= 0).

34.

(a) We examined (2x − 1)/x only for x near 0. When x is large and positive
2x − 1 is large. So both the numerator and denominator of (2x − 1)/x are
large. Note: The numerator influences the quotient to become large. The
large denominator pushes the quotient toward 0. Use a calculator to see how
the two forces balance for large values of x.

(b) Sketch the graph of f(x) = (2x − 1)/x for x > 0. (Pay special attention to
the behavior of the graph for large values of x.)

35.

(a) We examined (2x−1)/x only for x near 0. When x is large but negative, what
happens to (2x − 1)/x ?

(b) Sketch the graph of f(x) = (2x − 1)/x for x < 0. (Pay special attention to
the behavior of the graph for large negative values of x.)
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36.

(a) Using a calculator explore what happens to
√
x2 + x − x for large positive

values of x.

(b) Show that for x > 0,
√
x2 + x < x+ 1/2.

(c) Using algebra, find what number
√
x2 + x−x approaches as x increases. Hint:

Multiply
√
x2 + x− x by

√
x2+x+x√
x2+x+x

.

37. Using a calculator, examine the behavior of the quotient (θ − sin(θ))/θ3 for
θ near 0.

38. Using a calculator, examine the behavior of the quotient
(

cos(θ)− 1 +
θ2

2

)
/θ4

for θ near 0.

39. Suppose b is chosen so that bx−1
x is near 1 when x is near 0. We will write

Note: Here “∼” means “is close to.”
bx − 1
x
∼ 1.

Multiplying by x gives bx−1 ∼ x. Then, adding 1 to both sides yields bx ∼ 1+x.
Raising both sides of this last relation to the power 1/x gives b ∼ (1 + x)1/x. This
suggests that b equals lim

x→0
(1 + x)1/x. (In other words, b = lim

x→0
(1 + x)1/x = e).

The conclusion turns out to be correct, but, while some of the steps in the rea-
soning are legitimate, there is a big leap at one step. What is that step?

Exercise 40–43 concern f(x) = (1 + x)1/x, x in (−1, 0) and (0,∞).
40.

(a) Why is (1 + x)1/x not defined when x = 0?

(b) For x near 0, x > 0, 1 + x is near 1. So we might expect (1 + x)1/x to be near
1 then. However, the exponent 1/x is very large. So perhaps (1 +x)1/x is also
large. To see what happens, fill in this table.

x 1 0.5 0.1 0.01 0.001
1 + x 2
1/x 1

(1 + x)1/x 2

(c) For x near 0 but negative, investigate (1 + x)1/x with the use of this table

x −0.5 −0.1 −0.01 −0.001
1 + x 0.5
1/x −2

(1 + x)1/x 4

October 30, 2007 Calculus 64



Introduction to Calculus § 2.1

41. Graph y = (1 + x)1/x for x in (−1, 0) and (0, 10).

Exercises 40 and 41 show that limx→0(1 + x)1/x is about 2.718. Thus
suggests that the number e may equal limx→0(1+x)1/x. In Section 3.2 we show
that this is the case. However, the next two exercises give persuasive arguments
for this fact. Unfortunately, each argument has a big hole or “unjustified leap,”
which you are asked to find.
42. Assume that all we know about the number e is that limx→0

ex−1
x = 1. We

will write this as
ex − 1
x

∼ 1,

and read this as “(ex − 1)/x is close to 1 when x is near 0.” Multiplying both sides
by x gives

ex − 1 ∼ x.

Adding 1 to both sides of this gives

ex ∼ 1 + x.

Finally, raising both sides to the power 1/x gives

(ex)1/x ∼ (1 + x)1/x.

Hence
e ∼ (1 + x)1/x.

This suggests that
e = lim

x→0
(1 + x)1/x.

The conclusion is correct. Most of the steps are justified. Which step is the “big
leap”?

43. Assume that b = lim
x→0

(1 + x)1/x. We will “show” that

lim
x→0

bx − 1
x

= 1.

First of all, the x near (but not equal to) 0

b ∼ (1 + x)1/x.

Then
bx ∼ 1 + x.

Hence
bx − 1 ∼ x.

Dividing by x gives
bx − 1
x
∼ 1.
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Hence
lim
x→0

bx − 1
x

= 1.

where is the “suspect step” this time?

44. An intuitive argument suggested that lim
θ→0

(sin θ)/θ = 1, which turned out to

be correct. Try your intuition on another limit associated with the unit circle shown
in Figure 2.1.6.

Figure 2.1.6:(a) What do you think happens to the quotient

Area of triangle ABC
Area of shaded region

as θ → 0?

More precisely, what does your intuition suggest is the limit of that quotient
as θ → 0?

(b) Estimate the limit in (a) using θ = 0.01.

Note: This problem is a test of your intuition. The limit is determined in Exer-
cise 53 in Section 5.5. This question arose during some research in geometry. The
authors guessed wrong, as has everyone we asked.
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2.2 The Limit of a Function: The General

Case

In Section 2.1 we examined four important limits:

lim
x→a

xn − an

x− a
= nan−1, lim

x→0

ex − 1

x
= 1, lim

x→0

sinx

x
= 1, lim

x→0

1− cosx

x
= 0.

Limits are fundamental to all of calculus. In this section, we pause to
discuss the concept of a limit in greater detail. The first step towards under-
standing limits is the notion of a one-sided limit.

One-Sided Limits
10

0.0

80 642−2

0.5

1.5

−0.5

1.0

x

Figure 2.2.1:
The domain of the function shown in Figure 2.2.1 is (−∞,∞). In particular,
the function is defined when x = 2 and f(2) = 1/2. This fact is conveyed
by the solid dot at (2, 1/2) in the figure. The hollow dots at (2, 0) and (2, 1)
indicate that these points are not on the graph of this function (but that some
nearby points are on the graph).

Consider the part of the graph for inputs x > 2, that is, for inputs to
the right of 2. As x approaches 2 from the right, f(x) approaches 1. This
conclusion can be expressed as

lim
x→2+

f(x) = 1

and is read “the limit of f of x, as x approaches 2, from the right, is 1.”
Similarly, looking at the graph of f in Figure 2.2.1 for x to the left of 2, that
is, for x < 2, the values of f(x) approach a different number, namely, 0. This It might sound strange to

say the values of f(x) “ap-
proach” 0 since the func-
tion values are exactly 0 for
all inputs x < 2. But, it is
convenient, and customary,
to use the word “approach”
even for constant functions.

is expressed with the shorthand

lim
x→2−

f(x) = 0.

This illustrates the concept of the “right-hand” and “left-hand” limits, the two
one-sided limits.

DEFINITION (Right-hand limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (a, c). If, as x approaches a from the right, f(x)
approaches a specific number L, then L is called the right-hand
limit of f(x) as x approaches a. This is written

lim
x→a+

f(x) = L

or
f(x)→ L as x→ a+.
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The assertion that
lim
x→a+

f(x) = L

is read “the limit of f of x as x approaches a from the right is L” or “as x
approaches a from the right, f(x) approaches L.”

DEFINITION (Left-hand limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (b, a). If, as x approaches a from the left, f(x)
approaches a specific number L, then L is called the left-hand
limit of f(x) as x approaches a. This is written

lim
x→a−

f(x) = L

or
f(x)→ L as x→ a−.

Notice that the definitions of the one-sided limits do not require that the
number a be in the domain of the function f . If f is defined at a, we do not
consider f(a) when examining limits as x approaches a.

The Two-Sided Limit

The two-sided limit of f(x) as x approaches a exists and limx→a f(x) = L if
both one-sided limits of f(x) at x = a exist and are equal:

lim
x→a−

f(x) = L and lim
x→a+

f(x) = L.

For the function graphed in Figure 2.2.1 we found that limx→2+ f(x) = 1
and limx→2− f(x) = 0. Because they are different, the two-sided limit of f(x)
at 2, limx→2 f(x), does not exist.

EXAMPLE 1 Figure 2.2.2 shows the graph of a function f whose domain

Figure 2.2.2:
is the closed interval [0, 5].

(a) Does limx→1 f(x) exist?

(b) Does limx→2 f(x) exist?

(c) Does limx→3 f(x) exist?

SOLUTION
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(a) Inspection of the graph shows that

lim
x→1−

f(x) = 1 and lim
x→1+

f(x) = 2.

Although the two one-sided limits exist, they are not equal. Thus,
limx→1 f(x) does not exist. In short, “f does not have a limit as x
approaches 1.”

(b) Inspection of the graph shows that

lim
x→2−

f(x) = 3 and lim
x→2+

f(x) = 3.

Thus limx→2 f(x) exists and is 3. That f(2) = 2 plays no role in our As indicated by the solid
dot at (2, 2).examination of the limit of f(x) as x→ 2 (either one-sided or two-sided).

(c) Inspection, once again, shows that

lim
x→3−

f(x) = 2 and lim
x→3+

f(x) = 2.

Thus limx→3 f(x) exists and is 2. Incidentally, the fact that f(3) = 2 is
irrelevant in determining limx→3 f(x).

�
We now define the (two-sided) limit without referring to one-sided limits.

DEFINITION (Limit of f(x) at a.) Let f be a function and a Notice how the assump-
tions imply that the do-
main of f contains num-
bers arbitrarily close to a
on both sides of a.

some fixed number. Assume that the domain of f contains open
intervals (b, a) and (a, c), as shown in Figure 2.2.3. If there is a
number L such that as x approaches a, from both the right and
the left, f(x) approaches L, then L is called the limit of f(x) as x
approaches a. This is expressed as either

lim
x→a

f(x) = L or f(x)→ L as x→ a.

Figure 2.2.3: The func-
tion f is defined on open
intervals on both sides of
a.

EXAMPLE 2 Let f be the function defined by by f(x) =
xn − an

x− a
where

n is a positive integer. This function is defined for all x except a. How does it
behave for x near a?

SOLUTION In Section 2.1 and its Exercises we found that as x gets closer
and closer to a, f(x) gets closer and closer to nan−1. This is summarized with
the shorthand

lim
x→a

xn − an

x− a
= nan−1,
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read as “the limit of xn−an
x−a as x approaches a is nan−1.” �

EXAMPLE 3 Investigate the one-sided and two-sided limits for the square
root function at 0.

SOLUTION The function
√
x is defined only for x in [0,∞). We can say

that the right-hand limit at 0 exists since
√
x approaches 0 as x→ 0 through

positive values of x; that is, limx→0+

√
x = 0. Because

√
x is not defined

for any negative values of x, the left-hand limit of
√
x at 0 does not exist.

Consequently, the two-sided limit of
√
x at 0, limx→0

√
x, does not exist. �

EXAMPLE 4 Consider the function f defined so that f(x) = 2 if x is an
integer and f(x) = 1 otherwise. For which a does limx→a f(x) exist?
SOLUTION The graph of f , shown in Figure 2.2.4, will help us decide. If a is

0−1 1 4

1

0

2 3 6

2

5−2

Figure 2.2.4:
not an integer, then for all x sufficiently near a, f(x) = 1. So limx→a f(x) = 1.
Thus the limit exists for all a that are not integers.

Now consider the case when a is an integer. In deciding whether limx→a f(x)
exists we never consider the value of f at a, namely f(a). (In fact, f(a) may
not even be defined.) For all x sufficiently near an integer a, f(x) = 1. Thus,
once again, limx→a f(x) = 1. The limit exists.

Thus, limx→a f(x) exists and equals 1 for every number a. �

EXAMPLE 5 Let g(x) = sin(1/x). For which a does limx→a g(x) exist?

SOLUTION To begin, we graph the function. Notice that the domain of g

0−1

−0.4

0.6

0.8

x

−2

−0.2

−0.8

1.0

0.2

−1.0

0.0

−0.6

2

0.4

1

Figure 2.2.5: y = g(x) =
sin(1/x).

is all x except 0. When x is very large, 1/x is very small, so sin(1/x) is small.
As x approaches 0, 1/x becomes large. For instance, when x = 1

2nπ
, for a

non-zero integer n, 1/x = 2nπ and therefore sin(1/x) = sin(2nπ) = 0. Thus,
the graph of y = g(x) for x near 0 crosses the x-axis infinitely often. Similarly,
g(x) takes the values 1 and -1 infinitely often for x near 0. The graph is shown
in Figure 2.2.5.

Does limx→0 g(x) exist? Does g(x) tend toward one specific number as x→
0? No. The function oscillates, taking on all values from -1 to 1 (repeatedly)
for x arbitrarily close to 0. Thus limx→0 sin(1/x) does not exist. That g is not defined at 0

did not concern us.At all other values of a, limx→a g(x) does exist and equals g(a) = sin(1/a).
�

Infinite Limits at a

Figure 2.2.6:

A function may assume arbitrarily large values as x approaches a fixed number.
One important example is the tangent function. As x approaches π/2 from
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the left, tanx takes on arbitrarily large positive values. (See Figure 2.2.6.) We
write

lim
x→π

2
−

tanx = +∞.

However, as x→ π
2

from inputs larger than π/2, tanx takes on negative values
of arbitrarily large absolute value. We write

lim
x→π

2
+

tanx = −∞.

DEFINITION (Infinite limit of f(x) at a) Let f be a function
and a some fixed number. Assume that the domain of f contains
an open interval (a, c). If, as x approaches a from the right, f(x)
becomes and remains arbitrarily large and positive, then the limit
of f(x) as x approaches a is said to be positive infinity. This is
written

lim
x→a+

f(x) = +∞

or sometimes just
lim
x→a+

f(x) =∞.

If, as x approaches a from the left, f(x) becomes and remains
arbitrarily large and positive, then we write

lim
x→a−

f(x) = +∞.

Similarly, if f(x) assumes values that are negative and these values
remain arbitrarily large in absolute value, we write either

lim
x→a+

f(x) = −∞ or lim
x→a−

f(x) = −∞,

depending upon whether x approaches a from the left or from the
right.

Limits as x→∞
Sometimes it is useful to know how f(x) behaves when x is a very large positive
number (or a negative number of large absolute value).

EXAMPLE 6 Determine how f(x) = 1/x behaves for

(a) large positive inputs

(b) negative inputs of large absolute value
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(c) small positive inputs

(d) negative inputs of small absolute value

SOLUTION

(a) To get started, make a table of values as shown in the margin. As x

becomes arbitrarily large, 1/x approaches 0: lim
x→∞

1

x
= 0. This conclusion

x 1/x
10 0.1
100 0.01
1000 0.001would be read as “as x approaches ∞, f(x) approaches 0.”

(b) This is similar to (a), except that the reciprocal of a negative number
with large absolute value is a negative number with a small absolute

value. Thus, lim
x→−∞

1

x
= 0.

(c) For inputs that are positive and approaching 0, the reciprocals are posi-
tive and large: limx→0+

1
x

= +∞.

(d) Lastly, the reciprocal of inputs that are negative and approaching 0 from

the left are negative and arbitrarily large in absolute value: lim
x→0−

1

x
=

−∞.

�

x

Figure 2.2.7:
More generally, for any fixed positive exponent p,

lim
x→∞

1

xp
= 0.

Limits of the form limx→∞ P (x) and limx→∞
P (x)
Q(x)

, where P and Q, are poly- Keep in mind that∞ is not
a number. It is just a sym-
bol that tells us that some-
thing — either the inputs
or the values of a function
— are become arbitrarily
large.

nomials are easy to treat.

EXAMPLE 7 Find lim
x→∞

2x3 − 5x2 + 6x+ 5.

SOLUTION When x is large, x3 is much larger than either x2 or x. With
this in mind, we rewrite the limit as

lim
x→∞

2x3 − 5x2 + 6x+ 5

x3
· x3 = lim

x→∞

(
2− 5

x
+

6

x2
+

5

x3

)
· x3

= lim
x→∞

2x3

= ∞.

�

EXAMPLE 8 Find limx→∞
2x3−5x2+6x+5

7x4+3x+2
.
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SOLUTION We use the same technique as in Example 7.

lim
x→∞

2x3 − 5x2 + 6x+ 5

7x4 + 3x+ 2
= lim

x→∞

2x3−5x2+6x+5
x3 · x3

7x4+3x+2
x4 · x4

= lim
x→∞

(
2− 5

x
+ 6

x2 + 5
x3

7 + 3
x3 + 2

x4

)
lim
x→∞

x3

x4

= 2
7
· 0

= 0.

�

As these two examples suggest, the limit of a quotient of two polynomials,
P (x)
Q(x)

, is completely determined by the limit of the quotient of the highest degree

term in P (x) and in Q(x).
Let

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

and
Q(x) = bmx

m + bm−1x
m−1 + · · ·+ b1x+ b0,

where an and bm are not 0. Then

lim
x→∞

P (x)

Q(x)
= lim

x→∞

anx
n

bmxm
.

In particular, if m = n, the limit is an/bm. If m > n, the limit is 0. If n > m,
the limit is infinite, either ∞ or −∞, depending on the signs of an and bn.

Summary

This section develops the concept of a limit and introduce notations for the
various types of limits. One-sided limits are the foundation for the two-sided
limit as well as for infinite limits and limits at infinity.

It is important to keep in mind that when deciding whether limx→a f(x)
exists, you never consider f(a). Perhaps a isn’t even in the domain of the
function. Even if a is in the domain, the value f(a) plays no role in deciding
whether limx→a f(x) exists.
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EXERCISES for 2.2

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1 to 8 the limits exist. Find them.

1. lim
x→3

x2 − 9
x− 3

2. lim
x→4

x2 − 9
x− 3

3. lim
x→0

sin(x)
x

4. lim
x→π

2

sin(x)
x

5. lim
x→0

ex − 1
2x

6. lim
x→2

ex − 1
2x

7. lim
x→0

1− cos(x)
3x

8. lim
x→π

1− cos(x)
3x

In Exercises 9 to 12 the graph of a function y = f(x) is given. Decide
whether lim

x→1+
f(x), lim

x→1+
f(x), and lim

x→1+
f(x) exist. If they do exist, give their

values.

9.
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10.

11.

12.

13.

(a) Sketch the graph of y = log2(x).

(b) What are lim
x→∞

log2(x), lim
x→4

log2(x), and lim
x→0+

log2(x)?

October 30, 2007 Calculus 75



Introduction to Calculus § 2.2

14.

(a) Sketch the graph of y = 2x.

(b) What are lim
x→∞

2x, lim
x→4

2x, and lim
x→−∞

2x?

15. Find lim
x→a

x3 − 8
x− 2

for a = 1, 2, and 3.

16. Find lim
x→a

x4 − 16
x− 2

for a = 1, 2, and 3.

17. Find lim
x→a

ex − 1
x− 2

for a = −1, 0, and 1.

18. Find lim
x→a

sin(x)
x

for a = π
6 , π

4 , and 0.

In Exercises 19 to 24, find the given limit (if it exists).
19. lim

x→∞
2−x sin(x)

20. lim
x→∞

3−x cos(2x)

21. lim
x→∞

3x5 + 2x2 − 1
6x5 + x4 + 2

22. lim
x→∞

13x5 + 2x2 + 1
2x6 + x+ 5

23. lim
x→∞

10x6 + x5 + x+ 1
x6

24. lim
x→∞

25x5 + x2 + 1
x3 + x+ 2

In Exercises 25 to 27, information is given about functions f and g. In each
case decide whether the limit asked for can be determined on the basis of that
information. If it can, give its value. If it cannot, show by specific choices of
f and g that it cannot.

25. Given that lim
x→∞

f(x) = 0 and lim
x→∞

g(x) = 1, discuss

(a) lim
x→∞

(f(x) + g(x))

(b) lim
x→∞

(f(x)/g(x))

(c) lim
x→∞

(f(x)g(x))

(d) lim
x→∞

(g(x)/f(x))

(e) lim
x→∞

(g(x)/|f(x)|)
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26. Given that lim
x→∞

f(x) =∞ and lim
x→∞

g(x) =∞, discuss

(a) lim
x→∞

(f(x) + g(x))

(b) lim
x→∞

(f(x)− g(x))

(c) lim
x→∞

(f(x)g(x))

(d) lim
x→∞

(g(x)/f(x))

27. Given that lim
x→∞

f(x) = 1 and lim
x→∞

g(x) =∞, discuss

(a) lim
x→∞

(f(x)/g(x))

(b) lim
x→∞

(f(x)g(x))

(c) lim
x→∞

(f(x)− 1)g(x)

28. Graph f(x) = cos(1/x), following these steps.

(a) What is the domain of f?

(b) Fill in this table

(c) Does lim
x→0

cos(1/x) exist?

(d) Graph f(x) = cos(1/x).

29. Graph f(x) = x sin(1/x), following these steps.

(a) What is the domain of f?

(b) Graph the lines y = x and y = −x.

(c) For which x does f(x) = x? When does f(x) = −x? (Notice that the graph
of y = f(x) goes back and forth between these lines.)

(d) Does lim
x→0

f(x) exist? If so, what is it?

(e) Does lim
x→∞

f(x) exist? If so, what is it?

(f) Graph y = f(x).
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30. Let f(x) = |x|
x , which is defined except at x = 0.

(a) What is f(3)?

(b) What is f(−2)?

(c) Graph y = f(x).

(d) Does lim
x→0

f(x) exist? If so, what is it?

(e) Does lim
x→0+

f(x) exist? If so, what is it?

(f) Does lim
x→0−

f(x) exist? If so, what is it?

In Exercises 31 to 34, find lim
h→0

f(3 + h)− f(3)

h
for the following functions.

31. f(x) = 5x

32. f(x) = x2

33. f(x) = ex

34. f(x) = sin(x) Hint: sin(a+ b) = sin(a) cos(b) + cos(a) sin(b).

35. Figure 2.2.8 shows a circle of radius a. Find

Figure 2.2.8: Exercise 35(a) lim
θ→0+

AB

arcCB

(b) lim
θ→0+

AB

CD

36. Let f(x) be the diameter of the largest circle that fits in a 1× x rectangle.

(a) Find a formula for f(x).

(b) Graph y = f(x).

(c) Does lim
x→1

f(x) exist?
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37. Answer each question.

(a) “I am thinking of two numbers that are very near 0. What, if anything, can
you say about their product?”

(b) “I am thinking of two numbers that are very near 0. What, if anything, can
you say about their quotient?”

(c) “I am thinking of two numbers that are very near 0. What, if anything, can
you say about their difference?”

(d) “I am thinking of two numbers that are very near 0. What, if anything, can
you say about their sum?”

38. Answer each question.

(a) “I am thinking of two very large positive numbers. What, if anything, can
you say about their product?”

(b) “I am thinking of two very large positive numbers. What, if anything, can
you say about their quotient?”

(c) “I am thinking of two very large positive numbers. What, if anything, can
you say about their difference?”

(d) “I am thinking of two very large positive numbers. What, if anything, can
you say about their sum?”

39. Find lim
x→0

e2x − 1
x

.

40. Sam and Jane are discussing

3x2 + 2x
x+ 5

− 3x.

Sam: For large x, 2x is small in comparison to 3x2, and 5 is small in comparison to
x. So the quotient 3x2+2x

x+5 behaves like 3x2

x = 3x. Hence, the limit in question
is 0.

Jane: “Nonsense. After all,
3x2 + 2x
x+ 5

=
3x+ 2

1 + (5/x)

which clearly behaves like 3x+ 2 for large x. Thus the limit in question is 2,
not 0.
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Settle the argument.

41. Sam, Jane, and Wilber are arguing about limits in a case where lim
x→∞

f(x) = 0

and lim
x→∞

g(x) =∞.

Sam: lim
x→∞

f(x)g(x) = 0, since f(x) is going toward 0.

Jane: Rubbish! Since g(x) gets large, it will turn out that lim
x→∞

f(x)g(x) =∞.

Wilber: You’re both wrong. The two influences will balance out and you will see
that limx→∞ f(x)g(x) is near 1.

Settle the argument.

42. Sam and Jane are arguing about limits in a case where f(x) ≥ 1 for x > 0,
lim
x→0+

f(x) = 1 and lim
x→0

g(x) =∞. What can be said about limx→0+ f(x)g(x)?

Sam: That’s easy. Multiply a bunch of numbers near 1 and you get a number near
1. So the limit will be 1.

Jane: Rubbish! Since f(x) may be bigger than 1 and you are multiplying it lots
of times, you will get a really large number. There’s no doubt in my mind:
lim
x→0

f(x)g(x) =∞.

Settle the argument.

43. For a positive number n let f(n) be the sum of the reciprocals of all the
integers from n to 2n:

f(n) =
1
n

+
1

n+ 1
+ · · ·+ 1

2n
.

(a) Compute f(n) for at least n = 1, 2, . . . , 10.

(b) Show why f(n) decreases as n increases.

(c) Show that f(n) > 1/2 for all n.

(d) The limit of f(n) as n increases exists. In fact, it is a number met earlier
in this chapter in a completely different context. What do you think that
number is? (Try some values of n much larger than 10.)
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44. An urn contains n marbles. One is green and the remaining n − 1 are
red. When picking one marble at random without looking, the probability is 1/n
of getting the green marble. If you do this experiment n times, each time putting
the chosen marble back, the probability of not ever getting the green marble is
((n− 1)/n)n.

(a) Let p(n) =
(
n−1
n

)n. Compute p(2), p(3), and p(4) to at least three decimal
digits (to the right of the decimal point).

(b) Show that as n→∞, p(n) approaches the reciprocal of lim
x→0

(1 + x)1/x.
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2.3 Continuous Functions

This section introduces the notion of a continuous function. While almost
all functions met in practice are continuous, we must always remain alert
to situations where a function might not be continuous. We begin with an
informal, intuitive description and then give a more useful working definition.

An Informal Introduction to Continuous Functions

When we draw the graph of a function defined on some interval, we usually
do not have to lift the pencil off the paper. Figure 2.3.1 shows this typical
situation.

Figure 2.3.1:

The graph comes in one
piece, like a length of
wire. There are no gaps or
jumps, although there may
be sharp corners.

A function is said to be continuous if, when considered on any interval in
its domain, its graph has no jumps — it can he traced without lifting the pencil
off the paper. (The domain of the function may consist of several intervals.)
According to this definition any polynomial is continuous. So is each of the
basic trigonometric functions, including y = tan(x), whose graph is shown in
Figure 2.2.6 of Section 2.2. You may he tempted to say “But tan(x) blows
up at x = π/2 and I have to lift my pencil off the paper to draw the graph.”
However, x = π/2 is not in the domain of the tangent function. On every
interval in its domain, tanx behaves quite decently; on such an interval we
can sketch its graph without lifting the pencil from the paper. That is why
tan(x) is continuous. The function 1/x is also continuous, since it ”explodes”
only at a number not in its domain, namely at x = 0. The function whose
graph is shown in Figure 2.3.2 is not continuous. It is defined throughout the
interval [−2, 3], but to draw its graph you must lift the pencil from the paper
near x = 1. However, when you consider the function only for x in [1, 3], then
it is continuous. By the way, a formula for the function given graphically in
Figure 2.3.2 is:

f(x) =


x+ 1 for x in [−2, 1)
x for x in [1, 2)
−x+ 4 for x in [2, 3].

It is pieced together from three different continuous functions.

Figure 2.3.2:
The Definition of Continuity

Our informal “moving pencil” notion of a continuous function requires drawing
a graph of the function. Our working definition does not require such a graph.
Moreover, it easily generalizes to functions of more than one variable.

To get the feeling of this second definition, imagine that you had the infor-
mation shown in the table in the margin about some function f . What would

x f(x)
0.9 2.93
0.99 2.9954
0.999 2.9999997you expect the output f(1) to be?
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It would be quite a shock to be told that f(1) is, say, 625. A reasonable
function should present no such surprise. The expectation is that f(1) will
be 3. More generally, we expect the output of a function at the input a to
be closely connected with the outputs of the function at inputs that are near
a. The functions of interest in calculus usually behave that way. In short,
“What you expect is what you get.” With this in mind, we define the notion
of continuity at a number a. We first assume that the domain of f contains
an open interval around a.

DEFINITION (Continuity at a number a) Assume that f(x) is
defined in some open interval that contains the number a. Then
the function f is continuous at a if limx→a f(x) = f(a). This
means that

1. f(a) is defined (that is, a is in the domain of f).

2. limx→a f(x) exists.

3. limx→a f(x) equals f(a).

Figure 2.3.3:
As Figure 2.3.3 shows, whether a function is continuous at a depends on

its behavior both at a and at inputs near a. Being continuous at a is a local
matter, involving perhaps very tiny intervals about a.

To check whether a function f is continuous at a number a, we ask three
questions:

Question 1: Is a in the domain of f?

Question 2: Does limx→a f(x) exist?

Question 3: Does f(a) equal limx→a f(x)?

If the answer is “yes” to each of these questions, we say that f is continuous
at a.

If a is in the domain of f and the answer to Question 2 or to Question 3 is
”no,” then f is said to be discontinuous at a. If a is not in the domain of
f , we do not define either continuity or discontinuity there.

We are now ready to define a continuous function.

DEFINITION (Continuous function) Let f be a function whose
domain is the x-axis or is made up of open intervals. Then f is a
continuous function if it is continuous at each number a in its
domain.
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EXAMPLE 1 Use the definition of continuity to decide whether f(x) = 1/x
is continuous.

SOLUTION Let a be in the domain of f . In other words, a is not 0. Since This ensures the answer to
Question 1 is “yes”.

lim
x→a

1

x
=

1

a
,

the answer to Question 2 is “yes.” Since

f(a) =
1

a
,

the answer to Question 3 is also “yes.” Thus f(x) = 1/x is continuous at every
number in its domain. Hence f is a continuous function.

Note that the conclusion agrees with the “moving pencil” picture of conti-
nuity. �

Not every important function is continuous. For instance, let f(x) be the
greatest integer that is less than or equal to x. We have f(1.8) = 1, f(1.9) = 1,
f(2) = 2, and f(2.3) = 2. This function is often used in number theory and
computer science, where it is denoted [x] or bxc and called the floor of x. The
next example examines where the floor function fails to be continuous. People use the floor func-

tion every time they answer
the question, “How old are
you?”

EXAMPLE 2 Let f be the floor function, f(x) = bxc. Graph f and find
where it is continuous. Is f a continuous function?

SOLUTION We begin with the following table to show the behavior of f(x)
for x near 1 or 2.

x 0 0.5 0.8 1 1.1 1.99 2 2.01
bxc 0 0 0 1 1 1 2 2

For 0 ≤ x < 1, bxc = 0. But at the input x = 1 the output jumps to 1 since

Figure 2.3.4:

b1c = 1. For 1 ≤ x < 2, bxc remains at 1. Then at 2 it jumps to 2. More
generally, bxc has a jump at every integer, as shown in Figure 2.3.4.

Let us show that f is not continuous at a = 2 by seeing which of the
three conditions in the definition are not satisfied. First of all, Question 1 is
answered “yes” since 2 lies in the domain of the function; indeed, f(2) = 2.

What is the answer to Question 2? Does limx→2 f(x) exist? We see that

lim
x→2−

f(x) = 1 and lim
x→2+

f(x) = 2.

Since the left-hand and right-hand limits are not equal, limx→2 f(x) does not
exist. Question 2 is answered “no.”

October 30, 2007 Calculus 84



Introduction to Calculus § 2.3

Already we know that the function is not continuous at a = 2. Since the
limit does not exist there is no point in answering Question 3. Because there
is one point in the domain where bxc is not continuous, this is a discontinu-
ous function. More specifically, the floor function is discontinuous at x = a,
whenever a is an integer.

Is f continuous at a if a is not an integer? Let us take the case a = 1.5,
for instance.

Question 1 is answered “yes,” because f(1.5) is defined. (In fact, f(1.5) =
1.)

Question 2 is answered “yes,” since limx→1.5 f(x) = 1.

Question 3 is answered “yes,” since limx→1.5 f(x) = f(1.5). (Both values are
1.)

The floor function is continuous at a = 1.5. Similarly, f is continuous at every
number a that is not an integer.

Note that bxc is continuous on any interval that does not include an integer.
For instance, if we consider the function only on the interval (1.1, 1.9), it is
continuous there. �

Continuity at an Endpoint

The function f(x) =
√
x is graphed in Figure 2.3.5 and g(x) =

√
1− x2 is

graphed in Figure 2.3.6. We would like to consider both of these functions

Figure 2.3.5:

Figure 2.3.6:

continuous. However, there is a slight technical problem. The number 0 is in
the domain of f , but there is no open interval around 0 that lies completely
in the domain, as our definition of continuity requires. Since f(x) =

√
x is

not defined for x to the left of 0, we are not interested in numbers x to the
left of 0. Similarly, g(x) =

√
1− x2 is defined only when 1 − x2 ≥ 0, that is,

for −1 ≤ x ≤ 1. To cover this type of situation we utilize one-sided limits to
define one-sided continuity.

DEFINITION (Continuity from the right at a number a.) As-
sume that f(x) is defined in some closed interval [a, c]. Then the
function f is continuous from the right at a if

1. f(a) is defined

2. limx→a+ f(x) exists

3. limx→a+ f(x) equals f(a)
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Figure 2.3.7:

Figure 2.3.7 illustrates this definition.
This definition also takes care of the continuity of g(x) =

√
1− x2 at -1

in Figure 2.3.6. The next definition attends to the problem at the right-hand
endpoint (a = 1).

DEFINITION (Continuity from the left at a number a.) Assume
that f(x) is defined in some closed interval [b, a]. Then the function
f is continuous from the left at a if

1. f(a) is defined

2. limx→a− f(x) exists

3. limx→a− f(x) equals f(a)

Figure 2.3.8:
Figure 2.3.8 illustrates this definition.
With these two extra definitions to cover some special numbers in the

domain, we can extend the definition of continuous function to include those
functions whose domains may contain endpoints. We say, for instance, that√

1− x2 is continuous because it is continuous at any number in (−1, 1), is
continuous from the right at -1, and continuous from the left at 1.

These special considerations are minor matters that will little concern us
in the future. The key point is that

√
1− x2 and

√
x are both continuous

functions. So are practically all the functions studied in calculus.
The following example reviews the notion of continuity.

EXAMPLE 3 Figure 2.3.9 is the graph of a certain (piecewise-defined)

Figure 2.3.9:
function f(x) whose domain is the interval (−2, 6]. Discuss the continuity of
f(x) at (a) 6, (b) 4, (c) 3, (d) 2, (e) 1, and (f) -2.

SOLUTION

(a) Since lim
x→6−

f(x) exists and equals f(6), f is continuous from the left at

6.

(b) Since lim
x→4

f(x) does not exist, f is not continuous at 4.

(c) Inspection of the graph shows that lim
x→3

f(x) = 2. However, Question 3 is

answered “no” because f(3) = 3, which is not equal to lim
x→3

f(x). Thus

f is not continuous at 3.

(d) Though lim
x→2−

f(x) and lim
x→2+

f(x) both exist, they are not equal. (The

left-hand limit is 2; the right-hand limit is 1.) Thus lim
x→2

f(x) does not

exist, the answer to Question 2 is “no,” and f is discontinuous at x = 2.
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(e) At 1, “yes” is the answer to each of the three questions: limx→1 f(x)
exists (it equals 2) and equals f(1). f is continuous at x = 1.

(f) Since -2 is not even in the domain of this function, we do not speak of
continuity or discontinuity of f at x = −2.

�

As Example 3 shows, a function can fail to be continuous at a given number
a of its domain for either of two reasons:

1. limx→a f(x) might not exist

2. when, limx→a f(x) does exist, f(a) might not be equal to that limit.

Continuity and Limits

Some limits are so easy that you can find them without any work; for instance,
limx→2 5x = 52 = 25. Others offer a challenge; for instance, limx→2

x3−23

x−2
.

If you want to find limx→a f(x), and you know f is a continuous function
with a in its domain, then you just calculate f(a). In such a case there is no
challenge and the limit is called determinate.

The interesting case for finding limx→a f(x) occurs when f is not defined at
a. That is when you must consider the influences operating on f(x) when x is
near a. You may have to do some algebra or perform numerical computations.
Such limits are called indeterminate.

Here are the most common types of indeterminate limits:

Type 0/0: limx→a
g(x)
h(x)

, where limx→a g(x) = 0 and limx→a h(x) = 0

Type ∞/∞: limx→a
g(x)
h(x)

, where limx→a g(x) =∞ and limx→a h(x) =∞

Type 0 · ∞: limx→a g(x)h(x), where limx→a g(x) = 0 and limx→a h(x) =∞

Type 1∞: limx→a g(x)h(x), where limx→a g(x) = 1 and limx→a h(x) =∞

Type 00: limx→a g(x)h(x), where limx→a g(x) = 0 and limx→a h(x) = 0

The four limits encountered in Section 2.1, lim
x→a

xn − an

x− a
, lim
x→0

bx − 1

x
, lim
x→0

sinx

x
,

and lim
x→0

1− cosx

x
are all indeterminate of type 0/0..

We list the properties of limits which are helpful in computing limits.

Theorem 2.3.1 (Properties of Limits) Let g and h be two functions and
assume that limx→a g(x) = A and limx→a h(x) = B. Then Each of these properties re-

mains valid when the two-
sided limit is replaced with
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Sum lim
x→a

(g(x) + h(x)) = lim
x→a

g(x) + lim
x→a

h(x) = A+B

the limit of the sum is the sum of the limits

Difference lim
x→a

(g(x)− h(x)) = lim
x→a

g(x)− lim
x→a

h(x) = A−B
the limit of the difference is the difference of the limits

Constant Multiple lim
x→a

(kg(x)) = k
(

lim
x→a

g(x)
)

= kA, for any constant k

the limit of the difference is the difference of the limits

Product lim
x→a

(g(x)h(x)) =
(

lim
x→a

g(x)
)(

lim
x→a

h(x)
)

= AB

the limit of the product is the product of the limits

Quotient lim
x→a

(
g(x)

h(x)

)
=

(limx→a g(x))

(limx→a h(x))
=
A

B
, provided B 6= 0

the limit of the quotient is the quotient of the limits, provided the denom-
inator is not 0

Power lim
x→a

(
g(x)h(x)

)
=
(

lim
x→a

g(x)
)(limx→a h(x))

= AB, provided A > 0

the limit of a varying base to a varying power

EXAMPLE 4 Find lim
x→0

(x4 − 16) sin(5x)

x2 − 2x
.

SOLUTION Notice that the denominator can be factored to obtain Only the second factor is
indeterminate at 0.

(x4 − 16) sin(5x)

x2 − 2x
=
x4 − 24

x− 2
· sin(5x)

x
.

This allows the limit to be rewritten as

lim
x→0

x4 − 24

x− 2
· lim
x→0

sin(5x)

x

where we have also used 16 = 24. Now, limx→0
x4−24

x−2
= 4 · 24−1 = 32. Putting

this together with one of the intermediate results of the previous example, we
conclude that

lim
x→0

(x4 − 16) sin(5x)

x2 − 2x
= lim

x→0

x4 − 24

x− 2
· lim
x→0

sin(5x)

x
= 32 · 5 = 160.

�
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Summary

This section opened with an informal view of continuous functions, expressed
in terms of a moving pencil. It then gave the definition, phrased in terms of
limits, that we will use throughout the text. Determinate and indeterminate
limits were discussed.

The discussion concludes in the next section, with three important prop-
erties of continuous functions.
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EXERCISES for 2.3

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1–11, tell whether each of these limits is determinant or inde-
terminant. Do not evaluate the limit.

1. lim
x→0

2x − 1

2. lim
x→∞

2x − 1

3. lim
x→1

3x − 1
2x − 1

4. lim
x→2

3x − 1
2x − 1

5. lim
x→∞

x

2x

6. lim
x→0

x

2x

7. lim
x→0+

x2

ex − 1
8. lim

x→π
2
−

(sin(x))tan(x)

9. lim
x→0+

x log2 x

10. lim
x→0+

(2 + x)3/x

11. lim
x→∞

(2 + x)3/x

In Exercises 12–15, evaluate the limit.

12. lim
x→π

2

sinx
ex − 1
x

13. lim
x→0

(cosx) (ex − 1)
x

14. lim
x→0

sin(2x)
x(cos(3x))2

15. lim
x→1

(x− 1) cosx
x3 − 1

In Exercises 16 to 19 the graph of a function y = f(x) is given. Determine
all values of the number c for which lim

x→c
f(x) does not exist.
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16.

17.

18.
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19.

In Exercises 20 and 21 the graph of a function y = f(x) and several inter-
vals are given. For each interval, decide if the function is continuous on that
interval.

20.

(a) [−2,−1]

(b) (−2,−1)

(c) (−1, 1)

(d) [−1, 1)

(e) (−1, 1]

(f) [−1, 1]

(g) (1, 2)

(h) [1, 2)

(i) (1, 2]

(j) [1, 2]
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21.

(a) [−3, 2]

(b) (−1, 3)

(c) (−1, 2)

(d) [−1, 2)

(e) (−1, 2]

(f) [−1, 2]

(g) (2, 3)

(h) [2, 3)

(i) (2, 3]

(j) [2, 3]

22. Let f(x) = x+ |x|.

(a) Graph f .

(b) Is f continuous at -1?

(c) Is f continuous at 0?
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23. Let f(x) = 21/x for x 6= 0.

(a) Find lim
x→∞

f(x).

(b) Find lim
x→−∞

f(x).

(c) Does lim
x→0+

f(x) exist?

(d) Does lim
x→0−

f(x) exist?

(e) Graph f , incorporating the information from parts (a) to (d).

(f) Is it possible to define f(0) in such a way that f is continuous throughout the
x-axis?

24. Let f(x) = x sin(1/x) for x 6= 0.

(a) Find lim
x→∞

f(x).

(b) Find lim
x→−∞

f(x).

(c) Find lim
x→0

f(x).

(d) Is it possible to define f(0) in such a way that f is continuous throughout the
x-axis?

In Exercises 25–27 find and solve the equations that the parameters must
satisfy for the function to be continuous.

25. f(x) =
{

sin(x)
2x x 6= 0
p x = 0

26. f(x) =


k x ≤ 0

arcsin(x) 0 < x ≤ π
2

p x = 0

27. f(x) =


ln(x) x > 1

k −m
√
x 0 < x ≤ 1

pe−x x ≤ 0

28.

(a) Let f and g be two functions defined for all numbers. If f(x) = g(x) when x
is not 3, must f(3) = g(3)?

(b) Let f and g be two continuous functions defined for all numbers. If f(x) = g(x)
when x is not 3, must f(3) = g(3)?

Explain your answers.
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29. The reason 00 is not defined. It might be hoped that if the positive number b
and the number x are both close to 0, then bx might be close to some fixed number.
If that were so, it would suggest a definition for 00. Experiment with various choices
of b and x near 0 and on the basis of your data write a paragraph on the theme,
“Why 00 is not defined.”
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2.4 Three Important Properties of Continu-

ous Functions

Continuous functions have three properties important in calculus: the “extreme-
value” property, the “intermediate-value” property, and the “permanence”
property. All three are quite plausible, and a glance at the graph of a typi-
cal continuous function may persuade us that they are true of all continuous
functions. No proofs will he offered: they depend on the precise definitions
of limits given in Sections 3.8 and 3.9 and are part of an advanced calculus
course.

We will say that a function has a maximum at a point (c, f(c)) when f(c) >
f(x) for x near c. Likewise, a function has a minimum at a point (c, f(c)) when
f(c) < f(x) for x near c. Together, each maximum and minimum is referred The plural of extremum is

extrema.to as an extreme values or extremum of the function.

Extreme-Value Property

The first property is that a function continuous throughout the closed interval
[a, b] takes on a largest value somewhere in the interval.

Theorem 2.4.1 (Maximum-Value Property) Let f be continuous through-
out the closed interval [a, b]. Then there is at least one number in [a, b] at which
f takes on a maximum value. That is, for some number c in [a, b], f(c) ≥ f(x)
for all x in [a, b].

To persuade yourself that this is plausible, imagine sketching the graph of
a continuous function. As your pencil moves along the graph from a to b it
passes through a highest point. (See Figure 2.4.1.)

The maximum-value property guarantees that a maximum value exists,
but it does not tell how to find it. The problem of finding it is addressed in
Chapter 4.

There is also a minimum-value property that states that every contin-
uous function on a closed interval takes on a smallest value somewhere in this
interval. See Figure 2.4.1 for an ilustration of this property.

Theorem 2.4.2 (Extreme-Value Property) Let f be continuous through-
out the closed interval [a, b]. Then there is at least one number in [a, b] at
which f takes on a minimum value and there is at least one number in [a, b]
at which f takes on a maximum value. That is, for some numbers c and d in
[a, b], f(d) ≤ f(x) ≤ f(c) for all x in [a, b].

EXAMPLE 1 Find all numbers in [0, 3π] at which the cosine function,
f(x) = cosx, takes on a maximum value. Also, find all numbers in [0, 3π] at
which f takes on a minimum value.
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Figure 2.4.1: As a pencil runs along the graph of a continuous function from a
to b it passes through at least one maximum point and at least one minimum
point.

SOLUTION Figure 2.4.2 is a graph of f(x) = cos x for x in [0, 3π]. Inspection

Figure 2.4.2:

of the graph shows that the maximum value of cosx for 0 ≤ x ≤ 3π is 1, and
it is attained twice: when x = 0 and when x = 2π. The minimum value is -1,
which is also attained twice: when x = π and when x = 3π. �

The Extreme-Value Property has two assumptions: “f is continuous” and
“the domain is a closed interval.” If either of these conditions is removed, the
conclusion need not hold.

Figure 2.4.3:

Figure 2.4.3 shows the graph of a function that is not continuous, is de-
fined on a closed interval, but has no maximum value. On the other hand

Figure 2.4.4:

f(x) = 1
1−x2 is continuous on (−1, 1). It has no maximum value, as a glance at

Figure 2.4.4 shows. This does not violate the Extreme-Value Property, since
the domain (−1, 1) is not a closed interval.

Intermediate-Value Property

Imagine graphing a continuous function f defined on the closed interval [a, b].
As your pencil moves from the point (a, f(a)) to the point (b, f(b)) the y-
coordinate of the pencil point goes through all values between f(a) and f(b).
(Similarly, if you hike all day, starting at an altitude of 5.000 feet and ending
at 11,000 feet, you must have been, say, at 7,000 feet at least once during the
day. In mathematical terms, not in terms of a pencil (or a hike), “a function
that is continuous throughout an interval takes on all values between any two
of its values”.

Theorem 2.4.3 (Intermediate-Value Property) Let f be continuous through-
out the closed interval [a, b]. Let m be any number between f(a) and f(b). Then That is, f(a) ≤ m ≤ f(b) if

f(a) ≤ f(b), or f(b) ≤ m ≤
f(a) if f(b) ≤ f(a).October 30, 2007 Calculus 97
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there is at least one number c in [a, b] such that f(c) = m.

Pictorially, the Intermediate-Value Property asserts that, if m is between
f(a) and f(b), a horizontal line of height m must meet the graph of f at least
once, as shown in Figure 2.4.5.

Figure 2.4.5:

Even though the property guarantees the existence of a certain number c,
it does not tell how to find it. To find it we must solve an equation, namely,
f(x) = m.

EXAMPLE 2 Use the Intermediate-Value Property to show that the equa-
tion 2x3 + x2 − x+ 1 = 5 has a solution in the interval [1, 2].

SOLUTION Let P (x) = 2x3 + x2 − x+ 1. Then

P (1) = 2 · 13 + 12 − 1 + 1 = 3
and P (2) = 2 · 23 + 22 − 2 + 1 = 19.

Since P is continuous (on [1, 2]) and m = 5 is between P (1) = 3 and P (2) = 19,
the Intermediate-Value Property says there is at least one number c between
1 and 2 such that P (c) = 5.

To get a more accurate estimate for a number c such that P (c) = 5, find
a shorter interval for which the Intermediate-Value Property can he applied.
For instance, P (1.2) = 4.696 and P (1.3) = 5.784. By the Intermediate-Value
Property, there is a number c in [1.2.1.3] such that P (c) = 5. �

EXAMPLE 3 Show that the equation −x5−3x2 + 2x+ 11 = 0 has at least
one real root. That is, the function −x5 − 3x2 + 2x+ 11 has an x-intercept.

SOLUTION Let f(x) = −x5−3x2 +2x+11. We wish to show that there is a
number c such that f(c) = 0. In order to use the Intermediate-Value Property,
we need an interval [a, b] for which 0 is between f(a) and f(b). Then we could One of f(a) and f(b) is pos-

itive and the other is nega-
tive.

apply that property, using m = 0.
We show that there are numbers a and b with f(a) > 0 and f(b) < 0. Be-

cause limx→∞ f(x) = −∞, for x large and positive the polynomial f(x) is neg-
ative. Thus, there is a number b such that f(b) < 0. Similarly, limx→−∞ f(x) =
∞, means that when x is negative and of large absolute value, f(x) is positive.
Thus there are numbers a and b, a < b, such that f(a) > 0 and f(b) < 0. For definiteness, a = 0 and

b = 2 are examples because
f(0) = 11 > 0 and f(2) =
−29 < 0.

y

5

−5

−15

20

15

10

0

−10

x

210−1−2

Figure 2.4.6:

The number 0 is between f(a) and f(b). Since f is continuous on the
interval [a, b], there is a number c in [a, b] such that f(c) = 0. This number c
is a solution to the equation −x5 − 3x2 + 2x+ 11 = 0. �

Note that the argument in Example 3 applies to any polynomial of odd
degree. Any polynomial of odd degree has a real root. The argument does not
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hold for polynomials of even degree; the equation x2 + 1 = 0, for instance, has
no real solutions.

EXAMPLE 4 Use the Intermediate-Value Property to show that there is
a negative number such that ln(x+ 4) = x2 + 3.
SOLUTION We wish to show that there is a negative number c where the
function ln(x + 4) has the same value as the function x2 − 3. The equation
ln(x+ 4) = x2−3 is equivalent to ln(x+ 4)−x2 + 3 = 0. The problem reduces
to showing that the function f(x) = ln(x+4)−x2 +3 has the value 0 for some
input c (with c < 0).

We will proceed, as we did in the previous example. We want to find
numbers a and b (both negative) such that f(a) and f(b) have opposite signs.

Before beginning the search for a and b, note that ln(x+ 4) is defined only
for x+ 4 > 0, that is, for x > −4. To complete the search for a and b, make a
table of values of f(x) for some sample arguments in (−4, 0).

x −3 −2 −1 0
f(x) −6 −0.307 3.099 4.386

We see that f(−2) is negative and f(−1) is positive. Since m = 0 lies between
f(−2) and f(−1), and f is continuous on [−2,−1], the Intermediate-Value
Property asserts that there is a number c, in (−2,−1) such that f(c) = 0. It
follows that ln(c+ 4) = c2 − 3. �

4

y
−3

−2

x

3

2

2

−1
−2

−5

4

0

0

5

−4

1

−4

Figure 2.4.7:

There are two points of
intersection between these
functions. The second in-
tersection occurs for a pos-
itive value of x. (See Exer-
cise 20.)

In Example 4 the Intermediate-Value Property does not tell what c is. The
graphs of ln(x+ 1) and x2−3 in Figure 2.4.7 suggest that there are two points
of intersection, but only one with a negative input. The graph, and the table
of values, suggest that the intersection point occurs when the input is close to
-2. Calculations on a calculator or computer show that c ≈ −1.931.

Permanence Property

The extrema property as well as the intermediate-value property involve the
behavior of a continuous function throughout an interval. The next property
concerns the ”local” behavior of a continuous function.

Consider a continuous function f on an open interval that contains the
number a. Assume that f(a) = p is positive. Then it seems plausible that f
remains positive in some open interval that contains a. We can say something
stronger:

Theorem 2.4.4 (The Permanence Property) Assume that the domain of
a function f contains an open interval that includes the number a. Assume
that f is continuous at a and that f(a) = p is positive. Let q be any number
less than p. Then there is an open interval including a such that f(x) ≥ q for
all x in that interval.
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To persuade yourself that the permanence principle is plausible, imagine
what the graph of y = f(x) looks like near (a, f(a)), as in Figure 2.4.8.

q

a

p

x

Figure 2.4.8:

Summary

This section statest (without proofs) the Extreme-Value Property, the Intermediate-
Value Property, and the Permanence Property. In Chapter 4 limits will be
used to develop the idea of a “derivative”, one of the two fundamental tools
in calculus.
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EXERCISES for 2.4

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

1. For each of the given intervals, find the maximum value of cosx over that
interval and find the value of x at which it occurs.

(a) [0, π/2]

(b) [0, 2π]

2. Does the function x3+x4

1+5x2+x6 have (a) a maximum value for x in [1, 4]? (b) a
minimum value for x in [1, 4]? If so, where?

3. Does the function 2x − x3 + x5 have (a) a maximum value for x in [−3, 10]?
(b) a minimum value for x in [−3, 10]? If so, where?

4. Does the function x3 have a maximum value for x in (a) [2, 4]? (b) [−3, 5]? (c)
(1, 6)? If so, where does the maximum occur and what is the maximum value?

5. Does the function x4 have a minimum value for x in (a) [−5, 6]? (b) (−2, 4)? (c)
(3, 7)? (d) (−4, 4)? If so, where does the minimum occur and what is the maximum
value?

6. Does the function 2 − x2 have (a) a maximum value for x in (−1, 1)? (b) a
minimum value for x in (−1, 1)? If so, where?

7. Does the function 2 + x2 have (a) a maximum value for x in (−1, 1)? (b) a
minimum value for x in (−1, 1)? If so, where?

8. Show that the equation x5 + 3x4 + x − 2 = 0 has at least one solution in the
interval [0, 1].

9. Show that the equation x5 − 2x3 + x2 − 3x = −1 has at least one solution in
the interval [1, 2].

In Exercises 10–14 verify the Intermediate-Value Property for the specified
function f , the interval [a, b], and the indicated value m. Find all c’s in each
case.
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10. f(x) = 3x+ 5, [a, b] = [1, 2], m = 10.

11. f(x) = x2 − 2x, [a, b] = [−1, 4], m = 5.

12. f(x) = sinx, [a, b] = [π2 ,
11π
2 ], m = −1.

13. f(x) = cosx, [a, b] = [0, 5π], m =
√

3
2 .

14. f(x) = x3 − x, [a, b] = [−2, 2], m = 0.

15. Show that the equation 2x = 3x has a solution in the interval [0, 1].

16. Does the equation x+ sinx = 1 have a solution?

17. Does the equation x3 = 2x have a solution?

18. Use the Intermediate-Value Property to show that the equation 3x3 + 11x2 −
5x = 2 has a solution.

19. Let f(x) = 1/x, a = −1, b = 1, m = 0. Note that f(a) ≤ 0 ≤ f(b). Is there
at least one c in [a, b] such that f(c) = 0? If so, find c; if not, does this imply the
Intermediate-Value Property sometimes does not hold?

20. Use the Intermediate-Value Property to show that there is a positive number
such that ln(x+ 4) = x2 + 3.

21. Let P (x) = anx
n + an−1x

n−1 + · · ·+ a0 be a polynomial of odd degree n and
with positive leading coefficient an. Show that there is at least one real number r
such that P (r) = 0.

22. (This continues Exercise 21.) The factor theorem from algebra asserts that
the number r is a root of a polynomial P (x) if and only if x− r is a factor of P (x).
For instance, 2 is a root of the polynomial x2 − 3x + 2 and x − 2 is a factor of the
polynomial x2 − 3x+ 2 = (x− 2)(x− 1). Note: See also Exercise 57.

(a) Use the factor theorem and Exercise 21 to show that every polynomial of odd
degree has a factor of degree 1.

(b) Show that none of the polynomials x2 +1, x4 = 1, or x100 +1 has a first-degree
factor.

(c) Verify that x4 + 1 =
(
x2 +

√
2x+ 1

) (
x2 −

√
2x+ 1

)
. (It can be shown us-

ing complex numbers that every polynomial is the product of polynomials of
degrees at most 2.)
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Convex Sets and Curves

A set in the plane bounded by a curve is convex if for any two points P and Q
in the set the line segment joining them also lies in the set. (See Figure 2.4.9.)
The boundary of a convex set we will call a convex curve. (These ideas can

Figure 2.4.9: There are
no dents in the boundary
of a convex set.

generalize to a solid and its boundary surface.)
Disks, triangles, and parallelograms are convex sets. The quadrilateral

shown in Figure 2.4.10 is not convex. Convex sets will be referred to in the

Figure 2.4.10: Not a con-
vex set.

following exercises and occassionally in the exercises in later chapters.
Exercises 23–34 concern convex sets and show how the Intermediate-Value

Property can give geometric information. In these exercises you will need to
define various functions geometrically. You may assume these functions are
continuous.

23. Let L be a line in the plane and let K be a convex set. Show that there is a
line parallel to L that cuts K into two pieces with equal areas.

Follow these steps.

(a) Introduce an x axis perpendicular to L with its origin on L. Each line
parallel to L and meeting K crosses the x-axis at a number x. Label the
line Lx. Let a be the smallest and b the largest of these numbers. (See
Figure 2.4.11.) Let the area of K be A.

Figure 2.4.11:

(b) Let A(x) be the area of K situated to the left of the line corresponding
to x. What is A(a)? A(b)?

(c) Use the Intermediate-Value Property to show that there is an x in [a, b]
such that A(x) = A

2
.

(d) Why does (c) show that there is a line parallel to L that cuts K into
two pieces of equal area?

24. Solve the preceding exercise by applying the Intermediate-Value Property to
the function f(x) = A(x)−B(x), where B(x) is the area to the right of Lx.

25. Let P be a point in the plane and let K be a convex set. Is there a line
through P that cuts K into two pieces of equal area?

26. Let K1 and K2 be two convex sets in the plane. Is there a line that simulta-
neously cuts K1 into two pieces of equal area and cuts K2 into two pieces of equal
area? Note: This is known as the “two pancakes” question.
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27. Let K be a convex set in the plane. Show that there is a line that simulta-
neously cuts K into two pieces of equal area and cuts the boundary of K into two
pieces of equal length.

28. Let K be a convex set in the plane. Show that there are two perpendicular
lines that cut K into four pieces of equal area. (It is not known whether it is always
possible to find two perpendicular lines that divide K into four pieces whose areas
are 1

8 , 1
8 , 3

8 , and 3
8 of the area of K, with the parts of equal area sharing an edge, as

in Figure 2.4.12.)

Figure 2.4.12:29. Let K be a convex set in the plane whose boundary contains no line segments.
A polygon is said to circumscribe K if each edge of the polygon is tangent to the
boundary of K.

(a) Is there necessarily a circumscribing equilateral triangle? If so, how many?

(b) Is there necessarily a circumscribing rectangle? If so, how many?

(c) Is there necessarily a circumscribing square??

30. Let f be a continuous function whose domain is the x-axis and has the
property that

f(x+ y) = f(x) + f(y) for all numbers x and y.

For any constant c, f(x) = cx satisfies this equation since c(x+ y) = cx+ cy. This
exercise shows that f must be of the form f(x) = cx for some constant c.

(a) Let f(1) = c. Show that f(2) = 2c.

(b) Show that f(0) = 0.

(c) Show that f(−1) = −c.

(d) Show that that for any positive integer n, f(n) = cn.

(e) Show that that for any negative integer n, f(n) = cn.

(f) Show that f(1
2) = c

2 .

(g) Show that that for any non-zero integer n, f( 1
n) = c

n .

(h) Show that that for any intger m and any positive integer n, f(mn ) = m
n c.

(i) Show that for any irrational number x, f(x) = cx. This is where the continuity
of f enters. Parts (h) and (i) together complete the solution.

Note: Verify that the function f(x) = cx does satisfy the equation.

October 30, 2007 Calculus 104



Introduction to Calculus § 2.4

Exercises 31 and 32 illustrate the Permanence Principal.
31. Let f(x) = 5x. Then f(1) = 5. Find an interval (a, b) containing 1 such

that f(x) ≥ 4.9 for all x in (a, b).

32. Let f(x) = x2. Then f(2) = 4. Find an interval (a, b) containing 2 such that
f(x) ≥ 3.8 for all x in (a, b).

33.

(a) Let f be a continuous function defined for all real numbers. Is there necessarily
a number x such that f(x) = x?

(b) Let f be a continuous function with domain [0, 1] such that f(0) = 1 and
f(1) = 0. Is there necessarily a number x such that f(x) = x?

34. Let f be a continuous function defined on (−∞,∞) such that f(0) = 1 and
f(2x) = f(x) for all numbers x.

(a) Give an example of such a function f .

(b) Find all functions satisfying these conditions.

Explain your answers.

35. Assume that f(3) is 2, f is defined at least on an open interval containing 3,
and that f is continuous at 3. Using the definition of continuity in terms of limits,
explain why there must be an open interval around 3 in which f(x) is always greater
than or equal to 1. Hint: Assume that there is no such interval and show that f
wouldn’t be continuous at a.
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2.S Chapter Summary

The text and additional exercises for the summary will be written after the
organization of the chapters is firmly settled.

Sam: Why bother me with limits? In high school I learned the formulas
for derivatives. The teacher told me they are rates of change. I can
differentiate anything, using just 4 or 5 formulas. I love formulas.

Jane: Aren’t you curious about why the formula for the derivative of
a product is what it is?

Sam: No. It’s been true for over three centuries. Just tell me what it
is. If someone says the speed of light is 186,000 miles per second
am I supposed to find a meter stick and clock and check it out?

Jane: But what if you forget the formula during a test?

Sam: That’s not much of a reason.

Jane: But my physics class uses derivatives and limits to define basic
concepts.

Sam: Oh?

Jane: Density of mass at a point or density of electric charge are de-
fined as limits. And it uses derivatives all over the place. You
will be lost if you don’t know their definitions. Just look at the
applications at the end of chapters ... for instance.

Sam: O.K., O.K. enough. I’ll look.

EXERCISES for 2.S Key: R–routine, M–moderate, C–challenging In

Exercises 1–17, tell whether each of these limits is determinant or indetermi-
nant. Do not evaluate the limit.
1. lim

x→−∞
2x − 1

2. lim
x→1

2x − 1
3x − 1

3. lim
x→0

3−x(x+ 2)

4. lim
x→−∞

3−x(x+ 2)

5. lim
x→π

4

sin(8x)
sin(4x)
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6. lim
x→π

4

sin(9x)
sin(4x)

7. lim
x→−∞

1
x3x

8. lim
x→π

2

(
x− π

2

)
tan(x)

9. lim
x→π

(
x− π

2

)3
cos(x)

10. lim
x→π

2

(
x− π

2

)3
cos(x)

11. lim
x→π

2

(
x− π

2

)3
sec(x)

12. lim
x→0+

x2

ex − 1
13. lim

x→0
(1 + x)3/x

14. lim
x→π

2
−

(tan(x))sin(x)

15. lim
x→0+

x lnx

16. lim
x→0+

(2 + x)3/x

17. lim
x→−1

(2 + x)3/x

18. Define f(x) =

{
x3−3x2−4x+k

x−3 x 6= 3
p x = 3

(a) For what values of k and p is f continuous? (Justify your answer.)

(b) For these values of k and p, is f an even or odd function? (Justify your
answer.)

19. Define f(x) =

{
h(x)
x−3 x 6= 3
p x = 3

(a) What conditions must be satisfied to make f continuous?

(b) What additional condition on h will make f an even function?
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20. Assuming that limx→0+ xx = 1 and that limx→∞ ln(x) = ∞, deduce each of
the following limits:

(a) limx→0 x ln(x)

(b) limx→∞
ln(x)
x

(c) limx→∞ x
1/x

(d) limx→∞
ln(x)
xk

, k a positive constant

(e) limx→∞
x
ex

(f) limx→∞
xn

ex , n a positive integer

(g) limx→∞
ln(x)n

x , n a positive integer

21. (Contributed by G. D. Chakerian) This exercise obtains limθ→0
sin(θ)
θ without

using areas. Figure 2.4.1 shows a circle C of radius 1 center at the origin and a circle
C(r) of radius r > 1 that passes through the center of C. Let S(r) be the part of
C(r) that lies within C. Its ends are P and Q. Let θ be the angle subtended by the
top half of S(r) at the center of C(r). Note that as r →∞, θ → 0. Define A(θ) to
be the length of the arc S(r) as a function of θ.

Figure 2.4.1:

(a) Looking at Figure 2.4.1, determine limθ→0A(θ). Hint: What happens to P
as r →∞?

(b) Show that A(θ) is 2 θ/2
sin(θ/2) .

(c) Combining (a) and (b), show that limθ→0
sin(θ)
θ = 1.
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The Derivative

In this chapter we meet one of the two main concepts of calculus, the deriva-
tive of a function. The derivative tells how rapidly or slowly a function
changes. For instance, if the function describes the position of a moving par-
ticle, the derivative tells us the velocity.

The definition of a derivative rests on the notion of a limit. The particular
limits examined in Chapter 2 are the basis for finding the derivatives of all
functions of interest. Fortunately, it is not necessary to evaluate a limit every
time we find a derivative.

A few techniques allow us to find the derivative of almost any function
that we will encounter. The goal of this chapter is twofold: to develop those
techniques and an understanding of the meaning of a derivative.
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3.1 Velocity and Slope: Two Problems with

One Theme

This section discusses two problems which at first glance may seem unrelated.
The first one concerns the slope of a tangent line to a curve. The second
involves velocity. A little arithmetic will show that they are both just different
versions of one mathematical idea: the derivative.

Slope

Our first problem is important because it is related to finding the straight line
that most closely resembles a given graph near a point on the graph.

EXAMPLE 1 What is the slope of the tangent line to the graph of y = x2

at the point P = (2, 4), as shown in Figure 3.1.1

Figure 3.1.1:
For the present, the tangent line to a curve at a point P on the curve shall

mean the line through P that has the “same direction” as the curve at P .
(Look again at Figure 3.1.1.) This will he made precise in the next section.
SOLUTION If we know two points (x1, y1) and (x2, y2) on a straight line,
we can compute the slope of that line. The slope is “change in y divided by
change in x;” that is,

Slope of line =
y2 − y1

x2 − x1

.

See Figure 3.1.2. However, we know only one point on the tangent line at

Figure 3.1.2:

Appendix B has a further
discussion of the slope of a
line.

(2, 4), namely, just the paint (2, 4) itself. To get around this difficulty we will
choose a point Q on the parabola y = x2 near P and compute the slope of
the line through P and Q. Such a line is called a secant. As Figure 3.1.3
suggests, such a secant line resembles the tangent line at (2, 4). For instance,
choose Q = (2.1, 2.12) and compute the slope of the line through P and Q as
shown in Figure 3.1.3(b).

Slope of secant = Change in y
Change in x

= 2.12−22

2.1−2

= 4.41−4
0.1

= 0.41
0.1

= 4.1.

Thus an estimate of the slope of the tangent line is 4.1. Note that in making
this estimate there was no need to draw the curve, or the secant.

We can also choose the point Q on the parabola to be to the left of P =
(2, 4). For instance, choose Q = (1.9, 1.92). (See Figure 3.1.4.) Then
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(a) (b)

Figure 3.1.3:

slope of secant = Change in y
Change in x

= 1.92−22

1.9−2

= 3.61−1
−0.1

= −0.39
−0.1

= 3.9.

To obtain a better estimate, we could repeat the process using, for instance,
the line through P = (2, 4) and Q = (2.01, 2.012). Rather than do this, it is
simpler to consider a typical point Q. That is, consider the line through
P = (2, 4) and Q = (x, x2) when x is close to 2 but not equal to 2. (See
Figures 3.1.3(a) and (b).) This line has slope

x2 − 22

x− 2
.

To find out what happens to this quotient as Q moves closer to P apply the Q moves closer to P when
x moves closer to 2.techniques of limits (see Section 2.1). We have
Recall
a2 − b2 = (a+ b)(a− b).lim

x→2

x2 − 22

x− 2
= lim

x→2

(x+ 2)(x− 2)

x− 2
= lim

x→2
(x+ 2) = 4.

Thus, the tangent line to y = x2 at (2, 4) has slope 4.
Figure 3.1.5(c) shows how secant lines approximate the tangent line. It

suggests a blowup of a small part of the curve y = x2. �

October 30, 2007 Calculus 111



The Derivative § 3.1

(a) (b) (c)

Figure 3.1.5:

Velocity

If an airplane or automobile is moving at a constant velocity, we know that
“distance traveled equals velocity times time.” Thus

velocity =
distance traveled

elapsed time
.

If the vehicle’s velocity is not constant, we still may speak of its “average
velocity,” which is defined as

average velocity =
distance traveled

elapsed time
.

For instance, if you drive from San Francisco to Los Angeles, a distance of
400 miles, in 8 hours, the average velocity is 400 miles/8 hours = 50 miles per
hour.

Suppose that up to time tl you have traveled a distance D1, while up to
time t2 you have traveled a distance D2, where t2 > t1. Then during the time
interval [t1, t2] the distance traveled is D2 − D1. Thus the average velocity
during the time interval [t1, t2], which has duration t2 − t1, is This observation shows the

underlying similarity of the
velocity and slope prob-
lems.

average velocity =
D2 −D1

t2 − t1
.

The computation of average velocity is the same as that for the slope of a line.
The next problem shows how to find the velocity at any instant for an

object whose velocity is not constant.

EXAMPLE 2 A rock initially at rest falls 16t2 feet in t seconds. What is
its velocity after 2 seconds?
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(a) (b)

Figure 3.1.6: Note: (b) needs to have 2.01 replaced by t.

SOLUTION If the rock moves a distance of D feet during t seconds, we know
what is meant by its average velocity during that time, namely, the quotient
D/t feet per second. We will use this idea to deal with the abstract idea of
“velocity at a given time,” the so-called instantaneous velocity. In the next
section the notion of velocity at a given instant will be made precise.

For practice, make an estimate by finding the average velocity of the rock
during a short time interval, say from 2 to 2.01 seconds. At the start of
this interval the rock has fallen 16(22) = 64 feet. By the end it has fallen
16(2.012) = 16(4.0401) = 64.6416 feet. So, during this interval of 0.01 seconds
the rock fell 0.6416 feet. Its average velocity during this time interval is

average velocity =
64.16− 64

2.00− 2
=

0.16

0.01
= 16 feet per second,

an estimate of the velocity at time t = 2 seconds. (See Figure 3.1.6(a).)
Rather than make another estimate with the aid of a still shorter interval of

time, let us consider the typical time interval from 2 to t seconds, t > 2. During Although we will keep t >
2, estimates could just as
well be made with t < 2.

this short time of t−2 seconds the rock travels 16(t2)−16(22) = 16(t2−22) feet,
as shown in Figure 3.1.6(b). The average velocity of the rock during this period
is

average velocity =
16t2 − 16(22)

t− 2
=

16(t2 − 22)

t− 2
feet per second.

When t is close to 2, what happens to the average velocity? It approaches

lim
t→2

16(t2 − 22)

t− 2
= 16 lim

t→2

t2 − 22

t− 2
= 16 lim

t→2
(t+ 2) = 16 · 4 = 64 feet per second.
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We say that the velocity at time t = 2 is 64 feet per second. �

Even though Examples 1 and 2 seem unrelated, their solutions turn out
to be practically identical: The slope in Example 1 is approximated by the
quotient

x2 − 22

x− 2

and the velocity in Example 2 is approximated by the quotient

16t2 − 16(22)

t− 2
= 16 · t

2 − 22

t− 2
.

The only difference between the solutions is that the second quotient has an
extra factor of 16 and x is replaced with t. This may not be too surprising,
since the functions involved, x2 and 16t2 differ by a factor of 16. (That the A variable by any name is

a variable.independent variable is named t in one case and x in the other does not affect
the computations.)

The Derivative of a Function

In both the slope and velocity problems we were lead to studying similar limits.
For the function x2 it was

x2 − 22

x− 2
as x approaches 2.

For the function 16t2 it was

16t2 − 16(22)

t− 2
as t approaches 2.

In both cases we formed “change in outputs divided by change in inputs” and
then found the limit as the change in inputs became smaller and smaller. This
can be done for other functions, and brings us to one of the two key ideas in
calculus, the derivative of a function.

DEFINITION (Derivative of a function at a number a) Let f
be a function that is defined at least in some open interval that
contains the number a. If

lim
x→a

f(x)− f(a)

x− a

exists, it is called the derivative of f at a, and is denoted f ′(a).
In this case the function f is said to be differentiable at a. If the Read f ′(a) as “f prime at

a” or “the derivative of f
at a.”

limit does not exist, then f is nondifferentiable at a.
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EXAMPLE 3 Find the derivative of f(x) = 16x2 at 2.
SOLUTION In this case, f(x) = 16x2 for any input x. By definition, the
derivative of this function at 2 is

lim
x→2

f(x)− f(2)

x− 2
= lim

x→2

16x2 − 16(22)

x− 2
= 16 lim

x→2

x2 − 22

x− 2
= 16 lim

x→2
(x+ 2) = 64.

We say that “the derivative of the function f(x) at 2 is 4” and write f ′(2) = 4.
�

Differentiability and Continuity

A function that has a derivative at a is said to be differentiable at a. If it
is differentiable at each point in its domain the function is said to be differ-
entiable.

A small piece of the graph of a differentiable function at a looks almost
like part of a straight line. You can check this by zooming in on the graph of
a function of your choice. Differential calculus can be described as the study
of functions where graphs locally look almost like a line.

It is no surprise that a differentiable function is always continuous. To
show that a function is continuous at an argument a in its domain we must
show that limx→a f(x)− f(a) = 0. To relate this limit to f ′(a) we rewrite the
limit as

limx→a f(x)− f(a) = limx→a

(
f(x)−f(a)

x−a (x− a)
)

= limx→a

(
f(x)−f(a)

x−a

)
limx→a (x− a)

= f ′(a)(0) by the definition of the derivative
= 0.

So, f is continuous at a. Note the use of the definition of the derivative in the
last step. This line of reasoning is valid provided the derivative exists.

A function can be continuous yet not differentiable. For instance, f(x) =
|x| is continuous but not differentiable at 0, as Figure 3.1.7 suggests.

1

1.0

2

2.0

1.5

0.5

0

0.0

−1−2

Figure 3.1.7:
Summary

differentiate v. to find the
derivative ofFrom a mathematical point of view, the problems of finding the slope of the

tangent line and the velocity of the rock are the same. In each case estimates
lead to the same type of quotient, f(x)−f(a)

x−a . The behavior of this difference
quotient is studied as x approaches a. In each case the answer is a limit, called
the derivative of the function at a given number.
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EXERCISES for 3.1

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

Exercises 1–4 review the concept of slope of a line. (See also Appendix B.)
1. What angle does a line make with the x-axis if its slope is

(a) 1?

(b) 2?

(c) 1/2?

Note: Use a calculator for (b) and (c).

2. What angle does a line make with the x-axis if its slope is

(a) −1?

(b) −2?

(c) −1/2?

Hint: Remember that the angle is in the second quadrant. Note: Use a calculator
for (b) and (c).

3. Draw x- and y-axes and a line that is neither horizontal nor vertical. Using a
ruler, estimate the slope of the line you drew.

4. Draw the line through (1, 2) that has

(a) slope 3
2 .

(b) slope −3
2 .

Exercises 5–12 concern slope. In each case use the technique of Example 1
to find the slope of the tangent line to the curve at the point.

5. y = x2 at the point (3, 32) = (3, 9)

6. y = x2 at the point (1
2 ,
(

1
2

)2) = (1
2 ,

1
4)

7. y = x2 at the point (−2, (−2)2) = (−2, 4)
8. y = x2 at the point (1, 12) = (1, 1)
9. y = x3 at the point (2, 23) = (2, 8)
10. y = x3 at the point (1, 13) = (1, 1)
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11.

(a) y = x2 at the point (0, 0)

(b) Sketch the graph of y = x2 and the tangent line at (0, 0).

12.

(a) y = x3 at the point (0, 0)

(b) Sketch the graph of y = x2 and the tangent line at (0, 0). Note: Be partic-
ularly careful when sketching the graph near (0, 0). In this case the tangent
line crosses the curve.

In Exercises 13–16 use the method of Example 2 to find the velocity of the
rock after

13. 3 seconds
14. 1

2 second
15. 1 second
16. 1

4 second

17. A certain object travels t3 feet in the first t seconds.

(a) How far does it travel during the time interval from 2 to 2.1 seconds?

(b) What is the average velocity during that time interval?

(c) Let h be any positive number. Find the average velocity of the object from
time 2 to 2 + h seconds. Hint: To find (2 + h)3, just multiply out the three
terms.

(d) Find the velocity of the object at 2 seconds by letting h approach 0 in the
result found in (c).

18. A certain object travels t3 feet in the first t seconds.

(a) Find the average velocity during the time interval from 3 to 3.01 seconds?

(b) Find its average velocity of the object during the time interval from 3 to t
seconds, t > 3.

(c) By letting t approach 3 in the result found in (b), find the velocity of the
object at 3 seconds.
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In the slope problem the nearby point Q was always pictured as being to
the right of P . The point Q could just as well have been chosen to the left of
P . Exercises 19 and 20 illustrate this case.
19. Consider the parabola y = x2.

(a) Find the slope of the line through P = (2, 4) and Q = (1.99, 1.992).

(b) Find the slope of the line through P = (2, 4) and Q = (2.1, 2.12).

(c) Find the slope of the line through P = (2, 4) and Q = (2 + h, (2 + h)2), where
h 6= 0.

(d) Show that as h approaches 0, the slope in (b) approaches 4.

20. Consider the curve y = x3.

(a) Find the slope of the line through P = (2, 8) and Q = (1.9, 1.93).

(b) Find the slope of the line through P = (2, 8) and Q = (2.01, 2.013).

(c) Find the slope of the line through P = (2, 8) and Q = (2 + h, (2 + h)3), where
h 6= 0.

(d) Show that as h approaches 0, the slope in (b) approaches 12.

21.

(a) Find the slope of the tangent line to y = x2 at (4, 16).

(b) Use it to draw the tangent line to the curve at (4, 16).

22.

(a) Find the slope of the tangent line to y = x2 at (−1, 1).

(b) Use it to draw the tangent line to the curve at (−1, 1).

23.

(a) Use the method of this section to find the slope of the curve y = x3 at (1, 1).

(b) What does the graph of y = x3 look like near (1, 1)?
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24.

(a) Use the method of this section to find the slope of the curve y = x3 at (−1,−1).

(b) What does the graph of y = x3 look like near (−1,−1)?

25. With the aid of a calculator, estimate the slope of y = 2x at x = 1, using the
intervals

(a) [1, 1.1]

(b) [1, 1.01]

(c) [0.9, 1]

(d) [0.99, 1]

26. With the aid of a calculator, estimate the slope of y = x+1
x+2 at x = 2, using

the intervals

(a) [2, 2.1]

(b) [2, 2.01]

(c) [2, 2.001]

(d) [1.999, 2]

The ideas common to both slope and velocity also appear in other appli-
cations. Exercises 27 to 30 present the same ideas in biology, economics, and
physics.
27. A certain bacterial culture has a mass of t2 grams after t minutes of growth.

(a) How much does it grow during the time interval [2, 2.01]?

(b) What is the average rate of growth during the time interval [2, 2.01]?

(c) What is the instantaneous rate of growth when t = 2?
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28. A thriving business has a profit of t2 million dollars in its first t years. Thus
from time t = 3 to time t = 3.5 (the first half of its fourth year) it has a profit of
(3.5)2 − 32 million dollars, giving an annual rate of

(3.5)2 − 32

0.5
= 6.5 million dollars per year.

(a) What is its annual rate of profit during the time interval [3, 3.1]?

(b) What is its annual rate of profit during the time interval [3, 3.01]?

(c) What is its instantaneous rate of profit after 3 years?

Exercises 29 and 30 concern density.
29. The mass of the left-hand x centimeters of a nonhomogeneous string 10

Figure 3.1.8:
centimeters long is x2 grams, as shown in Figure 3.1.8. For instance, the string in
the interval [0, 5] has a mass of 52 = 25 grams and the string in the interval [5, 6]
has mass 62 − 52 = 11. The density of the string is the total mass divided by the
length of the string. Note: density = total mass

length grams.

(a) What is the mass of the string in the interval [3, 3.01]?

(b) Using the interval [3, 3.01], estimate the density at 3.

(c) Using the interval [2.99, 3], estimate the density at 3.

(d) By considering intervals of the form [3, 3 + h], h positive, find the density at
the point 3 centimeters from the left end.

(e) By considering intervals of the form [3 + h, 3], h negative, find the density at
the point 3 centimeters from the left end.

30. The left x centimeters of a string have a mass of x2 grams.

(a) What is the mass of the string in the interval [2, 2.01]?

(b) Using the interval [2, 2.01], estimate the density at 2.

(c) Using the interval [1.99, 2], estimate the density at 2.

(d) By considering intervals of the form [2, 2 + h], h positive, find the density at
the point 2 centimeters from the left end.

(e) By considering intervals of the form [2 + h, 2], h negative, find the density at
the point 2 centimeters from the left end.
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31.

(a) Graph the curve y = 2x2 + x.

(b) By eye, draw the tangent line to the curve at the point (1, 3). Using a ruler,
estimate the slope of the tangent line.

(c) Sketch the line that passes through the point (1, 3) and the point (x, 2x2 +x).

(d) Find the slope of the line in (c).

(e) Letting x get closer and closer to 1, find the slope of the tangent line at (1, 3).

(f) How close was your estimate in (b)?

32. An object travels 2t2 + t feet in t seconds.

(a) Find its average velocity during the interval of time [1, x], where x is not 0.

(b) Letting x get closer and closer to 1, find the velocity at time 1.

(c) How close was your estimate in (b)?

33. Find the slope of the tangent line to the curve y = x2 of Example 1 at the
typical point P = (x, x2). To do this, consider the slope of the line through P and
the nearby point Q = (x+ h, (x+ h)2) and let h approach 0.

34. Find the velocity of the falling rock of Example 2 at any time t. To do
this, consider the average velocity during the time interval [t, t + h] and then let h
approach 0.

35. Does the tangent line to the curve y = x2 at the point (1, 1) pass through the
point (6, 12)?

36.

(a) Graph the curve y = 2x as well as you can for −2 ≤ x ≤ 3.

(b) Using a straight edge, draw as well as you can a tangent to the curve at (2, 4).
Estimate the slope of this tangent by using a ruler to draw a “rise-and-run”
triangle.

(c) Using a secant through (2, 4) and (x, 2x), for x near 2, estimate the slope of
the tangent to the curve at (2, 4). Hint: Choose particular values of x and
use your calculator to create a table of your results.
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37.

(a) Using your calculator estimate the slope of the tangent line to the graph of
f(x) = sin(x) at (0, 0).

(b) At what (famous) angle do you think the curve crosses the x-axis at (0, 0).

38.

(a) Sketch the curve y = x3 − x2.

(b) Using the method of the nearby point, find the slope of the tangent line to
the curve at the point (x, x3 − x2).

(c) Find all points on the curve where the tangent line is horizontal.

(d) Find all points on the curve where the tangent line has slope 1.

39. Repeat Exercise 38 for the curve y = x3 − x.

40. An astronaut is traveling from left to right along the curve y = x2. When she
shuts off the engine, she will fly off along the line tangent to the curve at the point
where she is at the moment the engines turn off. At what point should she shut off
the engine in order to reach the point

(a) (4, 9)?

(b) (4,−9)?

41. See Exercise 40. Where can an astronaut who is traveling from left to right
along y = x3 − x shut off the engine and pass through the point (2, 2)?
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3.2 The Derivatives of the Basic Functions

In this section we use the definition of the derivative to find the derivatives of
the important functions xa (a rational), ex, sinx, and cos x. We also introduce
some of the standard notations for the derivative.

DEFINITION (Derivative at a number) Assume that the func-
tion f is defined at least in an open interval containing a. If

lim
x→a

f(x)− f(a)

x− a
(1)

exists, it is called the derivative of f at a.

There are several notations for the quotient that appears in (1) and also
for the derivative itself. Sometimes it is convenient to use a + h instead of x
and let h approach 0. Then, (1) reads

lim
h→0

f(a+ h)− f(a)

h
. (2)

Expression (2) says the same thing as expression (1). “See how the quotient,
change in output divided by change in input, behaves as the change in input
gets smaller and smaller.”

Sometimes it is useful to call the change in output “∆f” and the change The symbol ∆ is Greek
for “D”; it is pronounced
“delta”.

in input “∆x.” That is, ∆f = f(x)− f(a) and ∆x = x− a. Then

f ′(a) = lim
∆x→0

∆f

∆x
. (3)

In mathematics, “∆” gen-
erally indicates difference
or change.

There is nothing sacred about the letters a, x, and h. One could say

f ′(x) = lim
t→x

f(t)− f(x)

t− x
(4)

or

f ′(x) = lim
u→x

f(u)− f(x)

u− x
. (5)

The symbol “f ′(a)” is read aloud as “f prime at a” or “the derivative of
f at a.” The symbol f ′(x) is read similarly. However, the notation f ′(x) tells
us that f ′, like f , is a function. For each input x the derivative, f ′(x), is the
output. The derivative of the function f can also be written as D(f).

The derivative of a specific function, such as x2, is denoted (x2)′ or D(x2).
Then, D(x2) = 2x, read aloud as “the derivative of x2 is 2x.” This is shorthand
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for “the derivative of the function that assigns x2 to x is the function that
assigns 2x to x.” Since the value of derivative depends on x, it is a function.

EXAMPLE 1 Find the derivative of x3 at a.
SOLUTION

(x3)′ = lim
x→a

x3 − a3

x− a
= 3a2

Observe that this is one of the four limits in Section 2.1 (page 51)

0

x

10

y

0

−5

−1 1 2

5

−2

y=x^3                   

y=3x^2                  

Figure 3.2.1:
We can write (x3)′ = 3x2 or D(x3) = 3x2. �

In the same manner, Theorem 2.1.1 says that for any positive integer n,
the derivative of xn is nxn−1. The exponent n becomes the coefficient and the
exponent of x shrinks from n to n− 1:

Theorem 3.2.1 (The derivative of xn)

(xn)′ = nxn−1 where n is a positive integer.

The next example treats an exponential function with a fixed base.
EXAMPLE 2 Find the derivative of 2x.

SOLUTION

D(2x) = lim
h→0

2(x+h) − 2x

h

= lim
h→0

2x2h − 2x

h

= lim
h→0

2x
2h − 1

h

= 2x lim
h→0

2h − 1

h
.

We found that limh→0
2h−1
h
≈ 0.693. Thus, See Section 2.1, page 51.

D(2x) ≈ (0.693)2x.

�

No one wants to remember the (approximate) constant 0.693 when we use

base 2. Watch what happens if the base is e, chosen because limh→0
eh−1
h

= 1.
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We have

D(ex) = lim
h→0

e(x+h) − ex

h

= lim
h→0

exeh − ex

h

= lim
h→0

ex
eh − 1

h

= ex lim
h→0

eh − 1

h
= ex · 1 = ex.

We have the important, and simple, formula

Theorem 3.2.2 (The derivative of ex)

D(ex) = ex.

The function ex has the remarkable property that the function is equal to its
derivative.

Next, we turn to trigonometric functions.

EXAMPLE 3 Find the derivative of sinx.
SOLUTION

D(sinx) = lim
h→0

sin(x+ h)− sinx

h

= lim
h→0

sinx cosh+ cosx sinh− sinx

h

= lim
h→0

sinx(cosh− 1) + cos x sinh

h

= lim
h→0

sinx
cosh− 1

h
+ cosx

sinh

h
.

In Section 2.1 we found values for these two limits: limh→0
sinh
h

= 1 and
limh→0

cosh−1
h

= 0. Thus,

D(sinx) = (sinx)(0) + (cos x)(1) = cos x.

� We have the important formula

Theorem 3.2.3 (The derivative of sin(x))

D(sin(x)) = cos x.
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If we graph y = sin(x) (see Figure 3.2.2), and consider its shape, the for-
mula D(sin(x)) = cos(x), is not a surprise. For instance, for x in (−π/2, π/2)

3p/2pp/2-p/2

x

1

5p/22p-1

y=sin(x)                

y=cos(x)                

Figure 3.2.2:
the slope is positive. So is cos(x). For x in (π/2, 3π/2) the slope of the sine
curve is negative. So is cos(x). Since sin(x) has period 2π, we would expect
its derivatve also to have period 2π. Indeed, cos(x) does have period 2π.

In a similar manner, using the definition of the derivative and the identity
cos(a+ b) = cos(a) cos(b)− sin(a) sin(b), one can show that

Theorem 3.2.4 (The derivative of cos(x))

D(cos(x)) = − sin(x).

Derivatives of Other Power Functions

We showed that if n is a positive integer, D(xn) = nxn−1. Now let us find the
derivative of power functions xn where n is not a positive integer.

EXAMPLE 4 Find the derivative of x−1 = 1
x
.

SOLUTION Before we calculate the necessary limit, let’s pause to see how
the slope of y = 1/x behaves. A glance at Figure 3.2.3 shows that the slope

Figure 3.2.3:
is always negative. Also, for x near 0, the slope is large, but when |x| is large,
the slope is near 0.

Now, let’s find the derivative of 1/x:

D(1/x) = lim
t→x

1/t− 1/x

t− x
= lim

t→x

1

t− x

(
x− t
xt

)
= lim

t→x

−1

xt
= − 1

x2 .

As a check, note that −1/x2 is always negative, is large when x is near 0, and
is near 0 when |x| is large. �

It is worth memorizing that
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Theorem 3.2.5 (Derivative of x−1)

D

(
1

x

)
= − 1

x2
.

Or, written in exponential notation,

D(x−1) = −x−2.

The second form fits into the pattern established for positive integers n, D(xn) =
nxn−1.

EXAMPLE 5 Find the derivative of x2/3.
SOLUTION Once again we use the definition of the derivative:

D(x2/3) = lim
t→x

t2/3 − x2/3

t− x
.

A bit of algebra will help us find that limit. We write the four terms t2/3, x2/3,
t, and x as powers of t1/3 and x1/3. Thus

D(x2/3) = lim
t→x

(
t1/3
)2 −

(
x1/3

)2

(t1/3)
3 − (x1/3)

3 .

Recalling that a2− b2 = (a− b)(a+ b) and a3− b3 = (a− b)(a2 + ab+ b2), we If you don’t recall these for-
mulas, multiply out (a −
b)(a + b) and (a − b)(a2 +
ab+ b2).

find

D(x2/3) = lim
t→x

((
t1/3
)
−
(
x1/3

)) ((
t1/3
)

+
(
x1/3

))
((t1/3)− (x1/3))

(
(t1/3)

2
+ (t1/3) (x1/3) + (x1/3)

2
)

= lim
t→x

(
t1/3
)

+
(
x1/3

)
(t1/3)

2
+ (t1/3) (x1/3) + (x1/3)

2

=

(
x1/3

)
+
(
x1/3

)
(x1/3)

2
+ (x1/3) (x1/3) + (x1/3)

2

=
2x1/3

3x2/3

=
2

3
x−1/3.

In short,

D(x2/3) =
2

3
x−1/3.
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Note that this formula follows the pattern we found for D(xn) for n = 1, 2,
3, . . . and −1. The exponent of x becomes the coefficient and the exponent is
lowered by 1. �

The method used in Example 5 applies to any rational exponent. We have
the general formula

For any rational number a, D(xa) = axa−1. (6)

This formula holds for values of x where both xa and xa−1 are defined. For
instance, x1/2 =

√
x is defined for x ≥ 0, but its derivative 1

2
x−1/2 is defined

only for x > 0.
The derivative of the square root function occurs so often, we emphasize

its formula

D(x1/2) =
1

2
x−1/2

or, in terms of the usual square root sign,

D(
√
x) =

1

2
√
x
.

Another Notation for the Derivative

We have used the notations f ′ and D(f) for the derivative of a function f .
There is another notation that is sometimes convenient to use.

If y = f(x), the derivative is denoted by the symbols

dy

dx
or

df

dx
.

The symbol dy
dx

is read as “the derivative of y with respect to x” or “dee y, dee
x.”

In this notation the derivative of x3, for instance, is written

d (x3)

dx
.

If the function is expressed in terms of another letter, such as t, we would write

d (t3)

dt
.
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In Section 5.4 a meaning
will be given to dx and dy.Keep in mind that in the notations df/dx and dy/dx, the symbols df , dy,

and dx have no meaning by themselves. The symbol dy/dx should be thought
of as a signle entity, just like the numeral 8, which we do not think of as formed
of two 0’s.

In the study of motion, Newton’s dot notation is often used. If x is a
function of time t, then ẋ denotes the derivative dx/dt.

Summary

In this section we see why limits are important in calculus. We need them
to define the derivative of a function. The definition can be stated in several
ways, but each one says, informally, “look at how a small change in input
changes the output.” Here is the formal definition, in various costumes:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
f ′(x) = lim

x→0

f(x+ h)− f(x)

h

f ′(x) = lim
t→x

f(t)− f(x)

t− x
f ′(x) = lim

∆x→0

∆f

∆x
.

The following derivatives should be memorized. However, if you forget
a formula, you should be able to return to the definition and evaluate the
necessary limit.

Function Derivative Comment
f(x) f ′(x)
xa axa−1 a rational
ex ex

sinx cosx
cosx − sinx
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EXERCISES for 3.2

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

1. Show that D(cos(x)) = − sin(x). Hint: cos(A + B) = cos(A) cos(B) −
sin(A) sin(B)

Using the definition of the derivative, compute the appropriate limit to find
the derivatives of the functions in Exercises 2–9.

2. x4

3. 4x

4. x4/3

5. 5x2

6. 4 sinx

7. 2ex + sinx

8. x2 + x3

9. 1/(2x+ 1)

In Exercises 10–15 use the definition of the derivative to find each deriva-
tive. Note: Use (6) to check the accuracy of your derivatives.

10. D(1/x2)

11. D(x4/3)

12. D(sin(2x))

13. D(cos(x/2))

14. D(e−x)

15. D(e3x) BA

y

x

The projection of the
tangent onto the x-axis

is called the subtangent
of the graph. See also
en.wikipedia.org/

wiki/Subtangent.

16. Consider the following construction. Select a point (a, f(a)) on the graph of
y = f(x) and draw the tangent line to the graph at this point. The projection of
the tangent line onto the x-axis is the line segment AB in Figure 3.2.

(a) When f(x) = ex, show that the subtangent has constant length, that is, its
length does not depend on a.

(b) Find the general formula for the subtangent of the graph of y = f(x).
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17. Using the formulas obtained for the derivatives of ex, xa, sinx, and cosx,
evaluate the derivatives of the following functiosn at the given arguments.

(a) ex at −1

(b) ex at 0

(c) sinx at π/3

(d) sinx at 2π/3

(e) x1/3 at −8

(f)
√
x at 25

(g) 3
√
x at 27

(h) cosx at π/4

(i) cosx at −π

18.

(a) Graph y = x3 on the interval [−2, 2].

(b) Find D(x3) at x = 0.

(c) What does (b) tell about the graph in (a)? Hint: Think about the tangent
line to y = x3 at x = 0.

(d) In view of (c), redraw the graph in (a) in the vicinity of (0, 0).

19. Let Sin(x) denote the sine of an angle of x degrees and let Cos(x) denote the
cosine of an angle of x degrees.

(a) Graph y = Sin(x) on the interval [−180, 360].

(b) Find lim
x→0

Sin(x)
x

.

(c) Find lim
x→0

1− Cos(x)
x

.

(d) Using the definition of the derivative, differentiate Sin(x).

Note: Now you see why in calculus angles are measured in radians.
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3.3 Shortcuts for Computing Derivatives

This section develops methods for finding derivatives of functions, or what
is called differentiating functions. With these methods it will he a routine The verb is “differentiate.”
matter to find, for instance, the derivative of

(3 + 4x+ 5x2)ex

sin(x)

without going back to the definition of the derivative and (at great effort)
finding the limit of a difference quotient.

Before developing the methods in this and the next two sections, it will be
useful to find the derivative of any constant function.

The Derivative of a Constant Function

Theorem 3.3.1 Derivative of Constant Function The derivative of a constant
function f(x) = C is 0. In other symbols, d(C)

dx = 0
and D(C) = 0.

Constant Rule
(C)′ = 0

Proof

Let C be a fixed number and let f be the constant function, f(x) = C for all
inputs x. By the definition of derivative,

f ′(x) = lim
∆x→0

f(x+ ∆x)− f(x)

∆x
.

Since the function f has the same output C for all inputs, ∆x is another name for h

f(x+ ∆x) = C and f(x) = C.

Thus

f ′(x) = lim
∆x→0

C − C
∆x

= lim
∆x→0

0

∆x

= lim
∆x→0

0 since ∆x 6= 0

= 0.

This shows the derivative of any constant function is 0 for all x. •

(0,c)y

x
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From two points of view, Theorem 3.3.1 is no surprise: Since the graph of
f(x) = C is a horizontal line, it coincides with each of its tangent lines, as can
he seen in Figure 3.3.1. Also, if we think of x as time and f(x) as the position
of a particle at time x, Theorem 3.3.1 implies that a stationary particle has
zero velocity.

Functions can be built up from simpler functions by addition, subtraction,
multiplication. and division, as the function in the opening paragraph illus-
trates. In order to develop the differentiation formulas that will make our life
simple, we need the following delinitions.

DEFINITION (Sum, difference, product, and quotient of func-
tions) Let f and g be two functions. The functions f + g, f − g,
fg and f/g are defined as follows:

(f + g)(x) = f(x) + g(x) for x in the domains of both f and g
(f − g)(x) = f(x)− g(x) for x in the domains of both f and g

(fg)(x) = f(x)g(x) for x in the domains of both f and g(
f
g

)
(x) = f(x)

g(x)
for x in the domains of both f and g and g(x) 6= 0

Derivatives of f + g and f − g
The next theorem asserts that if the functions, f and g have derivatives at a
certain number, then so does their sum f + g and

d

dx
(f + g) =

df

dx
+
dg

dx

In other words, “the derivative of the sum is the sum of the derivatives.” A Equivalently, (f+g)′ = f ′+
g′ or D(f + g) = D(f) +
D(g).

similar formula holds for the derivative of f − g.

Theorem 3.3.2 (Derivative of Sum and Difference) If f and g
are differentiable functions, then so are f + g and f − g. The Sum
Rule and Difference Rule for computing their derivatives are

(f + g)′ = f ′ + g′ Sum Rule
(f − g)′ = f ′ − g′ Difference Rule

Proof
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To prove this theorem we must go back to the definition of the derivative. To
begin, we give the function f + g the name u, that is, u(x) = f(x) + g(x). We
have to examine

lim
∆x→0

u(x+ ∆x)− u(x)

∆x
(1)

or, equivalently,

lim
∆x→0

∆u

∆x
. (2)

In order to evaluate (2), we will express ∆u in terms of ∆f and ∆g. Here are
the details:

∆u = u(x+ ∆x)− u(x)
= (f(x+ ∆x) + g(x+ ∆x))− (f(x) + g(x)) definition of u
= (f(x+ ∆x)− f(x))− (g(x+ ∆x)− g(x)) algebra
= ∆f + ∆g definition of ∆f and ∆g

All told, ∆u = ∆f + ∆g. The change in u is the
change in f plus the change
in g.

The hard work is over. We can now evaluate (2):

lim∆x→0
∆u
∆x

= lim
∆x→0

∆f + ∆g

∆x

= lim
∆x→0

∆f

∆x
+ lim

∆x→0

∆g

∆x
= f ′(x) + g′(x).

Thus, u = f + g is differentiable and

u′(x) = f ′(x) + g′(x).

A similar argument applies to f − g. •
Theorem 3.3.2 extends to any finite number of differentiable functions. For

example.
(f + g + h)′ = f ′ + g′ + h′

(f − g + h)′ = f ′ − g′ + h′

EXAMPLE 1 Using Theorem 3.3.2, differentiate x2 + x3 + cos(x) + 3.
SOLUTION

D (x2 + x3 + cos(x) + 3) = D(x2) +D(x3) +D(cos(x)) +D(3)
= 2x2−1 + 3x3−1 + (− sin(x)) + 0
= 2x+ 3x2 − sin(x).

�

EXAMPLE 2 Differentiate x4 −
√
x− ex.

SOLUTION
d
dx

(x4 −
√
x− ex) = d

dx
(x4)− d

dx
(
√
x)− d

dx
(ex)

= 4x3 − 1
2
√
x
− ex

�
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The Derivative of fg

The following theorem, concerning the derivative of the product of two func-
tions, may be surprising, for it turns out that the derivative of the product
is not the product of the derivatives. The formula is more complicated than
that for the derivative of the sum. It asserts that “the derivative of the product
is the derivative of the first function times the second plus the first function
times the derivative of the second.”

Theorem 3.3.3 If f and g are differentiable functions, then so is their
product fg. Its derivative is given by the formula

(fg)′ = f ′g + fg′ Product Rule

Proof

The proof is similar to that for Theorem 3.3.2. This time we give the product
fg the name u. Then we express ∆u in terms of ∆f and ∆g. Finally, we
determine u′(x) by examining lim∆x→0

∆u
∆x

.
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We have

u(x) = f(x)g(x) and u(x+ ∆x) = f(x+ ∆x)g(x+ ∆x).

Rather than subtract u(x) from u(x+ δx) directly, first write

f(x+ ∆x) = f(x) + ∆f and g(x+ ∆x) = g(x) + ∆g.

Then

u(x+ ∆x) = (f(x+ ∆x)) (g(x+ ∆x))
= (f(x) + ∆f) (g(x) + ∆g)
= f(x)g(x) + (∆f)g(x) + f(x)∆g + (∆f)(∆g).

Hence

∆u = u(x+ ∆x)− u(x)
= f(x)g(x) + (∆f)g(x) + f(x)(∆g) + (∆f)(∆g)− f(x)g(x)
= (∆f)g(x) + f(x)(∆g) + (∆f)(∆g)

and
∆u

∆x
=

(∆f)g(x) + f(x)(∆g) + (∆f)(∆g)

∆x

=
∆f

∆x
g(x) + f(x)

∆g

∆x
+ ∆f

∆g

∆x

As ∆x → 0, ∆g/∆x → g′(x) and ∆f/∆x → f ′(x). Furthermore, because
f is differentiable, hence continuous, ∆f → 0 as x→ 0. It follows that See the last subsection in

Section 3.1.

lim
∆x→0

∆u

∆x
= f ′(x)g(x) + f(x)g′(x) + 0 · g′(x).

Therefore, u is differentiable and The formula for (fg)′ was
discovered by Leibniz in
1676. His first guess was in-
correct.

u′ = f ′g + fg′.

•

Remark Figure 3.3.2 provides a picture to illustrate Theorem 3.3.3

Figure 3.3.2:

and its proof. With f , ∆f , g, and ∆g taken to be positive, the
inner rectangle has area u = fg and the whole rectangle has area
u+ ∆u = (f + ∆f)(g + ∆g). The shaded region whose area is ∆u
is made up of rectangles of areas f ·(∆g), (∆f) ·g, and (∆f) ·(∆g).
The little corner rectangle, of area (∆f) · (∆g), is negligible in
comparison with the other two rectangles. Thus, ∆u ≈ (∆f)g +
f(∆g), which suggests the formula for the derivative of a product.
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EXAMPLE 3 Find D (x2 + x3 + cos(x) + 3) (x4 −
√
x− ex). Note that the function

to be differentiated is
the product of the func-
tions differentiated in
Examples 1 and 2.

SOLUTION By the product rule,

D
(
x2 + x3 + cos(x) + 3

) (
x4 −

√
x− ex

)
= (D (x2 + x3 + cos(x) + 3)) (x4 −

√
x− ex)

+ (x2 + x3 + cos(x) + 3) (D (x4 −
√
x− ex))

= (2x+ 3x2 − sin(x)) (x4 −
√
x− ex)

+ (x2 + x3 + cos(x) + 3)
(

4x3 − 1
2
√
x
− ex

)
�

Derivative of Constant Times f

A special case of the formula for the product rule occurs so frequently that it
is singled out in Theorem 3.3.4.

The derivative of Cf
Theorem 3.3.4 If C is a constant function and f is a differentiable function,
the Cf is differentiable and its derivative is given by the formula Constant Multiple Rule

(Cf)′ = C(f ′).

The derivative of a constant
times a function is the con-
stant times the derivative
of the function.

Proof

Because we are dealing with a product of two differentiable functions, C and
f , we may use the product rule (Theorem 3.3.3). We have

(Cf)′ = (C ′)f + C(f ′) derivative of a product
= 0 · f + cCf ′) derivative of constant is 0
= C(f ′).

• In other notations for the
derivative, d(Cf)

dx = C df
dx

and D(Cf) = CD(f).
Theorem 3.3.4 asserts that that “it is legal to move a constant factor outside

the derivative symbol.”

EXAMPLE 4 Find D(6x3).
SOLUTION

D(6x3) = 6D(x3) 6 is a constant
= 6 · 3x2 D(xn) = nxn−1

= 18x2.

With a little practice, one would simply write D(6x3) = 18x2. �
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EXAMPLE 5 Find D (
√
x/11).

SOLUTION
D
(√

x
11

)
= D

(
1
11

√
x
)

= 1
11
D(
√
x)

= 1
11

1
2
√
x

= 1
22
x−1/2

�

Example 5 generalizes to the fact that for a nonzero C,

(
f

C

)′
=
f ′

C
, C is a constant function, C not 0.

d
dx

(
f
C

)
= 1

C
df
dxThe formula for the derivative of the product extends to the product of

several differentiable functions. For instance,

(fgh)′ = (f ′)gh+ f(g′)h+ fg(h′)

In each summand only one derivative appears. The next example illustrates See Exercise 26.
the use of this formula.

EXAMPLE 6 Differentiate
√
xex sin(x).

SOLUTION(√
xex sin(x)

)′
= (
√
x)′ex sin(x) +

√
x(ex)′ sin(x) +

√
xex(sin(x))′

=
(

1
2
√
x

)
ex sin(x) +

√
xex sin(x) +

√
xex cos(x)

�

Any polynomial can be differentiated by the methods already developed.

EXAMPLE 7 Differentiate 6t8 − t3 + 5t2 + π3.
SOLUTION Notice that the independent variable in this polynomial is t,
and the polynomial is to be differentiated with respect to t. Differentiate a polynomial

“term-by-term”.
d
dt

(6t8 − t3 + 5t2 + π3) = d
dt

(6t8)− d
dt

(t3) + d
dt

(5t2) + d
dt

(π3)
= 48t7 − 3t2 + 10t+ 0 π is a constant; so is π3

= 48t7 − 3t2 + 10t

�
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Derivative of 1/g

Often one needs the derivative of the reciprocal of a function g, that is, (1/g)′.

Theorem 3.3.5 If g is a differentiable function, then

Theorem 3.3.6 Reciprocal Rule(
1
g

)′
= − g′

g2 , where g(x) 6= 0

Proof

Again we must go back to the definintion of the derivative.
Assume g(x) 6= 0 and let u(x) = 1/g(x). Then u(x+∆x) = 1/g(x+∆x) =

1/(g(x) + ∆g). Thus

∆u = u(x+ ∆x)− u(x)

=
1

g(x) + ∆g
− 1

g(x)

=
g(x)− (g(x) + ∆g)

g(x)(g(x) + ∆g)
common denominator

=
−∆g

g(x)(g(x) + ∆g)
.

Then

u′(x) = lim
∆x→0

∆u

∆x
= lim

∆x→0

−∆g/ (g(x)(g(x) + ∆g))

∆x

= lim
∆x→0

−∆g/∆x

g(x)(g(x) + ∆g)
algebra: (a/b)

c = (a/c)
b

=
lim∆x→0

(−∆g
∆x

)
lim∆x→0(g(x)(g(x) + ∆g))

quotient rule for limits

=
−g′(x)

g(x)2
because g(x) is continuous

•

EXAMPLE 8 Find D
(

1
cos(x)

)
.

SOLUTION In this case, g(x) = cos(x) and g′(x) = − sin(x). Therefore,

D

(
1

cos(x)

)
=
−(− sin(x))

(cos(x))2

=
sin(x)

cos2(x)
for all x with cos(x) 6= 0
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�

Example 8 gives a formula for the derivative of sec(x) = 1
cos(x)

. Its derivative
is

sin(x)

cos2(x)
=

sin(x)

cos(x)

1

cos(x)
= tan(x) sec(x)

Therefore, Memorize this formula!

Theorem 3.3.7 Derivative of sec(x)

D(sec(x)) = sec(x) tan(x)

The Derivative of f/g

EXAMPLE 9 Derive a formula for the derivative of the quotient f/g. What
conditions are required for this formula to apply?
SOLUTION The quotient f/g can be written as a product f · 1

g
. Assuming

f and g are differentiable functions, we may use the product and reciprocal
rules to find(

f(x)
g(x)

)′
=

(
f(x) 1

g(x)

)′
rewrite quotient as product

= f ′(x)
(

1
g(x)

)
+ f(x)

(
1

g(x)

)′
product rule

= f ′(x)
(

1
g(x)

)
+ f(x)

(
−g′(x)
g(x)2

)
reciprocal rule, assuming g(x) 6= 0

= f ′(x)
g(x)
− f(x)g′(x)

g(x)2 algebra

= f ′(x)g(x)−f(x)g′(x)
g(x)2 algebra: common denominator.

�

Example 9 is the proof of the quotient rule. The quotient rule should be
committed to memory. A simple case of the quotient rule has already been
used to find the derivative of sec(x) = 1

cos(x)
(Example 8). The full quotient

rule will be used to find the derivative of tan(x) = sin(x)
cos(x)

(Example 10). Because
it used used so often, the quotient rule should be memorized.
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Theorem 3.3.8 Quotient Rule Let f and g be differentiable functions
at x, and assume g(x) 6= 0. Then the quotient f/g is differentiable at
x, and

d

dx

(
f(x)

g(x)

)
=

g(x)f ′(x)− f(x)g′(x)

g(x)2
where g(x) 6= 0.

Remark Because the numerator in the quotient rule is a difference, A memory device for (f/g)′

it is important to get the terms in the numerator in the correct
order. Here is an easy way to remember the quotient rule.

Step 1. Write down the parts where g2 and g appear:

g

g2
.

This ensures that you get the denominator correct, and have
a good start on the numerator.

Step 2. To complete the numerator, remember that it has a minus
sign:

gf ′ − fg′

g2
.

EXAMPLE 10 Find the derivative of the tangent function.
SOLUTION

(tan(x))′ =

(
sin(x)

cos(x)

)′
=

cos(x)(sin(x))′ − sin(x)(cos(x))′

(cos(x))2
quotient rule

=
(cos(x)) cos(x)− sin(x)(− sin(x))

(cos(x))2

=
cos2(x) + sin2(x)

cos2(x)

=
1

cos2(x)
sin2(x) + cos2(x) = 1

= sec2(x) sec(x) = 1/ cos(x)

This result is valid whenever cos(x) 6= 0. �
Memorize!
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Theorem 3.3.9 Derivative of tan(x)

D(tan(x)) = sec2(x) for all x in the domain of tan(x).

It is now a simple matter to find (xn)′ when n is a negative integer. Let
n = −p where p is positive. Then

D(xn) = D(x−p) = D

(
1

xp

)
= −D(xp)

(xp)2

= −px
p−1

x2p

= −px−p−1

= nxn−1.

EXAMPLE 11 Use the Quotient Rule to differentiate x−3.
SOLUTION

D(x−3) = D

(
1

x3

)
=

(x3)(1)′ − (1)(x3)′

(x3)2

=
−3x2

x6

=
−3

x4

= −3x−4

�

In the same way, the Power Rule can be extended to xa for any non-zero
rational number a.

Theorem 3.3.10 Power Rule Let a be a non-zero rational number,

D(xa) = axa−1 for any non-zero rational number a

EXAMPLE 12 Compute (x2/(x3 + 1))
′
, showing each step..
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SOLUTION(
x2

x3 + 1

)′
=

(x3 + 1) · · ·
(x3 + 1)2

write denominator and start numera-
tor

=
(x3 + 1)(x2)′ − (x2)(x3 + 1)′

(x3 + 1)2
complete numerator, remembering the
minus sign

=
(x3 + 1)(2x)− (x2)(3x2)

(x3 + 1)2
compute derivatives

=
2x4 + 2x− 3x4

(x3 + 1)2
algebra

=
2x− x4

(x3 + 1)2
algebra: collecting

�

As Example 12 illustrates, the techniques for differentiating polynomials
and quotients can be combined to differentiate any rational function, that
is, any quotient of polynomials.

Summary

Let f and g be two differentiable functions and let C be a constant. We
obtained formulas for differentiating f + g, f − g, fg, Cf , 1/f , and f/g.

Rule Formula Comment
Constant Rule C ′ = 0 C a constant

Sum Rule (f + g)′ = f ′ + g′

Difference Rule (f − g)′ = f ′ − g′
Product Rule (fg)′ = (f ′)g + f(g′)

Constant Multiple Rule (Cf)′ = C(f ′)

Reciprocal Rule
(

1
g

)′
= −g′

g2 g 6= 0

Quotient Rule
(
f
g

)′
= g(f ′)−f(g′)

g2 g 6= 0

Table 3.3.1:

With the aid of the formulas in Table 3.3.1, we can differentiate sec(x),
csc(x), tan(x), and cot(x) using (sin(x))′ = cos(x) and (cos(x))′ = − sin(x).
These results are among the others we obtained.
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Function Derivative Comment
xa axa−1 a is non-zero rational number

tan(x) sec2(x)
sec(x) sec(x) tan(x)

Table 3.3.2:
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EXERCISES for 3.3

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1–15 differentiate the given function. Use only the formulas
presented in this and earlier sections.

1. 5x3

2. 5x3 − 7x+ 23

3. 3
√
x− 3
√
x

4. 1/
√
x

5. (5 + x)(x2 − x+ 7)

6. sin(x) cos(x)

7. 3 tan(x)

8. 3(tan(x))2 Hint: Write (tan(x))2 = tan(x) tan(x)

9.
x3 − 1
2x+ 1

10.
sin(x)
ex

11.
3x2 + x+

√
2

cos(x)

12.
2
x3

+
3
x4

13. x2 sin(x)ex

14.
√
x cos(x)

15.
√
x cos(x)

16. Find the derivative of the following functions:

(a)
(1 +

√
x)(x3 + sin(x))

x2 + 5x+ 3ex

(b)
(3 + 4x+ 5x2)ex

sin(x)
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17. Use the quotient rule to verify the following derivatives.

(a) D(tan(x)) = (sec(x))2

(b) D(cot(x)) = −(csc(x))2

(c) D(sec(x)) = sec(x) tan(x)

(d) D(csc(x)) = − csc(x) cot(x)

Note: There is a pattern here. The negative goes with each “co” function (cos,
cot, csc).

18. Find
(
e2x
)′ by writing e2x as exex.

19. Find
(
e3x
)′ by writing e3x as exexex.

20. Find (e−x)′ by writing e−x as 1
ex .

21. Find
(
e−2x

)′ by writing e−2x = e−xe−x. (See Exercise 18

22. Find
(
e−2x

)′ by writing e−2x = 1
e2x

. (See Exercise 20

23. In Section 3.1 we showed that D(1/x) = −1/x2. Obtain this same formula by
using the Quotient Rule.

24. If you had lots of time, how would you differentiate (1 + 2x)100 using the
formulas developed so far? Note: In Section 3.5 we will obtain a shortcut for dif-
ferentiating (1 + 2x)100.

25. At what point on the graph of y = xe−x is the tangent horizontal?

26. Using the formula for the derivative of a product, obtain the formula for
(fgh)′. Hint: First write fgh as (f)(gh). Then use the Product Rule twice.

27. Obtain the formula for (f − g)′ by first writing f − g as f + (−1)g.

28. Using the definition of the derivative, show that (f − g)′ = f ′ − g′.

29. Using the version of the definition of the derivative that makes use of both x

and x+ h, obtain the formula for differentiating the sum of two functions.

30. Using the version of the definition of the derivative in the form lim
x→a

f(x)− f(a)
x− a

,

obtain the formula for differentiating the product of two functions.
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31. In Section 3.2 we show that D(xn) = nxn−1, where n is a positive integer.
Now that we have the formula for the derivative of a product of two functions we
can obtain this result much more easily.

(a) Show, using the definition of the derivative, that the formula D(xn) = nxn−1

holds when n = 1.

(b) Using (a) and the formula for the derivative of a product, show that it holds
when n = 2. Hint: x2 = x · x.

(c) Using (b) and the formula for the derivative of a product, show that it holds
when n = 3.

(d) Show that if it holds for some positive integer n, it also holds for the integer
n+ 1.

(e) Combine (c) and (d) to show that the formula holds for n = 4.

(f) Why must it hold for n = 5?

(g) Why must it hold for all positive integers?

32. Using induction, as in Exercise 31, show that for each positive integer n,
D (x−n) = −nx−n−1.

33. We obtained the formula for (f/g)′ by writing f/g as the product of f and
1/g. Obtain (f/g)′ directly from the definition of the derivative. Hint: First review
how we obtained the formula for the derivative of a product.
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3.4 The Chain Rule

We come now to the most frequently used formula for computing derivatives.
For example, it will help us to find the derivative of (1 +x2)100 without having
to multiply out one hundred copies of (1 + x2) or of e3x without writing e3x =
exexex. You might be tempted to guess that the derivative of (1+x2)100 would
be 100(1 +x2)99. This cannot be right! After all, when you expand (1 +x2)100

you get a polynomial of degree 200, so its derivative is a polynomial of degree
199. But when you expand (1 + x2)99 you get a polynomial of degree 198.
Something is wrong.

At this point we know the derivative of sin(x), but what is the derivative
of sin(x2)? It is not the cosine of x2. In this section we obtain a way to
differentiate these functions easily — and correctly.

The key is to recognize that both of these functions is the composition of
two simpler functions which are easy to differentiate.

(1 + x2)100 = f(g(x)) = (f ◦ g)(x) for f(x) = x100 and g(x) = 1 + x2

sin(x2) = f(g(x)) = (f ◦ g)(x) for f(x) = sin(x) and g(x) = x2

How to Differentiate a Composite Function

To see how to differentiate a composite function, once again we must go back
to the definition of the derivative. We have u = g(x) and y = f(u). Thus
y = f(g(x)). First of all, g′(x) is approximated by ∆u/∆x, where ∆u is the
change in u corresponding to the change ∆x in x. If ∆u is not 0, this change It could happen that ∆u =

0, as it would, for instance,
if g were a constant func-
tion.

Figure 3.4.1:

in u induces a change ∆y in f(u). The quotient ∆y/∆u approximates f ′(u).
Figure 3.4.1 describes ∆x, ∆u, and ∆y. Now,

∆y

∆x
=

∆y

∆u

∆u

∆x
. (1)

Then,

(f ◦ g)′(x) = lim
∆x→0

∆y

∆x

= lim
∆x→0

∆y

∆u

∆u

∆x

= lim
∆x→0

∆y

∆u
lim

∆x→0

∆u

∆x
.

Since g is continuous, ∆u→ 0 as ∆x→ 0. So we have

(f ◦ g)′(x) = lim
∆u→0

∆y

∆u
lim

∆x→0

∆u

∆x
= f ′(u)g′(x).

Which gives us
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Theorem 3.4.1 Chain Rule Let g be differentiable at x and f be dif-
ferentiable at g(x), then

(f ◦ g)′(x) = f ′(g(x))g′(x).

The Chain Rule is the tech-
nique most frequently used
in finding derivateives.

This formula tells us how to differentiate a composite function, f ◦ g:

Step 1. Compute the derivative of the outer function f , evaluated at the inner
function. This is f ′(g(x)). The first term in the for-

mula.
Step 2. Compute the derivative of the inner function, g′(x). The second term in the for-

mula.
Step 3. The derivative of the composite function is the product of the expressions

found in Steps 1. and 2.

Examples

EXAMPLE 1 Find D ((1 + x2)100).
SOLUTION Here g(x) = 1 + x2 (the inside function) and f(u) = u100 (the
outside function). The first step is to compute f ′(u) = 100u99, which gives us
f ′(g(x)) = 100(1 + x2)99. The second step is to find g′(x) = 2x. Then,

(f ◦g)′(x) = f ′( u︸︷︷︸
u=g(x)

)g′(x) = 100u99︸ ︷︷ ︸
f ′(g(x))

· 2x︸︷︷︸
g′(x)

= 100(1+x2)99 ·2x = 200x(1+x2)99.

The answer is not just 100(1 + x2)99 — the derivative of the outer function. As expected, the derivative
is a polynomial. What is its
degree?

There is an extra factor of 2x that comes from the derivative of the inner
function. �

The same example, done with Leibniz notation, looks like this:

y = (1 + x2)100 = u100, u = 1 + x2.

Then the Chain Rule reads simply

dy
dx

= dy
du

du
dx

Chain Rule
= 100u99 · 2x
= 100(1 + x2)99(2x) using u = 1 + x2

= 200x(1 + x2)99.
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WARNING (Notation) We avoided using Leibniz notation ear- George Berkeley, 1734,
The Analyst: A Dis-
course Addressed to an
Infidel Mathematician.
See also http://muse.
jhu.edu/journals/
configurations/v004/4.
1paxson.html.

lier, in particular, during the derivation of the Chain Rule, because
it tempts the reader to cancel the du’s in (1). However, the expres-
sions dy, du, and dx are meaningless — in themselves. In Leib-
niz’s time in the late seventeenth century their meaning was fuzzy,
standing for a quantity that was zero and also vanishingly small at
the same time. Bishop Berkeley poked fun at this, asking “may we
not call them the ghosts of departed quantities?”

With practice, you wil be able to do the whole calculuation without intro-
ducing extra symbols, such as u, which do not apear in the final answer. You
will be writing just

D
(
(1 + x2)100

)
= 100(1 + x2)99 · 2x = 200x(1 + x2)99.

But this skill, like playing a musical instrument, takes practice, which the
exercises at the end of this section (and chapter) provide.

When we write dy
du

and du
dx

, the u serves two ways. In dy
du

it denotes an
independent variable while in du

dx
u is a dependent variable. This double role

usually causes no problem in computing derivatives.

EXAMPLE 2 If y = sin(x2), find dy
dx

.
SOLUTION Here, starting from the outside, let y = sin(u) and u = x2.
Then, using the Chain Rule,

(sin(x2))
′

=
dy

dx

=
dy

du

du

dx
by the Chain Rule

= cos(u) · 2x
= cos(x2) · 2x
= 2x cos(x2).

�

The Chain Rule holds for compositions of more than two functions. We
illustrate this in the next example.

EXAMPLE 3 Differentiate y =
√

sin(x2).
SOLUTION In this case the function is the composition of three functions:

u = x2 v = sin(u) y =
√
v (provided v ≥ 0).

Then Do this example your-
self without introducing any
auxiliary symbols (u, v, and
y).
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dy

dx
=

dy

dv

dv

dx
Chain Rule

=
dy

dv

dv

du

du

dx
Chain Rule, again

=
1

2
√
v
· cos(u) · 2x

=
1

2
√

sin(x2)
· cos(x2) · 2x

=
x cos(x2)√

sin(x2)

�

EXAMPLE 4 Let y = 2x. Find y′.
SOLUTION In its original form, 2x is not a composite function. However,
we can write 2 = eln(2) and then 2x equals (eln(2))x = eln(2)x. Now we see that b = eln(b) for any b > 0
2x can be expressed as the composite function:

y = eu, where u = (ln(2))x.

Then

y′ =
dy

dx
=
dy

du

du

dx
= eu · ln(2) = eln(2)x ln(2) = 2x ln(2).

In Example 2 (Section 3.2), using a calculator, we found D(2x) ≈ (0.693)2x.
We have just learned that the exact formula for this derivative is D(2x) =
2x ln(2). This means we have just learned that 0.693 is an approximation of
ln(2). � Verify that ln(2) ≈ 0.693.

EXAMPLE 5 Find D (x3 tan(x2)).
SOLUTION The function x3 tan(x2) is the product of two functions. We
first apply the Product Rule to obtain: Product Rule:

(fg)′ = f ′ · g + f · g′
D (x3 tan(x2)) = (x3)

′
tan(x2) + x3 (tan(x2))

′

= 3x2 tan(x2) + x3 (tan(x2))
′
.

Since “the derivative of the tangent is the square of the secant”, the Chain (tan(x))′ = sec2(x)
Rule tells us that (

tan(x2)
)′

= sec2(x2)(x2)′ = 2x sec2(x2).

Thus,
D (x3 tan(x2)) = 3x2 tan(x2) + x3 (tan(x2))

′

= 3x2 tan(x2) + x3 (2x sec2(x2))
= 3x2 tan(x2) + 2x4 sec2(x2).
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�
In the computation of D(tan(x2)) we did not introduce any new symbols.

That is how your computations should look, once you get the rythym of the
Chain Rule.

Famous Composite Functions

Certain types of composite functions occur so frequent that it is worthwhile
memorizing thesir derivatives. Here is a list:

Function Derivative Example

(g(x))n ng(x)n−1g′(x) ((1 + x2)100)
′
= 100(1 + x2)99(2x)

1
g(x)

−g′(x)
(g(x))2 D

(
1

cos(x)

)
= −(− sin(x))

(cos(x))2√
g(x) g′(x)

2
√
g(x)

(√
tan(x)

)′
= (sec(x))2

2
√

tan(x)

eg(x) eg(x)g′(x)
(
ex

2
)′

= ex
2
(2x)

Table 3.4.1:

Summary

This section presented the single most important tool for computing deriva-
tives: the Chain Rule. It began with a description of composite functions and
showed the composition of continuous functions is continuous and the compo-
sition of differentiable functions is differentiable. To be specific, the derivative
of f ◦ g at x is

f ′(g(x))︸ ︷︷ ︸
derivative of outer
function evalu-
ated at the innner
function

times g′(x)︸︷︷︸
derivative of inner
function

Introducing the symbol u, we describe the Chain Rule for y = f(u) and
u = g(x) with the brief notation

dy

dx
=
dy

du

du

dy
.

When the function is built up from more than two functions, such as y = f(u),
u = g(v), and v = h(x). Then we have

dy

dx
=
dy

du

du

dv

dv

dy
,
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a chain of more derivatives.
With practice, applying the Chain Rule can become second nature.
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EXERCISES for 3.4

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1–4, repeat the specified example from this section without
introducing an extra variable (such as u).

1. Example 3.

2. Example 4.

3. Example 5.

4. Example 6.

In Exercises 5–26 differentiate the given function.
5. (5x2 + 3)10

6. (sin(3x))3

7. 1
5t2+t+2

8. 1
e5s+s

9.
√

4 + u2

10.
√

cos(2θ)

11. e5x3

12. sin2(3x)

13. etan(3t)

14.
√

tan(2u)

15. 3
√

tan(s2)

16. v3 tan(2v)

17. e2r sin(3r)

18. cos(2x)
x2

19. esin(x)

20. (3t+2)4

sin(2t)

21. e−5s tan(3s)

22. 3x

23. (sin(2u))5(cos(3u))6

24.
(
x+ 33x

)2 (sin(
√
x))3

25. t3

(t+sin2(3t))

26. (3x+2)4

(x3+x+1)2
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Exercise 27 and 28 illustrate how differentiation can be used to obtain one
trigonometry identity from another.

27.

(a) Differentiate both sides of the identity sin2(x) = 1
2(1−cos(2x)). What trigono-

metric identity do you get?

(b) Differentiate the identity found in (a) to obtain another trigonometric identity.
What identity is obtained?

28. Let k be a constant. Differentiate both sides of the identity sin(x + k) =
sin(x) cos(k) + cos(x) sin(k) to obtain the corresponding identity for cos(x+ k).

29. Differentiate (ex)3

(a) directly, by the Chain Rule

(b) after writing the function as ex · ex · ex

(c) after writing the function as e3x

(d) Which of these approaches to you prefer? Why?

30. Find D(xx), x > 0. Hint: Rewrite the base as eln(x).

31. In Theorem 3.3.5 (Section 3.3) we obtained the derivative of 1/g(x) by using
the definition of the derivative. Obtain the formula for the Reciprocal Rule by using
the Chain Rule.

32. Find the domain of
√

sin(x2).

33. In our proof of the Chain Rule we had to assume that ∆u is not 0 when ∆x is
sufficiently small. Show that if the derivative of g is not 0 at the argument x, then
the proof is valid.
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34. Here is an example of a differentiable g not covered by the proof of the Chain
Rule given in the text. Define g(x) to be x2 sin

(
1
x

)
for x different from 0 and g(0)

to be 0.

(a) Sketch the part of the graph of g near the origin.

(b) Show that there are arbitrarily small values of ∆x such that ∆u = g(∆x) −
g(0) = 0.

(c) Show that g is differentiable at 0.

35. Here is a proof of the Chain Rule that manages to avoid division by ∆u = 0.
Let f(u) be differentiable at g(a), where g is differentiable at a. Let ∆f = f(g(a) +
∆u)− f(g(a)). Then ∆f

∆u − f
′(g(a)) is a function of ∆u, which we call p(∆u). This

function is defined for ∆u 6= 0. By the definition of f ′, p(∆u) tends to 0 as ∆u
approaches 0. Define p(0) to be 0. Note that p is continuous at 0.

(a) Show that ∆f = f ′(g(a))∆u+p(∆u)∆u when ∆u is different than 0, and also
when ∆u = 0.

(b) Define q(∆x) = ∆u
∆x − g′(a). Observe that q(∆x) approaches 0 as ∆x ap-

proaches 0. Show that ∆u = g′(a)∆x+ q(∆x)∆x when ∆x is not 0.

(c) Combine (a) and (b) to show that

∆f = f ′(g(a))
(
g′(a)∆x+ q(∆x)∆x

)
+ p(∆u)∆u.

(d) Using (c), show that

lim
∆x→0

∆f
∆x

= f ′(g(a))g′(a).

(e) Why did we have to define p(0) but not g(0)?
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3.5 Derivative of an Inverse Function

In this section we obtain the derivatives of the inverse functions of ex and
of the six trigonometric functions. This will complete the inventory of basic
derivatives. The first issue to resolve is that the inverse of a differentiable
function is itself differentiable. The Chain Rule will then be used to find the
specific differentiation formulas for the most important inverse functions: the
logarithm and the inverse trigonometric functions.

Differentiability of Inverse Functions

As mentioned in Section 1.1 the graph of an inverse function is an exact copy
of the graph of the original function. One graph is obtained from the other
by reflection across the line y = x. If the original function, f , is differentiable
at a point (a, b), b = f(a), then the graph of y = f(x) has a tangent line at
(a, b). In particular, the reflection of the tangent line to the original function
is the tangent line to the inverse function at (b, a). Thus, we expect that the
inverse function is differentiable at (b, a). b = f(a) means a = f−1(b)

The Chain Rule will now be used to find the derivatives of loge(x) and of
the six inverse trigonometric functions. Throughout this discussion we assume
that the inverse function is differentiable.

The Derivative of loge(x)

(a,log_e(a))

(log_e(a),a)

6

0

−2

2−2

x

4

40

2

6

Figure 3.5.1:

Let y = loge(x). Figure 3.5.1 shows the graphs of y = ex and inverse function
y = loge(x). We want to find y′ = dy

dx
. By the definition of logarithm as the

inverse of the exponential function

x = ey. (1)

We differentiate both sides of (1) with respect to x:

d(x)
dx

= d(ey)
dx

ey is a function of x, since y is
1 = d(ex)

dx
dx
dx = 1

1 = ey dy
dx

Chain Rule.

Solving for dy
dx

, we obtain The derivative of the in-
verse function is the recip-
rocal of the derivative of
the original function.

dy

dx
=

1

ey
=

1

x
.

This shows that
Memorize!
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Theorem 3.5.1

(loge(x))′ =
1

x
, x > 0.

See Exercises 27 and 28.
It may come as a surprise that such a “complicated” function has such a

simple derivative. It may also be a surprise that loge(x) is one of the most
important functions in calculus, mainly because it has the derivative 1/x. For k not equal to -1, an

antiderivative of xk is just
a constant times another
power function.

EXAMPLE 1 Find (logb)
′ for any b > 0.

SOLUTION The function logb x is just a constant times loge(x):

(logb(x)) = (logb(e)) loge(x).

Therefore

(logb(x))′ = (logb(e))
1

x
. (2)

If b is not e, then logb(e) is not 1. If e is chosen as the base for the logarithm,
then the coefficient in front of the 1

x
becomes loge(e) = 1, simplifying our lives.

That is why we prefer e as the base for logarithms in calculus �

We call loge(x) the natural logarithm, denoted ln(x). The exponential
function ex also has its own name, exp. This notation comes in handy when

the exponent is messy. For instance, e
sin3(2x)

x may be written exp
(

sin3(2x)
x

)
. Many calculators and com-

puter languages use exp to
name the exponential func-
tion with base e.

WARNING (Logarithm Notation) ln(x) is often written simply
as log(x), with the base understood to be e. Any references to the
base-10 logarithm will be written as log10.

Another View of e

For each choice of the base b (b > 0), we obtain a certain value for lim
x→0

bx − 1

x
.

We defined e to be the base for which that limit is as simple as possible, namely
1.

Now that we know that the derivative of ln x = loge x is 1/x, we can obtain
a new view of e.

We know that the derivative of ln(x) at 1 is 1/1 = 1. By the definition of
the derivative, that means

lim
h→0

ln(1 + h)− ln(1)

h
= 1.
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Since ln(1) = 0, we have

lim
h→0

ln(1 + h)

h
= 1.

By a property of logarithms, we may rewrite the limit as c ln p = ln(pc)

lim
h→0

ln
(
(1 + h)1/h

)
= 1.

Writing ex as exp x for convenience, we conclude that

exp
(

lim
h→0

ln
(
(1 + h)1/h

))
= exp(1) = e.

Since exp is a continuous function,we may switch the order of exp and lim,
getting

lim
h→0

(
exp

(
ln
(
(1 + h)1/h

)))
= e.

But, exp(ln(p)) = p for any positive number, by the very definition of a loga-
rithm. That tells us that

limh→0(1 + h)1/h = e.

This is a much more direct view of e than the one we had in Section 2.1. As
a check, let h = 1/1000 = 0.001, then (1 + 1/1000)1000 ≈ 2.717, and values of
h that are closer to 0 give even better estimates for e.

The Derivative of arcsin(x)

For x in [−π/2, π/2] sin(x) is one-to-one and therefore has an inverse function,
arcsin(x). This function gives you the angle, in radians, if you know the sine of
the angle. For instance, arcsin(1) = π/2, arcsin(

√
2/2) = π/4, arcsin(−1/2) =

−π/6, and arcsin(−1) = −π/2. The domain of arcsin(x) is [−1, 1]; its range
is [−π/2, π/2]. For convenience we include the graphs of y = sin(x) and For additional review of

arcsin, see Section 1.2.y = arcsin(x) in Figure 3.5.2, but will not need them as we find (arcsin(x))′.

(a,arcsin(a))

(arcsin(a),a)

1.0

0.0

−1.0

x

1.5

1.5

0.5

0.5

0.0

−0.5

−1.5

−0.5−1.0−1.5 1.0

Figure 3.5.2:

To find (arcsin(x))′, we proceed exactly we did when finding (loge(x))′. Let
y = arcsin(x), then

x = sin(y). (3)

Differentiating with respect to x gives

1 =
d(x)

dx
=
d(sin(y))

dx
= cos(y)

dy

dx
.

Thus
dy

dx
=

1

cos(y)
. (4)
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All that is left is to use the relationship sin(y) = x to express cos(y) in terms
of x.

C

BA

1 sin(y)

cos(y)

y

1

0

1

−1 0

−1

Figure 3.5.3:

Figure 3.5.3 displays the diagram that defines the sine of an angle. The
line segment AB represents cos(y) and the line segment BC represents sin(y).
Observe that the cosine is positive for angles y in

(−π
2
, π

2

)
, the first and fourth

quadrants and sine is positive for angles y in the first and third quadrants.
When x = sin(y), AB2 +BC2 = 1 gives cos(y) =

√
1− x2. Consequentely, by

(4), we find Memorize this result!

Theorem 3.5.2 Derivative of arcsin(x)

d

dx
(arcsin(x)) =

1√
1− x2

, |x| < 1.

A transcendental function
can have an algebraic
derivative. An algebraic
function always has an
algebraic derivative.

Note at x = 1 or -1, the derivative is not defined. However, for x near 1 or
-1 the derivative is very large (in absolute value), telling us that the arcsinx
curve is very steep near its two ends. That is a reflection of the fact that the
sin(x) curve is horizontal at x = −π/2 and x = π/2.

d
dx sin(x)

∣∣
x=±π/2 =

cos(±π/2) = 0
EXAMPLE 2 Differentiate 1

2

(
x
√
x2 − a2 + a2 arcsin

(
x
a

))
where a is a con-

stant.
SOLUTION

D

(
1

2

(
x
√
x2 − a2 + a2 arcsin

(x
a

)))
= 1

2
D
((
x
√
x2 − a2 + a2 arcsin

(
x
a

)))
= 1

2

(
D
(
x
√
x2 − a2

)
+ a2D

(
arcsin

(
x
a

)))
= 1

2

((
(1)
√
x2 − a2

)
+

(
x

(
−( 1

2)(2x)
√
x2−a2

))
+ a2

(
1
aq

1−(xa)
2

))
D(arcsin(x)) = 1√

1−x2
, Product and

Chain Rules

= 1
2

(√
x2 − a2 − −x2

√
x2−a2 + a2

√
a2−x2

)
algebra

= 1
2

(
a2−x2−x2+a2
√
x2−a2

)
common denominator

=
√
x2 − a2

�

The Derivative of arctan(x)

For x in (−π/2, π/2) tan(x) is one-to-one and has an inverse function, arctan(x).
This inverse function tells us the angle, in radians, if we know the sine of the
angle. For instance, arctan(1) = π/4, arctan(0) = 0, and arctan(−1) = −π/4.
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When x is a large positive number, arctan(x) is near, and smaller than, π/2. For additional review of
arctan, see Section 1.2.When x is a large negative number, arctan(x) is near, and larger than, −π/2.

Figure 3.5.4 shows the graph of y = arctan(x) and y = tan(x). We will not
(a,arctan(a))

(arctan(a),a)

4

4

2

0

−2

0

−4

x

5

5

3

3

2

1

−1
1

−3

−5

−1−2−3−4−5

Figure 3.5.4:

need this graph in our derivation of the derivative of arctan(x), but it serves
as a check on the formula, which should give values near 0 when |x| is large.

See Exercise 28.

To find (arctan(x))′, we again call on the Chain Rule. Starting with

y = arctan(x),

we proceed as before:

x = tan(y).
d(x)

dx
=

d(tan(y))

dx
differentiate with respect to x

1 =
(
sec2(y)

)
y′ Chain Rule

y′ =
1

sec2(y)
algebra

y′ =
1

1 + tan2(y)
trigonometric identity

y′ =
1

1 + x2
x = tan(y).

So we have Memorize!

Theorem 3.5.3 Derivative of arctan(x)

D(arctan(x)) =
1

1 + x2
for all inputs x

EXAMPLE 3 Find D (tan−1(3x)).
SOLUTION By the Chain Rule

D (tan−1(3x)) =
1

1 + (3x)2

d(3x)

dx

=
3

1 + 9x2
.

�

EXAMPLE 4 Find D
(
x tan−1(x)− 1

2
ln (1 + x2)

)
.

SOLUTION

D
(
x tan−1(x)− 1

2
ln (1 + x2)

)
= D (x tan−1(x))− 1

2
D (ln (1 + x2))

=

(
tan−1(x) +

x

1 + x2

)
− 1

2

2x

1 + x2

= tan−1(x).

� Do not memorize this for-
mula!
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More on ln(x)

We showed that for x > 0, ln(x) is an antiderivative of 1/x. But what if we
needed an antiderivative of 1/x for negative x? The next example answers this Recall that ln(x) is not de-

fined for x < 0.question.

EXAMPLE 5 Show that for negative x, ln(−x) is an antiderivative of 1/x.
SOLUTION Let y = ln(−x). By the Chain Rule,

dy

dx
=

(
1

−x

)
d(−x)

dx
=

1

−x
(−1) =

1

x
.

So ln(−x) is an antiderivative of 1/x when x is negative. �
This formula covers both
cases: positive x and neg-
ative x.

In view of Example 5, we can say

D(ln |x|) =
1

x
for x 6= 0.

We know the derivative of xa for any rational number a. To extend this
result to xk for any number k, the key is that any positive number x can be
written as x = eln(x).

EXAMPLE 6 Find D(xk) for x > 0 and any constant k 6= 0, rational or
irrational.
SOLUTION For x > 0 we can write x = eln(x). Then

xk =
(
eln(x)

)k
=
(
eln(x)

)k
= ek ln(x).

Now, y = ek ln(x) is a composite function, y = eu where u = k ln(x). Thus,

dy

dx
=
dy

du

du

dx
= eu

k

x
= xk

k

x
= kxk−1.

�

The preceding example shows that for positive x and any fixed exponent
k,
(
xk
)′

= kxk−1. It probably does not come as a surprise. In fact you
may wonder why we worked so hard to get the derivative of xa when a is an
integer or rational number when this example covers all exponents. We had
two reasons for treating the special cases. First, they include cases when x is
negative. Second, they were simpler and helped us introduce the derivative.
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The Derivatives of the Six Inverse Trigonometric Func-
tions

Each of the six trigonometric functions has an associated inverse function. We
have found the derivatives of the ones used most often.

There are six inverse trigonometric functions. The most important arcsin
and arctan. The other four are treated in Exercises 18–21. Table 3.5.1 sum-
marizes all six derivatives. There is no reason to memorize all six of these
formulas. If we need, say, an antiderivative of −1

1+x2 , we do not have to use
arccot(x). Instead, − arctan(x) would do. So, for finding antiderivatives, we
don’t need arccot — or any of the inverse co-functions. You should memorize
the formulas for the derivatives of arcsin, arctan, and arcsec. Note that the negative

signs go with the “co-”
functions.

D(sin−1(x)) =
1√

1− x2
D(cos−1(x)) = − 1√

1− x2
(−1 < x < 1)

D(tan−1(x)) =
1

1 + x2
D(cot−1(x)) = − 1

1 + x2
(−∞ < x <∞)

D(sec−1(x)) =
1

x
√
x2 − 1

D(csc−1(x)) = − 1

x
√
x2 − 1

(x > 1 or x < −1)

Table 3.5.1: Derivatives of the six inverse trigonometric functions.

This chapter provides you with the tools to differentiate any elementary
function. The result will always be an elementary function. Happily, for users
of calculus, it is not necessary to go back to the definition of a derivative as a
limit to compute a derivative. Even so, we should remember that the definition
of derivative is based on limits. The foundation of calculus

is the limit concept.

Summary

A geometric argument is given to suggest that the inverse of every differentiable
function is differentiable.

The derivatives of ln(x), sin−1(x), and tan−1(x) and of the other four inverse
trigonometric functions were found using the Chain Rule.
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EXERCISES for 3.5

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1–6 evaluate the function and its derivative at the given argu-
ment.

1. arcsin(x); 1/2

2. arcsin(x); −1/2

3. arctan(x); −1

4. arctan(x);
√

3

5. ln(x); e

6. ln(x); 1

In Exercises 7–16 differentiate the function.
7. sin−1(3x) sin(3x)

8. tan−1(5x) tan(5x)

9. e2x ln(3x)

10. e

“
ln(3x)x

√
2
”

11. log10(x) Hint: Express log10 in terms of the natural logarithm.

12. logx(10) Hint: Express logx in terms of the natural logarithm.

13. x2 sin−1(x2)

14.
(
sin−1(3x)

)2
Hint: Recall that sin−1(3x) = arcsin(3x).

15. tan−1(2x)
1+x2

16. x3

tan−1(6x)
Note: tan−1(6x) is not the reciprocal of tan(6x).

17. Let b > 0. This problem provides some additional experience with the
development of the formula logb(x) = logb(e) loge(x). Recall that logb(a) = loge(a)

loge(b)
.

(a) Show that logb(e) = 1/ loge(b).

(b) Conclude that logb(x) = logb(e) loge(x).

Note: This result is used in Example 1.

18. Prove that (arcsec(x))′ = 1
|x|
√
x2−1

for all x < −1 or x > 1.

19. Prove that (arccos(x))′ = −1√
1−x2

for all −1 < x < 1.

20. Prove that (arccot(x))′ = −1
1+x2 for all x.
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21. Prove that (arccsc(x))′ = −1
|x|
√
x2−1

for all x < −1 or x > 1.

22. Verify that D
(

2(
√
x− 1)e

√
x
)

= e
√
x.

In Exercises 23–26 use the Chain Rule to obtain the given derivative.
23. (cos−1(x))′ = −1√

1−x2

24. (sec−1(x))′ = 1
x
√
x2−1

25. (cot−1(x))′ = −1
1+x2

26. (csc−1(x))′ = −1
x
√
x2−1

27. We have used the equation sec2(x) = 1 + tan2(x).

(a) Derive this equation from the equation cos2(x) + sin2(x) = 1.

(b) Derive the equation cos2(x) + sin2(x) = 1 from the Pythagorean Theorem.

28.

(a) Evaluate lim
x→∞

1
1 + x2

and lim
x→−∞

1
1 + x2

.

(b) What do these results tell you about the graph of the arctangent function?

29.

Sam: I say that D(logb(x)) = 1
x ln(b) . It’s simple. Let y = logb(x). That tells

me x = by. I differentiate both sides of that, getting 1 = by(ln(b))y′. So
y′ = 1

by ln(b) = 1
x ln(b) .

Jane: Well, not so fast. I start with the equation logb(x) = (logb(e)) ln(x). So
D(logb(x)) = logb(e)

x .

Sam: Something is wrong. Where did you get that equation you started with?

Jane: Just take logb of both sides of x = eln(x).

Sam: I hope this won’t be on the next midterm exam!

Settle this argument.
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30. Find D(ln3(x))

(a) by the Chain Rule and

(b) by first writing ln3(x) as ln(x) · ln(x) · ln(x).

Which method do you prefer? Why?

In Exercises 31–42 use differentiation to check that the first function is an
antiderivative of the second function. (The symbols a, b, c, and d are con-
stants.)

31. −a cos
(
x
a

)
; sin

(
x
a

)
32. −1

2 ln
(

1+cos(x)
1−cos(x)

)
; 1

sin(x) = csc(x)

33. 1
a2 (ax− 1)eax; xeax

34. 1
a3 (a2x2 − 2ax+ 2)eax; x2eax

35. 1
a2+b2

eau(sin(bu)− cos(bu)); eau sin(bu)

36. 1
a2+b2

eau(sin(bu) + cos(bu)); eau cos(u)

37. 1
b2

(a+ bx− a ln(a+ bx)); x
ax+b , a+ bx > 0

38. 1
b3

(
a+ bx− 2a ln(a+ bx)− a2

a+bx

)
; x2

(a+bx)2 , a+ bx > 0

39. 1
ab tan−1

(
bx
a

)
; 1
a2+b2x2

40. x
2a2(a2+x2)

+ 1
2a2 tan−1

(
x
a

)
; 1

(a2+x2)2

41. 1
2a2 tan−1

(
x2

a2

)
; x
a4+x4

42. 2
√
x

b2− 2a
b

2 tan−1
(
b
√
x
a

)
;
√
x

a2+b2x

We did not need the Chain Rule to find the derivatives of inverse functions.
Instead, we could have taken a geometric approach, using the “slope of the
tangent line” interpretation of the derivative. When we reflect the graph of f
around the line y = x to obtain the graph of f−1, the reflection of the tangent
line to the graph of f with slope m is the tangent line to the graph of f−1 with
slope 1/m. (See Section 1.1.) Exercises 43–47 use this approach to develop
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formulas obtained in this section.
43. Let f(x) = ln(x). The slope of the curve y = ln(x) at (a, ln(a)), a > 0, is

the reciprocal of the slope of the curve y = ex at (ln(a), a). Use this fact to show
that the slope of the curve y = ln(x) when x = a is 1/a.

In Exercises 44–47 use the technique illustrated in Exercise 43 to differen-
tiate the given function.

44. f(x) = tan−1(x).

45. f(x) = sin−1(x).

46. f(x) = sec−1(x).

47. f(x) = cos−1(x).
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3.6 Antiderivatives and Slope Fields

So far in this chapter we have started with a function and found its derivative.
In this section we will go in the opposite direction: Given a function f , we
will be interested in a function F whose derivative is f . Why? Because this
procedure of going from the derivative back to the function plays a central role
in integral calculus.

Antiderivatives

If F ′ = f , F is called an antiderivative of f . The more practice we have in
calculating derivatives, the easier we can find antiderivatives.

EXAMPLE 1 Find an antiderivative of x6.
SOLUTION When we differentiate xa we get axa−1. The exponent in the
derivative, a − 1, is one less than the original exponent, a. So we expect an
antiderivative of x6 to involve x7.

Now, (x7)
′
= 7x6. This means x7 is an antiderivative of 7x6, not of x6. We

must get rid of that coefficient of 7 in front of x6. To accomplish this, divide
x7 by 7. We then have(

x7

7

)′
= 7x6

7
because

(
f
C

)′
= f ′

C

= x6. canceling common factor 7 from nu-
merator and denominator

We can state that 1
7
x7 is an antiderivative of x6.

However, 1
7
x7 is not the only antiderivative of x6. For instance,(

1

7
x7 + 2011

)′
=

1

7
7x6 + 0 = x6.

We can add any constant to 1
7
x7 and the result is always an antiderivative of A constant added to any

antiderivative of a function
f gives another antideriva-
tive of f .

x6. �

The same reasoning as in this example suggests that 1
a+1

xa+1 is an an-
tiderivative of xa. This formula is meaningless when a + 1 = 0. We have to
expect a different formula for antiderivatives of x−1 = 1

x
. In Section 3.5 we

learned that (ln(x))′ = 1/x.
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Theorem 3.6.1 Power Rule for Antiderivatives For any number a 6=
−1, antiderivatives of xa are

1

a+ 1
xa+1 + C for any constant C.

For a = −1, antiderivatives of x−1 = 1
x

are

ln(x) + C for any constant C.

Every time you compute a derivative, you are also finding an antiderivative.
For instance, since D(sin(x)) = cos(x), sin(x) is an antiderivative of cos(x).
So is sin(x)+C for any constant C. There are tables of antiderivatives that go
on for hundreds of pages. Here is a miniature table with entries corresponding Search Google for “an-

tiderivative table”.to the derivatives that we have found so far.

Function (f) Antiderivative (F ) Comment
xa 1

a+1
xa+1 for a 6= −1

x−1 = 1
x

ln(x)
ex ex

cos(x) sin(x)
sin(x) − cos(x)
sec2(x) tan(x) see Example 8

sec(x) tan(x) sec(x) see Example 10
1√

1−x2 arcsin(x) see Theorem 3.5.2 (Section 3.5)
1

1+x2 arctan(x) see Theorem 3.5.3 (Section 3.5)

Table 3.6.1: Miniature table of antiderivatives (F ′ = f).

An elementary function is a function that can be expressed in terms of
polynomials, powers, trigonometric functions, exponentials, logarithms, and
compositions. The derivative of an elementary function is elementary. We
might expect that every elementary function would have an antiderivative
that is also an elementary function. Joseph Liouville (1809–

1882)In 1833 Joseph Liouville proved beyond a shadow of a doubt that there are
elementary functions that do not have elementary antiderivatives. Elementary
functions that do not have elementary antiderivatives include ex

2
is important in statisti-

cians’ bell curve
ex

2 sin(x)

x
x tan(x)

√
x 3
√

1 + x
4
√

1 + x2

There are two types of elementary functions: the algebraic and the transcen-
dental. Algebraic functions consist of polynomials, quotients of polynomials
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(the rational functions), and all functions that can be built up by the four

operations of algebra and taking roots. For instance,

√
x+ 3
√
x+ x2

(1 + 2x)5
is alge- The four operations of alge-

bra are +, −, × and ÷.
braic; while functions such as sin(x) and 2x are not algebraic. Such functions
are transcendental. See Exercise 1.

It is difficult to tell whether a given elementary function has an elemen-
tary antiderivative. For instance, x sin(x) does, namely −x cos(x) + sin(x), as
you may readily check; but x tan(x) does not. The function ex

2
does not, as

mentioned earlier. However, e
√
x, which looks more frightening, does have an

elementary antiderivative. See Exercise 22.
The table of basic antiderivatives will continue to expand as more deriva-

tives are obtained in the rest of Chapter 3. The importance of antiderivatives
will be revealed in Chapter 5. Specific techniques for finding antiderivatives
are developed in Chapter 7. How computers find an-

tiderivativesIt is often difficult to decide when an elementary function has an elementary
antiderivative. There are algorithms implemented in software on a computers, Reference: http:

//en.wikipedia.org/
wiki/Risch_algorithm

PDAs, and calculators that can answer this question. The most well-known
is the Risch algorithm, developed in 1968, based on differential equations
and abstract algebra. A Google search for “risch antiderivative elementary
symbolic” produces links related to the Risch algorithm.

Picturing Antiderivatives

Now that you are convinced that it is not possible to find an explicit formula for
the antiderivative of many (most!) elementary functions, why do we continue
to believe that these functions do have antiderivatives? This section puts
the answer directly in front of your eyes. In Chapter 5 we will show how to
construct antiderivatives.

The slope field for a function f(x) shows a short line segment with slope
f(x) at selected points (x, y). By drawing a slope field you can get a feel
for the graph of the antiderivatives of f(x). The fact that an antiderivative
can be graphed is very strong evidence that the antiderivative does exist. In
Chapter 5 we will show that each continuous function has an antiderivative —
which may not be elementary.

EXAMPLE 2 Imagine that you are looking for an antiderivative F (x) of G’(2)=3

y 3

1

−1

0

6

5

4

2

0

1

x

2−1

Figure 3.6.1:

√
1 + x3. You want F ′(x) to be

√
1 + x3. Or, to put it geometrically, you want

the slope of the curve y = F (x) to be
√

1 + x3. For instance, when x = 2, you
want the slope to be

√
1 + x3 = 3. We do not know what F (2) is, but at least

we can draw a short piece of the tangent line at all points for which x = 2;
they all have slope 3. (See Figure 3.6.1.)

G’(−1)=0 G’(0)=1 G’(1)=sqrt(2) G’(2)=3

4

5

y(x)

1

6

3

0

2

−1

10−1

x

2

Figure 3.6.2:

When x = 1,
√

1 + x3 =
√

2 ≈ 1.4. So we draw short lines with slope
√

2
on the vertical line x = 1. When x = 0,

√
1 + x3 = 1; the tangent lines for
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x = 0 all have slope 1. When x = −1, the slopes are
√

1 + x3 = 0 so the lines with slope 1 make an
angle of π

4 or 45◦ with the
horizontal

tangent lines are all horizontal. (See Figure 3.6.2.)
The plot of a slope field is most commonly done with the aid of a graphing

device. Some graphing calculators have this facility and there are a number
of software products for creating a computer-generated plot of a slope field.
These automatic plotters have the precision to plot line segments with accurate For a sample of available re-

sources, search Google for
“calculus slope field plot”.

slopes and patience to plot many line segments. A typical plot of a slope field
is shown in Figure 3.6.3(a).

4

0−1

5

6

−1

2

x

0

1

y(x) 3

2

1

(a)

0

y(x)

1

2

x

3

−1

6

−1

2

5

4

0

1

(b)

y(x)

5

1

0

4

x

6

3

2

2−1

−1

10

(c)

Figure 3.6.3: (a) Slope field for f(x) =
√

1 + x3. (b) Includes the antiderivative
with F (−1) = 0. (c) Adds two more antiderivatives.

You can almost see the curves that follow the slope field for f(x) =
√

1 + x3.
Start at a point, say (−1, 0). At this point the slope is F ′(−1) = f(−1) = 0
so the curve starts moving horizontally to the right. As soon as the curve
leaves this initial point the slope, as given by F ′(x) = f(x), becomes slightly
positive. This pushes the curve upward. The slope continues to increase as
x increases. The curve in Figure 3.6.3(b) is the graph of an antiderivative of
f(x) =

√
1 + x3. The curve is given by y =

F (x) where F ′(x) = f(x) =√
1 + x3.

If you start from a different initial point, you will obtain a different an-
tiderivative. Three antiderivatives are shown in Figure 3.6.3(c). Many other
antiderivatives for f(x) =

√
1 + x3 are visible in the slope field. None of these

functions are elementary. �
It appears that different antiderivatives of a function differ by a constant:

the graph of one antiderivative is simply the graph of another antiderivative
raised or lowered by their constant difference. This observation is confirmed
in Chapter 5

EXAMPLE 3 Draw the slope field for dy
dx

= 0.
SOLUTION Since the slope is 0 everywhere, each of the short tangent lines −1

32

x

10−1

3

−3

5

0

−2

4

y

2

1

Figure 3.6.4:
will be represented by a horizontal line segment, as in Figure 3.6.4.

−1

321

5

0−1

3

4

−3

2

y

0

−2

1

x

Figure 3.6.5:

In Figure 3.6.5 two possible antiderivatives of 0 are shown, namely the
constant functions f(x) = 2 and g(x) = 4.
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It appears as though the only functions whose derivatives are 0 everywhere
are the constant functions. While this will not be completely established until
Section 5.4(?), we will make use of this fact as early as Section 3.3. �

Summary

The antiderivative was introduced as the inverse operation of differentiation.
If F ′ = f , then F is an antiderivative of f . If F is an antiderivative of f , then
so is F + C for any constant C. (F (x) + C)′ = F ′(x) = f .

We introduced the notion of an elementary function. These are the func-
tions built up from polynomials, logarithms, exponentials, and the trigono-
metric functions by the four operations +, −, ×, ÷, and the most important
operation, composition. While the derivative of an elementary function is el-
ementary, its antiderivative does not need to be elementary. Each elemetary
function is either algebraic or transcendental. Algebraic functions, such as x2

and (x + 3)/(x3 − 2x + 4), are built from the operations of algebra, starting
with the function x; transcendental functions are the non-algebraic functions.

We showed how a slope field can help us analyze an antiderivative even
though we may not know whether it is elementary. Slope fields appear again
in Section 13.2 when we study equations that involve unknown functions and
their derivatives.
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EXERCISES for 3.6

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

1. Verify that −x cos(x) + sin(x) is an antiderivative of x sin(x).

In Exercises 2–11 give two antiderivatives for each given function.
2. x3

3. x4

4. x−2

5. 1
x3

6. 3
√
x

7. 2
x

8. sec(x) tan(x)

9. sin(x)

10. e−x

11. sin(2x)

In Exercises 12–20

(a) draw the slope fields for the given derivative.

(b) then draw two curves that they suggest

12. f ′(x) = 2

13. f ′(x) = x

14. f ′(x) = −x
2

15. f ′(x) = 1
x , x > 0

16. f ′(x) = cos(x)

17. f ′(x) =
√
x

18. f ′(x) = e−x, x > 0

19. f ′(x) = 1/x2, x 6= 0

20. f ′(x) = 1/(x− 1), x 6= 1

In Exercises 21–30 use differentiation to check that the first function is an
antiderivative of the second function.

21. 2x sin(x)− (x2 − 2) cos(x); x2 sin(x)
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22. (4x3 − 24x) sin(x)− (x4 − 12x2 + 24) cos(x); x4 sin(x)

23. 1
x3 ; −1

2x2

24. 1
x3/2 ; −2√

x

25. (x− 1)ex; xex

26. (x2 − 2x+ 2)ex; x2ex

27. 1
2e
u(sin(u)− cos(u)); eu sin(u)

28. 1
2e
u(sin(u) + cos(u)); eu cos(u)

29. x
2 −

sin(x) cos(x)
2 ; sin2(x)

30. 2x cos(x)− (x2 − 2) sin(x); x2 cos(x)

31.

(a) Draw the slope field for dy
dx = e−x

2
.

(b) Draw the curve of the antiderivative of dy
dx = e−x

2
that passes through the

point (0, 1).

32.

(a) Draw the slope field for dy
dx = f(x) where f(x) = sin(x)

x , x 6= 0, and f(x) = 1
for x = 0.

(b) What is the slope for any point on the y-axis?

(c) Draw the curve of the antiderivative of dy
dx = f(x) that passes through the

point (0, 1).

33. A table of antiderivatives lists two antiderivatives of 1
x2(a+bx)

, where a and b

are constants, namely

−1
a2

(
a+ bx

x
− b ln

(
a+ bx

x

))
and − 1

ax
+

b

a2
ln
(
a+ bx

x

)
.
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Assume a+bx
x > 0.

(a) By differentiating both expressions, show that both are correct.

(b) Show that the two expressions differ by a constant, by finding their difference.

34. If F (x) is an antiderivative of f(x), what function is an antiderivative of
g(x) = f(2x)?
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3.7 Motion and the Second Derivative

In an official drag race Melanie Troxel reached a speed of 324 miles per hour in That’s 475 feet per second!
a mere 4.539 seconds. By comparison, a 1968 Fiat 850 Idromatic could reach
a speed of 60 miles per hour in 25 seconds and a 1997 Porsche 911 Turbo S in
a mere 3.6 seconds. Source: http:

//web.missouri.edu/

~apcb20/times.html.

Put “automobile accera-
tion” into Google to check
out accelaration data for
other cars.

Since Troxel increased her speed from 0 feet per second to 475 feet per
second in 4.539 seconds her speed was increasing at the rate of 475

4.539
≈ 105

feet per second per second, assuming she kept the motor at maximum power
throughout the time interval. That acceleration is more than three times the
accelaration due to gravity at sea level (32 feet per second per second). Ms.
Troxel must have felt quite a force as her seat pressed against her back.

This brings us to the formal definition of acceleration and an introduction
to the higher derivatives.

In Sections 3.1 and 3.2 we saw that the velocity of an object moving on a
line is represented by a derivative. In this section we examine the acceleration
mathematically.

Acceleration
The sign of the velocity in-
dicates direction. Speed,
the absolute value of veloc-
ity, does not provide any in-
dication of direction.

Velocity is the rate at which position changes. The rate at which velocity
changes is called acceleration, denoted a. Thus if y = f(t) denotes position
on a line at time t, then the derivative dy

dt
equals the velocity, and the derivative

of the derivative equals the acceleration. That is,

v =
dy

dt
and a =

dv

dt
=

d

dt

(
dy

dt

)
The second derivative

The derivative of the derivative of a function y = f(x) is called the second
derivative. It is denoted many different ways, including:

d2y

dx2
, D2y, y′′, f ′′, D2f, f (2), or

d2f

dx2
.

If y = f(t), where t denotes the time, the first and second derivatives dy/dt,
and d2y/dt2 are sometimes denoted ẏ and ÿ, respectively.

For instance, if y = x3,

dy

dx
= 3x2 and

d2y

dx2
= 6x

Other ways of denoting the second derivative of this function are

D2(x3) = 6x,
d2(x3)

dx2
= 6x, and (x3)′′ = 6x.
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The table in the margin lists dy/dx, the first derivative, and d2y/dx2, the
second derivative, for a few functions. Most functions f met in applications

y dy
dx

d2y
dx2

x3 3x2 6x
1
x

−1
x2

2
x3

sin(5x) 5 cos(5x) −25 sin(5x)

of calculus can be differentiated repeatedly in the sense that Df exists, the
derivative of Df , namely, D2f , exists, the derivative of D2f exists, and so on.

The derivative of the second derivative is called the third derivative and
is denoted many ways, such as

d3y

dx3
, D3y, y′′′, f ′′′, f (3), or

d3f

dx3
.

The fourth derivative is defined similarly, as the derivative of the third deriva-
tive. In the same way we can define the nth derivative for any positive integer
n and denote this by such symbols as

dny

dxn
, Dny, f (n), or

dnf

dxn
.

It is read as “the nth derivative with respect to x.” For instance, if f(x) =
2x3 + x2 − x+ 5, we have

f (1)(x) = 6x2 + 2x− 1
f (2)(x) = 12x+ 2
f (3)(x) = 12
f (4)(x) = 0
f (n)(x) = 0 for n ≥ 5.

The “higher-order” deriva-
tives will be needed in
Chapter 5.EXAMPLE 1 Find Dn(e−2x) for each positive integer n.

SOLUTION

D1 (e−2x) = D (e−2x) = −2e−2x

D2 (e−2x) = D (−2e−2x) = (−2)2e−2x

D3 (e−2x) = D ((−2)2e−2x) = (−2)3e−2x

At each differentiation another (−2) becomes part of the coefficient. Thus The power (−1)n records a
“plus” if n is even and a
“minus” is n is odd.Dn

(
e−2x

)
= (−2)ne−2x.

This can also be written

Dn
(
e−2x

)
= (−1)n2ne−2x.

�
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Finding Velocity and Acceleration from Position

EXAMPLE 2 A falling rock drops 16t2 feet in the first t seconds. Find its
velocity and acceleration.

Figure 3.7.1:
SOLUTION Place the y-axis in the usual position, with 0 at the beginning
of the fall and the part with positive values above 0, as in Figure 3.7.1. At
time t the object has the y coordinate

y = −16t2.

The velocity is v = (−16t2)′ = −32t feet per second, and the acceleration is
a = (−32t)′ = −32 feet per second per second. The velocity changes at a
constant rate. That is, the acceleration is constant. �

Finding Position from Velocity and Acceleration

To calculate the position of a moving object at any time it is enough to know
the object’s acceleration at all times, the initial position, and the initial veloc-
ity. This will be demonstrated in the next two examples, where acceleration
is constant. In the first example, the acceleration is 0.

EXAMPLE 3 In the simplest motion, no forces act on a moving particle,

Figure 3.7.2:
hence its acceleration is 0. Assume that a particle is moving on the x-axis and
no forces act on it. Let its location at time t seconds be x = f(t) feet. See
Figure 3.7.2. If at time t = 0, x = 3 feet and the velocity is 5 feet per second,
determine f(t).

SOLUTION The assumption that no force operates on the particle tells us
that d2x/dt2 = 0. Call the velocity v. Then

dv

dt
=

d

dt

(
dx

dt

)
=
d2x

dt2
= 0

Now, v is itself a function of time. Since its derivative is 0, v must be constant: Any constant function is an
antiderivative of 0.

v(t) = C

for some constant C. Since v(0) = 5, the constant C must be 5.
To find the position x as a function of time, note that

dx

dt
= 5

This equation implies that x = f(t) must be in the form

x = 5t+K
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for some constant K. Now, when t = 0, x = 3. Thus K = 3. In short, at time Since 5t is an antiderivative
of 5, any other antideriva-
tive must be of the form
5t+K.

t seconds, the particle is at x = 5t+ 3 feet. �

The next example concerns the case in which the acceleration is constant,
but not zero.

EXAMPLE 4 A ball is thrown straight up, with an initial speed of 64 feet
per second, from a cliff 96 feet above a beach. Where is the ball t seconds
later? When does it reach its maximum height? How high above the beach
does the ball rise? When does the ball hit the beach? Assume that there is no
air resistance and that the acceleration due to gravity is constant.

SOLUTION Introduce a vertical coordinate axis to describe the position of

Figure 3.7.3:
the ball. It is more natural to call it the y-axis, and so the velocity is dy/dt and
acceleration is d2y/dt2. Place the origin at ground level and let the positive
part of the y-axis be above the ground, as in Figure 3.7.3. At time t = 0,
the velocity dy/dt = 64, since the ball is thrown up at a speed of 64 feet per
second. As time increases, dy/dt decreases from 64 to 0 (when the ball reaches If it had been thrown down

dy/dt would be −64.the top of it path and begins its descent) and continues to decrease through
larger and larger negative values as the ball falls to the ground. Since v is
decreasing, the acceleration dv/dt is negative. The (constant) value of dv/dt,
gravitational acceleration, is approximately −32 feet per second per second.

From the equation

a =
dv

dt
= −32,

it follows that Velocity is an antiderivative
of acceleration.v = −32t+ C,

where C is some constant. To find C, recall that v = 64 when t = 0. Thus The −32t + C is an an-
tiderivative of the constant
function, −32.64 = −32 · 0 + C,

and C = 64. Hence v = −32t+ 64 for any time t until the ball hits the beach.
Next, v = dy/dt, so Position is an antideriva-

tive of velocity.dy

dt
= v = −32t+ 64.

Since the position function y is an antiderivative of the velocity, −32t+ 64,
we have

y(t) = −16t2 + 64t+K,

where K is a constant. To find K, make use of the fact that y = 96 when
t = 0. Thus

96 = −16 · 02 + 64 · 0 +K,

and K = 96.
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We have obtained a complete description of the position of the ball at any
time t while it is in the air: As a check, note that when

t = 0, y = 96, the initial
height.y = −16t2 + 64t+ 96.

This, together with v = −32t+ 64, provides answers to many questions about
the ball’s flight.

Figure 3.7.4:

When does it reach its maximum height? When it is neither rising nor
falling. In other words, the velocity is neither positive nor negative, but must
be 0. When v = 0; that is, when −32t+ 64 = 0, or when t = 2 seconds.

How high above the ground does the ball rise? Simply compute y when
t = 2. This gives −16 · 22 + 64 · 2 + 96 = 160 feet. (See Figure 3.7.4.)

When does the ball hit the beach? When y = 0. Find t such that

y = −16t2 + 64t+ 96 = 0

Division by -16 yields the simpler equation t2 − 4t − 6 = 0, which has the
solutions

t =
4±
√

16 + 24

2
= 2±

√
10.

Since 2−
√

10 is negative and the ball cannot hit the beach before it is thrown,
the only physically meaningful solution is 2+

√
10. The ball lands 2+

√
10 sec-

onds after it is thrown; it is in the air for about 5.2 seconds.
The graphs of position, velocity, and acceleration as functions of time pro-

vide another perspective on the motion of the ball, as shown in Figure 3.7.4.

(a) (b) (c)

Figure 3.7.5: (a) Position, (b) velocity, and (c) acceleration for the object in
Example 4.

�
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Reasoning like that in Examples 3 and 4 establishes the following descrip-
tion of motion in all cases where the acceleration is constant. a, v0, and y0 must be given

in consistent units.

OBSERVATION (Motion Under Constant Acceleration)
Assume that a particle moving on the y axis has a constant
acceleration a at any time. Assume that at time t = 0 it
has an initial velocity v0 and has the initial y-coordinate y0.
Then at any time t ≥ 0 its y-coordinate is

y =
a

2
t2 + v0t+ y0.

In Example 3, a = 0, v0 = 5, and y0 = 3; in Example 4, a = −32 v0 = 64,
and y0 = 96.

Summary

We defined the higher derivatives of a function. They are obtained by repeat-
edly differentiating. The second derivative is the derivative of the derivative,
the third derivative being the derivative of the second derivative, and so on.
The first and second derivatives, D(f) and D2(f), are used in many applica-
tions. We also analyzed motion under constant acceleration.
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EXERCISES for 3.7

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1–16 find the first and second derivatives of the given func-
tions.

1. y = 2x+ 3

2. y = 5x− 7

3. y = x5

4. y = x6

5. y = 2x3 + x+ 2

6. y = 4x3 − x2 + x

7. y = x
x+1

8. y = x2

x−1

9. y = x cos(x2)

10. y = x
tan(3x)

11. y = (x− 2)4

12. y = (x+ 1)3

13. y = sin(3x)

14. y = tan(x2)

15. y = x2 arctan(3x)

16. y = −arcsin(2x)
x2

17. Find D3
(
5x2 − 2x+ 7

)
.

18. Find D4 (sin(2x)).

19. Find Dn (ex).

20. Find D(sin(x)), D2(sin(x)), D3(sin(x)), and D4(sin(x)).

21. Find D(cos(x)), D2(cos(x)), D3(cos(x)), and D4(cos(x)).

22. Find D(ln(x)), D2(ln(x)), D3(ln(x)), and D4(ln(x)).

23. Find D4(x4) and D5(x4).

October 30, 2007 Calculus 182



The Derivative § 3.7

24. Find D200(sin(x))

25. Find D200(ex)

26. Find D3(5x)

27. Find all functions f such that D2f = 0 for all x.

28. Find all functions f such that D3(f) = 0 for all x.

29. Give the most general formula you can think of for functions f such that
D2(f) = 4f .

30. Give the most general formula you can think of for functions f such that
D2(f) = −4f .

31. Use calculus, specifically derivatives, to restate the following reports about
the Leaning Tower of Pisa.

(a) “Until 2001, the tower’s angle from the vertical was increasing more rapidly.”

(b) “Since 2001, the tower’s angle from the vertical has not changed.”

Hint: Let θ = f(t) be the angle of deviation from the vertical at time t. Note:
Incidently, the tower, begun in 1174 and completed in 1350, is 179 feet tall and leans
about 14 feet from the vertical. Each day it leaned on the average, another 1

5000

inch until the tower was propped up in 2001.

Exercises 32–34 concern Example 4.
32.

(a) How long after the ball in Example 4 is thrown does it pass by the top of the
hill?

(b) What are its speed and velocity at this instant?

33. Suppose the ball in Example 4 had simply been dropped from the cliff. Find
the position y as a function of time. How long would it take the ball to reach the
beach?

34. In view of the result of Exercise 33, provide a physical interpretation of the
three terms on the right-hand side of the formula y = −16t2 + 64t+ 96.
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35. At time t = 0 a particle is at y = 3 feet and has a velocity of -3 feet per second;
it has a constant acceleration of 6 feet per second per second. Find its position at
any time t.

36. At time t = 0 a particle is at y = 10 feet and has a velocity of 8 feet per
second; it has a constant acceleration of -8 feet per second per second.

(a) Find its position at any time t.

(b) What is its maximum y coordinate.

37. At time t = 0 a particle is at y = 0 feet and has a velocity of 0 feet per second.
Find its position at any time t if its acceleration is always -32 feet per second per
second.

38. At time t = 0 a particle is at y = −4 feet and has a velocity of 6 feet per
second; it has a constant acceleration of -32 feet per second per second.

(a) Find its position at any time t.

(b) What is its largest y coordinate.

39. A jetliner begins its descent 120 miles from the airport. Its velocity when the
descent begins is 500 miles per hour and its landing velocity is 180 miles per hour.
Assuming a constant deceleration, how long does the descent take?

40. Let y = f(t) describe the motion on the y-axis of an object whose acceleration
has the constant value a. Show that

y =
a

2
t2 + v0t+ y0

where v0 is the velocity when t = 0 and y0 is the position when t = 0.

41. Which has the highest acceleration? Melanie Troxel’s dragster, a 1997 Porsche
911 Turbo S, or an airplane being launched from an aircraft carrier? The plane
reaches a velocity of 180 miles per hour in 2.5 seconds, within a distance of 300 feet.
Hint: Assume each acceleration is a constant.

42. Why do engineers call the third derivative of position with respect to time
the jerk?
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43. A model rocket is launched upward from the surface of the earth from rest
with acceleration given by a = 6t− t2 feet per second per second.

(a) At what time is the rocket’s acceleration zero? When is the rocket accelerat-
ing? decelerating?

(b) What is the rocket’s velocity, as a function of time?

(c) At what time does the rocket reach its maximum height?

(d) What is the rocket’s position, as a function of time?

(e) What is the maximum height attained by this rocket?

(f) At what time does the rocket return to earth? What are the velocity and
acceleration at impact?

44. A car accelerates with constant acceleration from 0 (rest) to 60 miles per hour
in 15 seconds. How far does it travel in this period? Note: Be sure to do your
computations either all in seconds, or all in hours; for instance, 60 miles per hour is
88 feet per second.

45. Show that a ball thrown straight up from the ground takes as long to rise
as to fall back to its initial position. How does the velocity with which it strikes
the ground compare with its initial velocity? How do the initial and landing speeds
compare?
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3.8 Precise Definition of Limits at Infinity: lim
x→∞

f (x) = L

One day I drew on the board the graph shown in Figure 3.8.1. It is the graph
of x/2 + sin(x). Then I asked my class whether they thought that

lim
x→∞

f(x) =∞.

A third of the class voted ”No” because ”it keeps going up and down.” A third

Figure 3.8.1:
voted ”Yes” because ”the function tends to get very large as x increases.” A
third didn’t vote. Such a variety of views on such a fundamental concept sug-
gests that we need a more precise definition of a limit than the ones developed
in Sections 1.1 and 1.2. How would you vote?

In the definitions of the limits considered in Sections 2.1 and 2.2 appear
such phrases as “x approaches a,” “f(x) approaches a specific number,” “as a
gets larger,” and ”f(x) becomes and remains arbitrarily large.” Such phrases,
although appealing to the intuition and conveying the sense of a limit, are not
precise. The definitions seem to suggest moving objects and call to mind the
motion of a pencil point as it traces out the graph of a function.

This informal approach was adequate during the early development of
calculus, from Leibniz and Newton in the seventeenth century through the
Bernoullis, Euler, and Gauss in the eighteenth and early nineteenth centuries.
But by the mid-nineteenth century, mathematicians, facing more complicated
functions and more difficult theorems, no longer could depend solely on intu-
ition. They realized that glancing at a graph was no longer adequate to un-
derstand the behavior of functions — especially if theorems covering a broad
class of functions were needed.

It was Weierstrass who developed, over a period of 16 years, a way to define
limits without any hint of motion or pencils tracing out graphs. His approach, 1841–1856
on which he lectured after joining the faculty at the University of Berlin in
1859, has since been followed by pure and applied mathematicians through-
out the world. Even an undergraduate advanced calculus course depends on
Weierstrass’s approach.

In this section we examine how Weierstrass would define the concepts for
“limits at infinity:”

lim
x→∞

f(x) =∞ and lim
x→∞

f(x) = L.

In the next section we consider finite limits at finite points:

lim
x→a

f(x) = L.

The Precise Definition of limx→∞ f(x) =∞
Recall the definition of limx→∞ f(x) =∞ given in Section 2.1.
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Informal definition of limx→∞ f(x) =∞

1. f(x) is defined for all x beyond some number

2. As x gets large through positive values, f(x) becomes and
remains arbitrarily large and positive.

To take us part way to the precise definition, let us reword the informal defi-
nition, paraphrasing it in the following definition, which is still informal.

Reworded informal definition of limx→∞ f(x) =∞

1. Assume that f(x) is defined for all x greater than the number
c.

2. If x is sufficiently large and positive, then f(x) is necessarily
large and positive.

The precise definition paralles the reworded definition.

DEFINITION (Precise definition of limx→∞ f(x) =∞)

1. Assume the f(x) is defined for all x greater than some number
c.

2. For each number E there is a number D such that for all
x > D it is true that f(x) > E.

The “challenge and reply”
approach to limitsThink of the number E as a challenge and D as the reply. The larger E is,

the larger D must usually be. Only if a number D (which depends on E) can
he found for every number E can we make the claim that limx→∞ f(x) =∞.
In other words, D could be expressed as a function of E. To picture the idea

Figure 3.8.2:

behind the precise definition, consider the graph in Figure 3.8.2 of a function
f for which limx→∞ f(x) = ∞. For each possible choice of a horizontal line,
say, at height E, if you are far enough to the right on the graph of f , you stay
above that horizontal line. That is, there is a number D such that if x > D,
then f(x) > E, as illustrated in Figure 3.8.3.

Figure 3.8.3:

Figure 3.8.4:

The number D in Figure 3.8.4 is not a suitable reply. It is too small since
there are (some) values of x > D such that f(x) ≤ E.

Examples 1 and 2 illustrate how the precise definition is used.

EXAMPLE 1 Using the precise definition, show that limx→∞ 2x =∞.
SOLUTION Let E be any (positive) number. We must show that there is a
number D such that whenever x > D it follows that 2x > E. The number D

For example, if E = 100,
then D = 50 would do be-
cause it is indeed the case
that if x > 50, then 2x >
100.

will depend on E. Our goal is find a formula for D for any value of E.
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Now, the inequality 2x > E is equivalent to

x >
E

2
.

In other words, if x > E/2, then 2x > E (and vice versa). So choosing D = D depends on E

E/2 will suffice. To verify this: when x > D (= E/2), 2x > 2D = 2E
2

= E.
This allows us to conclude immediately that

lim
x→∞

2x =∞.

�

Figure 3.8.5:

In Example 1 a formula was provided for a suitableD in terms of E, namely,
D = E/2 (see Figure 3.8.5. For instance, when challenged with E = 1000, the
response D = 500 suffices. In fact, any larger value of D also is suitable. If
x > 600, it is still the case that 2x > 1000 (since 2x > 1200). If one value of
D is a satisfactory response to a given challenge E, then any larger value of
D also is a satisfactory response.

Now that we have a precise definition of limx→∞ f(x) = ∞ we can settle
the question, “Is limx→∞(x/2 + sin(x)) =∞?”

EXAMPLE 2 Using the precise definition, show that limx→∞
x
3

+ sin(x) =
∞.
SOLUTION Let E be any number. We must exhibit a number D, depending
on E, such that x > D forces

x

3
+ sin(x) > E. (1)

Now, sin(x) ≥ −1 for all x. So, if we can force

x

3
+ (−1) > E (2)

then it will follow that
x

3
+ sin(x) > E.

The smallest value of x that satisfies inequality (1) can be found as follows:

x
3

> E + 1 add 1 to both sides
x > 3(E + 1) multiply by a positive constant.

Thus D = 3(E + 1) will suffice. That is, D depends on E

If x > 3(E + 1), then
x

3
+ sin(x) > E.
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To verify this assertion we must check that D = 3(E + 1) is a satisfactory
reply to E. Assume that x > D = 3(E + 1). Then

x
3

> E + 1
and sin(x) ≥ −1.

Adding these last two inequalities gives If a > b and c ≥ d, then
a+ c > b+ d.

x
3

+ sin(x) > (E + 1) + (−1)
or simply x

3
+ sin(x) > E,

which is inequality (1). That is,

lim
x→∞

x

2
+ sin(x) =∞.

As x increases, the function does become and remain large, despite the
small dips downward. �

The Precise Definition of limx→∞ f(x) = L

Next, recall the definition of limx→∞ f(x) = L given in Section 2.1. L is a finite number.

Informal definition of limx→∞ f(x) = L

1. f(x) is defined for all x beyond some number

2. As x gets large through positive values, f(x) approaches L.

Again we reword this definition before offering the precise definition.

Reworded informal definition of limx→∞ f(x) = L

1. Assume that f(x) is defined for all x greater than some num-
ber c.

2. If x is sufficiently large, then f(x) is necessarily near L.

Once again, the precise definition parallels the reworded definition. In
order to make precise the phrase “f(x) is necessarily near L,” we shall use
the absolute value of f(x) − L to measure the distance from f(x) to L. The
following definition says that “if x is large enough, then |f(x)− L| is as small
as we please”.

DEFINITION (Precise definition of limx→∞ f(x) = L)

1. Assume the f(x) is defined for all x beyond some number c.
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2. For each positive number ε there is a number D such that for
all x > D it is true that

|f(x)− L| < ε.

The number ε is the chal-
lenge. The number D is a
reply.

Figure 3.8.6:

Draw two lines parallel to the x-axis, one of height L + ε and one of height
L− ε. They are the two edges of an endless band of width 2ε and centered at
y = L. Assume that for each positive ε, a number D can be found such that
the part of the graph to the right of x = D lies within the band. Then we say
that “as x approaches ∞, f(x) approaches L” and write

lim
x→∞

f(x) = L.

The positive number ε is the challenge, and D is a reply. The smaller ε
is, the narrower the band is, and the larger D usually must be chosen. The
geometric meaning of the precise definition of limx→∞ f(x) = L is shown in
Figure 3.8.6. “ε” (epsilon) is the Greek

letter corresponding to the
English letter “e”EXAMPLE 3 Use the precise definition of “limx→∞ f(x) = L” to show

that

lim
x→∞

(
1 +

1

x

)
= 1.

SOLUTION Here f(x) = 1+1/x, which is defined for all x 6= 0. In particular,
observe that f(x) is defined for all x > 0. The number L is 1. We must show
that for each positive number ε, however small, there is a number D such that,
for all x > D, ∣∣∣∣(1 +

1

x

)
− 1

∣∣∣∣ < ε. (3)

Inequality (3) reduces to ∣∣∣∣1x
∣∣∣∣ < ε.

Since we shall consider only x > 0, this inequality is equivalent to

1

x
< ε. (4)

Multiplying inequality (4) by the positive number x yields the equivalent in-
equality

1 < xε. (5)

Division of inequality (5) by the positive number ε yields

1

ε
< x or x >

1

ε
.
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D depends on ε.
These steps are reversible. This shows that D = 1/ε is a suitable reply to

the challenge ε. If x > 1/ε, then∣∣∣∣(1 +
1

x

)
− 1

∣∣∣∣ < ε.

That is, inequality (3) is satisfied.
According to the precise definition of “limx→∞ f(x) = L”, we conclude that

lim
x→∞

(
1 +

1

x

)
= 1.

�

Figure 3.8.7:
The graph of f(x) = 1+1/x, shown in Figure 3.8.7, reinforces the argument.

It seems plausible that no matter how narrow a band someone may place
around the line y = 1, it will always be possible to find a number D such
that the part of the graph to the right of x = D stays within that band. In
Figure 3.8.7 the typical band is shown shaded.

The precise definitions can also be used to show that some claim about an
alleged limit is false. The next example illustrates how this is done.

EXAMPLE 4 Show that the claim that limx→∞ sin(x) = 0 is false.
SOLUTION To show that the claim is false, we must exhibit a challenge
ε > 0 for which no response D can be found. That is, we must exhibit a
positive number ε such that no D exists for which | sin(x) − 0| < ε for all
x > D.

Recall that sin(π/2) = 1 and that sin(x) = 1 whenever x = π/2 + 2nπ for
any integer n. This means that there are arbitrarily large values of x for which
sin(x) = 1. This suggests how to exhibit an ε > 0 for which no response D
can be found. Simply pick ε to be some positive number less than or equal to
1. For instance, ε = 0.7 will do.

For any number D there is always a number x∗ > D such that we have
sin(x∗) = 1. This means that | sin(x∗)− 0| = 1 > 0.7. Hence no response can
he found for ε = 0.7. Thus the claim that limx→∞ sin(x) = 0 is false. �

To conclude this section, we show how the precise definition of the limit
can be used to obtain information about new limits.

EXAMPLE 5 Use the precise definition of “limx→∞ f(x) = L” to show that
if f and g are defined everywhere and limx→∞ f(x) = 2 and limx→∞ g(x) = 3,
then limx→∞(f(x) + g(x)) = 5.
SOLUTION The objective is to show that for each positive number ε, how-
ever small, there is a number D such that, for all x > D,

|(f(x) + g(x))− 5| < ε.
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Observe that |(f(x) + g(x))− 5| can be written as |(f(x)− 2) + (g(x)− 3))|,
and this is no larger than the sum |f(x)− 2|+ |g(x)− 3|. If we can show that
for all x sufficiently large that both |f(x)−2| < ε/2 and |g(x)−3| < ε/2, then
there sum will be no larger than ε/2 + ε/2 = ε.

Here is how this plan can be implemented.
The fact that limx→∞ f(x) = 2 means for any given ε > 0 there exists a

number D1 with the property that |f(x)− 2| < ε/2 for all x > D1. Likewise,
the fact that limc→∞ g(x) = 3 means for any given ε > 0 there exists a number
D2 with the property that |g(x)− 2| < ε/2 for all x > D2. D = max{D1, D2}

Let D refer to the larger of D1 and D2. For any x greater than D we know
that

|f(x) + g(x)− 5| < |f(x)− 2|+ |g(x)− 3| < ε/2 + ε/2 = ε.

According to the precise definition of a limit at infinity, we conclude that

lim
x→∞

(f(x) + g(x)) = 2 + 3 = 5.

�
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EXERCISES for 3.8

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

1. Let f(x) = 3x.

(a) Find a number D such that, for x > D, it follows that f(x) > 600.

(b) Find another number D such that, for x > D, it follows that f(x) > 600.

(c) What is the smallest number D such that, for all x > D, it follows that
f(x) > 600?

2. Let f(x) = 4x.

(a) Find a number D such that, for x > D, it follows that f(x) > 1000.

(b) Find another number D such that, for x > D, it follows that f(x) > 1000.

(c) What is the smallest number D such that, for all x > D, it follows that
f(x) > 1000?

3. Let f(x) = 5x. Find a number D such that, for all x > D,

(a) f(x) > 2000,

(b) f(x) > 10, 000.

4. Let f(x) = 6x. Find a number D such that, for all x > D,

(a) f(x) > 1200,

(b) f(x) > 1800.

In Exercises 5 to 12 use the precise definition of the assertion “ lim
x→∞

f(x) =

∞” to establish each limit.
5. lim

x→∞
3x =∞

6. lim
x→∞

4x =∞

7. lim
x→∞

(x+ 5) =∞
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8. lim
x→∞

(x− 600) =∞

9. lim
x→∞

(2x+ 4) =∞

10. lim
x→∞

(3x− 1200) =∞

11. lim
x→∞

(4x+ 100 cos(x)) =∞

12. lim
x→∞

(2x− 300 cos(x)) =∞

13. Let f(x) = x2.

(a) Find a number D such that, for all x > D, f(x) > 100.

(b) Let E be any nonnegative number. Find a number D such that, for all x > D,
it follows that f(x) > E.

(c) Let E be any negative number. Find a number D such that, for all x > D, it
follows that f(x) > E.

(d) Using the precise definition of “ lim
x→∞

f(x) =∞”, show that lim
x→∞

x2 =∞.

14. Using the precise definition of “ lim
x→∞

f(x) = ∞”, show that lim
x→∞

x3 = ∞.
Hint: See Exercise 13.

Exercises 15 to 22 concern the precise definition of “ lim
x→∞

f(x) = L”.

15. Let f(x) = 3 + 1/x if x 6= 0.

(a) Find a number D such that, for all x > D, it follows that |f(x)− 3| < 1
10 .

(b) Find another number D such that, for all x > D, it follows that |f(x)−3| < 1
10 .

(c) What is the smallest number D such that, for all x > D, it follows that
|f(x)− 3| < 1

10?

(d) Using the precise definition of “ lim
x→∞

f(x) = L”, show that lim
x→∞

(3 + 1/x) = 3.

16. Let f(x) = 2/x if x 6= 0.

(a) Find a number D such that, for all x > D, it follows that |f(x)− 0| < 1
100 .

(b) Find another number D such that, for all x > D, it follows that |f(x)− 0| <
1

100 .

(c) What is the smallest number D such that, for all x > D, it follows that
|f(x)− 0| < 1

100?

(d) Using the precise definition of “ lim
x→∞

f(x) = L”, show that lim
x→∞

(2/x) = 0.
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In Exercises 17 to 22 use the precise definition of “ lim
x→∞

f(x) = L” to

establish each limit.

17. lim
x→∞

sin(x)
x

= 0 Hint: | sin(x)| ≤ 1 for all x.

18. lim
x→∞

x+ cos(x)
x

= 1

19. lim
x→∞

4
x2

= 0

20. lim
x→∞

2x+ 3
x

= 2

21. lim
x→∞

1
x− 100

= 0

22. lim
x→∞

2x+ 10
3x− 5

=
2
3

23. Using the precise definition of “ lim
x→∞

f(x) = ∞,” show that the claim that

lim
x→∞

x/(x+ 1) =∞ is false.

24. Using the precise definition of “ lim
x→∞

f(x) = L,” show that the claim that

lim
x→∞

sin(x) =
1
2

is false.

25. Using the precise definition of “ lim
x→∞

f(x) = L,” show that the claim that
lim
x→∞

3x = 6 is false.

26. Using the precise definition of “ lim
x→∞

f(x) = L,” show that for every number
L the assertion that lim

x→∞
2x = L is false.

In Exercises 27 to 30 develop precise definitions of the given limits. Phrase
your definitions in terms of a challenge number E or ε and a reply D. Show
the geometric meaning of your definition on a graph.

27. lim
x→∞

f(x) = −∞

28. lim
x→−∞

f(x) =∞

29. lim
x→−∞

f(x) = −∞

30. lim
x→∞

f(x) = L
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31. Let f(x) = 5 for all x.

(a) Using the precise definition of “ lim
x→∞

f(x) = L,” show that lim
x→∞

f(x) = 5.

(b) Using the precise definition of “ lim
x→−∞

f(x) = L,” show that lim
x→∞

f(x) = 5.

(See Exercise 30

32. Is this argument correct? “I will prove that lim
x→∞

(2x + cos(x)) = ∞. Let E
be given. I want

2x+ cos(x) > E
or 2x > E − cos(x)
so x > E−cos(x)

2 .

Thus, if D = E−cos(x)
2 , then 2x+ cos(x) > E.”

33. Use the precise definition of “ lim
x→∞

f(x) = L,” to prove this version of the

sum law for limits: if limx→∞ f(x) = A and limx→∞ g(x) = B, then limx→∞(f(x) +
g(x)) = A+B. Hint: See Example 5.

34. Use the precise definition of “ lim
x→∞

f(x) = L,” to prove this version of the

product law for limits: if limx→∞ f(x) = A, then limx→∞(f(x)2) = A2. Hint: See
Exercise 33.

35. Use the precise definition of “ lim
x→∞

f(x) = L,” to prove this version of

the product law for limits: if limx→∞ f(x) = A and limx→∞ g(x) = B, then
limx→∞(f(x)g(x)) = AB. Hint: See Example 34.

October 30, 2007 Calculus 196



The Derivative § 3.9

3.9 Precise Definition of Limits at a Finite

Point: lim
x→a

f (x) = L

To conclude the discussion of limits, we extend the ideas developed in Sec-
tion 3.8 to limits with a finite limit point.

Informal definition of limx→a f(x) = L

Figure 3.9.1:
Let f be a function and a some fixed number. (See Figure 3.9.1.)

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some number c < a and some number b > a.

2. If, as x approaches a, either from the left or from the right,
f(x) approaches a specific number L, then L is called the
limit of f(x) as x approaches a. This is written

lim
x→a

f(x) = L.

Keep in mind that a need not be in the domain of f . Even if it happens to
be in the domain of f , the value of f(a) plays no role in determining whether
limx→a f(x) = L.

Reworded informal definition of limx→a f(x) = L

Let f be a function and a some fixed number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some number c < a and some number b > a.

2. If x is is sufficiently close to a but not equal to a, then f(x)
is necessarily near L.

The precise definition parallels the reworded informal definition.

DEFINITION (Precise definition of limx→a f(x) = L) Let f be The “ε, δ” definition of
“limx→a f(x) = L”a function and a some fixed number.

1. Assume that the domain of f contains open intervals (c, a)
and (a, b) for some number c < a and some number b > a.

2. For each positive number ε there is a positive number δ such
that for all x that satisfy the inequality

0 < |x− a| < δ
it is true that |f(x)− L| < ε
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“δ” (delta) is the Greek
letter corresponding to the
English letter “d.”

The meaning of
0 < |x− a| < δ

The inequality 0 < |x−a| that appears in the definition is just a fancy way
of saying ”x is not a.” The inequality |x − a| < δ asserts that x is within a
distance δ of a. The two inequalities may be combined as the single statement
0 < |x − a| < δ, which describes the open interval (a − δ, a + δ) from which
a is deleted. This deletion is made since the value f(a) pIays no role in the
definition of limx→a f(x).

Once again ε is the challenge. The reply is δ. Usually, the smaller ε is, the
smaller δ will have to be.

(a) (b) (c)

Figure 3.9.2: (a) The number ε is the challenge. (b) δ is not small enough. (c)
δ is small enough.

The geometric significance of the precise definition of “limx→a f(x) = L”
is shown in Figure 3.9. The narrow horizontal band of width 2ε is again the
challenge (see Figure 3.9(a)). The desired response is a sufficiently narrow
vertical band, of width 2δ, such that the part of the graph within that vertical
band (except perhaps at x = a) also lies in the horizontal band of width
2ε. In Figure 3.9(b) the vertical band shown is not narrow enough to meet
the challenge of the horizontal band shown. But the vertical band shown in
Figure 3.9(c) is sufficiently narrow.

Assume that for each positive number ε it is possible to find a positive
number δ such that the parts of the graph between x = a− δ and x = a and
between x = a and x = a + δ lie within the given horizontal band. Then we
say that “as x approaches a, f(x) approaches L”. The narrower the horizontal
band around the line y = L, the smaller δ usually must be.

EXAMPLE 1 Use the precise definition of “lim
x→a

f(x) = L” to show that

lim
x→0

x2 = 0.

SOLUTION In this case f(x) = x2, a = 0 and L = 0. Let ε be a positive
number. We wish to find a positive number δ such that for 0 < |x − 0| < δ
it follows that |x2 − 0| < ε. Since |x|2 = |x2|, we are asking: “For which x is
|x|2 < ε?” This inequality is satisfied when

|x| <
√
ε.
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In other words, when |x| <
√
ε, it follows that |x2 − 0| < ε. Thus, δ =

√
ε For instance, when ε = 1,

δ =
√

1 = 1 is a suitable
reply. When the challenge
is ε = 0.01, a reply of δ =
0.1 suffices.

suffices. �

EXAMPLE 2 Use the precise definition of “lim
x→a

f(x) = L” to show that

lim
x→2

(3x+ 5) = 11.

SOLUTION Here f(x) = 3x + 5, a = 2, and L = 11. Let ε be a positive
number. We wish to find a number δ > 0 such that for 0 < |x − 2| < δ we
have |(3x+ 5)− 11| < ε.

So let us find out for which x it is true that |(3x + 5) − 11| < ε. This
inequality is equivalent to

|3x− 6| < ε
or 3|x− 2| < ε
or |x− 2| < ε

3
.

Thus δ = ε/3 is a suitable response. If 0 < |x−2| < ε/3, then |(3x+5)−11| < ε.
�

The algebra of finding a response δ can be much more involved for other
functions, such as f(x) = ax2 + bx + c. The precise definition of limit can
actually be easier to apply in more general situations where f and a are not
given explicitly. To illustrate, we present a proof of the Permanence Principle. Mathematicians call this a

“proof by handwaving”.When the Permanence Principle was first introduced in Section 2.4, the
only justification we provided was a picture and an appeal to your intuition
that a continuous function cannot jump instantaneously from a positive value
to zero or a negative value — the function has to remain positive on some
open interval.

EXAMPLE 3 Prove the Permanence Principle: If f(a) > 0 and f is con-
tinuous on an open interval containing a, then there exists an open interval
containing a on which f(x) > 0.
SOLUTION Let p be the positive value of the function at x = a: p = f(a) >
0. The assumption that f is continuous on an open interval containing a im-
plies f is continuous at x = a. That is, limx→a f(x) = f(a) = p. Now, because
this limit exists, given any positive ε, there exists a δ > 0 with the property
that

|f(x)− p| < ε for all 0 < |x− a| < δ.

In particular, choose ε = p/2 and let δ be the corresponding response.
Let x be any number within δ of p, that is, |x − p| < δ. The definition

of “limx→a f(x) = p” with p = f(a) and ε = p/2 assures us that whenever
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|x− a| < p/2 we know that

|f(x)− p| < ε
that is |f(x)− p| < p

2

or −p
2
< f(x)− p < p

2

so p+ −p
2
< f(x) < p+ p

2

thus p
2
< f(x) < 3p

2
.

Since p = f(a) > 0, the left-hand inequality in this last inequality tells us that

if |x− a| < δ then f(x) >
p

2
> 0.

Thus, we can now say that f(x) is positive on the open interval centered at
x = a with width p, that is for x between a− p

2
and a+ p

2
). � The choice of ε = p/2 is not

special. We can choose ε to
be any number less than p.
(See also Exercise 25.)
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EXERCISES for 3.9

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1 to 4 use the precise definition of “lim
x→a

f(x) = L” to justify

each statement.
1. lim

x→2
3x = 6

2. lim
x→3

(4x− 1) = 11

3. lim
x→1

(x+ 2) = 3

4. lim
x→5

(2x− 3) = 7

In Exercises 5 and 8 find a number δ such that the point (x, f(x)) lies in
the shaded band for all x in the interval (a − δ, a + δ). Hint: Draw suitable
vertical band for the given value of ε.

5.

6.
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7.

8.

In Exercises 9 and 12 use the precise definition of “limx→a f(x) = L” to
justify each statement.

9. lim
x→0

x2

4
= 0

10. lim
x→0

4x2 = 0

11. lim
x→1

(3x+ 5) = 8

12. lim
x→1

5x+ 3
4

= 2

13. Give an example of a number δ > 0 such that |x2− 4| < 1 if 0 < |x− 2| < δ.

14. Give an example of a number δ > 0 such that |x2+x−2| < 0.5 if 0 < |x−1| < δ.

Develop precise definitions of the given limits in Exercises 15 to 20. Phrase
your definitions in terms of a challenge, E or ε, and a response, δ.

15. lim
x→a+

f(x) = L

16. lim
x→a−

f(x) = L
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17. lim
x→a

f(x) =∞

18. lim
x→a

f(x) = −∞

19. lim
x→a+

f(x) =∞

20. lim
x→a−

f(x) =∞

21. Let f(x) = 9x2.

(a) Find δ > 0 such that, for 0 < |x− 0| < δ, it follows that |9x2 − 0| < 1
100 .

(b) Let ε be any positive number. Find a positive number δ such that, for 0 <
|x− 0| < δ we have |9x2 − 0| < ε.

(c) Show that limx→0 9x2 = 0.

22. Let f(x) = x3.

(a) Find δ > 0 such that, for 0 < |x− 0| < δ, it follows that |x3 − 0| < 1
1000 .

(b) Show that limx→0 x
3 = 0.

23. Show that the assertion “limx→2 3x = 5” is false. To do this, it is necessary
to exhibit a positive number ε such that there is no response number δ > 0
Hint: Draw a picture.

24. Show that the assertion“limx→2 x
2 = 3” is false.

25. Review the proof of the Permanence Principle given in Example 3.

(a) Revise the proof for the choice ε = p/4.

(b) How does the value of δ obtained with ε = p/4 compare with the value of δ
obtained with ε = p/2?

(c) Why does the proof not work when ε = p?

(d) Show that the proof remains valid for any 0 < ε < p.

26. The Permanence Principle discussed in Example 3 and Exercise 25 pertains
to limits at a finite point a. State, and prove, a version of the Permanence Principle
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that is valid at ∞.

27.

(a) Show that, if 0 < δ < 1 and |x− 3| < δ, then |x2 − 9| < 7δ.

(b) Use (a) to deduce that limx→3 x
2 = 9.

28.

(a) Show that, if 0 < δ < 1 and |x− 4| < δ, then

|
√
x− 2| < δ√

3 + 2
.

Hint: Rationalize
√
x− 2.

(b) Use (a) to deduce that limx→4
√
x = 2.

29.

(a) Show that, if 0 < δ < 1 and |x− 3| < δ, then |x2 + 5x− 24| < 12δ.
Hint: Factor x2 + 5x− 24.

(b) Use (a) to deduce that limx→3(x2 + 5x) = 24.

30.

(a) Show that, if 0 < δ < 1 and |x− 2| < δ, then∣∣∣∣1x − 1
2

∣∣∣∣ < δ

2
.

(b) Use (a) to deduce that limx→2
1
x = 1

2 .

31. Assume that f(x) is continuous at a and is defined at least on an open interval
containing a. Assume that f(x) = p > 0. Using the precise definitino of a limit,
show that there is an open interval, I, containing a such that f(x) > p/2 for all x
in I.
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3.S Chapter Summary

In this chapter we defined the derivative of a function, developed ways to
compute derivatives, and applied derivatives to graphs and motion.

The derivative of a function f at a point x = a is defined as the limit of the
slopes of secant lines through the points (a, f(a)) and (b, f(b)) as the input b
is taken closer and closer to the input a.

Algebraically, the derivative is the limit of a quotient, “the change in the
output divided by the change in the input”. The limit is usually written in
one of the following forms:

lim
x→a

f(x)− f(a)

x− a
, lim

h→0

f(a+ h)− f(a)

h
, lim

∆x→0

∆y

∆x
.

The derivative is denoted in several ways, such as f ′, f ′(x), df
dx

, dy
dx

, and
D(f).

For the functions most frequently encountered in applications, this limit
exists. Geometrically speaking, the derivative exists whenever the graph of
the function on a very small interval looks almost like a straight line. The
slope of this straight line is the value of the derivative at this point.

The derivative records how fast something changes. For instance, the veloc-
ity of a moving object is defined as the derivative of the object’s position. Also,
the derivative gives the slope of the tangent line to the graph of a function.

We then developed ways to compute the derivative of functions expressible
in terms of the functions met in algebra and trigonometry, including exponen-
tials with a fixed base and logarithms; the so-called “elementary functions”.
That development was based on three specific limits:

lim
x→a

xn − an

x− a
= nan−1, n a positive integer

lim
x→0

ex − 1

x
= 1

lim
x→0

sin(x)

x
= 1.

Using these limits, we obtained the derivatives of xn, ex, and sin(x). We
showed, if we knew the derivatives of two functions, how to compute the deriva-
tives of their sum, difference, product, and quotient. Naturally, this was based
on the definition of the derivative as a limit.

The next step was the development of the most important computational
tool: the Chain Rule. This enables us to differentiate a composite function,
such as cos3(x2). It tells us that this derivative is 3 cos2(x2)(− sin(x2))(2x).

Differentiating inverse functions enabled us to show that the derivative
of ln |x| is 1

x
and the derivative of arcsin(x) is 1√

1−x2 . The following list of
derivatives of key functions should be memorized.

October 30, 2007 Calculus 205



The Derivative § 3.9

function derivative
xa (a constant) axa−1

sin(x) cos(x)
cos(x) − sin(x)
ex ex

ax (a constant) write ax = ex(ln(a))

ln(x) (x > 0) 1
x

ln |x| (x 6= 0) 1
x

tan(x) sec2(x)
sec(x) sec(x) tan(x)

arcsin(x) 1√
1−x2

arccos(x) 1
1+x2√

(x) 1
2
√
x

1
x

−1
x2

Table 3.9.1: Table of Common Functions. Notice that the minus sign appears
in the “co” functions.

As you compute and apply derivatives you may begin to think of them as
slope or velocity or rate of change, and forget the underlying definition as a
limit. However, we will from time to time return to the definition in terms of
limits as we develop more applications of the derivative.

We also introduced the antiderivative and, closely related to it, the slope
field. While the derivative of an elementary function is again elementary, its
antiderivative often is not. For instance,

√
1 + x3 does not have an elemen-

tary antiderivative. However, as we will see in Chapter 6, it does have an
antiderivative. Chapter 8 will present a few ways to find antiderivatives.

The derivative of the derivative is the second derivative. I nthe case of
motion, the second derivative dsecribes acceleration. It is denoted several ways,
such as D2(f), d2f

dx2 , f ′′, and f (2). While the first and second derivatives suffice
for most applications, higher derivatives of all orders are used in Chapter 5,
where we estimate the error when approximating a function by a polynomial.

The final two sections returned to the notion of a limit, providing a precise
definition of limit.
EXERCISES for 3.S Key: R–routine, M–moderate, C–challenging

In Exercises 1–21 use the properties of derivatives to verify each formula.
It may be necessary to simplify the derivative algebraically. The letters a,
b, and c denote constants. Note: These problems provide good practice in
differentiation and algebra. Note that each differentiation formula has a cor-
responding antiderivative formula. Note how important ln(x) is in supplying
antiderivatives.
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1. d
dx

(
1
a tan−1

(
x
a

))
= 1

a2+x2

2. D
(

1
2a ln

(
a+x
a−x

))
= 1

a2−x2

3.
(

ln
(
x+
√
a2 + x2

))′
= 1√

a2+x2

4. d
dx

(
1
a ln

(
x+
√
a2−x2

x

))
= 1

x
√
a2+x2

5. D
(

−1
b(a+bx)

)
= 1

(a+bx)2

6.
(

1
b2

(a+ bx− a ln(a+ bx))
)′ = x

a+bx

7. d
dx

(
1
b2

(
a

2(a+bx)2 − 1
a+bx

))
= x

(a+bx)3

8. D
(

1
ab′−a′b ln

(
a′+b′x
a+bx

))
= 1

(a+bx)(a′+b′x) (a, b, a′, b′ constants)

9.
(

2√
4ac−b2 arctan

(
2cx+b√
4ac−b2

))′
= 1

a+bx+cx2 (4ac > b2)

10. d
dx

(
−2√
b2−4ac

ln
(

2cx+b−
√
b2−4ac

2cx+b+
√
b2−4ac

))
= 1

a+bx+cx2 (4ac < b2)

11. D
(

1
a cos−1

(
a
x

))
= 1

x
√
x2−a2

12.
(

1
2

(
x
√
a2 − x2 + a2 arcsin

(
x
a

)))′
=
√
a2 − x2 (|x| < |a|)

13. d
dx

(
−x
2

√
a2 − x2 + a2

2 arcsin
(
x
a

))
= x2
√
a2−x2

(|x| < |a|)

14. D
(
−
√
a2−x2

x − arcsin
(
x
a

))
=
√
a2−x2

x2 (|x| < |a|)

15.
(

arcsin(x)−
√

1− x2
)′

=
√

1+x
1−x (|x| < 1)

16. d
dx

(
x
2 −

1
2 cos(x) sin(x)

)
= sin2(x)

17. D
(
x arcsinx+

√
1− x2

)
= arcsin(x) (|x| < 1)

18.
(
x tan−1(x)− 1

2 ln(1 + x2)
)′ = arctan(x)

19. d
dx

(
eax

a2

(
a2 − 1

))
= xeax

20. D (x− ln(1 + ex)) = 1
1+ex

21.
(
eax(a sin(bx)−b cos(bx))

a2+b2

)′
= eax sin(bx)

In Exercises 22–25 give two antiderivatives for each given function.
22. xex

2

23. (x2 + x)ex
3+3x

24. cos3(x) sin(x)

25. sin(2x)

26. Verify that 2(
√
x− 1)e

√
x is an antiderivative of e

√
x.
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27. The antiderivative of 1/x that passes through (1, 0) is ln(x). One would
expect that for t near 1, the antiderivative of 1/xt that passes through (1, 0) would
look much like ln(x) when x is near 1. To verify that this is true

(a) graph the slope fields for 1/xt with t = 1.1

(b) graph the antiderivative of 1/xt that passes through (1, 0) for t = 1.1

(c) repeat (a) and (b) for t = 0.9

(d) repeat (a) and (b) for t = 1.01

(e) repeat (a) and (b) for t = 0.99

The slope field for 1/x and the antiderivative of 1/x passing through (1, 0) are

0.0

y(x)

−2.0

−0.5

−1.5

x

0.5

0.5

1.0

−1.0

2.01.00.0 1.5

Figure 3.9.1:
shown in Figure 3.9.1.

28. (See Exercise 27.) This exercise suggests that
we could have expected
ln(x) to be the missing an-
tiderivative of 1/x.

(a) Verify that the antiderivative of 1/xt that passes through (1, 0) is x1−t−1
1−t .

(b) Holding x fixed and letting t approach 1, show that

lim
t→1

x1−t − 1
1− t

= ln(x).

Hint: Recognize the limit as the derivative of a certain function at a certain
input. Keep in mind that x is constant.

29. Let y = xm/n, where x > 0 and m and n 6= 0 are integers. Show that
dy
dx = m

n x
m
n
−1 by starting with yn = xm and differentiating both yn and xm with

respect to x.

30. Define f as follows:

f(x) =
{

x if x is rational,
−x if x is irrational.

(a) What does the graph of f look like? A dotted curve may be used
to indicate that points are
missing.(b) Does limx→1 f(x) exist?

(c) Does limx→
√

2 f(x) exist?

(d) Does limx→0 f(x) exist?

(e) For which numbers a does limx→a f(x) exist?
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31. Define f as follows:

f(x) =
{
x2 if x is rational,
x3 if x is irrational.

(a) What does the graph of f look like? See the advice for the pre-
vious problem.

(b) Does limx→2 f(x) exist?

(c) Does limx→1 f(x) exist?

(d) Does limx→0 f(x) exist?

(e) For which numbers a does limx→a f(x) exist?

32. Use precise definitions of limits to prove: if f and g are both continuous at a,
then their product, fg, is also continuous at a.
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Chapter 4

Derivatives and Curve Sketching

When you graph a function you typically plot a few points and connect them
with (generally) straight line segments. Most electronic graphing devices use
the same approach, and obtain better results by plotting more points and using
shorter segments. The more points used, the smoother the graph will appear.
In this chapter we will also learn how to choose the key points when sketching
a graph.

Three properties of the derivative are developed in Section 4.1, and proved
in Section 4.4. In Section 4.2 these properties enable us to exploit the first
derivative when graphing a function. In Section 4.3 we see what the second
derivative tells us about a graph.
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4.1 Three Theorems about the Derivative

This section is based on two plausible observations about the graphs of dif-
ferentiable functions, which we restate as theorems. These ideas will then be
combined, in Section 4.2, to sketch a graph of functions. See Section 2.4.

An effective approach to sketching the graph of a function is to identify the
extreme values of the function. That is, the points where the function takes
on its largest and smallest values.

OBSERVATION (Tangent Lines at an Extreme Value) Suppose
that a function f(x) attains its largest value when x = c, that is,
f(c) is the largest value of f(x) over a given interval. Figure 4.1.1

Figure 4.1.1:

illustrates this situation. The maximum occurs at a point (c, f(c)),
which we call P . If f(x) is differentiable, at least in some open
interval containing the number c, then the tangent line at P will
exist. What can we say about it?

(a) (b) (c)

Figure 4.1.2:

If the tangent at P were not horizontal (that is, not parallel to
the x-axis), then it would be tilted. So a small piece of the graph
around P – which is almost straight — would appear as shown in
Figure 4.1.2(a) or (b). This suggests that the tan-

gent line at the highest
point must be horizontal.

In the first case P could not be the highest point on the curve
because there would be higher points to the right of P . In the
second case P could not be the highest point because there would
be higher points to the left of P . Therefore the tangent at P must
be horizontal, as shown in Figure 4.1.2(c). That is, f ′(c) = 0.

This observation is the foundation for simple criteria for identifying local
extrema.
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Theorem of the Interior Extremum

Theorem 4.1.1 (Theorem of the Interior Extremum) Let f be a func-
tion defined at least on the open interval (a, b). If f takes on an extreme value
at a number c in this interval, then either

1. f ′(c) = 0 or

2. f ′(c) does not exist.

If an extreme value occurs within an open interval and the derivative exists
there, the derivative must be 0 there. This idea will be used in Section 4.2 to
find the maximum and minimum values of a function.

WARNING (Two Cautions about Theorem 4.1.1)

Figure 4.1.3:1. If in Theorem 4.1.1 the open interval (a, b) is replaced by a
closed interval [a, b] the conclusion may not hold. A glance at
Figure 4.1.3 shows why — the extreme value could occur at
an endpoint (x = a or x = b).

2. The converse of Theorem 4.1.1 is not true. Having the deriva-
tive equal to 0 at a point does not guarantee that there is an
extremum at this point. Figure 4.1.4, which shows the graph
of y = x3, shows why. Since f ′(x) = 3x2, f ′(0) = 0. While
the tangent line is indeed horizontal at (0, 0), it crosses the
curve at this point. The graph has neither a maximum nor a
minimum at the origin.

Figure 4.1.4:
Though the next observation is phrased in terms of slopes, we will see that

it has implications for velocity and any changing quantity.

OBSERVATION (Chord and Tangent Line with Same Slope) Let A line segment that joins
two points on the graph of a
function f is called a chord
of f .

A = (a, f(a)) and B = (b, f(b)) be two points on the graph of a
differentiable function f defined at least on the interval [a, b], as
shown in Figure 4.1.5(a). Draw the line segment AB joining A and
B. Imagine holding a ruler parallel to AB and lowering it until it
just touches the graph of y = f(x), as in Figure 4.1.5(b). The ruler
then touches the curve at a point P and appears to lie along the
tangent at P . At that point f ′(c) is equal to the slope of AB. (In
Figure 4.1.5(b) there are two such numbers between a and b.)

It is customary to state two separate theorems based on the observation
about chords and tangent lines. The first, Rolle’s Theorem, is a special case
of the second, the Mean-Value Theorem.
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(a) (b)

Figure 4.1.5:

Rolle’s Theorem

The next theorem is suggested by a special case of the second observation.
When the points A and B in Figure 4.1.5(a) have the same y coordinate, the
chord AB has slope 0. (See Figure 4.1.6.) In this special case, the observation
tells us there must a horizontal tangent to the graph. Expressed in terms of
derivatives, this gives us Rolle’s Theorem1

(a) (b)

Figure 4.1.6:

1Michel Rolle (1652–1719) was a French mathematician. In addition to his discovery of
Rolle’s Theorem in 1691, he also invented the current standardized notation to denote the
nth root of x: n

√
x. Source: http://en.wikipedia.org/wiki/Michel_Rolle.
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Theorem 4.1.2 (Rolle’s Theorem) Let f be a continuous function on the
closed interval [a, b] and have a derivative at all x in the open interval (a, b).
If f(a) = f(b), then there is at least one number c in (a, b) such that f ′(c) = 0.

EXAMPLE 1 Verify Rolle’s Theorem for the case with f(t) = (t2−1) ln
(
t
π

)
on [1, π].
SOLUTION The function f(t) is differentiable whenever t/π is positive, that Recall: ln(x) is differen-

tiable for all x > 0. See
Section 2.4.

is, for all t > 0. In particular, f(t) is differentiable on the closed interval [1, π].
Notice that f(1) = 0 and, because ln(1) = 0, f(π) = 0. Therefore, by Rolle’s
Theorem, there must be a value of c between 1 and π where f ′(c) = 0.

c

10.0

5

2.5

420

7.5

0.0

−2.5

1 3

5.0

Figure 4.1.7: Graph of
y = f(t) (black) and y =
f ′(t) (blue).

The derivative f ′(t) = 2t ln
(
t
π

)
+ t2−1

t
is a pretty complicated function.

Even though it is not possible to find the exact value of c with f(c) = 0, Rolle’s
Theorem guarantees that there is at least one such value of c. Figure 4.1.7
confirms that there is only one solution to f ′(c) = 0 on [1, π]. �

Remark Assume that f(x) is a differentiable function such that

Figure 4.1.8:

f ′(x) is never 0 for x in an interval. Then the equation f(x) = 0 can
have at most one solution in that interval. If it has two solutions,
a and b, then f(a) = 0 and f(b) = 0. (See Figure 4.1.8.)

In an interval in which the derivative f ′(x) is never 0, the graph of
y = f(x) can have no more than one x-intercept.

Example 2 illustrates this observation.

EXAMPLE 2 Use Rolle’s Theorem to determine how many real roots there
are for the equation

x3 − 6x2 + 15x+ 3 = 0. (1)

SOLUTION Since f(x) = x3 − 6x2 + 15x+ 3 is a polynomial of odd degree,
there is at least one real number r such that f(r) = 0. Could there be another
root s? If so, by Rolle’s Theorem, there would be a number c (between r and
s) at which f ′(c) = 0. Recall the argument in Sec-

tion 2.4 based on the Inter-
mediate Value Theorem.

To check, we compute the derivative of f(x) and see if it is ever equal to
0. We have f ′(x) = 3x2 − 12x + 15. To find when f ′(x) is 0, we solve the

We will learn how to ap-
proximate the unique solu-
tion to (1) in Chapter 10.

equation 3x2 − 12x+ 15 = 0 by the quadratic formula, obtaining

x =
−(−12)±

√
(−12)2 − 4(3)(15

6
=

12±
√
−36

6
= 2±

√
−1

and the equation f ′(x) = 0 has no real solutions. It follows that x3 − 6x2 +
15x+ 3 has only one real root. �

Figure 4.1.9:
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Mean-Value Theorem

The “mean-value” theorem, is a generalization of Rolle’s Theorem in that it
applies to any chord, not just horizontal chords.

In geometric terms, the theorem asserts that if you draw a chord for the
graph of a well-behaved function (as in Figure 4.1.9), then somewhere above
or below that chord the graph has at least one tangent line parallel to the
chord. (See Figure 4.1.5(a).) Let us translate this geometric statement into
the language of functions. Call the ends of the chord (a, f(a)) and (b, f(b)).
The slope of the chord is

f(b)− f(a)

b− a
.

Since the tangent line and the chord are parallel, they have the same slopes.
If the tangent line is at the point (c, f(c)), then

f ′(c) =
f(b)− f(a)

b− a
.

Specifically, we have

Theorem 4.1.3 (Mean-Value Theorem) Let f be a continuous function
on the closed interval [a, b] and have a derivative at every x in the open interval
(a, b). Then there is at least one number c in the open interval (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

EXAMPLE 3 Verify the Mean-Value Theorem for f(t) =
√

4− t2 on the
interval [0, 2].
SOLUTION Because 4− t2 ≥ 0 for t between −2 and 2 (including these two
endpoints), f is continuous on [0, 2] and is differentiable on (0, 2). The slope
of the chord through (a, f(a)) = (0, 2) and (b, f(b)) = (2, 0) is

f(b)− f(a)

b− a
=

0− 2

2− 0
= −1.

According to the Mean-Value Theorem, there is at least one number c between
0 and 2 where f ′(c) = m = −1.

Let us try to find c. Since f ′(t) =
−2t

2
√

4− t2
, we need to solve the equation

−c√
4− c2

= −1

−c = −
√

4− c2 [multiply both sides by
√

4− t2]
c2 = 4− c2 [square both sides]

2c2 = 4
c2 = 2.
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There are two solutions: c =
√

2 and c = −
√

2. Only c =
√

2 is in (0, 2).
Hence, there is only one number, namely c =

√
2, whose existence is guaranteed

by the Mean-Value Theorem. �

The iterpretation of the derivative as slope suggested the Mean-Value The-
orem. What does the Mean-Value Theorem say when the function when the
function describes the position of a moving object and the derivative its ve-
locity? This question is considered in Example 4.

EXAMPLE 4 A car moving on the x-axis has the x-coordinate x = f(t)
at time t. At time a its position is f(a). At some later time b its position is
f(b). What does the Mean-Value Theorem assert for this car?
SOLUTION In this case the quotient

f(b)− f(a)

b− a
equals

Change in position

Change in time

that is, f ′(c) =
f(b)− f(a)

b− a
,

or “average velocity” for the interval of time [a, b]. The Mean-Value Theorem

asserts that at some time c, f ′(c) is equal to the quotient
f(b)− f(a)

b− a
. This

says that the velocity at time c is the same as the average velocity during the
time interval [a, b]. To be specific, if a car travels 210 miles in 5 hours, then at
some time its speedometer must read 42 miles per hour. �

Consequences of the Mean-Value Theorem

There are several ways of writing the Mean-Value Theorem. For example, the
equation

f ′(c) =
f(b)− f(a)

b− a
is equivalent to f(b)− f(a) = (b− a)f ′(c)

and hence to f(b) = f(a) + (b− a)f ′(c). (2)

In this last form, the Mean-Value Theorem asserts that f(b) is equal to f(a) A different view of the
Mean-Value Theoremplus a quantity that involves the derivative f ′ at some number c between a and

b. The following important corollaries are based on this alternative view of
the Mean-Value Theorem.

Corollary 4.1.1 If the derivative of a function is 0 throughout an interval I,
then the function is constant on the interval.
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Proof

Let a and b be any two numbers in the interval I and let the function be
denoted by f . To prove this corollary, it suffices to prove that f(a) = f(b), for
that is the defining property of a constant function.

Using the conclusion of the Mean-Value Theorem as stated in (2), there is
a number c between a and b such that

f(b) = f(a) + (b− a)f ′(c).

But f ′(c) = 0, since f ′(x) = 0 for all x in I. Hence

f(b) = f(a) + (b− a)(0)

which proves that f(b) = f(a).

•
When Corollary 4.1.1 is interpreted in terms of motion, it is quite plausible.

It asserts that if an object has zero velocity for a period of time, then it does
not move during that time.

EXAMPLE 5 Use calculus to show that f(x) = (ex + e−x)2− e2x− e−2x is
a constant. Find the constant.
SOLUTION The function f is differentiable for all numbers x. Its derivative
is

f ′(x) = 2(ex + e−x)(ex − e−x)− 2e2x + 2e−2x

= 2(e2x − e−2x)− 2e2x + 2e−2x

= 0

Because f ′(x) is always zero, f must be a constant.
To find the constant, just evaluate f(x) for a convenient value of x. Here

we choose x = 0: f(0) = (e0 + e0)2 − e0 − e0 = 22 − 2 = 2. Thus, This result can also be de-
rived by squaring ex + e−x.

(ex + e−x)2 − e2x − e−2x = 2 for all numbers x.

�

Corollary 4.1.2 If two functions have the same derivatives throughout an
interval, then they differ by a constant. That is, if F ′(x) = G′(x) for all x in
an interval, then there is a costant C such that F (x) = G(x) + C.

Proof
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Define a third function h by the equation h(x) = F (x)−G(x). Then

h′(x) = F ′(x)−G′(x) = 0. [since F ′(x) = G′(x)]

Since the derivative if h is 0, Corollary 4.1.1 implies that h is constant, that
is, h(x) = C for some fixed number C. Thus

F (x)−G(x) = C or F (x) = G(x) + C,

and Corollary 4.1.2 is proved. •

Figure 4.1.10:
Is Corollary 4.1.2 plausible when the derivative is interpreted as slope?

In this case, the corollary asserts that if the graphs of two functions have
the property that their tangent lines at points with the same x coordinate are
parallel, then one graph can be obtained from the other by raising (or lowering)
it by a constant amount C. If you sketch two such graphs (as in Figure 4.1.10,
you will see that the corollary is reasonable.

EXAMPLE 6 What functions have a derivative equal to 2x everywhere? In the language of Sec-
tion 3.5, any antiderivative
of 2x must be of the form
x2 + C.

SOLUTION One such solution is x2; another is x2 + 25. For any constant
C, D(x2 +C) = 2x. Are there any other possibilities? Corollary 4.1.2 tells us
there are not, for if F is a function such that F ′(x) = 2x, then F ′(x) = (x2)′

for all x. Thus the functions f and x2 differ by a constant, say C, that is,

F (x) = x2 + C.

The only antiderivatives of 2x are of the form x2 + C. �

Figure 4.1.11:

Corollary 4.1.1 asserts that if f ′(x) = 0 for all x, then f is a constant. What
can be said about f if f ′(x) is positive for all x in an interval? In terms of the
graph of f , this assumption implies that all the tangent lines slope upward.
It is reasonable to expect that as we move from left to right on the graph in
Figure 4.1.11, the y-coordinate increases. Increasing and decreasing

are defined in Section 1.1.
Corollary 4.1.3 If f is continuous on the closed interval [a, b] and has a pos-
itive derivative on the open interval (a, b), then f is increasing on the interval
[a, b].

If f is continuous on the closed interval [a, b] and has a negative derivative
on the open interval (a, b), then f is decreasing on the interval [a, b].

Proof

We prove the “increasing” case; the other case is handled in Exercise 43. Take
two numbers x1 and x2 such that

a ≤ x1 < x2 ≤ b.

The goal is to show that f(x2) > f(x1).
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By the Mean-Value Theorem, there is some number c between x1 and x2

such that
f(x2) = f(x1) + (x2 − x1)f ′(c).

Now, since x2 > x1, we know x2 − x1 is positive. Since f ′(c) is assumed to be
positive, it follows that The product of two positive

numbers is positive.(x2 − x1)f ′(c) > 0.

Thus, f(x2) > f(x1), and so f(x) is an increasing function. •

EXAMPLE 7 Determine whether 2x + sin(x) is an increasing function, a
decreasing function, or neither.
SOLUTION The funcion 2x + sin(x) is the sum of two simpler functions:

y=2x y=sin(x) y=2x+sin(x)

x
K4 K2 0 2 4

K8

K6

K4

K2

2

4

6

8

Figure 4.1.12:

2x and sin(x). The “2x” part is an increasing function. The second term,
“sin(x)”, increases for x between 0 and π/2 and decreases for x between π/2
and π. It is not clear what type of function you will get when you add 2x and
sin(x). Let’s see what Corollary 4.1.3 tells us.

The derivative of 2x+ sin(x) is 2 + cos(x). Since cos(x) ≥ −1 for all x,

(2x+ sin(x))′ = 2 + cos(x) ≥ 2 + (−1) = 1.

Since (2x + sin(x))′ is positive for all numbers x, 2x + sin(x) is an increasing
function. Figure 4.1.12 shows the graph of 2x+sin(x) together with the graphs
of 2x and sin(x). �

Remark Increasing/Decreasing at a point

1. Corollary 4.1.3, and the definitions of increasing and decreas-
ing, are stated in terms of intervals. When we talk about
a function f being increasing (or decreasing) at a point c,
here is what we really mean: there is an interval (a, b) with
a < c < b where f is increasing on (a, b). That is, “a function
is increasing at c” is shorthand for “a function is increasing
in an interval that contains c.”

2. When f ′(c) > 0 and f ′ is continuous, the Permanence Prop-
erty (Theorem 2.4.4 in Section 2.4) tells us there is an interval
(a, b) containing c where f ′(x) > 0 for all numbers x in (a, b).
Thus, f is increasing on (a, b), and hence increasing at c.

Summary

This section focused on three theorems, which we state informally.
The Theorem of the Interior Extremum tells us that the local extrema of

a differentiable function occurs at a critical number, where the derivative is
zero.
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Rolle’s Theorem says that if a differentiable function has equal values at
two different inputs, then its derivative must equal zero at least at one number
between the inputs. From this we deduced the Mean-Value Theorem, which
states that for any chord on the graph of a differentiable function, there is
a parallel tangent line. In symbols, it asserts that for given a and b, there
is c between them such that f ′(c) = f(b)−f(a)

b−a . This also says that f(b) =
f(a) + f ′(c)(b− a).

From the Mean-Value Theorem it follows that where a derivative is positive,
a function is increasing, where it is negative it is decreasing, and where it
stays at the value zero, it is constant. The last assertion implies that two
antiderivatives of the same integrand differ at most by a constant.
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EXERCISES for 4.1

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

Exercises 1 — 6 concern the interior extremum.
1. Consider the function f(x) = x2 only for x in [−1, 2].

(a) Graph the function f(x) for x in [−1, 2].

(b) What is the maximum value of f(x) for x in the interval [−1, 2]?

(c) Does f ′(x) exist at the maximum?

(d) Does f ′(x) equal zero at the maximum?

(e) Does f ′(x) equal zero at the minimum?

2. Consider the function f(x) = sin(x) only for x in [0, π].

(a) Graph the function f(x) for x in [0, π].

(b) What is the maximum value of f(x) for x in the interval [0, π]?

(c) Does f ′(x) exist at the maximum?

(d) Does f ′(x) equal zero at the maximum?

(e) Does f ′(x) equal zero at the minimum?

3.

(a) Repeat Exercise 1 on the interval [1, 2].

(b) Repeat Exercise 1 on the interval (−1, 2).

(c) Repeat Exercise 1 on the interval (1, 2).

(d) Repeat Exercise 2 on the interval [0, 2π].

(e) Repeat Exercise 2 on the interval (0, π).

(f) Repeat Exercise 2 on the interval (0, 2π).
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4.

(a) Graph y = −x2 + 3x+ 2 for x in [0, 2].

(b) Looking at the graph, estimate the x coordinate where the maximum value of
y occurs for x in [0, 2].

(c) Find where dy/dx = 0.

(d) Using (c), determine exactly where the maximum occurs.

5.

(a) Graph y = 2x2 − 3x+ 1 for x in [0, 1].

(b) Looking at the graph, estimate the x coordinate where the maximum value of
y occurs for x in [0, 1]. At which value of x does it occur?

(c) Looking at the graph, estimate the x coordinate where the minimum value of
y occurs for x in [0, 12].

(d) Find where dy/dx = 0.

(e) Using (d), determine exactly where the minimum occurs.

6. For each of the following functions, (a) show that the derivative of the given
function is 0 when x = 0 and (b) decide whether the function has an extremum at
x = 0.

(a) x2 sin(x)

(b) 1− cos(x)

(c) ex − x

(d) x2 − x3

Exercises 7 – 15 concern Rolle’s Theorem.
7.
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(a) Graph f(x) = x2/3 for x in [−1, 1].

(b) Show that f(−1) = f(1).

(c) Is there a number c in (−1, 1) such that f ′(c) = 0?

(d) Why does this not contradict Rolle’s Theorem?

8.

(a) Graph f(x) = 1/x2 for x in [−1, 1].

(b) Show that f(−1) = f(1).

(c) Is there a number c in (−1, 1) such that f ′(c) = 0?

(d) Why does this not contradict Rolle’s Theorem?

In Exercises 9 — 14, verify that the given function satisfies Rolle’s Theo-
rem for the given interval. Find all numbers c that satisfy the conclusion of
the theorem.

9. f(x) = x2 − 2x− 3 and [0, 2]

10. f(x) = x3 − x and [−1, 1]

11. f(x) = x4 − 2x2 + 1 and [−2, 2]

12. f(x) = sin(x) + cos(x) and [0, 4π]

13. f(x) = ex + e−x and [−2, 2]

14. f(x) = x2e−x
2

and [−2, 2]

15. Let f(x) = ln(x2). Note that f(−1) = f(1). Is there a number c in (−1, 1)
such that f ′(c) = 0? If so, find at least one such number. If not, why is this not a
contradiction of Rolle’s Theorem?

Exercises 16 — 21 concern the Mean-Value Theorem.
In Exercises 16 — 19, find explicitly all values of c which satisfy the Mean-

Value Theorem for the given functions and intervals.
16. f(x) = x2 − 3x and [1, 4]

17. f(x) = 2x2 + x+ 1 and [−2, 3]

18. f(x) = 3x+ 5 and [1, 3]

19. f(x) = 5x− 7 and [0, 4]
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20.

(a) Graph y = sin(x) for x in [π/2, 7π/2].

(b) Draw the chord joining (π/2, f(π/2)) and (7π/2, f(7π/2)).

(c) Draw all tangents to the graph parallel to the chord drawn in (b).

(d) Using (c), determine how many numbers c there are in (π, 7π/2) such that

f ′(c) =
f(7π/2)− f(π/2)

7π/2− π/2
.

(e) Use the graph to estimate the values of the c’s.

21.

(a) Graph y = cos(x) for x in [0, 9π/2].

(b) Draw the chord joining (0, f(0)) and (9π/2, f(9π/2)).

(c) Draw all tangents to the graph that are parallel to the chord drawn in (b).

(d) Using (c), determine how many numbers c there are in (0, 9π/2) such that

f ′(c) =
f(9π/2)− f(0)

9π/2− 0
.

(e) Use the graph to estimate the values of the c’s.

22. State Rolle’s Theorem, using as few mathematical symbols as you can.

23. Use Rolle’s Theorem to determine how many real roots there are for the
equation x3 − 6x2 + 15x+ 3 = 0.

24. Use Rolle’s Theorem to determine how many real roots there are for the
equation 3x4 +4x3−12x2 +4 = 0. Give intervals on which there is exactly one root.

October 30, 2007 Calculus 224



Derivatives and Curve Sketching § 4.1

25. At time t seconds a thrown ball has the height f(t) = −16t2 + 32t+ 40 feet.

(a) Show that after 2 seconds it returns to its initial height.

(b) What does Rolle’s Theorem imply about the velocity of the ball?

(c) Verify Rolle’s Theorem in this case by computing the numbers c which it
asserts exist.

26. Find all points where f(x) = 2x3(x − 1) can have an extreme value on the
following intervals

(a) (−1/2, 1)

(b) [−1/2, 1]

(c) [−1/2, 1/2]

(d) (−1/2, 1/2)

27. Let f(x) = |2x− 1|.

(a) Explain why f ′(1/2) does not exist.

(b) Find f ′(x). Hint: Write the absolute value in two parts, one for x < 1/2 and
the other for x > 1/2.

(c) Does the Mean-Value Theorem apply on the interval [−1, 2]?

28. Express the Mean-Value Theorem in symbols, where the function is denoted
g and the interval is [e, f ].

29. Express the Mean-Value Theorem in words, using no symbols to denote the
function or the interval.

30. The year is 2015. Because a gallon of gas costs six dollars and Highway
80 is full of tire-wrecking potholes, the California Highway Patrol no longer patrols
the 77 miles between Sacramento and Berkeley. Instead it uses two cameras. One,
in Sacramento, records the license number and time of a car on the freeway, and
another does the same in Berkeley. A computer processes the data instantly. As-
sume that the two cameras show that a car that was in Sacramento at 10:45 reached
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Berkeley at 11:40. Show that the Mean-Value Theorem justifies giving the driver a
ticket for exceeding the 70 mile-per-hour speed limit. (Of course, intuition justifies
the ticket, but mentioning the Mean-Value Theorem is likely to impress a judge who
studied calculus.)

31. What is the shortest time for the trip from Berkeley to Sacramento for which
the Mean-Value Theorem does not convict the driver of speeding? Note: See Ex-
ercise 30.

32. Verify the Mean-Value Theorem for f(t) = x2e−x/3 on [1, 10]. Note: See
Example 1.

33. Find all antiderivatives of each of the following functions. Check your answer
by differentiation.

(a) 3x2

(b) sin(x)

(c) 1
1+x2

(d) ex

34. Find all antiderivatives of each of the following functions. Check your answer
by differentiation.

(a) cos(x)

(b) sec(x) tan(x)

(c) 1/x (x > 0)

(d)
√
x (x > 0)

35. Find all functions whose second derivative is 0 for all x in (−∞,∞).

36. If two functions have the same second derivative for all x in (−∞,∞), what
can be said about the relation between the two functions?
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37.

(a) Differentiate sec2(x) and tan2(x).

(b) The derivatives in (a) are equal. Corollary 4.1.2 then asserts that there exists
a constant C such that sec2(x) = tan2(x) + C. Find the constant.

38. Show that f(x) = sec2(3x) − tan2(3x) is a constant for all values of x. Find
the constant.

39. Show that f(x) = ln(x/5)− ln(5x) is a constant for all values of x. Find the
constant.

40. Use Rolle’s Theorem to determine how many real roots there are for the
polynomial f(x) = 3x4 + 4x3 − 12x2 + A. Give intervals on which there is exactly
one root. [ANS: A¡=5: 4 solutions, A=5: 4 solutions (double root at x=1), A¿5: 2
solutions]

41. Consider the equation x3 − ax2 + 15x = 3 = 0. The number of real roots to
this equation depends on the value of a.

(a) Find all values of a when the equation has 3 real roots.

(b) Find all values of a when the equation has 1 real root.

(c) Are there any values of a with exactly two real roots?

[ANS: (a) |A| > 45, (b) |A| ≤
√

45, (c) No.]

42. If f is differentiable for all real numbers and f ′(x) = 0 has three solutions,
what can be said about the number of solutions of f(x) = 0? of f(x) = 5?

43. Prove the “decreasing” case of Corollary 4.1.3.

Exercises 44 – 47 involve the hyperbolic functions. The hyperbolic
sine function is sinh(x) = ex−e−x

2
and the hyperbolic cosine function is

cosh(x) = ex+e−x

2
.

44.

(a) Show that d
dx sinh(x) = cosh(x).

(b) Show that d
dx cosh(x) = sinh(x).
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45. Define sech(x) =
1

cosh(x)
=

2
ex + e−x

and tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x
.

(a) Show that d
dx tanh(x) = (sech(x))2.

(b) Show that d
dx sech(x) = − sech(x) tanh(x).

Note: tanh(x) = sinh(x)
cosh(x) and sech(x) = 1

cosh(x)

46. Use calculus to show that (cosh(x))2 − (sinh(x))2 is a constant. Find the
constant.

47. Use calculus to show that (sech(x))2 + (tanh(x))2 is a constant. Find the
constant.

48. For which values of the constant k is the function 7x + k sin(2x) always in-
creasing?

49. Which of the corollaries to the Mean-Value Theorem implies that

(a) if two cars on a straight road have the same velocity at every instant, they
remain a fixed distance apart?

(b) If all tangents to a curve are horizontal, the curve is a horizontal line.

Explain each answer.

50. If a function f is differentiable for all x and c is a number, is there necessarily
a chord of the graph of f that is parallel to the tangent line at (c, f(c))? Explain.
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4.2 The First-Derivative and Graphing

Section 4.1 showed the connection between extrema and the places where the
derivative is zero. In this section we use this connection to find high and low
points on a graph.

S

R

Q

P

x

y

Figure 4.2.1:

The graph of a differentiable function f defined for all real numbers x is
shown in Figure 4.2.1. The points P , Q, R, and S are of special interest. S
is the highest point on the graph for all x in the domain. We call it a global
maximum or absolute maximum. The point P is higher than all points near it
on the graph; it is called a local maximum or relative maximum. Similarly, Q
is called a local minimum or relative minimum. The point R is not a relative
extremum.

If you were to walk left to right along the graph in Figure 4.2.1, you would
call P the top of a hill, Q the bottom of a valley, and S the highest point
on your walk (it is also a top of a hill). You might notice R, for you get a
momentary break from climbing from Q to S. For just this one instant it
would be like walking along a horizontal path.

These important aspects of a function and its graph are made precise in
the following definitions. These definitions are phrased in terms of a general
domain. In most cases the domain of the function will be an interval — open,
closed, or half-open.

Figure 4.2.2:

DEFINITION (Relative Maximum (Local Maximum))
The function f has a relative maximum (or local max-
imum) at a number c if there is an open interval around c
such that f(c) ≥ f(x) for all x in that interval that lie in
the domain of f .

Figure 4.2.3:
DEFINITION (Relative Minimum (Local Minimum)) The
function f has a relative minimum (or local minimum)
at a number c if there is an open interval around c such that
f(c) ≤ f(x) for all x in that interval that lie in the domain
of f .
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DEFINITION (Absolute Maximum (Global Maximum))
The function f has a absolute maximum (or global max-
imum) at a number c if f(c) ≥ f(x) for all x in the domain
of f .

DEFINITION (Absolute Minimum (Global Minimum))
The function f has a absolute minimum (or global min-
imum) at a number c if f(c) ≤ f(x) for all x in the domain
of f .

Each global extremum is
also a local extremum.A local extremum is like the summit of a single mountain or an individual

valley. A global maximum corresponds to Mt. Everest; a global minimum
corresponds to the Mariana Trench in the Pacific Ocean. At 11km below sea
level, the Mariana Trench is the lowest point on the Earth’s crust.

In this section it is assumed that the functions is differentiable. If a function
is not differentiable at an isolated point, this point will need to be considered
separately.

DEFINITION (Critical Number and Critical Point) A number c
at which f ′(c) = 0 is called a critical number for the function f .
The corresponding point (c, f(c)) on the graph of f is a critical
point on that graph.

Remark Some texts define a critical number as a number where
the derivative is 0 or else is not defined. Since we emphasize dif-
ferentiable functions, a critical number is defined to be a number
where the derivative is 0.

The Theorem of the Interior Extremum, in Section 4.1, says that every
local maximum and minimum of a function f occurs where the tangent line to
the curve either is horizontal or does not exist.

Some functions have extreme values, and others do not. The following
theorem gives simple conditions under which both a global maximum and a
global minimum are guaranteed to exist. A continuous function on

a closed interval has both
a global maximum and a
global minimum.Theorem 4.2.1 (Extreme Value Theorem) Let f be a continuous

function on a closed interval [a, b]. Then f attains an absolute max-
imum value M = f(c) and an absolute minimum value m = f(d) at
some numbers c and d in [a, b].
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Figure 4.2.4:

EXAMPLE 1 Find the absolute extrema on the interval [0, 2] of the func-
tion whose graph is shown in Figure 4.2.4.
SOLUTION The function has an absolute maximum value of 2 but no ab-
solute minimum value. The range is (−1, 2]. This function takes on values
that are arbitrarily close to -1, but -1 is not in the range of this function. This
occurs only because this function is not continuous at x = 1. �

The function in Figure 4.2.4 has an absolute minimum but not an absolute
maximum. Even though the function values increase as x moves closer to 1,
from the right, there is no absolute maximum value. Observe that this function
is not defined at x = 1 so neither is it continuous at x = 1.

Recall that Corollary 4.1.3 provides a convenient test to determine if a
function is increasing or decreasing at a point: if f ′(c) > 0 then f is increasing
at x = c and if f ′(c) < 0 then f is decreasing at x = c. differentiable implies con-

tinuous, so not continuous
implies not differentiableEXAMPLE 2 Let f(x) = x ln(x) for all x > 0. Determine the intervals on

which f is increasing, decreasing, or neither.
SOLUTION The function is increasing at numbers x where f ′(x) > 0 and
decreasing where f ′(x) < 0. More effort is needed to determine the behavior
at points where f ′(x) = 0 (or does not exist). The Product Rule allows us to The natural domain of f is

x > 0.find

f ′(x) = ln(x) + x

(
1

x

)
= ln(x) + 1.

In order to find where f ′(x) is positive or is negative, we first find where it
is zero. At such numbers the derivative may switch sign. Even though f is
neither increasing nor decreasing when f ′(x) = 0, the numbers where f ′(x) = 0
will be the endpoints of the intervals where f is increasing and decreasing.

ln(x) + 1 = 0
ln(x) = −1
eln(x) = e−1

x = e−1.

So, x = e−1, is the only place f is neither increasing nor decreasing. When x e−1 ≈ 0.367879
is larger than e−1, ln(x) is larger than −1 so that f ′(x) = ln(x) + 1 is positive
and f is increasing. Finally, f is decreasing when x is a number between 0
and e−1 because ln(x) < −1 which makes f ′(x) = ln(x) + 1 negative.

The graph of this function will be obtained in Exercise 36 (Section 4.3). �

Using Critical Numbers to Identify Local Extrema

The previous examples show there is a close connection between critical points
and local extrema. Notice that, generally, just to the left of a local extreme
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the function is increasing, while just to the right it is decreasing. The opposite
holds for a local minimum. The First-Derivative Test for a Local Extreme
Value at x = c gives a precise statement of this result. First-Derivative Test for a

Local Extreme Value at
x = c

Theorem 4.2.2 Let f be a function and let c be a number in its do-
main. Suppose f is continuous on an open interval that contains c and
is differentiable on that interval, except possibly at c. Then:

1. If f ′ changes from positive to negative as x moves from left to
right through the value c,
then f has a local maximum at c.

2. If f ′ changes from negative to positive as x moves from left to
right through the value c,
then f has a local minimum at c.

3. If f ′ does not change sign at c,
then f does not have a local extremum at x = c.

EXAMPLE 3 Classify all critical numbers of f(x) = 3x5 − 20x3 + 10 as a
local maximum, local minimum, or neither.
SOLUTION To identify the critical numbers of f , we find and factor the
derivative:

f ′(x) = 15x4 − 60x2 = 15x2(x2 − 4) = 15x2(x− 2)(x+ 2).

The critical numbers of f are x = 0, x = 2, and x = −2. To determine if
any of these numbers provide local extrema it is necessary to know where f is
increasing and where it is decreasing. Find critical numbers

Because f ′ is continuous the three critical numbers are the only places
the sign of f ′ can possibly change. All that remains is to determine if f is
increasing or decreasing on the intervals (−∞,−2), (−2, 0), (0, 2), and (2,∞).
This is easily answered from table of function values shown in the first two
rows of Table 4.2.1. Observe that f(−2) = 74 > 10 = f(0); this means f

x → −∞ −2 0 2 →∞
f(x) −∞ 74 10 −54 ∞
f ′(x) 0 0 0

Table 4.2.1:
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is decreasing on (−2, 0). Likewise, f must be decreasing on (0, 2) because
f(0) = 10 > −54 = f(2). For the two unbounded intervals, limits at ±∞
must be used but the overall idea is the same. Since limx→−∞ f(x) = −∞,
the function must be increasing on (−∞,−2). Likewise, in order to have
limx→∞ f(x) = +∞, f must be increasing on (2,∞). The graph of this function

will be obtained in Exer-
cise 37 (Section 4.3).

To conclude, because the graph of f changes from increasing to decreasing
at x = −2, there is a local maximum at (−2, 74). At x = 2 the graph changes
from decreasing to increasing, so a local minimum occurs at (2,−54). Because
the derivative does not change sign at x = 0, this critical number is not a local
extreme. �

EXAMPLE 4 Find all local extrema of f(x) = (x+ 1)2/7e−x.
SOLUTION The Product and Chain Rules for derivatives can be used to The natural domain of f is

(−∞,∞).obtain

f ′(x) = 2
7
(x+ 1)−5/7e−x + (x+ 1)2/7e−x(−1)

= 2
7
(x+ 1)−5/7e−x − (x+ 1)2/7e−x

= (x+ 1)−5/7e−x
(

2
7
− (x+ 1)

)
= (x+ 1)−5/7e−x

(
−x− 5

7

)
=

−x− 5
7

(x+1)5/7ex
.

The only solution to f ′(x) = 0 is x = −5/7, so c = −5/7 is the only critical
number. In addition, because the denominator of f ′(x) is zero when x = −1,
f is not differentiable for x = −1. Thus, using the information in Table 4.2.2,

x → −∞ −1 −5/7 →∞
f(x) ∞ 0 (2/7)(2/7)e5/7 ≈ 1.42811 0
f ′(x) dne 0

Table 4.2.2:

f is decreasing on (−∞,−1), increasing on (−1,−5/7), and decreasing on
(−5/7,∞). By the First-Derivative Test, f has a local minimum at (−1, 0)
and a local maximum at (−5/7, (2/7)(2/7)e5/7) ≈ (−0.71429, 1.42811).

2

x

1

6

4

3

7

5

2

1

−1 0−2

Figure 4.2.5:
Notice that the First-Derivative Test applies at x = −1 even though f is

not differentiable for x = −1. A graph of y = f(x) is shown in Figure 4.2.5.
(See also Exercise 25 in Section 4.3.) �
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Extreme Values on a Closed Interval

Many problems involve a continuous function only on a particular closed inter-
val [a, b]. The Extreme Value Theorem guarantees the function attains both a See Section 4.1
maximum and a minimum at some point in the interval. The extreme values
occur either at

1. an endpoint (x = a or x = b),

2. a critical number (x = c where f ′(c) = 0), or

3. where f is not differentiable (x = c where f ′(c) is not defined).

EXAMPLE 5 Find the absolute maximum and minimum values of f(x) =
x4 − 8x2 + 1 on the interval [−1, 3].
SOLUTION The function is continuous on a closed and bounded interval.
The absolute maximum and minimum values occur either at a critical point
or at an endpoint of the interval. The endpoints are x = −1 and x = 3. To
find the critical points we solve f ′(x) = 0:

f ′(x) = 4x3 − 16x = 4x(x2 − 4) = 4x(x− 2)(x+ 2) = 0.

There are three critical numbers, x = 0, 2, and −2, but only x = 0 and x = 2
are in the interval. The intervals where the graph of y = f(x) is increasing
and decreasing can be determined from the information in Table 4.2.3.

x −1 0 2 3
f(x) −6 1 −15 10
f ′(x) 0 0 0

Table 4.2.3:

Since we are looking only for global extrema on a closed interval, it is
unnecessary to determine these intervals or to classify critical points as local
extrema. Instead, we simply scan the list of function values at the endpoints
and at the critical numbers – row 2 of Table 4.2.3 – for the largest and smallest
values of f(x). The largest value is 10, so the global maximum occurs at x = 3.
The smallest value is −15, so the global minimum occurs at x = 2. �

In Example 5 it was not necessary to determine the intervals on which the
function is increasing and decreasing, nor did we need to identify the local
extreme values. This information can be obtained as in the earlier examples See Exercise 8.

Summary

This section shows how to use the first derivative to find extreme values of a
function. Namely, identify when the derivative is zero, positive, and negative.
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EXERCISES for 4.2

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

For each function in Exercises 1 – 14, sketch the graph of the function.
Find all critical numbers, determine the intervals where the graph of y = f(x)
is increasing and where it is decreasing, and identify all local extreme values.

1. f(x) = x5

2. f(x) = x6

3. f(x) = (x− 1)3

4. f(x) = (x− 1)4

5. f(x) = 3x4 + x3

6. f(x) = 2x3 + 3x2

7. f(x) = x4 − 8x3 + 18x2 − 16x+ 18

8. f(x) = x4 − 8x2 + 1

9. f(x) = xe−x/2

10. f(x) = xex/3

11. f(x) = e−x
2

12. f(x) = xe−x
2/2

13. f(x) = x sin(x) + cos(x)

14. f(x) = x cos(x)− sin(x)

In Exercises 15 to 22 sketch the general shape of the graph, using the given
information. Assume the function and its derivative are defined for all x and
are continuous. Explain your reasoning.

15. Critical point (1, 2), f ′(x) < 0 for x < 1 and f ′(x) > 0 for x > 1.

16. Critical point (1, 2) and f ′(x) < 0 for all x except x = 1.

17. x intercept −1, critical points (1, 3) and (2, 1), lim
x→∞

f(x) = 4, lim
x→−∞

f(x) =
−1.

18. y intercept 3, critical point (1, 2), lim
x→∞

f(x) =∞, lim
x→−∞

f(x) = 4.

19. x intercept −1, critical points (1, 5) and (2, 4), lim
x→∞

f(x) = 5, lim
x→−∞

f(x) =
−∞.

20. x intercept 1, y intercept 2, critical points (1, 0) and (4, 4), lim
x→∞

f(x) = 3,

lim
x→−∞

f(x) =∞.

21. x intercepts 2 and 4, y intercept 2, critical points (1, 3) and (3,−1),
lim
x→∞

f(x) =∞, lim
x→−∞

f(x) = 1.
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22. No x intercepts, y intercept 1, no critical points, lim
x→∞

f(x) = 2, lim
x→−∞

f(x) =
0.

In Exercises 23 – 38 graph the given functions, showing any intercepts,
asymptotes, critical points, or local or global extrema.

23. f(x) = x3 − 3x2 + 3x

24. f(x) = x4 − 4x3 + 4x2

25. f(x) = x4 − 4x+ 3

26. f(x) = x5 + 5x

27. f(x) = x2 − 6x+ 5

28. f(x) = 2x2 + 3x+ 5

29. f(x) = x4 + 2x3 − 3x2

30. f(x) = 2x3 + 3x2 − 6x

31. f(x) =
3x+ 1
3x− 1

32. f(x) =
x

x+ 1
33. f(x) =

x

x2 + 1
34. f(x) =

x

x2 − 1

35. f(x) =
1

2x2 − x

36. f(x) =
1

x2 − 3x+ 2

37. f(x) =
x2 + 3
x2 − 4

38. f(x) =
√
x2 + 1
x

Exercises 39 – 54 concern functions whose domains are restricted to closed
intervals. In each, find the maximum and minimum value for the given function
on the given interval.

39. f(x) = x2 − x4 on [0, 1]

40. f(x) = 4x− x2 on [0, 5]

41. f(x) = 2x2 − 5x on [−1, 1]

42. f(x) = x3 − 2x2 + 5x on [−1, 3]

43. f(x) =
x

x2 + 1
on [0, 3]

44. f(x) = x2 + x4 on [0, 1]

45. f(x) =
x+ 1√
x2 + 1

on [0, 3]
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46. f(x) = sin(x) + cos(x) on [0, π]

47. f(x) = sin(x)− cos(x) on [0, π]

48. f(x) = x+ sin(x) on [−π/2, π/2]

49. f(x) = x+ sin(x) on [−π, 2π]

50. f(x) = x/2 + sin(x) on [−π, 2π]

51. f(x) = 2 sin(x)− sin(2x) on [−π, π]

52. f(x) = sin(x2) + cos(x2) on [0,
√

2π]

53. f(x) = sin(x)− cos(x) on [−2π, 2π]

54. f(x) = sin2(x)− cos2(x) on [−2π, 2π]

In Exercises 55 to 61 graph the function.

55. f(x) =
sin(x)

1 + 2 cos(x)

56. f(x) =
√
x2 − 1
x

57. f(x) =
1

(x− 1)2(x− 2)

58. f(x) =
3x2 + 5
x2 − 1

59. f(x) = 2x1/3 + x4/3

60. f(x) =
3x2 + 5
x2 + 1

61. f(x) =
√

3 sin(x) + cos(x)

62. Graph f(x) = (x2− 9)1/3e−x. Hint: This function is difficult to graph in one
picture. Instead, create separate sketches for x > 0 and for x < 0. Watch out for
the points where f is not differentiable.

63. Let f and g be polynomials without a common root.

(a) Show that if the degree of g is odd, the graph of f/g has a vertical asymptote.

(b) Show that if f and g have the same degree, the graph of f/g has a horizontal
asymptote.

(c) Show that if the degree of f is less than the degree of g, the graph of f/g has
a horizontal asymptote.
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64.

(a) Graph y = x and y = tan(x) relative to the same axes.

(b) Use (a) to find how many solutions there are to the equation x = tan(x).

(c) Graph y = sin(x)
x showing intercepts and asymptotes.

(d) Write a short commentary on the critical points of sin(x)/x. Hint: Part (b)
may come in handy.

65. A certain differentiable function has f ′(x) < 0 for x < 1 and f ′(x) > 0 for
x > 1. Moreover, f(0) = 3, f(1) = 1, and f(2) = 2.

(a) What is the minimum value of f(x) for x in [0, 2]? Why?

(b) What is the maximum value of f(x) for x in [0, 2]? Why?

66. What is the minimum value of y = (x3 − x)/(x2 − 4) for x > 2?
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4.3 The Second Derivative and Graphing

The sign of the first derivative tells whether a function is increasing or decreas-
ing. In this section we examine what the sign of the second derivative tells us
about a function and its graph. This information will be used to help graph
functions and also to provide an additional way to test whether a critical point
is a maximum or minimum.

Concavity and Points of Inflection

The second derivative is the derivative of the first derivative. Thus, the sign
of the second derivative determines if the first derivative is increasing or de-
creasing. For example, if f ′′(x) is positive for all x in an interval (a, b), then
f ′ is an increasing function throughout the interval (a, b). In other words, the
slope of the graph of y = f(x) increases as x increases from left to right on
that part of the graph corresponding to (a, b). The slope may increase from

(a) (b) (c)

Figure 4.3.1:
The graph of a concave up
function bends to the left.negative values to zero to positive values, as in Figure 4.3.1(a). Or the slope

may be positive throughout (a, b), as in Figure 4.3.1(b). Or the slope may be
negative throughout (a, b), as in Figure 4.3.1(c).

In the same way, if f ′′(x) is negative on the interval (a, b) then f ′ is de-
creasing on (a, b). The slope of the graph of y = f(x) decreases as x increases
from left to right on that part of the graph corresponding to (a, b).

DEFINITION (Concave Up and Concave Down)

A function f whose first derivative is increasing throughout the
open interval (a, b) is called concave up in that interval.

A function f whose first derivative is decreasing throughout the
open interval (a, b) is called concave down in that interval.

Figure 4.3.2:
When a curve is concave up, it lies above its tangent lines and below
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its chords. The graph of a concave up function is shaped like a cup. See
Figure 4.3.2.

Figure 4.3.3:

When a curve is concave down, it lies below its tangent lines and above
its chords. The graph of a concave down function is shaped like a frown. See
Figure 4.3.3.

EXAMPLE 1 Where is the graph of f(x) = x3 concave up? concave
down?
SOLUTION First, compute the second derivative: f ′(x) = 3x2 and f ′′(x) =

Figure 4.3.4:

6x. Clearly, 6x is positive when x is positive and negative when x is negative.
Thus, the graph is concave up for x > 0 and is concave down for x < 0. Note
that the sense of concavity changes at x = 0, where f ′′(x) = 0. �

In an interval where f ′′(x) is positive, the function f ′(x) is increasing, and
so the function f is concave up. However, if a function is concave up, f ′′(x)
need not be positive for all x in the interval. For instance, consider y = x4.
The derivative 4x3 is increasing on any interval, so the graph is concave up
over any interval.

Any point where the graph of a function changes concavity is important.

DEFINITION (Inflection Number and Inflection Point) Let f be
a function and let a be a number. Assume there are numbers b and
c such that b < a < c and

1. f is continuous on the open interval (b, c)

2. f is concave up on (b, a) and concave down on (a, c)
or
f is concave down on (b, a) and concave up on (a, c).

Then, the point (a, f(a)) is called an inflection point or point
of inflection of f . The number a is called an inflection number
of a.

Notice that having f ′′(a) = 0 does not automatically make a an inflection
number of f . To be an inflection number, the concavity has to change at
a. (This is different from the use of critical number. Some authors define a
number a with f ′′(a) = 0 as a possible inflection number.)

Observe that if the second derivative changes sign at the number a, then a
is an inflection number. If the second derivative exists at an inflection number,
it must be 0. But there can be an inflection point if f ′′(a) is not defined. This
is illustrated in the next example.

EXAMPLE 2 Examine the concavity of the graph of y = x1/3.
SOLUTION Here y′ = 1

3
x−2/3 and y′′ = 1

3

(−2
9

)
x−5/3. Althought x = 0 is in
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the domain of this function, neither y′ nor y′′ is defined for x = 0. When x is
negative, y′′ is positive; when x is positive, y′′ is negative. Thus, the concavity
changes from concave up to concave down at x = 0. This means x = 0 is an
inflection number and (0, 0) is an inflection point. See Figure 4.3.5. �

The simplest way to look for inflection points is to use both the first and
second derivatives:

To find inflection points of y = f(x):

1. Compute f ′(x) and f ′′(x).

2. Look for numbers a such that f ′′ is not defined at a.

3. Look for numbers a such that f ′′(a) = 0

4. For each interval defined by the numbers a identified in Steps 2.
and 3., determine if the first derivative is increasing or decreasing.

This process can be implemented using the same ideas used in Section 4.2
to identify critical points, as Example 3 shows.

EXAMPLE 3 Find the inflection point(s) of f(x) = x4 − 8x3 + 18x2.
SOLUTION First, f ′(x) = 4x3 − 24x2 + 36x and

f ′′(x) = 12x2 − 48x+ 36

= 12(x2 − 4x+ 3).

Thus = 12(x− 1)(x− 3).

f ′′ is defined for all real numbers so the only candidate for inflection numbers
are the solutions to f ′′(a) = 0. Solving f ′′(x) = 0 yields:

0 = 12(x− 1)(x− 3).

Hence x− 1 = 0 or x− 3 = 0, and x = 1 or x = 3.
Table 4.3.1 is used to determine whether each of these number is, in fact,

an inflection number of f . Because −∞ < 16, f ′ increases on (−∞, 1) and

x → −∞ 1 3 →∞
f ′(x) −∞ 16 0 ∞
f ′′(x) 0 0

Table 4.3.1:

the graph of y = f(x) is concave up on this interval. Similarly, becuase f ′(x)
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decreases on (1, 3), the graph is concave down on this interval. The graph
changes from concave up to concave down at x = 1 so there is an inflection
point at (1, f(1)) = (1, 11).

The first derivative increases on the interval (3,∞) so the graph of y = f(x)
is concave up on (3,∞). This confirms that there is a change in concavity at
x = 3. The second inflection point is (3, f(3)) = (3, 27). These are the only
two inflection points of f(x) = x4 − 6x3 + 12x2. �

Using Concavity in Graphing

The second derivative, together with the first derivative and the other tools
of graphing, can help us sketch the graph of a function. Example 4 continues
Example 3.

EXAMPLE 4 Graph f(x) = x4 − 8x3 + 18x2.
SOLUTION The function x4 − 8x3 + 18x2 is neither even nor odd. Because Analysis based on f(x)
f is defined for all real numbers and limx→∞ f(x) = limx→−∞ f(x) = +∞,
neither does it have any asymptotes. Since f(0) = 04 − 8(03) + 18(02), its y
intercept is 0. To find its x intercepts we look for solutions to the equation

x4 − 8x3 + 18x2 = 0

x2(x2 − 8x+ 18) = 0.

Thus x = 0 or x2 − 8x + 18 = 0. The quadratic equation can be solved by
the quadratic formula. The discriminant is (−8)2 − 4(1)(18) = −8 which is The discriminant of ax2+

bx+ c is b2 − 4ac.negative, so there are no real solutions of x2−8x+18 = 0. The only x intercept
of y = f(x) is x = 0.

In Example 3 the first derivative was found: Analysis based on f ′(x)

f ′(x) = 4x3 − 24x2 + 36x

= 4x(x2 − 6x+ 9)

= 4x(x− 3)2.

Thus, f ′(x) = 0 only when x = 0 and x = 3. The two critical points are (0, 0)
and (3, f(3)) = (3, 27). The information in Table 4.3.2 allows us to conclude
that the graph of y = f(x) is decreasing on (−∞, 0) and increasing on (0,∞)
with a local minimum at (0, 0).

The analysis based on the second derivative was completed in Example 3.
f ′′(x) = 12(x − 1)(x − 3) = 0 only when x = 1 or x = 3. The information in Analysis based on f ′′(x)
Table 4.3.1 was used to conclude that each of these is an inflection number and
that the graph of y = f(x) is concave up on (−∞, 1) and (3,∞) and concave
down on (1, 3).
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x → −∞ 0 3 →∞
f(x) ∞ 0 27 ∞
f ′(x) 0 0

Table 4.3.2:

To begin to sketch the graph of y = f(x) we plot the three points (0, 0),
(1, 11), and (3, 27). These three points divide the domain into four intervals.
On (−∞, 0) the graph is decreasing and concave up; on (0, 1) the graph is
increasing and concave up; on (1, 3) the graph is increasing and concave down;
and on (3,∞) the graph is once again increasing and concave up. The final
graph is shown in Figure 4.3.6. �

x
K2 K1 0 1 2 3 4 5

10

20

30

40

50

Figure 4.3.6:

(a) (b) (c) (d)

Figure 4.3.7: The general shape of a function that is (a) increasing and concave
up, (b) increasing and concave down, (c) decreasing and concave up, and (d)
decreasing and concave down

The procedure demonstrated in Example 4 has several advantages. Note
that it was only necessary to evaluate f(x) for a few “important” inputs x.
These inputs cut the domain into intervals where neither the first derivative
nor the second derivative changes sign. On each of these intervals the graph of
the function will have one of the four shapes shown in Figure 4.3.7. A graph
is usually made by piecing together these four shapes on adjoining intervals.

Local Extrema and the Second-Derivative Test

The second derivative is also useful in testing whether a critical number corre-
sponds to a relative minimum or relative maximum. For this, we will use the
relationships between concavity and tangent lines shown in Figures 4.3.2 and
4.3.3.

Figure 4.3.8:
Let a be a critical number for the function f . Assume, for instance, that

f ′′(a) is negative. If f ′′ is continuous in some open interval that contains
The Permanence Property
is Theorem 2.4.4 in Sec-
tion 2.4.

a, then (by the Permanence Property) f ′′(x) remains negative for a suitably
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small open interval that contains a. This means the graph of f is concave
down near (a, f(a)), hence it lies below its tangent lines. In particular, it lies
below the horizontal tangent line at the critical point (a, f(a)), as illustrated
in Figure 4.3.8. Thus the function f has a relative maximum at the critical
number a. Similarly, if f ′(a) = 0 and f ′′(a) > 0, the critical point (a, f(a)) is
a relative minimum because the graph of f is concave up and lies above the
horizontal tangent line at (a, f(a)). These observations suggest the following
test for a relative extreme.

Theorem 4.3.1 Second-Derivative Test for Relative Extreme Values
Let f be a function such that f ′(x) is defined at least on some open
interval containing the number a. Assume that f ′′(a) is defined.

If f ′(a) = 0 and f ′′(a) < 0, then f has a relative minimum at
(a, f(a)).

If f ′(a) = 0 and f ′′(a) > 0, then f has a relative maximum at
(a, f(a)).

EXAMPLE 5 Use the Second-Derivative Test to classify all local extrema Compare with Examples 3
and 4.of the function f(x) = x4 − 8x3 + 18x2.

SOLUTION This is the same function analyzed in Examples 3 and 4. The
two critical points are (0, 0) and (3, 27). The second derivative is f ′′(x) =
12x2 − 48x+ 36. At x = 0 we have

f ′′(0) = 12(02)− 48(0) + 36 = 36,

which is positive. Since f ′(0) = 0 and f ′′(0) > 0, f has a local minimum at
(0, 0). At x = 3 we have

f ′′(3) = 12(32)− 48(3) + 36 = 0.

Since f ′′(3) = 0, the Second-Derivative Test tells us nothing about the critical
number 3.

This is consistent with our previous findings. The point at (3, 27) is an
inflection point and not a local extreme point. �

Summary

Table 4.3.3 shows the meaning of the signs of f(x), f ′(x), and f ′′(x) in terms
of the graph of y = f(x).
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is positive (> 0). is negative (< 0). changes sign. is zero (= 0).
Where the or-
dinate f(x)

the graph is above
the x axis.

the graph is below
the x axis.

the graph crosses the
x axis.

there is an x inter-
cept.

Where the
slope f ′(x)

the graph slopes up-
ward.

the graph slopes
downward.

the graph has a hori-
zontal tangent and a
relative maximum or
minimum.

there is a critical
point.

Where f ′′(x) the graph is concave
up (like a cup).

the graph is concave
down (like a frown).

the graph has an in-
flection point.

there may be an in-
flection point.

Table 4.3.3:

Keep in mind that the graph has an inflection point at (a, f(a)) when the
sign of f ′′(x) has different signs on either side of x = a. This can occur when
either f ′′(a) = 0 or when f ′′(a) is not defined. Similarly, a graph can have
a maximum or minimum at (a, f(a)) when either f ′(a) = 0 or f ′(a) is not
defined.
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EXERCISES for 4.3

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1 to 16 describe the intervals where the function is concave up
and concave down and give any inflection points.

1. f(x) = x3 − 3x2 + 2

2. f(x) = x3 − 6x2 + 1

3. f(x) = x2 + x+ 1

4. f(x) = 2x2 − 5x

5. f(x) = x6

6. f(x) = x5

7. f(x) = x4 − 4x3

8. f(x) = 3x5 − 5x4

9. f(x) = 1
1+x2

10. f(x) = 1
1+x4

11. f(x) = x3 = 6x2 − 15x

12. f(x) = x2

2 + 1
x

13. f(x) = tan(x)

14. f(x) = sin(x) +
√

3 cos(x)

15. f(x) = cos(x)

16. f(x) = cos(x) + sin(x)

In Exercises 17 to 27 graph the polynomials, showing inflection points, crit-
ical points, and intercepts.

17. f(x) = x3 + 3x2

18. f(x) = 2x3 + 9x2

19. f(x) = x4 − 4x3 + 6x2

20. f(x) = x4 + 4x3 + 6x2 − 2

21. f(x) = x4 − 6x3 + 12x2

22. f(x) = 2x6 − 10x4 + 10

23. f(x) = 2x6 + 3x5 − 10x4

24. f(x) = 3x4 + 4x3 − 12x2 + 4

25. f(x) = 3x5 − 20x3 + 10 Note: This function was first encountered in Exam-
ple 3.

26. f(x) = 3x4 + 4x3 − 12x2 + 4
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27. f(x) = 2x6 − 15x4 + 20x3 − 20x+ 10

In each of Exercises 28 to 35 sketch the general appearance of the graph of
the given function near (1, 1) on the basis of the information given. Assume
that f , f ′, and f ′′ are continuous.

28. f(1) = 1, f ′(1) = 0, f ′′(1) = 1

29. f(1) = 1, f ′(1) = 0, f ′′(1) = −1

30. f(1) = 1, f ′(1) = 0, f ′′(1) = 0 Note: Sketch four possibilities.

31. f(1) = 1, f ′(1) = 0, f ′′(1) = 0, f ′′(x) < 0 for x < 1 and f ′′(x) > 0 for x > 1

32. f(1) = 1, f ′(1) = 0, f ′′(1) = 1 and f ′′(x) < 0 for x near 1

33. f(1) = 1, f ′(1) = 1, f ′′(1) = −1

34. f(1) = 1, f ′(1) = 1, f ′′(1) = 0, f ′′(x) < 0 for x < 1 and f ′′(x) > 0 for x > 1

35. f(1) = 1, f ′(1) = 1, f ′′(1) = 0 and f ′′(x) > 0 for x near 1

36. Find all inflection points of f(x) = x ln(x). On what intervals is the graph of
y = f(x) concave up? concave down? [On what intervals is the graph increasing?
decreasing?] Note: This function was first encountered in Example 2.

37. Find all inflection points of f(x) = (x + 1)2/7e−x. On what intervals is
the graph of y = f(x) concave up? concave down? [On what intervals is the graph
increasing? decreasing?] Note: This function was first encountered in Example 4.

38. Find the critical points and infelction points of f(x) = x2e−x/3. Note: See
Example 1.

In Exercises 39 to 40 sketch a graph of a hypothetical function that meets
the given conditions. Assume f ′ and f ′′ are continuous. Explain your reason-
ing.

39. Critical point (2, 4); inflection points (3, 1) and (1, 1); lim
x→∞

f(x) = 0 and

lim
x→−∞

f(x) = 0

40. Critical points (−1, 1) and (3, 2); inflection point (4, 1); lim
x→0+

f(x) = −∞ and

lim
x→0−

f(x) =∞ lim
x→∞

f(x) = 0 and lim
x→−∞

f(x) =∞
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Figure 4.3.9:

41. (Contributed by David Hayes) Let f be a function that is continuous for all x
and differentiable for all x other than 0. Figure 4.3.9 is the graph of its derivative
f ′(x) as a function of x.

(a) Answer the following questions about f (not about f ′). Where is f increasing?
decreasing? concave up? concave down? What are the critical numbers?
Where do any relative extrema occur? Explain.

(b) Assuming that f(0) = 1, graph a hypothetical function f that satisfies the
conditions given.

(c) Graph f ′′(x).

42. Graph y = 2(x − 1)5/3 + 5(x − 1)2/3, paying particular attention to points
where y′ does not exist.

43. Graph y = x+ (x+ 1)1/3.

44. Find the critical points and inflection points in [0, 2π] of f(x) = sin2(x) cos(x).

45. Can a polynomial of degree 6 have (a) no inflection points? (b) exactly one
inflection point? Explain.

46. Can a polynomial of degree 5 have (a) no inflection points? (b) exactly one
inflection point? Explain.
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47. In the theory of inhibited growth it is assumed that the growing quantity y
approaches some limiting size M . Specifically, one assumes that the rate of growth
is proportional both to the amount present and to the amount left to grow:

dy

dt
= ky(M − y).

Prove that the graph of y as a function of time has an inflection point when the
amount y is exactly half the limiting amount M .

48. Let f be a function such that f ′′(x) = (x− 1)(x− 2).

(a) For which x is f concave up?

(b) For which x is f concave down?

(c) List its inflection number(s).

(d) Find a specific function f whose second derivative is (x− 1)(x− 2).

49. A certain function y = f(x) has the property that

y′ = sin(y) + 2y + x.

Show that at a critical number the function has a local minimum.

50. Assume that the domain of f(x) is the entire x axis, and f ′(x) and f ′′(x) are
continuous. Assume that (1, 1) is the only critical point and that lim

x→∞
f(x) = 0.

(a) Must f(x) be decreasing for x > 1?

(b) Must f(x) have an inflection point?
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4.4 Proofs of the Three Theorems

In Section 4.1 two observations about tangent lines led to the Theorem of the
Interior Extremum (Theorem 4.1.1), Rolle’s Theorem (Theorem 4.1.2), and the
Mean-Value Theorem (Theorem 4.1.3). These results allow us to determine
properties of a function that can be used to sketch a graph of the function.
Now, using the definition of the derivative, we proof these theorems.

Proof of the Theorem of the Interior Extremum

Suppose the maximum of f on the open interval (a, b) occurs at the number Proof of Theorem 4.1.1
f ′(c) = 0 at the maximum
or minimum on an open in-
terval.

c. This means that f(c) ≥ f(x) for each number x between a and b.
Assume that f is differentiable at c.
Our challenge is to use only this information and the definition of the

derivative as a limit to show that f ′(c) = 0. We will show that f ′(c) ≥ 0 and
f ′(c) ≤ 0, forcing f ′(c) to be zero.

Recall that

f ′(c) = lim
∆x→0

f(c+ ∆x)− f(c)

∆x
.

The assumption that f is differentiable on (a, b) means that f ′(c) exists. Con-
sider the difference quotient

f(c+ ∆x)− f(c)

∆x
. (1)

when ∆x is so small that c+∆x is in the interval (a, b). Then f(c+∆x) ≤ f(c).
Hence f(c + ∆x) − f(c) ≤ 0. Therefore, when ∆x is positive, the difference
quotient in (1) will be negative, or 0. Consequently, as ∆x → 0 through
positive values, negative

positive = negative

f ′(c) = lim
∆x→0+

f(c+ ∆x)− f(c)

∆x
≤ 0. (2)

If, on the other hand, ∆x is negative, then the difference quotient in (3)
will be positive, or 0. Hence, as ∆x→ 0 through negative values, negative

negative = positive

f ′(c) = lim
∆x→0−

f(c+ ∆x)− f(c)

∆x
≥ 0. (3)

The only way f ′(c) ≤ 0 and f ′(c) ≥ 0 can both hold is when f ′(c) = 0.
This proves that if f has a maximum on (a, b), then f ′(c) = 0. See Exercise 15.

The proof for the case when f has a minimum on (a, b) is essentially the
same. •

The proofs of Rolle’s Theorem and the Mean-Value Theorem are related.
Suppose f is continuous on [a, b] and differentiable on (a, b).

Proof of Rolle’s Theorem
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The goal here is to use the facts that f is continuous on [a, b], differentiable Proof of Theorem 4.1.2
If f(a) = f(b), then f ′(c) =
0 for at least one number
between a and b.

on (a, b) and f(a) = f(b) to conclude that there must a number c in (a, b) with
f ′(c) = 0.

Since f is continuous on the closed interval [a, b], it has a maximum value
M and a minimum value m on that interval. There are two cases to consider:
m < M and m = M .

Case 1: If m = M , f is constant and f ′(x) = 0 for all x in [a, b]. Then any
number in (a, b) will serve as the desired number c.

Case 2: Suppose m < M . Then, f(a) = f(b), the minimum and maximum
cannot both occur at the ends of the interval. At least one of the extrema
occurs at a number c strictly between a and b. By assumption, f is differen-
tiable at c, so f ′(c) exists. Thus, by the Theorem of the Interior Extremum,
f ′(c) = 0. This completes the proof of Rolle’s Theorem. •

The idea behind the proof of the Mean-Value Theorem is to define a func-
tion to which Rolle’s Theorem can be applied.

Proof of the Mean-Value Theorem

Proof of Theorem 4.1.3

f ′(c) = f(b)−f(a)
b−a for at least

one number between a and
b.

Let y = L(x) be the equation of the chord through the two points (a, f(a))

and (b, f(b)). The slope of this line is L′(x) =
f(b)− f(a)

b− a
. Define h(x) =

f(x)−L(x). Note that h(a) = h(b) = 0 because f(a) = L(a) and f(b) = L(b).
By assumption, f is continuous on the closed interval [a, b] and differen-

tiable on the open interval (a, b). Because L a linear function, it is differen-
tiable. So, h is continuous on [a, b] and differentiable on (a, b).

Rolle’s Theorem applies to h on the interval [a, b]. Therefore, there is at
least one number c in (a, b) where h′(c) = 0. Now, h′(c) = f ′(c)−L′(c) so that

f ′(c) = L′(c) =
f(b)− f(a)

b− a
.

•

Summary

Using only the definition of the derivative and the assumption that a contin-
uous function defined on a closed interval assumes maximum and minimum
values, we proved the Theorem of the Interior Extrema, Rolle’s Theorem, and
the Mean-Value Theorem. Note that we did not appeal to any pictures or to
our geometric intuition.
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EXERCISES for 4.4

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In each of Exercises 1 — 6 sketch a graph of a differentiable function that
meets the given conditions. (Just draw the graph; there is no need to come
up with a formula for the function.)

1. f ′(x) < 0 for all x

2. f ′(3) = 0 for for x 6= 3, f ′(x) < 0

3. x intercepts at 1 and 5; y intercept at 2; f ′(x) < 0 for x < 4; f ′(x) > 0 for
x > 4

4. x intercepts at 2 and 5; y intercept at 3; f ′(x) > 0 for x < 1 and for x > 3;
f ′(x) < 0 for x in (1, 3)

5. f ′(x) = 0 only when x = 1 or 4; f(1) = 3, f(4) = 1; f ′(x) < 0 for x < 1;
f ′(x) > 0 for x > 4

6. f ′(x) = 0 only when x = 1 or 4; f(1) = 3, f(4) = 1; f ′(x) > 0 for x < 1 and
for x > 4

In Exercises 7 to 10 explain why no differentiable function satisfies all the
conditions.

7. f(1) = 3, f(2) = 4, f ′(x) < 0 for all x

8. f(2) = 5, f(3) = −1, f ′(x) ≥ 0 for all x

9. x intercepts only at 1 and 2; f(3) = −1, f(4) = 2

10. f(x) = 2 only when x = 0, 1, and 3; f ′(x) = 0 only when x = 1
4 , 3

4 , and 4.

11. In “Surely You’re Joking, Mr. Feynmann!,” Norton, New York, 1985, Nobel
laureate Richard P. Feynmann writes:

I often liked to play tricks on people when I was at MIT. One time, in
mechanical drawing class, some joker picked up a French curve (a piece
of plastic for drawing smooth curves — a curly funny-looking thing) and
said, “I wonder if the curves on that thing have some special formula?”

I thought for a moment and said, “Sure they do. The curves are
very special curves. Lemme show ya,” and I picked up my French curve
and began to turn it slowly. “The French curve is made so that at the
lowest point on each curve, no matter how you turn it, the tangent is
horizontal.”

All the guys in the class were holding their French curve up at dif-
ferent angles, holding their pencil up to it at the lowest point and laying
it down, and discovering that, sure enough, the tangent is horizontal.
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How was Feynmann playing a trick on his classmates?

12.

(a) Show that the equation 5x− cos(x) = 0 has exactly one solution.

(b) Find a specific interval which contains the solution.

13. What can be said about the number of solutions of the equation f(x) = 3 for
a differentiable function if

(a) f ′(x) > 0 for all x?

(b) f ′(x) > 0 for x < 7 and f ′(x) < 0 for x > 7?

14. Consider the function f(x) = x3 + ax2 + c. Show that if a < 0 and c > 0,
then f has exactly one negative root.

15. Prove the Theorem of the Interior Extremum when the minimum of f on
(a, b) occurs at c.

16. With the book closed, obtain the Mean-Value Theorem from Rolle’s Theorem.

17. Show that a polynomial f(x) of degree n, n ≥ 1, can have at most n distinct
real roots, that is, solutions to the equation f(x) = 0.

(a) Use algebra to show that the statement holds for n = 1 and n = 2.

(b) Use calculus to show that the statement holds for n = 3.

(c) Use calculus to show that the statement holds for n = 4 and n = 5.

(d) Why does it hold for all positive integers n?
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18. To keep your differentiation skills sharp, differentiate each of the following
expressions:

(a)
√

1− x2 sin(3x)

(b)
3
√
x

x2 + 1

(c) tan
(

1
(2x+ 1)2

)

(d) ln

(
(x2 + 1)3

√
1− x2

sec2(x)

)

19. Is there a differentiable function f whose domain is the x axis such that f is
increasing and yet the derivative is not positive for all x?

20. Consider the function f given by the formula f(x) = x3 − 3x.

(a) At which numbers x is f ′(x) = 0?

(b) Use the theorem of the Interior Extremum to show that the maximum value
of x3 − 3x for x in [1, 5] occurs either at 1 or at 5.

21.

(a) Recall the definition of L(x) in the proof of the Mean-Value Theorem, and
show that

L(x) = f(a) +
x− a
b− a

(f(b)− f(a)) .

(b) Using (a), show that

L′(x) =
f(b)− f(a)

b− a
.

22. Show that Rolle’s Theorem is a special case of the Mean-Value Theorem.

23. In the proof of the Mean-Value Theorem, L is the line through the two points
(a, f(a)) and (b, f(b)) on the graph of y = f(x). Find the formula for L(x).

24. Is this proposed proof of the Mean-Value Theorem correct?
Proof T
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ilt the x and y axes until the x axis is parallel to the given chord. The chord is now
“horizontal,” and we may apply Rolle’s Theorem. •

25. Find all functions f(x) such that f ′(x) = 2 for all x and f(1) = 4.

26. Find all differentiable functions such that f(1) = 3, f ′(1) = −1, and
f ′′(1) = ex.

27. Assume that f(x) is a continuous function defined for all real numbers and
that f(1) = 3. Using the definition of continuity in terms of limits, explain why
there is an interval (1, b) such that f(x) ≥ 2 for all x in the interval. Hint: Assume
that there is no such interval and get a contradiction.

28.

Sam: The key to this section is that at an extremum the derivative is 0. I don’t
like the book’s proof, with its use of limits.

Jane: So what’s yours?

Sam: Simple. Either the derivative is 0, positive, or negative. Right?

Jane: That’s a no-brainer.

Sam: If it’s positive, a little piece of the graph would look like a line with a positive
slope. Right?

Jane: Well, yes.

Sam: So just to the right of the extreme point, the graph would have larger values
since the line rises from left to right.

Jane: O.K. so far.

Sam: That rules out a positive derivative. And in the same way I could rule out a
negative derivative.

Jane: I have to agree.

Sam: So the derivative must be 0. I’ll e-mail this proof to the authors.

Jane: Better hold off. I smell a fish.

What is the fish?

29. Prove: If f has a negative derivative on (a, b) then f is decreasing on the
interval [a, b].
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Exercises 30–32 provide analytic justification for the statement in Sec-
tion 4.3 that “[W]hen a curve is concave up, it lies above its tangent lines
and below its chords.”
30. Show that in an open interval in which f ′′ is positive, tangents to the graph
of f lie below the curve. Hint: Why do you want to show that if a and x are in
the interval, then f(x) > f(a) + f ′(a)(x − a)? Treat the cases a < x and x > a

separately. Note: See also Exercises 34 and 35 in Section 5.4.

31. Assume that f ′′(x) is positive for x in an open interval. Let a < b be two
numbers in the interval. Show that the chord joining (a, f(a)) and (b, f(b)) lies
above the graph of f . Hint:

A. Why does one want to prove that

B. How does it help to know that

C. Show that the function on the right-hand side of the inequality in (b) is in-
creasing for a < x < b. Why does this show that the chords lie above the
curve?

32.

Sam: I can do Exercise 31 more easily. I’ll show that (b) is true. By the Mean-
Value Theorem, I can write the left side as f ′(c) where c is in [a, b] and the
right side as f ′(d) where d is in [a, x]. Since b > x, I know c > d, hence
f ′(c) > f ′(d). Nothing to it.

Is Sam’s reasoning correct?

33. We stated, in Section 4.3, that if f(x) is defined in an open interval around
the critical number a and f ′′(a) is negative, then f(x) has a relative maximum at
a. Explain why this is so, following these steps.

(a) Why is lim
∆x→0

f ′(a+ ∆x)− f ′(a)
∆x

negative?

(b) Deduce that if ∆x is small and positive, then f ′(a+ ∆x) is negative.

(c) Show that if ∆x is small and negative, then f ′(a+ ∆x) is positive.

(d) Show that f ′(x) changes sign from positive to negative at a. By the First-
Derivative Test for a Relative Maximum, f(x) has a relative maximum at
a.
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4.S Chapter Summary

The text and exercises for the summary will be written after the organization
of the chapters is firmly settled.
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Chapter 5

More Applications of
Derivatives

This chapter samples some of the many applications of the derivative in the
“real world” and within mathematics. For instance, the derivative is of use in
choosing the most economical route, finding limits, approximating functions,
such as sin(x) and ex, by polynomials, and in estimating the error in the
approximation.
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5.1 Applied Maximum and Minimum Prob-

lems

In Chapter 4, we saw how the derivative and second derivative are of use in
finding maxima and minima of a given function – the locally high and low
points on its graph. Now we will use these same techniques to find extrema in
“applied” problems. Though the examples will be drawn mainly from geometry
they illustrate the general procedure. The main challenge in these situations
is figuring out the formula for the function that describes the quantity to be
maximized (or minimized).

The General Procedure

The general procedure runs something along these lines.

1. Get a feel for the problem (experiment with particular cases.)

2. Devise a formula for the function whose maximum or minimum you want
to find.

3. Determine the domain of the function – that is, the inputs that make
sense in the application.

4. Find the maximum or minimum of the function for inputs that are in
the domain identified in Step 3.

The most important step is finding a formula for the function. To become
skillful at doing this, practice.

A Large Garden

EXAMPLE 1 A couple have enough wire to construct 100 feet of fence.
They wish to use it to form three sides of a rectangular garden, one side of
which is along a building, as shown in Figure 5.1.1(a). What shape garden
should they choose in order to enclose the largest possible area?

SOLUTION Step 1. First make a few experiments. Figures 5.1.1(b)–(d)
show some possible ways of laying out the 100 feet of fence. In the first case
the side parallel to the building is very long, in an attempt to make a large
area. However, doing this forces the other sides of the garden to be small.
The area is 90 × 5 = 450 square feet. In the second case, the garden has a
larger area, 60× 20 = 1200 square feet. In the third case, the side parallel to
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(a) (b) (c) (d)

Figure 5.1.1:

the building is only 20 feet long, but the other sides are longer. The area is
20× 40 = 800 square feet.

Clearly, we may think of the area of the garden as a function of the length
of the side parallel to the building.

Figure 5.1.2:
Step 2. Let A(x) be the area of the garden when the length of the side

parallel to the building is x feet, as in Figure 5.1.2. The other sides of the
garden have length y. But y is completely determined by x since the fence is
100 feet long:

x+ 2y = 100.

Thus y = (100− x)/2.

Figure 5.1.3:
Since the area of a rectangle is its length times its width,

A(x) = xy

A(x) = x

(
100− x

2

)
or

A(x) = 50x− x2

2
. (1)

(See Figure 5.1.1.) We now have the function.
Step 3. Which values of x in (5.1.1) correspond to possible gardens? Since

there is only 100 feet of fence, x ≤ 100. Furthermore, it makes no sense to
have a negative amount of fence; hence x ≥ 0. Therefore the domain on which
we wish to consider the function (5.1.1) is the closed interval [0, 100].

Step 4. To maximize A(x) = 50x − x2/2 on [0, 100] we examine A(0),
A(100), and the value of A(x) at any critical numbers. To find critcial numbers,
differentiate A(x):

A(x) = 50x− x2

2
A′(x) = 50− x.

Setting A′(x) = 0 gives
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0 = 50− x
or x = 50.

There is one critical number, 50.
All that is left is to find the largest of A(0), A(100), and A(50). We have

A(0) = 50 · 0− 02

2
= 0,

A(100) = 50 · 100− 1002

2
= 0,

and A(50) = 50 · 50− 502

2
= 1250.

Figure 5.1.4:

The maximum possible area is 1250 square feet, and the fence should be
laid out as shown in Figure 5.1.4. �

A Large Tray

EXAMPLE 2 If we cut four congruent squares out of the corners of a square
piece of cardboard 12 inches on each side, we can fold up the four remaining
flaps to obtain a tray without a top. What size squares should be cut in order
to maximize the volume of the tray? (See Figure 5.1.5.)

(a) (b) (c)

Figure 5.1.5:

SOLUTION Step 1. First we get a feel for the problem. Let us make a
couple of experiments.

Say that we remove small squares that are 1 inch by 1 inch, as in Fig-
ure 5.1.6(a). When we fold up the flaps we obtain a tray whose base is a
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(a) (b)

Figure 5.1.6:

10-inch by 10-inch square and whose height is 1 inch, as in Figure 5.1.6(b).
The volume of the tray is

Area of base× height = 10× 10︸ ︷︷ ︸
base area

× 1︸︷︷︸
height

= 100 cubic inches.

For our second experiment, let’s try cutting out a large square, say 5 inches
by 5 inches, as in Figure 5.1.7(a). When we fold up the flaps, we get a very
tall tray with a very small base, as in Figure 5.1.7(b). It volume is

Area of base× height = 2× 2× 5 = 20 cubic inches.

Clearly volume depends on the size of the cut-out squares. The function
we will investigate is of the type V = f(x), where V is the volume of the tray
formed by removing four squares whose sides all have length x.

(a) (b) (c) (d)

Figure 5.1.7:

Step 2. To find the formula for f(x) we make a large, clear diagram of the
typical case, as in Figure 5.1.7(c) and Figure 5.1.7(d). Now
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Volume of tray = length · width · height

= (12− 2x)(12− 2x)x

= (12− 2x)2x,

hence

V (x) = 4x3 − 48x2 + 144x. (2)

We have obtained a formula for volume as a function of the length of the
sides of the cut-out squares.

Step 3. Next determine the domain of the function V (x) that is meaningful
in the problem.

The smallest that x can be is 0. In this case the tray has height 0 and is
just a flat piece of cardboard. (Its volume is 0.) The size of the cut is not more
than 6 inches, since the cardboard has sides of length 12 inches. The cut can
be as near 6 inches as we please, and the nearer it is to 6 inches, the smaller
is the base of the tray. For convenience of our calculations, allow cuts with
x = 6, when the area of the base is 0 square inches and the height is 6 inches.
(The volume is 0 cubic inches.) Therefore the domain of the volume function
V (x) is the closed interval [0, 6].

Step 4. To maximize V (x) = 4x3 − 48x2 + 144x on [0, 6], evaluate V (x) at
critical numbers in [0, 6] and at the endpoints of [0, 6].

We have

V ′(x) = 12x2 − 96 + 144

= 12(x2 − 8x+ 12)

= 12(x− 2)(x− 6).

A critical number satisfies the equation

0 = 12(x− 2)(x− 6).

Hence x− 2 = 0 or x− 6 = 0. The critical numbers are 2 and 6.
The endpoints of the interval [0, 6] are 0 and 6. Therefore the maximum

value of V (x) for x in [0, 6] is the largest of V (0), V (2), and V (6). Since
V (0) = 0 and V (6) = 0, the largest value is

V (2) = 4(23)− 48(22)− 144 · 2 = 128 cubic inches.

The cut that produces the tray with the largest volume is x = 2 inches. �

Figure 5.1.8:
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As a matter of interest, let us graph the function V , showing its behavior
for all x, not just for values of x significant in the problem. Note in Figure 5.1.8
that at x = 2 and x = 6 the tangent is horizontal.

Remark: In Example 2 you might say x = 0 and x = 6 don’t really
correspond to what you would call a tray. If so, you would restrict the domain
of V (x) to the open interval (0, 6). You would then have to examine the
behavior of V (x) for x near 0 and for x near 6. By making the domain [0, 6]
from the start, you avoid the extra work of examining V (x) for x near the
ends of the interval.

The key step in these two examples and in any applied problem is Step 2,
findng a formula for the quantity whose extremum you are seeking. In case
the problem is geometrical, the following chart may be of aid.

Setting Up the Function

1. Draw and label the appropriate diagrams.
(Make them large enough so that there is room for labels.)

2. Label the varous quantities by letters, such as x, y, A, V .

3. Identify the quantity to be maximized (or minimized).

4. Express the quantity to be maximized (or minimized) in terms of
one or more of the other variables.

5. Finally, express that quantity in terms of only one variable.

An Economical Can

EXAMPLE 3 Of all the tin cans that enclose a volume of 100 cubic inches,
which requires the least metal?

SOLUTION The can may be flat or tall. If the can is flat, the side uses little
metal, but then the top and bottom bases are large. If the can is shaped like
a mailing tube, then the two bases require little metal, but the curved side
requires a great deal of metal. (See Figure 5.1.9, where r denotes the radius
and h the height of the can.) What is the ideal compromise between these two
extremes?

The surface area S of the can is given by

S = 2πr2 + 2πrh (3)
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(a) (b) (c)

Figure 5.1.9:

(a) (b)

Figure 5.1.10:

October 30, 2007 Calculus 265



More Applications of Derivatives § 5.1

which accounts for the two circular bases and the side. Figure 5.1.10 shows
why the area of the side is 2πrh. Since the amount of metal in the can is
proportional to S, it suffices to minimize S.

Equation (3) gives S as a function of two variables, but we can express one
of the variables in terms of the other. In the tin cans under consideration, the
radius and height are related by the equation

πr2h = 100, (4)

since their volume is 100 cubic inches. In order to express S as a function of
one variable, use (4) to eliminate either r or h. Choosing to eliminate h, we
solve (4) for h,

h =
100

πr2
.

Substitution into (3) yields

S = 2πr2 + 2πr
100

πr2
orS = 2πr2 +

200

r
. (5)

Equation (5) expresses S as a function of just one variable, r.
The domain of this function for our purposes is (0,∞), since the tin can

has a positive radius.
Compute dS/dr:

dS

dr
= 4πr − 200

r2
=

4πr3 − 200

r2
. (6)

Set the derivative equal to 0 to find any critical numbers. We have In this case the only criti-
cal numbers are where the
derivative is 0.

0 =
4πr3 − 200

r2
,

hence 0 = 4πr3 − 200

or 4πr3 = 200

r3 =
200

4π

r =
3

√
50

π
.

There is only one critical number. Does it provide a minimum? Let’s check it
two ways, first by the first-derivative test, then by the second-derivative test.

The first derivative is

dS

dr
=

4πr3 − 200

r2
. (7)
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When r = 3
√

50π, the numerator in (7) is 0. When r < 3
√

50π the numerator is
negative and when r > 3

√
50π the numerator is positive. (The denominator is

always positive.) Since dS/dr < 0 for r < 3
√

50π, and dS/dr > 0 for r > 3
√

50π,
the function S(r) decreases for r < 3

√
50π and increases for r > 3

√
50π. That

shows that a global minimum occurs at 3
√

50π. (See Figure 5.1.11.)

Figure 5.1.11:

Let us instead use the second-derivative test. Differentiation of (6) gives

d2S

dr2
= 4π +

400

r3
. (8)

Inspection of (8) shows that for all r in (0,∞), which is the domain that
is meaningful for tin cans, d2S/dr2 is positive. (The function is concave up
as shown in Figure 5.1.12.) Not only is P a relative minimum, it is a global
minimum, since the graph lies above its tangents, in particular, the tanget at
P .

Figure 5.1.12:

The minimum of S(r) is shown in Figure 5.1.13.
To find the height of the most economical can, solve (8) for h:

h =
100

πr2
=

100

π( 3
√

50/π)2

=
100

π( 3
√

50/π)2

3
√

50/π
3
√

50/π
rationalize the denomitor

=
100

π(50/π)
3

√
50

π
= 2

3

√
50

π
.

Figure 5.1.13:

The height of the can is equal to twice its radius, that is, its diameter. �

Summary

We showed how to use calculus to solve applied problems: experiment, set up
a function, find its domain, and its critical points. Then test the critical points
and endpoints of the domain to determine the extrema.
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EXERCISES for 5.1

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

Some of these exercises will be moved to the chapter summary.
1. A gardener wants to make a rectangular garden with 100 feet of fence. What
is the largest area the fence can enclose?

2. Of all rectangles with area 100 square feet, find the one with the shortest
perimeter.

3. Solve Example 1, expressing A in terms of y instead of x.

4. A gardener is going to put a rectangular garden inside one arch of the cosine

Figure 5.1.14:
curve, as shown in Figure 5.1.14. What is the garden with the largest area.

Exercises 5 to 8 are related to Example 2. In each case find the length of
the cut that maximizes the volume of the tray. The dimensions of the card-
board are given.

5. 5 inches by 5 inches

6. 5 inches by 7 inches

7. 4 inches by 8 inches,

8. 6 inches by 10 inches,

9. Starting with a square piece of paper 10′′ on a side, Sam wants to make a paper

(a) (b)

Figure 5.1.15:
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holder with three sides. The pattern he will use is shown in Figure 5.1.15 along with
the tray. He will remove two squares and fold up three flaps.

(a) What size square maximizes the volume of the tray?

(b) What is that volume?

10. A chef wants to make a cake pan out of a circular piece of aluminum of radius

Figure 5.1.16:
12 inches. To do this he plans to cut the circular base from the center of the piece
and then cut the side from the remainder. What should the radius and height be to
maximize the volume of the pan?

11. Solve Example 3, expressing S in terms of h instead of r.

12. Of all cylindrical tin cans without a top that contains 100 cubic inches, which
requires the least material?

13. Of all enclosed rectangular boxes with square bases that have a volume of
1000 cubic inches, which uses the least material?

14. Of all topless rectangular boxes with square bases that have a volume of 1000
cubic inches, which uses the least material?

15. Find the dimensions of the rectangle of largest area that can be inscribed in

Figure 5.1.17:
a circle of radius a. The typical rectangle is shown in Figure 5.1.17. Hint: Express
the area in terms of the angle θ shown.

16. Solve Exercise 15, expressing the area in terms of half the width of the rect-
angle, x. Hint: Square the area to avoid square roots.

17. Find the dimensions of the rectangle of largest perimeter that can be inscribed
in a circle of radius a.

18. Show that of all rectangles of a given area, the square has the shortest perime-
ter. Suggestion: Call the fixed area A and keep in mind that it is a constant.

19. A rancher wants to construct a rectangular corral. He also wants to divide
the corral by a fence parallel to one of the sides. He has 240 feet of fence. What are
the dimensions of the corral of largest area he can enclose?
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20. A river has a 45◦ turn, as indicated in Figure 5.1.18. A rancher wants to

Figure 5.1.18:
construct a corral bounded on two sides by the river and on two sides by 1 mile of
fence ABC, as shown. Find the dimensions of the corral of largest area.

21.

(a) How should one choose two nonnegative numbers whose sum is 1 in order to
maximize the sum of their squares?

(b) To minimize the sum of their squares?

22. How should one choose two nonnegative numbers whose sum is 1 in order to
maximize the product of the square of one of them and the cube of the other?

23. An irrigation channel made of concrete is to have a cross section in the form

Figure 5.1.19:
of an isosceles trapezoid, three of whose sides are 4 feet long. See Figure 5.1.19.
How should the trapezoid be shaped if it is to have the maximum possible area?
Hint: Consider the area as a function of x and solve.

24.

(a) Solve Exercise 23 expressing the area as a function of θ instead of x.

(b) Do the answers in (a) and Exercise 23 agree? Explain.

In Exercises 25 to 28 use the fact that the combined length and girth (dis-
tance around) of a package to be sent through the mail by the United States
Postal Service (USPS) cannot exceed 108 inches. Note: The combined length
and girth of a packages sent as “parcel post” is 130 inches. The United Parcel
Service (UPS) limit is 165 inches for combined length and girth with the length
not exceeding 108 inches. Why do you think they have this restriction?

25. Find the dimensions of the right circular cylinder of largest volume that can
be sent through the mail.

26. Find the dimensions of the right circular cylinder of largest surface area that
can be sent through the USPS.

27. Find the dimensions of the rectangular box with square base of largest volume
that can be sent through the USPS.
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28. Find the dimensions of the rectangular box with square base of largest surface
area that can be sent throught the USPS.

29.

(a) Repeat Exercise 25 with for a package sent by UPS.

(b) Generalize your solutions to Exercise 25 for a packages subject to a combined
length and girth that does not exceed M inches.

30.

(a) Repeat Exercise 26 with for a package sent by UPS.

(b) Generalize your solutions to Exercise 26 for a packages subject to a combined
length and girth that does not exceed M inches.

Exercises 31 to 37 concern “minimal cost” problems.
31. A cylindrical can is to be made to hold 100 cubic inches. The material for

its top and bottom costs twice as much per square inch as the material for its side.
Find the radius and height of the most economical can. Warning: This is not the
same as Example 3.

(a) Would you expect the most economical can in this problem to be taller or
shorter than the solution to Example 3? (Use common sense, not calculus.)

(b) For convenience, call the cost of 1 square inch of the material for the side k
cents. Thus the cost of 1 square inch of the material for the top and bottom
is 2k cents. (The precise value of k will not affect the answer.) Show that a
can of radius r and height h costs

C = 4kπr2 + 2kπrh cents.

(c) Find r that minimizes the functions C in (b). Keep in mind during any
differentiation that k is constant.

(d) Find the corresponding h.
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32. Sam is at the edge of a circular lake of radius one mile and Jane is at the
edge, directly opposite. Sam wants to visit Jane. He can walk 3 miles per hour. He
has a canoe. What mix of paddling and walking should Sam use to minimize the
time needed to reach Jane if

(a) he paddles at least three miles an hour?

(b) he paddles at 1.5 miles per hour?

(c) he paddles at 2 miles per hour?

33. Consider a right triangle ABC, with C being at the right angle. There are
two routes from A to B. One is direct, along the hypotenuse. The other is along the
two legs, from A to C and then to B. Now, the shortest path between two points is
the straight one. That raises this question: What is the largest percentage saving
possible by walking along the hypotenuse instead of along the two legs? For which
shape right triangle does this savings occur?

34. A rectangular box with a square base is to hold 100 cubic inches. Material for
the top of the box costs 2 cents per square inch; material for the sides costs 3 cents
per square inch; material for the bottom costs 5 cents per square inch. Find the
dimensions of the most economical box.

35. The cost of operating a certain truck (for gasoline, oil, and depreciation) is
(20 + s/2) cents per mile when it travels at a speed of s miles per hour. A truck
driver earns $18 per hour. What is the most economical speed at which to operate
the truct during a 600 mile trip?

(a) If you considered only the truck, would you want s to be small or large?

(b) If you, the employer, considered only the expense of the driver’s wages, would
you want s to be small or large?

(c) Express cost as a function of s and solve. (Be sure to put the costs all in
terms of cents or all in terms of dollars.)

(d) Would the answer be different for a 1000 mile trip?

36. A government contractor who is removing earth from a large excavation can
route trucks over either of two roads. There are 10, 000 cubic yards of earth to move.
Each truck holds 10 cubic yards. On one road the cost per truckload is 1+2x2 cents,
when x trucks use that raod; the function records the cost of congestion. On the
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other road the cost is 2 + x2 cents per truckload when x trucks use that road. How
many trucks should be dispatched to each of the two roads?

37. On one side of a river 1 mile wide is an electric power station; on the other

Figure 5.1.20:

side, s miles upstream, is a factory. (See Figure 5.1.20.) It costs 3 dollars per foot to
run cable over land and 5 dollars per foot under water. What is the most economical
way to run cable from the station to the factory?

(a) Using no calculus, what do you think would be (approximately) the best route
if s were very small? if s were very large?

(b) Solve with the aid of calculus, and draw the routes for s = 1
2 , 3

4 , 1, and 2.

(c) Solve for arbitrary s.

Warning: Minimizing the length of cable is not the same as minimizing its cost.

38. (From Dynamics of Airplanes, by John E. Younger and Baldwin M. Woods.)
“Recalling that

I = A cos2 θ + C sin2 θ − 2E cos θ sin θ,

we wish to find θ when I is a maximum or a minimum.” Show that at an extremum
of I,

tan 2θ =
2 E
C −A

. (assume thatA 6= C)

39. (From a physics text) “By differentiating the equation for the horizontal
range,

R =
v2

0 sin(2θ)
g

,

show that the initial elevation angle θ for maximum range is 45◦.” In the formula
for R, v0 and g are constants. (R is the horizontal distance a baseball covers if you
throw it at an angle θ with speed v0. Air resistance is disregarded.)

(a) Using calculus, show that the maximum range occurs when θ = 45◦.

(b) Solve the same problem without calculus.

40. A gardener has 10 feet of fence and wishes to make a triangular garden next

Figure 5.1.21:
to two buildings, as in Figure 5.1.21. How should he place the fence to enclose the
maximum area?
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41. Fencing is to be added to an existing wall of length 20 feet, as shown in

Figure 5.1.22:

Figure 5.1.22. How should the extra fence be added to maximum the area of the
enclosed rectangle if the additional fence is

(a) 40 feet long?

(b) 80 feet long?

(c) 60 feet long?

42. Let A and B be constants. Find the maximum and mimimum values of
A cos t+B sin t.

43. A spider at corner S of a cube of side 1 inch wishes to capture a fly at the

Figure 5.1.23:
opposite corner F . (See Figure 5.1.23.) The spider, who must walk on the surface
of the solid cube, wishes to find the shortest path.

(a) Find a shortest path without the aid of calculus.

(b) Find a shortest path with calculus.

44. A ladder of length b leans against a wall of height a, a < b. What is the
maximal horizontal distance that the ladder can extend beyond the wall if its base
rests on the horizontal ground?

45. A woman can walk 3 miles per hour on grass and 5 miles per hour on sidewalk.

Figure 5.1.24:
She wishes to walk from point A to point B, shown in Figure 5.1.24, in the least
time. What route should she follow if s is

(a) 1
2?

(b) 3
4?

(c) 1?

46. The potential energy in a diatomic molecule is given by the formula

U(r) = u0

((r0

r

)12
− 2

(r0

r

)6
)
,
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where U0 and r0 are constants and r is the distance between the atoms. For which
value of r is U(r) a minimum?

47. What are the dimensions of the right circular cylinder of largest volume that
can be inscribed in a sphere of radius a?

48. The stiffness of a rectangular beam is proportional to the product of the width
and the cube of the height of its cross section. What shape beam should be cut from
a log in the form of a right circular cylinder of radius r in order to maximize its
stiffness.

49. A rectangular box-shaped house is to have a square floor. Three times as
much heat per square foot enters through the roof as through the walls. What shape
should the house be if it is to enclose a volume of 12, 000 cubic feet and minimize
heat entry. (Assume no heat enters through the floor.)

50. (See Figure 5.1.25.) Find the coordinates of the points P = (x, y), with y ≤ 1,

Figure 5.1.25:
on the parabola y = x2, that

(a) minimize PA2 + PB
2,

(b) maximize PA2 + PB
2.

51. The speed of traffic through the Lincoln Tunnel in New York City depends
on the amount of traffic. Let S be the speed in miles per hour and let D be the
amount of traffic measured in vehicles per mile. The relation between S and D was
seen to be approximated closely, for D ≤ 100, by the formula

S = 42− D

3
.

(a) Express in terms of S and D the total number of vehicles that enter the tunnel
in an hour.

(b) What value of D will maximize the flow in (a)?

52. When a tract of timber is to be logged, a main logging road is built from which

Figure 5.1.26:
small roads branch off as feeders. The question of how many feeders to build arises
in practice. If too many are built, the cost of construction would be prohibitive. If
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too few are built, the time spent moving the logs to the roads would be prohibitive.
The formula for total cost,

y =
CS

4
+

R

V S
,

is used in a logger’s manual to find how many feeder roads are to be built. R, C,
and V are known constants: R is the cost of road at “unit spacing”; C is the cost
of moving a log a unit distance; V is the value of timber per acre. S denotes the
distance between the regularly spaced feeder roads. (See Figure 5.1.26.) Thus the
cost y is a function of S, and the object is to find that value of S that minimizes y.
The manual says, “To find the desired S set the two summands equal to each other
and solve

CS

4
=

r

V S
.′′

Show that the method if valid.

53. A delivery service is deciding how many warehouses to set up in a large
city. The warehouses will serve similarly shaped regions of equal area A and, let us
assume, an equal number of people.

(a) Why would transportation costs per item presumably be proportional to
√
A?

(b) Assuming that the warehouse cost per item is inversely proportional to A,
show that C, the cost of transportation and storage per item, is of the form
t
√
A+ w/A, where t and w are appropraite constants.

(c) Show that C is a minimum when A = (2w/t)2/3.

Exercises 54 and 55 are related.
54. A pipe of length b is carried down a long corridor of width a < b and then

around corner C. (See Figure 5.1.27.) During the turn y starts out at 0, reaches a
maximum, and then returns to 0. (Try this with a short stick.) Find that maximum
in terms of a and b. Suggestion: Express y in terms of a, b, and θ; θ is a variable,
while a and b are constants.

55. Figure 5.1.28 shows two corridors meeting at right angle. One has width 8; the

Figure 5.1.28:
other, width 27. Find the length of the longest pipe that can be carried horizontally
from one hall, around the corner and into the other hall. Suggestion: Do Exercise 54
first.

56. Two houses, A and B, are a distance p apart. They are distances q and r,
respectively, from a straight road, and on the same side of the road. Find the length
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(a) (b)

Figure 5.1.27:

of the shortest path that goes from A to the road, and then on to the other house
B.

(a) Use calculus.

(b) Use only elementary geometry. Hint: Introduce an imaginary house C such
that the midpoint of B and C is on the road and the segment BC is perpen-
dicular to the road; that is, “reflect” B across the road to become C.

57. The base of a painting on a wall is a feet above the eye of an observer, as
shown in Figure 5.1.29. The vertical side of the painting is b feet long. How far
from the wall should the ovserver stand to maximize the angle that the painting
subtends? Hint: It is more convenient to maximize tan θ than θ itself. Hint: Recall

Figure 5.1.29:
that tan(A−B) = tanA−tanB

1+tanA tanB .

58. Find the point P on the x axis such that the angle APB in Figure 5.1.30 is

Figure 5.1.30:

maximal. Suggestion: Note hint in Exercise 57.

59. (Economics) Let p denote the price of some commodity and y the number
sold at that price. To be concrete, assume that y = 250−p for 0 ≤ p ≤ 250. Assume
that it costs the producer 100 + 10y dollares to manufacture y units. What price
p should the producer choose in order to maximize total profit, that is, “revenue
minus cost”?

60. (Leibniz on light) A ray of light travels from point A to point B in Figure 5.1.31

Figure 5.1.31:
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in minimal time. The point A is in one medium, such as air or a vacuum. The point
B is in another medium, such as water or glass. In the first medium, light travels
at velocity v1 and in the second at velocity v2. The media are separated by line L.
Show that for the path APB of minimal time,

sinα
v1

=
sin(β)
v2

.

Leibniz solved this problem with calculus in a paper published in 1684. (The result
is called Snell’s law of refraction.)

Leibniz then wrote, “other very learned men have sought in many devious ways
what someone versed in this calculus can accomplish in these lines as by magic.” (See
C. H. Edwards Jr., The Historical Development of the Calculus, p. 259, Springer-
Verlag, New York, 1979.)

61. The following calculation occurs in an article by Manfred Kochen, “On
Determining Optimum Size of New Cities”: The net utility to the total client-
centered system is

U =
RLv

A
n1/2 − nK − ALc

v
n−1/2.

All symbols except U and n are constant; n is a measure of decentralization. Re-
garding U as a differentiable function of n, we can determine when dU/dn = 0. This
occurs when

RLv

2A
n−1/2 −K +

ALc

2v
n−3/2 = 0.

This is a cubic equation for n−1/2.

(a) Check that the differentiation is correct.

(b) Of what cubic polynomial is n−1/2 a root?

62. Consider the curve y = x−2 in the first quadrant. A tangent to this curve,
together with axes, determine a triangle.

(a) What is the largest area of such a triangle?

(b) The smallest area?

63. Let f be a differentiable function that is never zero on its domain. Define the
function g so that g(x) = (f(x))2. Show that the functions f and g have the same
critical numbers.
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64. Let f be a differentiable function. Define the function g by g(x) = tan(f(x)).
Show that the functions f and g have the same critical numbers.

65. Let f and g be two differentiable functions. Define F to be the composition of
f and g: F (x) = f(g(x)). Under what additional condition on g′ do f and F have
the same critical numbers?
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5.2 Implicit Differentiation and Related Rates

Sometimes a function y = f(x) is given indirectly by an equation that involves
y and x. This section shows how to differentiate y without solving for y
explicitly in terms of x.

We will apply this technique to determine how the rate at which one quan-
tity changes influences the rate at which another quantity changes.

A Function Given Implicitly

Consider the equation
x2 + y2 = 25. (1)

This equation describes a circle of radius 5 and center at the origin, as in
Figure 5.2.1. This circle is not the graph of a function, since a vertical line can

Figure 5.2.1:
meet the circle in two points. However, the top half is the graph of a function
and so is the bottom half. To find these functions explicitly, solve (1) for y:

y2 = 25− x2

y = ±
√

25− x2.

So either y =
√

25− x2 or y = −
√

25− x2. The graph of y =
√

25− x2 is the

Figure 5.2.2:

Figure 5.2.3:

top semicircle (see Figure 5.2.2); the graph of y = −
√

25− x2 is the bottom
semicircle (see Figure 5.2.3). There are thus two continuous functions that
satisfy (1).

The equation x2 + y2 = 25 is said to describe the function y = f(x)
implicitly. The equations

y =
√

25− x2 and y = −
√

25− x2

describe the function y = f(x) explicitly.

Differentiating an Implicit Function

It is possible to differentiate a function given implicitly without having to
solve for the function and express it explicitly. An example will illustrate the
method, which is to differentiate both sides of the equation that defines the
function implicitly. This procedure is called implicit differentiation.

EXAMPLE 1 Let y = f(x) be the continuous function that satisfies the
equation

x2 + y2 = 25
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such that y = 4 when x = 3. Find dy/dx when x = 3 and y = 4.
SOLUTION (We could, of course, solve for y, y =

√
25− x2, and differenti-

ate directly. However, the algebra would be more involved since square roots
would appear.) Differentiating both sides of the equation

x2 + y2 = 25

with respect to x yields

d

dx
(x2 + y2) =

d

dx
(25),

2x+
d(y2)

dx
= 0.

To differentiate y2 with respect to x, write w = y2, where y is a function of x.

By the chain rule dw
dx

= dw
dy

dy
dx
,

which gives us d(y2)
dx

= 2y dy
dx
.

Thus 2x+ 2y dy
dx

= 0,

or x+ y dy
dx

= = 0.

In particular, when x = 3 and y = 4, 3 + 4 dy
dx

= 0,

and therefore, dy
dx

= −3
4
.

� Observe that the algebra
involves no square roots.

If you look back at Section 3.5, you will see that we used implicit differ-
entiation to find derivatives of inverse functions. For instance, we differenti-
ated both sides of y = ex with respect to y, obtaining 1 = ex(dx/dy). Then
dx/dy = 1/ex = 1/y. In short, D(ln(y)) = 1/y.

In the next example implicit differentiation is the only way to find the
derivative, for in this case there is no formula expressible in terms of trigono-
metric and algebraic functions giving y explicitly in terms of x.

EXAMPLE 2 Assume that the equation

2xy + π sin(y) = 2π

defines a function y = f(x). Find dy/dx when x = 1 and y = π/2. Verify that the equation is
satisfied when x = 1 and
y = π/2.SOLUTION Implicit differentiation yields
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d
dx

(2xy + π sin y) = d(2π)
dx

,(
2x dy

dx
+ 2dx

dx
y
)

+ π(cos y) dy
dx

= 0,

by the formula for the derivative of a product and the chain rule. Hence

2x dy
dx

+ 2y + π(cos y) dy
dx

= 0.

Solving for the derivative, dy/dx, we get

dy
dx

= −2y
2x+π cos y

.

In particular, when x = 1 and y = π/2,

dy
dx

= − 2·π
2

2·1+π cos π
2

= − π
2+π·0 = −π

2
.

�

Implicit Differentiation and Extrema

Example 3 of Section 5.1 answered the question, “Of all the tin cans that
enclose a volume of 100 cubic inches, which requires the least metal?” The
radius of the most economical can is 3

√
50/π. From this and the fact that its

volume is 100 cubic inches, its height was found to be 2 3
√

50/π, exactly twice
the radius. In the next example implicit differentiation is used to answer the
same question. Not only will the algebra be simpler but it will provide the
shape – the proportion between height and radius – easily.

EXAMPLE 3 Of all the tin cans that enclose a volume of 100 cubic inches,
which requires the least metal?

SOLUTION The height h and radius r of any can of volume 100 cubic inches
are related by the equation

πr2h = 100. (2)

The surface area S of the can is

S = 2πr2 + 2πrh (3)
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Consider h, and hence S, as functions of r. Differentiation of (2) and (3) It is not necessary to find h
and S explicitly in terms of
r.

with respect to r yields

πr2dh

dr
+ 2πrh =

d(100)

dr
= 0 (4)

and
dS

dr
= 4πr + 2πr

dh

dr
+ 2πh. (5)

When S is a minimum, dS/dr = 0, so we have

0 = 4πr + 2πr
dh

dr
+ 2πh. (6)

Equations (4) and (6) yield, with a little algebra, a relation between h and r,
as follows:

Factoring πr out of (4) and 2π out of (6) shows that

r
dh

dr
+ 2h = 0 and 2r + r

dh

dr
+ h = 0. (7)

Elimination of dh/dr from (7) yields

2r + r

(
−2h

r

)
+ h = 0,

which simplifies to
2r = h. (8)

This approach obtains the
shape before the specific di-
mensions are used.

Equation (8) asserts that the height of the most economical can is the
same as its diameter. Moreover, this is the ideal shape, no matter what the
prescribed volume happens to be.

The specific dimensions of the most economical can are found by eliminat-
ing h from equations (2) and (4). This shows that

πr2(2r) = 100 or r3 =
50

π
.

Hence

r =
3

√
50

π
and h = 2r = 2

3

√
50

π
�

The procedure illustrated in Example 3 is quite general. It may be of
use when maximizing (or minimizing) a quantity that at first is expressed as
a function of two variable which are linked by an equation. The equation
that links them is called the constraint. In Example 3, the constraint is
πr2h = 100. General procedure for using

implicit differentiation in
an applied extremum prob-
lem.
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Using Implicit Differentiation in an Extremum Problem

1. Name the various quantities in the problem by letters, such as x,
y, h, r, A, V .

2. Identify which quantity is to be maximized (or minimized).

3. Express the quantity to be maximized (or minimized) in terms of
other quantities, such as x and y.

4. Obtain an equation relating x and y.
(This equation is called a constraint.)

5. Differentiate implicity both the constraint and the expression to
be maximized (or minimized), interpreting all quantities to be
functions of a single variable (which you choose).

6. Set the derivative of the expression to be maximized (or mini-
mized) equal to 0 and combine with the derivative of the con-
straint to obtain an equation relating x and y at a maximum (or
minimum).

7. Step 6 gives only a relation or proportion between x and y at an
extremum. If the explicit values of x and y are desired, find them
by using the fact that x and y also satisfy the constraint.

Exercise 22 illustrates this
possibility.Warning: Sometimes an extremum occurs where a derivative, such as dy/dx,

is not defined.

Related Rates

Implicit differentiation also comes in handy when showing how the rate of
change of one quantity affects the rate of change of another.

EXAMPLE 4 An angler has a fish at the end of his line, which is reeled

Figure 5.2.4:
in at 2 feet per second from a bridge 30 feet above the water. At what speed
is the fish moving through the water when the amount of line out is 50 feet?
31 feet? Assume the fish is at the surface of the water. (See Figure 5.2.4.)

SOLUTION Our first impression might be that since the line is reeled in at
a constant speed, the fish at the end of the line moves through the water at a
constant speed. As we will see, this is not the case.

Figure 5.2.5:
Let s be the length of the line and x the horizontal distance of the fish

from the bridge. (See Figure 5.2.5.)
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Since the line is reeled in at the rate of 2 feet per second, s is shrinking,
and

ds

dt
= −2.

The rate at which the fish moves through the water is given by the derivative,
dx/dt. The problem is to find dx/dt when s = 50 and also when s = 31.

We need an equation that relates s and x at any time, not just when x = 50
or x = 31. If we consider only x = 50 or x = 31, there would be no motion,
and no chance to use derivatives. This equation is the heart

of the example.The quantities x and s are related by the Pythagorean Theorem:

x2 + 302 = s2.

Both x and s are functions of time t. Thus both sides of the equation may be
differentiated with respect to t, yielding

d(x2)
dt

+ d(302)
dt

= d(s2)
dt

or 2xdx
dt

+ 0 = 2sds
dt
.

Hence xdx
dt

= sds
dt
.

This last equation provides the tool for answering the questions.
Since ds/dt = −2,

xdx
dt

= (s)(−2).

Hence dx
dt

= −2s
x
.

When s = 50, x2 + 302 = 502,

so x = 40. Thus when 50 feet of line is out, the speed is∣∣∣∣dxdt
∣∣∣∣ =

2s

x
=

2 · 50

40
= 2.5 feet per second.

When s = 31, x2 + 302 = 312.

Hence x =
√

312 − 302 =
√

961− 900 =
√

61.

Thus when 31 feet of line is out, the fish is moving at the speed of

dx

dt
=

2s

x
=

2 · 31√
61

=
62√
61
≈ 7.9 feet per second.
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Label all the lengths or
quantities that can change
with letters x, y, s, and
so on, even if not all
are needed in the solution.
Only after you finish dif-
ferentiating do you deter-
mine what the rates are at
a specified value of the vari-
able.

Let us look at the situation from the fish’s point of view. When it is x feet
from the point in the water directly below the bridge, its speed is 2s/x feet
per second. Since s is larger than x, its speed is always greater than 2 feet
per second. When x is very large, s/x is near 1 so the fish is moving through
the water only a little faster than the line is reeled in. However, when the fish
is almost at the point under the bridge, x is very small; then 2s/x is huge,
and the fish finds itself moving at huge speeds, but according to Einstein, not
faster than the speed of light. �

In Example 4 it would be a tactical mistake to indicate in Figure 5.2.5 that
the hypotenuse of the triangle is 50 feet long, for if one leg is 30 feet and the
hypotenuse is 50 feet, the triangle is determined; there is nothing left free to
vary with time.

The General Procedure

The method used in Example 4 applies to many related rate problems. This
is the general procedure, broken into steps: Warning: Differentiate,

then substitute the specific
numbers for the variables.
If you reversed the or-
der, you would just be
differentiating constants.

Procedure for Finding a Related Rate

1. Find an equation that relates to the varying quantities.
(If the quantities are geometric, draw a picture and label the
varying quantities with letters.)

2. Differentiate both sides of the equation with respect to time, ob-
taining an equation that relates the various rates of change.

3. Solve the equation obtained in Step 2 for the unknown rate.
(Only at this step do you substitute constants for variable.)

Finding an Acceleration

The method described in Example 4 for determining unknown rates from
known ones extends to finding an unknown acceleration. Just differentiate
another time. Example 5 illustrates the procedure.

Figure 5.2.6:

Figure 5.2.7:

EXAMPLE 5 Water flows into a conical tank at the constant rate of 3 cubic
meters per second. The radius of the cone is 5 meters and its height is 4 meters.
Let h(t) represent the height of the water above the bottom of the cone at time
t. Find dh/dt (the rate at which the water is rising in the tank) and d2h/dt2

(the rate at which that rate changes) when the tank is filled to a height of 2
meters. (See Figure 5.2.6 and Figure 5.2.7.)
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SOLUTION Let V (t) be the volume of water in the tank at time t. The fact
that water flows into the tank at 3 cubic meters per second is expressed as

dV

dt
= 3,

and, since this rate is constant,

d2V

dt2
= 0.

To find dh/dt and d2h/dt2, first obtain an equation relating V and h.
When the tank is filled to the height h, the water forms a cone of height h

and radius r. (See Figure 5.2.7.) By similar triangles,

r

h
=

5

4
or r =

5h

4
.

Thus

V =
1

3
πr2h

=
1

3
π

(
5

4
h

)2

h

=
25

48
πh3.

The equation relating V and h is

V =
25π

48
h3. (9)

From here on, just differentiate as often as needed.
Differentiating both sides of (9) once (using the chain rule) yields

dV

dt
=

25π

48

d(h3)

dh

dh

dt

or
dV

dt
=

25π

16
h2dh

dt
.

Since dV/dt = 3 all the time,

3 =
25πh2

16

dh

dt
,

from which it follows that

dh

dt
=

48

25πh2
meters per second. (10)
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As (10) shows, the larger h is, the slower the water rises. (Why is this to be Even though the water en-
ters the tank at a constant
rate, it does not rise at a
constant rate.

expected?)
To find dh/dt when h = 2 meters, substitute 2 for h in (10), obtaining

dh

dt
=

48

25π22
=

12

25π
≈ 0.15279 meters per second.

Now we turn to the acceleration, d2h/dt2. We do not differentiate the
equation dh/dt = 12/(25π) since this equation holds only when h = 2. We
must go back to (10), which holds at any time.

Differentiating (10) with respect to t yields

d2h

dt2
=

48

25π

d

dt

(
1

h2

)
,

d2h

dt2
=

48

25π

−2

h3

dh

dt
,

or
d2h

dt2
=
−96

25πh3

dh

dt
. (11)

The last equation expresses the acceleration in terms of h and dh/dt. Sub-
stituting (10) into (11) gives

d2h

dt2
=
−96

25πh3

48

25πh2

or
d2h

dt2
=
−(96)(48)

(25π)2h5
meters per second per second. (12)

Equation (12) tells us that, since d2h/dt2 is negative, the rate at which the
water rises in the tank is decreasing.

The problem also asked for the value of d2h/dt2 when h = 2. To find that
value, replace h by 2 in (12), obtaining

d2h

dt2
=
−(96)(48)

(25π)225

or
d2h

dt2
=
−144

625π2
≈ −0.02334 meters per second per second.

�
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Logarithmic Differentiation

If ln(f(x)) is simpler than f(x), there is a technique for finding f ′(x) that
saves labor. Example 6 illustrates this method, which depends on implicit
differentiation.

EXAMPLE 6 Let y = cos(3x)

( 3√x2+5)
4 . Find dy

dx
.

SOLUTION The solution to this problem by logarithmic differentiation
begins by simplifying ln(y) using the properties of logarithms:

ln(y) = ln (cos(3x))− ln
((

( 3
√
x2 + 5

)4
)

[ln(A/B) = ln(A)− ln(B)]

= ln (cos(3x))− 4
3

ln (x2 + 5) [ln(AB) = B ln(A)].

Next, since d
dx

(ln(y)) = 1
y
dy
dx

by the Chain Rule, we have

1
y
dy
dx

= d
dx

(
ln (cos(3x))− 4

3
ln (x2 + 5)

)
= −3 sin(3x)

cos(3x)
− 4

3
2x
x2+5

.

Therefore
dy
dx

= (y)
(
−3 tan(3x)− 4

3
2x
x2+5

)
.

Finally, replace y by its formula, getting

dy
dx

= cos(3x)

( 3√x2+5)
4

(
−3 tan(3x)− 4

3
2x
x2+5

)
.

To appreciate logarithmic differentiation, get the derivative directly, as re-
quested in Exercise 51. �

If you want to differentiate ln(f(x)) for some function f , first see if you
can simplify the expression by using the properties of a logarithm. Properties of Logarithms

ln(AB) = ln(A) + ln(B)
(A > 0, B > 0)

ln(A/B) = ln(A) − ln(B)
(A > 0, B > 0)

ln(AB) = B ln(A) (A > 0)

Summary

We described “implicit differentiation,” in which you differentiate a function
without having an explicit formula for it. The function appears in an equation
linking it and another variable. To find its derivative, just differentiate both
sides of the equation, carefully using the chain rule.

We applied these techniques in findng extrema and the relation between
the rates of change of quantities linked by an equation. We also saw how the
properties of logarithms can simplify finding the derivatives of some functions,
particularly those involving products, quotients, and powers.
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EXERCISES for 5.2

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1 to 4 find dy/dx at the indicated values of x and y in two
ways: explicitly (solving for y first) and implicitly.

1. xy = 4 at (1, 4)

2. x2 − y2 = 3 at (2, 1)

3. x2y + xy2 = 12 at (3, 1)

4. x2 + y2 = 100 at (6,−8)

/eexgrp
In Exercises 5 to 8 find dy/dx at the given points by implicit differentia-

tion.
5. 2xy

π + sin y = 2 at (1, π/2)

6. 2y3 + 4xy + x2 = 7 at (1, 1)

7. x5 + y3x+ yx2 + y5 = 4 at (1, 1)

8. x+ tan(xy) = 2 at (1, π/4)

9. Solve Example 3 by implicit differentiation, but differentiate (2) and (3) with
respect to h instead of r.

10. What is the shape of the cylindrical can of largest volume that can be con-
structed with a given surface area? Do not find the radius and height of the largest
can; find the ration between them. Suggestion: Call the surface area S and keep in
mind that it is constant.

11. Using implicit differentiation, find D(arctanx). Hint: Start with x = tan(y).

12. Using implicit differentiation, find D(arcsinx). Hint: Start with x = sin(y).

In Exercises 13 to 16 find dy/dx at a general point (x, y) on the given
curve.
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13. xy3 + tan(x+ y) = 1

14. sec(x+ 2y) + cos(x− 2y) + y = 2

15. −7x2 + 48xy + 7y2 = 25

16. sin3(xy) + cos(x+ y) + x = 1

17. Assume that y(x) is a differentiable function of x and that x3y + y4 = 2.
Assume that y(1) = 1. Find y′′(1), following these steps.

(a) Show that x3y′ + 3x2y + 4y3y′ = 0.

(b) Use (a) to find y′(1).

(c) Differentiate the equation in (a) and thereby show that x3y′′ + 6x2y′ + 6xy +
4y3y′′ + 12y2(y′)2 = 0.

(d) Use the equation in (c) to find y′′(1). [Hint: y(1) and y′(1) are known.]

18. Find y′′(1) if y(1) = 2 and x5 + xy + y5 = 35.

19. Find y′(1) and y′′(1) if y(1) = 0 and sin y = x− x3.

20. Find y′′(2) if y(2) = 1 and x3 + x2y − xy3 = 10.

21. Use implicit differentiation to find the highest and lowest points on the ellipse
x2 +xy+y2 = 12. Hint: What do you know about dy/dx at the highest and lowest
points on the graph of a function?

22.

(a) What difficulty arises when you use implicit differentiation to maximize x2+y2

subject to x2 + 4y2 = 16?

(b) Show that a maximum occurs when dy/dx is not defined. What is the maxi-
mum of x2 + y2 subject to x2 + 4y2 = 16?

(c) The problem can be viewed geometrically as “Maximize x2 + y2 for points on
the ellipse x2 + 4y2 = 16.” Sketch the ellipse and interpret (b) in terms of it.

October 30, 2007 Calculus 291



More Applications of Derivatives § 5.2

23. How fast is the fish in Example 4 moving through the water when it is 1 foot
horizontally from the bridge?

24. The angler in Example 4 decides to let the line out as the fish swims away.
The fish swims away at a constant speed of 5 feet per second relative to the water.
How fast is the angler paying out his line when the horizontal distance from the
bridge to the fish is

(a) 1 foot?

(b) 100 feet?

25. A 10-foot ladder is leaning against a wall. A person pulls the base of the
ladder away from the wall at the rate of 1 foot per second.

(a) Draw a neat picture of the situation and label the varying lengths by letters
and the fixed lengths by numbers.

(b) Obtain an equation involving the variables in (a).

(c) Differentiate it with respect to time.

(d) How fast is the top going down the wall when the base of the ladder is 6 feet
from the wall? 8 feet from the wall? 9 feet from the wall?

26. A kite is flying at a height of 300 feet in a horizontal wind.

(a) Draw a neat picture of the situation of label the varying lengths by letters
and the fixed lengths by numbers.

(b) When 500 feet of string is out, the kite is pulling the string out at a rate of
20 feet per second. What is the kite’s velocity? (Assume the string remains
straight.)

27. A beachcomber walks 2 miles per hour along the shore as the beam from a
rotating light 3 miles offshore follows him. (See Figure 5.2.8.)
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Figure 5.2.8:

(a) Intuitively, what do you think happens to the rate at which the light rotates
as the beachcomber walks further and further along the shore away from the
lighthouse?

(b) Let x describe the distance of the beachcomber from the point on the shore
nearest the light and θ the angle of the light, obtain an equation relating θ
and x.

(c) With the aid of (b), show that dθ/dt = 6/(9 + x2) (radians per hour).

(d) Does the formula in (c) agree with your guess in (a)?

28. A man 6 feet tall walks at the rate of 5 feet per second away from a street
lamp that is 20 feet high. At what rate is his shadow lengthening when he is

(a) 10 feet from the lamp?

(b) 100 feet from the lamp?

29. A large spherical balloon is being inflated at the rate of 100 cubic feet per
minute. At what rate is the radius increasing when the radius is

(a) 10 feet?

(b) 20 feet?

(The volume of a sphere of radius r is V = 4πr3/3.)
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30. A shrinking spherical balloon loses air at the rate of 1 cubic inch per second.
At what rate is its radius changing when the radius is

(a) 2 inches

(b) 1 inch?

31. Bulldozers are moving earth at the rate of 1, 000 cubic yards per hour onto a
conically shaped hill whose height of the hill increasing when the hill is

(a) 20 yards high?

(b) 100 yards high?

(The volume of a cone of radius r and height h is V = πr2h/3.)

32. The lengths of the two legs of a right triangle depend on time. One leg, whose
length is x, increaes at the rate of 5 feet per second, while the other, of length y,
decreases at the rate of 6 feet per second. At what rate is the hypotenuse changing
when x = 3 feet and y = 4 feet? Is the hypotenuse increasing or decreasing then?

33. Two sides of a triangle and their included angle are changing with respect to
time. The angle increases at the rate of 1 radian per second, one side increases at the
rate of 3 feet per second, and the other side decrease at the rate of 2 feet per second.
Find the rate at which the area is changing when the angle is π/4, the first side is
4 feet long, and the second side is 5 long. Is the area decreasing or increasing then?

34. The length of a rectangle is increasing at the rate of 7 feet per second, and
the width is decreasing at the rate of 3 feet per second. When the length is 12 feet
and the width is 5 feet, find the rate of change of

(a) the area,

(b) the perimeter

(c) the length of the diagonal.

Exercises 35 to 38 concern acceleration.
35. What is the acceleration of the fish described in Example 4 when the length
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of line is

(a) 300 feet?

(b) 31 feet?

Note: The notation ẋ for dx/dt, θ̇ for dθ/dt, ẍ for d2x/dt2, and θ̈ for d2θ/dt2 was
introduced by Newton and is still common in physics.

36. Find θ̈ in Example 5 when the horizontal distance from the jet is

(a) 7 miles,

(b) 1 mile.

37. A particle moves on the parabola y = x2 in such a way that ẋ = 3 throughout
the journey. Find the formulas for

(a) ẏ and

(b) ÿ.

38. Call one acute angle of a right triangle θ. The adjacent leg has length x and
the opposite leg has length y.

(a) Obtain an equation relating x, y and θ.

(b) Obtain an equation involving ẋ, ẏ, and θ̇ (and other variables).

(c) Obtain an equation involving ẍ, ÿ, and θ̈ (and other variables).

39. A two-piece extension ladder leaning against a wall is collapsing at the rate of
2 feet per second and the base of the ladder is moving away from the wall at the rate
of 3 feet per second. How fast is the top of the ladder moving down the wall when
it is 8 feet from the ground and the foot is 6 feet from the wall? (See Figure 5.2.9.)

40. At an altitude of x kilometers, the atmospheric pressure decreases at a rate of
128(0.88)x millibars per kilometer. A rocket is rising at the rate of 5 kilometers per
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Figure 5.2.9:

second vertically. At what rate is the atmospheric pressure changing (in millibars
per second) when the altitude of the rocket is

(a) 1 kilometer?

(b) 50 kilometers?

41. A woman is walking on a bridge that is 20 feet above a river as a boat passes
directly under the center of the bridge (at a right angle to the bridge) at 10 feet per
second. At that moment the woman is 50 feet from the center and approaching it
at the rate of 5 feet per second.

(a) At what rate is the distance between the boat and woman changing at that
moment?

(b) Is the rate at which they are approaching or separating increasing or is it
decreasing?

42. A spherical raindrop evaporates at a rate proportional to its surface area.
Show that the radius shrinks at a constant rate.

43. A couple is on a Ferris wheel when the sun is directly overhead. The diameter
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of the wheel is 50 feet, and its speed is 0.01 revolution per second.

(a) What is the speed of their shadows on the ground when they are at a two-
o’clock position?

(b) A one-o’clock position?

(c) Show that the shadow is moving its fastest when they are at the top or bottom,
and its slowest when they are at the three-o’clock or nine-o’clock position.

44. A woman on the ground is watching a jet through a telescope as it approaches
at a speed of 10 miles per minute at an altitude of 7 miles. At what rate (in radians
per minute) is the angle of the telescope changing when the horizontal distance of
the jet from the woman is 24 miles? When the jet is directly above the woman?

45. Does the tangent line to the curve x3 +xy2 +x3y5 = 3 at the point (1, 1) pass
through the point (−2, 3)?

Exercises 46 and 47 obtain by implicit differentiation the formulas for dif-
ferentiating x1/n and xm/n with the assumption that they are differentiable
functions. Here m and n are integers.

46. Let n be a positive integer. Assume that y = x1/n is a differentiable
function of x. From the equation yn = x deduce by implicit differentiation that
y′ = (1/n)x1/n−1.

47. Let m be a nonzero integer and n a positive interger. Assume that y = xm/n

is a differentiable function of x. From the equation yn = xm deduce by implicit
differentiation that y′ = (m/n)xm/n−1.

48. Water is flowing into a hemispherical bowl of radius 5 feet at the constant
rate of 1 cubic foot per minute.

(a) At what rate is the top surface of the water rising when it height above the
bottom of the bowl is 3 feet? 4 feet? 5 feet?

(b) If h(t) is the depth in feet at time t, find ḧ when h = 3, 4, and 5.

49. A man in a hot-air balloon is ascending at the rate of 10 feet per second. How
fast is the distance from the balloon to the horizon (that is, the distance the man
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Figure 5.2.10:

can see) increasing when the balloon is 1, 000 feet high? Assume that the earth is a
ball of radius 4, 000 miles. (See Figure 5.2.10.)

50. (Contributed by Keith Sollers, when an undergaduate at the University of
California at Davis.) We quote from his note to us. “The numbers are ugly, but
I think it’s a good problem nevertheless. I didn’t think it up myself. The Medical
Center eye group gave me the problem and asked me to solve it. They were going
to put a gas bubble in someone’s eye.”

The volume of a gas bubble changes from 0.4 cc to 1.6 cc in 74 hours. Assuming
that the rate of change of the radius is constant, find,

(a) The rate at which the radius changes;

(b) The rate at which the volume of the bubble is increasing at any volume V ;

(c) The rate at which the volume is increasing when the volume is 1 cc.

Note: Assume the bubble is spherical. The volume of a ball of radius r is
V = 4πr3/3.

In Exercises 51 and 52 the derivative of the given function will be found in
two different ways.

(a) Find f ′(x) by direct calculation.

(b) Repeat (a), except this time simplify f(x) using the properties of loga-
rithms before taking the derivative.

ln(AB) = ln(A) + ln(B) (A > 0, B > 0)
ln(A/B) = ln(A)− ln(B) (A > 0, B > 0)

ln(AB) = B ln(A) (A > 0)
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51. Differentiate the function in Example 6 directly, without taking logarithms
first.

52. Suppose f(x) = ln


(√

1 + x2
)3 (

e3x + 1
)

1 + sin(2x)

.

In Exercises 53–56 first simplify the formula for the function with the aid
of properties of logarithms. Then, find dy/dx.

53. y = ln
((√

1 + sin(2x)
)3
)

54. y = ln
(

(x3+2)5

(x2+5)2

)
55. y = ln

(
(sin(2x))3

√
tan−1(3x)

)
56. y = ln

(
(ln(x2))5(sin−1(3x))5

(tan(5x)2

)
In Exercises 57–62 differentiate the given function by logarithmic differen-

tiation.
57. y = x3 sin2(2x)

58. y =
√

sin(2x) 3
√

1 + x3

59. y = x3 cos(2x)

(1+x2)4

60. y = tan3(5x)
3
√
ex2 sin−1(5x)

61. y = (x3+2x)(tan−1(3x)
1+e2x

62. y =

“√
ln(2x)

”3
(sin(3x))5

(x3+x)2

63. Find D(xk), x > 0, by logarithmic differentiation of y = xk.

64. Let y = xx.

(a) Find y′ by logarithmic differentiation. That is, first take the logarithm of both
sides.

(b) Find y′ by first writing the base as eln(x). That is, write y = xx =
(
eln(x)

)x
=

ex ln(x).

65. Find the first and second derivatives of y = sec(x2) sin(x2)
x .
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66. Keith Sollers, when an undergraduate at the University of California at Davis,
wrote the following in a note to one of the authors:

The nubers are ugly, but I think it’s a good problem nevertheless. I
didn’t think it up myself. The Medical Center eye group gave me the
problem and asked me to solve it. They were going to put a gas bubble
in someone’s eye.

The volume of a gas bubble changes from 0.4 cc to 1.6 cc in 74 hours.
Assuming that the rate of change of the radius is constant, find

(a) the rate at which the radius changes,

(b) the rate at which the volume of the bubble is increasing at any
volume V ,

(c) the rate at which the volume is increasing when the volume is 1 cc.

Note: Assume the gas bubble is spherical. The volume of a ball of radius r is
V = 4πr3/3.
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5.3 Higher Derivatives and the Growth of A

Function

The only higher derivative we’ve used so far is the second derivative. In the
study of motion, if y denotes position then y′′ is acceleration. In the study
of graphs, the second derivative determines whether the graph is concave up
(y′′ > 0) or down (y′′ < 0). Later, in Section 9.6, the second derivative will
appear in a formula that measures the curviness of a curve.

Now we will see how the higher derivatives (including the second derivative)
influence the growth of a function. In the next section this will be applied to
estimate the error in approximating a function by a polynomial.

Introduction

Imagine that you are in a car motionless at the origin of the x-axis. Then you
put your foot to the gas pedal and accelerate. The greater the acceleration,
the faster the speed increases; the greater the speed, the further you travel in a
given time. So the acceleration, which is the second derivative of the position
function, influences the function itself. This illustrates how a higher derivative
of a function influences the growth of a function. In this section we examine
this influence in more detail.

The following lemma is the basis for our analysis. If a > b, then f(x) ≥ g(x).
See Exercise 32.

Lemma 5.3.1 Let f(x) and g(x) be differentiable functions on an interval I.
Let a be a number in I where f(a) = g(a). Assume that f ′(x) ≤ g′(x) for x in
I. Then f(x) ≤ g(x) for all x in I to the right of a and f(x) ≥ g(x) for all x
in I to the left of a.

Figure 5.3.1:

Figure 5.3.1 makes this plausible, when the graphs of f and g are straight
lines. To the right of x = a the steeper line lies above the other line. To the
left of x = a the steeper line lies below the other line.

Proof of Lemma 5.3.1

Consider the case when x > a. Let h(x) = f(x) − g(x). Then h(a) = 0 and
h′(x) = f ′(x)−g′(x) ≤ 0. Thus, h is a non-increasing function. Since h(a) = 0,
it follows that h(x) ≤ 0 for x ≥ a. That is, f(x) − g(x) ≤ 0, or f(x) ≤ g(x)
for x > a. •

Repeated application of Lemma 5.3.1 will enable us to establish connections
between higher derivatives and the function itself.
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Higher Derivatives and the Growth of a Function

In the following theorem we name the function R(x) because that will be the
notation in the next section when R(x) is the “remainder” function. The 5! = 5 · 4 · 3 · 2 · 1 = 120.
notation n! (read: “n factorial”) for a positive integer n is shorthand for the
product of all integers from 1 through n: n! = n(n− 1) · · · 3 · 2 · 1. The symbol
0! is usually defined to be 1.

Theorem 5.3.1 (Growth Theorem) Assume that at a the function R and
its first n derivatives are zero,

R(a) = R′(a) = R′′(a) = R(3)(a) = · · · = R(n)(a) = 0.

Assume also that R(x) has continuous derivatives up through the derivative of
order n + 1 in some open interval I containing the number a. Also, assume
that there is a number M such that

∣∣R(n+1)(x)
∣∣ ≤M for all x in I. Then

∣∣R(n+1)(x)
∣∣ ≤ M means

−M ≤ R(n+1)(x) ≤M

|R(x)| ≤M
|x− a|n+1

(n+ 1)!
(1)

for all x in the interval I.

Before giving the straightforward proof, we illustrate the result in the spe-
cific case with n = 2.

EXAMPLE 1 Assume that R(5) = R′(5) = R′′(5) = 0 and
∣∣R(3)(x))

∣∣ ≤ 4
for x in the interval (3, 7). Show that |R(x)| ≤ 2|x− 5|3/3 for x in (3, 7).
SOLUTION This is a special case of the Growth Theorem when a = 5,
n = 2, and M = 4. Thus,

|R(x)| ≤ 4|x− 5|3

3!
=

4|x− 5|3

6
=

2

3
|x− 5|3.

For instance, |R(5.1)| ≤ 2
3
(0.1)3 ≈ 0.000667. �

Proof of the Growth Theorem
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We illustrate the proof in the case n = 2. Assume R(a) = R′(a) = R′′(a) = 0 See Exercises 34 and 35.
and

∣∣R(3)(x)
∣∣ ≤M . We have R3(x) ≤M and will assume x > a. The case with x < a is

messier because (x − a)n

introduces negative signs
when n is odd.

Starting with the inequality R(3)(x) ≤M , we apply the lemma repeatedly,
gradually working up from R(3)(x) to R(x). Our objective is to show that

−M (x− a)3

3!
≤ R(x) ≤M

(x− a)3

3!
.

First rewrite R(3)(x) ≤M as

d

dx
R′′(x) ≤ d

dx
M(x− a). (2)

Note that both R′′(x) and M(x−a) equal 0 when x = a. The lemma, applied We do not want the ob-
vious antiderivative of M ,
namely Mx, because Mx
does not equal 0 when x =
a.

to (2), gives
R′′(x) ≤M(x− a).

Rewrite this as

d

dx
R′(x) ≤ d

dx

(
M(x− a)2

2

)
. (3)

Since both R′(x) and M(x−a)2

2
are zero when x = a, the lemma can be applied

— this time to (3). Thus,

R′(x) ≤ M(x− a)2

2
.

This result can be rewritten as

d

dx
R(x) ≤ d

dx

M(x− a)3

3 · 2
. (4)

As before, both R(x) and M(x−a)3

3·2 are zero when x = a. A third application of
the lemma, this time to (4), yields

R(x) ≤ M(x− a)3

3 · 2
=
M(x− a)3

3!
.

A similar argument, starting with −M ≤ R(3)(x), shows that

−M(x− a)3

3!
≤ R(x).

Thus,

|R(x)| ≤M
(x− a)3

3!
.

•

EXAMPLE 2 Show that |ex − 1− x| ≤ e
2
x2 for x in (−1, 1).

SOLUTION Let R(x) = ex − 1 − x. Then R(0) = e0 − 1 − 0 = 0. And,
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since R′(x) = ex − 1, R′(0) = e0 − 1 = 0 also. R′′(x) = ex. For x in (−1, 1),
0 < ex < e1 = e. By the Growth Theorem, with a = 0, n = 1, and M = e, For instance,∣∣e0.1 − 1− 0.1

∣∣ ≤
e
2(0.1)2 = e

200 . so the
estimate 1.1 for e0.1 is off
by at most e

200 ≈ 0.013591.

|ex − 1− x| ≤ e
|x− 0|2

2!
=
e

2
x2

for each x in (−1, 1). �

EXAMPLE 3 Let R(x) = cos(x)− 1 + x2

2
. Show that |R(x)| ≤ |x

3|
6

.
SOLUTION Since powers of x = (x − 0) appear in R(x), this suggests ex-
amining R(x) at a = 0:

R(x) = cos(x)− 1− x2

2
, so R(0) = 1− 1 + 0 = 0.

R′(x) = − sin(x) + x, so R′(0) = 0 + 0 = 0.

R′′(x) = − cos(x) + 1, so R′′(0) = −1 + 1 = 0.

Thus |R(x)| ≤
∣∣∣M (x−0)3

3!

∣∣∣ =
∣∣∣M x3

6

∣∣∣, where M is the maximum value of |R(3)(t)| If x < 0, then consider the
interval [x, 0]; again, M ≤
1.

in the interval [0, x]. Now, R(3)(t) = sin(t). Since | sin(t)| ≤ 1 for all values of
t, M ≤ 1. Then

|R(x)| ≤
∣∣∣∣(1)

x3

6

∣∣∣∣ =
|x|3

6
.

�
Example 3 provides a good estimate for values of the cosine function for

small angles. For instance, if x = 0.1 radians, we have 0.1 radians =
0.1180◦

π radians ≈ 5.72958◦∣∣∣∣cos(0.1)− 1 +
0.12

2

∣∣∣∣ ≤ 0.13

6
= 0.00016667 = 1.6667× 10−4.

Thus, 1− 0.12

2
= 1−0.005 = 0.995 is an estimate of cos(0.1) with an error less cos(0.1) ≈ 0.9950041653

than 0.00016667.

Remark An even better bound on the growth ofR(x) in Example 3
is possible. In addition to R(0) = R′(0) = R′′(0) = 0, notice that

R(3)(0) = sin(0) = 0. This means that |R(x)| ≤
∣∣∣M4

(x−0)4

4!

∣∣∣ where

M4 is the maximum value of R(4)(t) = cos(t) in the interval [0, x].
As in Example 3, M ≤ 1. Thus,

|R(x)| ≤
∣∣∣∣(1)

x4

4!

∣∣∣∣ =
x4

24
.

This means the difference between the exact value of cos(0.1) and In fact, | cos(0.1)−0.995| ≈
4.16528× 10−6.the estimate 1− 0.12

2
= 0.995 is no more than 0.14

24
= 4.16667×10−6.

This improves the estimate in Example 3 by a factor of forty.

In any case, 1− x2

2
is a good estimate of cos(x) for small values of x.
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A Refinement of the Growth Theorem

The Growth Theorem is based on an estimate on the size of the derivative of
the form |R′(x)| ≤M , or −M ≤ R′(x) ≤M . When more is known about the
size of the derivative, say m ≤ R′(x) ≤M , a stronger statement can be made
about the size of the function, R, as the next theorem shows. The proof is
similar to the one given previously for the Growth Theorem (Theorem 5.3.1).

Theorem 5.3.2 Assume that R(x) has continuous derivatives up through the
derivatives of order n + 1 in some open interval I containing the number a.
Assume that, at a, R(x) and its first n derivatives are all zero: Observe that (x−a)n+1 > 0

for x < a and n+1 even and
(x − a)n+1 < 0 for x < a
and n+ 1 odd.

R(a) = R′(a) = R′′(a) = · · · = R(n)(a) = 0.

Also assume that for all x in that interval

m ≤ R(n+1)(x) ≤M.

Then, for x ≥ a in that interval,

m
(x− a)n+1

(n+ 1)!
≤ R(x) ≤M

(x− a)n+1

(n+ 1)!

for all x in I with x < a, when n+ 1 is even
for all x in I with x > a

(5)

m
(x− a)n+1

(n+ 1)!
≥ R(x) ≥M

(x− a)n+1

(n+ 1)!
for all x in I with x < a, when n+ 1 is odd.

EXAMPLE 4 Let R(x) = ex − (1 + x + x2

2!
+ x3

3!
). Show that 1

1152
≤

R(1
2
) ≤ 1

128
. Use this estimate to obtain approximations, with error bounds,

for
√
e = e1/2 and e. See Exercise 1.

SOLUTION

R(0) = e0 − 1− 0.

R′(x) = ex − (1 + x+
x2

2!
), so R′(0) = 0.

R′′(x) = ex − (1 + x), so R′′(0) = 0.

R(3)(x) = ex − 1, so R(3)(0) = 0.

R(4)(x) = ex, and R(4)(0) = 1 6= 0.

But, for x in I = (−1, 1), 1
3
≤ e−1 ≤ ex ≤ e1 < 3. Theorem 5.3.2, with a = 0,

n = 3, m = 1
3
, M = 3, and x = 1

2
gives We assume e < 3.

1
3

(1/2)4

4!
≤ R(1/2) ≤ 3 (1/2)4

4!

Then, 1
1152

≤
√
e−

(
1 + 1

2
+ (1/2)2

2!
+ (1/2)3

3!

)
≤ 1

128

or 79
48

+ 1
1152

≤
√
e ≤ 79

48
+ 1

128

so 1.64670 ≤
√
e ≤ 1.65365.

As you can check with your calculator,
√
e ≈ 1.64872 to five decimal places. �
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A Convenient Form for R(x)

Assume that R(a) = R′(a) = · · · = R(n)(a) = 0 and that that M is the
maximum value of R(n+1)(x) on a closed interval I with a in its interior and
m is the minimum value of R(n+1)(x) on I. In view of the inequalities (5), the See Theorem 2.4.3 in Sec-

tion 2.4.Intermediate-Value Theorem for continuous functions tells us that there must
be a number c between a and x and in the interval I such that This holds when x − a is

positive or negative.
R(x) = R(n+1)(c)

(x− a)n+1

(n+ 1)!
. (6)

This is the form for the remainder we will use in the next section.

Approximation and Interpolation

We might expect that an effective way to approximate a function f(x)
throughout an interval [a, b] would be to force the polynomial to match
the function values at specific points. To be specific, divide the interval
[a, b] into n sections of equal length by n+1 points, of which the leftmost
is a and the rightmost is b. There is a unique polynomial P (x) of
degree n, called an interpolant of f(x), that coincides with the given
function at these n + 1 inputs. We would expect that when n is large,
|f(x)− P (x)| would be small for all x in [a, b].
This is not the case, even for such a pleasant function as f(x) = 1/(1 +
x2) and the interval [−5, 5]. In numerical analysis it is proved that
for large n the interpolating polynomial does not stay near 1/(1 + x2).
Some of its values become arbitrarily large as n increases. In fact, if
n = 5m+1 and m is odd the polynomial P (x) differs from 1/(1+x2) at
x = 4.875 by more than 1.8m/451, a quantity that grows exponentially
as m increases. It is surprising phenomena such as this that show why
intuition is no substitute for proof.

Summary

We showed that under certain conditions bounds on the size of the derivative
of a function limit the growth of the function itself. When this observation is
applied repeatedly we showed that if a function R(x) and its first n derivatives
are all zero at a, then

R(x) = R(n+1)(c)
(x− a)n+1

(n+ 1)!
(for some c between a and x).

The number c depends on n, not just on a, x, and the function R(x).
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EXERCISES for 5.3

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

1. If f ′(x) ≥ 3 for all x ∈ (−∞,∞) and f(0) = 0, what can be said about f(2)?
about f(−2)?

2. If f ′(x) ≥ 2 for all x ∈ (−∞,∞) and f(1) = 0, what can be said about f(3)?
about f(−3)?

3. State the Growth Theorem for x ≥ a in the case where R has at least five
continuous derivatives and R(a) = R′(a) = R′′(a) = R(3)(a) = R(4)(a) = 0.

4. State the Growth Theorem in words, using as little math notation as possible.

5. If R(1) = R′(1) = R′′(1) = 0 and R(3)(x) is continuous on an interval that
includes 1 and R(3)(x) ≤ 2, what can be said about R(4)?

6. What can be said about f(2) if f(1) = 0, f ′(1) = 0, and 2.5 ≤ f ′′(x) ≤ 2.6 for
all x?

7. What can be said about f(4) if f(1) = 0, f ′(1) = 0, and 2.9 ≤ f ′′(x) ≤ 3.1 for
all x?

8. A car starts from rest and travels for 4 hours. Its acceleration is always at least
5 miles per hour per hour, but never exceeds 12 miles per hour per hour. What can
you say about the distance traveled after 4 hours?

9. A car starts from rest and travels for 6 hours. Its acceleration is always at least
4.1 miles per hour per hour, but never exceeds 15.5 miles per hour per hour. What
can you say about the distance traveled after 6 hours?

10. If R(3) = R′(3) = R′′(3) = R(3)(3) = R(4)(3) = 0 and R(5)(x) ≤ 6, what can
be said about R(3.5)?
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11. Let R(x) = sin(x)−
(
x− x3

6

)
. Show that

(a) R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

(b) R(4)(x) = sin(x).

(c) |R(x)| ≤ x4

24 .

(d) Use x− x3

6 to approximate sin(x) for x = 1/2.

(e) Use (c) to estimate the difference between the exact value for sin
(

1
2

)
and the

approximation obtained in (d).

(f) Explain why |R(x)| ≤ |x|
5

120 . How can this be used to obtain a better estimate
of the difference between the exact value for sin

(
1
2

)
and the approximation

obtained in (d)?

(g) By how much does the estimate in (d) differ from sin
(

1
2

)
?

Note: An angle of 1
2 radian is about 29◦.

12. Let R(x) = cos(x)−
(

1− x2

2! + x4

4!

)
. Show that

(a) R(0) = R′(0) = R′′(0) = R(3)(0) = R(4)(0) = R(5)(0) = 0.

(b) R(6)(x) = − cos(x).

(c) |R(x)| ≤ x6

6! .

(d) Use 1− x2

2! + x4

4! to estimate cos(x) for x = 1.

(e) By how much does the estimate in (d) differ from cos(1)?

Note: An angle of 1 radian is about 57◦.

13. Let R(x) = (1 + x)5 − (1 + 5x+ 10x2). Show that

(a) R(0) = R′(0) = R′′(0) = 0.

(b) R(3)(x) = 60(1 + x)2.

(c) |R(x)| ≤ 80x3 (on [−1, 1])

(d) Use 1 + 5x+ 10x2 to estimate (1 + x)5 for x = 0.2.

(e) By how much does the estimate in (d) differ from (1.2)5?
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14. If f(3) = 0 and f ′(x) ≥ 2 for all x ∈ (−∞,∞), what can be said about f(1)?
Explain.

15. If f(0) = 3 and f ′(x) ≥ −1 for all x ∈ (−∞,∞), what can be said about f(2)
and about f(−2)? Explain.

16. What functions f has the property that D5(f(x)) = 0 for all x?

17. Find constants a0, a1, a2, and a3 such that ifR(x) = tan(x)−
(
a0 + a1x+ a2x

2 + a3x
3
)

then R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

18. Find constants a0, a1, a2, and a3 such that ifR(x) =
√

1 + x−
(
a0 + a1x+ a2x

2 + a3x
3
)

then R(0) = R′(0) = R′′(0) = R(3)(0) = 0.

19. Find constants a0, a1, a2, and a3 such that if

R(x) = sinx−
(
a0 + a1

(
x− π

6

)
+ a2

(
x− π

6

)2
+ a3

(
x− π

6

)3
)

then R
(
π
6

)
= R′

(
π
6

)
= R′′

(
π
6

)
= R(3)

(
π
6

)
= 0.

20. Because e > 1, it is known that ex ≥ 1 for every x ≥ 0.

(a) Use Lemma 5.3.1 to deduce that ex > 1 + x, for x > 0.

(b) Use (a) and Lemma 5.3.1 to deduce that, for x > 0, ex > 1 + x+ x2

2! .

(c) Use (b) and Lemma 5.3.1 to deduce that, for x > 0, ex > 1 + x+ x2

2! + x3

3! .

(d) In view of (a), (b), and (c), what is the general inequality that can be proved
by this approach?

21. Let k be a fixed positive number. For x in [0, k], ex ≤ ek.

(a) Deduce that ex ≤ 1 + ekx for x in [0, k].

(b) Deduce that ex ≤ 1 + x+ ek x
2

2! for x in [0, k].

(c) Deduce that ex ≤ 1 + x+ x2

2! + ek x
3

3! for x in [0, k].

(d) In view of (a), (b), and (c), what is the general inequality that can be proved
by this approach?
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22. Combine the results of Exercises 20 and 21 to estimate e = e1. Note: Assume
e ≤ 3.

23. What properties of ex did you use in Exercises 20 and 21?

24. Let E(x) be a function such that E(0) = 1 and E′(x) = E(x) for all x.

(a) Show that E(x) ≥ 1 for all x ≥ 0.

(b) Use (a) to show that E(x) is an increasing function for all x ≥ 0. Hint: Show
that E′(x) ≥ 1.

25. Consider the following proposal by Sam: “As usual, I can do things more
simply than the text. For instance, say R(a) = R′(a) = R′′(a) = 0 and R(3)(x) ≤M .
I’ll show how M affects the size of R(x), for x > a.

By the Mean-Value Theorem, R(x) = R′(c1)(x− a) for some c1 in [a, x]. Then I
just use the MVT again, this time finding R′(c1) = R′(c1)−R′(a) = R′′(c2)(c1 − a)
for some c2 in [a, c1]. One more application of this idea then gives R′′(c2) = R′′(c2)−
R′′(a) = R(3)(c3)(c3 − a).

Then I put these all together, getting

R(x) ≤M(x− a)(c2 − a)(c3 − a).

Since c1, c2, and c3 are in [a, x], I can certainly say that

R(x) ≤M(x− a)3.

I didn’t need that lemma about two functions.”
Is Sam correct? Is this a valid substitute for the text’s treatment? Explain.

Exercises 26–31 show that limx→∞
x
ex

, limx→∞
ln(y)
y

, limx→0+ x ln(x), limx→∞
xk

bx

(b > 1), and limx→0+ xx are closely connected. (In fact, if you know one of
them you can deduce the other three.)

In Exercise 20 it is shown that ex > 1 + x+ x2

2
for all x > 0. Use this fact

in Exercises 26–27.
26. Evaluate limx→∞

x
ex .

27. Evaluate limy→∞
ln(y)
y . Hint: Let y = ex and compare with Exercise 26.

Exercise 28 provides a proof of the fact that the exponential function grows
faster than any power of x.
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28. Write xn

ex =
(

x
ex/n

)(
x

ex/n

)
· · ·
(

x
ex/n

)
. Let y = x/n so that x

ex/n
= ny

ey . Use

Exercise 26 (n times) to show that limx→∞
xn

ex = 0.

29. Evaluate limx→0+ x ln(x) as follows: Let x = 1/t, where t → ∞. Then
x ln(x) = 1

t ln
(

1
t

)
= − ln(t)

t . and refer to Exercise 27.

30. Evaluate limx→0+ xx as follows: Let y = xx. Then ln(y) = x ln(x), a limit
that was evaluated in Exercise 29. Explain why ln(y)→ 0 implies y → 1.

31. Evaluate limx→∞
xk

bx for any b > 1 and k is a positive integer, Hint: Use the
result obtained in Exercise 28.

32. Explain why f(a) = g(a) and f ′(x) ≤ g′(x) on [a, b] with a > b implies
f(x) ≥ g(x).

33. In Example 2 it is shown that |ex − 1− x| ≤ e
2x

2 for all x in (−1, 1).

(a) Find a bound for R(x) = ex − 1− x− x2

2 on (−1, 1).

(b) Find a bound for R(x) = ex − 1− x on (−2, 1).

(c) Find a bound for R(x) = ex − 1− x on (−1, 2).

(d) Find a bound for R(x) = ex − 1− x− x2

2 on (−2, 1).

(e) Find a bound for R(x) = ex − 1− x− x2

2 on (−1, 2).

34. State and prove the refinement of the Growth Theorem when the assumption∣∣R(n+1)(x)
∣∣ ≤M is replaced by m ≤ R(n+1)(x) ≤M .

35. Apply the lemma to the case when R(a) = R′′(a) = 0,
∣∣R(3)

∣∣ ≤ M , but
R′(a) = 5.
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5.4 Taylor Polynomials and their Errors

We spend years learning how to add, subtract, multiply, and divide. These
same operations are built into any calculator or computer. Both we and ma-
chines can evaluate a polynomial, such as

a0 + a1x+ a2x
2 + · · ·+ anx

n,

when x and the coefficients a0, a1, a2, . . . , an are given numbers. Only multi-
plication and addition are needed. But how do we evaluate ex or sin(x)? We
resort to our calculators or look in a table that lists values of ex. If ex were
a polynomial in disguise, then it would be easy to evaluate it by finding the
polynomial and evaluating it instead. But ex cannot be a polynomial, even
over a very short interval. Why? Since we cannot write ex as a polynomial, Three different reasons: 1.

Because ex equals its own
derivative and no polyno-
mial equals its own deriva-
tive (other than the poly-
nomial that has constant
value 0). 2. When you
differentiate a non-constant
polynomial, you get a poly-
nomial with a lower degree.
3. Also, ex → 0 as x →
−∞ and no non-constant
polynomial has this prop-
erty.

we settle for the next best thing. Let’s look for a polynomial that closely ap-
proximates ex. However, no polynomial can be a good approximation of ex for
all x, since ex grows too fast as x→∞. We search, instead, for a polynomial
that is close to ex for x in some short interval.

In this section we develop a method to construct polynomial approxima-
tions to functions. The accuracy of these approximations can be determined
using the Growth Theorem from the previous section. Not surprisingly, higher
derivatives play a pivotal role.

Fitting a Polynomial Locally, Near 0

Suppose we want to find a polynomial that closely approximates a function
y = f(x) for x near the input 0. For instance, what polynomial p(x) of the
form a0 + a1x+ a2x

2 + a3x
3 might produce a good fit?

First we insist that
p(0) = f(0) (1)

so the approximation is exact when x = 0.
Second, we would like the slope of the graph of p(x) to be the same as that

of f(x) when x is 0. Therefore, we require

p′(0) = f ′(0). (2)

There are many polynomials that satisfy these two conditions. To find the
best choices for the four numbers a0, a1, a2, and a3 we need to have four
equations. To have four equations in the four unknowns we will continue the
pattern started by (1) and (2). So we also insist that

p′′(0) = f ′′(0) (3)
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and
p(3))(0) = f (3)(0). (4)

Equation (3) forces the polynomial p(x) to have the same sense of concavity
as the function f(x) at x = 0. We expect the graphs of f(x) and such a
polynomial p(x) to resemble each other for x close to a.

p(x) and its derivatives Their values at 0 Equation for ak Formula for ak
p(x) = a0 + a1x+ a2x

2 + a3x
3 p(0) = a0 a0 = f(0) a0 = f(0)

p(1)(x) = a1 + 2a2x+ 3a3x
2 p(1)(0) = a1 a1 = f (1)(0) a1 = f (1)(0)

p(2)(x) = 2a2 + 3 · 2a3x p(2)(0) = 2a2 2a2 = f (2)(0) a2 = 1
2
f (2)(0)

p(3)(x) = 3 · 2a3 p(3)(0) = 3 · 2a3 3 · 2a3 = f (3)(0) a3 = 1
3·2f

(3)(0)

Table 5.4.1:

To find the unknowns a0, a1, a2, and a3 we first compute p(x), p′(x),
p′′(x), and p(3)(x) at 0. Table 5.4.1 displays the computations that express
the unknowns, a0, a1, a2, and a3, in terms of f(x) and its derivatives. For
example, note how we compute p′′(x) = 2a2 + 3 · 2a3x and evaluate it at 0 to
obtain p′′(0) = 2a2 + 3 · 2a3 · 0 = 2a2. Then we obtain an equation for a2 by
equating p′′(0) and f ′′(0); that is, 2a2 = f ′′(0), so a2 = 1

2
f ′′(0). Factorials appear in the de-

nominator.We can write a general formula for ak if we let f (0)(x) denote f(x) and
recall that 0! = 1 (by definition), 1! = 1, 2! = 2 · 1 = 2, and 3! = 3 · 2.
According to Table 5.4.1,

ak =
f (k)(0)

k!
, k = 0, 1, 2, 3.

Therefore

p(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 +

f (3))(0)

3!
x3.

The coefficient of xk is completely determined by the kth derivative of f eval-
uated at 0. It equals the kth derivative of f at 0 divided by k!. In Example 1
we illustrate this observation by finding a polynomial p(x) of degree 3 that
approximates ex for x near 0.

EXAMPLE 1 Find the polynomial of degree 3 that agrees with the value
ex and its first three derivatives at x = 0.
SOLUTION The first step is to compute ex and its first three derivatives,
then evaluate them at x = 0. Dividing these values by a suitable factorial gives
us the coefficients of the polynomial. Table 5.4.2 records the computations,
which are especially simple because the derivative of ex is ex itself.
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at x at 0

f (0)(x) = ex f (0)(0) = 1
f (1)(x) = ex f (1)(0) = 1
f (2)(x) = ex f (2)(0) = 1
f (3)(x) = ex f (3)(0) = 1

Table 5.4.2: Derivatives of f(x) = ex

So the third-degree approximating polynomial is

p(x) = 1 + x+
x2

2!
+
x3

3!
.

Figure 5.4.1 shows the graphs of both ex and p(x). Notice how the polynomial
closely matches the exponential near x = 0 but is not as good an approximation
for |x| > 1. �

Figure 5.4.1:

The Taylor Polynomials at a

Example 1 illustrates the general procedure for finding polynomials that be-
have much like the given function near 0. These approximating polynomials
are given a name in the following definition. The nth-order Taylor poly-

nomial has degree at most
n.DEFINITION (Taylor Polynomials at 0) Let n be a non-negative

integer and let f be a function with derivatives at 0 of all orders
through n. Then the polynomial

f(0) + f (1)(0)x+
f (2)(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn (5)

is called the nth-order Taylor polynomial of f centered at 0
and is denoted Pn(x, 0).

Whether Pn(x, 0) approximates f(x) for x near 0 is not obvious. We will
show that the Taylor polynomials centered at x = 0 for ex and sin(x) do
provide good approximations of the functions for x near 0. The polynomial
found in Example 1 is P3(x, 0) for ex. Figure 5.4.1 suggests that P3(x, 0) does
a fairly good job of approximating ex near 0. In general, the bigger n is, the
better the approximation and the longer the interval where the approximation
is good.

Taylor polynomials centered at 0, as in the definition above, are called the
Maclaurin polynomials.
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Taylor Polynomials Centered at a

We may be interested in estimating a function f(x) near a number a, not just
near 0. In that case, we express the approximating polynomial in terms of
powers of x− a instead of powers of x = x− 0 and make the derivatives of the
approximating polynomial, evaluated at a, coincide with the derivatives of the
function at a. Calculuations similar to those that gave us the polynomial (5)
produce the polynomial called the “Taylor polynomial centered at a”. The nth-order Taylor poly-

nomial of f centered at a is
denoted Pn(x, a).DEFINITION (Taylor Polynomials of degree b, Pn(x, a)) If the

function f has derivatives through order n at a, then the nth-order
Taylor polynomial of f centered at a is defined as

f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n

and is denoted Pn(x, a).

EXAMPLE 2 Compute the fourth-order Taylor polynomial at a = 1 for
the function f(x) = 1

x
.

SOLUTION Table 5.4.3 shows the values of 1/x and its first 4 derivatives

at x at 1

f (0)(x) = 1/x f (0)(0) = 1
f (1)(x) = −1/x2 f (1)(0) = −1
f (2)(x) = 2/x3 f (2)(0) = 2
f (3)(x) = −6/x4 f (3)(0) = −6
f (4)(x) = 24/x5 f (4)(0) = 24

Table 5.4.3: Derivatives of f(x) = 1/x
f n=1 n=2 n=3 n-4

x
0.5 1.0 1.5 2.0 2.5 3.0

K5

0

5

10

Figure 5.4.2:
at 1. Thus,

P4(x; 1) = f (0)(1) + f (1)(1)(x− 1) +
f (2)(1)

2!
(x− 1)2 +

f (3)(1)

3!
(x− 1)3 +

f (4)(1)

4!
(x− 1)4

= 1 + (−1)(x− 1) +
2

2!
(x− 1)2 +

−6

3!
(x− 1)3 +

24

4!
(x− 1)4

= 1− (x− 1) + (x− 1)2 − (x− 1)3 + (x− 1)4.

Figure 5.4.2 shows the graphs of y = 1/x and its first four Taylor polynomials
centered at x = 1. �

x 1/x P4(x; 1)
1.0 1.000000 1.000000
1.1 0.909091 0.909100
1.5 0.666667 0.687500
2.0 0.500000 1.000000
0.5 2.000000 1.937500

Table 5.4.4:
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Table 5.4.4 compares the value of the polynomial P4(x; 1) found in Exam-
ple 2 with the function f(x) = 1/x for a few inputs near 1.

EXAMPLE 3 Find the Taylor polynomial P5(x, 0) associated with the
function f(x) = sin(x).
SOLUTION Again we make a table for computing the coefficients of the

at x at 0

f (0)(x) = sin(x) f (0)(0) = sin(0) = 0
f (1)(x) = cos(x) f (1)(0) = cos(0) = 1
f (2)(x) = − sin(x) f (2)(0) = − sin(0) = 0
f (3)(x) = − cos(x) f (3)(0) = − cos(0) = −1
f (4)(x) = sin(x) f (4)(0) = sin(0) = 0
f (5)(x) = cos(x) f (5)(0) = cos(0) = 1

Table 5.4.5: Derivatives of f(x) = sin(x)

Taylor polynomial centered at 0. (See Table 5.4.5.)
Thus

P5(x, 0) = f (0)(0) + f (1)(0)x+
f (2)(0)

2!
x2 +

f (3)(0)

3!
x3 +

f (4)(0)

4!
x4 +

f (5)(0)

5!
x5

= 0 + (1)x+
0

2!
x2 +

−1

3!
x3 +

0

4!
x4 +

1

5!
x5

= x− x3

3!
+
x5

5!

= x− x3

6
+

x5

120
.

Figure 5.4.3 illustrates the graphs of P5(x; 1) and sin(x) near 0. �

Figure 5.4.3:Having found the fifth-order Taylor polynomial for sin(x) at a = 0, let us
see how good an approximation it is of sin(x). Table 5.4.6 compares their
values to six decimal place accuracy for inputs both near 0 and far from 0. As
we see, the closer x is to 0, the better the Taylor approximation is. When x is
large, P5(x, 0) gets very large, but the value of sin(x) stays between −1 and 1.

x sin(x) P5(x, 0)
0.0 0.000000 0.000000
0.1 0.099833 0.099833
0.5 0.479426 0.479427
1.0 0.841471 0.841667
2.0 0.909297 0.933333
π 0.000000 0.524044
2π 0.000000 46.546732

Table 5.4.6:

The Error in Using A Taylor Polynomial

There is no point using Pn(x, a) to estimate a function f(x) if we have no idea
how large the difference between f(x) and Pn(x, a) may be. So let us take a
closer look at the difference.
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Define the remainder of this approximation to be the difference between
the exact function, f(x), and the Taylor polynomial, Pn(x, a). Denote the
remainder as Rn(x, a). Then,

f(x) = Pn(x, a) +Rn(x, a).

We will be interested in the absolute value of the remainder. We call |Rn(x, a)| We do not care whether
Pn(x, a) is larger or smaller
than the exact value.

the error between the function f(x) and its nth-order Taylor polynomial at a,
Pn(x, a).

We will soon verify that the kth derivative of dk

dxk
Rn(x, a) for k equal to 0,

1, 2, . . . , n equals zero when evaluated at x = a. This means we can use the
Growth Theorem (in Section 5.3) to estimate |Rn(x, a)|.
Theorem 5.4.1 (Lagrange’s Form of the Remainder) Assume that a func-
tion f(x) has continuous derivatives of orders through n+1 in an interval that
includes the numbers a and x. Let Pn(x, a) be the nth-order Taylor polynomial
associated with f(x) in powers of x− a. Then there is a number cn between a
and x such that

Rn(x, a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1.

Proof of Theorem 5.4.1

By definition
Rn(x, a) = f(x)− Pn(x, a). (6)

Thus, since Pn(a, a) = f(a),

Rn(a, a) = f(a)− Pn(a, a) = f(a)− f(a) = 0.

Similarly, repeated differentiation of (6), leads to

R(k)
n (x, a) = f (k)(x)− P (k)

n (x, a), (7)

for each integer k, 1 ≤ k ≤ n. Then, from the definition of Pn(x, a), P
(k)
n (a, a) = f (k)(a), k = 0,

1, . . . , n.
R(k)
n (a, a) = f (k)(a)− P (k)

n (a, a) = 0.

Thus, Rn(x, a) is a function that meets all the criteria for the Growth Theo- See Theorem 5.3.1 in Sec-
tion 5.3.rem.

R
(n+1)
n (x, a) = f (n+1)(x)Since Pn(x, a) is a polynomial of degree at most n, its (n + 1)st derivative

is 0. As a result, the (n+1)st derivative of Rn(x, a) is the same as the (n+1)st

derivative of f(x). Recalling (6) from Section 5.3, we see there is a number cn
between a and x such that The subscript n in cn is

introduced since this con-
stant depends not only on
a and x but also on n.

Rn(x, a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1.

This is called the Lagrange form of the remainder. •

EXAMPLE 4 Discuss the error in using x− x3

3!
+ x5

5!
to estimate sin(x) for

x > 0.
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SOLUTION Example 3 showed that x − x3

3!
+ x5

5!
is the Taylor polynomial

centered at 0, P5(x, 0), associated with sin(x). Thus the error |R5(x, 0)| is at
most ∣∣∣ d6

dx6 sin(x)
∣∣∣

6!
x6 ≤ x6

6!
,

because every derivative of sin(x) is either ± sin(x) or ± cos(x). Then∣∣∣∣sin(x)−
(
x− x3

6
+

x5

120

)∣∣∣∣ ≤ |x|6|6!
=

x6

720
.

For instance, with x = 1/2,∣∣∣∣∣sin
(

1

2

)
−

((
1

2

)
−
(

1
2

)3

6
+

(
1
2

)5

120

)∣∣∣∣∣ ≤
(

1
2

)6

720
=

1

(64)(720)
=

1

46, 080
≈ 0.0000217 = 2.17×10−5

So the approximation

P5(1/2, 0) =
1

2
− 1

48
+

1

3840
=

1841

3840
≈ 0.4794271

differs from sin(1/2) (the sine of half a radian) by less than 2.17 × 10−5; this
means at least the first four decimal places are correct. The exact value of
sin(1/2), to ten decimal places is 0.4794255386 and our estimate is correct to
five decimal places. By comparison, a calculator gives sin(1/2) ≈ 0.479426
which is also correct to five decimal places. �

The Linear Approximation P1(x, a)

Figure 5.4.4: (Insert label
for point (a, f(a)).)

The graph of the Taylor polynomial P1(x, a) = f(a) + f ′(a)(x − a) is a line
that passes through the point (a, f(a)) and has the same slope as f does at
a. That means that the graph of P1(x, a) is the tangent line to the graph of f
at (a, f(a)). It is customary to call P1(x, a) = f(a) + f ′(a)(x− a) the linear
approximation to f(x) for x near a. It is often denoted L(x). Figure 5.4.4
shows the graphs of f and L near the point (a, f(a)).

Let x be a number close to a and define ∆x = x−a and ∆y = f(a+∆x)−
f(a), quantities used in the definition of the derivative: f ′(a) = lim∆x→0

∆y
∆x

.

Figure 5.4.5:

Often ∆x is denoted by dx and f ′(a)dx is defined to be “dy”, as shown in
Figure 5.4.5. Note that dy is an approximation to ∆y, and f(a) + dy is an
approximation to f(a+ ∆x) = f(a) + ∆y.

In Section 8.2 we will use
dy = f ′(x)dx and dx as
bookkeeping tools to sim-
plify the search for an-
tiderivatives.

The expressions “dx” and “dy” are called differentials. In the seventeenth
century, dx and dy referred to “infinitesimals”, infinitely small numbers. Leib-
niz viewed the derivative as the quotient dy

dx
, and that notation for the derivative

persists more than three centuries later.
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WARNING ()The derivative is not a quotient. The derivative is
the limit of a quotient.

The next example uses the linear approximation to estimate
√
x near x = 1.

EXAMPLE 5 Use P1(x; 1) to estimate
√
x for x near 1. Then discuss the

error.
SOLUTION In this case f(x) =

√
x, f ′(x) = 1

2
√
x
, and f ′(1) = 1/2. The

linear approximation of f(x) near a = 1 is

P1(x; 1) = f(1) + f ′(1)(x− 1) = 1 +
1

2
(x− 1)

and the remainder is

R1(x; 1) =
√
x−

(
1 +

1

2
(x− 1)

)
.

Table 5.4.7 shows how rapidly R1(x; 1) approaches 0 as x → 1 and compares

x R1(x; 1) (x− 1)2 R1(x; 1)/(x− 1)2

2.0
√

2 −
(
1 + 1

2
(2− 1)

)
≈ −0.08578643 1 −0.08579

1.5
√

1.5 −
(
1 + 1

2
(1.5− 1)

)
≈ −0.02525512 0.25 −0.10102

1.1
√

1.1 −
(
1 + 1

2
(1.1− 1)

)
≈ −0.00119115 0.01 −0.11912

1.01
√

1.01 −
(
1 + 1

2
(1.01− 1)

)
≈ −0.00001243 0.0001 −0.12438

Table 5.4.7:

this difference with (x− 1)2.

The final column in Table 5.4.7 shows that R1(x;1)
(x−1)2 is nearly constant. Be-

cause (x − 1)2 → 0 as x → 0, this means R1(x; 1) approaches 0 at the same
rate as the square of (x− 1).

Since R1(x; 1) is approximately 1
2
f ′′(1)(x − 1)2 when x is near 1, R1(x;1)

(x−1)2

should be near 1
2
f ′′(1) when x is near 1. Just as a check, compute 1

2
f ′′(1).

We have f ′′(x) = −1
4
x−3/2. Thus 1

2
f ′′(1) = 1

2

(−1
4

)
= −1

8
= −0.125. This is

consistent with the final column of Table 5.4.7. �

Summary
If we define the “zeroth
derivative” of a function to
be the function itself and
start counting from 0, then
we could say simply that
the derivatives P

(k)
n (x, a)

coincide with f (k)(a) for
k = 0, 1, . . . , n.

Given a function f with n derivatives on an interval that contains the number
a we defined the nth-order Taylor polynomial at a, Pn(x, a). The first n deriva-
tives of the Taylor polynomial of degree n coincide with the first n derivatives
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of the given function f at a. Also, Pn(x, a) has the same function value at a
that f does.

Pn(x, a) = f(a) + f (1)(a)(x− a) +
f (2)(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n.

The remainder in using the Taylor polynomial of degree n to estimate a
function involves the (n+ 1)st derivative of the function:

Rn(x, a) = f(x)− Pn(x, a) =
f (n+1)(cn)

(n+ 1)!
(x− a)n+1

where cn is a number between a and x. The error is the absolute value of the
remainder, |Rn(x, a)|.

The linear approximation to a function at a is denoted

L(x) = P1(x, a) = f(a) + f ′(a)(x− a).

The differentials are dx = x − a and dy = f ′(a)dx. While dx = ∆x, dy ≈
∆y = f(x+ ∆x)− f(x).
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EXERCISES for 5.4

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

Hint: Use a graphing calculator or computer algebra computer algebra system
to assist with the computations and with the graphing.

In Exercises 1 to 12 compute the Taylor polynomials Pn(x; a). Graph f(x)
and Pn(x; a) on the same axes on a domain centered at a. Keep in mind that
the graph of P1(x; a) is the tangent line at the point (a, f(x)).

1. f(x) = 1/(1 + x), P1(x; 0) and P2(x; 0)

2. f(x) = 1/(1 + x), P1(x; 1) and P2(x; 1)

3. f(x) = ln(1 + x), P1(x; 0), P2(x; 0) and P3(x; 0)

4. f(x) = ln(1 + x), P1(x; 1), P2(x; 1) and P2(x; 1)

5. f(x) = ex, P1(x; 0), P2(x; 0), P3(x; 0), and P4(x; 0)

6. f(x) = ex, P1(x; 2), P2(x; 2), P3(x; 2), and P4(x; 2)

7. f(x) = arctan(x), P1(x; 0), P2(x; 0), and P3(x; 0)

8. f(x) = arctan(x)), P1(x;−1), P2(x;−1), and P3(x;−1)

9. f(x) = cos(x), P2(x; 0) and P4(x; 0)

10. f(x) = sin(x), P7(x; 0)

11. f(x) = cos(x), P1(x;π/4)

12. f(x) = sin(x), P3(x;π/4)

13. Can there be a polynomial p(x) such that sin(x) = p(x) for all x in the interval
[1, 1.0001]? Explain.

14. Can there be a polynomial p(x) such that ln(x) = p(x) for all x in the interval
[1, 1.0001]? Explain.
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15. State the Lagrange formula for the error in using a Taylor polynomial as an
estimate of the value of a function. Use as little mathematical notation as you can.

16. Let f(x) =
√
x.

(a) What is the linear approximation, P1(x; 4), to
√
x at x = 4?

(b) Fill in the following table.

x R1(x; 4) = f(x)− P1(x; 4) (x− 4)2 R1(x;4)
(x−4)2

5.0
4.1
4.01
3.99

(c) Compute f ′′(4)/2. Explain the relationship between this number and the
entries in the fourth column of the table in (b).

17. Repeat Exercise 16 for the linear approximation to
√
x at x = 3. Use x = 4,

3.1, 3.01, and 2.99.

18. Assume f(x) has continuous first and second derivatives and that 4 ≤ f ′′(x) ≤
5 for all x.

(a) What can be said about the error in using f(2) + f ′(2)(x− 2) to approximate
f(x)?

(b) How small should x − 2 be to be sure that the error — the absolute value
of the remainder — is less than or equal to 0.005? Note: This ensures the
approximate value is correct to 2 decimal places.

19. Let f(x) = 2 + 3x+ 4x2.

(a) Find P2(x; 0).

(b) Find P3(x; 0).

(c) Find P2(x; 5).
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20. Find P4(x; 0) and P5(x; 0) for f(x) = sin(x).

21. Find P5(x; 0) and P6(x; 0) for f(x) = cos(x).

22. Let f(x) = 2 + 3x− 4x2. Find P1(x; 0), P2(x; 0), and P3(x; 0).

23.

(a) What can be said about the degree of the polynomial Pn(x; 0)?

(b) When is the degree of Pn(x; 0) less than n?

(c) When is the degree of Pn(x; a) less than n? (a 6= 0)

Exercises 24 to 29 are related.
24. Let f(x) = (1 + x)3.

(a) Find P3(x; 0) and R3(x; 0).

(b) Check that your answer to (a) is correct by multiplying out (1 + x)3.

25. Let f(x) = (1 + x)4.

(a) Find P4(x; 0) and R4(x; 0).

(b) Check that your answer to (a) is correct by multiplying out (1 + x)4.

26. Let f(x) = (1 + x)5. Using P5(x; 0), show that

(1 + x)5 = 1 + 5x+
5 · 4
1 · 2

x2 +
5 · 4 · 3
1 · 2 · 3

x3 +
5 · 4 · 3 · 2
1 · 2 · 3 · 4

x4 +
5 · 4 · 3 · 2 · 1
1 · 2 · 3 · 4 · 5

x5.

For a positive integer n and a non-negative integer k, with k ≤ n, the symbol
(
n
k

)
denotes the binomial coefficient:(

n
k

)
=
n(n− 1)(n− 2) · · · (n− k + 1)

1 · 2 · 3 · · · k
=

n!
k!(n− k)!

.

Thus

(1 + x)5 =
(

5
0

)
+
(

5
1

)
x+

(
5
2

)
x2 +

(
5
3

)
x3 +

(
5
4

)
x4 +

(
5
5

)
x5.
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Using Pn(x; 0) one can show that, for any positive integer n,

(1+x)n =
(
n
0

)
+
(
n
1

)
x+
(
n
2

)
x2+· · ·+

(
n

n− 1

)
xn−1+

(
n
n

)
xn =

n∑
k=0

(
n
k

)
xk.

This is the basis for the binomial theorem,

(a+ b)n =
n∑
k=0

(
n
k

)
akbn−k.

Note: Recall that
(
n
0

)
= n!

0!n! = 1 and
(
n
n

)
= n!

n!0! = 1.

In Exercises 27 and 28, use a calculator or computer to help evaluate the
Taylor polynomials

27. Let f(x) = ex.

(a) Find P10(x; 0).

(b) Compute f(x) and P10(x; 0) at x = 1, x = 2, and x = 4.

28. Let f(x) = ln(x).

(a) Find P10(x; 1).

(b) Compute f(x) and P10(x; 1) at x = 1, x = 2, and x = 4.

29. Obtain the binomial theorem from the special case (1+x)k =
∑n

k=0

(
n
k

)
xk.

30. Using algebra, but no calculus, derive the binomial theorem for (a+ b)3 from
the binomial theorem for (1 + x)3.

31.

(a) Which polynomials are even functions?

(b) If f is an even function, is Pn(x; 0) necessarily an even function? Explain.
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32.

(a) Which polynomials are odd functions?

(b) If f is an odd function, is Pn(x; 0) necessarily an odd function? Explain.

33. Let f(x) = e−1/x2
if x 6= 0 and f(0) = 0.

(a) Find f ′(0).

(b) Find f ′′(0).

(c) Find P2(x; 0).

Note: Hint: : Recall the definition of the derivative.

34. Show that in an open interval in which f ′′′ is positive, that f(x) > f(a) +
f ′(a)(x − a) + 1

2f
′′(a)(x − a)2. Hint: Treat the cases a < x and x > a separately.

Note: See also Exercise 30 in Section 4.4.

35. Show that in an open interval in which f (n+1) is positive (n a positive integer),
that

f(x) > f(a) + f ′(a)(x− a) +
1
2
f ′′(a)(x− a)2 + · · ·+ 1

n!
f (n)(a)(x− a)n.

Hint: Treat the cases a < x and x > a separately. Note: See also Exercise 34.
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5.5 L’Hôpital’s Rule for Finding Certain Lim-

its

There are two types of limits in calculus: those that you can evaluate at a
glance, and those that require some work to evaluate. For instance limx→π/2

sin(x)
x

is clearly 1/(π/2) = 2/π. That’s easy. But limx→0(sin(x))/x is not obvious.
Back in Section 2.1 we used a diagram of circles, sectors, and triangles, to
show that this limit is 1.

In this section we describe a technique for evaluating some limits that are
not visible at a glance, for instance

lim
x→a

f(x)

g(x)

when both f(x) and f(x) approach 0 as x approaches a. The numerator is
trying to drag f(x)/g(x) toward 0, at the same time as the denominator is
trying to make the quotient large. L’Hôpital’s rule helps determine which L’Hôpital is pronounced

lope-e-tal.term wins or whether there is a compromise.

Indeterminate Limits

The following limits are called “indeterminate” because you can’t determine
them without knowing more about the functions of f and g.

lim
x→a

f(x)

g(x)
, where lim

x→a
f = 0 and lim

x→a
g = 0

lim
x→a

f(x)

g(x)
, where lim

x→a
f =∞ and lim

x→g
=∞

L’Hôpital’s Rule provides a way for dealing with these limits (and limits that
can be transformed to those forms.) In short, l’Hôpital’s rule applies only
when you need it.

Theorem 5.5.1 (L’Hôpital’s Rule (zero-over-zero case)) Let a be a num-
ber and let f and g be differentiable over some open interval that contains a.
Assume also that g′(x) is not 0 for any x in that interval except perhaps at a.
If

lim
x→a

f(x) = 0, lim
x→a

g(x) = 0, and lim
x→a

f ′(x)

g′(x)
= L,

then

lim
x→a

f ′(x)

g′(x)
= L.
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In short, “to evaluate the limit of a quotient, that’s indeterminant, evaluate
the limit of the quotient of their derivatives.” We will discuss the proof after
some examples. You evaluate the limit of

the quotient of the deriva-
tives, not the derivative of
the quotient.

EXAMPLE 1 Find limx→1(x5 − 1)/(x3 − 1).
SOLUTION In this case,

a = 1, f(x) = x5 − 1, and g(x) = x3 − 1.

All the assumptions of l’Hôpital’s rule are satisfied. In particular, First checking that the
assumption of l’Hôpital’s
Rule holdslim

x→1
(x5 − 1) = 0 and lim

x→1
(x3 − 1) = 0.

According to l’Hôpital’s rule,

lim
x→1

x5 − 1

x3 − 1
l’H
= lim

x→1

(x5 − 1)′

(x3 − 1)′

if the latter limit exists. Now,

limx→1
(x5−1)′

(x3−1)′
= limx→1

5x4

3x2 differentiation of numerator and dif-
ferentiation of denominator

= limx→1
5
3
x2 algebra

= 5
3
.

Thus

lim
x→1

x5 − 1

x3 − 1
=

5

3
.

�
Sometimes it may be necessary to apply l’Hôpital’s Rule more than once,

as in the next example.

EXAMPLE 2 Find limx→0(sin(x)− x)/x3.
SOLUTION As x → 0, both numerator and denominator approach 0. By
l’Hôpital’s Rule,

lim
x→0

sin(x)− x
x3

l’H
= lim

x→0

(sin(x)− x)′

(x3)′

= lim
x→0

cos(x)− 1

3x2
.

But as x → 0, both cos(x) − 1 → 0 and 3x2 → 0. So use l’Hôpital’s Rule Repeated application of
l’Hôpital’s Ruleagain:

lim
x→0

cos(x)− 1

3x2

l’H
= lim

x→0

(cos(x)− 1)′

(3x2)′

= lim
x→0

− sin(x)

6x
.

October 30, 2007 Calculus 327



More Applications of Derivatives § 5.5

Both sin(x) and 6x approach 0 as x → 0. Use l’Hôpital’s Rule yet another Or recall from Section 2.1
that limx→0

sinx
x = 1.time:

lim
x→0

− sin(x)

6x
l’H
= lim

x→0

(− sin(x))′

(6x)′

= lim
x→0

− cos(x)

6

=
−1

6
.

So after three applications of l’Hôpital’s Rule we find that

lim
x→0

sin(x)− x
x3

= −1

6
.

�

Sometimes a limit may be simplified before l’Hôpital’s Rule is applied. For
instance, consider

lim
x→0

(sin(x)− x) cos5(x)

x3
.

Since limx→0 cos5(x) = 1, we have

lim
x→0

(sin(x)− x) cos5(x)

x3
=

(
lim
x→0

sin(x)− x
x3

)
· 1,

which, by Example 2, is −1
6
. This shortcut saves a lot of work, as may be

checked by finding the limit using l’Hôpital’s Rule without separating cos5(x). Replacing a by ∞ in Theo-
rem 5.5.1, etc.Theorem 5.5.1 concerns limits as x → a. L’Hôpital’s Rule also applies if

x → ∞, x → −∞, x → a+, or x → a−. In the first case, we would assume
that f(x) and g(x) are differentiable in some interval (c,∞) and f ′(x) is not
zero there. In the case of x→ a+, assume that f(x) and g(x) are differentiable
in some open interval (a, b) and g′(x) is not 0 there.

Infinity-over-Infinity Limits
“Infinity-over-infinity” (∞∞)
is indeterminate.Theorem 5.5.1 concerns the limit of f(x)/g(x) when both f(x) and g(x) ap-

proach 0. But a similar problem arises when both f(x) and g(x) get arbitrarily
large as x → a or as x → ∞. The behavior of the quotient f(x)/g(x) will be
influenced by how rapidly f(x) and g(x) become large.

In short, if limx→a f(x) =∞ and limx→a g(x) =∞, then limx→a(f(x)/g(x))
is an indeterminate form. Another indeterminate

formThe next theorem presents a form of l’Hôpital’s Rule that covers the case
in which f(x)→∞ and g(x)→∞.
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Theorem 5.5.2 (L’Hôpital’s Rule (infinity-over-infinity case) Let f and
g be defined and differentiable for all x larger than some fixed number. Then,
if L’Hôpital’s rule for the

infinity-over-infinity case
lim
x→∞

f(x) =∞, lim
x→∞

g(x) =∞, and lim
x→∞

f ′(x)

g′(x)
= L,

it follows that

lim
x→∞

f(x)

g(x)
= L.

A similar result holds for x→ a, x→ a−, x→ a+, or x→ −∞. Moreover,
limx→∞ f(x) and limx→∞ g(x) could both be −∞, or one could be ∞ and the
other −∞.

EXAMPLE 3 Find limx→∞
ln(x)
x2 .

SOLUTION Since ln(x) → ∞ and x2 → ∞ as x → ∞, we may use
l’Hôpital’s Rule in the “infinity-over-infinity” form.

We have

lim
x→∞

ln(x)

x2

l’H
= lim

x→∞

(ln(x))′

(x2)′

= lim
x→∞

1/x

2x

= lim
x→∞

1

2x2

= 0.

Hence limx→∞ ((ln(x))/x2) = 0. This says that ln(x) grows much more
slowly than x2 does as x gets large. �

EXAMPLE 4 Find

lim
x→∞

x− cos(x)

x
. (1)

SOLUTION Both numerator and denominator approach ∞ and x → ∞.
Trying l’Hôpital’s Rule, we obtain

lim
x→∞

x− cos(x)

x
l’H
= lim

x→∞

(x− cos(x))′

x′

= lim
x→∞

1 + sin(x)

1
.

L’Hôpital’s Rule may fail to
provide an answerBut limx→∞(1+sin(x)) does not exist, since sin(x) oscillates back and forth

from −1 to 1 as x→∞
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What can we conclude about the limit in (1)? Nothing at all. L’Hôpital’s
Rule says that if limx→∞ f

′(x)/g′(x) exists, then limx→∞ f(x)/g(x) exists and
has the same value. It say nothing about the case when limx→∞ f

′(x)/g′(x)
does not exist.

It is not difficult to evaluate (1) directly, as follows: Moral: Look carefully at a
limit before you decide to
use l’Hôpital’s Rule.

limx→∞
x−cos(x)

x
= limx→∞

(
1− cos(x)

x

)
algebra

= 1− 0 since | cos(x)| ≤ 1
= 1.

�

Figure 5.5.1:

Two cars can help make Theorem 5.5.2 plausible. Imagine that f(t) and
g(t) describe the locations on the x axis of two cars at time t. Call the cars
the f -car and the g-car. See Figure 5.5.1. Their velocities are therefore f ′(t)
and g′(t). These two cars are on endless journeys. But let us assume that as
time t → ∞ the f -car tends to travel at a speed closer and closer to L times
the speed of the g-car. That is, assume that

lim
t→∞

f ′(t)

g′(t)
= L.

No matter how the two cars move in the short run, it seems reasonable that
in the long run the f -car will tend to travel about L times as far as the g-car;
that is,

lim
t→∞

f(t)

g(t)
= L.

Transforming Limits So You Can Use l’Hôpital’s Rule

Many limits can be transformed to limits to which l’Hôpital’s Rule applies.
For instance, the problem of finding zero-times-infinity (0 · ∞)

case
lim
x→0+

x ln(x)

does not fit into l’Hôpital’s Rule, since it does not involve the quotient of
two functions. As x → 0+, one factor, x, approaches 0 and the other factor
ln(x), approaches −∞. So this is another type of indeterminate limit, a small
number times a large number (“zero-times-infinity”). It is not obvious how this
product, x ln(x), behaves as x → 0+. (Such a limit can turn out to be “zero,
medium, large, or infinite”). A little algebra transforms the zero-times-infinity
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case into a problem to which l’Hôpital’s Rule applies, as the next example
illustrates.

EXAMPLE 5 Find limx→0+ x ln(x).

SOLUTION Rewrite x ln(x) as a quotient, ln(x)
(1/x)

. Note that

lim
x→0+

ln(x) = −∞ and lim
x→0+

1

x
=∞.

By l’Hôpital’s Rule,

lim
x→0+

ln(x)

1/x
l’H
= lim

x→0+

1/x

−1/x2

= lim
x→0+

(−x)

= 0.

Thus The factor x, which ap-
proaches 0, dominates the
factor ln(x) which “slowly
grows towards −∞.”

lim
x→0+

ln(x)

1/x
= 0,

from which it follows that limx→0+ x ln(x) = 0. �

The final example illustrates another type of limit that can be found by
first relating it to limits to which l’Hôpital’s Rule applies. Try this on your calculator

first.
EXAMPLE 6 limx→0+ xx.
SOLUTION Since this limit involves an exponential, not a quotient, it does
not fit directly into l’Hôpital’s Rule. But a little algebra changes the problem
to one covered by l’Hôpital’s Rule.

Let y = xx.
Then ln(y) = ln(xx) = x ln(x)
By Example 5, limx→0+ x ln(x) = 0.

Therefore,limx→0+ ln(y) = 0 so y must approach 1 as x→ 0+. Thus, using the
definition of ln(y) and the continuity of ex:

Thus, limx→0+ y = limx→0+ eln(y)

= elimx→0+ ln(y)

= e0

= 1.

Hence xx → 1 as x→ 0+. �
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Concerning the Proof
Argument for a special case
of Theorem 5.5.1A complete proof of Theorem 5.5.1 may be found in Exercises 70 to 72. The

following argument is intended to make the theorem plausible. To do so,
consider the special case where f , f ′, g, and g′ are all continuous throughout an
open interval containing a — in particular, all four functions are defined at a.
Assume that g′(x) 6= 0 throughout the interval. Since we have limx→a f(x) = 0 Differentiable functions are

automatically continuous.and limx→a g(x) = 0, it follows by continuity that f(a) = 0 and g(a) = 0.

Assume that limx→a
f ′(x)
g′(x)

= L. Then

lim
x→a

f(x)

g(x)
= limx→a

f(x)−f(a)
g(x)−g(a)

since f(a) = 0 and g(a) = 0

= limx→a
f(x)−f(a)

x−a
g(x)−g(a)
x−a

algebra

=
limx→a

f(x)−f(a)
x−a

limx→a
g(x)−g(a)
x−a

limit of quotient = quotient of limits

= f ′(a)
g′(a)

definitions of f ′(a) and g′(a)

= limx→a f ′(x)
limx→a g′(x)

f ′ and g′ are continuous, by assump-
tion

= limx→a
f ′(x)
g′(x)

quotient of limits = limit of quotients

= L by assumption.

Consequently,

lim
x→a

f(x)

g(x)
= L.

Summary

We described l’Hôpital’s Rule, which is a technique for dealing with limits of
the indeterminate form “zero-over-zero” (0

0
) and “infinity-over-infinity” (∞∞).

In both of these cases

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
,

if the latter limit exists. Note that it concerns the quotient of two derivatives,
not the derivative of the quotient.

Table 5.5.1 shows how some limits of other indeterminate forms can be
converted into either 0

0
or ∞∞ .
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Indeterminate Forms Name Conversion Method New Form

f(x)g(x); f(x)→ 0, g(x)→ 0 Zero-times-infinity (0 · ∞) Write as f(x)
1/g(x)

or g(x)
1/f(x)

0
0

or ∞∞

f(x)g(x); f(x)→ 1, g(x)→∞ One-to-the-infinity (1∞) Let y = f(x)g(x);
take ln(y), find limit
of ln(y), and then find
limit of y = eln(y)

ln(y) has form ∞ · 0

f(x)g(x); f(x)→ 0, g(x)→ 0 Zero-to-the-zero (00) Same as for 1∞ ln(y) has form 0 · ∞.

Table 5.5.1:
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EXERCISES for 5.5

Exercises will be ordered by increasing difficulty. Some exercises will be
added and others will be moved to a Chapter Summary or to another section.

In Exercises 1 to 16 check that l’Hôpital’s Rule applies and use it to find
the limits. Identify all uses of l’Hôpital’s Rule, including the type of indeter-
minant form.

1. lim
x→2

x3 − 8
x2 − 4

2. lim
x→1

x7 − 1
x3 − 1

3. lim
x→0

sin(3x)
sin(2x)

4. lim
x→0

sin(x2)
(sin(x))2

5. lim
x→0

sin(5x) cos(3x)
x

6. lim
x→0

sin(5x) cos(3x)
x− π

2

7. lim
x→π

2

sin(5x) cos(3x)
x

8. lim
x→π

2

sin(5x) cos(3x)
x− π

2

9. lim
x→∞

x3

ex

10. lim
x→∞

x5

3x

11. lim
x→0

1− cos(x)
x2

12. lim
x→0

sin(x)− x
(sin(x))3

13. lim
x→0

tan(3x)
ln(1 + x)

14. lim
x→1

cos(πx/2)
ln(x)

15. lim
x→2

(ln(x))2

x
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16. lim
x→0

arcsin(x)
e2x − 1

In each of Exercises 17 to 22 transform the problem into one to which
l’Hôpital’s Rule applies; then find the limit. Identify all uses of l’Hôpital’s
Rule, including the type of indeterminant form.

17. lim
x→0

(1− 2x)1/x

18. lim
x→0

(1 + sin(2x))csc(x)

19. lim
x→0+

(sin(x))(ex−1)

20. lim
x→0+

x2 ln(x)

21. lim
x→0+

(tan(x))tan(2x)

22. lim
x→0+

(ex − 1) ln(x)

WARNING (R)emember that l’Hôpital’s Rule, carelessly applied,
may give a wrong answer or no answer.

In Exercises 23 to 50 find the limits. Use l’Hôpital’s Rule only if it applies.
Identify all uses of l’Hôpital’s Rule, including the type of indeterminant form.

23. lim
x→∞

2x

3x

24. lim
x→∞

2x + x

3x

25. lim
x→∞

log2(x)
log3(x)

26. lim
x→1

log2(x)
log3(x)

27. lim
x→∞

(
1
x
− 1

sin(x)

)
28. lim

x→∞

(√
x2 + 3−

√
x2 + 4x

)
29. lim

x→∞

x2 + 3 cos(5x)
x2 − 2 sin(4x)
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30. lim
x→∞

ex − 1/x
ex − 1/x

31. lim
x→0

3x3 + x2 − x
5x3 + x2 + x

32. lim
x→∞

3x3 + x2 − x
5x3 + x2 + x

33. lim
x→∞

sin(x)
4 + sin(x)

34. lim
x→∞

x sin(3x)

35. lim
x→1+

(x− 1) ln(x− 1)

36. lim
x→π/2

tan(x)
x− (π/2)

37. lim
x→0

(cos(x))1/x

38. lim
x→0+

x1/x

39. lim
x→∞

sin(2x)
sin(3x)

40. lim
x→1

x2 − 1
x3 − 1

41. lim
x→0

xex(1 + x)3

ex − 1

42. lim
x→0

xex cos2(6x)
e2x − 1

43. lim
x→0

(csc(x)− cot(x))

44. lim
x→0

csc(x)− cot(x)
sin(x)

45. lim
x→0

5x − 3x

sin(x)

46. lim
x→0

(tan(x))5 − (tan(x))3

1− cos(x)

47. lim
x→2

x3 + 8
x2 + 5
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48. lim
x→π/4

sin(5x)
sin(3x)

49. lim
x→0

(
1

1− cos(x)
− 2
x2

)
50. lim

x→0

arcsin(x)
arctan(2x)

51. In Figure 5.5.2(a) the unit circle is centered at O, BQ is a vertical tangent
line, and the length of BP is the same as the length of BQ. What happens to the
point E as Q→ B?

52. In Figure 5.5.2(b) the unit circle is centered at the origin, BQ is a vertical

tangent line, and the length of BQ is the same as the arc length
_
BP . Prove that

the x-coordinate of R approaches −2 as P → B.

(a) (b) (c)

Figure 5.5.2:

53. Exercise 44 of Section 2.1 asked you to guess a certain limit. Now that limit
will be computed.

WARNING (A)s Albert Einstein observed, “Common sense is the
deposit of prejudice laid down in the mind before the age of 18.”

In Figure 5.5.2(c), which shows a circle, let

f(θ) = area of triangle ABCg(θ) = area of shaded region formed by deleting triangle OAC from sector OBC.

Clearly, 0 < f(θ) < g(θ).

(a) What would you guess is the value of limθ→0 f(θ)/g(θ)?

(b) Find limθ→0 f(θ)/g(θ).
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54. In Eugene Silberberg, The Structure of Economics, McGraw-Hill, New York,
1978, the following argument appears:

“Consider the production function

y = k
(
αx−ρ1 + (1− α)x−ρ2

)−1/ρ
,

where k, α, x1, and x2 are positive constants and α < 1. Taking the limit as ρ→ 0+,
we find that

lim
ρ→0+

y = kxα1x
1−α
2 ,

which is the Cobb-Douglas function, as expected.”
Fill in the details.

55. Sam proposes the following proof for Theorem 5.5.1: “Since

lim
x→a+

f(x) = 0 and lim
x→a+

g(x) = 0,

I will define f(a) = 0 and g(a) = 0. Next I consider x > a but near a. I now have
continuous functions f and g defined on the closed interval [a, x] and differentiable
on the open interval (a, x). So, using the Mean-Value Theorem, I conclude that
there is a number c, a < c < x, such that

f(x)− f(a)
x− a

= f ′(c) and
g(x)− g(a)
x− a

= g′(c).

Since f(a) = 0 and g(a) = 0, these equations tell me that

f(x) = (x− a)f ′(c)and g(x) = (x− a)g′(c)

Thus f(x)
g(x) = f ′(c)

g′(c)

Hence limx→a+
f(x)
g(x) = limx→a+

f ′(c)
g′(c) .

Alas, Sam made one error. What is it?

56. Find limx→0

(
1+2x

x

)1/x.

57. R. P. Feynman, in Lectures in Physics, wrote: “Here is the quantitative answer
of what is right instead of kT . This expression

h̄ω

eh̄ω/kT − 1

should, of course, approach kT as ω → 0. . . . . See if you can prove that it does —
learn how to do the mathematics.”

Do the mathematics.

October 30, 2007 Calculus 338



More Applications of Derivatives § 5.5

58. Graph y = xx for 0 < x ≤ 1, showing its minimum point.

In Exercises 59 to 61 graph the specified function, being sure to show (a)
where the function is increasing and decreasing, (b) where the function has
any asymptotes, and (c) how the function behaves for x near 0.

59. f(x) = (1 + x)1/x for x > −1, x 6= 0

60. y = x ln(x)

61. y = x2 ln(x)

62. In which cases below is it possible to determine limx→a f(x)g(x) without
further information about the functions?

(a) limx→a f(x) = 0; limx→a g(x) = 7

(b) limx→a f(x) = 2; limx→a g(x) = 0

(c) limx→a f(x) = 0; limx→a g(x) = 0

(d) limx→a f(x) = 0; limx→a g(x) =∞

(e) limx→a f(x) =∞; limx→a g(x) = 0

(f) limx→a f(x) =∞; limx→a g(x) = −∞

63. In which cases below is it possible to determine limx→a f(x)/g(x) without
further information about the functions?

(a) limx→a f(x) = 0; limx→a g(x) =∞

(b) limx→a f(x) = 0; limx→a g(x) = 1

(c) limx→a f(x) = 0; limx→a g(x) = 0

(d) limx→a f(x) =∞; limx→a g(x) = −∞

64. Jane says, “I can get limx→0
ex−1
x easily. It’s just the derivative of ex evaluated

at 0. I don’t need l’Hôpital’s Rule.” Is Jane right, or has Sam’s influence affected
her ability to reason?
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65.
If limt→∞ f(t) = ∞ = limt→∞ g(t)
and limt→∞

f(t)
g(t) = 3,

what can be said about
lim
t→∞

ln(f(t))
ln(g(t))

?

Note: Do not assume f and g are differentiable.

66. Give an example of a pair of functions f and g such that we have limx→0 f(x) =
1, limx→ 0g(x) =∞, and limx→0 f(x)g(x) = 2.

67. Sam is angry. “Now I know why calculus books are so long. They spend all
of page 55 showing that limx→0

sin(x)
x is 1. They could have saved space (and me a

lot of trouble) if they had just used l’Hôpital’s approach.”
Is Sam right, for once?

68. Obtain l’Hôpital’s Rule for limx→∞
f(x)
g(x) from the case limt→0+

f(t)
g(t) .

Hint: Let t = 1/x.

69. Find the limit of (1x + 2x + 3x)1/x as

(a) x→ 0

(b) x→∞

(c) x→ −∞.

The proof of Theorem 5.5.1, to be outlined in Exercise 72, depends on the
following generalized mean-value theorem.

Generalized Mean-Value Theorem. Let f and g be two functions that are
continuous on [a, b] and differentiable on (a, b). Furthermore, assume that g′(x)
is never 0 for x in (a, b). Then there is a number c in (a, b) such that

f(b)− f(a)

g(b)− g(a)
=
f ′(c)

g′(c)
.

70. During a given time interval one car travels twice as far as another car. Use
the Generalized Mean-Value Theorem to show that there is at least one instant when
the first car is traveling exactly twice as fast as the second car.
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71. To prove the Generalized Mean-Value Theorem, introduce a function h defined
by

h(x) = f(x)− f(a)− f(b)− f(a)
g(b)− g(a)

(g(x)− g(a)). (2)

Show that h(b) = 0 and h(a) = 0. Then apply Rolle’s Theorem to h on (a, b).
Note: Rolle’s Theorem is Theorem 4.1.2 in Section 4.1.

Remark The function h in (2) is similar to the function h used
in the proof of the Mean-Value Theorem (Theorem 4.1.3 in Sec-
tion 4.1). Check that h(x) is the vertical distance between the point
(g(x), f(x)) and the line through (g(a), f(a)) and (g(b), f(b)).

72. Assume the hypotheses of Theorem 5.5.1. Define f(a) = 0 and g(a) = 0, so
that f and g are continuous at a. Note that

f(x)
g(x)

=
f(x)− f(a)
g(x)− g(a)

,

and apply the Generalized Mean-Value Theorem from Exercise 70. Note: This
Exercise proves Theorem 5.5.1, l’Hôpital’s Rule in the zero-over-zero case.

73.
If limt→∞ f(t) = ∞ = limt→∞ g(t)
and limt→∞

ln(f(t))
ln(g(t)) = 1,

must limt→∞
f(t)
g(t) = 1?

Explain.

74.

Sam: I bet I can find limx→0
ex−1−x−x

2

2
x3 by using the Taylor polynomial P2(x; 0)

for ex and paying attention to the error.

Is Sam right?
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5.S Chapter Summary

The text and additional exercises for the summary will be written after the
organization of the chapters is firmly settled.
EXERCISES for 5.S Key: R–routine, M–moderate, C–challenging

1. In Example 4 an approximate value for Euler’s constant is obtained by applying
Theorem 5.3.2 to R(x) = ex −

(
1 + x+ x2

2! + x3

3!

)
on the interval (−1, 1) with a = 0

and x = 1
2 .

(a) Compare this estimate with the estimate obtained by applying Theorem 5.3.2
to R(x) on the interval (−1, 2) with a = 0 and x = 1.

(b) Why is it not permissible to apply Theorem 5.3.2 in this case on the interval
(0, 1)?

Remember to start count-
ing derivatives at zero:
f (0)(x) = f(x).

2. Supply all the steps to show that the polynomial a0 + a1(x − a) + a2(x − a)2

whose first two derivatives coincide with those for f(x) is given by f(a) + f ′(a)(x−
a) + f ′′(a)

2! (x− a)2.
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