Problem Set About Unique Readability
 30 August 2011

In the problems below L is a signature and X is a set of variables.

Problem 0.

Define a function λ from the set of finite nonempty sequences of elements of $X \cup L$ into the integers as follows:

$$
\lambda(w)= \begin{cases}-1 & \text { if } w \in X, \\ r-1 & \text { if } w \text { is an operation symbol of rank } r, \\ \sum_{i<n} \lambda\left(u_{i}\right) & \text { if } w=u_{0} u_{1} \ldots u_{n-1} \text { where } u_{i} \in X \cup L \text { and } n>1\end{cases}
$$

Prove that w is a term if and only if $\lambda(w)=-1$ and $\lambda(v) \geq 0$ for every nonempty proper initial segment v of w.

Problem 1.

Let $w=u_{0} u_{1} \ldots u_{n-1}$, where $u_{i} \in X \cup L$ for all $i<n$. Prove that if $\lambda(w)=-1$, then there is a unique cyclic variant $\hat{w}=u_{i} u_{i+1} \ldots u_{n-1} u_{0} \ldots u_{i-1}$ of w that is a term.

Problem 2.

Prove that if w is a term and w^{\prime} is a proper initial segment of w, then w^{\prime} is not a term.

Problem 3.

Let \mathbf{T} be the term algebra of L over X. Prove

If Q and P are operation symbols, and $P^{\mathbf{T}}\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)=Q_{1}^{\mathbf{T}}\left(q_{0}, q_{1}, \ldots, q_{m-1}\right)$, then $P=Q, n=m$, and $p_{i}=q_{i}$ for all $i<n$.

Problem Set About the Compactness Theorem Due Thursday 22 September 2011

Problem 4.

Let L be the signature for group theory with operation symbols $\cdot,^{-1}$, and 1 . Let T be a set of L-sentences which includes all the group axioms (so every model of T will be a group). Suppose that for each n, there is a model of T which has no elements, other than 1 , of order smaller than n. Prove that there is a model of T such that 1 is the only element of finite order.

Problem 5.

Suppose that G is a group which has elements of arbitrarily large finite order. Prove that G is elementarily equivalent to a group with an element of infinite order.

Problem 6.

Let $\langle\mathbb{N},+, \cdot, 0,1, \leq\rangle$ be the familiar structure consisting of the natural numbers equipped with addition, multiplication, the two distinguished elements 0 and 1 , and the usual order relation. Let T consist of all the sentences true in $\langle\mathbb{N},+, \cdot, 0,1, \leq\rangle$. Prove T has a model \mathbf{M} with an element ω so that all the following are true in \mathbf{M} :

$$
0 \leq \omega, 1 \leq \omega, 2 \leq \omega, \ldots
$$

Problem 7.

Let L be the signature of rings. Find a set Σ of L-sentences such that $\operatorname{Mod} \Sigma$ is the class of algebraically closed fields. Then prove that there is no finite set of L-sentences which will serve the same purpose.

Problem 8.

Let L be the signature of ordered sets. Prove that there is no set Σ of L-sentences such that $\operatorname{Mod} \Sigma$ is the class of all well-ordered sets.

Second Problem Set About the Compactness Theorem
 Due Tuesday 18 October 2011

Problem 9.

Let L be a signature and \mathcal{K} be a class of L-structures. We say that \mathcal{K} is axiomatizable provided $\mathcal{K}=\operatorname{Mod} \Sigma$ for some set Σ and L-sentences. \mathcal{K} is finitely axiomatizable provided there is a finite such Σ. Prove that \mathcal{K} is finitely axiomatizable if and only if both \mathcal{K} and $\{A \mid A$ is an L-structure and $A \notin \mathcal{K}\}$ are axiomatizable.

Problem 10 .

Show that the class of fields of finite characteristic is not axiomatizable.
Problem 11.
Show that the class of fields of characteristic 0 is not finitely axiomatizable.

Problem 12.

Let φ be any sentence in the signature of fields. Prove that if φ is true in every field of characteristic 0 , then there is a natural number n so that φ is true in every field of characteristic p for all primes $p>n$.

Problem 13.

Let L be a signature and for each natural number n suppose that T_{n} is a set of L-sentences closed with respect to logical consequence. Further, suppose that $T_{0} \subset T_{1} \subset T_{2} \subset \ldots$ is strictly increasing. Let $T=\bigcup_{n \in \omega} T_{n}$. Prove that
(1) T has a model.
(2) T is closed under logical sonsequence.
(3) T is not finitely axiomatizable.

Suppose \mathbf{A} is a structure. The group Aut A of all automorphisms of \mathbf{A} partitions A into orbits. [Elements $a, b \in A$ belong to the same orbit iff there is an automorphism f such that $f(a)=b$.] Notice that the same applies the n-tuples from A : the group Aut A partitions A^{n} into orbits.

Problem 14.

Let L be a countable signature and let T be a complete set of L-sentences. Prove that T is ω-categorical if and only if Aut A partitions A^{n} into only finitely many orbits for every natural number n, for every countable $\mathbf{A} \models T$.

Problem 15.

Let L be a countable signature and let T be a complete set of L-sentences. Prove that T is ω-categorical if and only if Aut A partitions A^{n} into only finitely many orbits for every natural number n, for some countable $\mathbf{A} \models T$.

Problem 16.

Let T be an elementary theory in a countable signature and suppose that T is κ-categorical for some infinite cardinal κ. Let $\mathcal{K}=\{A \mid A \bmod T$ and A is infinite $\}$. Prove that \mathcal{K} is axiomatizable and that $\operatorname{Th} \mathcal{K}$ is complete.

Problem 17.

Consider a signature provided with one 2-place relation symbol \leq and a infinite list $c_{0}, c_{1}, c_{2}, \ldots$ of constant symbols. Let T be the theory that asserts that \leq is a dense linear order without endpoints and that $c_{i}<c_{i+1}$ for all $i \in \omega$. Prove that T is a complete theory and discover (with proofs) how many countable models T has, up to isomorphism.

